CN1639868A - 非易失性存储器及其制造方法 - Google Patents

非易失性存储器及其制造方法 Download PDF

Info

Publication number
CN1639868A
CN1639868A CNA038049201A CN03804920A CN1639868A CN 1639868 A CN1639868 A CN 1639868A CN A038049201 A CNA038049201 A CN A038049201A CN 03804920 A CN03804920 A CN 03804920A CN 1639868 A CN1639868 A CN 1639868A
Authority
CN
China
Prior art keywords
electrode
nonvolatile memory
pore
dielectric body
inorganic dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA038049201A
Other languages
English (en)
Inventor
田中英行
森本廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1639868A publication Critical patent/CN1639868A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/04Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using record carriers having variable electric resistance; Record carriers therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1409Heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1418Disposition or mounting of heads or record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1463Record carriers for recording or reproduction involving the use of microscopic probe means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1463Record carriers for recording or reproduction involving the use of microscopic probe means
    • G11B9/149Record carriers for recording or reproduction involving the use of microscopic probe means characterised by the memorising material or structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/101Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including resistors or capacitors only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/82Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays the switching components having a common active material layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8418Electrodes adapted for focusing electric field or current, e.g. tip-shaped
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明涉及一种非易失性存储器,包括:具有贯通正反面的第一电极(18)的绝缘基板(11);在绝缘基板(11)的一面侧上形成的第二电极(13);以及夹持在第一电极(18)与第二电极(13)之间、通过对第一电极(18)与第二电极(13)之间施加电脉冲而改变电阻值的记录层(12)。绝缘基板(11)包括:有机介电体薄膜(112)与厚度小于有机介电体薄膜(112)的无机介电体薄膜(111)的叠层结构,在形成无机介电体层(111)的一侧形成记录层(12)。采用该非易失性存储器,能够省电力,同时能够增大数据可改写(更新)次数。

