CN101504967B - 中心加热相变化存储器结构及其制造方法 - Google Patents

中心加热相变化存储器结构及其制造方法 Download PDF

Info

Publication number
CN101504967B
CN101504967B CN2008102109018A CN200810210901A CN101504967B CN 101504967 B CN101504967 B CN 101504967B CN 2008102109018 A CN2008102109018 A CN 2008102109018A CN 200810210901 A CN200810210901 A CN 200810210901A CN 101504967 B CN101504967 B CN 101504967B
Authority
CN
China
Prior art keywords
phase
layer
phase change
resistivity
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008102109018A
Other languages
English (en)
Other versions
CN101504967A (zh
Inventor
陈士弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Publication of CN101504967A publication Critical patent/CN101504967A/zh
Application granted granted Critical
Publication of CN101504967B publication Critical patent/CN101504967B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5678Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using amorphous/crystalline phase transition storage elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/861Thermal details
    • H10N70/8613Heating or cooling means other than resistive heating electrodes, e.g. heater in parallel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Switching materials based on at least one element of group IIIA, IVA or VA, e.g. elemental or compound semiconductors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/008Write by generating heat in the surroundings of the memory material, e.g. thermowrite
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明公开了一种中心加热相变化存储器结构及其制造方法。一种存储装置,包含一底电极,及在该底电极之上包含一第一相变化材料的一第一相变化层。在该第一相变化层之上包含一加热材料的一电阻加热器。在该电阻加热层之上包含一第二相变化材料的一第二相变化层,以及在该第二相变化层之上的一顶电极。该加热材料具有一电阻率大于该第一及第二相变化材料的该最高电阻率。

