CN101237026B - 一种存储装置及其制造方法 - Google Patents
一种存储装置及其制造方法 Download PDFInfo
- Publication number
- CN101237026B CN101237026B CN2008100049493A CN200810004949A CN101237026B CN 101237026 B CN101237026 B CN 101237026B CN 2008100049493 A CN2008100049493 A CN 2008100049493A CN 200810004949 A CN200810004949 A CN 200810004949A CN 101237026 B CN101237026 B CN 101237026B
- Authority
- CN
- China
- Prior art keywords
- memory element
- partly
- electrode
- hearth electrode
- interlayer hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000000463 material Substances 0.000 claims description 82
- 239000010410 layer Substances 0.000 claims description 49
- 239000011229 interlayer Substances 0.000 claims description 34
- 238000003860 storage Methods 0.000 claims description 28
- 238000000151 deposition Methods 0.000 claims description 7
- 230000008021 deposition Effects 0.000 claims description 5
- 239000011232 storage material Substances 0.000 claims description 4
- 239000012071 phase Substances 0.000 description 28
- 230000008859 change Effects 0.000 description 23
- 238000012856 packing Methods 0.000 description 16
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 15
- 229910052714 tellurium Inorganic materials 0.000 description 15
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 15
- 229910052787 antimony Inorganic materials 0.000 description 14
- 239000000956 alloy Substances 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 12
- 150000004770 chalcogenides Chemical class 0.000 description 12
- 229910052732 germanium Inorganic materials 0.000 description 11
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 229910052738 indium Inorganic materials 0.000 description 6
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 208000005189 Embolism Diseases 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000008393 encapsulating agent Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 239000011669 selenium Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 4
- 150000001786 chalcogen compounds Chemical class 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 229910052711 selenium Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000001259 photo etching Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910005872 GeSb Inorganic materials 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000005864 Sulphur Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000008378 aryl ethers Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920000052 poly(p-xylylene) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910000618 GeSbTe Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910001245 Sb alloy Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004491 TaAlN Inorganic materials 0.000 description 1
- 229910001215 Te alloy Inorganic materials 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- NHDHVHZZCFYRSB-UHFFFAOYSA-N pyriproxyfen Chemical compound C=1C=CC=NC=1OC(C)COC(C=C1)=CC=C1OC1=CC=CC=C1 NHDHVHZZCFYRSB-UHFFFAOYSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/021—Formation of switching materials, e.g. deposition of layers
- H10N70/026—Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/231—Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/882—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
- H10N70/8828—Tellurides, e.g. GeSbTe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/30—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
Abstract
本发明公开了一种存储单元及其制造方法。此处所描述的存储单元包括一底电极、一存储元件及一侧电极。底电极与此存储元件于存储元件底部的第一接触表面电性连接,而侧电极与此存储元件于存储元件侧面的第二接触表面电性连接,其中该第二接触表面与该第一接触表面侧向面对。
Description
技术领域
本发明涉及存储材料的高密度存储装置,例如相变化随机存取存储器(PCRAM)装置,以及制造此等装置的方法。此存储材料可通过施加能量而在电性状态之间切换。此存储材料可以是相变化材料,包括以硫属化物为基础的材料或是其它材料。
背景技术
以相变化为基础的存储材料被广泛地运用于读写光盘片中。这些材料包括有至少两种固态相,包括如一大部分为非晶态的固态相,以及一大体上为结晶态的固态相。激光脉冲用于读写光盘片中,以在二种相中切换,并读取此种材料于相变化之后的光学性质。
如硫属化物及类似材料的此等相变化存储材料,可通过施加其幅度适用于集成电路中的电流,而致使晶相变化。这种特性则引发使用可编程电阻材料以形成非易失性存储器电路等兴趣。此通常为非晶相状态其特性为具有较通常为结晶相状态高的电阻率;此电阻值的差异可以感测做为用来指示数据。这些特性吸引了大家的注意想使用可程序电阻材料以形成非易失存储电路,其可随机存取以读取及写入。
从非晶态转变至结晶态一般为一低电流步骤。从结晶态转变至非晶态(以下指称为复位(reset))一般为一高电流步骤,其包括一短暂的高电流密度脉冲以融化或破坏结晶结构,其后此相变化材料会快速冷却,抑制相变化的过程,使得至少部份相变化结构得以维持在非晶态。理想状态下,致使相变化材料从结晶态转变至非晶态的复位电流幅度应越低越好。为降低复位所需的复位电流幅度,可通过减低在存储器中的相变化材料元件的尺寸、以及减少电极与此相变化材料的接触面积而达成,因此可针对此相变化材料元件施加较小的绝对电流值而达成较高的电流密度。
此领域发展的一种方法是致力于在一集成电路结构上形成微小孔洞,并使用微量可编程的电阻材料填充这些微小孔洞。致力于此等微小孔洞的专利包括:于1997年11月11日公告的美国专利第5,687,112号”Multibit Single Cell Memory Element Having Tapered Contact”、发明人为Ovshinky;于1998年8月4日公告的美国专利第5,789,277号”Method of Making Chalogenide[sic]Memory Device”、发明人为Zahorik等;于2000年11月21日公告的美国专利第6,150,253号”Controllable Ovonic Phase-Change Semiconductor Memory Deviceand Methods of Fabricating the Same”、发明人为Doan等。