Description

非易失性存储器及其制造方法
技术领域
本发明是涉及一种非易失性存储器,详细地讲,是涉及能够由通电而控制电阻值的变化,进行数据的记录(写入)及消去的非易失性存储器及其制造方法。
背景技术
作为非易失性存储器,目前已知的有闪存、FeRAM、MRAM、相变存储器等。最近,由于对携带式信息终端用等的存储器提出了高密度化的要求,所以相变型的非易失性存储器受到注目,同时对其进行了多种改良(国际公开第98/19350号单行本(特表2001-502848号公报)等)。
例如,在特开平9-282723号公报中,公开了使导电性探针与包含非晶半导体薄膜的记录介质的表面相接触,进行信息写入-消去的信息记录装置。
而且,在国际公开第98/336446号单行本(特表2001-504279号公报)中,公开了如图10所示的,在下部电极81与上部电极82之间形成相变材料层83,通过下部电极81及上部电极82使相变材料层83构成为可通电的相变型的非易失性存储器。相变材料层83由在高电阻的非晶(非晶质)状态与低电阻的晶体状态之间能够可逆地进行相变化的硫族化物材料所构成,能够由通电而变为非晶态或晶体态,从而控制电阻值。例如,在数据存储(写入)时,相变材料层83从非晶态变为晶体态,降低电阻值。另一方面,是数据的消去时,相变材料层83从晶体态变为非晶态,提高电阻值。通过读取电阻值的差,能够实现存储器的功能。
在图10所示的结构中,下部电极81与相变材料层83的连接部81a,由绝缘层84所隔离,作为绝缘层84的材料,表示出优选氧化硅。然而,在由如氧化硅等热传导率较大的无机介电体进行连接部81a的绝缘的情况下,由于写入与消去需要的大的电力,所以存在难以省电力的问题。
与此相对,在使用有机介电体作为绝缘层84的材料的情况下,不仅能够以小的电力进行写入与消去,而且还有廉价-轻量、以及能够对应于弯曲变形等特点。
然而,单纯由有机介电体构成绝缘层84时,存在有由有机介电体的耐热温度比相变材料的熔点低所引起的数据的改写次数不够的问题。就是说,在数据的消去中,由下部电极81与相变材料层83的连接部81a的瞬间发热,会将相变材料层83加热到熔点(例如600℃以上)。与此相对,在使用有机介电体中耐热性优异的聚酰亚胺作为绝缘层84的情况下,即使是瞬间发热也只能承受到500℃左右。其结果是,在重复进行数据的改写中,连接部81a附近的绝缘层84分解,产生下部电极81及相变材料层83的电气特性与机械稳定性恶化的问题。
发明内容
本发明是为了解决上述问题而提出,其的目的在于,提供一种能够节省电力、且能够增大数据的可改写次数的非易失性存储器及其制造方法。
为了达到本发明的上述目的,本发明的非易失性存储器包括:具有贯通正反面的第一电极的绝缘基板;在上述绝缘基板的一面侧上形成的第二电极;和以及夹持在上述第一电极与第二电极之间、通过对上述第一电极与第二电极之间施加电脉冲而改变电阻值的记录层。上述绝缘基板包括:有机介电体薄膜和厚度小于该有机介电体薄膜的无机介电体层的叠层结构,在形成上述无机介电体层的一侧形成上述记录层。
该非易失性存储器,例如可以由权利要求1所述的非易失性存储器的制造方法制造,就是由具有在形成细孔的上述有机介电体薄膜的一侧的面上,堆积无机介电体,形成无机介电体层的步骤;在上述无机介电体层的表面上按照顺序叠层记录层及第二电极,由上述记录层覆盖上述细孔一端侧的步骤;以及在上述细孔内形成第一电极的步骤的非易失性存储器的制造方法所制造。
而且,上述非易失性存储器可以适用于具有以下结构的信息记录装置或表示装置。
(1)设置有非易失性存储器,夹持该非易失性存储器的第一夹持部件与第二夹持部件,以及存在于上述非易失性存储器与上述第一夹持部件之间的第一弹性部件;上述非易失性存储器设置有具有贯通正反面的第一电极的绝缘基板,在上述绝缘基板的一面侧上形成的第二电极,以及夹持在上述第一电极与第二电极之间、通过对上述第一电极与第二电极之间施加电脉冲而改变电阻值的记录层;上述绝缘基板设置有有机介电体薄膜与厚度小于该有机介电体薄膜的无机介电体层的叠层结构,在形成上述无机介电体层的一侧形成上述记录层,在形成上述有机介电体薄膜的一侧露出上述第一电极;上述第一电极及第二电极设置有在平面视图上重合的区域内形成的多个存储器单元,上述第二夹持部件在夹持面上设置有与对应于各存储器单元的上述第一电极各自相电连接的多个第一导电体;进而设置有控制对各存储器的通电的开关元件的信息记录装置。
(2)在(1)所示的信息记录装置中,上述第一夹持部件通过第二弹性部件在夹持面上设置有与上述第二电极分别电气连接的第二导电体的信息记录装置。
(3)设置有非易失性存储器,夹持该非易失性存储器的第一夹持部件与第二夹持部件;上述非易失性存储器的设置有具有贯通正反面的第一电极的绝缘基板,在上述绝缘基板一面侧上形成的第二电极,以及夹持在上述第一电极与第二电极之间、通过对上述第一电极与第二电极之间施加电脉冲而改变电阻值的记录层的两个副存储器分别与上述第二电极相对、通过第一弹性部件所构成;上述绝缘基板设置有有机介电体薄膜与厚度小于该有机介电体薄膜的无机介电体层的叠层结构,在形成无机介电体层的一侧形成上述记录层,在形成有机介电体薄膜的一侧露出上述第一电极;上述第一电极及第二电极设置有在平面视图上重合的区域内形成的多个存储器单元,上述第一夹持部件及第二夹持部件在夹持面上设置有与对应于各存储器单元的上述第一电极分别相电气连接的多个第一导电体;进而设置有控制对各存储器的通电的开关元件的信息记录装置。
(4)在(3)所示的信息记录装置中,上述第一夹持部件及第二夹持部件通过第二弹性部件在夹持面上设置有与夹持面相对面的上述第二电极分别电连接的第二导电体的信息记录装置。
(5)设置有非易失性存储器,与对应于该非易失性存储器能够相对移动而构成的导电性探针;上述非易失性存储器设置有具有贯通正反面的第一电极的绝缘基板,在上述绝缘基板的一面侧上形成的第二电极,以及夹持在上述第一电极与第二电极之间、通过对上述第一电极与第二电极之间施加电脉冲而改变电阻值的记录层;上述绝缘基板设置有有机介电体薄膜与厚度小于该有机介电体薄膜的无机介电体层的叠层结构,在形成上述无机介电体层的一侧形成上述记录层,在形成上述有机介电体薄膜的一侧露出上述第一电极;上述第一电极及第二电极设置有在平面视图上重合的区域内形成的多个存储器单元,上述导电性探针与对应于所希望的存储器单元的上述第一电极相接触,能够对上述记录层通电的信息记录装置。
(6)由设置有非易失性存储器的纸型显示器所构成的表示装置;上述非易失性存储器设置有具有贯通正反面的第一电极的绝缘基板,在上述绝缘基板一面侧上形成的第二电极,以及夹持在上述第一电极与第二电极之间、通过对上述第一电极与第二电极之间施加电脉冲而改变电阻值的记录层;上述绝缘基板设置有有机介电体薄膜与厚度小于该有机介电体薄膜的无机介电体层的叠层结构,在形成上述无机介电体层的一侧形成上述记录层的表示装置。
附图说明
图1是本发明的一个实施方式中非易失性存储器的主要部分的截面图。
图2是本发明的另一实施方式中非易失性存储器的主要部分的截面图。
图3是本发明的另一其它实施方式中非易失性存储器的主要部分的截面图。
图4是为了说明本发明的一个实施方式中非易失性存储器的制造方法的图。
图5是为了说明本发明的另一个实施方式中非易失性存储器的制造方法的图。
图6是表示本发明的一个实施方式中信息处理装置的概略结构的截面图。
图7是表示本发明的另一实施方式中信息处理装置的概略结构的截面图。
图8是表示本发明的另一其它实施方式中信息处理装置的概略结构的截面图。
图9是表示本发明的一个实施方式中信息处理装置的概略结构的立体图。
图10是表示现有的非易失性存储器结构的主要部分截面图。
具体实施方式
下面参照附图说明本发明的实施方式。
(非易失性存储器)
图1是本发明的一个实施方式中非易失性存储器的主要部分的截面图。如图1所示,非易失性存储器1包括:无机介电体层111与有机介电体层112叠层构成的绝缘基板11;在绝缘基板11的无机介电体层111一侧形成的记录层12及上部电极13;在绝缘基板11的有机介电体层112一侧形成的下部电极14。
无机介电体层111由对于发热时的记录层12呈惰性的绝缘体所构成,可以列举出SiOx等氧化膜,SiNx等氮化膜,此外还有SiO2-ZnS、SiO2-ZnSe等。例如,在由SiO2∶ZnS=约0.2∶约0.8的混合层作为无机介电体层111的材料的情况下,能够取得在无机介电体层111上叠层的层不易剥落的效果。