Description

中心加热相变化存储器结构及其制造方法
技术领域
本发明是有关于使用相变化存储材料,像是硫属化物与其它材料的高密度存储装置,以及制造此类装置的制造方法。
背景技术
相变化存储材料被广泛地用于读写光盘中。这些材料包括有至少两种固态相,包括如为非晶态的固态相,以及为结晶态的固态相。激光脉冲是用于读写光盘片中,以在二种相中切换,并读取此种材料于相变化之后的光学性质。
如硫属化物及类似材料的此等相变化存储材料,可通过施加其幅度适用于集成电路中的电流,而致使晶相变化。一般而言非晶态的特征是其电阻高于结晶态,此电阻值可轻易测量得到而用以作为指示。这种特性则引发使用可程序化电阻材料以形成非易失性存储器电路等兴趣,此电路可用于随机存取读写。
从非晶态转变至结晶态一般是一低电流步骤。从结晶态转变至非晶态(以下指称为复位(reset))一般是一高电流步骤,其包括一短暂的高电流密度脉冲以融化或破坏结晶结构,其后此相变化材料会快速冷却,抑制相变化的过程,使得至少部份相变化结构得以维持在非晶态。理想状态下,致使相变化材料从结晶态转变至非晶态的复位电流幅度应越低越好。
为降低复位所需的复位电流幅度,可通过减低在存储器中的相变化材料元件的尺寸、以及减少电极与此相变化材料的接触面积而达成,因此可针对此相变化材料元件施加较小的绝对电流值而达成较高的电流密度。
在复位过程中,通过增加该相变化材料的电阻率,可以降低引起一相变化所需的该电流幅度,因为在相变化发生时,其自我加热是与该相变化材料的电阻率(忽略热库效应)成正比,而会产生热造成温度上升。然而,在由该存储单元读取数据时,亦需要一个小的读取电流以确保该相变化材料并未进入一非所需的相变化。与一个小的读取电流相关的课题包含一慢速读取流程。此外,增加该相变化材料的电阻率会导致该存储单元有一较高的总电阻且不会对该存储单元的能量消耗有着任何的帮助。更者,可发现一较高的总存储单元电阻或许会导致一较慢的设置速度。
为降低复位所需的电流幅度,亦可通过降低该存储单元中该相变化存储元件的大小,及/或在电极及该相变化材料间的接点区域来达成,如此可以在较小绝对电流值通过该相变化材料元件的情况下而达到较高的电流密度。
此领域发展的一种方法是致力于在一集成电路结构上形成微小孔洞,并使用微量可程序化的电阻材料填充这些微小孔洞。致力于此等微小孔洞的专利包括:于1997年11月11日公告的美国专利第5,687,112号“MultibitSingle Cell Memory Element Having Tapered Contact”、发明人为Ovshinky;于1998年8月4日公告的美国专利第5,789,277号“Method of MakingChalogenide[sic]Memory Device”、发明人为Zahorik等;于2000年11月21日公告的美国专利第6,150,253号“Controllable Ovonic Phase-ChangeSemiconductor Memory Device and Methods of Fabricating the Same”、发明人为Doan等。
本发明申请人开发了另一种技术,被称为一相变化桥接存储单元,其是形成一非常小块的存储材料片于电极之间做为跨越一薄膜绝缘构件的一电桥。该相变化电桥是易于整合逻辑电路及集成电路上其它类型电路。参见于2005年06月17日申请的美国专利申请第11/115,067号“Thin FilmFuse Phase Chang RAM and Manufacturing Method”、发明人为Lung等,在此引为参考文献并为相同申请人所拥有。
一种用以在相变化单元中控制主动区域尺寸的方式,是设计非常小的电极以将电流传送至一相变化材料体中。此微小电极结构会在相变化材料中类似伞状的小区域,即接点部位,诱发相变化。请参照2002/8/22发证给Wicker的美国专利6,429,064号“Reduced Contact Areas of SidewallConductor”、2002/10/8发证给Gilgen的美国专利6,462,353“Method forFabricating a Small Area of Contact Between Electrodes”、2002/12/31发证给Lowrey的美国专利6,501,111号“Three-Dimensional(3D)ProgrammableDevice”、以及2003/7/1发证给Harshfield的美国专利6,563,156号“MemoryElements and Methods for Making same”。
要解决热流问题的一种方法可参见美国专利号第6,815,704号专利”Self Aligned Air-Gap thermal Insulation for Nano-Scale InsulatedChalcogenide Electronics(NICE)RAM”尝试在该相变化材料的侧边使用空隙或空孔来隔离该存储单元。同时也建议使用热绝缘材料来增加对于该主动区域的隔热效果。
同时,用来改善隔热方法包含以一种隔离该主动区域和电极的方式来形成该相变化元件,像是2006年2月7日申请的美国专利申请第11/348,848号“I-Shaped Phase Change Memory Cell”、发明人为Chen等,在此引为参考文献并为相同申请人所拥有。
在制造具有非常小尺寸的装置、量产存储装置上所需要符合更严格的规格及工艺上的变异所衍生的种种问题。因此,需要提中一种具有小尺寸及低复位电流的存储单元结构,以及满足热流问题及对于量产符合更严格的规格及工艺上的变异上的制造方法。再者,更需要生产具有一小的主动相变化区域的存储装置。
发明内容
有鉴于此,本发明的主要目的在于提供一种存储装置,包含一底电极,及在该底电极之上包含一第一相变化材料的一第一相变化层。在该第一相变化层之上包含一加热材料的一电阻加热器。在该电阻加热层之上包含一第二相变化材料的一第二相变化层,以及在该第二相变化层之上的一顶电极。该加热材料具有一电阻率大于该第一及第二相变化材料的该最高电阻率。
在实施例中所揭露一存储单元包含具有一顶表面的一介电层以及由该介电层的该顶表面延伸的一介层孔。该底电极是位于该介层孔内的一底部位之内,以及该第一相变化层是位于该介层孔的该顶部位之内。
本发明还提供了一种用来制造一存储装置的方法,包含提供一底电极延伸至一介电层的一顶表面,以及移除该底电极的一部位以形成一凹部。该方法包括以具有第一相变化材料层来填充该凹部,以及形成一加热材料层于该第一相变化层之上。形成一第二相变化材料层于该加热材料层之上,以及形成一顶电极材料层于该第二相变化层之上。
本发明所揭露的存储单元具有一主动区域且可以被制造地特别的小并提供由该顶电极及底电极的一些热隔离,因此降低引起一相变化所需要的电流大小。该第一相变化层具有一宽度,而该宽度是小于该第二相变化层的宽度,同时该第一相变化层的宽度较佳地小于一般用来形成该存储单元的一光刻工艺的一最小特征尺寸。在宽度上的差异使电流密度集中于该第一相变化层,因此降低在该主动区域中引起一相变化所需要的电流大小。此外,该加热器层的该加热材料具有大于该第一相变化层及第二相变化层的该相变化材料的一电阻率,因此,相对于该第一相变化层及该第二相变化层的其它部位,提高了该第一相变化层及该第二相变化层邻近于该加热器层的该部位的该温度。如此让该顶电极及该底电极之间被该主动区域所隔开,而使得该第一相变化层及该第二相变化层的该剩余部位对该主动区域提供热隔离,这样也可以帮助降低引起一线变化所需的电流大小。
举凡本发明的目的及优点等将可透过下列说明所附图式、实施方式及权利要求范围获得充分了解。
附图说明
图1绘示一「伞状」相变化存储单元的剖面图。
图2绘示一「柱状」相变化存储单元的剖面图。
图3绘示依据本发明一实施例的一存储单元的剖面图。
图4A绘示类似图3但省略该加热器层的一存储单元的剖面图。
图4B绘示在操作中图4A所绘示该存储单元的该相变化层的热量产生。
图4C绘示在操作中图4A所绘示该存储单元的该相变化层的热量流失。
图5至图8是本发明所述的存储单元的一工艺流程。
图9是本发明所述一实施例的集成电路的一简明方块图。
图10是本发明所述存储单元的一存储阵列。
【主要元件符号说明】
110、160、210、260、310、360、410介电层
120、220、320、420、500底电极
125、145、331、336  宽度
130相变化材料层
140、240、340顶电极
150、333主动区域
200、300、400、1102、1104、1106、1108存储单元
230相变化材料柱
232侧壁
305电阻加热层
307厚度
312、412顶表面
330第一相变化层
331直径
335第二相变化层
600凹部
1000集成电路
1005存储阵列
1010列译码器
1015、1122、1124字线
1020行译码器
1035数据总线
1045数据输出线
1050偏压调整状态机构
1055电流源
1060总线
1065其它电路
1112、1114、1116、1118存储元件
1120共同源极线
1126、1128位线
1150字线驱动器
1152位线电流源
1154源极线终端电路
具体实施方式
本发明的下述实施方式一般将参照特定结构实施例及方法。将为吾人所了解的本发明创作并未受限于其详细描述内容特别是对于所接露的实施例及方法,同时本发明亦可使用其它特征、元件、方法、和实施例来实施。本发明本发明所述的较佳实施例并不局限其范围,而由权利要求范围中定义。熟习此项技艺之人士亦可了解本发明实施方式中的各种等同变化。像是在各实施例中所使用的元件是共同地参考类似的元件编号。
后续的发明说明将参照至图1至图10。
图1绘示具有延伸通过一介电层110的一底电极120、一相变化材料层130位于该底电极120之上、及一顶电极140位于该相变化材料层130之上的「伞状」存储单元先前技术的一剖面图。一介电层160围绕在该相变化材料层130。如在图1中可见,该底电极具有一宽度125小于该顶电极140和该相变化材料层130的该宽度145。由于宽度125及宽度145的差异,在操作上在邻接于该底电极120的该相变化材料层130的区域中,该电流密度将会为最大,使得该相变化材料的该主动区域150具有一「伞状」,如图1中所示。
由于在该主动区域150的相变化是起因于加热而发生,该底电极120的热传导会将热自该主动区域150传导出去,因此导致会需要更高的电流来引发在该主动区域150中所需的相变化。
图2绘示一「柱状」存储单元200先前技术的一剖面图。该柱状存储单元200包含在一介电层210内的一底电极220、一相变化材料柱230位于该底电极220之上、一顶电极240位于该相变化材料柱230之上。一介电层260围绕该相变化材料柱230。如在图2中可见,该顶电极240及该底电极220具有相同的宽度275,亦与该相变化材料柱230相同。因此该主动区域250可位于远离该顶电极240与底电极220之间的区域,该顶电极240与底电极220而会导致一降低的热库效应。然而,在该邻近主动区域250至该介电层260之间,透过该相变化材料柱230的侧壁232至该介电层260也具有热流失。
此外,可以通过在该底电极220及介电层210之上沉积一相变化材料层来形成该相变化材料柱230,并依序刻蚀该相变化材料层以形成该相变化材料柱230。在制造此类装置所引发的问题是对于该相变化材料柱230的该侧壁232的刻蚀损坏,和在该相变化材料柱230和该底电极220之间对准的容忍限度。
图3是绘示依据本发明一实施例的一存储单元300的剖面图,该存储单元在一第一相变化层330及一第二相变化层335之间具有一电阻加热层305。该电阻加热层包含加热材料,而该加热材料具有一电阻率大于该第一相变化层330及第二相变化层335的该最高电阻率。
一介层孔360由该介电层310的一顶表面312延伸、以及该第一相变化层330是位于该介层孔360的一顶部位内,以及一底电极320为于该介层孔360的一底部位内。
该底电极320接触该第一相变化层330并延伸通过该介电层310至下方存取电路。该底电极320可包含,例如:氮化钛或氮化钽。氮化钛为较佳的,因为其与存储材料的GST有良好的接触(如上所述),其是半导体工艺中常用的材料,且在GST转换的高温(典型地介于600至700℃)下可提供良好的扩散势垒。替代地,该底电极320可为氮化铝钛或氮化铝钽或更包含例如,一个以上选自下列群组的元素:钛、钨、钼、铝、钽、铜、铂、铱、镧、镍、氧和钌及其组合。
一顶电极340为于该第二相变化层335并可包含例如:任何在上述中该底电极320所参考使用的材料。
在操作上,在该顶电极340及该底电极320之间的电压可以引起电流通过该第一相变化层330、该加热器层305及该第二相变化层335,从该底电极320流至该顶电极340,或反之亦然。
该主动区域333是该存储单元300存储材料引起至少两种固相状态之间转换的区域。可察知地,该主动区域333该绘示结构中可以被制造地特别的小,因此降低引起一相变化所需要的电流大小。该第一相变化层330具有一宽度331,而该宽度331是小于该第二相变化层335的宽度336,同时该宽度331较佳地小于一般用来形成该存储单元300的一光刻工艺的一最小特征尺寸。在宽度331及宽度336之间的差异使电流密度集中于该第一相变化层330,因此降低在该主动区域333中引起一相变化所需要的电流大小。此外,该加热器层305的该加热材料具有大于该第一相变化层330及第二相变化层335的该相变化材料的一电阻率,因此,相对于该第一相变化层330及该第二相变化层335的其它部位,提高了该第一相变化层330及该第二相变化层335邻近于该加热器层305的该部位的该温度。如图中所绘示该顶电极340及该底电极320之间被该主动区域333所隔开,而使得该第一相变化层330及该第二相变化层335的该剩余部位对该主动区域330提供热隔离,这样也可以帮助降低引起一相变化所需的电流大小。
该加热器层305的该电阻是与该加热器层305的该厚度307和该加热材料的该电阻率成正比。增加该加热器层305的电阻将会增加该存储单元300的整体电阻,如此对于该存储单元300的能量消耗上将无法提供任何的益处且可能导致该存储单元300的较慢读取程序。然而,如下方更详尽的解释中,在操作中,该加热器层305在温度上的增加是与该加热材料的电阻率成正比。因此需要增加该加热材料的电阻率,因为这样可以降低在该主动区域333引起一相变化所需要的电流大小。因此,当该加热材料的该电阻率高时,较佳地,该加热器层305的厚度307是非常的薄。
忽略热库效应不谈,一自动加热元件的温度变化,一电流I可由下式导出:
(1) ΔT = I 2 · R · t M · s
其中N为该元件的质量,s为该材料的比热系数,T为温度,I为该电流,R为该电阻,以及t为时间。
更者,质量M、电流I及电阻R可由下式表示之:
M=A·h·D         (2)
I=J·A            (3)
R = ρ · h A - - - ( 4 )
其中A为该电流流经该元件的该剖面面积,h为该元件高度,D为该材料的密度,J为电流密度,ρ为该材料的电阻率。结合第(2)式至第(4)式进第(1)式中可导出:
ΔT = J 2 · ρ · t s · D - - - ( 5 )
