WO2021174709A1 - 一种锂离子电池用喷涂隔膜及其制备方法 - Google Patents

一种锂离子电池用喷涂隔膜及其制备方法 Download PDF

Info

Publication number
WO2021174709A1
WO2021174709A1 PCT/CN2020/094693 CN2020094693W WO2021174709A1 WO 2021174709 A1 WO2021174709 A1 WO 2021174709A1 CN 2020094693 W CN2020094693 W CN 2020094693W WO 2021174709 A1 WO2021174709 A1 WO 2021174709A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
lithium ion
sprayed
separator
slurry
Prior art date
Application number
PCT/CN2020/094693
Other languages
English (en)
French (fr)
Inventor
孙婧
刘杲珺
王连广
高飞飞
陈淳
白耀宗
Original Assignee
中材锂膜有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中材锂膜有限公司 filed Critical 中材锂膜有限公司
Publication of WO2021174709A1 publication Critical patent/WO2021174709A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium ion batteries, and specifically relates to a new type of sprayed diaphragm for lithium ion batteries and a preparation method thereof.
  • the purpose of the present invention is to overcome the existing technical problems, provide a separator with certain adhesive properties, while not affecting the internal resistance and cycle performance of the lithium ion battery, and at the same time improve the electrolyte absorption and retention of the separator .
  • a sprayed separator for lithium ion batteries comprising a porous base film, an inorganic heat-resistant coating coated on one side of the base film, and a dot-shaped coating of organic particles sprayed on the other side of the inorganic heat-resistant coating and the base film,
  • the total thickness of the sprayed diaphragm is controlled within the range of 6-50 ⁇ m.
  • the porous base film material is selected from polyethylene (PE), polypropylene (PP), polyimide (PI), polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) , Polyamide (PA), polyethylene terephthalate (PET) one or more, the base film thickness is 3-25 ⁇ m, the porosity is 20%-80%, the air permeability is 50-800s/ 100cc.
  • PE polyethylene
  • PP polypropylene
  • PI polyimide
  • PVDF polyvinylidene fluoride
  • PVDF-HFP polyvinylidene fluoride-hexafluoropropylene
  • PA polyamide
  • PET polyethylene terephthalate
  • the said inorganic heat-resistant coating has a thickness of 1-10 ⁇ m and mainly contains inorganic fillers, thickeners and binder resins.
  • the inorganic filler is one or more of alumina, boehmite, silica, titania, zirconia, magnesia and magnesium hydroxide, and the specific surface area is 2-10 m 2 /g.
  • the thickness of the organic particle dot coating is 0.5-10 ⁇ m, the coverage area of the dot coating is 10%-60% of the surface area of the substrate, the shape of the spray spot is approximately circular, and the area of a single spray spot is 314 ⁇ m 2 -7mm 2 , the proportion of organic particles in a single spraying point is 40%-100%, and the bonding strength with the pole piece>0.1N/m.
  • the slurry used for the organic particle dot coating is composed of the following raw materials: an aqueous solution with a mass ratio of 65% to 90%, an organic polymer with a mass ratio of 5% to 30%, and a mass ratio of 0.01% to 10%.
  • the organic particles include polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polyvinylidene fluoride-trifluoroethylene copolymer, polyvinylidene fluoride-chlorotrifluoroethylene copolymer, tetrafluoroethylene and two Any one or a mixture of two or more of fluoroethylene copolymer and polymethyl methacrylate.
  • the thickener includes any one or more of carboxymethyl cellulose, hydroxyethyl cellulose, carboxyethyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose, polyacryl alcohol and sodium alginate. kind.
  • the binder resin is a water-soluble polymer, including one or more of polyacrylic acid, polyacrylamide, polymethacrylic acid, polymethyl methacrylate, and polyvinyl alcohol.
  • a sprayed diaphragm for lithium ion batteries and a preparation method thereof are prepared according to the following method:
  • the coating method in the step (1) adopts one of gravure roll coating, wire bar coating, slit coating, and dip coating.
  • the kneading time of the organic polymer and the thickener in the step (2) should be ⁇ 20min.
  • the rotational speed of the rotary spraying is 3000-15000r/min, and the vehicle speed of the rotary spraying is 10-150m/min.
  • the drying temperature in the step (4) is ⁇ 90°C.
  • the invention provides a method for preparing a sprayed diaphragm for a lithium ion battery. Firstly, the prepared inorganic slurry is coated on one side of a porous base film to obtain an inorganic heat-resistant layer, which improves the heat-resistant performance of the diaphragm and greatly improves the battery’s performance. Safety performance; then the prepared organic slurry is coated on both sides of the inorganic coating film by rotating spraying, so that the two sides of the diaphragm have adhesive properties.
  • the preparation method is simple, requires low equipment, and the conditions are easy to control, and are suitable for industrial production.
  • Fig. 1 is a schematic diagram of the structure of a sprayed separator for a lithium ion battery of the present invention.
  • Figure 2 is a schematic diagram of the distribution of organic particles in a sprayed dot coating.
  • FIG. 3 is a scanning electron microscope image of the sprayed diaphragm in Example 1.
  • Preparation of ceramic slurry add inorganic filler alumina powder with a specific surface area of 5m 2 /g to the water solvent and stir evenly, then add thickener and stir evenly to adjust the viscosity of the slurry, and add a certain amount of bonding after grinding Mixing agent and wetting agent uniformly to obtain the finished inorganic coating slurry.
  • Inorganic slurry coating a wet synchronous double-stretched polyethylene membrane with a thickness of 9 ⁇ m is selected, the porosity is 40%, the air permeability is 160s/100cc, and the microgravure roll coating method is used to coat the prepared in step a
  • the ceramic slurry was coated on one side of the base film at a coating speed of 100m/min. After drying, a ceramic coated diaphragm was obtained, and the thickness of the ceramic coating was 3 ⁇ m.
  • PVDF spray coating slurry Weigh a certain amount of polyvinylidene fluoride-hexafluoropropylene copolymer powder and thickener sodium carboxymethyl cellulose and mix, stir and knead for 60 minutes to form a uniform creamy mixture, then Under the action of stirring, ultrapure water is added to adjust the solid content of the slurry and form a uniform solution; finally, the binder is added to the above uniform solution, and the mixture is stirred and mixed uniformly to obtain PVDF slurry.