在相变化存储器中,数据通过电流导致在非晶态转变与结晶态之间的转换来储存。电流加热此材料而导致在状态之间的转换。从非晶态转变至结晶态一般为一低电流步骤。而从结晶态转变至非晶态(以下指称为复位(reset))一般为一高电流步骤,其包括一短暂的高电流密度脉冲以融化或破坏结晶结构,其后此相变化材料会快速冷却,抑制相变化的过程,使得至少部份相变化结构得以维持在非晶态。理想状态下,致使相变化材料从结晶态转变至非晶态的复位电流幅度应越低越好。为降低复位所需的复位电流幅度,可通过减低在存储单元中的主动相变化材料元件的尺寸而达成。然而此会对相变化材料元件产生一个问题,因为复位操作所需的电流幅度与相变化材料中真正需要相变化的体积相关。因此,使用标准集成电路工艺所形成的存储单元必须受到工艺机器最小特征尺寸的限制。因此需要开发为此存储单元提供次光刻尺寸的技术,其会许缺乏大型高密度集成电路装置所需的均匀性或可靠性。
一种研发出的科技之一来控制相变化存储单元中的主动区域尺寸大小是使用非常小的电极来传递电流至一相变化材料本体。此非常小的电极结构包括相变化材料中的一小接触区域,例如一香菇头,诱发相变化。请参阅美国专利申请号6,429,064,发证日2002/8/6,发明人是Wicker,发明名称为“Reduced Contact Areas of Side wallConductor”,美国专利申请号6,462,353,发证日2002/10/8,发明人是Gilgen,发明名称为“Method for Fabricating a Small Area of ContactBetween Electrodes”,美国专利申请号6,501,111,发证日2002/12/31,发明人是Lowrey,发明名称为“Three Dimensional(3D)ProgrammableDevice”,美国专利申请号6,563,156,发证日2003/7/1,发明人是Harshfield,发明名称为“Memory Elements and Methods for MakingSame”。
因此,需要提供一种存储单元结构及方法,其具有使用高均匀性及可重复工艺技术制造的具有小主动区域的可编程电阻材料的存储单元结构。
发明内容
有鉴于此,本发明的一个目的在于提供一种存储单元包括一底电极、一存储元件及一侧电极。此底电极于此存储元件的底部的一第一接触表面与该存储元件接触。此侧电极于此存储元件的侧面的一第二接触表面与该存储元件接触,其中该第二接触表面与该第一接触表面侧向相对。如此一来,介于此底电极与侧电极之间的电流路径会在存储元件内转成侧向,因此存储单元可以实施成具有较小的高度。
在一实施例中,此底电极包含一导电构件自一衬底上的存取电路向外延伸一介电填充层至此介电填充层的表面。此侧电极包含位于介电填充层之上的位线一部份,其中介层孔被开启于相对应的底电极之上,造成介于底电极与位线之间的电性连接被截断。位于此介层孔中的存储元件与此底电极于此存储元件的底部的一第一接触表面接触,而此位线则于此存储元件的侧面的一第二接触表面与该存储元件接触,且具有一主动区域介于底电极与位线之间。
在许多实施例中显示,此存储元件包含一底部部份及一周围部分于该底部部份之上,该周围部分具有一内表面及一外表面。此存储元件也包含一介电填充材料于由该周围部分的该内表面所定义的一内层,以及一侧电极与此周围部分的外表面接触。
本发明的另一目的为提供一种制造存储单元的方法,包括形成一底电极以及形成一侧电极于该底电极之上。此方法也包括形成一介层孔于该侧电极之内以裸露出该底电极的一上表面,以及形成一存储元件于介层孔之内。该存储元件与该底电极的该上表面接触并与该侧电极于该介层孔的一内表面接触。
此处所描述的存储单元具有一主动区域于存储单元的底电极区域,可以被形成为非常小,因此降低了复位所需的电流大小。此非常小的主动区域是由底电极与侧电极分离距离的结果,因此其间的电流被聚集于存储元件的底部部份,且由包覆于该周围部分的该内表面的一介电填充材料提供此主动区域的热绝缘。此底部部份的厚度可以利用薄膜沉积技术形成且因此可以非常薄。此底电极具有一小于该存储元件的该底部部份的直径,因此可以局限电流于底部且产生一非常小的主动区域。此存储单元的另一额外好处是存储元件可以被形成于一位线的介层孔内。在此位线作为一上电极的实施例中,其与此存储元件真正在周围部分的外表面接触,提供一相对大的接触表面,且产生自此底电极至周围部分的一电流路径,及会转成侧向进入由此位线构成的侧电极中。
本发明的其它特征、目的及优点等将可透过所附图式、发明详细说明及权利要求书获得充分了解。
附图说明
图1为根据本发明一实施例的存储单元的简化剖面图。
图2为图1所示的存储单元的上视或平面图。
图3到图14为制造根据本发明一实施例的存储单元的工艺流程不同阶段的上视或剖面图。
【主要元件符号说明】
100 存储单元
110 存储元件
112 底部部份
111、113 法线
114 环状部份
115 主动区域
116 底表面
117 内表面
118 外表面
120 底电极
125 直径
130 导电栓塞
140 层间介电层
142 介电层
144 介电层
150 侧电极
160 内侧
165 填充材料
170 厚度
300 存取层
310 衬底
320、330 掺杂区域
340 字线
350 共同源极线
400 导电层
500 介层孔
700 存储材料
710 开口
1300 沟道
具体实施方式
以下关于本发明的详细描述是搭配图式来说明特定的结构以及方法实施例。可以理解的在此所提及的说明及图式仅为例示之用,而不应该理解为限制本发明的范围。权利要求书才是作为决定本发明的范围的依据。熟知此技艺人士皆可以了解的是,本发明的范畴并不限于所揭露的特定实施例,且本发明可以利用其它特征、元件、方法与实施方式而实施。在各实施例中的相似元件大致将以相似的标号标示之。
图1及图2具有一杯状存储元件110的存储单元100的剖面及上视图。此存储单元100包含一底部部份112以及一环状部份114于此底部部份112之上。
一底电极120接触此底部部份112的底表面116耦接此存储元件110至一导电栓塞130。在底电极120可以包含,如氮化钛或氮化钽。在存储元件包含GST(会于以下描述)的实施例中,最好是氮化钛因为其和GST之间具有良好的结合性,且其是半导体工艺中经常使用的材料,并提供在或GST转换的高温下,通常是600~700℃范围,一个良好的扩散阻挡层。替代地,此底电极120也可以是TiAlN或TaAlN或者其它可由Ti、W、Mo、Al、Ta、Cu、Pt、Ir、La、Ni、与Ru等元素族与合金中选择搭配。
此导电栓塞130延伸通过一层间介电层至底层存取电路(未示),此导电栓塞130最好是包含如钨的耐热金属。也可以是其它金属如Ti、Mo、Al、Ta、Cu、Pt、Ir、La、Ni、与Ru。也可以使用其它的栓塞结构或材料。
此存储单元100的环状部份114包含一内表面117及一外表面118。一侧电极150与此环状部份114的外表面118接触。在某些实施例中,此侧电极150包含一位线的一部份。此侧电极150可以包含,例如,任何与先前所描述过的底电极120相关的材料。在此例示实施例中,此侧电极150包含一单一导电材料。在某些替代实施例中,此侧电极150可以包含多重材料。举例而言,此侧电极150包含一第一材料与此环状部份114的外表面118接触,且选取与存储元件110兼容的材料,而一第二材料(未示)环绕于此第一材料,且选取其它优点如具有较此第一材料更低的电阻率。
此环状部份114的内表面117定义容纳一填充材料165的一内侧160。此填充材料165是一电绝缘物质且最好也是一优于存储元件110的热绝缘体。此填充材料165可以包含一电绝缘物质其可包含由Si、Ti、Al、Ta、N、O与C的群组中,所选出的一种或多种材料组合。
此填充材料165最好也是一低导热材料。在某些较佳装置中,此填充材料165的导热率低于非晶态的相变化材料,或就包含GST的相变化材料而言,低于大约0.003J/cm*K*sec。填充材料165的代表包括低介电常数(low-K)材料,包含由Si、C、O、F、与H等元素所选出的一组合。举例而言,可作为绝热材料者包括SiCOH、聚亚酰胺(polyimide)、聚酰胺(polyamide)、以及氟碳聚合物。至于其它可作为填充材料165范例则为氟化SiO2、硅酸盐、芳香醚、聚对二甲苯(parylene)、聚合氟化物、非晶质氟化碳、钻石结构碳、多孔二氧化硅、中孔二氧化硅(mesoporous silica)、多孔硅酸盐、多孔聚亚酰胺、与多孔芳香醚。在其它实施例中,填充材料165包含以气体填充的空孔作为绝热之用。单层结构或多层填充材料165结构的组合,均可提供绝热及电绝缘功能。
此层间介电层140或许可以包含一层或多层介电材料,每一层包含,举例而言,任何一种先前所描述过的填充材料165。
在操作上,在栓塞130及侧电极150的电压可以诱发电流自栓塞130通过底电极120与存储元件110,流至侧电极150,或是反之亦然。
此主动区域115是存储元件110中其存储材料会被诱发在至少两个固态相之间切换的区域。可以理解的是,此主动区域115可以在此例示结构中被形成的很小,因此可以降低复位此相变化所需要的电流。此存储元件110的存储材料的厚度170可以利用一薄膜沉积技术在此侧电极150的一介层孔内建立。在某些实施例中,此厚度170小于或等于约10纳米,举例而言,在介于1至10纳米之间。此外,此底电极120具有一宽度或直径125其最好是小于用来形成此存储单元100所使用工艺的一最小特征尺寸,通常是一光刻工艺。此小的底电极120可以用来集中存储元件110靠进此底电极120处的电流密度,因此可以降低主动区域115内诱发相变化所需要的电流大小。此外,填充材料165主动区域115的热隔离其也可以帮助降低主动区域115内诱发相变化所需要的电流大小。
介于此底电极120与存储元件110之间接触面积具有一表面法线111,其大致是和图1中的剖面线垂直方向上。因为此例示实施例中的存储元件的环状形状,介于此侧电极150与存储元件110之间接触面积具有一表面法线113是一包含此法线113的辐射状,其通常是和图1中的剖面线水平方向上延伸。因此,法线111、113在此例示实施例中与一大约90度的角度交错。如此一来,在操作中自底电极120至存储元件110的电流会转向侧面而进入侧电极150,因此会集中存储元件110靠进此底电极120处的电流密度,且降低主动区域115内诱发一相变化所需要的电流大小。在现实中,此法线111、113或许不必以90度的角度交错,而是以依据一个与所形成的存储元件介层孔形状相关的角度交错。举例而言,此介层孔或许是一内面倾斜的圆锥状,通常是自底部以一较大角度向外倾斜。因此,此存储元件的第二接触表面包含一圆锥状或圆柱状表面与此介层孔的一内面接触。