因此,可由上述第(5)式该温度变化是与该材料的该电阻率成正比。
在一实施例中,该加热材料的该电阻率是大于该第一相变化层330及第二相变化材料335的相变化材料的该最高电阻率约1.5倍至100倍之间,在另一实施例中是约大于4倍至50倍之间。
此外,该电阻加热层305的该厚度307是较佳地小于该第一相变化层330的厚度。在一些实施例中,该厚度307是小于或等于10纳米,例如在1纳米至5纳米之间。
该电阻加热层305在一些实施例中是掺杂杂质来修饰电阻率,例如可包含高度掺杂的氮化钛、氮化钽、钨化钛、氮化硅钛或氮化硅钽。用来增加该电阻率的杂质例如可包含氮、碳、或硅。在实施例中,该该电阻加热层305是通过一等离子体气相沉积PVD工艺来形成,增加掺杂杂质可通过例如:使用一高掺杂标靶及/或增加氮气流量来达成。在一化学气相沉积CVD或原子气相沉积ALD工艺中,例如可以通过增加氮气流量及/或降低这些工艺的操作温度来达成增加掺杂的目的。
在一实施例中,该电阻加热层305是通过沉积氮化钛并使用一TDMAT(Ti[N(CH3)2]4)前驱物,来产生大量的杂质(主要是碳)并造成一高电阻率。而氢气等离子体处理可用来移除该碳及降低该电阻率。
该存储单元300的实施例,对该第一相变化层330及该第二相变化层335,包括相变化存储材料,包括硫属化物材料与其它材料。该第一相变化层330和该第二相变化层335可包含相同或相异的相变化材料。硫属化物包括下列四元素的任一者:氧(O)、硫(S)、硒(Se)、以及碲(Te),形成元素周期表上第VIA族的部分。硫属化物包括将一硫属元素与一更为正电性的元素或自由基结合而得。硫属化合物合金包括将硫属化合物与其它物质如过渡金属等结合。一硫属化合物合金通常包括一个以上选自元素周期表第IVA族的元素,例如锗(Ge)以及锡(Sn)。通常,硫属化合物合金包括下列元素中一个以上的复合物:锑(Sb)、镓(Ga)、铟(In)、以及银(Ag)。许多以相变化为基础的存储材料已经被描述于技术文件中,包括下列合金:镓/锑、铟/锑、铟/硒、锑/碲、锗/碲、锗/锑/碲、铟/锑/碲、镓/硒/碲、锡/锑/碲、铟/锑/锗、银/铟/锑/碲、锗/锡/锑/碲、锗/锑/硒/碲、以及碲/锗/锑/硫。在锗/锑/碲合金家族中,可以尝试大范围的合金成分。此成分可以下列特征式表示:TeaGebSb100-(a+b),其中a与b代表了所组成元素的原子总数为100%时,各原子的百分比。
在一些实施例中,硫属化物及其它相变化材料掺杂杂质来修饰导电性、转换温度、熔点及使用在掺杂硫属化物存储元件的其它特性。使用在掺杂硫属化物代表性的杂质包含氮、硅、氧、二氧化硅、氮化硅、铜、银、金、铝、氧化铝、钽、氧化钽、氮化钽、钛、氧化钛。可参见美国专利第6,800,504号专利及美国专利申请号第2005/0029502号专利。
一位研究员描述了最有用的合金系为,在沉积材料中所包含的平均碲浓度是远低于70%,典型地是低于60%,并在一般型态合金中的碲含量范围从最低23%至最高58%,且最佳是介于48%至58%的碲含量。锗的浓度是高于约5%,且其在材料中的平均范围是从最低8%至最高30%,一般是低于50%。最佳地,锗的浓度范围是介于8%至40%。在此成分中所剩下的主要成分则为锑。(Ovshinky‘112专利,栏10~11)由另一研究者所评估的特殊合金包括Ge2Sb2Te5、GeSb2Te4、以及GeSb4Te7。(NoboruYamada,”Potential of Ge-Sb-Te Phase-change Optical Disks forHigh-Data-Rate Recording”,SPIE v.3109,pp.28-37(1997))更一般地,过渡金属如铬(Cr)、铁(Fe)、镍(Ni)、铌(Nb)、钯(Pd)、铂(Pt)、以及上述的混合物或合金,可与锗/锑/碲结合以形成一相变化合金其包括有可程序化的电阻性质。可使用的存储材料的特殊范例,系如Ovshinsky‘112专利中栏11-13所述,其范例在此系列入参考。
相变化合金能在此单元主动沟道区域内依其位置顺序于材料为一般非晶状态的第一结构状态与为一般结晶固体状态的第二结构状态之间切换。这些材料至少为双稳定态。此词汇「非晶」是用以指称一相对较无次序的结构,其较之一单晶更无次序性,而带有可侦测的特征如较之结晶态更高的电阻值。此词汇「结晶态」是用以指称一相对较有次序的结构,其较之非晶态更有次序,因此包括有可侦测的特征例如比非晶态更低的电阻值。典型地,相变化材料可电切换至完全结晶态与完全非晶态之间所有可侦测的不同状态。其它受到非晶态与结晶态的改变而影响的材料特中包括,原子次序、自由电子密度、以及活化能。此材料可切换成为不同的固态、或可切换成为由两种以上固态所形成的混合物,提供从非晶态至结晶态之间的灰阶部分。此材料中的电性质亦可能随之改变。
相变化合金可通过施加一电脉冲而从一种相态切换至另一相态。先前观察指出,一较短、较大幅度的脉冲倾向于将相转换材料的相态改变成大体为非晶态。一较长、较低幅度的脉冲倾向于将相转换材料的相态改变成大体为结晶态。在较短、较大幅度脉冲中的能量,够大因此足以破坏结晶结构的键能,同时时间够短,因此可以防止原子再次排列成结晶态。合适的曲线是取决于经验或模拟,特别是针对一特定的相变化合金。在本文中所揭露的该相变化材料并通常被称为GST,可理解的是亦可以使用其它类型的相变化材料。在本发明中用来所实施的相变化只读存储器(PCRAM)系Ge2Sb2Te5
代表的硫属化物材料可整理如下:GexSbyTez,其中x∶y∶z=2∶2∶5。其它成分为x:0~5;y:0~5;z:0~10。以氮、硅、钛或其它元素掺杂的GeSbTe亦可被使用。可以利用PVD溅射或磁控(Magnetron)溅射方式,其反应气体为氩气、氮气、及/或氦气、压力为1mTorr至100mTorr。此沉积步骤一般是于室温下进行。一长宽比为1~5的准直器(collimater)可用以改良其注入表现。为了改善其注入表现,亦可使用数十至数百伏特的直流偏压。另一方面,同时合并使用直流偏压以及准直器亦是可行的。有时需要在真空中或氮气环境中进行一沉积后退火处理,以改良硫属化物材料的结晶态。此退火处理的温度典型地是介于100℃至400℃,而退火时间则少于30分钟。
如同上述,该加热器层305的该加热材料具有大于该第一相变化层330及第二相变化层335的该相变化材料的一电阻率,因此,相对于该第一相变化层330及该第二相变化层335的其它部位,提高了该第一相变化层330及该第二相变化层335邻近于该加热器层305的该部位的该温度,且降低因该顶电极340及该底电极320所引起的该热库效应。
图4A绘示类似图3但省略了该加热器层305的一存储单元400的一剖面图。在没有该加热器层305的情况下,在该介电层410的该顶表面412之下该相变化材料430的该区域432内的大量电流密度,会导致该底电极420附近明显地热量产生,如图4B所标示的深色部位是指出较高的热量产生。由于该底电极420的高热传导性亦会使得该区域432内有大量的热量流失,如图4C绘示深色部位汐止较高的热量流失。在该存储单元400操作过程中,在该区域432内的该高热量流失会导致需要更高的电流来引起所需的相变化。
图5至图8是绘示依据本发明所述制造存储单元方法的一实施例的制造步骤,在后述中将不重复解释关于材料、厚度等或在前述中已经揭露的类似信息。
图5绘示形成一结构该工艺的第一步骤的一剖面图,该结构包含一底电极500由该介电层310的该顶表面延伸并耦接至存取电路(未示),像是存取晶体管或二极管及字线等。该底电极500具有一直径331,而该直径331较佳地小于一般用来制造该存取电路(未示)的一光刻工艺的一最小特征尺寸。
该底电极500具有一次光刻直径331以及可形成该介电层310例如使用2007年6月18日申请的美国专利申请案第11/764,678号专利”Methodfor Manufacturing a Phase Change Memory Device with Pillar BottomElectrode”所使用的方法、材料、工艺,并在此引为参考文献。举例来说,可以在存取电路(未示)的该顶表面上形成一层电极材料,接下来,通过图案化该电极层上的一光刻胶层,并使用标准照相光刻技术来形成覆盖于该底电极500的该位置的一光刻胶掩模。接着,使用像是氧气等离子体来剪裁该光刻胶掩模以形成覆盖于该底电极500的该位置具有次光刻尺寸的掩模结构。接着使用该剪裁的光刻胶掩模来实该该电极材料层,因此形成具有次光刻直径331的该底电极。接着形成介电材料310并平坦化而得到图5所绘示的结构。
在另一实施例中,例如可以使用2007年9月14日申请的美国专利申请案第11/855,979号专利”Phase Change Memory Cell in Via Array withSelf-Converged Bottom Electrode and Method for Manufacturing”所使用的方法、材料、工艺来形成该底电极500及该介电层310,并在此引为参考文献。举例来说,可以在该存取电路的该顶表面上形成该介电层310,接着依序形成一隔离层及一牺牲层。接着,在该牺牲层之上形成具有接近或等于用来产生该掩模工艺的该最小特征尺寸开口的一掩模,而该开口是位于该底电极500之上。接着,使用该掩模选择地刻蚀该隔离层及该牺牲层,因此在该隔离层和该牺牲层形成介层孔,并露出该介电层310的一顶表面。在移除该掩模之后,在该介层孔上实施一选择底切刻蚀,使得该隔离层被刻蚀而留下未损坏的该牺牲层及该介电层310。接着在该介层孔内形成一填充材料,由于该选择底切刻蚀工艺使得在每一介层孔内的填充材料中形成一自动对准空孔。接着执行一非等向性实施工艺于该填充材料以打开该空孔,并继续刻蚀直到该介电层310,该介电层310是露出于该空孔下方的该区域,因此在每一介层孔内形成包含填充材料的一间隔物。该间隔物具有实质地由该空孔的该尺寸所决定的一开口尺寸,因此可以比一光刻工艺的该最小特征尺寸还来的小。接着使用该间隔物做为一刻蚀掩模来刻蚀该介电层310,因此在该介电层310内形成具有小于该最小特征尺寸的一直径的开口。接着,使用像是化学机械抛光法(CMP)的平坦化工艺来移除该隔离层及该牺牲层并形成该底电极500,得到图5中所绘示的该结构。
由图5所绘示的该结构刻蚀该底电极500的一部位,以产生在一底电极320上具有一凹部的结构,如图6所绘示。
接下来,在图6中的凹部600内形成包含具有一第一相变化材料的一相变化层,并平坦化,以产生在该底电极320上具有一相变化层330的结构,如图7所绘示。
接着,在图8所绘示的结构上形成一多层结构,包含依序形成一电阻加热材料层、一第二相变化材料层、及一顶电极材料层,并图案化以形成图9所绘示的该存储单元300,该存储单元300具有包含电阻加热材料的一电阻加热器305、包含第二相变化材料的一第二相变化层335、包含顶电极材料的一顶电极340。
如图9所示,显示本发明所述实施例的一集成电路的简化方块图。该集成电路1000包含使用本发明所述具有一加热中心PCRAM的一存储阵列1005。一列译码器1010具有读取、设置、复位模式是耦接至在该存储阵列中1005沿着列安置的多个字线1015。一行译码器1020是耦接至在该存储阵列中1005沿着行安置的多个位线1025,以读取、设置、复位至存储阵列1005中的存储单元。地址是经由一总线1060而提供至一行译码器1020与一列译码器1010。在方块1030中的感测放大器与数据输入结构,包含该读取、设置、复位模式的电流源,是经由一数据总线1035而耦接至行译码器1020。数据是从集成电路1000的输入/输出端、或集成电路内部与外部的其它数据来源,而经由数据输入线1040以将数据传输至方块1030中的数据输入结构。其它电路1065是包括于此集成电路1000中,例如一泛用目的处理器或特定目的应用电路、或可提供单芯片系统功能的模块组合其是由系统于单芯片的存储阵列所支持。数据是从方块1030中的感测放大器、经由数据输出线1045、而传输至集成电路1000的输入/输出端或其它位于集成电路1000内部或外部的数据目的地。
在本实施例中所使用的控制器,使用了偏压调整状态机构1050,并控制了偏压调整供应电压及电流源1055的应用,例如读取、设置、复位、对于该字线及位线的电压确认及/或电流确认,以及使用一存取控制流程来控制该字线/位线操作。该控制器可利用特殊目的逻辑电路而应用,如熟习该项技艺者所熟知。在替代实施例中,该控制器包括了通用目的处理器,其可使于同一集成电路,以执行一计算机程序而控制装置的操作。在又一实施例中,该控制器是由特殊目的逻辑电路与通用目的处理器组合而成。
图10是绘示一存储阵列1100的示意图,其可以使用本发明所描述的存储单元而实施。四个存储单元1102、1104、1106、1108是具有各自的存储元件1112、1114、1116、1118,如图11所示,但此图仅代表一阵列的一小部分,此阵列可以包含上百万个存储单元。
在图10的示意图之中,共同源极线1120,字线1122、1124是大致平行于y轴而排列。位线1126、1128是大致沿着x轴平行排列。因此,一y轴译码器与一字线驱动器1150(具有设置、复位与读取模式)是耦合至字线1122、1124。用以设置、复位以及读取模式的位线电流源1152、一译码器与感测放大器(未示)是耦接至位线1126、1128。共同源极线1120是耦接至源极线终端电路1154,例如一接地终端。此源极线终端电路1154可包含偏压电路(例如电压源与电流源),以及译码电路,以在某些实施例中施加偏压安排(而非接地)至源极线。
共同源极线1120是耦接至存储单元1102、1104、1106、1108的源极终端。字线1122是耦接至存储单元1102、1106的栅极终端。字线1124是耦接至存储单元1104、1108的栅极终端。
包含有各自的存储元件1112、1114的存储单元1102、1104是为代表性存储单元。该存储元件1112耦接该存储单元1102的源极至位线1126。相似地,该存储元件1114耦接该存储单元1104的源极至位线1126。在操作上,电流源1152是以低电流读取模式操作、一种以上的中间电流设定模式、以及较高电流复位模式操作。在较高电流复位模式时,一穿过选定存储单元(例如:包含有存储元件1112的存储单元1102)的电流路径1180,是通过施加一电压及电流至位线1126,施加于该字线1122及源极线1120的电压是足以启动存储单元1102的存取晶体管,使得电流流经源极线1120。
相似地,在低电流读取模式,一通过选定存储单元(例如:包含有存储元件1114的存储单元1104)的电流路径1182,是通过施加一电压及电流至位线1126而建立,在字线1124及源极线1120的电压是足以启动存储单元1104的存取晶体管并提供电流至源极线1120。
在设置模式时(用于一种以上的中间电流位阶),是使能一存取晶体管,如同前述读取模式。
本发明的优点包含具有较小单元大小的存储单元,以及解决该热传导问题的一结构,提供支持高密度装置的一阵列结构,以及一种用来符合制造大量存储装置所需要更严格的各种规格的方法。
本发明是已参照特定示范实施例来加以描述。所做各种的修饰、替代、及改变皆不脱离本发明的精神范畴。因此,所有此等替换方式及修改样式是亦落在本发明于随附权利要求范围及其均等物所界定的范畴之中。
上述中涵盖的任何及所有专利、专利申请及纸本文件皆引用做为参考文献。