作为有机介电体层112,可以列举出聚酰亚胺、聚碳酸酯等绝缘性聚合物,有机介电体层112的厚度比无机介电体层111大,这样能够实现数据的写入与消去时的省电力化,且基板11容易弹性弯曲变形。
记录层12由具有两个以上的稳定状态,且各状态之间能够可逆变化的相变材料所构成,由可通过通电而控制电阻值变化的材料构成。具体地,可以列举出Ge2Sb2Te5、Ge1Sb2Te4等Ge-Sb-Te化合物、Ag5In5Sb70Te20等Ag-In-Sb-Te化合物、Te80Sb5As15等Te-Sb-As化合物、Te81Ge15Sb2S2等Te-Ge-Sb-S化合物、Te93Ge5As2等Te-Ge-As化合物、Te80Ge5Sn15等Te-Ge-Sn化合物、Te60Ge4Sn11Au25等Te-Ge-Sn-Au化合物、GeTe化合物等硫族化物系材料。记录层12夹持在后述的中间电极(第一电极)18与上部电极(第二电极)13之间,可以通电。
上部电极13及下部电极14由金(Au)等金属材料所构成,上部电极13及下部电极14形成等间隔的条纹状,上部电极13及下部电极14的长度方向在平面视图上相互垂直而配置。而且,上部电极13与下部电极14在平面视图上重合的区域构成各存储器单元MC。各存储器单元MC,为了防止电气干扰,可以使用选择晶体管或二极管等进行电气分离。上部电极13及下部电极14形成条纹状的带状体的宽度,可以由设计规则所决定,例如为15μm以上100μm以下。当然,也可以采用光或电子线的光刻法(lithography)及FIB(Focused Ion Beam)形成比上述宽度更窄的带状体。而且,优选带状体的间隔是其宽度的2倍以上10倍以下。
绝缘基板11在对应于各存储器单元MC的位置具有贯穿正反面的多个细孔16。在细孔16的内壁上,通过一部分无机介电体层111的放入并附着,形成与无机介电体层111相连续的环状耐热保护膜17。在下方端由下部电极14所覆盖的细孔16的内部,填充例如由铑(Rh)所构成的中间电极18,由该中间电极18使记录层12与下部电极14电连接。而且,存储器单元MC中中间电极18的上方由上部电极13所覆盖,中间电极18通过记录层12与上部电极13电连接。
根据这样结构的非易失性存储器1,通过选择与所希望的存储器单元MC相对应的上部电极13及下部电极14,施加适当的电脉冲,就能够进行对存储器单元MC的写入、读出与消去。也就是说,在写入时,通过由规定的电压施加电脉冲而产生焦耳热,记录层12从非晶状态变为晶体状态,电阻值下降。另一方面,在消去时,施加比写入时的脉冲宽度小的电脉冲,从高温状态急冷,记录层12从晶体状态变为非晶状态,电阻值上升。读出时,施加比写入时及消去时更低的电压,检测出基于电阻值变化的电流值。
在本实施方式中,由于在基板11上无机介电体层111形成的一侧形成了记录层12,所以由用来记录或消去的通电而在记录层12与中间电极18的连接部附近所发生的热,就难于传递到有机介电体层112。因此,能够防止伴随着有机介电体层112的温度上升的分解,能够防止记录层12或中间电极18的品质恶化,能够增加存储器单元MC的记录-消去的重复次数。进而,由于在细孔16的内壁面上形成了由无机介电体所构成的耐热保护膜17,所以由此也能够抑制记录层12与中间电极18的连接部附近所发生的热向有机介电体层112的传递。
关于无机介电体层111的厚度,过薄时对有机介电体层112的热保护的效果不充分,而过厚时又使得通过有机介电体层112而省电力的效果不充分,所以优选为2nm以上50nm以下。另一方面,有机介电体层112的厚度优选为100nm以上10000nm以下。
非易失性存储器1的结构贝宁不限于上述,可以进行多种变更。例如,如图2、图3所示,可以使用随机配置有多个细孔16的基板11,在各存储器单元MC的区域内配置一个或多个中间电极18的结构。在这种情况下,形成记录层12的位置不易受到制约,能够提高设计的自由度。而且,还可以使上部电极13及记录层12以存储器单元MC为单位分离,提高存储器单元MC的绝缘性。上部电极13及下部电极14还可以不形成条纹状,例如,可以是上部电极13在基板一面上整体形成,另一方面,下部电极14形成矩阵状。
而且,在本实施方式中,是通过在绝缘基板11的正反面分别设置上部电极13及下部电极14,而使记录层12能够存取,但如果是夹持在中间电极(第一电极)与上部电极(第二电极)之间的结构,就并非一定要设置后述的下部电极。
(非易失性存储器的制造方法)
接着,对上述非易失性存储器的制造方法,以图2所示的非易失性存储器为例加以说明。
首先,如图4(a)所示,准备对于表面大体垂直地形成多个直径为100nm的细孔16的、由聚碳酸酯所构成的厚度为6μm的有机介电体层112。薄膜上形成多个细孔的方法,例如在美国专利第6060743号公报(特开平11-40809号公报)、特开平11-170378号公报中公开。在本实施方式中,是将离子束垂直照射到有机介电体薄膜的表面而形成离子痕迹,之后将该薄膜浸渍于蚀刻液对离子痕迹进行选择性蚀刻,随即形成多个微细的细孔。根据这样的形成方法,由于不使用光刻法技术,所以能够廉价地形成直径约为100nm的微细孔。优选通过蚀刻时间的调整等而控制所希望的值,从而使细孔16的直径得到后述的所希望的纵横比。
接着,如图4(b)所示,将该有机介电体薄膜112放置于溅射装置的基座(susceptor)S上,通过堆积无机介电体的SiO2而在有机介电体薄膜112上叠层无机介电体层111,形成绝缘基板11。无机介电体的堆积量为不完全堵塞细孔16的程度,在本实施方式中,在细孔16的开口径窄到从100nm到50nm的状态下SiO2的堆积终了。此时无机介电体层111的厚度约为30nm。
有机介电体薄膜112上无机介电体的堆积状态因细孔16的纵横比(aspect ratio:细孔16的高度/细孔16的直径)而异。如本实施方式,在纵横比为10以上100以下的情况下,如图4(b)所示,无机介电体在有机介电体薄膜112上堆积的同时,在细孔16的内壁面的开口附近也有附着,形成环状耐热保护膜17。在细孔16的纵横比为10以上100以下的情况下,在细孔16的内部,耐热保护膜17的厚度向着下方向(图1中从上部电极(第二电极)113向中间电极(第一电极)118及下部电极14的方向)而变小。换言之,由于其周围的耐热保护膜17,存在细孔16的内径从上向下而变大的部分。
该耐热保护膜17能够有效地抑制后述的工序中形成的记录层12与中间电极18的界面附近因通电所发生的热向有机介电体层112传递。进而,由于由耐热保护膜17在中间电极18的一部分中形成了电流狭窄部,所以能够提高电流密度,达到制品的省电力的目的。
另一方面,在细孔16的纵横比为1以上、但不到10的情况下,由于无机介电体容易进入细孔16的内部,所以如图4(b)所示的环状耐热保护膜17就不仅在细孔16的开口附近,而且在细孔16的内壁全体上形成几乎一样的厚度。换言之,在细孔16的纵横比为1以上、但不到10的情况下,细孔16的内径将与其周围的耐热保护膜17无关,自上到下大体一致。
在这种情况下,虽然在中间电极18中未形成上述的电流狭窄部,但由耐热保护膜能够使有机介电体薄膜112的热保护效果进一步提高。
在这样的堆积无机介电体的工序中,少量的有机介电体进入细孔16堆积在基座S上,在将有机介电体层112从基座S取下时,细孔16内有残留物R。因此,在无机介电体层111形成后,将有机介电体层112从基座S取下,必需从无机介电体层111侧向细孔16内供给气体流,去除残留物R。在这种情况下,由于在后述的工序中必需再一次将有机介电体层112安装于基座S,所以工序烦琐。
因此,在无机介电体层111的形成工序中,不是直接将有机介电体层112安装于基座S,而是如图5所示,在有机介电体层112与基座S之间通过隔板SP形成间隙。由于进入细孔16内的无机介电体不在细孔16的内部残留,而是到达基座S的表面,所以在无机介电体的堆积工序终了后没有必要将有机介电体层112从基座S取下,能够迅速地开始下一工序。
接着,如图4(c)所示,使用金属罩将由Ge2Sb2Te5构成的存储器材料对无机介电体层111一侧进行溅射蒸镀,形成记录层12,之后,进而溅射蒸镀Au,在基板一侧的整体上形成上部电极13。作为存储器材料,例如使用改变了组成比的GeSb2Te4时,由于熔点略有降低,所以对制品的长寿是有效的。由无机介电体层111的形成而使直径变小的细孔16的开口部,通过存储器材料的蒸镀而被记录层12所覆盖。
