WO2020217942A1 - 焼結体、粉末及びその製造方法 - Google Patents

焼結体、粉末及びその製造方法 Download PDF

Info

Publication number
WO2020217942A1
WO2020217942A1 PCT/JP2020/015468 JP2020015468W WO2020217942A1 WO 2020217942 A1 WO2020217942 A1 WO 2020217942A1 JP 2020015468 W JP2020015468 W JP 2020015468W WO 2020217942 A1 WO2020217942 A1 WO 2020217942A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
sintered body
powder
less
mass
Prior art date
Application number
PCT/JP2020/015468
Other languages
English (en)
French (fr)
Inventor
松井 光二
浩平 細井
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to EP20795777.0A priority Critical patent/EP3960721A4/en
Priority to US17/605,332 priority patent/US20220212999A1/en
Priority to KR1020217033887A priority patent/KR20220002300A/ko
Priority to CN202080030839.3A priority patent/CN113727957A/zh
Publication of WO2020217942A1 publication Critical patent/WO2020217942A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Definitions

  • the present disclosure relates to a sintered body containing zirconia as a main phase, a powder as a raw material thereof, and a method for producing the same.
  • Zirconia sintered body is being studied for application to decorative applications such as watches, portable electronic devices, automobiles, home appliances, etc., in addition to conventional applications that require strength such as crushing media and structural materials.
  • Sintered bodies applied for decorative applications are required to reduce brittleness, that is, to increase the fracture toughness value.
  • Patent Document 1 describes a mixed powder obtained by mixing a commercially available 3 mol% itria-containing zirconia powder produced by a neutralization co-precipitation method with a commercially available alumina powder, and microwave-sintering the mixed powder.
  • the zirconia-alumina composite sintered body has been reported. It is described that the fracture toughness value measured by the IF method of composite sintered body (K IC) is 6.02 ⁇ 6.90MPa ⁇ m 1/2.
  • Patent Document 2 reports a zirconia sintered body obtained by hot hydrostatic pressing (HIP) treatment of zirconia powder containing phosphorus, silicon dioxide, and alumina. It is described that the sintered body has a fracture toughness value of 6 to 11 MPa ⁇ m 1/2 measured by the method specified in JIS R 1607.
  • HIP hot hydrostatic pressing
  • the zirconia sintered body disclosed in Patent Documents 1 and 2 needs to be produced by applying a special sintering method such as microwave sintering or HIP treatment, so that it is difficult to apply it industrially.
  • a special sintering method such as microwave sintering or HIP treatment
  • it is also required to evaluate the brittleness of the sintered body with a highly reliable fracture toughness value.
  • the fracture toughness measurement method is standardized, there are a plurality of methods, and the value obtained for each measurement method differs greatly.
  • the fracture toughness value of Patent Document 1 is a value measured by a simple method, and the fracture toughness value of Patent Document 2 is unclear in the measurement method itself, and the disclosed values are unreliable. ..
  • a zirconia sintered body obtained by atmospheric pressure sintering which is a raw material for obtaining a zirconia sintered body having a high fracture toughness value measured by the SEBP method, a sintered body obtained from the raw material, and a sintered body. It is an object of the present invention to provide at least one of these manufacturing methods.
  • the gist of this disclosure is as follows. [1] A sintered body containing zirconia containing a stabilizer and having a monoclinic crystal ratio of 0.5% or more. [2] The ratio of the area intensity of the XRD peak corresponding to the (111) plane of the monoclinic zirconia to the area intensity of the XRD peak corresponding to the (11-1) plane of the monoclinic zirconia is 0 or more. 1] The sintered body according to. [3] The sintered body according to the above [1] or [2], wherein the stabilizer is at least one selected from the group of yttria, calcia, magnesia and ceria.
  • the stabilizer is at least one selected from the group of yttria, calcia, magnesia and ceria.
  • a raw material for obtaining a zirconia sintered body obtained by atmospheric pressure sintering and having a high fracture toughness value measured by the SEPP method a sintered body obtained from the raw material, and a sintered body. At least one of these manufacturing methods can be provided.
  • “Monocclinic ratio” and “tetragonal ratio” are the ratios of monoclinic zirconia and tetragonal zirconia to the crystal phase of zirconia, respectively.
  • the "monoclinic crystal intensity ratio” corresponds to the (11-1) plane of monoclinic zirconia with respect to the area intensity of the XRD peak corresponding to the (111) plane of monoclinic zirconia in the crystal phase of zirconia. It is the ratio of the area intensity of the XRD peak.
  • the powder X-ray diffraction (hereinafter, also referred to as “XRD”) pattern of the powder is used, while for the sintered body, the XRD pattern on the surface of the sintered body after mirror polishing is used.
  • the oblique crystal ratio can be obtained from the following formula (1), the square crystal ratio can be obtained from the following formula (2), and the monoclinic crystal intensity ratio can be obtained from the following formula (3).
  • f m is percentage of monoclinic crystals (%)
  • f t is square Akiraritsu (%)
  • M (11-1) / (111) is monoclinic intensity ratio
  • I m (111) and I m (11-1) respectively, area intensity of the XRD peak corresponding to the (111) plane and (11-1) plane of the monoclinic zirconia
  • I t (111) is of tetragonal zirconia area intensity of the XRD peak corresponding to the (111) plane
  • I c (111) is the area strength of the XRD peak corresponding to the (111) plane of cubic zirconia.
  • the XRD peak corresponding to each crystal plane of zirconia is measured as a peak having a peak top at 2 ⁇ below.
  • XRD peak corresponding to the (111) plane of monoclinic zirconia: 2 ⁇ 31 ⁇ 0.5 °
  • XRD peak corresponding to the (11-1) plane of monoclinic zirconia: 2 ⁇ 28 ⁇ 0.5 °
  • the sintered body after surface polishing used for the above-mentioned XRD measurement after the surface after sintering is ground using a surface grinding machine, automatic polishing with a polishing cloth paper and automatic polishing with a diamond slurry having an average particle size of 3 ⁇ m are performed.
  • the "monoclinic zirconia crystallite diameter” (hereinafter, also referred to as “D m ”) is a value obtained from the powder XRD pattern using the following formula (4), and is a "tetragonal zirconia crystallite".
  • the “diameter” (hereinafter, also referred to as “D t ”) is a value obtained from the XRD pattern of the powder using the following formula (5).
  • D m ⁇ / ( ⁇ cos ⁇ m ) (4)
  • D t ⁇ / ( ⁇ cos ⁇ t ) (5)
  • D m is the crystallite diameter of monoclinic zirconia (nm)
  • D t is the crystallite diameter of tetragonal zirconia (nm)
  • is the wavelength (nm) of the light source used for XRD measurement
  • is the half-value width (°) after correcting the mechanical spread using quartz sand (manufactured by Wako Pure Chemical Industries, Ltd.) with a particle size of 25 to 90 ⁇ m.
  • ⁇ m is the black angle (°) of the reflection corresponding to the (11-1) plane of monoclinic zirconia in the XRD measurement
  • ⁇ t is the black of the reflection corresponding to the (111) plane of the tetragonal zirconia in the XRD measurement.
  • the angle (°). When CuK ⁇ ray is used as the light source for the XRD measurement, ⁇ is 0.15418 nm.
  • the "BET specific surface area” is a value obtained by the BET method 1-point method in which the adsorbed substance is nitrogen (N 2 ) according to JIS R 1626-1996.
  • the "particle size by volume distribution” is the particle size of the powder obtained by measuring the volume particle size distribution by the laser diffraction method.
  • the particle size obtained by the laser diffraction method is a non-spherical approximate diameter.
  • the following conditions can be mentioned as conditions for measuring the volume particle size distribution.
  • Measurement sample Powder slurry Zirconia refractive index: 2.17 Refractive index of solvent (water): 1.333
  • Measurement time 30 seconds
  • Pretreatment Ultrasonic dispersion treatment
  • the “median diameter” is a particle diameter in which the volume ratio of the cumulative volume particle diameter distribution curve obtained by measuring the volume particle diameter distribution by the laser diffraction method corresponds to 50%.
  • the "particle size distribution curve” is a curve showing the particle size distribution of powder obtained by measuring the volume particle size distribution by a laser diffraction method.
  • the "fracture toughness value” is a value of fracture toughness (MPa ⁇ m 0.5 ) measured by a method according to the SEBP method defined in JIS R 1607.
  • the fracture toughness value was measured using a columnar sintered body sample having a width of 4 mm and a thickness of 3 mm at a distance of 30 mm between fulcrums, and the fracture toughness of the sintered body of the present embodiment was taken as an average value measured 10 times. It can be a value.
  • JIS R 1607 stipulates two types of measurement of fracture toughness, the IF method and the SEBP method. The IF method tends to have a larger measured value than the SEBP method.
  • the IF method is a simple measurement method, there is a large variation in the measured values for each measurement. Therefore, the absolute value of the fracture toughness value in the present embodiment cannot be compared with the fracture toughness value measured by the IF method. Similarly, the fracture toughness value measured by a method other than the SEBP method and the fracture toughness value measured by the SEBP method cannot be compared with each other in absolute value.
  • Bending strength is a value of three-point bending strength obtained by a three-point bending test according to JIS R 1601. The bending strength was measured using a columnar sintered body sample having a distance between fulcrums of 30 mm, a width of 4 mm, and a thickness of 3 mm, and the average value measured 10 times was used as the bending strength of the sintered body of the present embodiment. do it.
  • the “total light transmittance” is the total light transmittance for light having a wavelength of 600 nm at a sample thickness of 1.0 mm, and can be measured by a method according to JIS K7361.
  • Light having a wavelength of 600 nm is used as incident light, and can be obtained as a value of transmittance obtained by summing the diffuse transmittance and the linear transmittance with respect to the incident light.
  • a sample having a thickness of 1 mm and a surface roughness (Ra) ⁇ 0.02 ⁇ m on both sides (measurement surface and opposite surface of the measurement surface) is used as a measurement sample, and a general spectrophotometer (for example, V-650, manufactured by Nippon Spectroscopy Co., Ltd.) ) Is used to irradiate the sample with light having a wavelength of 600 nm, and the transmitted light is condensed by an integrating sphere to measure the transmittance (diffuse transmittance and linear transmittance) of the sample, which is measured as the total light transmittance. And it is sufficient.
  • a general spectrophotometer for example, V-650, manufactured by Nippon Spectroscopy Co., Ltd.
  • the "linear transmittance" is the total light transmittance for light having a wavelength of 600 nm at a sample thickness of 0.05 mm or more and 0.2 mm or less, preferably 0.05 mm or more and 0.15 mm or less, particularly 0.09 mm, and is JIS K. It can be measured by a method according to 7361. Light having a wavelength of 600 nm is used as incident light, and can be obtained as a value of linear transmittance with respect to the incident light.
  • a sample having a thickness of 1 mm and a surface roughness (Ra) ⁇ 0.02 ⁇ m on both sides (measurement surface and opposite surface of the measurement surface) was used as a measurement sample, and a general spectrophotometer (for example, V-650, manufactured by JASCO Corporation) was used. ) Is used to irradiate the sample with light having a wavelength of 600 nm, and the transmitted light is condensed by an integrating sphere to measure the linear transmittance of the sample.
  • a general spectrophotometer for example, V-650, manufactured by JASCO Corporation
  • “Relative density” is the ratio (%) of the measured density to the theoretical density.
  • the measured density of the molded product is the ratio of the volume obtained from the dimensional measurement to the mass measured by mass measurement (g / cm 3 ), and the measured density of the sintered body is the measured density of the sintered body by the Archimedes method with respect to the mass measured by mass measurement. It is the ratio of the volume to be measured (g / cm 3 ), and the theoretical density is the density (g / cm 3 ) obtained from the following equations (6) to (9).
  • ⁇ 0 is the theoretical density
  • ⁇ Z is the theoretical density of zirconia
  • a and C are constants
  • X is the sum of zirconia (ZrO 2 ) and yttria (Y 2 O 3 ).
  • molar proportions (mol%) and, Y a, Y G and Y S is zirconia compact or the sintered body, yttria, alumina, germania and silica, respectively, ZrO 2, Y 2 O 3 , Al 2 O 3 , The mass ratio (mass%) of Al 2 O 3 converted alumina, GeO 2 converted germania, and SiO 2 converted silica to the total converted to GeO 2 and SiO 2 .
  • the present embodiment is a sintered body containing zirconia containing a stabilizer and having a monoclinic crystal ratio of 0.5% or more.
  • the sintered body of the present embodiment is a sintered body containing zirconia containing a stabilizer, and a sintered body containing zirconia containing a stabilizer as a main phase, a so-called zirconia sintered body.
  • the stabilizer has a function of stabilizing zirconia, and one or more selected from the group of calcia (CaO), magnesia (MgO), ceria (CeO 2 ) and yttria (Y 2 O 3 ) can be mentioned. It is preferably at least one of ceria and yttria, and more preferably yttria.
  • the content of the stabilizer may be any content as long as the content of zirconia is partially stabilized.
  • the yttria content is preferably 1.4 mol% or more and 2.1 mol% or less, and more preferably 1.5 mol% or more and 1.8 mol% or less.