Claims (12)

1.一种存储装置,其特征在于,包含:
一介电层,具有一顶表面;
一介层孔,自该介电层的该顶表面延伸,并具有一底部位和一顶部位;
一底电极,位于该介层孔的该底部位之内;.
一第一相变化层,其包含一第一相变化材料于该介层孔的该顶部位之内且与该底电极连接,该第一相变化材料具有至少两种固相状态;
一电阻加热层,其包含一加热材料在该第一相变化层之上;
一第二相变化层,其包含一第二相变化材料在该电阻加热层之上,该第二相变化材料具有至少两种固相状态;以及
一顶电极,于该第二相变化层之上;
其中该加热材料具有一电阻率,该电阻率是大于该第一及第二相变化材料的最高电阻率。
2.根据权利要求1所述的装置,其特征在于,其中该电阻加热层、该第二相变化层及该顶电极形成一多层堆栈覆盖于该介电层的该顶表面上。
3.根据权利要求1所述的装置,其特征在于,其中该电阻加热层具有小于或等于10nm的一厚度。
4.根据权利要求1所述的装置,其特征在于,其中该加热材料具有一电阻率,该电阻率是大于该第一及第二相变化材料的该最高电阻率1.5倍至100倍之间。
5.根据权利要求4所述的装置,其特征在于,其中该加热材料具有一电阻率,该电阻率是大于该第一及第二相变化材料的该最高电阻率4倍至50倍之间。
6.根据权利要求1所述的装置,其特征在于,其中该加热材料包含掺杂氧化硅或氮化物,该氮化物是氮化钛、氮化钽、钨化钛、氮化硅钛、或氮化硅钽。
7.一种用来制造一存储装置的方法,其特征在于,该方法包含:
提供一底电极延伸至一介电层的一顶表面;
移除该底电极的一部位以形成一凹部;
填充该凹部以一第一相变化材料层,而该第一相变化材料层具有至少两种固态相;
形成一加热材料层于该第一相变化层之上;
形成一第二相变化材料层于该加热材料层之上,而该第二相变化材料层具有至少两种固态相;以及
形成一顶电极材料层于该第二相变化层之上;
其中该加热材料具有一电阻率,该电阻率是大于该第一及第二相变化材料的该最高电阻率。
8.根据权利要求7所述的方法,其特征在于,其中填充该凹部步骤包含:
形成该第一相变化材料层于该凹部之内及该介电层的该顶表面之上;以及
平坦化该第一相变化材料层以暴露出该介电层的该顶表面。
9.根据权利要求8所述的方法,其特征在于,更包含刻蚀该加热材料层、该第二相变化材料层及该顶电极材料层,因而形成一多层堆栈覆盖于该介电层的该顶表面上。
10.根据权利要求7所述的方法,其特征在于,其中该加热材料层具有小于或等于10nm的一厚度。
11.根据权利要求7所述的方法,其特征在于,其中该加热材料具有一电阻率,该电阻率是大于该第一及第二相变化材料的该最高电阻率1.5倍至100倍之间。
12.根据权利要求7所述的方法,其特征在于,其中该加热材料包含掺杂氧化硅或氮化物,该氮化物是氮化钛、氮化钽、钨化钛、氮化硅钛、或氮化硅钽。
CN2008102109018A 2008-02-05 2008-08-12 中心加热相变化存储器结构及其制造方法 Active CN101504967B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/026,342 2008-02-05
US12/026,342 US8158965B2 (en) 2008-02-05 2008-02-05 Heating center PCRAM structure and methods for making

Publications (2)

Publication Number Publication Date
CN101504967A CN101504967A (zh) 2009-08-12
CN101504967B true CN101504967B (zh) 2011-03-09

Family

ID=40930781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102109018A Active CN101504967B (zh) 2008-02-05 2008-08-12 中心加热相变化存储器结构及其制造方法

Country Status (3)

