CN101517744A - 用于深亚微米制造工艺的对称双极结型晶体管 - Google Patents

用于深亚微米制造工艺的对称双极结型晶体管 Download PDF

Info

Publication number
CN101517744A
CN101517744A CNA2007800346830A CN200780034683A CN101517744A CN 101517744 A CN101517744 A CN 101517744A CN A2007800346830 A CNA2007800346830 A CN A2007800346830A CN 200780034683 A CN200780034683 A CN 200780034683A CN 101517744 A CN101517744 A CN 101517744A
Authority
CN
China
Prior art keywords
terminal rings
bipolar junction
junction transistor
rings
base terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800346830A
Other languages
English (en)
Other versions
CN101517744B (zh
Inventor
K·E·阿兰德特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN101517744A publication Critical patent/CN101517744A/zh
Application granted granted Critical
Publication of CN101517744B publication Critical patent/CN101517744B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • H01L29/7322Vertical transistors having emitter-base and base-collector junctions leaving at the same surface of the body, e.g. planar transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66272Silicon vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

本文所述的是双极结型晶体管及其制造方法的实施例,该晶体管包括:多个基极端子环,且在多个基极端子环中的任意两个基极端子环之间具有发射极端子环;以及围绕多个基极端子环和发射极端子环的集电极端子环。