  • the stabilizer is preferably solid-solved in zirconia, and the sintered body of the present embodiment does not contain an unsolid-dissolved stabilizer, and all the stabilizers are solid-solved in zirconia.
  • the XRD pattern of the sintered body of the present embodiment does not have the XRD peak of the stabilizer.
  • an XRD peak different from the XRD peak of zirconia it can be considered that an undissolved stabilizer is contained when the XRD peak of the stabilizer can be confirmed.
  • the sintered body of the present embodiment may contain one or more additive components selected from the group of alumina (Al 2 O 3 ), Germania (GeO 2 ) and silica (SiO 2 ).
  • the additive component is preferably at least one of alumina and germania, and more preferably alumina. By including the additive component, the intergranular strength between crystal grains tends to be high even when the content of the zirconia stabilizer is small.
  • the sintered body of the present embodiment is a sintered body containing the additive component and the balance of which is zirconia containing a stabilizer.
  • the content of the additive component is the mass ratio of the additive component to the total mass of the zirconia, yttria and the additive component of the sintered body.
  • a sintered body of zirconia containing alumina as an additive component and the balance containing yttria obtained as ⁇ Al 2 O 3 / (ZrO 2 + Y 2 O 3 + Al 2 O 3 ) ⁇ ⁇ 100 [mass%]).
  • the content of the additive component may be 0.05% by mass or more and 30% by mass or less, preferably more than 0.1% by mass and 25% by mass or less, and 0.2% by mass or more and 20% by mass or less. The following is more preferable.
  • the content of the additive component is 0.02% by mass or more and 0.3% by mass or less, the mechanical strength tends to be high and the transformation to monoclinic zirconia tends to be difficult to occur.
  • the sintered body of the present embodiment preferably contains only unavoidable impurities.
  • Hafnia HfO 2
  • the sintered body of the present embodiment has a monoclinic crystal ratio of 0.5% or more, preferably 0.5% or more and 15% or less, and more preferably 0.8% or more and 12% or less. Since the fracture toughness tends to be high, the monoclinic crystal ratio may be either 1% or more and 15% or less, 2% or more and 14% or less, 5% or more and 12% or less, and 7% or more and 11% or less. preferable. On the other hand, since the bending strength tends to be high, the monoclinic crystal ratio is preferably 0.5% or more and 5% or less, and more preferably 0.8% or more and 3% or less.
  • the surface of the sintered body immediately after sintering is rough and contains many sources of fracture such as unevenness.
  • the burnt surface is removed from the sintered body by processing such as grinding, and the sintered body is polished to have a mirrored surface (polished-surface) prior to evaluation and use in various applications. ; Hereinafter, it is also referred to as a "mirror surface”). It can be exemplified that the mirror surface is a smooth surface and Ra ⁇ 0.04 ⁇ m.
  • the monoclinic crystal ratio is a value on the mirror surface of the sintered body.
  • the crystal phase is composed of at least one of tetragonal zirconia and cubic zirconia, and monoclinic zirconia is substantially used. It is not contained in, or there is little monoclinic zirconia. Further, a sintered body having low mechanical properties may be broken during mirror processing, may not be processed into a measurement sample, and may even be a sintered body whose monoclinic crystal ratio cannot be measured. On the other hand, the sintered body of the present embodiment has monoclinic zirconia that satisfies the above-mentioned monoclinic crystal ratio on its mirror surface.
  • the sintered body of the present embodiment is a sintered body having monoclinic zirconia in the entire sintered body, or a sintered body containing tetragonal zirconia that is likely to be transformed into monoclinic zirconia. It is possible that there is.
  • the zirconia contains monoclinic zirconia and at least one of tetragonal zirconia and tetragonal zirconia, and is preferably composed of monoclinic zirconia and tetragonal zirconia.
  • the monoclinic zirconia contained in the sintered body of the present embodiment is a monoclinic zirconia having an XRD peak corresponding to at least the monoclinic zirconia (111) plane in the XRD pattern.
  • the sintered body tends to show a high fracture toughness value and also tends to be less likely to be hydrothermally deteriorated.
  • the intensity of the XRD peak corresponding to the monoclinic zirconia (11-1) plane in the XRD pattern becomes stronger.
  • the monoclinic zirconia contained in the sintered body of the present embodiment preferably has an XRD peak corresponding to at least the monoclinic zirconia (111) plane in its XRD pattern, and its monoclinic intensity ratio.
  • Is preferably 0 or more, more preferably 0.3 or more, further preferably 0.4 or more, and even more preferably 0.5 or more.
  • the monoclinic crystal intensity ratio is preferably any one of 10 or less, 8 or less, 5 or less, 3 or less, and 1.5 or less, and examples thereof include 1.2 or less and 1.0 or less.
  • the monoclinic crystal intensity ratio is obtained from the formula (3). Therefore, I m (111) is zero, i.e.
  • the average crystal grain size of the zirconia crystal particles of the sintered body of the present embodiment varies depending on the sintering temperature, and is, for example, 0.1 ⁇ m or more and 0.8 ⁇ m or less, 0.15 ⁇ m or more and 0.60 ⁇ m or less, 0.20 ⁇ m or more. It may be either 0.55 ⁇ m or less, 0.25 ⁇ m or more and 0.45 ⁇ m.
  • the sintered body of the present embodiment preferably has a relative density (hereinafter, also referred to as “sintered body density”) of 98% or more and 100% or less, and more preferably 98.4% or more and 100% or less. It is more preferably 99% or more and 100% or less.
  • the sintered body of the present embodiment is preferably a sintered body in a state obtained by normal pressure sintering (so-called normal pressure sintered body), and is obtained by normal pressure sintering in an air atmosphere. It is more preferable that the sintered body is in a state. Further, it is preferable that the sintering treatment is not performed other than the normal pressure sintering, and it is more preferable that the sintering treatment after the normal pressure sintering is not performed. As the sintering treatment other than the normal pressure sintering, one or more selected from the group of pressure sintering, vacuum sintering and microwave sintering can be exemplified.
  • fracture toughness value is 6 MPa ⁇ m 0.5 or more 11 MPa ⁇ m 0.5 or less it can be exemplified, preferably 6.2 MPa ⁇ m 0.5 or more, more preferably 7 MPa ⁇ m 0.5 or more, still more preferably 8 MPa ⁇ m 0.5 or more.
  • fracture toughness is preferably high, for example, 11 MPa ⁇ m 0.5 or less, more 10.5 MPa ⁇ m 0.5 or less, or even 9.5 MPa ⁇ m 0.5 or less, or even 9 MPa ⁇ m 0.5 or less, include still more or less 8.5 MPa ⁇ m 0.5. Having such a fracture toughness value facilitates processing into a sintered body having a sintered body thickness of 1 mm or less and a sintered body thickness of 0.5 mm or less, for example.
  • the sintered body of the present embodiment can be, for example, a sintered body having a thickness of 0.05 mm or more and 0.3 mm or less, a sintered body, or a sintered body having a thickness of 0.08 mm or more and 0.25 mm or less. There is also.
  • the sintered body of the present embodiment can be exemplified to have a bending strength of 1000 MPa or more and 1550 MPa or less, further 1100 MPa or more and 1500 MPa or less, preferably 1100 MPa or more and 1460 MPa or less, and more preferably 1200 MPa or more and 1400 MPa or less. ..
  • the sintered body of the present embodiment preferably has a total light transmittance of 20% or more and 50% or less, further 25% or more and 45% or less, and further preferably 30% or more and 40% or less.
  • the added component is more than 0% by mass and 25% by mass or less, further 0.2% by mass or more and 5% by mass or less, and further 0.23% by mass or more and 3% by mass or less, the total light transmittance.
  • the total light transmittance Is preferably 20% or more and 45% or less, and more preferably 25% or more and 40% or less.
  • the sintered body of the present embodiment has a linear transmittance of 1% or more and 20% or less, 1% or more and 15% or less, and 1% or more and 10% or less.
  • the linear transmittance is a value measured in a sintered body having a sample thickness of 0.05 mm or more and 0.2 mm or less, preferably 0.05 mm or more and 0.15 mm or less, particularly 0.09 mm.
  • the linear transmittance in the present embodiment is a measured value at such a sample thickness, and is obtained from the linear transmittance measured with a sintered body having a thicker sample thickness such as a sintered body having a sample thickness of 0.5 mm or more. It is different from the estimated value and the calculated value.
  • the sintered body of the present embodiment has a linear transmittance of 1% or more and 10% or less, 1.5% or more and 8% or less, 2% or more and 7.5% or less, and 2.5% or more 7 at a sample thickness of 0.09 mm. It is particularly preferable that it is at least 3%.
  • the tetragonal zirconia contained in the sintered body of the present embodiment is less likely to be transformed into monoclinic zirconia by hydrothermal treatment (hereinafter, also referred to as “hydrothermal deterioration”), and in hot water at 140 ° C.
  • the ratio of the tetragonal crystal ratio after the 6-hour immersion treatment in hot water at 140 ° C. (hereinafter, also referred to as “residual square crystal ratio” or “ ⁇ T%”) to the tetragonal crystal ratio before the 6-hour immersion treatment is 15. % Or more, more preferably 70% or more, and even more preferably 80% or more.
  • the residual tetragonal ratio is 100%, so that the residual tetragonal ratio in the sintered body of the present embodiment is It is 100% or less, and further, 95% or less.
  • the residual tetragonal crystal ratio is 15% or more and 100% or less, preferably 20% or more and 100% or less, more preferably.
  • the sintered body of the present embodiment contains an additive component and the content of the additive component is more than 0% by mass and less than 5% by mass, the residual tetragonal crystal ratio is 65% or more and 100% or less, preferably 70% or more and 90. It can be exemplified that it is less than%.
  • the sintered body of the present embodiment contains an additive component and the content of the additive component is 5% by mass or more and 30% by mass or less, the residual tetragonal crystal ratio is 70% or more and 100% or less, preferably 76% or more and 95% or less.
  • the following can be exemplified.
  • the shape of the sintered body of the present embodiment may be any desired shape, and is a cube, a rectangular parallelepiped, a polygon, a plate, a disk, a columnar, a pyramid, a spherical shape, a substantially spherical shape, or other basic shapes.
  • the shape of the member may be any shape suitable for various purposes.
  • the method for producing the sintered body of the present embodiment is arbitrary, but the raw material contains zirconia containing a stabilizer and having a monoclinic crystal ratio of more than 70%, and the crystallite diameter of the monoclinic zirconia is 23 nm. It is preferably produced by a production method using a powder, which is characterized by having a thickness of more than 80 nm and less than 80 nm. After molding such a powder, it may be sintered by a known method. Further, if necessary, at least one of calcining and processing may be performed before sintering.
  • Molding may be carried out by a known method, for example, at least one selected from the group of uniaxial press, cold hydrostatic press, slip casting and injection molding, from the group of uniaxial press, cold hydrostatic press and injection molding. It is preferably at least one selected.
  • the powder may be heat-treated at a temperature lower than the sintering temperature.
  • the powder may be heat-treated at 800 ° C. or higher and lower than 1200 ° C. in the air.
  • sintering For sintering, a known method, for example, one or more selected from the group of pressure sintering, vacuum sintering and normal pressure sintering can be applied. Since it is simple and easy to apply industrially, the sintering is preferably normal pressure sintering, and atmospheric pressure sintering at 1200 ° C. or higher and 1550 ° C. or lower, preferably 1250 ° C. or higher and 1500 ° C. or lower is more preferable. It is preferable to perform atmospheric sintering at 1300 ° C. or higher and 1450 ° C. or lower in the air. Further, it is preferable not to perform sintering other than normal pressure sintering.
  • the sintered body of the present embodiment can be used as a member containing the sintered body, which is known as a zirconia sintered body.
  • the sintered body of the present embodiment is suitable for structural materials such as crusher members, precision machine parts, optical connector parts, biomaterials such as dental materials, decorative members, and exterior materials such as electronic device exterior parts.
  • the present embodiment is a powder containing a stabilizer, containing zirconia having a monoclinic crystal ratio of more than 70%, and having a crystallite diameter of monoclinic zirconia of more than 23 nm and 80 nm or less. ..
  • the powder of the present embodiment contains a stabilizer and contains zirconia having a monoclinic crystal ratio of more than 70%. That is, the powder of the present embodiment contains a stabilizer-containing zirconia mainly composed of monoclinic zirconia.
  • zirconia is a powder containing no stabilizer, even if it is sintered, it is difficult to obtain a sintered body containing tetragonal zirconia, which is a factor for developing fracture toughness.
  • the powder of this embodiment is a so-called zirconia powder mainly composed of zirconia.
  • the stabilizer includes at least one selected from the group of calcia (CaO), magnesia (MgO), ceria (CeO 2 ) and yttria (Y 2 O 3 ), and is at least one of ceria and yttria. Is preferable, and yttria is more preferable.
  • the stabilizer is yttria
  • the molar ratio of yttria (yttria content) to the total of zirconia (ZrO 2 ) and yttria (Y 2 O 3 ) in the powder is 1.0 mol% or more and 2.5 mol% or less, and further.
  • the stabilizer is preferably dissolved in zirconia, and the powder of the present embodiment preferably does not contain an undissolved stabilizer.