  • PVDF slurry coating The PVDF slurry prepared in step c is simultaneously coated on both sides of the ceramic coating film by high-speed rotary spraying, the coating speed is 30m/min, and the rotation speed of the rotating nozzle is 10000rpm/min, after drying, a sprayed diaphragm is obtained.
  • the thickness of the single-layer PVDF spray coating is 3 ⁇ m, the area of the PVDF spraying point accounts for 30% of the area of the base film, and the area covered by PVDF in a single PVDF spraying point accounts for about 50% of the area of the spraying point.
  • the scanning electron microscope of the PVDF spray coating is shown in Figure 3.
  • the thickness of the sprayed separator for the lithium ion battery is 17.5 ⁇ m
  • the thickness of the ceramic coating is 3 ⁇ m
  • the thickness of the double-sided PVDF coating is 5.5 ⁇ m.
  • the sprayed separator and positive pole piece were subjected to hot pressing treatment using a flat hot press at 85° C., 1 Mpa, and 5 min, and then the bonding strength was tested with a tensile machine. The test result was 0.9 N/m 2 .
  • boehmite slurry Preparation of boehmite slurry: add boehmite powder to the water solvent and stir to disperse, then add thickener and stir to adjust the viscosity of the slurry, finally add a certain amount of binder and wetting agent, and mix evenly Obtain finished boehmite slurry.
  • boehmite slurry select a 12 ⁇ m wet-process asynchronously stretched polyethylene diaphragm with a porosity of 42%.
  • the boehmite slurry prepared in step a is coated with a slit coating method. Coated on one side of the base film at a coating speed of 60m/min. After drying, a boehmite-coated membrane is obtained. The thickness of the boehmite coating is 4 ⁇ m.
  • PVDF spray coating slurry Weigh a certain amount of polyvinylidene fluoride powder and hydroxyethyl cellulose, mix, stir and knead for 30 minutes to form a uniform creamy mixture, and then add ultrapure water to adjust the slurry under stirring The solid content of the material is formed into a uniform solution; finally, an adhesive is added to the above-mentioned uniform solution, and the mixture is stirred and mixed uniformly to obtain a PVDF slurry.
  • step d Coating of PVDF slurry:
  • the PVDF slurry prepared in step c is simultaneously coated on both sides of the above-mentioned boehmite coating film by high-speed rotary spraying, the coating speed is 30m/min, and the rotating nozzle The rotating speed is 8000rpm/min, and the sprayed diaphragm is obtained after drying.
  • the thickness of the single-layer PVDF sprayed coating is 3 ⁇ m, and the area of the single-layer PVDF sprayed point accounts for 25% of the area of the base film.
  • the thickness of the sprayed separator for lithium ion batteries is 22 ⁇ m
  • the thickness of the boehmite coating is 4 ⁇ m
  • the thickness of the double-sided PVDF coating is 6 ⁇ m.
  • the sprayed separator and the positive pole piece were subjected to hot pressing treatment using a flat hot press at 85° C., 1 Mpa, and 5 min, and then the bonding strength was tested with a tensile machine. The test result was 1.2 N/m 2 .
  • Preparation of ceramic slurry add inorganic filler alumina powder with a specific surface area of 5m 2 /g to the water solvent and stir evenly, then add thickener and stir evenly to adjust the viscosity of the slurry, and add a certain amount of bonding after grinding Mixing agent and wetting agent uniformly to obtain the finished inorganic coating slurry.
  • Inorganic slurry coating a wet synchronous double-stretched polyethylene membrane with a thickness of 9 ⁇ m is selected, the porosity is 40%, the air permeability is 160s/100cc, and the microgravure roll coating method is used to coat the prepared in step a
  • the ceramic slurry was coated on one side of the base film at a coating speed of 100m/min. After drying, a ceramic coated diaphragm was obtained, and the thickness of the ceramic coating was 3 ⁇ m.
  • Preparation of polymethyl methacrylate spray coating slurry weigh a certain amount of polymethyl methacrylate and thickener sodium carboxymethyl cellulose and mix, stir for 20 minutes, and then add ultrapure water under stirring The solid content of the slurry is adjusted to form a uniform solution; finally, an adhesive and a wetting agent are added to the above uniform solution, and the mixture is stirred and mixed uniformly to obtain a polymethyl methacrylate slurry.
  • the polymethyl methacrylate slurry prepared in step c is sprayed on both sides of the ceramic coating film at the same time by high-speed rotary spraying, and the coating speed is 40m/min, the rotation speed of the rotating nozzle is 8000rpm/min, and the sprayed diaphragm is obtained after drying at 65°C.
  • the thickness of the single-layer polymethyl methacrylate sprayed coating is 2 ⁇ m, the area of the sprayed spot accounts for 30% of the area of the base film, and the area covered by the polymethyl methacrylate particles in a single sprayed spot accounts for about 100% of the area of the sprayed spot.
  • the thickness of the sprayed separator for the lithium ion battery is 15.9 ⁇ m
  • the thickness of the ceramic coating is 2.9 ⁇ m
  • the thickness of the double-sided PVDF coating is 4.0 ⁇ m.
  • the sprayed separator and the positive pole piece were subjected to hot pressing treatment using a flat plate hot press at 85° C., 1 Mpa, and 5 min, and then the bonding strength was tested with a tensile machine. The test result was 2.8 N/m 2 .
  • Example 1 Use the ceramic slurry in Example 1 to prepare a 9+3 ceramic coating film, and then use the microgravure roll coating method to coat the PVDF slurry in Example 1 on both sides of the 9+3 ceramic film.
  • the following table shows Comparing the two products with the finished product in Example 1, the PVDF coating of the micro-gravure roll has a high coverage rate, resulting in a large air permeability, which makes the battery internal resistance relatively large, while the membrane made by spraying has a low coverage rate and a small air permeability ,
  • the internal resistance of the battery is basically similar to the internal resistance of the ceramic membrane battery.

Abstract

一种锂离子电池用喷涂隔膜,所述的喷涂隔膜包括多孔基膜(1)、涂覆在基膜一侧的无机耐热涂层(2)以及喷涂在无机耐热涂层(2)侧和基膜另一侧的有机颗粒点状涂层(3)。喷涂隔膜的总厚度为6-50μm,其中有机颗粒点状涂层(3)厚度为0.5-10μm,点状涂层(3)的覆盖面积为基材表面积的10%-60%,喷涂点的形状近似为圆形,单个点的面积为314μm 2-7mm 2,单个喷涂点内有机颗粒的占比为40%-100%,有机颗粒点状涂层(3)具有粘接性,在电芯制备过程中可通过热压工艺将隔膜和电极可粘接在一起,提高电芯的硬度,缩短锂离子通道,提高电池的安全性能。

Description

一种锂离子电池用喷涂隔膜及其制备方法 技术领域
本发明是锂离子电池的技术领域,具体涉及一种新型的锂离子电池用喷涂隔膜及其制备方法。
背景技术
目前,陶瓷涂覆隔膜因其良好的耐热性和电解液浸润性已经广泛的应用于动力锂离子电池中。但是在电池的制作过程中,仍存在极片与隔膜贴合不紧密,电芯偏软等问题。为解决这一问题,新开发的锂离子电池隔膜是在陶瓷涂覆膜的基础上增加具有粘接性能的功能涂层,起到粘接正负极和隔膜的作用,以提高电芯的硬度,从而提高电池的安全性能。然而,现有的功能性涂层覆盖率高,往往会造成电池内阻增加,电池循环末期跳水。因而,需要合理的控制功能涂层的覆盖面积,使隔膜具有一定粘接性能的同时又不影响电池的性能。
发明内容
本发明的目的在于克服现有的技术问题,提供一种具有一定粘接性能,与此同时不影响锂离子电池内阻和循环性能的隔膜,同时提高隔膜的电解液吸液性、保液性。
为了实现上述目的,本发明的技术方案如下:
一种锂离子电池用喷涂隔膜,包括多孔基膜、涂覆在基膜一侧的无机耐热涂层和喷涂在无机耐热涂层测和基膜另一侧的有机颗粒点状涂层,喷涂隔膜的总厚度控制在6-50μm范围内。
所述的多孔基膜材料选自聚乙烯(PE)、聚丙烯(PP)、聚酰亚胺(PI)、聚偏氟乙烯(PVDF)、聚偏氟乙烯-六氟丙烯(PVDF-HFP)、聚酰胺(PA)、聚对苯二甲酸乙二酯(PET)中的一种或几种,基膜厚度为3-25μm,孔隙率为20%-80%,透气度为50-800s/100cc。
所述的无机耐热涂层厚度为1-10μm,主要包含无机填料、增稠剂和粘接剂树脂。
所述的无机填料为氧化铝、勃姆石、二氧化硅、二氧化钛、氧化锆、氧化镁及氢氧化镁中的一种或几种,比表面积为2-10m 2/g。
所述的有机颗粒点状涂层厚度为0.5-10μm,点状涂层的覆盖面积为基材表 面积的10%-60%,喷涂点的形状近似为圆形,单个喷涂点的面积为314μm 2-7mm 2,单个喷涂点内有机颗粒的占比为40%-100%,与极片的粘接强度>0.1N/m。
所述有机颗粒点状涂层所用的浆料由以下原料组成:质量比为65%-90%的水溶液,质量比为5%-30%的有机聚合物,质量比为0.01%-10%的增稠剂,质量比为0.1%-5%的粘结剂,质量比为0.001%-1%的润湿剂,浆料固含量为5%-30%,粘度为5-100mpa·s。
所述的有机颗粒包括聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、聚偏氟乙烯-三氟乙烯共聚物、聚偏氟乙烯-三氟氯乙烯共聚物、四氟乙烯和二氟乙烯共聚物、聚甲基丙烯酸甲酯中的任意一种或者两种以上混合物。
所述增稠剂包括羧甲基纤维素、羟乙基纤维素、羧乙基纤维素、甲基纤维素、羟丙基甲基纤维素、聚丙烯醇及海藻酸钠中任意一种或几种。
所述粘结剂树脂为水溶性聚合物,包括聚丙烯酸、聚丙烯酰胺、聚甲基丙烯酸、聚甲基丙烯酸甲酯及聚乙烯醇的一种或几种。
一种锂离子电池用喷涂隔膜及其制备方法,按下述方法制备:
(1)制备无机耐热层浆料,然后涂覆在基膜一侧,烘干后得到无机耐热层;
(2)制备有机颗粒点状涂层浆料:
A.将有机聚合物粉末和增稠剂混合,搅拌捏合成均一的奶油状混合物;
B.在搅拌作用下向A中加入水溶液调节浆料的固含量并继续搅拌均匀,成均一溶液;
C.继续向B中加入粘结剂,混合均匀,得到成品浆料;
(3)将(2)中配制的浆料通过旋转喷涂的方式涂覆在基膜的另一侧和无机涂层侧,得到有机颗粒点状涂层;
(4)在烘箱中干燥,获得所述的锂离子电池用喷涂隔膜。
所述步骤(1)中的涂覆方式采用凹版辊涂布、线棒涂布、狭缝涂布、浸涂中的其中一种。
所述步骤(2)中有机聚合物和增稠剂捏合时间应≥20min。
所述的旋转喷涂的转速为3000-15000r/min,旋转喷涂车速为10-150m/min。
所述步骤(4)中烘干温度≤90℃。
本发明提供了一种锂离子电池用喷涂隔膜的制备方法,先将制备好的无机浆料涂覆在多孔基膜一侧得到无机耐热层,提高隔膜的耐热性能,大大提高了电池的安全性能;而后通过旋转喷涂的方式将制备的有机浆料涂覆在无机涂覆膜的两侧,使隔膜两面具有粘接性能。其制备方法简单,对设备要求低,条件易控,适于工业化生产。
附图说明
图1为本发明锂离子电池用喷涂隔膜的结构示意图。
图2为喷涂点状涂层有机颗粒点的分布示意图。
图3为实施例1中喷涂隔膜扫描电镜图。
1-多孔基膜,2-无机耐热涂层,3-有机颗粒点状涂层。
具体实施方式
下面通过具体实施例对本发明做详细描述,下列实施例仅用于说明本发明,但并不用于限定本发明的实施范围。
实施例1
a、制备陶瓷浆料:将比表面积为5m 2/g的无机填料氧化铝粉加入到水溶剂中搅拌均匀,而后加入增稠剂搅拌均匀调节浆料的粘度,研磨后加入一定量的粘结剂和润湿剂,混合均匀后获得成品无机涂层浆料。
b、无机浆料的涂覆:选取厚度为9μm的湿法同步双拉聚乙烯隔膜,孔隙率为40%,透气度为160s/100cc,采用微凹版辊式涂覆方式将a步骤中制备的陶瓷浆料涂覆与基膜的一侧,涂覆速度为100m/min,烘干后得到陶瓷涂覆隔膜,陶瓷涂层厚度为3μm。
c、制备PVDF喷涂涂层浆料:称取一定量的聚偏氟乙烯-六氟丙烯共聚物粉末和增稠剂羧甲基纤维素钠混合,搅拌捏合60min,形成均一的奶油状混合物,然后在搅拌作用下加入超纯水调节浆料的固含量并形成均一溶液;最后向上述均一溶液中加入粘接剂,搅拌混合均匀,得到PVDF浆料。
d、PVDF浆料的涂覆:采用高速旋转喷涂的方式将c步骤中配制的PVDF浆料同时涂覆在上述陶瓷涂覆膜的两侧,涂布速度为30m/min,旋转喷头的转速为10000rpm/min,烘干后得到喷涂隔膜。单层PVDF喷涂涂层厚度为3μm,PVDF喷涂点的面积占基膜面积的30%,单个PVDF喷涂点中PVDF覆盖面积约 占喷涂点面积的50%。PVDF喷涂层的扫描电镜如图3所示。
上述锂离子电池用喷涂隔膜的厚度为17.5μm,陶瓷涂层厚度为3μm,双面PVDF涂层厚度为5.5μm。利用平板热压机在85℃、1Mpa、5min条件下将该喷涂隔膜和正极极片进行热压处理,而后使用拉力机测试其粘接强度,测试结果为0.9N/m 2
实施例2
a、制备勃姆石浆料:将勃姆石粉加入到水溶剂中搅拌分散,而后加入增稠剂搅拌均匀调节浆料的粘度,最后加入一定量的粘结剂和润湿剂,混合均匀后获得成品勃姆石浆料。
b、勃姆石浆料的涂覆:选取厚度为12μm的湿法异步拉伸聚乙烯隔膜,孔隙率为42%,采用窄缝式涂覆方式将a步骤中制备的勃姆石浆料涂覆在基膜的一侧,涂覆速度为60m/min,烘干后得到勃姆石涂覆隔膜,勃姆石涂层的厚度为4μm。
c、制备PVDF喷涂涂层浆料:称取一定量的聚偏氟乙烯粉末和羟乙基纤维素混合,搅拌捏合30min,形成均一的奶油状混合物,然后在搅拌作用下加入超纯水调节浆料的固含量并形成均一溶液;最后向上述均一溶液中加入粘接剂,搅拌混合均匀,得到PVDF浆料。
d、PVDF浆料的涂覆:采用高速旋转喷涂的方式将c步骤中配制的PVDF浆料同时涂覆在上述勃姆石涂覆膜的两侧,涂布速度为30m/min,旋转喷头的转速为8000rpm/min,烘干后得到喷涂隔膜。单层PVDF喷涂涂层厚度为3μm,单层PVDF喷涂点的面积占基膜面积的25%。
上述锂离子电池用喷涂隔膜的厚度为22μm,勃姆石涂层厚度为4μm,双面PVDF涂层厚度为6μm。利用平板热压机在85℃、1Mpa、5min条件下将该喷涂隔膜和正极极片进行热压处理,而后使用拉力机测试其粘接强度,测试结果为1.2N/m 2
实施例3
a、制备陶瓷浆料:将比表面积为5m 2/g的无机填料氧化铝粉加入到水溶剂中搅拌均匀,而后加入增稠剂搅拌均匀调节浆料的粘度,研磨后加入一定量的粘结剂和润湿剂,混合均匀后获得成品无机涂层浆料。
b、无机浆料的涂覆:选取厚度为9μm的湿法同步双拉聚乙烯隔膜,孔隙率为40%,透气度为160s/100cc,采用微凹版辊式涂覆方式将a步骤中制备的陶瓷浆料涂覆与基膜的一侧,涂覆速度为100m/min,烘干后得到陶瓷涂覆隔膜,陶瓷涂层厚度为3μm。
c、制备聚甲基丙烯酸甲酯喷涂涂层浆料:称取一定量的聚甲基丙烯酸甲酯和增稠剂羧甲基纤维素钠混合,搅拌20min,然后在搅拌作用下加入超纯水调节浆料的固含量并形成均一溶液;最后向上述均一溶液中加入粘接剂和润湿剂,搅拌混合均匀,得到聚甲基丙烯酸甲酯浆料。
d、聚甲基丙烯酸甲酯浆料的涂覆:采用高速旋转喷涂的方式将c步骤中配制的聚甲基丙烯酸甲酯浆料同时喷涂在上述陶瓷涂覆膜的两侧,涂布速度为40m/min,旋转喷头的转速8000rpm/min,65℃烘干后得到喷涂隔膜。单层聚甲基丙烯酸甲酯喷涂涂层厚度为2μm,喷涂点的面积占基膜面积的30%,单个喷涂点中聚甲基丙烯酸甲酯颗粒覆盖面积约占喷涂点面积的100%。
上述锂离子电池用喷涂隔膜的厚度为15.9μm,陶瓷涂层厚度为2.9μm,双面PVDF涂层厚度为4.0μm。利用平板热压机在85℃、1Mpa、5min条件下将该喷涂隔膜和正极极片进行热压处理,而后使用拉力机测试其粘接强度,测试结果为2.8N/m 2
对比例4
使用实施例1中的陶瓷浆料制备9+3陶瓷涂覆膜,然后使用微凹版辊涂覆的方式在9+3陶瓷膜的两面分别涂覆实施例1中的PVDF浆料,下表为两种该产品与实施例1中成品的对比,微凹版辊涂覆成品PVDF覆盖率高,造成透气度大,使得电池内阻偏大,而利用喷涂制得的隔膜覆盖率低,透气度小,电池内阻基本与陶瓷膜电池内阻相近。
Figure PCTCN2020094693-appb-000001

Claims (15)

  1. 一种锂离子电池用喷涂隔膜,其特征在于,所述的喷涂隔膜包括多孔基膜、涂覆在基膜一侧的无机耐热涂层以及喷涂在无机耐热涂层侧和基膜另一侧的有机颗粒点状涂层;所述喷涂隔膜的总厚度为6-50μm,其中有机颗粒点状涂层厚度为0.5μm-10μm,点状涂层的覆盖面积为基材表面积的10%-60%,喷涂点的形状采用近似圆形,单个喷涂点的面积为314μm 2-7mm 2,单个喷涂点内有机颗粒的占比为40-100%,与极片的粘接强度>0.1N/m。
  2. 根据权利要求1所述的一种锂离子电池用喷涂隔膜,其特征在于,所述多孔基膜的材料选自聚乙烯(PE)、聚丙烯(PP)、聚酰亚胺(PI)、聚偏氟乙烯(PVDF)、聚偏氟乙烯-六氟丙烯(PVDF-HFP)、聚酰胺(PA)、聚对苯二甲酸乙二酯(PET)中的一种或几种,基膜厚度为3-25μm,孔隙率为20%-80%,透气度为50-800s/100cc。
  3. 根据权利要求1所述的一种锂离子电池用喷涂隔膜,其特征在于,所述无机耐热涂层厚度为1-10μm,主要为无机填料、增稠剂和粘结剂树脂。
  4. 根据权利要求3所述的一种锂离子电池用喷涂隔膜,其特征在于,所述无机填料为氧化铝、勃姆石、二氧化硅、二氧化钛、氧化锆、氧化镁及氢氧化镁中的任意一种或两种以上的混合物,其比表面积为2-10m 2/g。
  5. 根据权利要求3所述的一种锂离子电池用喷涂隔膜,其特征在于,所述增稠剂为羧甲基纤维素、羟乙基纤维素、羧乙基纤维素、甲基纤维素、羟丙基甲基纤维素、聚丙烯醇及海藻酸钠中任意一种或几种。
  6. 根据权利要求3所述的一种锂离子电池用喷涂隔膜,其特征在于,所述粘结剂树脂为水溶性聚合物,包括聚丙烯酸、聚丙烯酰胺、聚甲基丙烯酸、聚甲基丙烯酸甲酯及聚乙烯醇的一种或几种。
  7. 根据权利要求1所述的一种锂离子电池用喷涂隔膜,其特征在于,所述有机颗粒点状涂层所用的浆料由以下原料组成:质量比为65%-90%的水溶液,质量比为5%-30%的有机聚合物,质量比为0.01%-10%的增稠剂,质量比为0.1%-5%的粘结剂,质量比为0.001%-1%的润湿剂,浆料固含量为5%-30%,粘度为5-100mpa·s。
  8. 根据权利要求7所述的一种锂离子电池用喷涂隔膜,其特征在于,所述有机颗粒包括聚偏氟乙烯(PVDF)、聚偏氟乙烯-六氟丙烯共聚物(PVDF-HFP)、 聚偏氟乙烯-三氟乙烯共聚物(PVDF-TrFE)、聚偏氟乙烯-三氟氯乙烯共聚物(PVDF-CTFE)、四氟乙烯和二氟乙烯共聚物、聚甲基丙烯酸甲酯中的任意一种或者两种以上混合物。
  9. 根据权利要求7所述的一种锂离子电池用喷涂隔膜,其特征在于,所述增稠剂包括羧甲基纤维素、羟乙基纤维素、羧乙基纤维素、甲基纤维素、羟丙基甲基纤维素、聚丙烯醇及海藻酸钠中任意一种或几种。
  10. 根据权利要求7所述的一种锂离子电池用喷涂隔膜,其特征在于,所述粘结剂树脂为水溶性聚合物,包括聚丙烯酸、聚丙烯酰胺、聚甲基丙烯酸、聚甲基丙烯酸甲酯及聚乙烯醇的一种或几种。
  11. 一种制备权利要求1中锂离子电池用喷涂隔膜的方法,其特征在于,
    (1)制备无机耐热层浆料,然后涂覆在基膜一侧,烘干后得到无机耐热层;
    (2)制备有机颗粒点状涂层浆料:
    A.将有机聚合物、增稠剂混合,搅拌捏合成均一的奶油状混合物;
    B.在搅拌作用下向A中加入水溶液调节浆料的固含量并继续搅拌均匀,成均一溶液;
    C.向B中加入粘结剂和润湿剂,混合均匀,得到成品浆料;
    (3)将(2)中的浆料通过旋转喷涂的方式涂覆在基膜的另一侧和无机涂层侧;
    (4)在烘箱中干燥,获得所述的锂离子电池喷涂隔膜。
  12. 根据权利要求11所述的一种锂离子电池用喷涂隔膜制备方法,其特征在于,所述步骤(1)中的涂覆方式采用凹版辊涂布、线棒涂布、狭缝涂布、浸涂中的其中一种。
  13. 根据权利要求11所述的一种锂离子电池用喷涂隔膜制备方法,其特征在于,所述有机聚合物和增稠剂捏合时间≥20min。
  14. 根据权利要求11所述的一种锂离子电池用喷涂隔膜制备方法,其特征在于,所述喷涂车速为10-150m/min,旋转喷涂的转速为3000-15000r/min。
  15. 根据权利要求11所述的一种锂离子电池用喷涂隔膜制备方法,其特征在于,所述烘干温度≤90℃。
PCT/CN2020/094693 2020-03-06 2020-06-05 一种锂离子电池用喷涂隔膜及其制备方法 WO2021174709A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010149581.0A CN113363672A (zh) 2020-03-06 2020-03-06 一种锂离子电池用喷涂隔膜及其制备方法
CN202010149581.0 2020-03-06

Publications (1)

Publication Number Publication Date
WO2021174709A1 true WO2021174709A1 (zh) 2021-09-10

Family

ID=77523924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094693 WO2021174709A1 (zh) 2020-03-06 2020-06-05 一种锂离子电池用喷涂隔膜及其制备方法

Country Status (2)

Country Link
CN (1) CN113363672A (zh)
WO (1) WO2021174709A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156595A (zh) * 2021-12-02 2022-03-08 新乡市中科科技有限公司 一种半固态锂电池用复合隔膜及其制备方法
CN114284642A (zh) * 2021-11-24 2022-04-05 荣盛盟固利新能源科技股份有限公司 一种多层涂覆隔膜及其所制备的聚合物电池
CN114335899A (zh) * 2022-01-30 2022-04-12 中材锂膜有限公司 复合涂层隔膜及其制备方法
CN114597591A (zh) * 2022-05-10 2022-06-07 四川新能源汽车创新中心有限公司 锂电池隔膜及其制备方法和应用
CN114976490A (zh) * 2022-06-27 2022-08-30 山东大学 一种层叠状二氧化钛改性隔膜及其制备方法和应用
CN115149214A (zh) * 2022-06-16 2022-10-04 浙江锂威电子科技有限公司 一种电池隔膜及其制备方法和电池
CN115441123A (zh) * 2022-10-14 2022-12-06 贺州学院 一种高吸液率、高阻燃的电池隔膜及制备方法
CN116190920A (zh) * 2023-04-26 2023-05-30 宁德卓高新材料科技有限公司 一种涂覆隔膜及其制备方法及应用
CN116435711A (zh) * 2023-06-14 2023-07-14 中材锂膜(内蒙古)有限公司 聚合物涂覆隔膜及其制备方法和电池
CN116505196A (zh) * 2023-06-30 2023-07-28 中材锂膜(内蒙古)有限公司 喷涂点内聚合物二次团聚体均匀分布的喷涂涂覆隔膜及其制备方法和电池
WO2024012377A1 (zh) * 2022-07-14 2024-01-18 华为技术有限公司 电池隔膜及其制备方法、电池和电子装置
WO2024016952A1 (zh) * 2023-05-09 2024-01-25 湖北亿纬动力有限公司 一种复合隔膜及其制备方法和二次电池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113964373A (zh) * 2021-09-29 2022-01-21 惠州锂威新能源科技有限公司 一种隔膜及其制备方法以及锂离子电池
CN114464952A (zh) * 2022-01-30 2022-05-10 中材锂膜有限公司 一种高耐热杂环芳纶涂覆隔膜及其制备方法
CN114665218A (zh) * 2022-03-01 2022-06-24 中材锂膜有限公司 电池隔膜及其制备方法和电池
CN114649638B (zh) * 2022-05-20 2022-09-06 宁德卓高新材料科技有限公司 一种涂覆隔膜及其制备方法及应用
CN115101891B (zh) * 2022-07-19 2024-03-05 中材锂膜有限公司 一种锂离子电池隔膜的制备方法
CN115207566A (zh) * 2022-08-24 2022-10-18 宁德卓高新材料科技有限公司 一种pmma/pvdf复合隔膜及其制备方法及应用
CN115986324B (zh) * 2023-03-21 2023-08-18 宁德卓高新材料科技有限公司 一种高粘结性隔膜及其制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352488A (zh) * 2016-04-01 2018-07-31 株式会社Lg化学 包含粘合层的用于电化学装置的隔板以及包含该隔板的电极组件
CN109994695A (zh) * 2019-05-29 2019-07-09 东莞东阳光科研发有限公司 聚合物浆料、复合隔膜及其制备方法
CN110085790A (zh) * 2019-05-06 2019-08-02 江苏安瑞达新材料有限公司 锂电池用低阻抗高粘结性点状涂覆隔膜的制备工艺
CN110085789A (zh) * 2019-04-26 2019-08-02 东莞东阳光科研发有限公司 一种电池隔膜的制备方法
CN209515826U (zh) * 2019-05-06 2019-10-18 江苏安瑞达新材料有限公司 一种锂电池用低阻抗高粘结性点状涂覆隔膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352488A (zh) * 2016-04-01 2018-07-31 株式会社Lg化学 包含粘合层的用于电化学装置的隔板以及包含该隔板的电极组件
CN110085789A (zh) * 2019-04-26 2019-08-02 东莞东阳光科研发有限公司 一种电池隔膜的制备方法
CN110085790A (zh) * 2019-05-06 2019-08-02 江苏安瑞达新材料有限公司 锂电池用低阻抗高粘结性点状涂覆隔膜的制备工艺
CN209515826U (zh) * 2019-05-06 2019-10-18 江苏安瑞达新材料有限公司 一种锂电池用低阻抗高粘结性点状涂覆隔膜
CN109994695A (zh) * 2019-05-29 2019-07-09 东莞东阳光科研发有限公司 聚合物浆料、复合隔膜及其制备方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284642A (zh) * 2021-11-24 2022-04-05 荣盛盟固利新能源科技股份有限公司 一种多层涂覆隔膜及其所制备的聚合物电池
CN114156595A (zh) * 2021-12-02 2022-03-08 新乡市中科科技有限公司 一种半固态锂电池用复合隔膜及其制备方法
CN114156595B (zh) * 2021-12-02 2024-04-02 新乡市中科科技有限公司 一种半固态锂电池用复合隔膜及其制备方法
CN114335899A (zh) * 2022-01-30 2022-04-12 中材锂膜有限公司 复合涂层隔膜及其制备方法
CN114597591A (zh) * 2022-05-10 2022-06-07 四川新能源汽车创新中心有限公司 锂电池隔膜及其制备方法和应用
CN115149214B (zh) * 2022-06-16 2024-04-02 浙江锂威电子科技有限公司 一种电池隔膜及其制备方法和电池
CN115149214A (zh) * 2022-06-16 2022-10-04 浙江锂威电子科技有限公司 一种电池隔膜及其制备方法和电池
CN114976490A (zh) * 2022-06-27 2022-08-30 山东大学 一种层叠状二氧化钛改性隔膜及其制备方法和应用
WO2024012377A1 (zh) * 2022-07-14 2024-01-18 华为技术有限公司 电池隔膜及其制备方法、电池和电子装置
CN115441123A (zh) * 2022-10-14 2022-12-06 贺州学院 一种高吸液率、高阻燃的电池隔膜及制备方法
CN115441123B (zh) * 2022-10-14 2024-03-08 贺州学院 一种高吸液率、高阻燃的电池隔膜及制备方法
CN116190920A (zh) * 2023-04-26 2023-05-30 宁德卓高新材料科技有限公司 一种涂覆隔膜及其制备方法及应用
CN116190920B (zh) * 2023-04-26 2023-09-05 宁德卓高新材料科技有限公司 一种涂覆隔膜及其制备方法及应用
WO2024016952A1 (zh) * 2023-05-09 2024-01-25 湖北亿纬动力有限公司 一种复合隔膜及其制备方法和二次电池
CN116435711A (zh) * 2023-06-14 2023-07-14 中材锂膜(内蒙古)有限公司 聚合物涂覆隔膜及其制备方法和电池
CN116435711B (zh) * 2023-06-14 2023-08-25 中材锂膜(内蒙古)有限公司 聚合物涂覆隔膜及其制备方法和电池
CN116505196B (zh) * 2023-06-30 2023-09-22 中材锂膜(内蒙古)有限公司 喷涂点内聚合物二次团聚体均匀分布的喷涂涂覆隔膜及其制备方法和电池
CN116505196A (zh) * 2023-06-30 2023-07-28 中材锂膜(内蒙古)有限公司 喷涂点内聚合物二次团聚体均匀分布的喷涂涂覆隔膜及其制备方法和电池

Also Published As

Publication number Publication date
CN113363672A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2021174709A1 (zh) 一种锂离子电池用喷涂隔膜及其制备方法
WO2019153822A1 (zh) 一种粘结性聚合物涂覆锂离子电池隔膜及其制备方法
KR102650447B1 (ko) 비수계 이차 전지 다공막용 바인더 조성물, 비수계 이차 전지 다공막용 슬러리 조성물, 비수계 이차 전지용 다공막, 그리고 비수계 이차 전지 및 그 제조 방법
CN104269505B (zh) 一种复合锂离子电池隔膜及其制备方法
CN109192903A (zh) 一种锂离子电池用包覆改性陶瓷涂覆隔膜的制备方法
WO2016086783A1 (zh) 锂离子电池隔膜制造方法及其制得的电池隔膜和电池
WO2022161088A1 (zh) 一种轻量化锂离子电池隔膜用涂层材料及其制备方法和轻量化锂离子电池复合隔膜
CN211789234U (zh) 一种锂离子电池用喷涂隔膜
CN111129406A (zh) 一种水系高粘性涂胶隔膜、其制备方法和在电池中的应用
CN109004153A (zh) 一种超薄电极支撑型无机隔膜及其制备方法
JPWO2005013298A1 (ja) 電気二重層キャパシタ電極用バインダー
CN108183192A (zh) 一种陶瓷浆料及锂离子电池隔膜
CN103545475B (zh) 锂离子电池硫酸钡隔膜及其制备方法
CN110911620B (zh) 点状涂覆隔膜浆料、复合隔膜及其制备方法
CN110600660A (zh) 一种表面改性氧化铝陶瓷涂层隔膜的制备方法
CN111129393A (zh) 一种混合涂覆的锂电池隔膜及其制备方法
WO2017002366A1 (ja) 二次電池多孔膜用組成物、二次電池用多孔膜および二次電池
CN106816575A (zh) 正极片及锂离子电池
CN115275514B (zh) 电池隔膜及其制备方法和电池
CN109037549A (zh) 一种电极支撑型无机隔膜的制备工艺
JP2015070245A (ja) 電気化学キャパシタ用バインダー組成物、電気化学キャパシタ用スラリー組成物、電気化学キャパシタ用電極及び電気化学キャパシタ
CN109301139B (zh) 一种锂离子电池用聚合物涂层隔膜
CN109244321B (zh) 一种锂电池隔膜用耐热水性涂层及其制备方法、应用
CN207938697U (zh) 一种带有颜色标识涂层的陶瓷隔膜
CN115810872A (zh) 一种电池隔膜及其制备方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922763

Country of ref document: EP

Kind code of ref document: A1