Country Link
US (1) US8158965B2 (zh)
CN (1) CN101504967B (zh)
TW (1) TWI376800B (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425735B2 (en) * 2003-02-24 2008-09-16 Samsung Electronics Co., Ltd. Multi-layer phase-changeable memory devices
US7511984B2 (en) * 2006-08-30 2009-03-31 Micron Technology, Inc. Phase change memory
US7593254B2 (en) * 2007-05-25 2009-09-22 Micron Technology, Inc. Variable resistance memory device with an interfacial adhesion heating layer, systems using the same and methods of forming the same
US8097871B2 (en) 2009-04-30 2012-01-17 Macronix International Co., Ltd. Low operational current phase change memory structures
US8110822B2 (en) 2009-07-15 2012-02-07 Macronix International Co., Ltd. Thermal protect PCRAM structure and methods for making
US8530875B1 (en) * 2010-05-06 2013-09-10 Micron Technology, Inc. Phase change memory including ovonic threshold switch with layered electrode and methods for forming same
US8283198B2 (en) 2010-05-10 2012-10-09 Micron Technology, Inc. Resistive memory and methods of processing resistive memory
US8097537B2 (en) 2010-05-25 2012-01-17 Micron Technology, Inc. Phase change memory cell structures and methods
US8486743B2 (en) 2011-03-23 2013-07-16 Micron Technology, Inc. Methods of forming memory cells
US8994489B2 (en) 2011-10-19 2015-03-31 Micron Technology, Inc. Fuses, and methods of forming and using fuses
US8546231B2 (en) 2011-11-17 2013-10-01 Micron Technology, Inc. Memory arrays and methods of forming memory cells
US9252188B2 (en) 2011-11-17 2016-02-02 Micron Technology, Inc. Methods of forming memory cells
US8723155B2 (en) 2011-11-17 2014-05-13 Micron Technology, Inc. Memory cells and integrated devices
US9136467B2 (en) 2012-04-30 2015-09-15 Micron Technology, Inc. Phase change memory cells and methods of forming phase change memory cells
US8765555B2 (en) 2012-04-30 2014-07-01 Micron Technology, Inc. Phase change memory cells and methods of forming phase change memory cells
TWI469408B (zh) * 2012-05-07 2015-01-11 Univ Feng Chia 超薄與多層結構相變化記憶體元件
KR101934003B1 (ko) * 2012-06-01 2019-01-02 삼성전자주식회사 상변화 메모리 장치 및 그 제조 방법
US9627611B2 (en) 2012-11-21 2017-04-18 Micron Technology, Inc. Methods for forming narrow vertical pillars and integrated circuit devices having the same
CN103839919B (zh) * 2012-11-23 2018-09-14 中芯国际集成电路制造(上海)有限公司 电极的制造方法、熔丝装置及其制造方法
US9553262B2 (en) 2013-02-07 2017-01-24 Micron Technology, Inc. Arrays of memory cells and methods of forming an array of memory cells
US9166158B2 (en) 2013-02-25 2015-10-20 Micron Technology, Inc. Apparatuses including electrodes having a conductive barrier material and methods of forming same
US9881971B2 (en) 2014-04-01 2018-01-30 Micron Technology, Inc. Memory arrays
US9362494B2 (en) 2014-06-02 2016-06-07 Micron Technology, Inc. Array of cross point memory cells and methods of forming an array of cross point memory cells
US9343506B2 (en) 2014-06-04 2016-05-17 Micron Technology, Inc. Memory arrays with polygonal memory cells having specific sidewall orientations
TWI625874B (zh) * 2015-11-05 2018-06-01 華邦電子股份有限公司 導電橋接式隨機存取記憶體
CN105633279A (zh) * 2016-01-29 2016-06-01 中国科学院上海微系统与信息技术研究所 包含部分限定型相变材料结构的相变存储单元及制作方法
US11211556B1 (en) 2020-07-20 2021-12-28 International Business Machines Corporation Resistive element for PCM RPU by trench depth patterning
CN112701221B (zh) * 2020-12-25 2022-09-13 华中科技大学 一种基于纳米电流通道的相变存储器
CN113517396A (zh) * 2021-04-16 2021-10-19 长江先进存储产业创新中心有限责任公司 一种相变存储器及其制造方法
US20230263080A1 (en) * 2022-02-11 2023-08-17 International Business Machines Corporation Confined phase-change memory cell with self-aligned electrode and reduced thermal loss
CN117412664A (zh) * 2022-07-04 2024-01-16 长鑫存储技术有限公司 半导体结构及其形成方法、存储器