  • Monoclinic zirconia, tetragonal zirconia, and cubic zirconia are known as the main crystal phases of zirconia.
  • the zirconia in the powder of the present embodiment contains monoclinic zirconia, preferably containing at least one of monoclinic zirconia and tetragonal zirconia and tetragonal zirconia, and may contain monoclinic zirconia and tetragonal zirconia. More preferred.
  • the monoclinic crystal ratio of zirconia exceeds 70%, preferably 80% or more, and more preferably 85% or more.
  • the monoclinic ratio is 100% or less, and when the zirconia contains at least one of tetragonal zirconia and cubic zirconia, the monoclinic ratio is less than 100%.
  • the tetragonal crystal ratio is 30% or less, more preferably less than 20%, preferably 15% or less, and may be 10% or less, further 7% or less.
  • the zirconia does not contain tetragonal zirconia, the tetragonal ratio is 0%, and the tetragonal ratio may be 0% or more.
  • the crystallite diameter (D m ) of the monoclinic zirconia is more than 23 nm and 80 nm or less, more preferably 30 nm or more and 60 nm or less, and further preferably 35 nm or more and 55 nm or less.
  • the crystal grain size (D m ) of the monoclinic zirconia is 30 nm or more and 50 nm or less, further 35 nm or more and 50 nm or less, and 35 nm or more and 45 nm or less, further 36 nm or more and 40 nm or less. May be good.
  • the powder of this embodiment may contain one or more additive components selected from the group of alumina (Al 2 O 3 ), Germania (GeO 2 ) and silica (SiO 2 ).
  • the additive component is preferably at least one of alumina and germania, and more preferably alumina. By including the additive component, even when the content of the zirconia stabilizer is small, defects such as cracks during sintering are less likely to occur, and the yield during sintering is less likely to decrease.
  • the content of the additive component is preferably 0.05 mass% or more and 30 mass% or less, preferably 0.1 mass%, as the mass ratio of the additive component to the total mass of the powdered zirconia, ittoria and the additive component. It is more than 25% by mass or less, more preferably 0.2% by mass or more and 20% by mass or less, still more preferably 0.23% by mass or more and 6% by mass or less.
  • the powder of the present embodiment preferably contains no impurities, and for example, it can be exemplified that the content of phosphorus (P) is 0.1% by mass or less and less than 0.1% by mass, respectively. On the other hand, it may contain unavoidable impurities such as zirconia hafonia (HfO 2 ).
  • the powder of the present embodiment has a BET specific surface area of 6 m 2 / g or more and less than 20 m 2 / g.
  • the BET specific surface area is 6 m 2 / g or more, sintering can easily proceed from a relatively low temperature. Further, when it is less than 20 m 2 / g, the physical aggregation of the powder tends to be suppressed.
  • the BET specific surface area is preferably 8 m 2 / or more and 18 m 2 / g or less, more preferably 10 m 2 / g or more and 17 m 2 / g or less, and further preferably 10 m 2 / g or more and 15 m. It is 2 / g or less, more preferably more than 10m 2 / g and 15m 2 / g or less.
  • the powder of the present embodiment preferably has a median diameter of 0.05 ⁇ m or more and 0.3 ⁇ m or less, and preferably 0.1 ⁇ m or more and 0.2 ⁇ m or less.
  • the volume particle size distribution curve can be exemplified as a multimodal distribution, and the volume particle size distribution curve is at least 0.05 ⁇ m or more and 0.2 ⁇ m or less and the particle size exceeds 0.2 ⁇ m and 0. It is preferable that the distribution has a peak at 5.5 ⁇ m or less, and further has a peak (extreme value) at a particle diameter of 0.05 ⁇ m or more and 0.2 ⁇ m or less and a particle diameter of 0.3 ⁇ m or more and 0.5 ⁇ m or less.
  • a powder having a multimodal distribution such as a bimodal distribution with a volume particle size distribution curve tends to have high filling property at the time of molding.
  • the ratio of the peak having a particle diameter of 0.3 ⁇ m or more and 0.5 ⁇ m to the peak having a particle diameter of 0.05 ⁇ m or more and 0.2 ⁇ m or less in the volume particle size distribution curve (hereinafter, The “particle size peak ratio”) is preferably more than 0 and less than 1, more preferably 0.1 or more and 0.9 or less, and further preferably 0.2 or more and 0.8 or less.
  • the powder of the present embodiment preferably has high moldability, and after the powder of the present embodiment is uniaxially pressure-molded at a pressure of 70 ⁇ 5 MPa, it is cold hydrostatic pressed at a pressure of 196 ⁇ 5 MPa (hereinafter, also referred to as “CIP”).
  • the relative density of the molded product (hereinafter, also referred to as “molded product density”) is preferably 49% or more and 56% or less, and 50% or more and 54% or less. It is more preferable to have.
  • the powder of the present embodiment may contain a resin or the like for improving the fluidity, or may be a composition containing the powder and the resin of the present embodiment (hereinafter, also referred to as “compound”).
  • the resin contained in the compound may be any known resin used in the ceramic composition, and examples thereof include thermoplastic resins.
  • thermoplastic resins any one or more of the group consisting of acrylic resin, polystyrene and polyalkyl carbonate, preferably acrylic resin can be exemplified.
  • Examples of the content of the powder in the compound include 50% by mass or more and 97% by mass or less, 70% by mass or more and 95% by mass or less, 80% by mass or more and 90% by mass or less as the mass ratio of the powder to the mass of the compound. ..
  • the content of the powder in the compound may be determined from the mass ratio of the compound after removing the resin to the mass of the compound.
  • the method for removing the resin is arbitrary, and examples thereof include heat treatment at 200 ° C. or higher and 500 ° C. or lower in the atmosphere.
  • the compound may contain components such as wax as an additive in addition to the resin.
  • components such as wax include polyethylene, polypropylene, polyacrylonitrile, acrylonitrile-styrene copolymer, ethylene-vinyl acetate copolymer, styrene-butadiene copolymer, polyacetal resin, petroleum wax, synthetic wax, and vegetable wax.
  • One or more selected from the group of stearic acid, phthalate ester-based plasticizer and adipic acid ester can be exemplified.
  • the powder of this embodiment can be used as a precursor of a calcined body or a sintered body, and is used as a structural material such as a crusher member, a precision machine part, an optical connector part, a biomaterial such as a dental material, and a decorative member. It is also suitable as a raw material powder for exterior materials such as exterior parts of electronic devices.
  • the powder of the present embodiment When the powder of the present embodiment is used as a sintered body or the like, the powder may be molded and then calcined or sintered by a known method.
  • molding may be performed by a known method, for example, at least one selected from the group of uniaxial press, cold hydrostatic press, slip casting and injection molding.
  • the molding is produced using a resin such as a compound
  • the obtained molded product may be heat-treated to remove the resin, if necessary. Examples of the heat treatment conditions include 400 ° C. or higher and lower than 800 ° C. in the atmosphere.
  • the molded body may be calcined if necessary.
  • the calcining may be performed by heat treatment at a temperature lower than the sintering temperature of the powder.
  • heat treatment may be performed in the air at 800 ° C. or higher and lower than 1200 ° C. As a result, a calcined body is obtained.
  • sintering For sintering, a known method, for example, one or more selected from the group of pressure sintering, vacuum sintering and normal pressure sintering can be applied. Since it is simple and easy to apply industrially, the sintering is preferably normal pressure sintering, and atmospheric pressure sintering at 1200 ° C. or higher and 1550 ° C. or lower, preferably 1250 ° C. or higher and 1500 ° C. or lower is more preferable. It is preferable to perform atmospheric sintering at 1300 ° C. or higher and 1450 ° C. or lower in the air. Further, it is preferable not to perform sintering other than normal pressure sintering. The sintering time is arbitrary, but 0.5 hours or more and 5 hours or less can be exemplified.
  • the production method is arbitrary as long as the powder of the present embodiment has the above-mentioned characteristics.
  • a composition containing a zirconia sol containing zirconia having an average sol particle size of 150 nm or more and 400 nm or less and containing monoclinic zirconia, and a stabilizer source is used at 950 ° C. or higher.
  • Examples thereof include a manufacturing method including a step of heat-treating at 1250 ° C. or lower to obtain a calcined powder and a step of crushing the calcined powder.
  • a composition containing a zirconia sol containing zirconia having an average sol particle size of 150 nm or more and 400 nm or less and containing monoclinic zirconia, and a stabilizer source is heat-treated at 950 ° C. or higher and 1250 ° C. or lower to obtain a calcined powder.
  • a calcined powder which is a precursor of the powder of the present embodiment is obtained.
  • heat treatment is performed at 950 ° C or higher and 1250 ° C or lower, and further at 1000 ° C or higher and 1250 ° C or lower.
  • the heat treatment is 950 ° C. or higher, a powder that can be easily densified by atmospheric pressure sintering can be obtained.
  • the heat treatment is 1250 ° C. or lower, it becomes easy to obtain a powder that is easily dispersed by pulverization.
  • the heat treatment time varies depending on the heat treatment temperature, and examples thereof include 30 minutes or more and 2 hours or less.
  • the atmosphere of the heat treatment is arbitrary, and any one selected from the group of the oxidizing atmosphere, the reducing atmosphere, the inert atmosphere and the vacuum atmosphere can be exemplified, and the oxidizing atmosphere is preferable, and the atmospheric atmosphere is more preferable.
  • the average sol particle size of the zirconia sol is 150 nm or more and 400 nm or less, preferably 180 nm or more and 400 nm or less, and more preferably 185 nm or more and 300 nm or less.
  • the average sol particle size may be 150 nm or more and 270 nm or less, further 150 nm or more and 200 nm or less, or 190 nm or more and 400 nm or less, and further 200 nm or more and 300 nm or less.
  • the zirconia sol contains zirconia containing monoclinic zirconia, and is preferably a zirconia sol containing zirconia composed of crystalline zirconia (hereinafter, also referred to as "crystalline zirconia sol"), and the main phase is monoclinic zirconia. It is more preferable that the zirconia sol contains crystalline zirconia.
  • the amount of zirconium element (hereinafter, also referred to as "adsorbed zirconium amount”) determined by the following formula is preferably 0% by mass or more and 1% by mass or less in the zirconia sol. It is more preferably mass% or more and 0.5 mass% or less, and further preferably 0 mass% or more and 0.01 mass% or less.
  • W Zr (m / m 0 ) x 100
  • W Zr is the amount of adsorbed zirconium (mass%).
  • m is the amount of zirconium (ZrO 2) in the filtrate obtained by ultrafiltration of a slurry in which zirconia sol is dispersed in pure water using an ultrafiltration membrane having a molecular weight cut-off of 5 to 3 million.
  • Converted mass (mg) The amount of zirconium in the filtrate may be measured by ICP analysis.
  • mo is the mass (mg) of the zirconia sol before ultrafiltration after being heat-treated at 1000 ° C. for 1 hour in an air atmosphere. Measurement of m and m o respectively, the zirconia sol prior to ultrafiltration may be performed in the same amount prepared.
  • the zirconia sol to be used in the powder calcining step may have the above-mentioned characteristics, and the manufacturing method thereof is arbitrary.
  • a method for producing the zirconia sol at least one of a hydrothermal synthesis method and a hydrolysis method can be exemplified.
  • a zirconia sol is obtained by heat-treating a coprecipitate obtained by mixing a zirconium salt and an alkali or the like in the presence of a solvent at 100 to 200 ° C.
  • the zirconium salt is hydrolyzed by heating the zirconium salt in the presence of a solvent to obtain a zirconia sol.
  • the zirconia sol can be exemplified as a zirconia sol obtained by a hydrothermal synthesis method or a hydrolysis method, and is preferably a zirconia sol obtained by a hydrolysis method.
  • Zirconium salt is mentioned as a precursor used in the method for producing zirconia sol.
  • the zirconium salt one or more selected from the group of zirconium oxychloride, zirconium nitrate, zirconium chloride and zirconium sulfate can be exemplified, and at least one of zirconium nitrate and zirconium oxychloride is preferable, and zirconium oxychloride is used. Is more preferable.
  • the hydrolysis conditions may be any conditions under which the hydrolysis of the zirconium salt proceeds sufficiently, and examples thereof include boiling and refluxing the zirconium salt aqueous solution in 130 hours or more and 200 hours or less.
  • the average sol particle size is increased by hydrolyzing the anion concentration in the zirconium salt aqueous solution to 0.2 mol / L or more and 0.6 mol / L or less, and further 0.3 mol / L or more and 0.6 mol / L or less.
  • the stabilizer source may be at least one of a stabilizer and a compound that is a precursor thereof, and is an oxide, a hydroxide, an oxyhydroxide, a chloride, or an acetate that is a precursor of the stabilizer.
  • a stabilizer and a compound that is a precursor thereof is an oxide, a hydroxide, an oxyhydroxide, a chloride, or an acetate that is a precursor of the stabilizer.
  • One or more selected from the group of nitrates and sulfates can be exemplified, and it is preferably at least one of chlorides and nitrates.
  • the stabilizer source is preferably at least one of yttria and an yttrium compound as a precursor thereof.