Description

用于深亚微米制造工艺的对称双极结型晶体管
发明背景
技术领域
本发明涉及半导体器件领域,更具体地涉及双极结型晶体管结构及其制造方法。
相关领域讨论
在双极结型晶体管(BJT)设计中,为了确保最佳的器件性能和器件间最优匹配器件对称性要求是必需的。相连接器件之间合适的匹配,允许使用平均技术(averaging techniques)来消除由制造工艺导致的线性和非线性的梯度(gradients)。通过安排交替扩散类型的条形或矩形构成双极结型晶体管,来将平均技术应用于双极结型晶体管。利用对称性,能够实现进一步的改进。这种平均技术使得双极结型晶体管能用于高精度电路中,诸如带隙基准电压电路、热传感器和管芯上的热校准器件。在传统的双极结型晶体管设计中,为了维持对称性,发射极端子典型地绘制为方形,且基极端子围绕该发射极端子。此外,传统的双极结型晶体管也包括典型地环绕发射极端子的集电极端子。
由于在集成电路设计中生产更小器件的推动力不断持续,生产更小的器件的结果带来了新的影响特定器件的工作特性的设计约束。尽管这些设计约束对某些器件的工作特性有不利影响,但是在整个半导体器件制造工艺中,这些设计约束是确保均一性所必需的。在高量产制造中尤其是在深亚微米半导体制造工艺中,制造工艺的均一性有助于确保高的成品率。为了确保在半导体制造工艺中的均一性,一些设计约束限制了诸如双极结型晶体管之类的器件的物理尺寸。例如,在深亚微米制造工艺中,对给定器件的掩模上绘制的特定尺寸的限制是必需的,用以确保所制造集成电路的高成品率和可靠性。在一些工艺中,限制了扩散区的最大宽度尺寸。
因为双极结型晶体管需要一定的面积用于特定的偏流(bias current)以确保所需的工作特性,扩散区的受限宽度迫使器件的长度大于宽度。因此,在半导体电路设计中使用的具有方形发射极端子的传统的方形双极结型晶体管必需调整以符合最大宽度尺寸。当符合最大宽度尺寸时,为了维持高效运作所需的面积具有方形发射极端子的传统双极结型晶体管的长度必须比宽度更长。现在双极结型晶体管的形状采用矩形的形状。矩形双极结型晶体管的非对称形状改变了晶体管的特性,降低了晶体管工作特性和其它器件之间的晶体管的匹配特性。
发明概要
本文所述的是一种双极结型晶体管及其制造方法的实施例,该晶体管包括:的多个基极端子环,且多个基极端子环中的任意两个基极端子环之间有一发射极端子环;以及围绕多个基极端子环和发射极端子环的集电极端子环。
附图说明
图1示出环形双极结型晶体管的实施例的俯视图。
图2示出环形双极结型晶体管的实施例的横截面图。
图3示出环形双极结型晶体管的实施例的俯视图。
图4示出了环形双极结型晶体管的实施例的阵列。
图5A-5H示出了根据一个实施例的制造环形双极结型晶体管的实施例的方法。
具体实施方式
在以下的描述中,阐述了大量的具体细节用以提供权利要求的理解。本领域的技术人员将会理解实施本公开并不必需这些具体细节。在其它实例中,公知的半导体制造工艺和技术并没有详细的阐明以免不必要地混淆本发明的实施例。
本发明的实施例包括双极结型晶体管(BJT)的设计及其制造工艺,其保留了双极结型晶体管的对称性,同时遵循对包括在X或Y任一方向上扩散区最大尺寸的限制的设计约束。该设计使用环形几何形状来保留双极结型晶体管的对称性,同时遵循半导体制造工艺的设计约束,如最大扩散宽度尺寸。图1示出了包括由扩散区所限定的两个基极端子环105,发射极端子环110以及集电极端子环115的环形双极结型晶体管100的实施例。
尽管设计约束限制了扩散区的最大尺寸,但环形几何形状使得环形双极结型晶体管100的面积和周长能相互独立地确定尺寸。例如,当环形双极结型晶体管100被设计为具有方形形状的基极端子环、发射极端子环和集电极端子环时,可在允许的最小和最大尺寸之间调节宽度连同方形环的长度,以调节晶体管的面积周长比。对环形双极结型晶体管100的一实施例来说,可将尺寸设计成使得晶体管的面积周长比为1/2。
环形双极结型晶体管100的对称性给予双极结型晶体优化的器件特性,诸如比非对称的矩形几何形状更好的器件间的相关匹配。此外,环形双极结型晶体管100的对称性允许在任何方向上旋转晶体管,而不会显著影响环形双极结型晶体管100的工作特性。因为工作特性并不依赖于器件的朝向,这就为在半导体管芯上放置环形双极结型晶体管100提供了更多的灵活性。
此外,与传统的方形和矩形的双极结型晶体管几何形状相比,环形布局减小了寄生基极电阻。对于环形双极结型晶体管100的一实施例来说,多个基极端子环105的使用增加了电子或空穴来自或去向发射极端子环110的路径。因为路径的数目增加,所以发射极与基极之间的电阻就减小。这种寄生基极电阻的减小向环形双极结型晶体管100提供了超越传统几何形状的改进的器件特性。环形双极结型晶体管100的减小的寄生基极电阻的一个好处包括提升的电流增益因数。对于环形双极结型晶体管100的一实施例来说,寄生基极电阻被减小了传统双极结型晶体管的值的1/2。相似地,对于诸如图3所示实施例的环形双极结型晶体管的一实施例来说,当添加附加环时,寄生基极电阻减小。拓展本方法导致寄生基极电阻和电流因数的平均效果。环形双极结型晶体管内的平均效果导致诸如图4所示实施例的排列成阵列的数个“单位”双极结型晶体管之间的相关匹配度提升。
环形双极结型晶体管100的各实施例的相关匹配特性和减小的基极电阻使得晶体管非常适用于精密二极管电路。对用作精密二极管的环形双极结型晶体管100的实施例来说,基极端子环110和集电极端子环115被连接在一起。这种二极管构造然后能够在诸如带隙基准电压的电路中使用。此外,各实施例的相关匹配特性和减小的基极电阻使得环形双极结型晶体管100能理想地用于诸如提取芯片绝对结温的热传感器的热感测电路。以上环形双极结型晶体管100的实施例的使用仅作为示例而不是限制提供。
图1示出了双极结型晶体管的环状布局的实施例。图1的实施例包括两个基极端子环105和在两个基极端子环105之间的发射极端子环110。此外,图1的实施例还包括环绕发射极端子环110和基极端子环105的集电极端子环115。基极端子环105、发射极端子环110以及集电极端子环115的环可形成任意对称的几何形状。对于一实施例来说,基极端子环105、发射极端子环110和集电极端子环115形成方形形状。另一实施例包括形成圆形形状的基极端子环105、发射极端子环110和集电极端子环115。