存储单元100的实例包括以相变化为基础的存储材料,包括以硫属化物(chalcogenide)为基础的材料以及其它材料来作为存储元件110的材料。硫属化物包括下列四元素的任一者:氧(O)、硫(S)、硒(Se)、以及碲(Te),形成元素周期表上第VI族的部分。硫属化物包括将一硫属元素与一更为正电性的元素或自由基结合而得。硫属化合物合金包括将硫属化合物与其它物质如过渡金属等结合。一硫属化合物合金通常包括一个以上选自元素周期表第IV族的元素,例如锗(Ge)以及锡(Sn)。通常,硫属化合物合金包括下列元素中一个以上的复合物:锑(Sb)、镓(Ga)、铟(In)、以及银(Ag)。许多以相变化为基础的存储材料已经被描述于技术文件中,包括下列合金:镓/锑、铟/锑、铟/硒、锑/碲、锗/碲、锗/锑/碲、铟/锑/碲、镓/硒/碲、锡/锑/碲、铟/锑/锗、银/铟/锑/碲、锗/锡/锑/碲、锗/锑/硒/碲、以及碲/锗/锑/硫。在锗/锑/碲合金家族中,可以尝试大范围的合金成分。此成分可以下列特征式表示:TeaGebSb100-(a+b)。一位研究员描述了最有用的合金为,在沉积材料中所包含的平均碲浓度远低于70%,典型地低于60%,并在一般型态合金中的碲含量范围从最低23%至最高58%,且最佳介于48%至58%的碲含量。锗的浓度约高于5%,且其在材料中的平均范围从最低8%至最高30%,一般低于50%。最佳地,锗的浓度范围介于8%至40%。在此成分中所剩下的主要成分则为锑。上述百分比为原子百分比,其为所有组成元素加总为100%。(Ovshinky‘112专利,栏10~11)由另一研究者所评估的特殊合金包括Ge2Sb2Te5、GeSb2Te4、以及GeSb4Te7。(Noboru Yamada,”Potential of Ge-Sb-Te Phase-changeOptical Disks for High-Data-Rate Recording”,SPIE v.3109,pp.28-37(1997))更一般地,过渡金属如铬(Cr)、铁(Fe)、镍(Ni)、铌(Nb)、钯(Pd)、铂(Pt)、以及上述的混合物或合金,可与锗/锑/碲结合以形成一相变化合金其包括有可编程的电阻性质。可使用的存储材料的特殊范例,如Ovshinsky‘112专利中栏11-13所述,其范例在此系列入参考。
在某些实施例中,可在硫属化物及其它相变化材料中掺杂物质以改善使用掺杂硫属化物作为存储元件的导电性、转换温度、熔化温度及其它等性质。代表性的掺杂物质为:氮、硅、氧、二氧化硅、氮化硅、铜、银、金、铝、氧化铝、钽、氧化钽、氮化钽、钛、与氧化钛。可参见美国专利第6,800,504号与美国专利申请US 2005/0029502号。
相变化合金可于一第一结构态与第二结构态之间切换,其中第一结构态是指此材料大体上为非晶固相,而第二结构态是指此材料大体上为结晶固相。这些合金至少为双稳定的(bistable)。此词汇「非晶」是用以指称一相对较无次序的结构,其较之一单晶更无次序性,而带有可检测的特征如比结晶态更高的电阻值。此词汇「结晶」是用以指称一相对较有次序的结构,其较之非晶态更有次序,因此包括有可检测的特征例如比非晶态更低的电阻值。典型地,相变化材料可电切换至完全结晶态与完全非晶态之间所有可检测的不同状态。其它受到非晶态与结晶态的改变而影响的材料特中包括,原子次序、自由电子密度、以及活化能。此材料可切换成为不同的固态、或可切换成为由两种以上固态所形成的混合物,提供从非晶态至结晶态之间的灰阶部分。此材料中的电性质亦可能随之改变。
代表性的硫属化物材料具有以下的特性:GexSbyTez,其中x∶y∶z=2∶2∶5,或其它成分为x:0~5;y:0~5;z:0~10。以氮、硅、钛或其它元素掺杂之GeSbTe亦可被使用。用来形成硫属化物材料的示范方法,是利用PVD溅射或磁电管(magnetron)溅射方式,其反应气体为氩气、氮气、及/或氦气等以及硫属化物,在压力为1mTorr至100mTorr。此沉积步骤一般在室温下进行。一长宽比为1~5的准直器(collimater)可用以改良其注入表现。为了改善其注入表现,亦可使用数十至数百伏特的直流偏压。另一方面,同时合并使用直流偏压以及准直器亦是可行的。有时需要在真空中或氮气环境中进行一沉积后退火处理,以改良硫属化物材料的结晶态。此退火处理的温度典型地介于100℃至400℃,而退火时间则少于30分钟。
图3至图14根据本发明一实施例制作如前述存储单元的制作流程步骤示意图。
图3显示此工艺第一步骤完成结构的剖面示意图,此结构包含一底电极120阵列于一介电层144中,及一存储单元存取层300中的各自接触栓塞130,其位于介电层142中。此存储存取层300可以利用业界熟知的方式形成且包括平行于进入与穿出图3剖面方向上的字线340。此字线340于衬底310之上且形成存取晶体管的栅极。存取层300也包括一共同源极线350接触掺杂区域330其是作为存取晶体管的源极。在某些实施例中,此共同源极线350可以利用衬底310内的一掺杂区域形成。此栓塞130接触对应的衬底310内的掺杂区域320,其是作为存取晶体管的漏极区域。
此底电极120具有一直径125,其最好是小于制造此存储单元存取层300工艺中,通常是光刻工艺,的一最小特征尺寸。
此底电极120具有一次光刻直径125及介电层144可以利用如美国专利申请案No.11/764,678号,”Method for Manufacturing a PhaseChange Device with Pillar Bottom Electrode”,申请日2007/6/18(律师档案号1791-2),所揭露的方法、材料及工艺所形成。上述专利在此引为本案的参考数据。举例而言,一电极材料层可以形成于存储单元存取层300上表面360之上,然后再利用标准的光学光刻技术将此电极材料层之上的一光刻胶层(未示)图案化以形成一光刻胶掩膜(未示)于此底电极120位置之上。之后,使用例如氧气等离子体,将此光刻胶掩膜加以修剪以形成具有次光刻尺寸的掩膜结构于此底电极120位置之上。最后使用此次光刻尺寸的掩膜将此电极材料层加以刻蚀,而形成具有次光刻尺寸125的底电极120。之后,介电材料144形成再加以平面化,完成如图3所示的结构。
也可如另一例,此底电极120及介电层144可以利用如美国专利申请案No.11/855,979号,”Phase Change Memory Cell in Via Array withSelf-Aligned,Self-Converged Bottom Electrode and Method forManufacturing”,申请日2007/9/14(律师档案号1830-1),所揭露的方法、材料及工艺所形成。上述专利在此也引为本案的参考数据。举例而言,一介电层144可以形成于上表面360之上,之后再依序形成一隔离层(未示)及一牺牲层(未示)。然后一具有接近或等于使用工艺的最小特征尺寸开口的光刻胶(未示)被用来形成一掩膜于牺牲层之上,此开口是于此底电极120位置之上。此隔离层及牺牲层接着使用此掩膜进行选择性刻蚀,因此形成介层孔于隔离层及牺牲层之中且将此介电层144上表面裸露出来。之后,移除此掩膜,在此介层孔中进行选择性底切刻蚀,以将隔离层移除但仍保留牺牲层及介电层144。一填充材料然后形成于此介层孔中,其再进行选择性底切刻蚀工艺而产生一自动对准孔洞于此介层孔中的填充材料内。之后,进行一非等向性刻蚀以扩大此填充材料内的孔洞,且持续进行直到此孔洞之下的介电层144裸露出来为止,因而在每一介层孔中的填充材料形成一侧壁子。此侧壁子具有一开口尺寸,其大致是由此孔洞尺寸所决定,且因此小于一光刻工艺的一最小特征尺寸。之后,一电极材料层形成于此介电层144的开口之中。一平面化工艺,如化学机械抛光CMP,被进行以除去此隔离层及牺牲层且形成底电极120,完成如图3所示的结构。
之后,一导电层400包含一位线材料,例如铝、铜、铝铜合金、钨、钽、钛、氮及其它材料及其组合形成于完成如图3所示结构之上,而完成如图4所示的结构。
图5及图6分别为形成介层孔500于导电层400之后的剖面图及上视图,此介层孔500与底电极120对准。
之后,一顺形存储材料层700被沉积于图5及图6所示的结构之上,而完成分别如图7及图8所示的剖面图及上视图。如图7及图8所示,一存储材料层700形成于图5及图6所示的介层孔500之内且定义开口710。
在某些实施例中,一衬垫层(未示)会在沉积存储材料层700之前形成于介层孔500的侧壁上。此衬垫层可以顺形地被沉积于图5及图6所示的结构之上,且非等向刻蚀造成此衬垫层仅保留在介层孔500的侧壁上。使用此衬垫层的优点是其是作为存储材料700与介层孔500内的位线材料400之间的接口,而改善了此存储单元的可靠性,因为此衬垫层可以选取与存储材料700(例如在之前所描述的以GST为存储材料的实施例中为氮化钛)兼容的材料,而位线材料400可以选取具有其它优点如较低电阻值的材料。
之后,一填充材料层165被沉积于图7及图8所示的结构之上,而完成分别如图9及图10所示的剖面图及上视图。在此例示实施例中,填充材料层165完全注入开口710中,而在其它的实施例中,填充材料层165内可以有些孔洞,这些孔洞中有或没有绝缘气体均可。
之后,如图9及图10所示的结构被使用如化学机械抛光CMP平面化,而完成具有存储元件110的结构分别如图11及图12所示的剖面图及上视图。在此例示实施例中,填充材料层165完全注入开口710中,而在其它的实施例中,填充材料层165内可以有些孔洞,这些孔洞中有或没有绝缘气体均可。
之后,导电层400被图案化以形成沟道1300及位线150,而完成具有存储单元100的结构分别如图13及图14所示的剖面图及上视图。
此处所描述的存储单元100具有一个小的主动区域115于此存储元件110中,且对应地,诱发相变化所需要的复位电流大小也变的很小。
以上的描述中或许用到许多名词,例如之上、之下、上方、底部、等等,这些名词仅是用来帮助理解本发明,而非用来限制本发明。
虽然本发明已参照较佳实施例来加以描述,将为吾人所了解的是,本发明创作并未受限于其详细描述内容。替换方式及修改样式已于先前描述中所建议,并且其它替换方式及修改样式将为熟习此项技艺之人士所思及。特别是,根据本发明的结构与方法,所有具有实质上相同于本发明的构件结合而达成与本发明实质上相同结果者皆不脱离本发明的精神范畴。因此,所有此等替换方式及修改样式系意欲落在本发明权利要求书及其均等物所界定的范畴之中。
说明书所提及的任何专利、专利申请及公开数据在此均引为本案的参考数据。
Claims (8)
1.一种存储装置,其特征在于,该装置包括:
一底电极;
一存储元件,其具有一第一接触表面、一第二接触表面及一底部部份,且与该底电极于该第一接触表面电性连接,该底部部份具有一介于1至10纳米之间的厚度,其中该存储元件包含一存储材料,其具有至少两个固态相;以及
一侧电极与该存储元件于该第二接触表面电性连接,其中该第二接触表面与该第一接触表面侧向面对;其中:
该存储元件进一步包含一环状部份在该底部部份之上,该环状部份具有一内表面及一外表面;一介电填充材料于该环状部份的该内表面所定义的内部;
该底电极与该底部部份于该存储元件的第一接触表面连接;
该侧电极与该环状部份的该外表面于该存储元件的第二接触表面连接。
2.根据权利要求1所述的存储装置,其特征在于,该存储元件于该侧电极的一介层孔内,且该第二接触表面包含该存储元件一圆锥或圆柱表面与该介层孔的一内表面连接。
3.根据权利要求1所述的存储装置,其特征在于,该侧电极包含一位线的一部分。
4.根据权利要求1所述的存储装置,其特征在于,该底电极具有小于该存储元件的该底部部份的一宽度。
5.一种制造存储装置的方法,其特征在于,该方法包括:
形成一底电极;
形成一侧电极于该底电极之上;
形成一介层孔于该侧电极以裸露出该底电极的一上表面;
形成一存储元件于该介层孔内,该存储元件与该底电极的该上表面及该侧电极于该介层孔的一内表面电性连接,其中该存储元件包含一存储材料,其具有至少两个固态相,该存储材料的底部为该存储元件的底部,该底部具有一介于1至10纳米之间的厚度;
其中,形成该存储元件的步骤包含:沉积一顺形存储材料层于该介层孔内,该介层孔内的该存储材料定义一开口;以及形成一介电填充材料于由该存储材料所定义的该介层孔的该开口中。
6.根据权利要求5所述的方法,其特征在于,该侧电极包含一位线的一部分。