  • yttrium chloride yttrium nitrate and yttrium oxide
  • stabilizers including yttria and the like are also referred to as “yttria source” and the like
  • yttria source the content of the yttria source in the composition is the sum of the zirconium (Zr) and yttrium (Y) in the composition converted to ZrO 2 and Y 2 O 3 , respectively.
  • the molar ratio of the yttria source converted to Y 2 O 3 it can be exemplified that it is 1.0 mol% or more and 2.5 mol% or less, and further 1.1 mol% or more and 2.0 mol% or less, and 1.2 mol% or more and 2 It is preferably less than 0.0 mol%, and more preferably 1.2 mol% or more and 1.8 mol% or less.
  • composition to be subjected to the powder calcining step may contain the above-mentioned zirconia sol and the stabilizer source, and all or part of the stabilizer source may be dissolved in the zirconia sol.
  • stabilization is performed by mixing a zirconium salt with a stabilizer source and hydrolyzing it, or by mixing a zirconium salt, a stabilizer source, an alkali or the like to form a coprecipitate. At least a part of the agent source becomes easy to dissolve in zirconia.
  • the composition to be subjected to the powder calcining step may contain one or more additive component sources selected from the group of alumina source, Germania source and silica source.
  • the additive component source is preferably at least one of an alumina source and a Germania source, and is preferably an alumina source.
  • the alumina source is at least one of alumina and an aluminum compound as a precursor thereof, and at least one selected from the group of alumina, aluminum hydroxide, aluminum nitrate and aluminum chloride can be exemplified, and alumina is preferable. More preferably, it is at least one of alumina sol and alumina powder.
  • the Germania source is at least one of Germania and a germanium compound serving as a precursor thereof, and one or more selected from the group of Germania, germanium hydroxide and germanium chloride can be exemplified, preferably germania, germania sol and More preferably, it is at least one of the Germania powders.
  • the silica source is at least one of silica and a silicon compound as a precursor thereof, and at least one selected from the group of silica and tetraethyl orthosilicate can be exemplified, preferably silica, and silica powder, silica sol, and the like. More preferably, it is at least one of fumed silica and precipitated silica.
  • the content of the additive component source is the total of Zr, Y, and Al, Ge, and Si of the composition converted as ZrO 2 , Y 2 O 3 , and Al 2 O 3 , GeO 2, and SiO 2 , respectively. It can be mentioned that the total mass of Al, Ge and Si converted to Al 2 O 3 , GeO 2 and SiO 2 with respect to the mass is 0.05% by mass or more and 30% by mass or less, and 0.1% by mass is used. It is preferably more than 25% by mass or less, and more preferably 0.2% by mass or more and 20% by mass or less.
  • the content of alumina source, Zr composition, the alumina source to the total mass in terms of Y and Al as ZrO 2, Y 2 O 3 and Al 2 O 3 each as a percentage of the mass in terms Al 2 O 3 It is mentioned that it is 0.05 mass% or more and 30 mass% or less, it is preferable that it is more than 0.1 mass% and 25 mass% or less, and it is more preferable that it is 0.2 mass% or more and 20 mass% or less. ..
  • germania source 0.05 germania source to the total mass in terms of Zr composition, Y and Ge as ZrO 2, Y 2 O 3 and GeO 2 respectively as a percentage of the mass of GeO 2 in terms % Or more and 30% by mass or less, preferably more than 0.1% by mass and 25% by mass or less, and more preferably 0.2% by mass or more and 20% by mass or less.
  • Examples of the physical properties of the calcined powder include that the BET specific surface area is 3 m 2 / g or more and 15 m 2 / g or less, and the crystallite diameter of the monoclinic crystal is 20 nm or more and 60 nm or less.
  • the calcined powder is crushed. Zirconia with a low stabilizer content is prone to cracking and chipping during sintering.
  • the yield at the time of sintering tends to be high, and the obtained sintered body tends to be less likely to be hydrothermally deteriorated.
  • the calcination powder and the mixed powder of the alumina source and the additive component source may be pulverized instead of the calcination powder.
  • the additive component source include the above-mentioned additive component sources.
  • the content of the additive component sources is Zr, Y, and 1 or more selected from the group of Al, Ge, and Si of the mixed powder, respectively, as ZrO 2 , Y 2 O 3.
  • the weight ratio in terms of Al to Al 2 O 3 the proportion by weight and Si in terms of Ge to GeO 2 in SiO 2 Additive component source so that the total ratio is 0.05% by mass or more and 30% by mass or less, preferably 0.1% by mass or more and 25% by mass or less, and more preferably 0.2% by mass or more and 20% by mass or less.
  • the calcined powder may be mixed.
  • the pulverization method is arbitrary, and at least one of wet pulverization and dry pulverization may be used, and wet pulverization is preferable.
  • wet pulverization one or more selected from the group of a ball mill, a vibration mill and a continuous medium stirring mill can be exemplified, and a ball mill is preferable.
  • crushing conditions by a ball mill for example, calcined powder is mixed with a solvent to obtain a slurry in which the mass ratio of the calcined powder to the mass of the slurry is 30% by mass or more and 60% by mass or less, and the slurry has a diameter of 1 mm or more and 15 mm or less.
  • the zirconia balls of the above can be used as a pulverizing medium for pulverization for 10 hours or more and 100 hours or less.
  • wet pulverization After wet pulverization, it may be dried by any method to make a powder. Examples of the drying conditions include 110 ° C. to 130 ° C. in the air.
  • the method for producing the powder of the present embodiment may include a step of granulating the powder (hereinafter, also referred to as “granulation step”).
  • Granulation is an arbitrary method, and examples thereof include spray granulation of a slurry in which a powder and a solvent are mixed.
  • the solvent is at least one of water and alcohol, preferably water.
  • the granulated powder (hereinafter, also referred to as "powder granule”) has an average granule diameter of 30 ⁇ m or more and 80 ⁇ m or less, further 50 ⁇ m or more and 60 ⁇ m or less, and a bulk density of 1.00 g / cm 3 or more 1 .40g / cm 3 or less, and that further is 1.10 g / cm 3 or more 1.30 g / cm 3 or less.
  • the average sol particle size of the zirconia sol was measured using a dynamic light scattering type particle size distribution measuring device (device name: UPA-UT151, manufactured by Microtrac Bell). As a pretreatment of the sample, the hydrated zirconia sol-containing solution was suspended in pure water and dispersed for 3 minutes using an ultrasonic homogenizer.
  • BET specific surface area Using a general fluidized specific surface area automatic measuring device (device name: Flowsorb III2305, manufactured by Shimadzu Corporation) and nitrogen as an adsorption gas, measure the BET specific surface area of a powder sample by a method according to JIS R 1626-1996. did. Prior to the measurement, the powder sample was degassed in the air at 250 ° C. for 30 minutes to prepare it as a pretreatment. (Measurement of particle size distribution) The volume particle size distribution curve of the powder sample was measured by the HRA mode of the Microtrack particle size distribution meter (trade name: MT3000II, manufactured by Microtrac Bell), and the median diameter was measured.
  • the powder sample Prior to the measurement, the powder sample was suspended in pure water and dispersed for 10 minutes using an ultrasonic homogenizer to prepare a pretreatment.
  • the mass of the molded product sample was measured with a balance, and the volume was measured with a caliper and determined from the dimensions. The measured density was determined from the obtained mass and volume.
  • the theoretical density was obtained from the equations (5) to (8), and the relative density (%) was obtained from the value of the measured density ( ⁇ ) with respect to the theoretical density ( ⁇ 0 ), and used as the molded body density.
  • the sintered body sample was XRD-measured under the same conditions as the XRD measurement conditions of the powder sample. Using "PRO-FIT" as the obtained XRD pattern and calculation program, the monoclinic crystal ratio and the monoclinic crystal intensity ratio were determined by the formulas (1) and (3), respectively.
  • For XRD measurement after grinding the surface using a surface grinder, automatic polishing with water resistant paper (No. 800), automatic polishing with diamond slurry with an average particle size of 3 ⁇ m, and automatic polishing with 0.03 ⁇ m colloidal silica. , And mirror polishing was performed in this order, and a sintered sample having a surface roughness (Ra) ⁇ 0.04 ⁇ m was used.
  • An automatic polishing device (device name: MECATCH 334, manufactured by PRESI) was used for automatic polishing.
  • (Sintered body density) The measured density of the sintered sample was measured by the Archimedes method. Prior to the measurement, the mass of the dried sintered body was measured, and then the sintered body was placed in water and boiled for 1 hour for pretreatment. The theoretical density was obtained from the equations (5) to (8), and the relative density (%) was obtained from the value of the measured density ( ⁇ ) with respect to the theoretical density ( ⁇ 0 ), and used as the sintered body density.
  • the average grain size was determined by the planimetric method using the SEM observation diagram of the sintered body sample obtained by field emission scanning electron microscope observation. That is, a circle having a known area was drawn on the SEM observation map, and the number of crystal particles (Nc) in the circle and the number of crystal particles (Ni) on the circumference of the circle were measured. After setting the total number of crystal particles to 250 ⁇ 50 (Nc + Ni), the average crystal grain size was calculated using the following formula.
  • Nc is the number of crystal particles in the circle
  • Ni is the number of crystal particles on the circumference of the circle
  • A is the area of the circle
  • M is the magnification (5000 times) of the scanning electron microscope observation.
  • Nc + Ni was set to 250 ⁇ 50 using a plurality of SEM observation maps.
  • the sintered sample was mirror-polished and then subjected to a thermal etching treatment to prepare it as a pretreatment.
  • the surface of the sintered body was ground with a surface grinding machine, and then diamond abrasive grains having an average particle diameter of 9 ⁇ m, 6 ⁇ m, and 1 ⁇ m were sequentially used for polishing with a mirror polishing device.
  • the fracture toughness value of the sintered body sample was measured by a method according to the SEBP method specified in JIS R1607. The measurement was carried out using a columnar sintered body sample having a distance between fulcrums of 30 mm, a width of 4 mm and a thickness of 3 mm, and the average value measured 10 times was used as the fracture toughness value.
  • the bending strength of the sintered body sample was measured by a three-point bending test according to JIS R1601. The measurement was carried out using a columnar sintered body sample having a distance between fulcrums of 30 mm, a width of 4 mm and a thickness of 3 mm, and the average value measured 10 times was used as the bending strength.
  • Total light transmittance The total light transmittance was measured using a spectrophotometer (device name: V-650, manufactured by JASCO Corporation) by a method according to JIS K 7361. A disk-shaped sample was used for the measurement.
  • both sides of the sample were polished so that the sample thickness was 1 mm and the surface roughness (Ra) was 0.02 ⁇ m or less.
  • Light having a wavelength of 220 to 850 nm was transmitted through the sample and condensed by an integrating sphere to measure the transmittance at each wavelength, and the transmittance at a wavelength of 600 nm was defined as the total light transmittance.
  • Example 1 An aqueous solution of zirconium oxychloride having a zirconium concentration and a chloride ion concentration of 0.4 mol / L was hydrolyzed. The aqueous solution after hydrolysis was ultrafiltered using an ultrafiltration membrane (molecular weight cut off: 6000) to obtain a zirconia sol having an average sol particle size of 250 nm. W Zr of the resulting zirconia sol was below the detection limit (0.01 mass%).
  • an ultrafiltration membrane molecular weight cut off: 6000
  • Yttrium chloride hexahydrate and an aqueous ammonia solution were added to the zirconia sol aqueous solution after ultrafiltration so that yttria was 1.6 mol% to obtain a precipitate.
  • the obtained precipitate was washed with pure water and dried in the air, and then calcined in the air at a calcining temperature of 1025 ° C. for 2 hours to obtain a calcined powder.
  • the BET specific surface area of the obtained calcined powder was 12.5 m 2 / g, and the crystallite diameter of the monoclinic crystal was 35 nm.
  • the calcined powder is mixed with pure water to form a slurry, which is then ball-milled using zirconia balls and then dried in the air at 120 ° C. for yttria with an yttria content of 1.6 mol%.
  • a powder made of contained zirconia was obtained, and this was used as the powder of this example.
  • yttria was completely dissolved in zirconia, and the crystal phases thereof were monoclinic zirconia and tetragonal zirconia.
  • the median diameter was 0.15 ⁇ m
  • the volume particle size distribution curve was a bimodal distribution with peaks at the particle size 0.14 ⁇ m and the particle size 0.33 ⁇ m
  • the particle size peak ratio was 0.39. ..
  • the powder of this example was subjected to a mold press at a pressure of 70 MPa and a CIP treatment at a pressure of 196 MPa to obtain a molded product.
  • the obtained molded product was sintered in the air at a sintering temperature of 1300 ° C. for 2 hours at normal pressure to obtain a sintered body.
  • Example 2 The same method as in Example 1 except that the mixed powder of the calcined powder and 0.25% by mass of alumina sol in terms of Al 2 O 3 was ball milled, and 0.25% by mass in terms of Al 2 O 3 A powder containing zirconia containing alumina and having a balance of 1.6 mol% yttria was obtained.
  • the median diameter of the powder of this example is 0.15 ⁇ m
  • the volume particle size distribution curve is a bimodal distribution having peaks at a particle size of 0.14 ⁇ m and a particle size of 0.32 ⁇ m
  • the particle size peak ratio is 0. It was 37.