对于一实施例来说,内部的基极端子环105在浅槽隔离(STI)区101周围形成。此外,各实施例可包括在发射极端子环110和每个基极端子环105之间的浅槽隔离区101。相似地,各实施例还可包括在集电极端子环115和基极端子环105之间的浅槽隔离区101。对于包括浅槽隔离区101的实施例,基于扩散宽度的设计约束,基极端子环105、发射极端子环110和集电极端子环115的宽度被绘制成相同用以确保给定的深亚微米制造工艺的均一性。对于一实施例,基极端子环105、发射极端子环110和集电极端子环115的宽度全部为1微米。另一包括浅槽隔离区101的实施例,基极端子环105、发射极端子环110和集电极端子环115的宽度被绘制成使得基极端子环105、发射极端子环110和集电极端子环115并不都被绘制成相同的宽度。
图2示出具有形成于衬底205内的阱201中的基极端子环105和发射极端子环110的环形双极结型晶体管的横截面视图。对于环形双极结型晶体管100的PNP实施例,掺杂阱201以在P型衬底中形成N阱,。对于环形双极结型晶体管100的NPN实施例来说,掺杂阱201以在N型衬底中形成P阱。对于一实施例,将阱201掺杂成具有1×1016-1×1019原子/cm3的浓度。环形双极结型晶体管100的实施例包括深度范围为从0.05微米到0.25微米的阱201。实施例包括深度为0.1微米的阱201。
此外,图2实施例包括生成基极端子环105、发射极端子环110和集电极端子环115的扩散区。对于PNP实施例,基极端子环105由N+掺杂扩散区形成,而发射极端子环110和集电极端子环115由P+掺杂扩散区形成。对于NPN实施例,基极端子环105由P+掺杂扩散区形成,而发射极端子环110和集电极端子环115由N+掺杂扩散区形成。对于一些NPN和PNP型实施例,基极端子环105、发射极端子环110和集电极端子环115的扩散区被掺杂成具有1×1019-1×1021原子/cm3的浓度。
根据本发明的双极结型晶体管的实施例可包括数个基极端子环105和数个发射极端子环110。在图3所示的这样一个实施例中,环形双极结型晶体管100包括被集电极端子环115围绕的三个基极端子环105和两个发射极端子环110。因此,只要发射极端子环110围绕基极端子环105同时又被基极端子环105所包括,集电极端子环115可围绕任意数量的发射极端子环110和基极端子环105。
图4示出环形双极结型晶体管100的阵列的实施例。在环形双极结型晶体管100的阵列的实施例中,阵列的数个环形双极晶体管100可并联连接以作为单个晶体管来运行。环形双极结型晶体管100的对称性质提供在其它环形双极晶体管100之间的匹配特性,该匹配特性允许平均技术消除由制造工艺所导致的线性和非线性的梯度。环形双极结型晶体管100的阵列的实施例包括将晶体管连接成阵列,以使用诸如公共矩心布局的平均技术。形成阵列的环形双极结型晶体管100的各实施例可形成包括任意数量的环形双极结型晶体管100的阵列。例如,形成阵列的环形双极结型晶体管100实施例包括环形双极结型晶体管100的三乘三、十乘十、或者十六乘十六阵列。
图5A至5H示出了环形双极结型晶体管100的实施例的形成。对于一实施例,如图5A所示,形成衬底501,并在衬底501之上形成第一掩模层505。对于PNP实施例,衬底501是P型衬底。或者,对于NPN实施例,衬底501是N型衬底。第一掩模层505可以是任何公知的适于限定阱510的材料。对于一实施例,第一掩模层505是光刻限定的光刻胶。对于另一实施例,第一掩模层505由被光刻限定而后又被蚀刻的电介质材料形成。对于特定的实施例,第一掩模层505可是各种材料的复合层叠。第一掩模层505被图案化以限定衬底501中将添加杂质以形成阱510的区域。图5B示出在衬底501中通过诸如离子注入或热扩散的方法添加杂质以形成阱510的实施例。对于一实施例,当在p型衬底501中用N+掺杂剂掺杂以形成N阱时,形成阱510。另一实施例包括在n型衬底501中使用P型掺杂剂以形成P阱。
在阱510形成后,第一掩模层505被去除。对于一实施例,使用干法蚀刻去除第一掩模层505。对于另一实施例,使用湿法蚀刻去除第一掩模层505。一旦第一掩模层505被去除,一实施例包括在衬底501和阱510上形成并图案化的第二掩模层515。第二掩模层515用来限定浅槽隔离(STI)区517。如图5C中所示,由第二掩模层515暴露所剩的区域被蚀刻成沟槽。对于一实施例,沟槽被蚀刻以形成阱510一半深度的浅槽隔离(STI)区517。对于一实施例,可使用各向异性等离子体蚀刻来蚀刻沟槽。然后用电介质材料填充沟槽。对于一实施例,通过覆盖沉积氧化物,例如,使用高密度等离子体(HDP)化学沉积工艺,填充沟槽。沉积工艺也将在图案化的第二掩模层515的上表面上形成电介质。然后,抛光电介质材料使得电介质材料的上端形成大致与阱510和衬底501相平的浅槽隔离层517,如图5D中所示。氧化物的抛光可使用任意的抛光技术来实现,包括化学的,机械的,或者电机的抛光技术。
图5E示出形成并图案化用于限定环形双极结型晶体管100的基极区525的第三掩模层520。一旦图案化了第三掩模层520,掺杂所暴露的区域以在阱510中生成基极区525,以形成环形双极结型晶体管100的一实施例的基极端子环105,如图5F所示。对于PNP实施例,诸如磷、砷、锑的N型掺杂剂被用来形成N+基极区525。对于NPN实施例,诸如硼的P型掺杂剂被用来在阱510中形成P+基极区525,该阱510是在n型衬底501中用p型掺杂剂掺杂的。掺杂可使用任意的掺杂技术来完成包括热扩散和离子注入。然后,使用与先前讨论的去除其它掩模层的技术相似的蚀刻技术来去除第三掩模层520。如图5G中所示,形成并图案化第四掩模层530以限定环形双极结型晶体管100的发射极区535和集电极区540。然后掺杂由第四掩模层530暴露所剩的区域。对于PNP实施例,使用P型掺杂剂来形成P+发射极区535和集电极区540。对于NPN实施例,使用N型掺杂剂来形成N+发射极区535和集电极区540。对于实施例,一旦形成了发射极区535和集电极区540,就去除第四掩模层530以形成其横截面如图5H所示的环形双极结型晶体管100的实施例。此时所有余下的事项是形成器件互连。
虽然以具体到结构特征和方法行为的语言描述了本发明的实施例,但应理解的是在附加权利要求所限定的本发明的实施例并不需限于所述特定的特征和行为。相反,所公开的特定的特征和行为作为所声明的发明的优选实现。