Family Cites Families (295)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3530441A (en) 1969-01-15 1970-09-22 Energy Conversion Devices Inc Method and apparatus for storing and retrieving information
IL61678A (en) 1979-12-13 1984-04-30 Energy Conversion Devices Inc Programmable cell and programmable electronic arrays comprising such cells
US4452592A (en) 1982-06-01 1984-06-05 General Motors Corporation Cyclic phase change coupling
JPS60137070A (ja) 1983-12-26 1985-07-20 Toshiba Corp 半導体装置の製造方法
US4719594A (en) 1984-11-01 1988-01-12 Energy Conversion Devices, Inc. Grooved optical data storage device including a chalcogenide memory layer
US4876220A (en) 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
JP2685770B2 (ja) 1987-12-28 1997-12-03 株式会社東芝 不揮発性半導体記憶装置
JP2606857B2 (ja) 1987-12-10 1997-05-07 株式会社日立製作所 半導体記憶装置の製造方法
US5534712A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5177567A (en) 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
JP2825031B2 (ja) 1991-08-06 1998-11-18 日本電気株式会社 半導体メモリ装置
US5166096A (en) 1991-10-29 1992-11-24 International Business Machines Corporation Process for fabricating self-aligned contact studs for semiconductor structures
JPH05206394A (ja) 1992-01-24 1993-08-13 Mitsubishi Electric Corp 電界効果トランジスタおよびその製造方法
US5329486A (en) 1992-04-24 1994-07-12 Motorola, Inc. Ferromagnetic memory device
US5958358A (en) 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
JP2884962B2 (ja) 1992-10-30 1999-04-19 日本電気株式会社 半導体メモリ
US5515488A (en) 1994-08-30 1996-05-07 Xerox Corporation Method and apparatus for concurrent graphical visualization of a database search and its search history
US5785828A (en) 1994-12-13 1998-07-28 Ricoh Company, Ltd. Sputtering target for producing optical recording medium
US5751012A (en) 1995-06-07 1998-05-12 Micron Technology, Inc. Polysilicon pillar diode for use in a non-volatile memory cell
US5831276A (en) 1995-06-07 1998-11-03 Micron Technology, Inc. Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
US5879955A (en) 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5869843A (en) 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US5837564A (en) 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
KR0182866B1 (ko) 1995-12-27 1999-04-15 김주용 플래쉬 메모리 장치
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US6025220A (en) 1996-06-18 2000-02-15 Micron Technology, Inc. Method of forming a polysilicon diode and devices incorporating such diode
US5866928A (en) 1996-07-16 1999-02-02 Micron Technology, Inc. Single digit line with cell contact interconnect
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5985698A (en) 1996-07-22 1999-11-16 Micron Technology, Inc. Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5998244A (en) 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5688713A (en) 1996-08-26 1997-11-18 Vanguard International Semiconductor Corporation Method of manufacturing a DRAM cell having a double-crown capacitor using polysilicon and nitride spacers
US6147395A (en) 1996-10-02 2000-11-14 Micron Technology, Inc. Method for fabricating a small area of contact between electrodes
US6087674A (en) 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5716883A (en) 1996-11-06 1998-02-10 Vanguard International Semiconductor Corporation Method of making increased surface area, storage node electrode, with narrow spaces between polysilicon columns
US6015977A (en) 1997-01-28 2000-01-18 Micron Technology, Inc. Integrated circuit memory cell having a small active area and method of forming same
US5952671A (en) 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6031287A (en) 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US5902704A (en) 1997-07-02 1999-05-11 Lsi Logic Corporation Process for forming photoresist mask over integrated circuit structures with critical dimension control
US6768165B1 (en) 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6969866B1 (en) 1997-10-01 2005-11-29 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US6617192B1 (en) 1997-10-01 2003-09-09 Ovonyx, Inc. Electrically programmable memory element with multi-regioned contact
US7023009B2 (en) 1997-10-01 2006-04-04 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US6087269A (en) 1998-04-20 2000-07-11 Advanced Micro Devices, Inc. Method of making an interconnect using a tungsten hard mask
US6372651B1 (en) 1998-07-17 2002-04-16 Advanced Micro Devices, Inc. Method for trimming a photoresist pattern line for memory gate etching
US6141260A (en) 1998-08-27 2000-10-31 Micron Technology, Inc. Single electron resistor memory device and method for use thereof
US6034882A (en) 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6351406B1 (en) 1998-11-16 2002-02-26 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US7157314B2 (en) 1998-11-16 2007-01-02 Sandisk Corporation Vertically stacked field programmable nonvolatile memory and method of fabrication
JP2000164830A (ja) 1998-11-27 2000-06-16 Mitsubishi Electric Corp 半導体記憶装置の製造方法
US6291137B1 (en) 1999-01-20 2001-09-18 Advanced Micro Devices, Inc. Sidewall formation for sidewall patterning of sub 100 nm structures
US6245669B1 (en) 1999-02-05 2001-06-12 Taiwan Semiconductor Manufacturing Company High selectivity Si-rich SiON etch-stop layer
US6943365B2 (en) 1999-03-25 2005-09-13 Ovonyx, Inc. Electrically programmable memory element with reduced area of contact and method for making same
US6750079B2 (en) 1999-03-25 2004-06-15 Ovonyx, Inc. Method for making programmable resistance memory element
US6177317B1 (en) 1999-04-14 2001-01-23 Macronix International Co., Ltd. Method of making nonvolatile memory devices having reduced resistance diffusion regions
US6077674A (en) 1999-10-27 2000-06-20 Agilent Technologies Inc. Method of producing oligonucleotide arrays with features of high purity
US6326307B1 (en) 1999-11-15 2001-12-04 Appllied Materials, Inc. Plasma pretreatment of photoresist in an oxide etch process
US6314014B1 (en) 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells
US6576546B2 (en) 1999-12-22 2003-06-10 Texas Instruments Incorporated Method of enhancing adhesion of a conductive barrier layer to an underlying conductive plug and contact for ferroelectric applications
TW586154B (en) 2001-01-05 2004-05-01 Macronix Int Co Ltd Planarization method for semiconductor device
US6420216B1 (en) 2000-03-14 2002-07-16 International Business Machines Corporation Fuse processing using dielectric planarization pillars
US6888750B2 (en) 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US6420215B1 (en) 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6440837B1 (en) 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
US6563156B2 (en) 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
US6512263B1 (en) 2000-09-22 2003-01-28 Sandisk Corporation Non-volatile memory cell array having discontinuous source and drain diffusions contacted by continuous bit line conductors and methods of forming
US6555860B2 (en) 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6567293B1 (en) 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6429064B1 (en) 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
DE10050076C2 (de) 2000-10-10 2003-09-18 Infineon Technologies Ag Verfahren zur Herstellung einer ferromagnetischen Struktur und ferromagnetisches Bauelement
US6555858B1 (en) 2000-11-15 2003-04-29 Motorola, Inc. Self-aligned magnetic clad write line and its method of formation
KR100382729B1 (ko) 2000-12-09 2003-05-09 삼성전자주식회사 반도체 소자의 금속 컨택 구조체 및 그 형성방법
US6696355B2 (en) 2000-12-14 2004-02-24 Ovonyx, Inc. Method to selectively increase the top resistance of the lower programming electrode in a phase-change memory
US6569705B2 (en) 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6271090B1 (en) 2000-12-22 2001-08-07 Macronix International Co., Ltd. Method for manufacturing flash memory device with dual floating gates and two bits per cell
TW490675B (en) 2000-12-22 2002-06-11 Macronix Int Co Ltd Control method of multi-stated NROM
US6627530B2 (en) 2000-12-22 2003-09-30 Matrix Semiconductor, Inc. Patterning three dimensional structures
US6534781B2 (en) 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
KR100625129B1 (ko) 2001-01-30 2006-09-18 가부시키가이샤 히타치세이사쿠쇼 반도체 집적 회로 장치의 제조 방법
KR100400037B1 (ko) 2001-02-22 2003-09-29 삼성전자주식회사 콘택 플러그를 구비하는 반도체 소자 및 그의 제조 방법
US6487114B2 (en) 2001-02-28 2002-11-26 Macronix International Co., Ltd. Method of reading two-bit memories of NROM cell
US20050024338A1 (en) 2001-03-29 2005-02-03 International Business Machines Corporation Finger-identifying keyboard
US6596589B2 (en) 2001-04-30 2003-07-22 Vanguard International Semiconductor Corporation Method of manufacturing a high coupling ratio stacked gate flash memory with an HSG-SI layer
US6730928B2 (en) 2001-05-09 2004-05-04 Science Applications International Corporation Phase change switches and circuits coupling to electromagnetic waves containing phase change switches
US6514788B2 (en) 2001-05-29 2003-02-04 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing contacts for a Chalcogenide memory device
US6589714B2 (en) 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6774387B2 (en) 2001-06-26 2004-08-10 Ovonyx, Inc. Programmable resistance memory element
US6605527B2 (en) 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6673700B2 (en) 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6511867B2 (en) 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6919592B2 (en) 2001-07-25 2005-07-19 Nantero, Inc. Electromechanical memory array using nanotube ribbons and method for making same
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6737312B2 (en) 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6764894B2 (en) 2001-08-31 2004-07-20 Ovonyx, Inc. Elevated pore phase-change memory
US6507061B1 (en) 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
US6586761B2 (en) 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6861267B2 (en) 2001-09-17 2005-03-01 Intel Corporation Reducing shunts in memories with phase-change material
US7045383B2 (en) 2001-09-19 2006-05-16 BAE Systems Information and Ovonyx, Inc Method for making tapered opening for programmable resistance memory element
US6566700B2 (en) 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6800563B2 (en) 2001-10-11 2004-10-05 Ovonyx, Inc. Forming tapered lower electrode phase-change memories
US6791859B2 (en) 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6545903B1 (en) 2001-12-17 2003-04-08 Texas Instruments Incorporated Self-aligned resistive plugs for forming memory cell with phase change material
US6625054B2 (en) 2001-12-28 2003-09-23 Intel Corporation Method and apparatus to program a phase change memory
US6512241B1 (en) 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6867638B2 (en) 2002-01-10 2005-03-15 Silicon Storage Technology, Inc. High voltage generation and regulation system for digital multilevel nonvolatile memory
JP3948292B2 (ja) 2002-02-01 2007-07-25 株式会社日立製作所 半導体記憶装置及びその製造方法
US6972430B2 (en) 2002-02-20 2005-12-06 Stmicroelectronics S.R.L. Sublithographic contact structure, phase change memory cell with optimized heater shape, and manufacturing method thereof
US6891747B2 (en) 2002-02-20 2005-05-10 Stmicroelectronics S.R.L. Phase change memory cell and manufacturing method thereof using minitrenches
US7122281B2 (en) 2002-02-26 2006-10-17 Synopsys, Inc. Critical dimension control using full phase and trim masks
JP3796457B2 (ja) 2002-02-28 2006-07-12 富士通株式会社 不揮発性半導体記憶装置
WO2003079463A2 (en) 2002-03-15 2003-09-25 Axon Technologies Corporation Programmable structure, an array including the structure, and methods of forming the same
US6579760B1 (en) 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
US7623370B2 (en) 2002-04-04 2009-11-24 Kabushiki Kaisha Toshiba Resistance change memory device
AU2003221003A1 (en) 2002-04-09 2003-10-20 Matsushita Electric Industrial Co., Ltd. Non-volatile memory and manufacturing method thereof
US6864500B2 (en) 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6605821B1 (en) 2002-05-10 2003-08-12 Hewlett-Packard Development Company, L.P. Phase change material electronic memory structure and method for forming
US6864503B2 (en) 2002-08-09 2005-03-08 Macronix International Co., Ltd. Spacer chalcogenide memory method and device
US6850432B2 (en) 2002-08-20 2005-02-01 Macronix International Co., Ltd. Laser programmable electrically readable phase-change memory method and device
KR100448908B1 (ko) 2002-09-03 2004-09-16 삼성전자주식회사 상전이 기억 소자 구조 및 그 제조 방법
JP4133141B2 (ja) 2002-09-10 2008-08-13 株式会社エンプラス 電気部品用ソケット
JP4190238B2 (ja) 2002-09-13 2008-12-03 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
US6992932B2 (en) 2002-10-29 2006-01-31 Saifun Semiconductors Ltd Method circuit and system for read error detection in a non-volatile memory array
JP4928045B2 (ja) 2002-10-31 2012-05-09 大日本印刷株式会社 相変化型メモリ素子およびその製造方法
US6744088B1 (en) 2002-12-13 2004-06-01 Intel Corporation Phase change memory device on a planar composite layer
US7242019B2 (en) 2002-12-13 2007-07-10 Intel Corporation Shunted phase change memory
US6869883B2 (en) 2002-12-13 2005-03-22 Ovonyx, Inc. Forming phase change memories
US6791102B2 (en) 2002-12-13 2004-09-14 Intel Corporation Phase change memory
US6815266B2 (en) 2002-12-30 2004-11-09 Bae Systems Information And Electronic Systems Integration, Inc. Method for manufacturing sidewall contacts for a chalcogenide memory device
EP1439583B1 (en) 2003-01-15 2013-04-10 STMicroelectronics Srl Sublithographic contact structure, in particular for a phase change memory cell, and fabrication process thereof
KR101009891B1 (ko) 2003-01-31 2011-01-20 엔엑스피 비 브이 자기 저항 메모리 셀, 자기 저항 메모리 셀의 매트릭스,자기 저항 메모리 셀의 매트릭스에 값을 기록하는 방법 및자기 저항 메모리 셀 제조 방법
US7115927B2 (en) 2003-02-24 2006-10-03 Samsung Electronics Co., Ltd. Phase changeable memory devices
KR100486306B1 (ko) 2003-02-24 2005-04-29 삼성전자주식회사 셀프 히터 구조를 가지는 상변화 메모리 소자
US6936544B2 (en) 2003-03-11 2005-08-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method of removing metal etching residues following a metal etchback process to improve a CMP process
CN1759450B (zh) 2003-03-18 2012-02-29 株式会社东芝 可编程阻抗存储器器件
KR100979710B1 (ko) 2003-05-23 2010-09-02 삼성전자주식회사 반도체 메모리 소자 및 제조방법
US20060006472A1 (en) 2003-06-03 2006-01-12 Hai Jiang Phase change memory with extra-small resistors
US7067865B2 (en) 2003-06-06 2006-06-27 Macronix International Co., Ltd. High density chalcogenide memory cells
US6838692B1 (en) 2003-06-23 2005-01-04 Macronix International Co., Ltd. Chalcogenide memory device with multiple bits per cell
US7132350B2 (en) 2003-07-21 2006-11-07 Macronix International Co., Ltd. Method for manufacturing a programmable eraseless memory
US20050018526A1 (en) 2003-07-21 2005-01-27 Heon Lee Phase-change memory device and manufacturing method thereof
KR100615586B1 (ko) 2003-07-23 2006-08-25 삼성전자주식회사 다공성 유전막 내에 국부적인 상전이 영역을 구비하는상전이 메모리 소자 및 그 제조 방법
US7893419B2 (en) 2003-08-04 2011-02-22 Intel Corporation Processing phase change material to improve programming speed
US7381611B2 (en) 2003-08-04 2008-06-03 Intel Corporation Multilayered phase change memory
EP1505656B1 (en) 2003-08-05 2007-01-03 STMicroelectronics S.r.l. Process for manufacturing a phase change memory array in Cu-damascene technology and phase change memory array manufactured thereby
DE102004039977B4 (de) 2003-08-13 2008-09-11 Samsung Electronics Co., Ltd., Suwon Programmierverfahren und Treiberschaltung für eine Phasenwechselspeicherzelle