  • a molded product and a sintered body were obtained in the same manner as in Example 1 except that the powder was used and the sintering temperature was set to 1250 ° C.
  • Example 3 The same method as in Example 1 except that the calcining temperature was set to 1130 ° C. and the mixed powder of the calcined powder and 0.25% by mass of alumina sol in terms of Al 2 O 3 was ball milled. A powder containing 0.25% by mass of alumina in terms of Al 2 O 3 and the balance of 1.6 mol% yttria-containing zirconia was obtained.
  • the BET specific surface area of the obtained calcined powder was 6.7 m 2 / g, and the crystallite diameter of the monoclinic crystal was 44 nm. Further, the median diameter of the powder of this example is 0.18 ⁇ m, and the volume particle size distribution curve is a bimodal distribution having peaks at a particle size of 0.14 ⁇ m and a particle size of 0.36 ⁇ m, and the particle size peak ratio is It was 0.85.
  • a molded body and a sintered body were obtained in the same manner as in Example 1 except that the powder was used.
  • Example 4 The zirconia sol solution after ultrafiltration, the yttria was added yttrium chloride hexahydrate such that 2 mol%, and a calcined powder, and alumina sol 0.25 mass% in terms of Al 2 O 3 except mixed powder that was ball milled in the same manner as in example 1, containing 0.25 wt% of alumina in terms of Al 2 O 3 to obtain a powder and the balance being 2 mol% yttria-containing zirconia.
  • the median diameter of the powder of this example is 0.15 ⁇ m
  • the volume particle size distribution curve is a bimodal distribution having peaks at a particle size of 0.14 ⁇ m and a particle size of 0.33 ⁇ m
  • the particle size peak ratio is 0. It was 33.
  • a molded product and a sintered body were obtained in the same manner as in Example 1 except that the powder was used and the sintering temperature was set to 1500 ° C.
  • Example 5 In the same manner as in Example 1 except that the mixed powder of the calcined powder and 20% by mass of alumina powder in terms of Al 2 O 3 was ball milled, 20% by mass of alumina in terms of Al 2 O 3 was contained. A powder consisting of zirconia containing 1.6 mol% itria was obtained.
  • the median diameter of the powder of this example is 0.15 ⁇ m
  • the volume particle size distribution curve is a bimodal distribution having peaks at a particle size of 0.14 ⁇ m and a particle size of 0.35 ⁇ m, and the particle size peak ratio is 0. It was 41.
  • the crystallite diameter (D t ) of tetragonal zirconia was 42 nm.
  • a molded product and a sintered body were obtained in the same manner as in Example 1 except that the powder was used and the sintering temperature was set to 1350 ° C.
  • Example 6 Al was subjected to the same method as in Example 1 except that the calcining temperature was set to 1130 ° C. and the mixed powder of the calcined powder and 20% by mass of alumina powder in terms of Al 2 O 3 was ball milled. 2 O 3 comprises 20 wt% of alumina in terms to obtain a powder and the balance being 1.6 mol% yttria-containing zirconia.
  • the median diameter of the powder of this example is 0.16 ⁇ m
  • the volume particle size distribution curve is a bimodal distribution having peaks at a particle size of 0.14 ⁇ m and a particle size of 0.35 ⁇ m
  • the particle size peak ratio is 0. It was 67.
  • a molded product and a sintered body were obtained in the same manner as in Example 1 except that the powder was used and the sintering temperature was set to 1400 ° C.
  • Example 7 Mixing of the zirconia sol solution after ultrafiltration, the yttria was added yttrium chloride hexahydrate such that 2 mol%, and a calcined powder, the alumina sol of 5 mass% in terms of Al 2 O 3 A powder containing 5% by mass of alumina in terms of Al 2 O 3 and the balance of 2 mol% yttria-containing zirconia was obtained by the same method as in Example 1 except that the powder was ball milled.
  • the median diameter of the powder of this example is 0.15 ⁇ m
  • the volume particle size distribution curve is a bimodal distribution having peaks at a particle size of 0.14 ⁇ m and a particle size of 0.35 ⁇ m, and the particle size peak ratio is 0. It was 41.
  • a molded product and a sintered body were obtained in the same manner as in Example 1 except that the powder was used and the sintering temperature was set to 1500 ° C.
  • Example 8 In the same manner as in Example 1 except that the mixed powder of the calcined powder and 0.5% by mass of alumina sol in terms of Al 2 O 3 was ball milled, 0.5% by mass of Al 2 O 3 was converted. A powder containing zirconia containing alumina and having a balance of 1.6 mol% yttria was obtained.
  • the median diameter of the powder of this example is 0.15 ⁇ m
  • the volume particle size distribution curve is a bimodal distribution having peaks at a particle size of 0.14 ⁇ m and a particle size of 0.32 ⁇ m
  • the particle size peak ratio is 0. It was 49.
  • a molded product and a sintered body were obtained in the same manner as in Example 1 except that the powder was used and the sintering temperature was set to 1250 ° C.
  • Example 9 In the same manner as in Example 1 except that the mixed powder of the calcined powder and 1% by mass of alumina sol in terms of Al 2 O 3 was ball milled, 1% by mass of alumina in terms of Al 2 O 3 was contained. A powder having a balance of 1.6 mol% yttria-containing zirconia was obtained.
  • the median diameter of the powder of this example is 0.15 ⁇ m
  • the volume particle size distribution curve is a bimodal distribution having peaks at the particle size 0.14 ⁇ m and the particle size 0.34 ⁇ m
  • the particle size peak ratio is 0. It was 49.
  • a molded product and a sintered body were obtained in the same manner as in Example 1 except that the powder was used and the sintering temperature was set to 1250 ° C.
  • Example 10 In the same manner as in Example 1 except that the mixed powder of the calcined powder and the germanium oxide having a GeO 2 equivalent of 0.25 mass% was ball milled, the germanium oxide having a GeO 2 equivalent of 0.25 mass% was contained. A powder having a balance of 1.6 mol% yttrium-containing zirconia was obtained.
  • the median diameter of the powder of this example is 0.14 ⁇ m
  • the volume particle size distribution curve is a bimodal distribution having peaks at a particle size of 0.14 ⁇ m and a particle size of 0.34 ⁇ m
  • the particle size peak ratio is 0. It was 37.
  • a molded product and a sintered body were obtained in the same manner as in Example 1 except that the powder was used and the sintering temperature was set to 1250 ° C.
  • Example 11 A mixed powder of the calcined powder and 0.25% by mass of silica sol in terms of SiO 2 was ball-milled, and the same method as in Example 1 was used to contain 0.25% by mass of silica in terms of SiO 2 .
  • a powder having a balance of 1.6 mol% yttria-containing zirconia was obtained.
  • the median diameter of the powder of this example is 0.18 ⁇ m
  • the volume particle size distribution curve is a bimodal distribution having peaks at a particle size of 0.14 ⁇ m and a particle size of 0.35 ⁇ m
  • the particle size peak ratio is 0. It was 89.
  • a molded product and a sintered body were obtained in the same manner as in Example 1 except that the powder was used and the sintering temperature was set to 1350 ° C.
  • Example 12 The same method as in Example 1 except that the calcined powder and the mixed powder of 0.25% by mass of alumina sol in terms of Al 2 O 3 and germanium oxide of 0.25% by mass in terms of GeO 2 were ball-milled. A powder containing 0.25% by mass of alumina in terms of Al 2 O 3 and 0.25% by mass of germanium oxide in terms of GeO 2 and the balance of 1.6 mol% yttrium-containing zirconia was obtained.
  • the median diameter of the powder of this example is 0.15 ⁇ m
  • the volume particle size distribution curve is a bimodal distribution having peaks at the particle size 0.14 ⁇ m and the particle size 0.34 ⁇ m
  • the particle size peak ratio is 0. It was 37.
  • a molded product and a sintered body were obtained in the same manner as in Example 1 except that the powder was used and the sintering temperature was set to 1200 ° C.
  • Comparative Example 1 An aqueous solution of zirconium oxychloride having a zirconium concentration and a chloride ion concentration of 0.37 mol / L and 0.74 mol / L, respectively, was hydrolyzed. The aqueous solution after hydrolysis was ultrafiltered using an ultrafiltration membrane (molecular weight cut off: 6000) to obtain a zirconia sol having an average sol particle size of 100 nm. The W Zr of the obtained zirconia sol was 9% by mass.
  • Yttrium chloride hexahydrate and aqueous ammonia solution were added to the zirconia sol aqueous solution after ultrafiltration so that yttria was 2 mol% to obtain a precipitate.
  • the obtained precipitate was washed with pure water and dried in the air, and then calcined in the air at a calcining temperature of 1000 ° C. for 2 hours to obtain a calcined powder.
  • the calcined powder is mixed with pure water to form a slurry, which is then ball-milled using zirconia balls and then dried in the air at 120 ° C. to produce yttria-containing zirconia having an yttria content of 2 mol%.
  • a powder made of the above was obtained, and this was used as the powder of this comparative example.
  • the powder of this comparative example was subjected to a mold press at a pressure of 70 MPa and a CIP treatment at a pressure of 196 MPa to obtain a molded product.
  • the obtained molded product was sintered in the air at a sintering temperature of 1450 ° C. for 2 hours at normal pressure to obtain a sintered body.
  • Comparative Example 2 In the calcination powder and, Al 2 O 3 in except that the mixed powder of 0.25% by weight of alumina powder was ball milled converted Comparative Example 1 In a manner similar to, 0.25 wt% in terms of Al 2 O 3 A powder containing zirconia containing alumina and having a balance of 2 mol% itria was obtained.
  • a molded body and a sintered body were obtained in the same manner as in Comparative Example 1 except that the powder was used.
  • Comparative Example 3 The same method as in Comparative Example 1 except that the mixed powder of the calcined powder and 5% by mass of alumina powder in terms of Al 2 O 3 was ball milled, and 5% by mass of alumina in terms of Al 2 O 3 was contained. , A powder was obtained in which the balance was zirconia containing 2 mol% yttria.
  • a molded body and a sintered body were obtained in the same manner as in Comparative Example 1 except that the powder was used.
  • Comparative Example 4 0 in the same manner as in Example 1 except that yttria chloride hexahydrate and aqueous ammonia solution were added to the zirconia sol aqueous solution after ultrafiltration so that yttria was 0.9 mol% to obtain a precipitate.
  • a powder consisting of zirconia containing .5 mol% yttria was obtained.
  • the powder was subjected to a die press at a pressure of 70 MPa and a CIP treatment at a pressure of 196 MPa to obtain a molded product.
  • the obtained molded product was sintered in the air at a sintering temperature of 1300 ° C. for 2 hours at normal pressure to obtain a sintered body, but the density was low and a large number of cracks were generated to obtain sintered body characteristics. Can not be evaluated.
  • Table 1 shows the evaluation results of the powders of these Examples and Comparative Examples
  • Table 2 shows the evaluation results of the sintered body.
  • the molded product density is 49% or more in Example, further 50% or more, less than 49% in Comparative Example, and less than 48%, and it can be seen that the powder of this Example has high filling property.
  • the sintered body density of the sintered body having the stabilizer content of 1.0 mol% or more was about the same in both the examples and the comparative examples, but the fracture toughness value of the examples was 6.5 MPa. While m 0.5 or more, the fracture toughness value of the comparative example is 6 MPa ⁇ m less than 0.5 , and a sintered body having high fracture toughness can be obtained from the powder of this example by normal pressure sintering. You can see that.
  • the sintered body of Comparative Example 1 did not have an XRD peak corresponding to the (111) plane of the monoclinic zirconia, the monoclinic intensity ratio could not be calculated. Further, the sintered body of Comparative Example 4 contained a large amount of defects such as cracks, and the sintered body collapsed by processing into a measurement sample such as mirror polishing, so that measurements other than the sintered body density could not be performed.
  • the fracture toughness of the sintered bodies of Examples 1 and 5 was measured by a method according to the IF method specified in JIS R1607. Fracture toughness as measured by the IF method, respectively, was 17.9MPa ⁇ m 1/5 and 11.1MPa ⁇ m 1/5. Although the degree of increase in fracture toughness measured by the IF method and the SEBP method is different, the fracture toughness measured by the IF method was higher than that measured by the SEBP method.
  • Example 13 A powder was obtained in the same manner as in Example 1.
  • a sintered body was obtained in the same manner as in Example 1 except that the obtained powder was used and the sintering temperature was set to 1400 ° C.
  • Example 14 A powder was obtained in the same manner as in Example 2. A sintered body was obtained in the same manner as in Example 2 except that the obtained powder was used and the sintering temperature was set to 1350 ° C.
  • Example 15 A powder was obtained in the same manner as in Example 3. A sintered body was obtained in the same manner as in Example 3 except that the obtained powder was used and the sintering temperature was set to 1400 ° C.
  • Example 16 A powder was obtained in the same manner as in Example 5. A sintered body was obtained in the same manner as in Example 5 except that the obtained powder was used and the sintering temperature was set to 1500 ° C.
  • Example 17 A powder was obtained in the same manner as in Example 6. A sintered body was obtained in the same manner as in Example 6 except that the obtained powder was used and the sintering temperature was set to 1500 ° C.