接着,在细孔16的内部形成中间电极。中间电极的形成可以是由溅射法或电镀法等所形成,在本实施方式中是由电镀法所形成。如图4(d)所示,在电镀金属离子溶解于酸性溶液中的电镀液L中,对于该电镀液,不溶性的Au等所构成的金属板M作为正极,以细孔16内露出表面的记录层12作为负极,接通电源,在负极面上实施电镀。如图4(d)所示,优选与由上部电极13与金属板M等所构成的导电板平行配置。由此,细孔16的内部由电镀金属缓慢地填埋并完全埋上,在形成中间电极18的时刻,电镀终了。作为电镀金属优选Rh、Ru、Pt、Au、Cu等,特别是Cu等,在ULSI的多层配线中使用的材料,便宜且容易得到。
电镀终了的时刻可以预先测定电镀量与电镀时间的关系,通过推定细孔16内部被电镀金属所填充的时间来决定。或者是,也利用电镀量引起的电镀面的变色而决定电镀的终了。就是说,由于在细孔16的内部由电镀金属填埋之前,电镀面的可视区域为黑色,而当细孔16的内部完全被电镀金属填埋时,电镀面沿绝缘基板11的表面扩散时,电镀面由黑色变为白色,所以在电镀面变为白色时终了电镀即可。进而,还可以在电镀面变色的同时,利用在进行定电压电镀的情况下电流值的时间变化(进行定电压电镀的情况下电压值的时间变化)中所发生的纽结,而得知电镀终了的时刻。
最后,在绝缘基板11的背面侧(有机介电体层112一侧),通过使用金属罩溅射蒸镀Au而形成矩阵状的下部电极14,完成图2所示的非易失性存储器。关于该非易失性存储器的数据改写次数的调查结果为104次以上,因而得到了良好的改写寿命。
还有,图3所示结构的情况,能够在形成下部电极14之后由电镀形成中间电极18,之后形成记录层12及上部电极13。由于电镀可以对金属的下部电极14而进行,所以具有电镀的控制性高的优点。
(信息记录装置)
图6是表示本发明的一个实施方式中信息处理装置的概略结构的截面图。图6所示的信息处理装置包括:非易失性存储器31;夹持非易失性存储器31的一对夹持部件(第一夹持部件321第二夹持部件322);以及非易失性存储器31与第一夹持部件321之间存在的橡胶等弹性部件(第一弹性部件331第二弹性部件332)。第一弹性部件331露出非易失性存储器31的上部电极13的一部分,固定于该上部电极13的表面。还有,在第一弹性部件331的表面,还可以贴附能够记载非易失性存储器31的特征(制造公司名及记录内容等)的标签。
非易失性存储器31是图2所示的非易失性存储器1中不设置下部电极14所构成,其它结构与图2所示的非易失性存储器1相同。所以,同样的结构部分都赋予同样的符号,其详细说明予以省略。
第一夹持部件321及第二夹持部件322,由高刚性的塑料所构成,在夹持面上分别设置有第二导电体323及第一导电体324。在一对夹持部件321、322之间,存在有作为夹持非易失性存储器31的赋能装置的弹簧部件325、326。
第二导电体323通过第二弹性部件332安装于第一夹持部件321的夹持面,与全部的上部电极13的露出部可电连接而形成。而且,第一导电体324安装在第二夹持部件322的夹持面上,形成多个矩阵状,与中间电极18可电连接而构成。第一导电体324上连接有开关元件328,具有能够通过第一导电体324而控制向记录层12的通电的ON/OFF的结构。开关元件328,在本实施方式中虽然可以采用由硅等所构成的选择晶体管,但也可采用pn结二极管,肖特基二极管等。
根据这样结构的信息记录装置,从图6所示的状态,由弹簧部件325、326的作用,第二导电体323连接于上部电极13,在第一导电体324连接于中间电极18的状态下,非易失性存储器31夹持在一对夹持部件321、322之间。
由于在第一夹持部件321与非易失性存储器31之间存在有第一弹性部件331及第二弹性部件332,所以由这些弹性部件的推压力能够得到非易失性存储器31与第二夹持部件322之间的均匀紧密的接触,能够可靠地进行第一导电体324与中间电极18之间的电接触。进而,在本实施方式中,由于是容易弹性弯曲变形的有机介电体层112与第二夹持部件322的夹持面紧密结合的结构,所以能够进一步提高非易失性存储器31与第二夹持部件322之间的密和性。第一弹性部件331还可以设置于第一夹持部件321,取代非易失性存储器31。在这种情况下,第一弹性部件331及第二弹性部件332可以一体构成。
对存储器元件的存取,可以使与选择的存储器元件相对应的开关元件328为ON状态而进行。数据的写入,通过向存取的存储器元件的记录层12供给电力发热,从非晶状态变化为晶体状态,降低电阻而进行。数据的读出是测定存取的存储器元件的记录层12的电阻值。数据的消去是通过向存取的存储器元件的记录层12供给电力发热后急冷,从晶体状态变化为非晶状态,升高电阻而进行。
信息记录装置的具体结构,并不限于上述实施方式,可以进行种种变更。例如,图7所示的信息记录装置包括:有非易失性存储器41;夹持非易失性存储器41的一对夹持部件(第一夹持部件421、第二夹持部件422);非易失性存储器41与第一夹持部件421之间存在的橡胶或软质塑料等弹性部件(第一弹性部件431、第二弹性部件432)。
非易失性存储器41是在使用两个副存储器作为图6所示的非易失性存储器31,使各自的上部电极13吻合地相对,通过第一弹性部件431的状态下一体化的存储器,各上部电极13的一部分露出而构成。
第一夹持部件421及第二夹持部件422由刚性高的塑料所构成,在各自夹持面上,双方设置有第二导电体423及第一导电体424。在一对夹持部件421、422之间,存在有作为夹持非易失性存储器41的压靠装置的弹簧部件425、426。
第二导电体423通过第二弹性部件432安装于各夹持部件421、422的夹持面,分别与对面的上部电极13的露出部可电连接而形成。而且,第一导电体424安装在各夹持部件421、422的夹持面上,形成多个矩阵状,与中间电极18可电连接而构成。第一导电体424上连接有开关元件428,具有能够通过第一导电体424而控制向记录层12的通电的ON/OFF的结构。开关元件428在本实施方式中虽然采用由硅等所构成的选择晶体管,但也可以使用pn结二极管,肖特基二极管等。
采用这样构成的信息记录装置,也可以得到与图6所示信息记录装置同样的效果。进而,由于与图6所示信息记录装置相比有2倍以上的存储器容量,所以能够适应对于存储器容量增大的要求。
在上述信息记录装置中,所希望的向存储器单元的存取,也可以做利用上述开关元件的方法以外的选择。例如,对于图2所示的非易失性存储器,也可以利用导电性探针进行向存储器单元的存取。
在图8中,导电性探针51具有由移动机构52在图中上下左右方向上移动的结构。在对存储器单元进行存取的情况下,首先,导电性探针51以不接触的程度向中间电极18的露出面e接近,导电性探针51沿着该露出面e平行地移动到所希望的存储器单元。接着,导电性探针51与露出面e接触,进行数据的写入、读出与消去,之后,导电性探针51从露出面e离开。在本实施方式中,由于导电性探针51与容易弹性弯曲变形的有机介电体薄膜112的表面接触,所以能够提高导电性探针51的密和性,可靠地进行电接触。
也可以用在导电性探针51固定的状态下移动(包含旋转移动)非易失性存储器31的结构取代可以移动导电性探针51的结构,也可以是导电性探针51及非易失性存储器31双方都可以移动的结构。而且,还可以是设置有多个导电性探针51,并可以分别独立控制的结构。
(表示装置)
上述非易失性存储器,由于能够减低写入及消去动作时的消费电力,所以可以考虑多种适用,例如可以作为图9中所示表示装置的纸型显示器。
在图9中,纸型显示器61在背面侧设置有非易失性存储器62,在正面侧设置有文字及图像等的表示部63,多枚捆束在一起。纸型显示器61,例如可以由特表平11-502950号公报中所公开的公知技术来制作。非易失性存储器62可以使用例如图1所示的构成,纸型显示器61中所表示的文字及图像等,作为数据收存于非易失性存储器62,通过由自动或手动而传送到表示部63,能够变化所表示的文字及图像。
根据这样的结构,由于在能够追踪可折叠或弯成圆状的纸型显示器的变形的非易失性存储器中收存有表示用数据,所以能够不损伤纸型显示器的变形能力地变化文字及图像,同时,能够达到在弯卷页时不产生不舒服感觉的效果。
非易失性存储器62可以是对于纸型显示器61装拆自由的结构,能够将取下的非易失性存储器62安装在信息再生装置(未图示),将记录的内容及补充表示内容的数码数据放入计算机而利用。
产业上利用的可能性
以上,根据本发明,能够提供省电力,同时能增大数据改写次数的非易失性存储器。

Claims (17)

1.一种非易失性存储器,其特征在于,包括:
具有贯通正反面的第一电极的绝缘基板;
在所述绝缘基板的一面侧上形成的第二电极;和
以及夹持在所述第一电极与第二电极之间、通过对所述第一电极与第二电极之间施加电脉冲而改变电阻值的记录层,
所述绝缘基板包括:有机介电体薄膜和厚度小于该有机介电体薄膜的无机介电体层的叠层结构,在形成所述无机介电体层的一侧形成所述记录层。
2.根据权利要求1所述的非易失性存储器,其特征在于,
所述第一电极填充于在所述绝缘基板上所形成的细孔内,在所述细孔的内壁面的至少一部分上形成由无机介电体所构成的耐热保护膜。
3.根据权利要求2所述的非易失性存储器,其特征在于,
所述耐热保护膜与所述无机介电体层相连续。
4.根据权利要求1所述的非易失性存储器,其特征在于,
所述无机介电体层的厚度为2nm以上50nm以下。
5.根据权利要求1所述的非易失性存储器,其特征在于,
所述有机介电体薄膜由聚碳酸酯所构成,所述无机介电体层由氧化硅所构成。
6.根据权利要求1所述的非易失性存储器,其特征在于,
所述记录层由具有两个以上不同电阻值的稳定状态,各状态之间能够可逆变化的相变材料所构成。
7.根据权利要求6所述的非易失性存储器,其特征在于,
所述相变材料含有硫族化物。
8.根据权利要求2所述的非易失性存储器,其特征在于,
所述细孔的纵横比为1以上10以下。
9.根据权利要求8所述的非易失性存储器,其特征在于,
所述耐热保护膜在所述细孔的内壁面上整体同样厚度地形成。
10.根据权利要求2所述的非易失性存储器,其特征在于,
所述细孔的纵横比为10以上100以下。
11.根据权利要求10所述的非易失性存储器,其特征在于,
在所述细孔内,所述耐热保护膜的厚度从所述第二电极向所述第一电极的方向变小。
12.一种非易失性存储器的制造方法,包括:具有贯通正反面的第一电极的绝缘基板;在所述绝缘基板的一面侧上形成的第二电极;以及夹持在所述第一电极与第二电极之间、通过对所述第一电极与第二电极之间施加电脉冲而改变电阻值的记录层,所述绝缘基板包括:有机介电体薄膜与厚度小于该有机介电体薄膜的无机介电体层的叠层结构,在形成所述无机介电体层的一侧形成所述记录层,
其特征在于,包括以下步骤:
在形成细孔的所述有机介电体薄膜的一侧的面上,堆积无机介电体,形成无机介电体层的步骤;
在所述无机介电体层的表面上按照顺序叠层记录层及第二电极,由所述记录层覆盖所述细孔一端侧的步骤;
以及在所述细孔内形成第一电极的步骤。
13.根据权利要求12所述的非易失性存储器的制造方法,其特征在于,
形成所述无机介电体层的步骤包含在所述细孔的内壁面的至少一部分上形成由无机介电体所构成的耐热保护膜的步骤。
14.根据权利要求13所述的非易失性存储器的制造方法,其特征在于,
所述有机介电体薄膜的所述细孔的纵横比为1以上10以下。
15.根据权利要求13所述的非易失性存储器的制造方法,其特征在于,
所述有机介电体薄膜的所述细孔的纵横比为10以上100以下。
16.根据权利要求12所述的非易失性存储器的制造方法,其特征在于,
形成所述无机介电体层的步骤包含在基座的表面通过隔板装载所述有机介电体薄膜之后堆积无机介电体的步骤。
17.根据权利要求12所述的非易失性存储器的制造方法,其特征在于,具有:
在所述细孔内形成第一电极的步骤;
具有将形成了细孔的所述有机介电体薄膜,在含有构成第一电极的金属离子、同时具有不溶性导电板的电镀液中浸渍的步骤;
以及在所述第二电极与所述导电板之间流过电流的步骤。
CNA038049201A 2002-04-09 2003-03-31 非易失性存储器及其制造方法 Pending CN1639868A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP106167/2002 2002-04-09
JP2002106167 2002-04-09