KR100505701B1 (ko) 2003-08-13 2005-08-03 삼성전자주식회사 상 변화 메모리의 셋(set) 시간을 최소화하는프로그래밍 방법 및 프로그래밍 방법을 구현하는 기입드라이버 회로
US6927410B2 (en) 2003-09-04 2005-08-09 Silicon Storage Technology, Inc. Memory device with discrete layers of phase change memory material
US6815704B1 (en) 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
KR100505709B1 (ko) 2003-09-08 2005-08-03 삼성전자주식회사 상 변화 메모리 장치의 파이어링 방법 및 효율적인파이어링을 수행할 수 있는 상 변화 메모리 장치
US20050062087A1 (en) 2003-09-19 2005-03-24 Yi-Chou Chen Chalcogenide phase-change non-volatile memory, memory device and method for fabricating the same
DE10345455A1 (de) 2003-09-30 2005-05-04 Infineon Technologies Ag Verfahren zum Erzeugen einer Hartmaske und Hartmasken-Anordnung
US6910907B2 (en) 2003-11-18 2005-06-28 Agere Systems Inc. Contact for use in an integrated circuit and a method of manufacture therefor
US7485891B2 (en) 2003-11-20 2009-02-03 International Business Machines Corporation Multi-bit phase change memory cell and multi-bit phase change memory including the same, method of forming a multi-bit phase change memory, and method of programming a multi-bit phase change memory
KR100558548B1 (ko) 2003-11-27 2006-03-10 삼성전자주식회사 상변화 메모리 소자에서의 라이트 드라이버 회로 및라이트 전류 인가방법
US6937507B2 (en) 2003-12-05 2005-08-30 Silicon Storage Technology, Inc. Memory device and method of operating same
US7265050B2 (en) 2003-12-12 2007-09-04 Samsung Electronics Co., Ltd. Methods for fabricating memory devices using sacrificial layers
US7291556B2 (en) 2003-12-12 2007-11-06 Samsung Electronics Co., Ltd. Method for forming small features in microelectronic devices using sacrificial layers
KR100569549B1 (ko) 2003-12-13 2006-04-10 주식회사 하이닉스반도체 상 변화 저항 셀 및 이를 이용한 불휘발성 메모리 장치
KR100564602B1 (ko) 2003-12-30 2006-03-29 삼성전자주식회사 상 변화 메모리 어레이의 셋 프로그래밍 방법 및 기입드라이버 회로
US7038230B2 (en) 2004-01-06 2006-05-02 Macronix Internation Co., Ltd. Horizontal chalcogenide element defined by a pad for use in solid-state memories
JP4124743B2 (ja) 2004-01-21 2008-07-23 株式会社ルネサステクノロジ 相変化メモリ
KR100564608B1 (ko) 2004-01-29 2006-03-28 삼성전자주식회사 상변화 메모리 소자
US6936840B2 (en) 2004-01-30 2005-08-30 International Business Machines Corporation Phase-change memory cell and method of fabricating the phase-change memory cell
US20050184282A1 (en) 2004-02-20 2005-08-25 Li-Shyue Lai Phase change memory cell and method of its manufacture
US7858980B2 (en) 2004-03-01 2010-12-28 Taiwan Semiconductor Manufacturing Co., Ltd. Reduced active area in a phase change memory structure
KR100574975B1 (ko) 2004-03-05 2006-05-02 삼성전자주식회사 상 변화 메모리 어레이의 셋 프로그래밍 방법 및 기입드라이버 회로
JP4529493B2 (ja) 2004-03-12 2010-08-25 株式会社日立製作所 半導体装置
KR100598100B1 (ko) 2004-03-19 2006-07-07 삼성전자주식회사 상변환 기억 소자의 제조방법
DE102004014487A1 (de) 2004-03-24 2005-11-17 Infineon Technologies Ag Speicherbauelement mit in isolierendes Material eingebettetem, aktiven Material
US7038231B2 (en) 2004-04-30 2006-05-02 International Business Machines Corporation Non-planarized, self-aligned, non-volatile phase-change memory array and method of formation
US7009694B2 (en) 2004-05-28 2006-03-07 International Business Machines Corporation Indirect switching and sensing of phase change memory cells
US6977181B1 (en) 2004-06-17 2005-12-20 Infincon Technologies Ag MTJ stack with crystallization inhibiting layer
KR100668824B1 (ko) 2004-06-30 2007-01-16 주식회사 하이닉스반도체 상변환 기억 소자 및 그 제조방법
JP2006019455A (ja) 2004-06-30 2006-01-19 Nec Electronics Corp 半導体装置およびその製造方法
US7359231B2 (en) 2004-06-30 2008-04-15 Intel Corporation Providing current for phase change memories
KR100657897B1 (ko) 2004-08-21 2006-12-14 삼성전자주식회사 전압 제어층을 포함하는 메모리 소자
US7365385B2 (en) 2004-08-30 2008-04-29 Micron Technology, Inc. DRAM layout with vertical FETs and method of formation
KR100610014B1 (ko) 2004-09-06 2006-08-09 삼성전자주식회사 리키지 전류 보상 가능한 반도체 메모리 장치
US7687830B2 (en) 2004-09-17 2010-03-30 Ovonyx, Inc. Phase change memory with ovonic threshold switch
US7443062B2 (en) 2004-09-30 2008-10-28 Reliance Electric Technologies Llc Motor rotor cooling with rotation heat pipes
US7023008B1 (en) * 2004-09-30 2006-04-04 Infineon Technologies Ag Resistive memory element
TWI254443B (en) 2004-10-08 2006-05-01 Ind Tech Res Inst Multilevel phase-change memory, manufacture method and status transferring method thereof
KR100626388B1 (ko) 2004-10-19 2006-09-20 삼성전자주식회사 상변환 메모리 소자 및 그 형성 방법
KR100571844B1 (ko) 2004-10-28 2006-04-17 삼성전자주식회사 상전이 메모리 소자 및 그 동작 방법
DE102004052611A1 (de) 2004-10-29 2006-05-04 Infineon Technologies Ag Verfahren zur Herstellung einer mit einem Füllmaterial mindestens teilweise gefüllten Öffnung, Verfahren zur Herstellung einer Speicherzelle und Speicherzelle
US7364935B2 (en) 2004-10-29 2008-04-29 Macronix International Co., Ltd. Common word line edge contact phase-change memory
KR100687709B1 (ko) 2004-11-04 2007-02-27 한국전자통신연구원 멀티비트형 상변화 메모리 소자 및 그 구동 방법
US20060108667A1 (en) 2004-11-22 2006-05-25 Macronix International Co., Ltd. Method for manufacturing a small pin on integrated circuits or other devices
US7202493B2 (en) 2004-11-30 2007-04-10 Macronix International Co., Inc. Chalcogenide memory having a small active region
KR100827653B1 (ko) 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
US7220983B2 (en) 2004-12-09 2007-05-22 Macronix International Co., Ltd. Self-aligned small contact phase-change memory method and device
TWI260764B (en) 2004-12-10 2006-08-21 Macronix Int Co Ltd Non-volatile memory cell and operating method thereof
EP1675183A1 (en) 2004-12-21 2006-06-28 STMicroelectronics S.r.l. Phase change memory cell with diode junction selection and manufacturing method thereof
US20060131555A1 (en) 2004-12-22 2006-06-22 Micron Technology, Inc. Resistance variable devices with controllable channels
US20060138467A1 (en) 2004-12-29 2006-06-29 Hsiang-Lan Lung Method of forming a small contact in phase-change memory and a memory cell produced by the method
EP1677357A1 (en) 2004-12-30 2006-07-05 STMicroelectronics S.r.l. Phase change memory device having an adhesion layer and manufacturing process thereof
JP4646634B2 (ja) 2005-01-05 2011-03-09 ルネサスエレクトロニクス株式会社 半導体装置
TWI261915B (en) 2005-01-07 2006-09-11 Ind Tech Res Inst Phase change memory and fabricating method thereof
US7419771B2 (en) 2005-01-11 2008-09-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a finely patterned resist
US20060169968A1 (en) 2005-02-01 2006-08-03 Thomas Happ Pillar phase change memory cell
JP4591821B2 (ja) 2005-02-09 2010-12-01 エルピーダメモリ株式会社 半導体装置
US7214958B2 (en) 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US7154774B2 (en) 2005-03-30 2006-12-26 Ovonyx, Inc. Detecting switching of access elements of phase change memory cells
US7488967B2 (en) 2005-04-06 2009-02-10 International Business Machines Corporation Structure for confining the switching current in phase memory (PCM) cells
US7166533B2 (en) 2005-04-08 2007-01-23 Infineon Technologies, Ag Phase change memory cell defined by a pattern shrink material process
EP1710324B1 (en) 2005-04-08 2008-12-03 STMicroelectronics S.r.l. PVD process and chamber for the pulsed deposition of a chalcogenide material layer of a phase change memory device
US7488968B2 (en) 2005-05-05 2009-02-10 Ovonyx, Inc. Multilevel phase change memory
EP1729355B1 (en) 2005-06-03 2008-11-19 STMicroelectronics S.r.l. Self-aligned process for manufacturing phase change memory cells
KR100668846B1 (ko) 2005-06-10 2007-01-16 주식회사 하이닉스반도체 상변환 기억 소자의 제조방법
US7221579B2 (en) 2005-06-13 2007-05-22 International Business Machines Corporation Method and structure for high performance phase change memory
US7321130B2 (en) 2005-06-17 2008-01-22 Macronix International Co., Ltd. Thin film fuse phase change RAM and manufacturing method
US7514288B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Manufacturing methods for thin film fuse phase change ram
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US8237140B2 (en) 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US7534647B2 (en) 2005-06-17 2009-05-19 Macronix International Co., Ltd. Damascene phase change RAM and manufacturing method
US7514367B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Method for manufacturing a narrow structure on an integrated circuit
US7598512B2 (en) 2005-06-17 2009-10-06 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation layer and manufacturing method
US7696503B2 (en) 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US20060289848A1 (en) 2005-06-28 2006-12-28 Dennison Charles H Reducing oxidation of phase change memory electrodes
US7309630B2 (en) 2005-07-08 2007-12-18 Nanochip, Inc. Method for forming patterned media for a high density data storage device
US7345907B2 (en) 2005-07-11 2008-03-18 Sandisk 3D Llc Apparatus and method for reading an array of nonvolatile memory cells including switchable resistor memory elements
US20070037101A1 (en) 2005-08-15 2007-02-15 Fujitsu Limited Manufacture method for micro structure
US7381982B2 (en) 2005-08-26 2008-06-03 Macronix International Co., Ltd. Method for fabricating chalcogenide-applied memory
US20070045606A1 (en) 2005-08-30 2007-03-01 Michele Magistretti Shaping a phase change layer in a phase change memory cell
US7417245B2 (en) 2005-11-02 2008-08-26 Infineon Technologies Ag Phase change memory having multilayer thermal insulation
US7397060B2 (en) 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US20070111429A1 (en) 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7450411B2 (en) 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7394088B2 (en) 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7414258B2 (en) 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7507986B2 (en) 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7829876B2 (en) 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7479649B2 (en) 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
US7599217B2 (en) 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7605079B2 (en) 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
US7642539B2 (en) 2005-12-13 2010-01-05 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US7531825B2 (en) 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7292466B2 (en) 2006-01-03 2007-11-06 Infineon Technologies Ag Integrated circuit having a resistive memory
US20070158632A1 (en) 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7560337B2 (en) 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7595218B2 (en) 2006-01-09 2009-09-29 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7825396B2 (en) 2006-01-11 2010-11-02 Macronix International Co., Ltd. Self-align planerized bottom electrode phase change memory and manufacturing method
US7351648B2 (en) 2006-01-19 2008-04-01 International Business Machines Corporation Methods for forming uniform lithographic features
US7432206B2 (en) 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7456421B2 (en) 2006-01-30 2008-11-25 Macronix International Co., Ltd. Vertical side wall active pin structures in a phase change memory and manufacturing methods
US7956358B2 (en) 2006-02-07 2011-06-07 Macronix International Co., Ltd. I-shaped phase change memory cell with thermal isolation
US7426134B2 (en) 2006-02-24 2008-09-16 Infineon Technologies North America Sense circuit for resistive memory
US7910907B2 (en) 2006-03-15 2011-03-22 Macronix International Co., Ltd. Manufacturing method for pipe-shaped electrode phase change memory
US20070235811A1 (en) 2006-04-07 2007-10-11 International Business Machines Corporation Simultaneous conditioning of a plurality of memory cells through series resistors
US7928421B2 (en) 2006-04-21 2011-04-19 Macronix International Co., Ltd. Phase change memory cell with vacuum spacer
US20070249090A1 (en) 2006-04-24 2007-10-25 Philipp Jan B Phase-change memory cell adapted to prevent over-etching or under-etching
US8129706B2 (en) 2006-05-05 2012-03-06 Macronix International Co., Ltd. Structures and methods of a bistable resistive random access memory
US7608848B2 (en) 2006-05-09 2009-10-27 Macronix International Co., Ltd. Bridge resistance random access memory device with a singular contact structure
US7423300B2 (en) 2006-05-24 2008-09-09 Macronix International Co., Ltd. Single-mask phase change memory element
US7696506B2 (en) 2006-06-27 2010-04-13 Macronix International Co., Ltd. Memory cell with memory material insulation and manufacturing method
US7663909B2 (en) 2006-07-10 2010-02-16 Qimonda North America Corp. Integrated circuit having a phase change memory cell including a narrow active region width
US7785920B2 (en) 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
US7542338B2 (en) 2006-07-31 2009-06-02 Sandisk 3D Llc Method for reading a multi-level passive element memory cell array
US7394089B2 (en) 2006-08-25 2008-07-01 International Business Machines Corporation Heat-shielded low power PCM-based reprogrammable EFUSE device
US7504653B2 (en) 2006-10-04 2009-03-17 Macronix International Co., Ltd. Memory cell device with circumferentially-extending memory element
US7684225B2 (en) 2006-10-13 2010-03-23 Ovonyx, Inc. Sequential and video access for non-volatile memory arrays
US20080090400A1 (en) 2006-10-17 2008-04-17 Cheek Roger W Self-aligned in-contact phase change memory device
US20080225489A1 (en) 2006-10-23 2008-09-18 Teledyne Licensing, Llc Heat spreader with high heat flux and high thermal conductivity
US20080101110A1 (en) 2006-10-25 2008-05-01 Thomas Happ Combined read/write circuit for memory
US7778063B2 (en) 2006-11-08 2010-08-17 Symetrix Corporation Non-volatile resistance switching memories and methods of making same
US7728318B2 (en) 2006-11-16 2010-06-01 Sandisk Corporation Nonvolatile phase change memory cell having a reduced contact area
US20080137400A1 (en) 2006-12-06 2008-06-12 Macronix International Co., Ltd. Phase Change Memory Cell with Thermal Barrier and Method for Fabricating the Same
US20080165569A1 (en) 2007-01-04 2008-07-10 Chieh-Fang Chen Resistance Limited Phase Change Memory Material
US7515461B2 (en) 2007-01-05 2009-04-07 Macronix International Co., Ltd. Current compliant sensing architecture for multilevel phase change memory
US20080164453A1 (en) 2007-01-07 2008-07-10 Breitwisch Matthew J Uniform critical dimension size pore for pcram application
US7440315B2 (en) 2007-01-09 2008-10-21 Macronix International Co., Ltd. Method, apparatus and computer program product for stepped reset programming process on programmable resistive memory cell
US7456460B2 (en) 2007-01-29 2008-11-25 International Business Machines Corporation Phase change memory element and method of making the same
US7535756B2 (en) 2007-01-31 2009-05-19 Macronix International Co., Ltd. Method to tighten set distribution for PCRAM
US7701759B2 (en) 2007-02-05 2010-04-20 Macronix International Co., Ltd. Memory cell device and programming methods
US7463512B2 (en) 2007-02-08 2008-12-09 Macronix International Co., Ltd. Memory element with reduced-current phase change element
US8138028B2 (en) 2007-02-12 2012-03-20 Macronix International Co., Ltd Method for manufacturing a phase change memory device with pillar bottom electrode
US7531378B2 (en) * 2007-03-14 2009-05-12 Ovonyx, Inc. Forming an intermediate electrode between an ovonic threshold switch and a chalcogenide memory element
US7745807B2 (en) 2007-07-11 2010-06-29 International Business Machines Corporation Current constricting phase change memory element structure
TW200926356A (en) 2007-12-11 2009-06-16 Ind Tech Res Inst Method for fabricating phase-change memory
US7868313B2 (en) 2008-04-29 2011-01-11 International Business Machines Corporation Phase change memory device and method of manufacture