  • Example 18 A powder was obtained in the same manner as in Example 8. A sintered body was obtained in the same manner as in Example 8 except that the obtained powder was used and the sintering temperature was set to 1350 ° C.
  • Example 19 A powder was obtained in the same manner as in Example 9. A sintered body was obtained in the same manner as in Example 9 except that the obtained powder was used and the sintering temperature was set to 1350 ° C.
  • Example 20 A powder was obtained in the same manner as in Example 10. A sintered body was obtained in the same manner as in Example 10 except that the obtained powder was used and the sintering temperature was set to 1350 ° C.
  • Example 21 A powder was obtained in the same manner as in Example 12. A sintered body was obtained in the same manner as in Example 12 except that the obtained powder was used and the sintering temperature was set to 1250 ° C.
  • Example 22 A powder was obtained in the same manner as in Example 12. A sintered body was obtained in the same manner as in Example 12 except that the obtained powder was used and the sintering temperature was set to 1350 ° C.
  • Comparative Example 5 A powder was obtained in the same manner as in Comparative Example 1. A sintered body was obtained in the same manner as in Comparative Example 1 except that the obtained powder was used and the sintering temperature was set to 1500 ° C.
  • the sintered body of the example had a fracture toughness value of 7 MPa ⁇ m 0.5 or more measured by the SEBP method.
  • Measurement example 1 (hydraulic deterioration test) A sintered body is obtained by the same method as in Example 2, and after mirror polishing, the sinter is subjected to a hydrothermal deterioration test by immersing it in hot water at 140 ° C., and sintered 6 hours and 10 hours after immersion. The monoclinic crystal ratio on the body surface was determined. Further, as a comparative measurement example, a 3 mol% yttria-containing zirconia sintered body was similarly treated and evaluated. The results are shown in the table below.
  • the sintered body of the comparative measurement example was obtained in the same manner as in the comparative example 1 except that yttria chloride hexahydrate was added to the zirconia sol aqueous solution after ultrafiltration so that yttria was 3 mol%.
  • a powder made of zirconia containing 3 mol% yttria is subjected to a mold press at a pressure of 70 MPa and a CIP treatment at a pressure of 196 MPa to obtain a molded product, which is sintered in the air at a sintering temperature of 1500 ° C. for 2 hours at normal pressure.
  • the fracture toughness value of the sintered body in the comparative measurement example was 4.8 MPa ⁇ m 0.5 .
  • the main phase of the crystal phase was tetragonal zirconia in both the measurement example and the comparative measurement example.
  • the sintered body deteriorates due to the phase displacement of tetragonal zirconia to monoclinic zirconia in the hydrothermal deterioration test.
  • the measurement example is a sintered body having a low stabilizer content, but has a low monoclinic crystal ratio after the hydrothermal deterioration test and is not easily deteriorated. ..
  • the sintered body of the comparative measurement example before the hydrothermal deterioration test had a monoclinic crystal ratio of 0% and a tetragonal crystal ratio of 70%, and the balance was cubic, so the residual tetragonal crystal ratio ( ⁇ T%). Is 4%, and it is considered that almost all of the tetragonal zirconia in the sintered body has undergone a phase transition to monoclinic zirconia in a 10-hour hydrothermal deterioration test.
  • the sintered body of the measurement example before the hydrothermal deterioration test had a tetragonal ratio of 94% and a monoclinic crystal ratio of 6%, so that the residual tetragonal ratio ( ⁇ T%) was 85%. Further, it is considered that a large amount of tetragonal zirconia that does not undergo a phase transition is contained even after a 10-hour hydrothermal deterioration test.
  • the residual tetragonal ratio of the sintered body of the example is 65% or more, and the transformation from tetragonal zirconia to monoclinic zirconia is less likely to occur than in the comparative example having a large stabilizer content.
  • the residual tetragonal ratio of the sintered body of the example is 65% or more, and it can be seen that the transformation from tetragonal zirconia to monoclinic zirconia is less likely to occur as compared with the comparative example. Further, it can be seen that Example 4 has the same stabilizer content as Comparative Example 2 and has a high residual tetragonal crystal ratio despite the high sintering temperature.
  • the residual tetragonal ratio of the sintered body of the example is 70% or more, and it can be seen that the transformation from tetragonal zirconia to monoclinic zirconia is less likely to occur as compared with the comparative example.
  • the sintered body of Example 22 is a sintered body containing a total of 0.5% by mass of alumina and germania as additive components. Compared with the sintered body of Example 6 containing 20% by mass of alumina, it can be seen that the sintered body of Example 22 shows a residual tetragonal ratio even though it was obtained by sintering at a higher temperature.
  • Measurement example 5 total light transmittance
  • the total light transmittance was measured using the sintered bodies of Examples 2, 8, 9 and 14, and Comparative Example 2. The results are shown in the table below.
  • the total light transmittance was 25% or more and 40% or less, although the additive component was 0.2% by mass or more. Further, as compared with Examples 2 and 14, the total light transmittance became higher as the sintering temperature increased. On the other hand, the sintered body of Comparative Example 2 had a total light transmittance of less than 20% in spite of having a higher sintering temperature.
  • Example 2 the sintered body of Example 2 was processed to a thickness of 0.2 mm, and the total light transmittance was measured in the same manner. As a result, the total light transmittance at a thickness of 0.2 mm was 46%.
  • the sintered body of Comparative Example 2 cracked during processing, and it was not possible to obtain a measurement sample having a thickness of 0.2 mm or less.
  • Measurement example 6 linear transmittance
  • Each of the sintered bodies of the examples was processed to a sample thickness of 0.09 mm. In each case, it was possible to process a measurement sample having a sample thickness of 0.09 mm without cracks or the like. Since the sintered body of the comparative example had defects such as cracks and cracks during processing, it could not be processed to 0.2 mm.
  • the linear transmittance was measured for a sintered body with a sample thickness of 0.09 mm.
  • the values of the linear transmittance of the main examples are shown in the table below.
  • Measurement example 7 evaluation of compound
  • the powders of Examples 2 and 3 were used, respectively, to prepare a compound. That is, after the powder is dried at 150 ° C. for 1 hour or more, the mass of the powder is 85% by mass with respect to the mass of the obtained compound in a kneader (device name: Labonider Mill TDR-3 type, manufactured by Toshin Co., Ltd.).
  • the powder and acrylic resin were added to the mixture, and the mixture was kneaded at 160 ° C. to obtain a compound. Fifteen minutes after the start of kneading, the kneadability of the compound was evaluated by measuring the torque (Nm) applied to the kneader. The smaller the torque value, the easier the compound to be kneaded, that is, the compound having excellent kneadability.
  • the fluidity was evaluated by measuring the flow velocity of the compound sample with a flow tester.
  • a general flow tester (device name: flow tester CFT500D, manufactured by Shimadzu Corporation) was used for the measurement, and the syringe was filled with the compound.
  • the fluidity was confirmed by applying a load to the compound under the following conditions and measuring the volume velocity (cm 3 / s) of the compound ejected from the syringe. The measurement conditions are shown below. The larger the value of the volume velocity, the more easily the compound flows in the molten state, that is, the compound having excellent fluidity.
  • Syringe area 1 cm 2 Die hole diameter: 1 mm in diameter Die length: 2 mm Load: 50 kg
  • Compound density 3.0 g / cm 3
  • a 3 mol% yttria-containing zirconia powder having a BET specific surface area of 15.0 m 2 / g and an average particle diameter (median diameter) of 1.1 ⁇ m was similarly evaluated.
  • the evaluation results of the compound are shown in the table below.
  • the powder of the comparative measurement example had low kneadability and could not be kneaded at 160 ° C. Therefore, the kneadability of the comparative measurement example in the table below shows the value when kneaded at 170 ° C.
  • the powder of Example 3 having a low BET specific surface area was excellent in both kneading property and fluidity, and the fluidity was particularly remarkably high. Further, although the powders of Example 2 and Comparative Measurement Examples had the same BET specific surface area as each other, the powder of Example 2 had much higher fluidity than the powder of Comparative Measurement Example. .. From these results, it can be seen that the powder of the example has an excellent effect as a composition (compound) composed of powder and resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

常圧焼結によって得られるジルコニア焼結体であって、SEPB法により測定される破壊靭性値が高いジルコニア焼結体を得るための原料、当該原料から得られる焼結体、及びこれらの製造方法の少なくともいずれかを提供する。 安定化剤を含有するジルコニアを含み、単斜晶率が0.5%以上であることを特徴とする焼結体。このような焼結体は、安定化剤を含有し、単斜晶率が70%を超えるジルコニアを含み、単斜晶ジルコニアの結晶子径が23nmを超え80nm以下であることを特徴とする粉末を使用することを特徴とする製造方法により得られることが好ましい。

Description

焼結体、粉末及びその製造方法
 本開示は、ジルコニアを主相とする焼結体、その原料となる粉末及びその製造方法に関する。
 ジルコニア焼結体は、粉砕媒体や構造材料など強度を必要とする従来用途に加え、時計、携帯電子機器、自動車、家電等の装飾部品などの装飾用途への適用が検討されている。装飾用途へ適用される焼結体は脆さを低減すること、すなわち破壊靭性値を高くすること、が求められる。
 これまで、破壊靭性値の改善を目的とて種々のジルコニア焼結体が報告されている。例えば、特許文献1には、中和共沈法で製造された市販の3mol%イットリア含有ジルコニア粉末と、市販のアルミナ粉末と混合した混合粉末とし、当該混合粉末をマイクロ波焼結することで得られたジルコニア-アルミナ複合焼結体が報告されている。当該複合焼結体のIF法により測定される破壊靭性値(KIC)が6.02~6.90MPa・m1/2であることが記載されている。
 特許文献2には、リン、二酸化ケイ素、アルミナを含むジルコニア粉末を熱間静水圧プレス(HIP)処理することで得られたたジルコニア焼結体が報告されている。当該焼結体は、JIS R 1607に規定される方法で測定された破壊靭性値が6~11MPa・m1/2であることが記載されている。
日本国特開2017-226555号公報 日本国特開2011-178610号公報
 特許文献1及び2で開示されたジルコニア焼結体は、マイクロ波焼結やHIP処理等の特別な焼結方法を適用することにより作製する必要があるため、工業的な適用が困難である。ところで、装飾部品への適用に際しては、信頼度の高い破壊靭性値での焼結体の脆さが評価することも求められている。これに対し、破壊靭性の測定方法は標準化されているものでも複数の方法が存在し、測定方法毎で得られる値が大きく異なる。特許文献1の破壊靭性値は簡易的な方法で測定された値であり、また、特許文献2の破壊靭性値は測定方法自体が不明確であり、いずれも開示された値は信頼性が低い。
 本開示では、常圧焼結によって得られるジルコニア焼結体であって、SEPB法により測定される破壊靭性値が高いジルコニア焼結体を得るための原料、当該原料から得られる焼結体、及びこれらの製造方法の少なくともいずれかを提供することを目的とする。
 本開示の要旨は以下のとおりである。
[1] 安定化剤を含有するジルコニアを含み、単斜晶率が0.5%以上であることを特徴とする焼結体。
[2] 単斜晶ジルコニアの(111)面に相当するXRDピークの面積強度に対する、単斜晶ジルコニアの(11-1)面に相当するXRDピークの面積強度の比が0以上である上記[1]に記載の焼結体。
[3] 前記安定化剤が、イットリア、カルシア、マグネシア及びセリアの群から選ばれる1種以上である上記[1]又は[2]に記載の焼結体。
[4] 前記安定化剤の含有量が1.0mol%以上2.5mol%未満である上記[1]乃至[3]のいずれかひとつに記載の焼結体。
[5] JIS R1607で規定されたSEPB法に準じた方法で測定される破壊靭性値が6MPa・m0.5以上11MPa・m0.5以下である上記[1]乃至[4]のいずれかひとつに記載の焼結体。
[6] アルミナ、ゲルマニア及びシリカの群から選ばれる1以上の添加成分を含む上記[1]乃至[5]のいずれかひとつに記載の焼結体。
[7] 前記添加成分がアルミナである上記[1]乃至[6]のいずれかひとつに記載の焼結体。
[8] 前記ジルコニアが、単斜晶ジルコニアと、正方晶ジルコニア及び立方晶ジルコニアの少なくともいずれかと、を含む上記[1]乃至[7]のいずれかひとつに記載の焼結体。
[9] 140℃の熱水中で6時間浸漬処理前の正方晶率に対する、140℃の熱水中で6時間浸漬処理後の正方晶率の割合が15%以上である上記[1]乃至[8]のいずれかひとつに記載の焼結体。
[10] 安定化剤を含有し、単斜晶率が70%を超えるジルコニアを含み、単斜晶ジルコニアの結晶子径が23nmを超え80nm以下であることを特徴とする粉末を使用することを特徴とする上記[1]乃至[9]のいずれかひとつに記載の焼結体の製造方法。
[11] 安定化剤を含有し、単斜晶率が70%を超えるジルコニアを含み、単斜晶ジルコニアの結晶子径が23nmを超え80nm以下であることを特徴とする粉末。
[12] 前記ジルコニアの結晶相が、単斜晶ジルコニア及び正方晶ジルコニアを含む上記[11]に記載の粉末。
[13] 前記安定化剤が、イットリア、カルシア、マグネシア及びセリアの群から選ばれる1種以上である上記[11]又は[12]に記載の粉末。
[14] 前記安定化剤の含有量が1.0mol%以上2.5mol%未満である上記[11]乃至[13]のいずれかひとつに記載の粉末。
[15] アルミナ、ゲルマニア及びシリカの群から選ばれる1以上の添加成分を含む上記[11]乃至[14]のいずれかひとつに記載の粉末。
[16] 前記添加成分の含有量が0.1質量%以上30質量%以下である上記[15]に記載の粉末。
[17] BET比表面積が6m/g以上20m/g未満である上記[11]乃至[16]のいずれかひとつに記載の粉末。
[18] メジアン径が0.05μm以上0.3μm以下である上記[11]乃至[17]のいずれかひとつに記載の粉末。
[19] 上記[1]乃至[9]のいずれかひとつに記載の焼結体を含む部材。
 本開示により、常圧焼結によって得られるジルコニア焼結体であって、SEPB法により測定される破壊靭性値が高いジルコニア焼結体を得るための原料、当該原料から得られる焼結体、及びこれらの製造方法の少なくともいずれかを提供するができる。
 以下、本開示について、実施形態の一例を示して説明する。
 本実施形態における各用語は以下の通りである。
 「単斜晶率」及び「正方晶率」は、それぞれ、ジルコニアの結晶相に占める、単斜晶ジルコニア及び正方晶ジルコニアの割合である。また、「単斜晶強度比」は、ジルコニアの結晶相に占める、単斜晶ジルコニアの(111)面に相当するXRDピークの面積強度に対する、単斜晶ジルコニアの(11-1)面に相当するXRDピークの面積強度の比である。
 粉末については、粉末の粉末X線回折(以下、「XRD」ともいう。)パターンを使用し、一方、焼結体については、鏡面研磨後の焼結体の表面のXRDパターンを使用し、単斜晶率は以下の式(1)から、正方晶率は以下の式(2)から、及び、単斜晶強度比は以下の式(3)から、それぞれ、求めることができる。
 f={I(111)+I(11-1)}/[I(111)
      +I(11-1)+I(111)+I(111)]×100 (1)
 f=I(111)/[I(111)+I(11-1)
      +I(111)+I(111)]×100          (2)
 M(11-1)/(111)={I(11-1) / I(111)}   (3)
 式(1)乃至(3)において、fは単斜晶率(%)、fは正方晶率(%)、M(11-1)/(111)は単斜晶強度比、I(111)及びI(11-1)は、それぞれ、単斜晶ジルコニアの(111)面及び(11-1)面に相当するXRDピークの面積強度、I(111)は正方晶ジルコニアの(111)面に相当するXRDピークの面積強度、並びにI(111)は立方晶ジルコニアの(111)面に相当するXRDピークの面積強度である。
 XRDパターンの測定の条件として、以下の条件を挙げることができる。
      線源       : CuKα線(λ=0.15418nm)
      測定モード    : 連続スキャン
      スキャンスピード : 4°/分
      ステップ幅    : 0.02°
      測定範囲     : 2θ=26°~33°
 上述のXRDパターン測定において、好ましくは、ジルコニアの各結晶面に相当するXRDピークは、以下の2θにピークトップを有するピークとして測定される。
 単斜晶ジルコニアの(111)面に相当するXRDピーク : 2θ=31±0.5°
 単斜晶ジルコニアの(11-1)面に相当するXRDピーク: 2θ=28±0.5°
 正方晶ジルコニア及び立方晶ジルコニアの(111)面に相当するRDピークは重複して測定され、そのピークトップの2θは、2θ=30±0.5°である。
 各結晶面のXRDピークの面積強度は、計算プログラムに“PRO-FIT”を使用し、H. Toraya,J. Appl. Crystallogr.,19,440-447(1986)に記載の方法で、各XRDピークを分離した上で求めることができる。
 また、上述のXRD測定に供する表面研磨後の焼結体は、平面研削盤を使用して焼結後の表面を削った後、研磨布紙による自動研磨、平均粒径3μmのダイヤモンドスラリーによる自動研磨、及び、0.03μmのコロイダルシリカによる自動研磨、の順で測定面の鏡面研磨処理が施された、表面粗さRaが0.04μm以下の状態の焼結体である。
 「単斜晶ジルコニアの結晶子径」(以下、「D」ともいう。)は、粉末のXRDパターンから以下の式(4)を使用して求まる値であり、「正方晶ジルコニアの結晶子径」(以下、「D」ともいう。)は、粉末のXRDパターンから、以下の式(5)を使用して求まる値である。
           D=κλ/(βcosθ)     (4)
           D=κλ/(βcosθ)     (5)
 式(4)及び式(5)において、Dは単斜晶ジルコニアの結晶子径(nm)、Dは正方晶ジルコニアの結晶子径(nm)、κはシェラー定数(κ=1)、λはXRD測定に使用した光源の波長(nm)、βは粒度を25~90μmとした石英砂(和光純薬工業社製)を使用して機械的広がりを補正した後の半値幅(°)、θはXRD測定における単斜晶ジルコニアの(11-1)面に相当する反射のブラック角(°)、及びθはXRD測定における正方晶ジルコニアの(111)面に相当する反射のブラック角(°)である。XRD測定の光源にCuKα線を用いた場合、λは0.15418nmである。
 「BET比表面積」は、JIS R 1626-1996に準じ、吸着物質を窒素(N)としたBET法1点法により求められる値である。
 「体積分布による粒子径」とは、レーザー回折法による体積粒子径分布測定で得られる粉末の粒子径である。レーザー回折法により得られる粒子径は非球状近似された径である。体積粒子径分布測定の条件として以下の条件が挙げられる。
      測定試料       : 粉末スラリー
      ジルコニアの屈折率  : 2.17
      溶媒(水)の屈折率  : 1.333
      測定時間       : 30秒
      前処理        : 超音波分散処理
 「メジアン径」とは、レーザー回折法による体積粒子径分布測定で得られる累積体積粒子径分布曲線の体積割合が50%に相当する粒子径である。
 「粒子径分布曲線」とは、レーザー回折法による体積粒子径分布測定で得られる粉末の粒子径分布を示す曲線である。
 「破壊靭性値」は、JIS R 1607で規定されるSEPB法に準じた方法によって測定される破壊靭性の値(MPa・m0.5)である。破壊靭性値の測定は、支点間距離30mmで、幅4mm、厚さ3mmの柱形状の焼結体試料を使用して行い、10回測定した平均値をもって本実施形態の焼結体の破壊靭性値とすればよい。なお、JIS R 1607では、IF法及びSEPB法の二通りの破壊靭性の測定が規定されている。IF法は、SEPB法と比べて測定される値が大きくなる傾向がある。さらにIF法は簡易的な測定方法であるため測定毎の測定値のバラツキが大きい。そのため、本実施形態における破壊靭性値と、IF法で測定された破壊靭性値とは、値の絶対値の比較はできない。同様に、SEPB法以外で測定された破壊靭性値と、SEPB法で測定された破壊靭性値とは、その値の絶対値の比較はできない。
 「曲げ強度」とは、JIS R 1601に準じた三点曲げ試験により求められる三点曲げ強度の値である。曲げ強度の測定は、支点間距離30mmで、幅4mm、厚さ3mmの柱形状の焼結体試料を使用して行い、10回測定した平均値をもって本実施形態の焼結体の曲げ強度とすればよい。
 「全光線透過率」とは、試料厚み1.0mmにおける600nm波長の光に対する全光線透過率であり、JIS K 7361に準じた方法で測定することができる。波長600nmの光を入射光とし、当該入射光に対する拡散透過率と直線透過率を合計した透過率の値として求めることができる。厚み1mm及び、両面(測定面及び測定面の反対面)の表面粗さ(Ra)≦0.02μmのサンプルを測定試料とし、一般的な分光光度計(例えば、V-650、日本分光社製)を使用して波長600nmの光を当該試料に照射し、積分球により透過光を集光することで試料の透過率(拡散透過率及び直線透過率)が測定され、これを全光線透過率とすればよい。