Claims (20)

1.一种双极结型晶体管,包括:
多个基极端子环,且在所述多个基极端子环的任两个基极端子环之间具有发射极端子环;以及
围绕所述多个基极端子环和所述发射极端子环的集电极端子环。
2.如权利要求1所述的双极结型晶体管,其特征在于,所述多个基极端子环在N阱中形成,且在所述多个基极端子环的任两个基极端子环之间具有发射极端子环。
3.如权利要求2所述的双极结型晶体管,其特征在于,所述多个基极端子环是N+掺杂区,而所述发射极端子环是P+掺杂区。
4.如权利要求2所述的双极结型晶体管,其特征在于,所述多个基极端子环、所述发射极端子环和所述集电极端子环由浅槽隔离区分隔开。
5.如权利要求1所述的双极结型晶体管,其特征在于,所述双极结型晶体管是双极结型晶体管阵列的一部分。
6.如权利要求5所述的双极结型晶体管,其特征在于,所述双极结型晶体管的阵列是选自于由带隙基准电压电路、热传感器和管芯上热校准器件组成的组的部分电路。
7.如权利要求1所述的双极结型晶体管,其特征在于,所述多个基极端子环、所述发射极环和所述集电极环形成方形形状。
8.一种双极结型晶体管,包括:
第一基极端子环;
围绕所述第一基极端子环形成的发射极端子环;
围绕所述发射极端子环形成的第二基极端子环;以及
在所述第二基极端子环之外形成的集电极端子环。
9.如权利要求8所述的双极结型晶体管,其特征在于,所述第一基极端子环和所述第二基极端子环是N+掺杂区。
10.如权利要求8所述的双极结型晶体管,其特征在于,所述第一基极端子环、所述发射极端子环和所述第二基极端子环由浅槽隔离区分隔开。
11.如权利要求10所述的双极结型晶体管,其特征在于,所述第一基极端子环、所述发射极端子环和所述第二基极端子环形成方形形状。
12.如权利要求11所述的双极结型晶体管,其特征在于,所述双极晶体管是带隙基准电压电路的一部分。
13.权利要求11所述的双极结型晶体管,其特征在于,所述第一基极端子环、所述发射极端子环、所述第二基极端子环和所述集电极端子环的宽度是1微米。
14.如权利要求10所述的双极结型晶体管,其特征在于,所述第一基极端子环、所述发射极端子环和所述第二基极端子环在P阱中形成。
15.一种方法,包括,
在衬底内形成阱;
在所述阱内形成具有多个环的基极端子;
在所述多个环中的任意两个之间形成发射极端子环;以及
形成围绕所述基极端子环和所述发射极端子环的集电极端子环。
16.如权利要求15所述的方法,其特征在于,所述衬底是p型衬底而所述阱是N阱。
17.如权利要求15所述的方法,进一步包括,形成用以分隔开所述第一环、所述第二环、所述发射极端子环和所述集电极端子环的浅槽隔离区。
18.如权利要求17所述的方法,其特征在于,形成浅槽隔离区包括以所述阱的约一半深度形成浅槽隔离区。
19.如权利要求16所述的方法,其特征在于,形成所述发射极端子环和形成所述集电极端子环包括形成P+掺杂区。
20.如权利要求15所述的方法用于形成环形双极结型晶体管的阵列。
CN2007800346830A 2006-09-22 2007-09-20 用于深亚微米制造工艺的对称双极结型晶体管 Expired - Fee Related CN101517744B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/525,737 US7439608B2 (en) 2006-09-22 2006-09-22 Symmetric bipolar junction transistor design for deep sub-micron fabrication processes
US11/525,737 2006-09-22
PCT/US2007/020289 WO2008039340A1 (en) 2006-09-22 2007-09-20 Symmetric bipolar junction transistor design for deep sub-micron fabrication processes

Publications (2)

Publication Number Publication Date
CN101517744A true CN101517744A (zh) 2009-08-26
CN101517744B CN101517744B (zh) 2012-07-18

Family

ID=39230504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800346830A Expired - Fee Related CN101517744B (zh) 2006-09-22 2007-09-20 用于深亚微米制造工艺的对称双极结型晶体管

Country Status (6)

Country Link
US (1) US7439608B2 (zh)
JP (1) JP5122574B2 (zh)
KR (1) KR101062590B1 (zh)
CN (1) CN101517744B (zh)
DE (1) DE112007002213B4 (zh)
WO (1) WO2008039340A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077966A (zh) * 2011-10-26 2013-05-01 索尼公司 半导体器件
CN103187438A (zh) * 2011-12-28 2013-07-03 台湾积体电路制造股份有限公司 鳍式bjt
CN108520896A (zh) * 2018-05-03 2018-09-11 西安建筑科技大学 一种耐压双极晶体管及其制作方法
CN108807515A (zh) * 2017-05-05 2018-11-13 联华电子股份有限公司 双极性晶体管
CN110828560A (zh) * 2019-11-14 2020-02-21 西安微电子技术研究所 一种基区环掺杂抗辐射横向pnp晶体管及制备方法
CN111799327A (zh) * 2019-04-09 2020-10-20 深圳比亚迪微电子有限公司 半导体功率器件

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100672681B1 (ko) * 2005-12-28 2007-01-24 동부일렉트로닉스 주식회사 바이폴라 트랜지스터의 제조방법
KR100660719B1 (ko) * 2005-12-30 2006-12-21 동부일렉트로닉스 주식회사 바이폴라 접합 트랜지스터 및 그 제조 방법
US9043741B2 (en) * 2009-10-30 2015-05-26 Synopsys, Inc. Legalizing a portion of a circuit layout
US9224496B2 (en) 2010-08-11 2015-12-29 Shine C. Chung Circuit and system of aggregated area anti-fuse in CMOS processes
CN101931409B (zh) * 2010-08-17 2013-08-14 惠州Tcl移动通信有限公司 一种移动终端及其adc模块的校准装置
US8830720B2 (en) 2010-08-20 2014-09-09 Shine C. Chung Circuit and system of using junction diode as program selector and MOS as read selector for one-time programmable devices
US9025357B2 (en) 2010-08-20 2015-05-05 Shine C. Chung Programmable resistive memory unit with data and reference cells
US9431127B2 (en) 2010-08-20 2016-08-30 Shine C. Chung Circuit and system of using junction diode as program selector for metal fuses for one-time programmable devices
US9496033B2 (en) 2010-08-20 2016-11-15 Attopsemi Technology Co., Ltd Method and system of programmable resistive devices with read capability using a low supply voltage
US10249379B2 (en) 2010-08-20 2019-04-02 Attopsemi Technology Co., Ltd One-time programmable devices having program selector for electrical fuses with extended area
US9818478B2 (en) 2012-12-07 2017-11-14 Attopsemi Technology Co., Ltd Programmable resistive device and memory using diode as selector
US9460807B2 (en) 2010-08-20 2016-10-04 Shine C. Chung One-time programmable memory devices using FinFET technology
US9236141B2 (en) 2010-08-20 2016-01-12 Shine C. Chung Circuit and system of using junction diode of MOS as program selector for programmable resistive devices
US8488359B2 (en) 2010-08-20 2013-07-16 Shine C. Chung Circuit and system of using junction diode as program selector for one-time programmable devices
US9824768B2 (en) 2015-03-22 2017-11-21 Attopsemi Technology Co., Ltd Integrated OTP memory for providing MTP memory
US8570800B2 (en) 2010-08-20 2013-10-29 Shine C. Chung Memory using a plurality of diodes as program selectors with at least one being a polysilicon diode
US9251893B2 (en) 2010-08-20 2016-02-02 Shine C. Chung Multiple-bit programmable resistive memory using diode as program selector
US10229746B2 (en) 2010-08-20 2019-03-12 Attopsemi Technology Co., Ltd OTP memory with high data security
US9070437B2 (en) 2010-08-20 2015-06-30 Shine C. Chung Circuit and system of using junction diode as program selector for one-time programmable devices with heat sink
US9019742B2 (en) 2010-08-20 2015-04-28 Shine C. Chung Multiple-state one-time programmable (OTP) memory to function as multi-time programmable (MTP) memory
US10916317B2 (en) 2010-08-20 2021-02-09 Attopsemi Technology Co., Ltd Programmable resistance memory on thin film transistor technology
US9042153B2 (en) 2010-08-20 2015-05-26 Shine C. Chung Programmable resistive memory unit with multiple cells to improve yield and reliability
US9711237B2 (en) 2010-08-20 2017-07-18 Attopsemi Technology Co., Ltd. Method and structure for reliable electrical fuse programming
US10923204B2 (en) 2010-08-20 2021-02-16 Attopsemi Technology Co., Ltd Fully testible OTP memory
US8913449B2 (en) 2012-03-11 2014-12-16 Shine C. Chung System and method of in-system repairs or configurations for memories
US8988965B2 (en) 2010-11-03 2015-03-24 Shine C. Chung Low-pin-count non-volatile memory interface
US9019791B2 (en) 2010-11-03 2015-04-28 Shine C. Chung Low-pin-count non-volatile memory interface for 3D IC
US8923085B2 (en) 2010-11-03 2014-12-30 Shine C. Chung Low-pin-count non-volatile memory embedded in a integrated circuit without any additional pins for access
EP2458639A1 (en) * 2010-11-25 2012-05-30 Nxp B.V. Bipolar transistor with base trench contacts insulated from the emitter.
CN102544011A (zh) 2010-12-08 2012-07-04 庄建祥 反熔丝存储器及电子系统
US10586832B2 (en) 2011-02-14 2020-03-10 Attopsemi Technology Co., Ltd One-time programmable devices using gate-all-around structures
US8848423B2 (en) 2011-02-14 2014-09-30 Shine C. Chung Circuit and system of using FinFET for building programmable resistive devices
US10192615B2 (en) 2011-02-14 2019-01-29 Attopsemi Technology Co., Ltd One-time programmable devices having a semiconductor fin structure with a divided active region
US9324849B2 (en) 2011-11-15 2016-04-26 Shine C. Chung Structures and techniques for using semiconductor body to construct SCR, DIAC, or TRIAC
US8912576B2 (en) * 2011-11-15 2014-12-16 Shine C. Chung Structures and techniques for using semiconductor body to construct bipolar junction transistors
US9136261B2 (en) 2011-11-15 2015-09-15 Shine C. Chung Structures and techniques for using mesh-structure diodes for electro-static discharge (ESD) protection
US9007804B2 (en) 2012-02-06 2015-04-14 Shine C. Chung Circuit and system of protective mechanisms for programmable resistive memories
US8853826B2 (en) * 2012-05-14 2014-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for bipolar junction transistors and resistors
US9076526B2 (en) 2012-09-10 2015-07-07 Shine C. Chung OTP memories functioning as an MTP memory
US9183897B2 (en) 2012-09-30 2015-11-10 Shine C. Chung Circuits and methods of a self-timed high speed SRAM
US9324447B2 (en) 2012-11-20 2016-04-26 Shine C. Chung Circuit and system for concurrently programming multiple bits of OTP memory devices
US9324845B2 (en) * 2012-12-11 2016-04-26 Infineon Technologies Ag ESD protection structure, integrated circuit and semiconductor device
US9231403B2 (en) * 2014-03-24 2016-01-05 Texas Instruments Incorporated ESD protection circuit with plural avalanche diodes
US9412473B2 (en) 2014-06-16 2016-08-09 Shine C. Chung System and method of a novel redundancy scheme for OTP
US10056518B2 (en) * 2014-06-23 2018-08-21 Qorvo Us, Inc. Active photonic device having a Darlington configuration
US9496250B2 (en) * 2014-12-08 2016-11-15 Globalfoundries Inc. Tunable scaling of current gain in bipolar junction transistors
US9933304B2 (en) 2015-10-02 2018-04-03 Qorvo Us, Inc. Active photonic device having a Darlington configuration with feedback
US10147833B2 (en) 2016-04-15 2018-12-04 Qorvo Us, Inc. Active photonic device having a Darlington configuration with feedback
CN105912069B (zh) * 2016-06-27 2018-05-01 无锡中感微电子股份有限公司 一种双极型晶体管和电流偏置电路
US11062786B2 (en) 2017-04-14 2021-07-13 Attopsemi Technology Co., Ltd One-time programmable memories with low power read operation and novel sensing scheme
US11615859B2 (en) 2017-04-14 2023-03-28 Attopsemi Technology Co., Ltd One-time programmable memories with ultra-low power read operation and novel sensing scheme
US10726914B2 (en) 2017-04-14 2020-07-28 Attopsemi Technology Co. Ltd Programmable resistive memories with low power read operation and novel sensing scheme
US10535413B2 (en) 2017-04-14 2020-01-14 Attopsemi Technology Co., Ltd Low power read operation for programmable resistive memories
JP6987589B2 (ja) * 2017-10-02 2022-01-05 京セラ株式会社 水晶振動子
US10770160B2 (en) 2017-11-30 2020-09-08 Attopsemi Technology Co., Ltd Programmable resistive memory formed by bit slices from a standard cell library
WO2023112486A1 (ja) * 2021-12-17 2023-06-22 株式会社村田製作所 バイポーラトランジスタ及び半導体装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3263138A (en) * 1960-02-29 1966-07-26 Westinghouse Electric Corp Multifunctional semiconductor devices
US3935587A (en) * 1974-08-14 1976-01-27 Westinghouse Electric Corporation High power, high frequency bipolar transistor with alloyed gold electrodes
DE3035462A1 (de) * 1980-09-19 1982-05-13 Siemens AG, 1000 Berlin und 8000 München Halbleiterelement
JPS6414961A (en) * 1987-07-08 1989-01-19 Nec Corp Mesh-emitter type transistor
JPH04180629A (ja) * 1990-11-15 1992-06-26 Nec Yamagata Ltd 半導体装置
DE69326340T2 (de) * 1993-09-27 2000-01-13 St Microelectronics Srl Geräuscharmer pnp-Transistor
JPH07297203A (ja) * 1994-04-26 1995-11-10 Sony Corp バイポーラトランジスタ
JPH07321123A (ja) * 1994-05-20 1995-12-08 Texas Instr Inc <Ti> 集積回路装置
US5528064A (en) * 1994-08-17 1996-06-18 Texas Instruments Inc. Structure for protecting integrated circuits from electro-static discharge
US5541439A (en) * 1994-11-17 1996-07-30 Xerox Corporation Layout for a high voltage darlington pair
US5614424A (en) * 1996-01-16 1997-03-25 Taiwan Semiconductor Manufacturing Company Ltd. Method for fabricating an accumulated-base bipolar junction transistor
JP2000100826A (ja) * 1998-09-28 2000-04-07 Rohm Co Ltd パワートランジスタ及びそれを用いた半導体集積回路装置
JP2000260780A (ja) * 1999-03-05 2000-09-22 Sony Corp 半導体装置およびその製造方法
JP3600069B2 (ja) * 1999-06-30 2004-12-08 東芝マイクロエレクトロニクス株式会社 半導体装置
DE10004111A1 (de) * 2000-01-31 2001-08-09 Infineon Technologies Ag Bipolartransistor
JP3367500B2 (ja) * 2000-03-15 2003-01-14 日本電気株式会社 半導体装置
JP2003068750A (ja) * 2001-08-24 2003-03-07 Toko Inc バイポーラトランジスタ素子
JP3899888B2 (ja) * 2001-10-18 2007-03-28 サンケン電気株式会社 バイポーラトランジスタ及び絶縁ゲート型バイポーラトランジスタ
SE522890C2 (sv) * 2001-11-15 2004-03-16 Ericsson Telefon Ab L M Lateral pnp-transistor, integrerad krets och tllverkningsprocess för dessa
EP1353384A3 (en) * 2002-04-10 2005-01-12 Hitachi, Ltd. Heterojunction bipolar transistor, manufacturing thereof and power amplifier module
JP4596749B2 (ja) * 2003-05-29 2010-12-15 三洋電機株式会社 半導体装置およびその製造方法
JP2005150509A (ja) * 2003-11-18 2005-06-09 Sanyo Electric Co Ltd 半導体装置の製造方法
TW200524139A (en) * 2003-12-24 2005-07-16 Renesas Tech Corp Voltage generating circuit and semiconductor integrated circuit
CN100361281C (zh) * 2005-11-11 2008-01-09 中国电子科技集团公司第五十五研究所 半导体平台工艺

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077966A (zh) * 2011-10-26 2013-05-01 索尼公司 半导体器件
CN103187438A (zh) * 2011-12-28 2013-07-03 台湾积体电路制造股份有限公司 鳍式bjt
US9368594B2 (en) 2011-12-28 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming a fin-like BJT
CN108807515A (zh) * 2017-05-05 2018-11-13 联华电子股份有限公司 双极性晶体管
CN108807515B (zh) * 2017-05-05 2022-07-05 联华电子股份有限公司 双极性晶体管
CN108520896A (zh) * 2018-05-03 2018-09-11 西安建筑科技大学 一种耐压双极晶体管及其制作方法
CN108520896B (zh) * 2018-05-03 2021-01-01 西安建筑科技大学 一种耐压双极晶体管及其制作方法
CN111799327A (zh) * 2019-04-09 2020-10-20 深圳比亚迪微电子有限公司 半导体功率器件
CN111799327B (zh) * 2019-04-09 2024-04-12 比亚迪半导体股份有限公司 半导体功率器件
CN110828560A (zh) * 2019-11-14 2020-02-21 西安微电子技术研究所 一种基区环掺杂抗辐射横向pnp晶体管及制备方法

Also Published As

Publication number Publication date
DE112007002213T5 (de) 2010-01-28
JP2010503999A (ja) 2010-02-04
US7439608B2 (en) 2008-10-21
KR101062590B1 (ko) 2011-09-06
DE112007002213B4 (de) 2013-12-05
CN101517744B (zh) 2012-07-18
JP5122574B2 (ja) 2013-01-16
KR20090055008A (ko) 2009-06-01
US20080087918A1 (en) 2008-04-17
WO2008039340A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
CN101517744B (zh) 用于深亚微米制造工艺的对称双极结型晶体管
US9368594B2 (en) Method of forming a fin-like BJT
US6249031B1 (en) High gain lateral PNP and NPN bipolar transistor and process compatible with CMOS for making BiCMOS circuits
US20120168907A1 (en) Flat response device structures for bipolar junction transistors
US20060118881A1 (en) Lateral PNP transistor and the method of manufacturing the same
US7576406B2 (en) Semiconductor device
CN100530683C (zh) 半导体装置及其制造方法
US8790984B2 (en) High-beta bipolar junction transistor and method of manufacture
JP2007165369A (ja) 半導体装置及びその製造方法
Bashir et al. A complementary bipolar technology family with a vertically integrated PNP for high-frequency analog applications
JP2016526800A (ja) トレンチの下にシンカー拡散を有するバイポーラトランジスタ
CN102386121B (zh) 半导体器件和半导体埋层的制造方法
CN101136335A (zh) 半导体器件及其制造方法
CN114784094A (zh) 双极性晶体管
TWI441330B (zh) 雙極接面電晶體裝置
JP3309606B2 (ja) 半導体装置の製造方法
JPH04152670A (ja) 受光素子の製造方法
JP2012114401A (ja) 半導体装置およびその製造方法
JPS63175463A (ja) バイmos集積回路の製造方法
JP2648027B2 (ja) Iil型半導体装置
CN102142456B (zh) 高增益常数β双极性接合晶体管及其制造方法
CN115566048A (zh) 双极性接面晶体管结构及其制造方法
TW201344901A (zh) 半導體結構及其製作方法
TW449918B (en) Method for forming bipolar junction transistor following the high voltage device processing
Vora A self-isolation scheme for integrated circuits

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120718

Termination date: 20190920