Also Published As

Publication number Publication date
US20090194758A1 (en) 2009-08-06
CN101504967A (zh) 2009-08-12
US8158965B2 (en) 2012-04-17
TW200939466A (en) 2009-09-16
TWI376800B (en) 2012-11-11

Similar Documents

Publication Publication Date Title
CN101504967B (zh) 中心加热相变化存储器结构及其制造方法
CN101685826B (zh) 一种具有二极管驱动器的存储阵列及其制造方法
CN100463209C (zh) 具有真空夹层的相变存储器元件
CN101369597B (zh) 具有相变化元件及非对称热边界的多级存储单元
CN101236985B (zh) 一种具有共平面电极表面的存储单元装置及其制造方法
CN101290948B (zh) 存储器结构及其制造方法以及存储单元阵列的制造方法
CN100563040C (zh) 相变化存储单元及其制造方法
CN101714609B (zh) 一种硫属材料型存储装置及其制造方法
CN102244194B (zh) 自动对准的鳍型可编程存储单元
US7932506B2 (en) Fully self-aligned pore-type memory cell having diode access device
CN101345251B (zh) 位于半导体衬底之上的存储单元阵列及其制造方法
CN100544016C (zh) 具有绝热衬垫的薄膜保险丝相变化单元及其制造方法
CN100524880C (zh) 具有热隔离结构的ⅰ型相变化存储单元
CN100502080C (zh) 存储器器件与制造存储器器件的方法
US7804083B2 (en) Phase change memory cell including a thermal protect bottom electrode and manufacturing methods
CN101237026B (zh) 一种存储装置及其制造方法
CN101814521B (zh) 相变化存储器的多晶硅栓塞双极性晶体管及其制造方法
US20100055830A1 (en) I-shaped phase change memory cell
TWI313044B (en) Method for manufacturing a resistor random access memory with reduced active area and reduced contact areas
CN101872838A (zh) 具有埋入相变化区域的存储单元及其制造方法
US20090309087A1 (en) Phase change memory cell having top and bottom sidewall contacts
US20090242880A1 (en) Thermally stabilized electrode structure
CN102013431A (zh) 具有自动对准底电极和二极管存取装置的伞状存储单元
CN101877384B (zh) 低操作电流相变存储器元件结构
CN101728483B (zh) 介电层夹置的柱状存储装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant