WO2016086783A1 - 锂离子电池隔膜制造方法及其制得的电池隔膜和电池 - Google Patents

锂离子电池隔膜制造方法及其制得的电池隔膜和电池 Download PDF

Info

Publication number
WO2016086783A1
WO2016086783A1 PCT/CN2015/095583 CN2015095583W WO2016086783A1 WO 2016086783 A1 WO2016086783 A1 WO 2016086783A1 CN 2015095583 W CN2015095583 W CN 2015095583W WO 2016086783 A1 WO2016086783 A1 WO 2016086783A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
lithium ion
ion battery
polymer material
organic polymer
Prior art date
Application number
PCT/CN2015/095583
Other languages
English (en)
French (fr)
Inventor
方祺
陈卫
刘勇标
Original Assignee
东莞市卓高电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市卓高电子科技有限公司 filed Critical 东莞市卓高电子科技有限公司
Publication of WO2016086783A1 publication Critical patent/WO2016086783A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of lithium ion battery technology, and more particularly to a method for manufacturing a lithium ion battery separator and a battery separator and battery therefor.
  • Lithium-ion batteries have the advantages of small size, light weight, and high energy density, which can be used as clean energy in electric vehicles.
  • the separator of a lithium ion battery functions as a separator for the positive and negative electrodes in the battery.
  • the commonly used lithium ion battery separator is a polymer material such as polyethylene, polypropylene or a composite material of polyethylene and polypropylene, which is used in the manufacture of the separator.
  • a multi-aperture film is prepared by a lift-up or extraction method.
  • the electrolytes are stored in the micropores, and the electrolyte is a carrier in which lithium ions move back and forth between the positive and negative electrodes.
  • Lithium-ion battery is used as a battery that can be charged and discharged multiple times. The electrolyte will be gradually consumed during charging and discharging. When the amount of electrolyte is too low to meet the normal movement of lithium ions between the positive and negative electrodes, the performance of the lithium-ion battery will be It becomes worse, resulting in failure to maintain normal charge and discharge.
  • the separator material is a porous polymer material, and when the material is heated, the material shrinks and breaks the membrane, causing a short circuit between the positive and negative electrodes to cause a fire accident.
  • the packaging method of the battery core it can be divided into hard shell packaging, such as steel shell and aluminum shell battery; the other packaging method is flexible packaging method using aluminum plastic composite film packaging, and the battery of flexible packaging method is high in safety.
  • the battery model is flexible and varied in the mainstream of lithium-ion batteries.
  • smartphones and tablets become a common use of modern network communication tools, these electronic devices are also In the development of light, thin and other portable, this requires that the lithium-ion battery used in it should also be designed in a thin and wide direction, and only the flexible packaging battery has a thin design advantage.
  • the battery needs to be designed with sufficient capacity, which requires an increase in the length and width direction of the battery.
  • Another disadvantage of this design is that the battery is very soft and easily deformed to deteriorate the battery performance.
  • the current solution is to dissolve the separator for the battery in an organic solvent with PVDF-HFP (vinylidene fluoride-hexafluoropropylene copolymer), and then apply it to the separator by dip coating, and then In the process of using the thermal composite method and the positive electrode tab to improve the hardness of the battery, the disadvantage of using this method is that PVDF-HFP will enter the pore of the membrane with the solvent, resulting in poor battery charge and discharge performance.
  • PVDF-HFP vinylene fluoride-hexafluoropropylene copolymer
  • the main object of the present invention is to provide a method for manufacturing a lithium ion battery separator and a battery separator and a battery thereof, which are required to be coated only once, have a simple process, and have better discharge cycle performance, safety performance and battery. Hardness performance.
  • a method for manufacturing a lithium ion battery separator comprising the following process steps:
  • a layer of organic polymer material is coated on the surface of the ceramic powder by solid phase coating or liquid phase coating to obtain a ceramic particle powder coated with an organic polymer material layer, and the dried granulated powder Powder screening is used;
  • the ceramic powder coated with the above steps is added with a solvent, a glue and an sizing agent into a ceramic slurry;
  • the liquid phase coating process comprises the following steps:
  • the organic polymer material is dissolved in a solvent by stirring to form an organic polymer material solution;
  • the solvent capable of dissolving the organic polymer material may be a solvent such as NMP, acetone or water.
  • the solid phase coating process comprises the following steps: the organic polymer material powder and the ceramic powder are solid-phase coated by stirring, ball milling, mechanical fusion, and then heated and dissolved. A thin coating layer is formed on the surface of the ceramic powder.
  • the content of the organic polymer material in the solution of the organic polymer material is 5% to 50%
  • the organic polymer material in the step a is a phenol resin, an epoxy resin, a polyvinylidene fluoride resin, One or a mixture of epoxy resin, polyacrylic acid, styrene-butadiene rubber
  • the amount of ceramic powder added in the step b is 50 to 95% of the solution of the organic polymer material in the step a.
  • the ceramic powder is an electronically insulating oxide or an inorganic salt
  • the oxide is aluminum oxide or titanium oxide
  • the inorganic salt is barium sulfate.
  • the ceramic powder D50 of the ceramic powder in the step b is 0.1 to 10 ⁇ m.
  • the organic polymer material layer coated with the ceramic particles has a thickness of 0.05 to 2 ⁇ m; and the ceramic slurry coated on the separator substrate has a thickness of 0.5 to 20 ⁇ m after drying. .
  • a lithium ion battery separator includes a separator substrate, a ceramic layer is attached to the separator substrate, and the ceramic layer is a ceramic particle layer, and each ceramic particle is coated with an organic polymer material layer.
  • the organic polymer material layer coated with the ceramic particles has a thickness of 0.05 to 2 ⁇ m; and the ceramic layer coated on the separator substrate has a thickness of 0.5 to 10 ⁇ m.
  • a lithium ion battery comprising a battery pole piece to which the battery separator according to any one of claims 1 to 9 is attached.
  • the ceramic is first coated with an organic polymer material layer, and the coating layer has a positive electrode and a positive electrode.
  • the bonding function of the sheet reaches the hardness required of the battery, and the lithium ion battery produced by the lithium ion battery separator, in particular, the thin and long and wide battery can ensure sufficient hardness; on the other hand, the shrinkage rate when heated is low,
  • the ceramic layer coated on the surface of the diaphragm can form a skeleton to support the diaphragm when the diaphragm is heated, so that the membrane rupture temperature is increased, and the safety of the battery is increased; in addition, in the process of fabricating the battery separator, only one coating is required, and the coating is applied.
  • the coating process is reduced by half, which can greatly avoid the quality defects caused by multiple coating processes, the cost is significantly lower, and the efficiency is at least doubled.
  • Figure 1 is an enlarged schematic view of a ceramic particle in an embodiment of the present invention.
  • FIG. 2 is a schematic view of a three-point hardness test apparatus in an embodiment of the present invention.
  • a method for manufacturing a lithium ion battery separator comprising:
  • LBG-1 a polyvinylidene fluoride PVDF
  • the 50% cumulative diameter D50 in the particle size distribution of the ceramic powder is 0.5 ⁇ m, and the stirring is uniform.
  • the prepared slurry was applied by gravure printing on a 9 ⁇ m thick membrane substrate polypropylene separator and dried, and after coating drying, the coating thickness was 3 ⁇ m.
  • the lithium ion battery separator has a total thickness of 12 micrometers, wherein the polypropylene film is 9 micrometers, the granular ceramic coating layer is 3 micrometers, and the ceramic particles are coated. There is a layer of polyvinylidene fluoride resin, and the thickness of the coating layer is about 0.1 ⁇ m.
  • a method for manufacturing a lithium ion battery separator comprising:
  • LBG-1 a polyvinylidene fluoride PVDF
  • the 50% cumulative diameter D50 in the particle size distribution of the ceramic powder is 0.5 um, and the stirring is uniform.
  • the prepared slurry was applied by gravure printing on a 9 ⁇ m thick membrane substrate polypropylene separator and dried, and after coating drying, the coating thickness was 3 ⁇ m.
  • the lithium ion battery separator has a total thickness of 12 micrometers, wherein the polypropylene film is 9 micrometers, the granular ceramic coating layer is 3 micrometers, and the ceramic particles are coated. There is a layer of polyvinylidene fluoride resin, and the thickness of the coating layer is about 0.2 ⁇ m.
  • a method for manufacturing a lithium ion battery separator comprising:
  • the ceramic powder and LBG-1 (a polyvinylidene fluoride PVDF) according to 75:25 added to the mechanical fusion equipment and mixed evenly;
  • step a the mixture in step a is heated to 160 degrees and stirred for 2 hours and then cooled, so that LBG-1 forms a coating layer of about 0.1 micron thickness on the surface of the ceramic particles;
  • the lithium ion battery separator has a total thickness of 12 micrometers, wherein the polypropylene film is 9 micrometers, the granular ceramic coating layer is 3 micrometers, and the ceramic particles are coated. There is a layer of polyvinylidene fluoride resin, and the thickness of the coating layer is about 0.1 ⁇ m.
  • the heat-shrink test was carried out by cutting the coated separators of the foregoing three examples with the same thickness of the uncoated separator to the same width, and the test results are shown in Table 1 below.
  • the coated separator prepared by the foregoing three examples and the separator not coated with the same thickness are cut into a required width, and are wound into a battery core together with the positive and negative electrodes, and the battery type is 426090 (4.2 mm thick, The width is 60mm and the length is 90mm.
  • the battery core is filled with liquid, 85 degrees hot pressing, normal temperature cold pressing, compounding, forming, filling and encapsulating.
  • the battery is tested by three-point hardness test (see Figure 2, both ends are fixed, the middle applied pressure 3 runs a distance to make the measured object 4 deform to a certain extent, test the magnitude of the force required to compare the unit stroke), and compare the test results. See Table 2 below.
  • the lithium battery separator coated with the ceramic coated with the organic material layer has a smaller shrinkage ratio and more excellent hardness properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)

Abstract

本发明涉公开一种锂离子电池隔膜制造方法及其制得的电池隔膜和电池,包括步骤:a.通过固相包覆或液相包覆的方式在陶瓷粉料表面包覆一层有机高分子材料层,得到包覆有机高分子材料层的陶瓷颗粒粉料,将此干燥造粒后的粉料筛分待用;b.将上述步骤包覆过的陶瓷粉料加溶剂、胶和浸润剂配置成陶瓷浆料;c.将前述陶瓷浆料涂覆在锂离子电池隔膜基材上,制得一种锂离子电池隔膜。其陶瓷先包覆了有机高分子材料层,用该种锂离子电池隔膜生产的锂离子电池尤其是薄而长且宽的电池能保证足够的硬度;其受热时的收缩率低,使隔膜的破膜温度提高,增加电池的安全性;其只需要涂覆一次,成本明显较低,效率提高至少一倍。

Description

锂离子电池隔膜制造方法及其制得的电池隔膜和电池 技术领域
本发明涉及锂离子电池领域技术,尤其是指一种锂离子电池隔膜制造方法及其制得的电池隔膜和电池。
背景技术
以石油为代表的化石资源日益减少,以石油作为原料的汽车给我们带来便利的同时也给我们带来了日益恶化的环境,人类在不遗余力的寻找清洁的替代能源。锂离子电池具有体积小、质量轻、能量密度高等优点可在电动汽车上作为清洁能源使用。锂离子电池的隔膜在电池中起到隔断正负极片,通常用的锂离子电池隔膜为高分子材料如聚乙烯、聚丙烯或者聚乙烯和聚丙烯复合材料,这些材料在制造隔膜过程中以拉升或者萃取方法制备多出孔薄膜,这些微孔中可储存电解液,这些电解液为锂离子在正负极来回移动的载体。锂离子电池作为可多次充放电循环的电池,其电解液在充放电过程会逐渐消耗,当电解液量消耗到不能满足锂离子在正负极间正常移动时,锂离子电池的性能就会变得恶化,导致不能维持正常充放电。另外隔膜材料为多孔高分子材料,在受热时材料会收缩破膜导致正负极片短路而发生起火燃烧的安全事故。
在锂离子电池中按照电芯的包装方式可分为硬壳包装,如钢壳和铝壳电池;另一种包装方式是用铝塑复合膜包装的软包装方式,软包装方式的电池由于安全性高,电池型号灵活多变在锂离子电池中占主流。由于智能手机和平板电脑成为现代网络信息沟通工具的普遍使用,这些电子设备也 在向轻、薄等利于便携方面发展,这就要求使用于其中的锂离子电池也要向薄和宽的方向设计,只有软包装电池具有薄的设计优势。但是,为了保证电子设备的待机时间,电池需要设计足够的容量,这使得电池长度和宽度方向需要增加,这种设计带来的另一弊端是电池会很柔软,容易变形导致电池性能恶化。为了增加电池的硬度,目前的解决方法是将电池用的隔膜用PVDF-HFP(偏氟乙烯-六氟丙烯共聚物)溶解于有机溶剂中,然后以浸涂的方式涂覆在隔膜上,然后在工艺过程中用热复合方式与正极极片粘住提高电池的硬度,使用这种方式带来的弊端是PVDF-HFP会随溶剂进入隔膜的孔中,导致电池充放电性能变差。
为了解决电池的安全和硬度问题,还有一种实现方式先在隔膜上涂覆一层2~6um的陶瓷层,然后再涂覆一层PVDF-HFP(偏氟乙烯-六氟丙烯共聚物),这层PVDF-HFP层与正极极片对应,然后在有电解液作用下使用加热复合的方式使涂覆层和正极极片粘合在一起提高电池的硬度,使用这种方法隔膜要涂覆2次,尤其是针对极薄的隔膜基材而言,本身涂覆困难,而涂覆多次更会造成品质不良和品质隐患大大增加,并且电池加电解液后需要高温静置,工艺复杂,成本高。
发明内容
本发明的主要目的是提供一种锂离子电池隔膜制造方法及其制得的电池隔膜和电池,其陶瓷层仅需要涂覆一次,工艺简单,且具有更佳的放电循环性能、安全性能和电池硬度性能。
为实现上述目的,本发明采用如下之技术方案:
一种锂离子电池隔膜制造方法,包括下述工艺步骤:
a.通过固相包覆或液相包覆的方式在陶瓷粉料表面包覆一层有机高分子材料层,得到包覆有机高分子材料层的陶瓷颗粒粉料,将此干燥造粒后的粉料筛分待用;
b.将上述步骤包覆过的陶瓷粉料加溶剂、胶和浸润剂配置成陶瓷浆料;
c.将前述陶瓷浆料涂覆在锂离子电池隔膜基材上,制得一种锂离子电池隔膜。
作为一种优选方案,所述液相包覆过程包含下述步聚:
a1.将有机高分子材料通过搅拌方式溶解于溶剂中,形成有机高分子材料溶液;可溶解该有机高分子材料的溶剂可以是NMP、丙酮或者水等溶剂。
a2.在前述有机高分子材料溶液中加入陶瓷粉料,搅拌混合均匀;
a3.通过加热方式蒸发干燥或喷雾干燥掉前述步骤a2中混合物中的溶剂,得到包覆有机高分子材料层的陶瓷颗粒粉料。
作为一种优选方案,所述固相包覆过程包含下述步聚:将有机高分子材料粉体和陶瓷粉体用搅拌、球磨、机械融合方式进行固相包覆,然后用加热溶解方法在陶瓷粉体表面形成一薄层包覆层。
作为一种优选方案,所述有机高分子材料溶液中的有机高分子材料含量为5%~50%,所述步骤a中有机高分子材料为酚醛树脂、环氧树脂、聚偏氟乙烯树脂、环氧树脂、聚丙烯酸、丁苯橡胶中的一种或者几种混合物;所述步骤b中加入陶瓷粉用量占步骤a中有机高分子材料溶液的50~95%。
作为一种优选方案,所述陶瓷粉料为电子绝缘的氧化物或者无机盐类,所述氧化物为三氧化二铝或氧化钛,所述无机盐类为硫酸钡。
作为一种优选方案,所述步骤b中陶瓷粉料各陶瓷颗粒D50为0.1~10微米。
作为一种优选方案,所述陶瓷颗粒外包覆之有机高分子材料层厚度为0.05~2微米;所述涂覆在隔膜基材上的陶瓷浆料,烘干后的厚度为0.5~20微米。
一种锂离子电池隔膜,包括有隔膜基材,该隔膜基材上附着有一陶瓷层,并该陶瓷层为陶瓷颗粒层,各陶瓷颗粒上包覆有有机高分子材料层。
作为一种优选方案,所述陶瓷颗粒外包覆之有机高分子材料层厚度为0.05~2微米;所述涂覆在隔膜基材上的陶瓷层厚度为0.5~10微米。
一种锂离子电池,包括有电池极片,该电池极片上贴附有前述权利要求1至9中任一项所述的电池隔膜。
本发明与现有技术相比具有明显的优点和有益效果,具体而言,由上述技术方案可知,一方面,其陶瓷先包覆了有机高分子材料层,这层包覆层有和正极极片粘接功能,达到电池需要的硬度,用该种锂离子电池隔膜生产的锂离子电池尤其是薄而长且宽的电池能保证足够的硬度;另一方面,其受热时的收缩率低,涂覆于隔膜表面的陶瓷层可形成骨架在隔膜受热时支撑住隔膜,使隔膜的破膜温度提高,增加电池的安全性;再者,其制作电池隔膜过程中,只需要涂覆一次,涂覆工序减少了一半,可大大避免多次涂覆工序中造成的品质不良,成本明显较低,效率提高至少一倍。
为更清楚地阐述本发明的结构特征、技术手段及其所达到的具体目的和功能,下面结合附图与具体实施例来对本发明作进一步详细说明:
附图说明
图1是本发明之实施例中一陶瓷颗粒的放大示意图。
图2是本发明之实施例中三点法硬度测试装置的示意图。
附图标识说明:
1、陶瓷颗粒,2、包覆层,3、压力器,4、被测物。
具体实施方式
实施例1
一种锂离子电池隔膜制造方法,其工艺步骤包括:
a.将5%含量的LBG-1(一种聚偏氟乙烯PVDF)加入丙酮中,开启搅拌机搅拌溶解成均匀透明的有机高分子材料溶液。
b.在上述溶液中加入固体物质含量占该溶液30%的陶瓷粉料,该陶瓷粉料粒径分布中的50%累积直径D50为0.5微米,搅拌均匀。
c.将上述混合物加热方式蒸发干燥掉混合物中的溶剂,使陶瓷颗粒1表面包覆一层聚偏氟乙烯树脂PVDF 2(见附图1),包覆层2厚度约为0.1微米,得到包覆有机高分子材料层的陶瓷颗粒粉料。
d、将上述包覆后的陶瓷粉料加入SBR(丁苯橡胶)乳液、CMC(羧甲基纤维素)和去离子水中搅拌均匀。
e、将上述准备好的浆料用凹版印刷的方式涂覆在9微米厚的隔膜基材聚丙烯隔膜上并干燥,涂覆干燥后,涂层厚度为3微米。
藉此,可制得本实施例的一种锂离子电池隔膜,该锂离子电池隔膜总厚度12微米,其中,聚丙烯膜9微米,颗粒式陶瓷涂层为3微米,各陶瓷颗粒上包覆有一层聚偏氟乙烯树脂,该包覆层的厚度为0.1微米左右。
实施例2
一种锂离子电池隔膜制造方法,其工艺步骤包括:
a.将10%含量的LBG-1(一种聚偏氟乙烯PVDF)加入丙酮中,开启搅拌机搅拌溶解成均匀透明的溶液。
b.在上述溶液中加入固体物质含量占该溶液30%的陶瓷粉料,该陶瓷粉料粒径分布中的50%累积直径D50为0.5um,搅拌均匀。
c.将上述混合物喷雾干燥掉混合物中的溶剂,使陶瓷颗粒表面包覆一层PVDF(见附图1),包覆层厚度约为0.2微米。
d、将上述包覆后的陶瓷粉料加入SBR(丁苯橡胶)乳液、CMC(羧甲基纤维素)和去离子水中搅拌均匀。
e、将上述准备好的浆料用凹版印刷的方式涂覆在9微米厚的隔膜基材聚丙烯隔膜上并干燥,涂覆干燥后,涂层厚度为3微米。
藉此,可制得本实施例的一种锂离子电池隔膜,该锂离子电池隔膜总厚度12微米,其中,聚丙烯膜9微米,颗粒式陶瓷涂层为3微米,各陶瓷颗粒上包覆有一层聚偏氟乙烯树脂,该包覆层的厚度为0.2微米左右。
实施例3
一种锂离子电池隔膜制造方法,其工艺步骤包括:
a、将陶瓷粉和LBG-1(一种聚偏氟乙烯PVDF)按照75:25加入机械融合设备中混合均匀;
b、将a步中混合料加热到160度搅拌2小时后冷却,使LBG-1在陶瓷颗粒表面形成一层约0.1微米厚度的包覆层;
c、将上述包覆后的陶瓷粉料加入SBR(丁苯橡胶)乳液,CMC(羧甲基纤维素)和去离子水中搅拌均匀。
d、将上述准备好的浆料用凹版印刷的方式涂覆在9微米聚丙烯隔膜上 并干燥,涂覆干燥后涂层厚度为3微米。
藉此,可制得本实施例的一种锂离子电池隔膜,该锂离子电池隔膜总厚度12微米,其中,聚丙烯膜9微米,颗粒式陶瓷涂层为3微米,各陶瓷颗粒上包覆有一层聚偏氟乙烯树脂,该包覆层的厚度为0.1微米左右。
用前述三个实施例中涂覆过的隔膜与相同厚度的未涂覆的隔膜裁切成相同宽度进行热收缩测试,测试结果如下表一。
表一:隔膜收缩性能比较
Figure PCTCN2015095583-appb-000001
用前述三个实施例制得的涂覆过的隔膜和未涂覆相同厚度的隔膜裁切成需要的宽度,与正负极一起卷绕成电芯,电芯型号为426090(厚4.2mm、宽60mm、长90mm),电芯经过注液、85度热压、常温冷压复合、化成、分容、封装成型。将电池进行用三点法硬度测试(见附图2、两端固定,中间施加压力3运行一段距离使被测物4形变一定程度,测试比较单位行程所需要的力的大小),比较测试结果如下表二。
表二:电池硬度比较
Figure PCTCN2015095583-appb-000002
Figure PCTCN2015095583-appb-000003
由前述表一和表二可知,涂覆有包覆有机材料层的陶瓷的锂电池隔膜具有更小的收缩率和更优异的硬度性能。
以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种锂离子电池隔膜制造方法,其特征在于:包括下述工艺步骤:
    a.通过固相包覆或液相包覆的方式在陶瓷粉料表面包覆一层有机高分子材料层,得到包覆有机高分子材料层的陶瓷颗粒粉料,将此干燥造粒后的粉料筛分待用;
    b.将上述步骤包覆过的陶瓷粉料加溶剂、胶和浸润剂配置成陶瓷浆料;
    c.将前述陶瓷浆料涂覆在锂离子电池隔膜基材上,制得一种锂离子电池隔膜。
  2. 根据权利要求1所述的锂离子电池隔膜制造方法,其特征在于:所述液相包覆过程包含下述步聚:
    a1.将有机高分子材料通过搅拌方式溶解于溶剂中,形成有机高分子材料溶液;
    a2.在前述有机高分子材料溶液中加入陶瓷粉料,搅拌混合均匀;
    a3.通过加热方式蒸发干燥或喷雾干燥掉前述步骤a2中混合物中的溶剂,得到包覆有机高分子材料层的陶瓷颗粒粉料。
  3. 根据权利要求1所述的锂离子电池隔膜制造方法,其特征在于:所述固相包覆过程包含下述步聚:将有机高分子材料粉体和陶瓷粉体用搅拌、球磨、机械融合方式进行固相包覆,然后用加热溶解方法在陶瓷粉体表面形成一薄层包覆层。
  4. 根据权利要求1所述的锂离子电池隔膜制造方法,其特征在于:所述有机高分子材料溶液中的有机高分子材料含量为5%~50%,所述步骤a中有机高分子材料为酚醛树脂、环氧树脂、聚偏氟乙烯树脂、环氧树脂、聚 丙烯酸、丁苯橡胶中的一种或者几种混合物;所述步骤b中加入陶瓷粉用量占步骤a中有机高分子材料溶液的50~95%。
  5. 根据权利要求1所述的锂离子电池隔膜制造方法,其特征在于:所述陶瓷粉料为电子绝缘的氧化物或者无机盐类,所述氧化物为三氧化二铝或氧化钛,所述无机盐类为硫酸钡。
  6. 根据权利要求1所述的锂离子电池隔膜制造方法,其特征在于:所述步骤b中陶瓷粉料各陶瓷颗粒D50为0.1~10微米。
  7. 根据权利要求1所述的锂离子电池隔膜制造方法,其特征在于:所述陶瓷颗粒外包覆之有机高分子材料层厚度为0.05~2微米;所述涂覆在隔膜基材上的陶瓷浆料,烘干后的厚度为0.5~20微米。
  8. 一种锂离子电池隔膜,包括有隔膜基材,其特征在于:该隔膜基材上附着有一陶瓷层,并该陶瓷层为陶瓷颗粒层,各陶瓷颗粒上包覆有有机高分子材料层。
  9. 根据权利要求8所述的锂离子电池隔膜,其特征在于:所述陶瓷颗粒外包覆之有机高分子材料层厚度为0.05~2微米;所述涂覆在隔膜基材上的陶瓷层厚度为0.5~10微米。
  10. 一种锂离子电池,包括有电池极片,其特征在于:该电池极片上贴附有前述权利要求1至9中任一项所述的电池隔膜。
PCT/CN2015/095583 2014-12-01 2015-11-26 锂离子电池隔膜制造方法及其制得的电池隔膜和电池 WO2016086783A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410714344.9A CN104362275A (zh) 2014-12-01 2014-12-01 锂离子电池隔膜制造方法及其制得的电池隔膜和电池
CN201410714344.9 2014-12-01

Publications (1)

Publication Number Publication Date
WO2016086783A1 true WO2016086783A1 (zh) 2016-06-09

Family

ID=52529518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095583 WO2016086783A1 (zh) 2014-12-01 2015-11-26 锂离子电池隔膜制造方法及其制得的电池隔膜和电池

Country Status (2)

Country Link
CN (1) CN104362275A (zh)
WO (1) WO2016086783A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521616A (zh) * 2019-08-30 2021-03-19 比亚迪股份有限公司 接枝陶瓷粉体及制备方法、陶瓷隔膜及制备方法、锂离子电池、电池模组和电池包

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362275A (zh) * 2014-12-01 2015-02-18 东莞市卓高电子科技有限公司 锂离子电池隔膜制造方法及其制得的电池隔膜和电池
CN105140453B (zh) * 2015-08-26 2017-09-08 厦门大学 一种具有热关断功能的陶瓷复合隔膜及其应用
CN105390642A (zh) * 2015-11-06 2016-03-09 中国第一汽车股份有限公司 聚多巴胺处理陶瓷粒子改性无纺布隔膜的制备方法
CN108493389A (zh) * 2018-05-03 2018-09-04 厦门大学 一种酚醛树脂改性陶瓷隔膜及其应用
CN109309184A (zh) * 2018-08-17 2019-02-05 佛山市东航光电科技股份有限公司 一种酚醛树脂微球涂覆隔膜的制备方法
CN109192903A (zh) * 2018-08-20 2019-01-11 合肥国轩高科动力能源有限公司 一种锂离子电池用包覆改性陶瓷涂覆隔膜的制备方法
CN109742290A (zh) * 2018-12-13 2019-05-10 中航锂电(洛阳)有限公司 一种压敏耐高温型功能隔膜、压敏耐高温颗粒及制备方法
CN110474085A (zh) * 2019-08-12 2019-11-19 深圳市科瑞隆科技有限公司 高温型高电压锂离子电池及其制作方法
CN110993912A (zh) * 2019-09-25 2020-04-10 东莞赣锋电子有限公司 一种硅碳负极电池的制备
CN110635090B (zh) * 2019-09-27 2022-04-29 宁德卓高新材料科技有限公司 高耐热性偏氟乙烯聚合物混涂隔膜的制备方法
CN110911617A (zh) * 2019-12-10 2020-03-24 安徽新衡新材料科技有限公司 一种高韧聚烯烃锂离子电池隔膜及其制备方法
CN111554857A (zh) * 2020-05-13 2020-08-18 深圳润丰新能源有限公司 一种新型锂电池及其制造方法
CN112521779A (zh) * 2020-11-30 2021-03-19 深圳市博盛新材料有限公司 锂离子电池隔膜涂料、锂离子电池隔膜和锂离子电池
CN113363666B (zh) * 2021-05-06 2022-09-09 惠州锂威新能源科技有限公司 隔膜的制备方法、隔膜及应用隔膜的电化学装置
CN113611983A (zh) * 2021-08-02 2021-11-05 湖南烁普新材料有限公司 一种复合隔膜浆料及其制备方法、电池隔膜
CN114921968B (zh) * 2022-05-13 2023-04-07 江西省安安科技有限公司 一种硅-陶瓷复合材料及高性能防火硅-陶瓷/云母复合材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101054300A (zh) * 2007-04-11 2007-10-17 华中科技大学 一种尼龙覆膜陶瓷粉末材料的制备方法
WO2008114727A1 (ja) * 2007-03-15 2008-09-25 Hitachi Maxell, Ltd. 電気化学素子用セパレータ、電気化学素子用電極および電気化学素子
CN103746087A (zh) * 2014-01-03 2014-04-23 东莞市卓高电子科技有限公司 一种锂离子电池隔膜制造方法及锂电池
CN104362275A (zh) * 2014-12-01 2015-02-18 东莞市卓高电子科技有限公司 锂离子电池隔膜制造方法及其制得的电池隔膜和电池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1142612C (zh) * 2000-04-03 2004-03-17 惠州Tcl金能电池有限公司 聚合物电解质薄膜及用此膜制造的锂电池
US6432586B1 (en) * 2000-04-10 2002-08-13 Celgard Inc. Separator for a high energy rechargeable lithium battery
TWI330136B (en) * 2005-11-28 2010-09-11 Lg Chemical Ltd Organic/inorganic composite porous membrane and electrochemical device using the same
CN101707242A (zh) * 2009-10-14 2010-05-12 东莞新能源科技有限公司 有机/无机复合多孔隔离膜
KR101344939B1 (ko) * 2011-12-13 2013-12-27 주식회사 코캄 리튬 이차전지용 고내열성 복합체 세퍼레이터 및 이를 포함하는 리튬 이차전지
CN102751462B (zh) * 2012-07-16 2015-06-17 中国海诚工程科技股份有限公司 一种动力锂离子电池及其复合隔膜
CN102790195B (zh) * 2012-07-18 2015-03-11 上海交通大学 锂电池隔膜的制备方法
CN103022399A (zh) * 2012-10-19 2013-04-03 昆山美好新能源科技有限公司 电解质隔膜
CN103897207A (zh) * 2012-12-28 2014-07-02 海洋王照明科技股份有限公司 电化学电源隔膜及其制备方法、电化学电池或电容器
CN103035866B (zh) * 2013-01-09 2015-01-07 厦门大学 一种陶瓷隔膜及其在电池中的应用及含该陶瓷隔膜的电池
CN103311486B (zh) * 2013-05-14 2016-06-08 中南大学 一种有机-无机复合隔膜及其制备和应用
CN103928649B (zh) * 2014-04-10 2016-08-24 佛山市金辉高科光电材料有限公司 一种改性无纺布锂离子电池隔膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114727A1 (ja) * 2007-03-15 2008-09-25 Hitachi Maxell, Ltd. 電気化学素子用セパレータ、電気化学素子用電極および電気化学素子
CN101054300A (zh) * 2007-04-11 2007-10-17 华中科技大学 一种尼龙覆膜陶瓷粉末材料的制备方法
CN103746087A (zh) * 2014-01-03 2014-04-23 东莞市卓高电子科技有限公司 一种锂离子电池隔膜制造方法及锂电池
CN104362275A (zh) * 2014-12-01 2015-02-18 东莞市卓高电子科技有限公司 锂离子电池隔膜制造方法及其制得的电池隔膜和电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521616A (zh) * 2019-08-30 2021-03-19 比亚迪股份有限公司 接枝陶瓷粉体及制备方法、陶瓷隔膜及制备方法、锂离子电池、电池模组和电池包

Also Published As

Publication number Publication date
CN104362275A (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
WO2016086783A1 (zh) 锂离子电池隔膜制造方法及其制得的电池隔膜和电池
JP6092389B2 (ja) 有/無機複合コーテイング多孔性分離膜及びこれを利用した二次電池素子
JP5591704B2 (ja) 無機/有機多孔質膜を有する電池
KR101569243B1 (ko) 전기 화학 소자용 전극 및 전기 화학 소자
JP6148331B2 (ja) 水系コーティング液を用いたリチウム二次電池用有/無機複合コーティング多孔性分離膜の製造方法
CN100541874C (zh) 锂离子二次电池及其制造方法
CN104064707B (zh) 无机/有机复合隔膜、其制备方法及含该隔膜的锂离子二次电池
WO2018018870A1 (zh) 一种电化学装置隔离膜及其制备方法
CN103618059B (zh) 一种高分子无机涂层锂离子电池隔膜及其制备方法
JP2019536253A (ja) リチウムイオン電池用複合機能多層セパレーター
TW202105805A (zh) 電極製造方法、電極及二次電池
CN107925034A (zh) 电池用隔膜及其制造方法
CN104183805B (zh) 一种陶瓷涂层隔膜的制备方法
KR102238365B1 (ko) 고내열성 분리막, 그 제조 방법 및 이를 구비한 이차 전지
CN108695475B (zh) 锂离子电池隔膜及锂离子电池
TW201014016A (en) Sodium secondary battery
KR102410233B1 (ko) 접착성과 통기성이 우수한 이차전지용 분리막 및 이의 제조방법
KR101618428B1 (ko) 리튬-황 이차전지용 전극 구조물의 제조 방법
CN103746087A (zh) 一种锂离子电池隔膜制造方法及锂电池
CN104993084A (zh) 一种生物质纳米晶涂层聚烯烃锂离子电池隔膜及其制备方法
KR20100006409A (ko) 도전제 입자들의 분산성이 개선된 이차전지의 전극활물질층 형성방법
CN111430668A (zh) 负极保护层及制备方法、负极和锂离子电池
JP2007188868A (ja) 電池用電極およびその製造方法、ならびに二次電池
TW201225383A (en) Slurry and method for producing separator using the slurry
CN109301139B (zh) 一种锂离子电池用聚合物涂层隔膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865746

Country of ref document: EP

Kind code of ref document: A1