7.根据权利要求5所述的方法,其特征在于,该底电极具有小于该介层孔的一宽度。
8.一种制造存储装置的方法,其特征在于,该方法包括:
形成一底电极;
形成一存储元件包含一底部部份于该底电极之上及一环状部份在该底部部份之上,该底部部份具有一介于1至10纳米之间的厚度,该环状部份具有一内表面及一外表面,其中该存储元件包含一存储材料,其具有至少两个固态相;
形成一介电填充材料于该环状部份的该内表面所定义的一内面;以及
形成一侧电极与该环状部份的该外表面接触。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US88754107P | 2007-01-31 | 2007-01-31 | |
US60/887,541 | 2007-01-31 | ||
US11/864,273 | 2007-09-28 | ||
US11/864,273 US7663135B2 (en) | 2007-01-31 | 2007-09-28 | Memory cell having a side electrode contact |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101237026A CN101237026A (zh) | 2008-08-06 |
CN101237026B true CN101237026B (zh) | 2010-09-08 |
Family
ID=39666929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100049493A Expired - Fee Related CN101237026B (zh) | 2007-01-31 | 2008-01-31 | 一种存储装置及其制造方法 |
Country Status (3)
Country | Link |
---|---|
US (2) | US7663135B2 (zh) |
CN (1) | CN101237026B (zh) |
TW (1) | TWI357153B (zh) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7663135B2 (en) * | 2007-01-31 | 2010-02-16 | Macronix International Co., Ltd. | Memory cell having a side electrode contact |
US7863593B2 (en) | 2007-07-20 | 2011-01-04 | Qimonda Ag | Integrated circuit including force-filled resistivity changing material |
US7760546B2 (en) * | 2008-02-28 | 2010-07-20 | Qimonda North America Corp. | Integrated circuit including an electrode having an outer portion with greater resistivity |
KR101012435B1 (ko) * | 2008-11-10 | 2011-02-08 | 주식회사 하이닉스반도체 | 상변화 기억 소자 및 그의 제조방법 |
KR20100082604A (ko) * | 2009-01-09 | 2010-07-19 | 삼성전자주식회사 | 가변저항 메모리 장치 및 그의 형성 방법 |
US8021897B2 (en) | 2009-02-19 | 2011-09-20 | Micron Technology, Inc. | Methods of fabricating a cross point memory array |
US8097871B2 (en) | 2009-04-30 | 2012-01-17 | Macronix International Co., Ltd. | Low operational current phase change memory structures |
US8110822B2 (en) | 2009-07-15 | 2012-02-07 | Macronix International Co., Ltd. | Thermal protect PCRAM structure and methods for making |
KR101617381B1 (ko) | 2009-12-21 | 2016-05-02 | 삼성전자주식회사 | 가변 저항 메모리 장치 및 그 형성 방법 |
JP5732827B2 (ja) * | 2010-02-09 | 2015-06-10 | ソニー株式会社 | 記憶素子および記憶装置、並びに記憶装置の動作方法 |
US8877628B2 (en) | 2012-07-12 | 2014-11-04 | Micron Technologies, Inc. | Methods of forming nano-scale pores, nano-scale electrical contacts, and memory devices including nano-scale electrical contacts, and related structures and devices |
CN105098063A (zh) * | 2014-04-28 | 2015-11-25 | 中芯国际集成电路制造(上海)有限公司 | 一种半导体器件及其制造方法 |
CN106159084B (zh) * | 2015-04-01 | 2019-03-01 | 旺宏电子股份有限公司 | 电阻式随机存取存储器顶电极的镶嵌工艺 |
CN105609631B (zh) * | 2015-11-09 | 2018-11-02 | 江苏时代全芯存储科技有限公司 | 相变化存储装置及其制造方法 |
US9859208B1 (en) * | 2016-09-18 | 2018-01-02 | International Business Machines Corporation | Bottom self-aligned via |
CN108520879B (zh) * | 2018-06-12 | 2020-09-29 | 湘潭大学 | 一种高密度铁电存储器单元 |
US10833267B2 (en) * | 2018-10-26 | 2020-11-10 | International Business Machines Corporation | Structure and method to form phase change memory cell with self- align top electrode contact |
US11528802B2 (en) * | 2019-12-23 | 2022-12-13 | Tactotek Oy | Integrated functional multilayer structure and method of manufacture therefor |
Family Cites Families (140)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3271591A (en) | 1963-09-20 | 1966-09-06 | Energy Conversion Devices Inc | Symmetrical current controlling device |
US3530441A (en) | 1969-01-15 | 1970-09-22 | Energy Conversion Devices Inc | Method and apparatus for storing and retrieving information |
IL61678A (en) | 1979-12-13 | 1984-04-30 | Energy Conversion Devices Inc | Programmable cell and programmable electronic arrays comprising such cells |
US4719594A (en) | 1984-11-01 | 1988-01-12 | Energy Conversion Devices, Inc. | Grooved optical data storage device including a chalcogenide memory layer |
US4876220A (en) | 1986-05-16 | 1989-10-24 | Actel Corporation | Method of making programmable low impedance interconnect diode element |
JP2685770B2 (ja) | 1987-12-28 | 1997-12-03 | 株式会社東芝 | 不揮発性半導体記憶装置 |
US5534712A (en) | 1991-01-18 | 1996-07-09 | Energy Conversion Devices, Inc. | Electrically erasable memory elements characterized by reduced current and improved thermal stability |
US5166758A (en) | 1991-01-18 | 1992-11-24 | Energy Conversion Devices, Inc. | Electrically erasable phase change memory |
US5177567A (en) | 1991-07-19 | 1993-01-05 | Energy Conversion Devices, Inc. | Thin-film structure for chalcogenide electrical switching devices and process therefor |
US5166096A (en) | 1991-10-29 | 1992-11-24 | International Business Machines Corporation | Process for fabricating self-aligned contact studs for semiconductor structures |
US5958358A (en) | 1992-07-08 | 1999-09-28 | Yeda Research And Development Co., Ltd. | Oriented polycrystalline thin films of transition metal chalcogenides |
US5515488A (en) | 1994-08-30 | 1996-05-07 | Xerox Corporation | Method and apparatus for concurrent graphical visualization of a database search and its search history |
US5785828A (en) | 1994-12-13 | 1998-07-28 | Ricoh Company, Ltd. | Sputtering target for producing optical recording medium |
US5789758A (en) | 1995-06-07 | 1998-08-04 | Micron Technology, Inc. | Chalcogenide memory cell with a plurality of chalcogenide electrodes |
US5879955A (en) | 1995-06-07 | 1999-03-09 | Micron Technology, Inc. | Method for fabricating an array of ultra-small pores for chalcogenide memory cells |
US5831276A (en) | 1995-06-07 | 1998-11-03 | Micron Technology, Inc. | Three-dimensional container diode for use with multi-state material in a non-volatile memory cell |
US5869843A (en) | 1995-06-07 | 1999-02-09 | Micron Technology, Inc. | Memory array having a multi-state element and method for forming such array or cells thereof |
US6420725B1 (en) | 1995-06-07 | 2002-07-16 | Micron Technology, Inc. | Method and apparatus for forming an integrated circuit electrode having a reduced contact area |
US5837564A (en) | 1995-11-01 | 1998-11-17 | Micron Technology, Inc. | Method for optimal crystallization to obtain high electrical performance from chalcogenides |
US5687112A (en) | 1996-04-19 | 1997-11-11 | Energy Conversion Devices, Inc. | Multibit single cell memory element having tapered contact |
US6025220A (en) | 1996-06-18 | 2000-02-15 | Micron Technology, Inc. | Method of forming a polysilicon diode and devices incorporating such diode |
US5814527A (en) | 1996-07-22 | 1998-09-29 | Micron Technology, Inc. | Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories |
US5789277A (en) | 1996-07-22 | 1998-08-04 | Micron Technology, Inc. | Method of making chalogenide memory device |
US5985698A (en) | 1996-07-22 | 1999-11-16 | Micron Technology, Inc. | Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell |
US5998244A (en) | 1996-08-22 | 1999-12-07 | Micron Technology, Inc. | Memory cell incorporating a chalcogenide element and method of making same |
US6147395A (en) * | 1996-10-02 | 2000-11-14 | Micron Technology, Inc. | Method for fabricating a small area of contact between electrodes |
US6087674A (en) | 1996-10-28 | 2000-07-11 | Energy Conversion Devices, Inc. | Memory element with memory material comprising phase-change material and dielectric material |
US6015977A (en) | 1997-01-28 | 2000-01-18 | Micron Technology, Inc. | Integrated circuit memory cell having a small active area and method of forming same |
US5952671A (en) | 1997-05-09 | 1999-09-14 | Micron Technology, Inc. | Small electrode for a chalcogenide switching device and method for fabricating same |
US6031287A (en) | 1997-06-18 | 2000-02-29 | Micron Technology, Inc. | Contact structure and memory element incorporating the same |
US6768165B1 (en) | 1997-08-01 | 2004-07-27 | Saifun Semiconductors Ltd. | Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping |
US7023009B2 (en) | 1997-10-01 | 2006-04-04 | Ovonyx, Inc. | Electrically programmable memory element with improved contacts |
US6617192B1 (en) | 1997-10-01 | 2003-09-09 | Ovonyx, Inc. | Electrically programmable memory element with multi-regioned contact |
US7157314B2 (en) | 1998-11-16 | 2007-01-02 | Sandisk Corporation | Vertically stacked field programmable nonvolatile memory and method of fabrication |
US6034882A (en) | 1998-11-16 | 2000-03-07 | Matrix Semiconductor, Inc. | Vertically stacked field programmable nonvolatile memory and method of fabrication |
US6351406B1 (en) | 1998-11-16 | 2002-02-26 | Matrix Semiconductor, Inc. | Vertically stacked field programmable nonvolatile memory and method of fabrication |
US6177317B1 (en) | 1999-04-14 | 2001-01-23 | Macronix International Co., Ltd. | Method of making nonvolatile memory devices having reduced resistance diffusion regions |
US6077674A (en) | 1999-10-27 | 2000-06-20 | Agilent Technologies Inc. | Method of producing oligonucleotide arrays with features of high purity |
US6314014B1 (en) | 1999-12-16 | 2001-11-06 | Ovonyx, Inc. | Programmable resistance memory arrays with reference cells |
US6420216B1 (en) | 2000-03-14 | 2002-07-16 | International Business Machines Corporation | Fuse processing using dielectric planarization pillars |
US6888750B2 (en) | 2000-04-28 | 2005-05-03 | Matrix Semiconductor, Inc. | Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication |
US6420215B1 (en) | 2000-04-28 | 2002-07-16 | Matrix Semiconductor, Inc. | Three-dimensional memory array and method of fabrication |
US6501111B1 (en) | 2000-06-30 | 2002-12-31 | Intel Corporation | Three-dimensional (3D) programmable device |
US6563156B2 (en) | 2001-03-15 | 2003-05-13 | Micron Technology, Inc. | Memory elements and methods for making same |
US6440837B1 (en) | 2000-07-14 | 2002-08-27 | Micron Technology, Inc. | Method of forming a contact structure in a semiconductor device |
US6429064B1 (en) | 2000-09-29 | 2002-08-06 | Intel Corporation | Reduced contact area of sidewall conductor |
US6567293B1 (en) | 2000-09-29 | 2003-05-20 | Ovonyx, Inc. | Single level metal memory cell using chalcogenide cladding |
US6555860B2 (en) | 2000-09-29 | 2003-04-29 | Intel Corporation | Compositionally modified resistive electrode |
US6339544B1 (en) | 2000-09-29 | 2002-01-15 | Intel Corporation | Method to enhance performance of thermal resistor device |
US6569705B2 (en) | 2000-12-21 | 2003-05-27 | Intel Corporation | Metal structure for a phase-change memory device |
TW490675B (en) | 2000-12-22 | 2002-06-11 | Macronix Int Co Ltd | Control method of multi-stated NROM |
US6627530B2 (en) | 2000-12-22 | 2003-09-30 | Matrix Semiconductor, Inc. | Patterning three dimensional structures |
US6271090B1 (en) | 2000-12-22 | 2001-08-07 | Macronix International Co., Ltd. | Method for manufacturing flash memory device with dual floating gates and two bits per cell |
US6534781B2 (en) | 2000-12-26 | 2003-03-18 | Ovonyx, Inc. | Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact |
US6487114B2 (en) | 2001-02-28 | 2002-11-26 | Macronix International Co., Ltd. | Method of reading two-bit memories of NROM cell |
US6730928B2 (en) | 2001-05-09 | 2004-05-04 | Science Applications International Corporation | Phase change switches and circuits coupling to electromagnetic waves containing phase change switches |
US7102150B2 (en) * | 2001-05-11 | 2006-09-05 | Harshfield Steven T | PCRAM memory cell and method of making same |
US6514788B2 (en) | 2001-05-29 | 2003-02-04 | Bae Systems Information And Electronic Systems Integration Inc. | Method for manufacturing contacts for a Chalcogenide memory device |
US6613604B2 (en) | 2001-08-02 | 2003-09-02 | Ovonyx, Inc. | Method for making small pore for use in programmable resistance memory element |
US6589714B2 (en) | 2001-06-26 | 2003-07-08 | Ovonyx, Inc. | Method for making programmable resistance memory element using silylated photoresist |
US6605527B2 (en) | 2001-06-30 | 2003-08-12 | Intel Corporation | Reduced area intersection between electrode and programming element |
US6511867B2 (en) | 2001-06-30 | 2003-01-28 | Ovonyx, Inc. | Utilizing atomic layer deposition for programmable device |
US6673700B2 (en) | 2001-06-30 | 2004-01-06 | Ovonyx, Inc. | Reduced area intersection between electrode and programming element |
US6643165B2 (en) | 2001-07-25 | 2003-11-04 | Nantero, Inc. | Electromechanical memory having cell selection circuitry constructed with nanotube technology |
US6709958B2 (en) | 2001-08-30 | 2004-03-23 | Micron Technology, Inc. | Integrated circuit device and fabrication using metal-doped chalcogenide materials |
US6586761B2 (en) | 2001-09-07 | 2003-07-01 | Intel Corporation | Phase change material memory device |
US6861267B2 (en) | 2001-09-17 | 2005-03-01 | Intel Corporation | Reducing shunts in memories with phase-change material |
US6800563B2 (en) | 2001-10-11 | 2004-10-05 | Ovonyx, Inc. | Forming tapered lower electrode phase-change memories |
US6566700B2 (en) | 2001-10-11 | 2003-05-20 | Ovonyx, Inc. | Carbon-containing interfacial layer for phase-change memory |
US6545903B1 (en) | 2001-12-17 | 2003-04-08 | Texas Instruments Incorporated | Self-aligned resistive plugs for forming memory cell with phase change material |
US6512241B1 (en) | 2001-12-31 | 2003-01-28 | Intel Corporation | Phase change material memory device |
US6867638B2 (en) | 2002-01-10 | 2005-03-15 | Silicon Storage Technology, Inc. | High voltage generation and regulation system for digital multilevel nonvolatile memory |
JP3796457B2 (ja) | 2002-02-28 | 2006-07-12 | 富士通株式会社 | 不揮発性半導体記憶装置 |
US6579760B1 (en) | 2002-03-28 | 2003-06-17 | Macronix International Co., Ltd. | Self-aligned, programmable phase change memory |
US6864500B2 (en) | 2002-04-10 | 2005-03-08 | Micron Technology, Inc. | Programmable conductor memory cell structure |
US6605821B1 (en) | 2002-05-10 | 2003-08-12 | Hewlett-Packard Development Company, L.P. | Phase change material electronic memory structure and method for forming |
US6864503B2 (en) | 2002-08-09 | 2005-03-08 | Macronix International Co., Ltd. | Spacer chalcogenide memory method and device |
US6850432B2 (en) | 2002-08-20 | 2005-02-01 | Macronix International Co., Ltd. | Laser programmable electrically readable phase-change memory method and device |
JP4133141B2 (ja) | 2002-09-10 | 2008-08-13 | 株式会社エンプラス | 電気部品用ソケット |
JP4190238B2 (ja) | 2002-09-13 | 2008-12-03 | 株式会社ルネサステクノロジ | 不揮発性半導体記憶装置 |
US6992932B2 (en) | 2002-10-29 | 2006-01-31 | Saifun Semiconductors Ltd | Method circuit and system for read error detection in a non-volatile memory array |
JP4928045B2 (ja) | 2002-10-31 | 2012-05-09 | 大日本印刷株式会社 | 相変化型メモリ素子およびその製造方法 |
US6791102B2 (en) * | 2002-12-13 | 2004-09-14 | Intel Corporation | Phase change memory |
US6744088B1 (en) | 2002-12-13 | 2004-06-01 | Intel Corporation | Phase change memory device on a planar composite layer |
US6815266B2 (en) | 2002-12-30 | 2004-11-09 | Bae Systems Information And Electronic Systems Integration, Inc. | Method for manufacturing sidewall contacts for a chalcogenide memory device |
KR100486306B1 (ko) | 2003-02-24 | 2005-04-29 | 삼성전자주식회사 | 셀프 히터 구조를 가지는 상변화 메모리 소자 |
US7067865B2 (en) | 2003-06-06 | 2006-06-27 | Macronix International Co., Ltd. | High density chalcogenide memory cells |
US7893419B2 (en) | 2003-08-04 | 2011-02-22 | Intel Corporation | Processing phase change material to improve programming speed |
US6815704B1 (en) * | 2003-09-04 | 2004-11-09 | Silicon Storage Technology, Inc. | Phase change memory device employing thermally insulating voids |
US6927410B2 (en) | 2003-09-04 | 2005-08-09 | Silicon Storage Technology, Inc. | Memory device with discrete layers of phase change memory material |
US7485891B2 (en) * | 2003-11-20 | 2009-02-03 | International Business Machines Corporation | Multi-bit phase change memory cell and multi-bit phase change memory including the same, method of forming a multi-bit phase change memory, and method of programming a multi-bit phase change memory |
US6937507B2 (en) | 2003-12-05 | 2005-08-30 | Silicon Storage Technology, Inc. | Memory device and method of operating same |
US7265050B2 (en) * | 2003-12-12 | 2007-09-04 | Samsung Electronics Co., Ltd. | Methods for fabricating memory devices using sacrificial layers |
JP4124743B2 (ja) | 2004-01-21 | 2008-07-23 | 株式会社ルネサステクノロジ | 相変化メモリ |
KR100564608B1 (ko) | 2004-01-29 | 2006-03-28 | 삼성전자주식회사 | 상변화 메모리 소자 |
US6936840B2 (en) | 2004-01-30 | 2005-08-30 | International Business Machines Corporation | Phase-change memory cell and method of fabricating the phase-change memory cell |
JP4529493B2 (ja) | 2004-03-12 | 2010-08-25 | 株式会社日立製作所 | 半導体装置 |
KR100598100B1 (ko) | 2004-03-19 | 2006-07-07 | 삼성전자주식회사 | 상변환 기억 소자의 제조방법 |
DE102004014487A1 (de) | 2004-03-24 | 2005-11-17 | Infineon Technologies Ag | Speicherbauelement mit in isolierendes Material eingebettetem, aktiven Material |
US20060108667A1 (en) | 2004-11-22 | 2006-05-25 | Macronix International Co., Ltd. | Method for manufacturing a small pin on integrated circuits or other devices |
KR100827653B1 (ko) | 2004-12-06 | 2008-05-07 | 삼성전자주식회사 | 상변화 기억 셀들 및 그 제조방법들 |
US7220983B2 (en) | 2004-12-09 | 2007-05-22 | Macronix International Co., Ltd. | Self-aligned small contact phase-change memory method and device |
US7214958B2 (en) | 2005-02-10 | 2007-05-08 | Infineon Technologies Ag | Phase change memory cell with high read margin at low power operation |
US7166533B2 (en) | 2005-04-08 | 2007-01-23 | Infineon Technologies, Ag | Phase change memory cell defined by a pattern shrink material process |
US7514367B2 (en) | 2005-06-17 | 2009-04-07 | Macronix International Co., Ltd. | Method for manufacturing a narrow structure on an integrated circuit |
US7534647B2 (en) | 2005-06-17 | 2009-05-19 | Macronix International Co., Ltd. | Damascene phase change RAM and manufacturing method |
US7321130B2 (en) | 2005-06-17 | 2008-01-22 | Macronix International Co., Ltd. | Thin film fuse phase change RAM and manufacturing method |
US8237140B2 (en) | 2005-06-17 | 2012-08-07 | Macronix International Co., Ltd. | Self-aligned, embedded phase change RAM |
US7514288B2 (en) | 2005-06-17 | 2009-04-07 | Macronix International Co., Ltd. | Manufacturing methods for thin film fuse phase change ram |
US7238994B2 (en) | 2005-06-17 | 2007-07-03 | Macronix International Co., Ltd. | Thin film plate phase change ram circuit and manufacturing method |
US7598512B2 (en) | 2005-06-17 | 2009-10-06 | Macronix International Co., Ltd. | Thin film fuse phase change cell with thermal isolation layer and manufacturing method |
US20070045606A1 (en) * | 2005-08-30 | 2007-03-01 | Michele Magistretti | Shaping a phase change layer in a phase change memory cell |
US7541607B2 (en) | 2005-11-02 | 2009-06-02 | Elpida Memory, Inc. | Electrically rewritable non-volatile memory element and method of manufacturing the same |
US7671356B2 (en) * | 2005-11-03 | 2010-03-02 | Elpida Memory, Inc. | Electrically rewritable non-volatile memory element and method of manufacturing the same |
US20070111429A1 (en) | 2005-11-14 | 2007-05-17 | Macronix International Co., Ltd. | Method of manufacturing a pipe shaped phase change memory |
US7397060B2 (en) | 2005-11-14 | 2008-07-08 | Macronix International Co., Ltd. | Pipe shaped phase change memory |
US7450411B2 (en) | 2005-11-15 | 2008-11-11 | Macronix International Co., Ltd. | Phase change memory device and manufacturing method |
US7786460B2 (en) | 2005-11-15 | 2010-08-31 | Macronix International Co., Ltd. | Phase change memory device and manufacturing method |
US7394088B2 (en) | 2005-11-15 | 2008-07-01 | Macronix International Co., Ltd. | Thermally contained/insulated phase change memory device and method (combined) |
US7635855B2 (en) | 2005-11-15 | 2009-12-22 | Macronix International Co., Ltd. | I-shaped phase change memory cell |
US7414258B2 (en) | 2005-11-16 | 2008-08-19 | Macronix International Co., Ltd. | Spacer electrode small pin phase change memory RAM and manufacturing method |
US7507986B2 (en) | 2005-11-21 | 2009-03-24 | Macronix International Co., Ltd. | Thermal isolation for an active-sidewall phase change memory cell |
US7829876B2 (en) | 2005-11-21 | 2010-11-09 | Macronix International Co., Ltd. | Vacuum cell thermal isolation for a phase change memory device |
US7479649B2 (en) | 2005-11-21 | 2009-01-20 | Macronix International Co., Ltd. | Vacuum jacketed electrode for phase change memory element |
US7449710B2 (en) | 2005-11-21 | 2008-11-11 | Macronix International Co., Ltd. | Vacuum jacket for phase change memory element |
US7599217B2 (en) | 2005-11-22 | 2009-10-06 | Macronix International Co., Ltd. | Memory cell device and manufacturing method |
US7688619B2 (en) | 2005-11-28 | 2010-03-30 | Macronix International Co., Ltd. | Phase change memory cell and manufacturing method |
US7459717B2 (en) | 2005-11-28 | 2008-12-02 | Macronix International Co., Ltd. | Phase change memory cell and manufacturing method |
US7605079B2 (en) | 2005-12-05 | 2009-10-20 | Macronix International Co., Ltd. | Manufacturing method for phase change RAM with electrode layer process |
US7642539B2 (en) | 2005-12-13 | 2010-01-05 | Macronix International Co., Ltd. | Thin film fuse phase change cell with thermal isolation pad and manufacturing method |
US7531825B2 (en) | 2005-12-27 | 2009-05-12 | Macronix International Co., Ltd. | Method for forming self-aligned thermal isolation cell for a variable resistance memory array |
US8062833B2 (en) | 2005-12-30 | 2011-11-22 | Macronix International Co., Ltd. | Chalcogenide layer etching method |
US7595218B2 (en) | 2006-01-09 | 2009-09-29 | Macronix International Co., Ltd. | Programmable resistive RAM and manufacturing method |
US20070158632A1 (en) | 2006-01-09 | 2007-07-12 | Macronix International Co., Ltd. | Method for Fabricating a Pillar-Shaped Phase Change Memory Element |
US7560337B2 (en) | 2006-01-09 | 2009-07-14 | Macronix International Co., Ltd. | Programmable resistive RAM and manufacturing method |
US7741636B2 (en) | 2006-01-09 | 2010-06-22 | Macronix International Co., Ltd. | Programmable resistive RAM and manufacturing method |
US7825396B2 (en) | 2006-01-11 | 2010-11-02 | Macronix International Co., Ltd. | Self-align planerized bottom electrode phase change memory and manufacturing method |
US7432206B2 (en) | 2006-01-24 | 2008-10-07 | Macronix International Co., Ltd. | Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram |
US7456421B2 (en) | 2006-01-30 | 2008-11-25 | Macronix International Co., Ltd. | Vertical side wall active pin structures in a phase change memory and manufacturing methods |
US7663135B2 (en) * | 2007-01-31 | 2010-02-16 | Macronix International Co., Ltd. | Memory cell having a side electrode contact |
-
2007
- 2007-09-28 US US11/864,273 patent/US7663135B2/en active Active
-
2008
- 2008-01-16 TW TW097101701A patent/TWI357153B/zh active
- 2008-01-31 CN CN2008100049493A patent/CN101237026B/zh not_active Expired - Fee Related
-
2009
- 2009-12-24 US US12/647,349 patent/US7964863B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US7663135B2 (en) | 2010-02-16 |
TWI357153B (en) | 2012-01-21 |
US7964863B2 (en) | 2011-06-21 |
US20080179584A1 (en) | 2008-07-31 |
CN101237026A (zh) | 2008-08-06 |
TW200832695A (en) | 2008-08-01 |
US20100133500A1 (en) | 2010-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101237026B (zh) | 一种存储装置及其制造方法 | |
CN101197317B (zh) | 具有热障的相变化存储单元及其制造方法 | |
CN100583484C (zh) | 管状电极相变化存储器的制造方法 | |
US7449710B2 (en) | Vacuum jacket for phase change memory element | |
CN100573898C (zh) | 自对准并平坦化的下电极相变化存储器及其制造方法 | |
US7932101B2 (en) | Thermally contained/insulated phase change memory device and method | |
CN101145599B (zh) | 具有宽广相变化元素与小面积电极接点的存储器装置 | |
CN100563040C (zh) | 相变化存储单元及其制造方法 | |
US7786461B2 (en) | Memory structure with reduced-size memory element between memory material portions | |
US7619311B2 (en) | Memory cell device with coplanar electrode surface and method | |
US8222071B2 (en) | Method for making self aligning pillar memory cell device | |
US7879643B2 (en) | Memory cell with memory element contacting an inverted T-shaped bottom electrode | |
US20100144128A1 (en) | Phase Change Memory Cell and Manufacturing Method | |
US7956344B2 (en) | Memory cell with memory element contacting ring-shaped upper end of bottom electrode | |
CN100583483C (zh) | 相变化存储单元及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100908 Termination date: 20210131 |