Publications (1)

Publication Number Publication Date
CN1639868A true CN1639868A (zh) 2005-07-13

Family

ID=28786414

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA038049201A Pending CN1639868A (zh) 2002-04-09 2003-03-31 非易失性存储器及其制造方法

Country Status (5)

Country Link
US (2) US6900517B2 (zh)
JP (1) JP3624291B2 (zh)
CN (1) CN1639868A (zh)
AU (1) AU2003221003A1 (zh)
WO (1) WO2003085740A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635331B (zh) * 2008-07-24 2011-12-21 海力士半导体有限公司 电阻式存储器件及其制造方法
CN113574692A (zh) * 2019-03-20 2021-10-29 日东电工株式会社 压电器件、以及压电器件的制造方法

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3743891B2 (ja) * 2003-05-09 2006-02-08 松下電器産業株式会社 不揮発性メモリおよびその製造方法
DE20321085U1 (de) * 2003-10-23 2005-12-29 Commissariat à l'Energie Atomique Phasenwechselspeicher, Phasenwechselspeicheranordnung, Phasenwechselspeicherzelle, 2D-Phasenwechselspeicherzellen-Array, 3D-Phasenwechselspeicherzellen-Array und Elektronikbaustein
FR2861887B1 (fr) * 2003-11-04 2006-01-13 Commissariat Energie Atomique Element de memoire a changement de phase a cyclabilite amelioree
DE10356285A1 (de) * 2003-11-28 2005-06-30 Infineon Technologies Ag Integrierter Halbleiterspeicher und Verfahren zum Herstellen eines integrierten Halbleiterspeichers
US7038230B2 (en) * 2004-01-06 2006-05-02 Macronix Internation Co., Ltd. Horizontal chalcogenide element defined by a pad for use in solid-state memories
JP4124743B2 (ja) * 2004-01-21 2008-07-23 株式会社ルネサステクノロジ 相変化メモリ
FR2869027B1 (fr) * 2004-04-15 2006-07-14 Commissariat Energie Atomique Systeme d'enregistrement comportant une couche memoire et un reseau de micro-pointes
KR20070028604A (ko) * 2004-06-30 2007-03-12 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 나노선(nanowire)에 의해 접촉되는 전도성 있는재료로 된 층이 있는 전기 장치 및 그 제조 방법
US20060108667A1 (en) * 2004-11-22 2006-05-25 Macronix International Co., Ltd. Method for manufacturing a small pin on integrated circuits or other devices
US7214958B2 (en) * 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US8193606B2 (en) * 2005-02-28 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a memory element
KR100697282B1 (ko) * 2005-03-28 2007-03-20 삼성전자주식회사 저항 메모리 셀, 그 형성 방법 및 이를 이용한 저항 메모리배열
JP2006324501A (ja) 2005-05-19 2006-11-30 Toshiba Corp 相変化メモリおよびその製造方法
US7973301B2 (en) * 2005-05-20 2011-07-05 Qimonda Ag Low power phase change memory cell with large read signal
EP1764847B1 (en) * 2005-09-14 2008-12-24 STMicroelectronics S.r.l. Ring heater for a phase change memory device
US9069933B1 (en) * 2005-09-28 2015-06-30 Visible Assets, Inc. Secure, networked portable storage device
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7394088B2 (en) * 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7414258B2 (en) 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
JP4476919B2 (ja) 2005-12-01 2010-06-09 株式会社東芝 不揮発性記憶装置
JP4833650B2 (ja) * 2005-12-08 2011-12-07 パナソニック株式会社 半導体装置及びその製造方法
US7531825B2 (en) * 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7560337B2 (en) * 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7723712B2 (en) * 2006-03-17 2010-05-25 Micron Technology, Inc. Reduced power consumption phase change memory and methods for forming the same
US7554144B2 (en) 2006-04-17 2009-06-30 Macronix International Co., Ltd. Memory device and manufacturing method
GB0607890D0 (en) * 2006-04-21 2006-05-31 Univ Belfast Nanostructures and a method for the manufacture of the same
US7423300B2 (en) * 2006-05-24 2008-09-09 Macronix International Co., Ltd. Single-mask phase change memory element
GB0611557D0 (en) * 2006-06-12 2006-07-19 Univ Belfast Nanostructured systems and a method of manufacture of the same
US7696506B2 (en) * 2006-06-27 2010-04-13 Macronix International Co., Ltd. Memory cell with memory material insulation and manufacturing method
US8390450B2 (en) * 2006-06-28 2013-03-05 Visible Assets, Inc. Cell phone detection and identification
US7785920B2 (en) 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
US7772581B2 (en) * 2006-09-11 2010-08-10 Macronix International Co., Ltd. Memory device having wide area phase change element and small electrode contact area
JP4267013B2 (ja) 2006-09-12 2009-05-27 エルピーダメモリ株式会社 半導体装置の製造方法
US7795607B2 (en) * 2006-09-29 2010-09-14 Intel Corporation Current focusing memory architecture for use in electrical probe-based memory storage
US7504653B2 (en) 2006-10-04 2009-03-17 Macronix International Co., Ltd. Memory cell device with circumferentially-extending memory element
US7863655B2 (en) * 2006-10-24 2011-01-04 Macronix International Co., Ltd. Phase change memory cells with dual access devices
US7476587B2 (en) 2006-12-06 2009-01-13 Macronix International Co., Ltd. Method for making a self-converged memory material element for memory cell
US7903447B2 (en) 2006-12-13 2011-03-08 Macronix International Co., Ltd. Method, apparatus and computer program product for read before programming process on programmable resistive memory cell
US7760545B2 (en) * 2006-12-26 2010-07-20 Elpida Memory, Inc. Semiconductor memory device and programming method thereof
US7718989B2 (en) 2006-12-28 2010-05-18 Macronix International Co., Ltd. Resistor random access memory cell device
US7619311B2 (en) * 2007-02-02 2009-11-17 Macronix International Co., Ltd. Memory cell device with coplanar electrode surface and method
US7884343B2 (en) * 2007-02-14 2011-02-08 Macronix International Co., Ltd. Phase change memory cell with filled sidewall memory element and method for fabricating the same
US7956344B2 (en) 2007-02-27 2011-06-07 Macronix International Co., Ltd. Memory cell with memory element contacting ring-shaped upper end of bottom electrode
US7786461B2 (en) 2007-04-03 2010-08-31 Macronix International Co., Ltd. Memory structure with reduced-size memory element between memory material portions
TWI402980B (zh) 2007-07-20 2013-07-21 Macronix Int Co Ltd 具有緩衝層之電阻式記憶結構
US7884342B2 (en) * 2007-07-31 2011-02-08 Macronix International Co., Ltd. Phase change memory bridge cell
US7729161B2 (en) * 2007-08-02 2010-06-01 Macronix International Co., Ltd. Phase change memory with dual word lines and source lines and method of operating same
US7642125B2 (en) * 2007-09-14 2010-01-05 Macronix International Co., Ltd. Phase change memory cell in via array with self-aligned, self-converged bottom electrode and method for manufacturing
US8178386B2 (en) * 2007-09-14 2012-05-15 Macronix International Co., Ltd. Phase change memory cell array with self-converged bottom electrode and method for manufacturing
US7919766B2 (en) 2007-10-22 2011-04-05 Macronix International Co., Ltd. Method for making self aligning pillar memory cell device
US7646631B2 (en) * 2007-12-07 2010-01-12 Macronix International Co., Ltd. Phase change memory cell having interface structures with essentially equal thermal impedances and manufacturing methods
US7879643B2 (en) * 2008-01-18 2011-02-01 Macronix International Co., Ltd. Memory cell with memory element contacting an inverted T-shaped bottom electrode
US7879645B2 (en) * 2008-01-28 2011-02-01 Macronix International Co., Ltd. Fill-in etching free pore device
US8158965B2 (en) 2008-02-05 2012-04-17 Macronix International Co., Ltd. Heating center PCRAM structure and methods for making
US8084842B2 (en) * 2008-03-25 2011-12-27 Macronix International Co., Ltd. Thermally stabilized electrode structure
US8030634B2 (en) 2008-03-31 2011-10-04 Macronix International Co., Ltd. Memory array with diode driver and method for fabricating the same
US7825398B2 (en) 2008-04-07 2010-11-02 Macronix International Co., Ltd. Memory cell having improved mechanical stability
US7791057B2 (en) * 2008-04-22 2010-09-07 Macronix International Co., Ltd. Memory cell having a buried phase change region and method for fabricating the same
US8077505B2 (en) 2008-05-07 2011-12-13 Macronix International Co., Ltd. Bipolar switching of phase change device
US7701750B2 (en) 2008-05-08 2010-04-20 Macronix International Co., Ltd. Phase change device having two or more substantial amorphous regions in high resistance state
US8415651B2 (en) * 2008-06-12 2013-04-09 Macronix International Co., Ltd. Phase change memory cell having top and bottom sidewall contacts
US8134857B2 (en) 2008-06-27 2012-03-13 Macronix International Co., Ltd. Methods for high speed reading operation of phase change memory and device employing same
US7932506B2 (en) 2008-07-22 2011-04-26 Macronix International Co., Ltd. Fully self-aligned pore-type memory cell having diode access device
US20100019215A1 (en) * 2008-07-22 2010-01-28 Macronix International Co., Ltd. Mushroom type memory cell having self-aligned bottom electrode and diode access device
US8119528B2 (en) 2008-08-19 2012-02-21 International Business Machines Corporation Nanoscale electrodes for phase change memory devices
US7903457B2 (en) * 2008-08-19 2011-03-08 Macronix International Co., Ltd. Multiple phase change materials in an integrated circuit for system on a chip application
US7719913B2 (en) * 2008-09-12 2010-05-18 Macronix International Co., Ltd. Sensing circuit for PCRAM applications
US8324605B2 (en) 2008-10-02 2012-12-04 Macronix International Co., Ltd. Dielectric mesh isolated phase change structure for phase change memory
US7897954B2 (en) * 2008-10-10 2011-03-01 Macronix International Co., Ltd. Dielectric-sandwiched pillar memory device
US8036014B2 (en) * 2008-11-06 2011-10-11 Macronix International Co., Ltd. Phase change memory program method without over-reset
US8907316B2 (en) * 2008-11-07 2014-12-09 Macronix International Co., Ltd. Memory cell access device having a pn-junction with polycrystalline and single crystal semiconductor regions
US8664689B2 (en) 2008-11-07 2014-03-04 Macronix International Co., Ltd. Memory cell access device having a pn-junction with polycrystalline plug and single-crystal semiconductor regions
US7869270B2 (en) 2008-12-29 2011-01-11 Macronix International Co., Ltd. Set algorithm for phase change memory cell
US8089137B2 (en) 2009-01-07 2012-01-03 Macronix International Co., Ltd. Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method
US8107283B2 (en) 2009-01-12 2012-01-31 Macronix International Co., Ltd. Method for setting PCRAM devices
US8030635B2 (en) 2009-01-13 2011-10-04 Macronix International Co., Ltd. Polysilicon plug bipolar transistor for phase change memory
US8064247B2 (en) 2009-01-14 2011-11-22 Macronix International Co., Ltd. Rewritable memory device based on segregation/re-absorption
US8933536B2 (en) 2009-01-22 2015-01-13 Macronix International Co., Ltd. Polysilicon pillar bipolar transistor with self-aligned memory element
JP5549105B2 (ja) * 2009-04-15 2014-07-16 ソニー株式会社 抵抗変化型メモリデバイスおよびその動作方法
US8084760B2 (en) 2009-04-20 2011-12-27 Macronix International Co., Ltd. Ring-shaped electrode and manufacturing method for same
US8173987B2 (en) 2009-04-27 2012-05-08 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method
US8097871B2 (en) 2009-04-30 2012-01-17 Macronix International Co., Ltd. Low operational current phase change memory structures
US7933139B2 (en) 2009-05-15 2011-04-26 Macronix International Co., Ltd. One-transistor, one-resistor, one-capacitor phase change memory
US7968876B2 (en) 2009-05-22 2011-06-28 Macronix International Co., Ltd. Phase change memory cell having vertical channel access transistor
US8350316B2 (en) 2009-05-22 2013-01-08 Macronix International Co., Ltd. Phase change memory cells having vertical channel access transistor and memory plane
US8809829B2 (en) 2009-06-15 2014-08-19 Macronix International Co., Ltd. Phase change memory having stabilized microstructure and manufacturing method
US8406033B2 (en) 2009-06-22 2013-03-26 Macronix International Co., Ltd. Memory device and method for sensing and fixing margin cells
US8363463B2 (en) 2009-06-25 2013-01-29 Macronix International Co., Ltd. Phase change memory having one or more non-constant doping profiles
US8238149B2 (en) 2009-06-25 2012-08-07 Macronix International Co., Ltd. Methods and apparatus for reducing defect bits in phase change memory
US7894254B2 (en) 2009-07-15 2011-02-22 Macronix International Co., Ltd. Refresh circuitry for phase change memory
US8198619B2 (en) 2009-07-15 2012-06-12 Macronix International Co., Ltd. Phase change memory cell structure
US8110822B2 (en) 2009-07-15 2012-02-07 Macronix International Co., Ltd. Thermal protect PCRAM structure and methods for making
US8064248B2 (en) 2009-09-17 2011-11-22 Macronix International Co., Ltd. 2T2R-1T1R mix mode phase change memory array
US8178387B2 (en) 2009-10-23 2012-05-15 Macronix International Co., Ltd. Methods for reducing recrystallization time for a phase change material
US8729521B2 (en) 2010-05-12 2014-05-20 Macronix International Co., Ltd. Self aligned fin-type programmable memory cell
US8310864B2 (en) 2010-06-15 2012-11-13 Macronix International Co., Ltd. Self-aligned bit line under word line memory array
US8395935B2 (en) 2010-10-06 2013-03-12 Macronix International Co., Ltd. Cross-point self-aligned reduced cell size phase change memory
US8497705B2 (en) 2010-11-09 2013-07-30 Macronix International Co., Ltd. Phase change device for interconnection of programmable logic device
US8467238B2 (en) 2010-11-15 2013-06-18 Macronix International Co., Ltd. Dynamic pulse operation for phase change memory
US8987700B2 (en) 2011-12-02 2015-03-24 Macronix International Co., Ltd. Thermally confined electrode for programmable resistance memory
KR101360407B1 (ko) 2011-12-16 2014-02-11 서강대학교산학협력단 재조합 단백질 및 무기입자 이중층을 포함하는 바이오-메모리 디바이스
CN104966717B (zh) 2014-01-24 2018-04-13 旺宏电子股份有限公司 一种存储器装置及提供该存储器装置的方法
US9559113B2 (en) 2014-05-01 2017-01-31 Macronix International Co., Ltd. SSL/GSL gate oxide in 3D vertical channel NAND
US9672906B2 (en) 2015-06-19 2017-06-06 Macronix International Co., Ltd. Phase change memory with inter-granular switching
US10833010B2 (en) 2018-10-31 2020-11-10 International Business Machines Corporation Integration of artificial intelligence devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09282723A (ja) 1996-04-11 1997-10-31 Matsushita Electric Ind Co Ltd 情報記録装置、情報記録方法及び情報再生方法
US6147395A (en) 1996-10-02 2000-11-14 Micron Technology, Inc. Method for fabricating a small area of contact between electrodes
US6087674A (en) * 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5825046A (en) 1996-10-28 1998-10-20 Energy Conversion Devices, Inc. Composite memory material comprising a mixture of phase-change memory material and dielectric material
JP2001189431A (ja) * 1999-12-28 2001-07-10 Seiko Epson Corp メモリのセル構造及びメモリデバイス
US6475911B1 (en) * 2000-08-16 2002-11-05 Micron Technology, Inc. Method of forming noble metal pattern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635331B (zh) * 2008-07-24 2011-12-21 海力士半导体有限公司 电阻式存储器件及其制造方法
CN113574692A (zh) * 2019-03-20 2021-10-29 日东电工株式会社 压电器件、以及压电器件的制造方法
CN113574692B (zh) * 2019-03-20 2024-04-26 日东电工株式会社 压电器件、以及压电器件的制造方法

Also Published As

Publication number Publication date
JPWO2003085740A1 (ja) 2005-08-18
US20050121659A1 (en) 2005-06-09
US7115473B2 (en) 2006-10-03
WO2003085740A1 (fr) 2003-10-16
JP3624291B2 (ja) 2005-03-02
US6900517B2 (en) 2005-05-31
US20040051161A1 (en) 2004-03-18
AU2003221003A1 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
CN1639868A (zh) 非易失性存储器及其制造方法
TWI321355B (en) Vacuum jacket for phase change memory element
US7983065B2 (en) Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines
US7541633B2 (en) Phase-change RAM and method for fabricating the same
TWI331800B (en) Single-mask phase change memory element
US8218350B2 (en) Programmable metallization cell structure including an integrated diode, device including the structure, and method of forming same
EP2965361B1 (en) 3d non-volatile memory having low-current cells and fabrication thereof
TWI263366B (en) Memory structures
US9276202B2 (en) Phase-change storage unit containing TiSiN material layer and method for preparing the same
CN101533892A (zh) 电阻式存储器器件和形成电阻式存储器器件的方法
CN1967896A (zh) 隔离的相变存储器单元及其制造方法
WO2003079463A2 (en) Programmable structure, an array including the structure, and methods of forming the same
CN101047230A (zh) 相变存储器单元结构、相变存储器单元及其形成方法
US8134140B2 (en) Programmable metallization cell structure including an integrated diode, device including the structure, and method of forming same
TW201106360A (en) Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines and a single-sided word line architecture
WO2013101499A2 (en) Low forming voltage non-volatile storage device
CN1651496A (zh) 基于可电场编程的薄膜的存储器件
CN1647292A (zh) 用于电阻可变存储器的硒化银/硫族化物玻璃叠层
EP2580756A2 (en) Non-volatile memory having 3d array of read/write elements and read/write circuits and method thereof
CN1901089A (zh) 存储器件
CN1812118A (zh) 相变存储器及其制造方法
CN1761083A (zh) 相转移元件及其制造方法与相转移记忆胞
TW200903775A (en) Inverted variable resistance memory cell and method of making the same
US20160072059A1 (en) Phase-change memory device having phase-change region divided into multi layers and operating method thereof
CN1670980A (zh) 具有水平电极的硫属化合物记忆胞及其形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20050713

C20 Patent right or utility model deemed to be abandoned or is abandoned