 「直線透過率」とは、試料厚み0.05mm以上0.2mm以下、好ましくは0.05mm以上0.15mm以下、特に0.09mm、における600nm波長の光に対する全光線透過率であり、JIS K 7361に準じた方法で測定することができる。波長600nmの光を入射光とし、当該入射光に対する直線透過率の値として求めることができる。厚み1mm及び、両面(測定面及び測定面の反対面)の表面粗さ(Ra)≦0.02μmのサンプルを測定試料とし、一般的な分光光度計(例えば、V-650、日本分光社製)を使用して波長600nmの光を当該試料に照射し、積分球により透過光を集光することで試料の直線透過率を測定すればよい。
 「相対密度」とは、理論密度に対する実測密度の割合(%)である。成形体の実測密度は質量測定で測定される質量に対する寸法測定から求められる体積の割合(g/cm)であり、焼結体の実測密度は質量測定で測定される質量に対する、アルキメデス法で測定される体積の割合(g/cm)であり、及び理論密度は以下の式(6)~(9)から求められる密度(g/cm)である。
  A=0.5080+0.06980X/(100+X)    (6)
  C=0.5195-0.06180X/(100+X)    (7)
  ρ=[124.25(100-X)+225.81X]
         /[150.5(100+X)AC]     (8)
  ρ=100/[(Y/3.987)+(Y/3.637)+(Y/2.2)
+(100-Y-Y-Y)/ρ]  (9)
 式(6)~(9)において、ρは理論密度、ρはジルコニアの理論密度、A及びCは定数、Xはジルコニア(ZrO)及びイットリア(Y)の合計に対するイットリアのモル割合(mol%)、並びに、Y、Y及びYは成形体又は焼結体のジルコニア、イットリア、アルミナ、ゲルマニア及びシリカを、それぞれ、ZrO、Y、Al、GeO及びSiO換算した合計に対するAl換算したアルミナ、GeO換算したゲルマニア及びSiO換算したシリカの質量割合(質量%)である。
 以下、本実施形態の焼結体について説明する。
 本実施形態は、安定化剤を含有するジルコニアを含み、単斜晶率が0.5%以上であることを特徴とする焼結体、である。
 本実施形態の焼結体は、安定化剤を含有するジルコニアを含む焼結体であり、安定化剤を含有するジルコニアを主相とする焼結体、いわゆるジルコニア焼結体、である。
 安定化剤は、ジルコニアを安定化する機能を有するものであり、カルシア(CaO)、マグネシア(MgO)、セリア(CeO)及びイットリア(Y)の群から選ばれる1種以上が挙げられ、セリア及びイットリアの少なくともいずれかであることが好ましく、イットリアであることがより好ましい。本実施形態の焼結体において、安定化剤の含有量はジルコニアが部分安定化される含有量であればよい。安定化剤の含有量として、例えば、安定化剤がイットリアの場合、焼結体中のジルコニア(ZrO)及びイットリア(Y)の合計に対するイットリアのモル割合(={Y/(ZrO+Y)}×100[mol%];以下、「イットリア含有量」ともいう。)として、1.0mol%以上2.5mol%以下、更には1.1mol%以上2.2mol%以下、また更には1.1mol%以上2.0mol%以下であることが例示でき、1.2mol%以上2.0mol%未満であることが好ましく、1.2mol%以上1.8mol%以下であることがより好ましい。この範囲の安定化剤含有量であることで、SEPB法で測定される破壊靭性値が高くなりやすい。イットリア含有量は1.4mol%以上2.1mol%以下、更には1.5mol%以上1.8mol%以下であることが好ましい。
 安定化剤はジルコニアに固溶していることが好ましく、本実施形態の焼結体は、未固溶の安定化剤を含まないこと、安定化剤が全てジルコニアに固溶していることが好ましく、本実施形態の焼結体のXRDパターンにおいて安定化剤のXRDピークを有さないことがより好ましい。本実施形態において、ジルコニアのXRDピークとは別のXRDピークとして、安定化剤のXRDピークが確認できる場合に未固溶の安定化剤を含むとみなすことができる。
 本実施形態の焼結体は、アルミナ(Al)、ゲルマニア(GeO)及びシリカ(SiO)の群から選ばれる1以上の添加成分を含んでいてもよい。添加成分は、アルミナ及びゲルマニアの少なくともいずれかであることが好ましく、アルミナであることがより好ましい。添加成分を含むことで、ジルコニアの安定化剤の含有量が少ない場合であっても結晶粒間の粒界強度が高くなりやすい。添加成分を含む場合、本実施形態の焼結体は、添加成分を含み、残部が安定化剤を含有するジルコニアである焼結体、となる。添加成分の含有量は、焼結体のジルコニア、イットリア及び添加成分の合計質量に対する添加成分の質量割合である。例えば、添加成分としてアルミナを含み、残部がイットリアを含有するジルコニアである焼結体、{Al/(ZrO+Y+Al)}×100[質量%])として求められる。添加成分の含有量は、0.05質量%以上30質量%以下であることが挙げられ、0.1質量%を超え25質量%以下であることが好ましく、0.2質量%以上20質量%以下であることがより好ましい。添加成分の含有量が0.02質量%以上0.3質量%以下であれば、機械的強度が高くなる傾向や、単斜晶ジルコニアへの変態が生じにくくなる傾向がある。
 本実施形態の焼結体は、不可避不純物以外は含まないことが好ましい。不可避不純物としてハフニア(HfO)が例示できる。
 本実施形態の焼結体は、単斜晶率が0.5%以上であり、好ましくは0.5%以上15%以下、より好ましくは0.8%以上12%以下である。破壊靭性が高くなる傾向があるため、単斜晶率は1%以上15%以下、2%以上14%以下、5%以上12%以下、7%以上11%以下、のいずれかであることが好ましい。一方、曲げ強度が高くなる傾向があるため、単斜晶率は0.5%以上5%以下であることが好ましく、0.8%以上3%以下であることがより好ましい。
 焼結直後の焼結体表面(as-sintered-surface;以下、「焼肌面」ともいう。)は粗く、凹凸等の破壊源を多く含む。焼結体が破壊されることを防ぐため、評価や各種用途への使用に先立ち、焼結体は、研削等の加工で焼肌面を取り除かれ、研磨し、鏡面状の表面(polished-surface;以下、「鏡面」ともいう。)が露出した状態とされる。鏡面は、平滑な表面であり、Ra≦0.04μmである表面であること、が例示できる。単斜晶率は、焼結体の鏡面における値である。部分安定化ジルコニアを主相とする従来の焼結体は、加工や研磨等の鏡面加工後、その結晶相は正方晶ジルコニア及び立方晶ジルコニアの少なくともいずれかからなり、単斜晶ジルコニアを実質的に含まないか、又は、単斜晶ジルコニアが少ない。さらに、機械的特性が低い焼結体は鏡面加工の際に破壊され、測定試料への加工がでず、単斜晶率の測定ができない焼結体でさえあり得る。これに対し、本実施形態の焼結体は、その鏡面において上述の単斜晶率を満足する単斜晶ジルコニアを有する。そのため、本実施形態の焼結体は、焼結体全体に単斜晶ジルコニアを有する焼結体であること、又は、単斜晶ジルコニアへの変態が生じやすい正方晶ジルコニアを含む焼結体であることが考えられる。
 本実施形態の焼結体において、ジルコニアは、単斜晶ジルコニアと、正方晶ジルコニア及び立方晶ジルコニアの少なくともいずれかと、を含み、単斜晶ジルコニア及び正方晶ジルコニアからなることが好ましい。
 本実施形態の焼結体に含まれる単斜晶ジルコニアは、そのXRDパターンにおいて、少なくとも単斜晶ジルコニア(111)面に相当するXRDピークを有する単斜晶ジルコニアである。劣化処理を施す前の状態で、このような単斜晶ジルコニアを含むことで、焼結体が高い破壊靭性値を示しやすくなることに加え、水熱劣化しにくくなる傾向がある。焼結体の劣化により単斜晶ジルコニアが生成する場合、XRDパターンにおける主に単斜晶ジルコニア(11-1)面に相当するXRDピークの強度が強くなる。これに対し、本実施形態の焼結体に含まれる単斜晶ジルコニアはそのXRDパターンにおいて、少なくとも単斜晶ジルコニア(111)面に相当するXRDピークを有することが好ましく、その単斜晶強度比が0以上であることが好ましく、0.3以上であることがより好ましく、0.4以上であることが更に好ましく、0.5以上であることが更により好ましい。単斜晶強度比は、10以下、8以下、5以下、3以下、1.5以下のいずれかであることが好ましく、1.2以下、更には1.0以下が挙げられる。単斜晶強度比は式(3)から求められる。そのため、I(111)がゼロ、すなわち単斜晶ジルコニア(111)面に相当するXRDピークを有さない焼結体においては、単斜晶強度比が無限大となり、値を求めることができない。すなわち、本実施形態の焼結体は、単斜晶強度比が無限大の焼結体を含まないことが好ましい。
 本実施形態の焼結体のジルコニアの結晶粒子の平均結晶粒径は、焼結温度により異なるが、例えば、0.1μm以上0.8μm以下、0.15μm以上0.60μm以下、0.20μm以上0.55μm以下、0.25μm以上0.45μm、のいずれかであることが挙げられる。
 本実施形態の焼結体は、相対密度(以下、「焼結体密度」ともいう。)が98%以上100%以下であることが好ましく、98.4%以上100%以下であることがより好ましく99%以上100%以下であることが更に好ましい。
 さらに、本実施形態の焼結体は、常圧焼結で得られた状態の焼結体(いわゆる、常圧焼結体)であることが好ましく、大気雰囲気の常圧焼結で得られた状態の焼結体であることがより好ましい。また、常圧焼結以外の焼結処理が施されていない状態であることが好ましく、常圧焼結後の焼結処理が施されていない状態であることがより好ましい。常圧焼結以外の焼結処理として、加圧焼結、真空焼結及びマイクロ波焼結の群から選ばれる1以上が例示できる。
 本実施形態の焼結体は、破壊靭性値(JIS R1607で規定されたSEPB法に準じた方法で測定される破壊靭性値)が6MPa・m0.5以上11MPa・m0.5以下であることが例示でき、好ましくは6.2MPa・m0.5以上、より好ましくは7MPa・m0.5以上、更に好ましくは8MPa・m0.5以上である。破壊靭性値は高いことが好ましいが、例えば、11MPa・m0.5以下、更には10.5MPa・m0.5以下、また更には9.5MPa・m0.5以下、また更には9MPa・m0.5以下、また更には8.5MPa・m0.5以下であることが挙げられる。このような破壊靭性値を有することで、例えば、焼結体厚み1mm以下、更には焼結体厚み0.5mm以下の焼結体への加工が容易になりやすい。これにより本実施形態の焼結体は、例えば、焼結体厚み0.05mm以上0.3mm以下の焼結体、焼結体更には0.08mm以上0.25mm以下の焼結体とできる場合もある。
 本実施形態の焼結体は、曲げ強度が1000MPa以上1550MPa以下、更には1100MPa以上1500MPa以下であることが例示でき、1100MPa以上1460MPa以下であることが好ましく、1200MPa以上1400MPa以下であることがより好ましい。
 本実施形態の焼結体は、全光線透過率が20%以上50%以下、更には25%以上45%以下、更には30%以上40%以下であることが好ましい。特に、添加成分が0質量%を超え25質量%以下、更には0.2質量%以上5質量%以下、また更には0.23質量%以上3質量%以下である場合に、全光線透過率が20%以上45%以下、更には25%以上40%以下であることが好ましい。
 本実施形態の焼結体は、直線透過率が1%以上20%以下、1%以上15%以下、1%以上10%以下、のいずれかであることが例示できる。直線透過率は、試料厚み0.05mm以上0.2mm以下、好ましくは0.05mm以上0.15mm以下、特に0.09mmの焼結体において測定される値である。本実施形態における直線透過率は、このような試料厚みにおける測定値であり、試料厚み0.5mm以上の焼結体等、より厚い試料厚みの焼結体で測定された直線透過率から得られる推測値や計算値とは異なる。
 本実施形態の焼結体は、試料厚み0.09mmにおける直線透過率が1%以上10%以下、1.5%以上8%以下、2%以上7.5%以下、2.5%以上7.3%以下のいずれかであることが特に好ましい。
 本実施形態の焼結体に含まれる正方晶ジルコニアは水熱処理による単斜晶ジルコニアへの変態(以下、「水熱劣化」ともいう。)が生じにくいことが好ましく、140℃の熱水中で6時間浸漬処理前の正方晶率に対する、140℃の熱水中で6時間浸漬処理後の正方晶率の割合(以下、「残存正方晶率」又は「△T%」ともいう。)が15%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることが更に好ましい。140℃の熱水中で6時間浸漬処理により、正方晶ジルコニアが単斜晶ジルコニアへ変態しない場合、残存正方晶率は100%となるため、本実施形態の焼結体における残存正方晶率は100%以下であり、更には95%以下であることが挙げられる。
 添加成分の含有量が多くなるほど水熱劣化が抑制される傾向がある。本実施形態の焼結体において、添加成分の含有量が0質量%、すなわち添加成分を含まない場合、残存正方晶率は15%以上100%以下、好ましくは20%以上100%以下、より好ましくは50%以上80%以下であることが例示できる。本実施形態の焼結体が、添加成分を含み、添加成分の含有量が0質量%を超え5質量%未満の場合、残存正方晶率は65%以上100%以下、好ましくは70%以上90%以下であることが例示できる。本実施形態の焼結体が、添加成分を含み、添加成分の含有量が5質量%以上30質量%以下の場合、残存正方晶率は70%以上100%以下、好ましくは76%以上95%以下であることが例示できる。
 本実施形態の焼結体の形状は所望の形状であればよく、立方体状、直方体状、多角体上、板状、円板状、柱状、錐体状、球状、略球状その他の基本的形状に加え、各種用途に応じた部材の形状であればよい。
 本実施形態の焼結体の製造方法は任意であるが、原料として、安定化剤を含有し、単斜晶率が70%を超えるジルコニアを含み、単斜晶ジルコニアの結晶子径が23nmを超え80nm以下であることを特徴とする粉末、を使用する製造方法により、製造することが好ましい。このような粉末を成形した後、公知の方法で焼結すればよい。また、必要に応じて焼結前に仮焼及び加工の少なくともいずれかを施してもよい。
 成形は公知の方法、例えば、一軸プレス、冷間静水圧プレス、スリップキャスティング及び射出成形の群から選ばれる少なくとも1種、によって行えばよく、一軸プレス、冷間静水圧プレス及び射出成形の群から選ばれる少なくとも1種であることが好ましい。
 仮焼は、粉末を焼結温度未満で熱処理すればよく、例えば、大気中、800℃以上1200℃未満で熱処理すればよい。
 焼結は、公知の方法、例えば加圧焼結、真空焼結及び常圧焼結の群から選ばれる1以上、が適用できる。簡便であり、工業的に適用しやすいため、焼結は常圧焼結であることが好ましく、大気中、1200℃以上1550℃以下、好ましくは1250℃以上1500℃以下の常圧焼結がより好ましく、大気中、1300℃以上1450℃以下の常圧焼結であることが更に好ましい。また、常圧焼結以外の焼結を施さないことが好ましい。
 本実施形態の焼結体は、これを含む部材として、公知のジルコニア焼結体の用途に使用することができる。本実施形態の焼結体は、粉砕機用部材,精密機械部品,光コネクター部品等の構造材料、歯科材等の生体材料、装飾部材及び電子機器外装部品等の外装材料に適している。
 以下、本実施形態の粉末について説明する。
 本実施形態は、安定化剤を含有し、単斜晶率が70%を超えるジルコニアを含み、単斜晶ジルコニアの結晶子径が23nmを超え80nm以下であることを特徴とする粉末、である。
 本実施形態の粉末は、安定化剤を含有し、単斜晶率が70%を超えるジルコニアを含む。すなわち、本実施形態の粉末は、主として単斜晶ジルコニアからなる安定化剤含有ジルコニア、を含む。ジルコニアが安定化剤を含有しない粉末の場合、これを焼結しても、破壊靭性を発現する要因となる正方晶ジルコニアを含む焼結体が得られ難い。本実施形態の粉末は、主としてジルコニアからなる、いわゆるジルコニア粉末である。
 安定化剤は、カルシア(CaO)、マグネシア(MgO)、セリア(CeO)及びイットリア(Y)の群から選ばれる1種以上が挙げられ、セリア及びイットリアの少なくともいずれかであることが好ましく、イットリアであることがより好ましい。安定化剤がイットリアの場合、粉末中のジルコニア(ZrO)及びイットリア(Y)の合計に対するイットリアのモル割合(イットリア含有量)として、1.0mol%以上2.5mol%以下、更には1.1mol%以上2.0mol%以下であることが例示でき、1.2mol%以上2.0mol%未満であることが好ましく、1.2mol%以上1.8mol%以下であることがより好ましい。
 安定化剤はジルコニアに固溶していることが好ましく、本実施形態の粉末は、未固溶の安定化剤を含まないことが好ましい。
 ジルコニアの主な結晶相として、単斜晶ジルコニア、正方晶ジルコニア及び立方晶ジルコニアが知られている。本実施形態の粉末におけるジルコニアは単斜晶ジルコニアを含み、単斜晶ジルコニアと、正方晶ジルコニア及び立方晶ジルコニアの少なくともいずれかを含むことが好ましく、単斜晶ジルコニア及び正方晶ジルコニアを含むことがより好ましい。
 ジルコニアの単斜晶率は70%を超え、80%以上であることが好ましく、85%以上であることがより好ましい。単斜晶率は100%以下であり、ジルコニアが正方晶ジルコニア及び立方晶ジルコニアの少なくともいずれかを含む場合、単斜晶率は100%未満となる。また、正方晶率は30%以下、更には20%未満であり、15%以下であることが好ましく、10%以下、更には7%以下であってもよい。ジルコニアが正方晶ジルコニアを含まない場合、正方晶率は0%となり、正方晶率は0%以上であってもよい。
 単斜晶ジルコニアの結晶子径(D)は23nmを超え80nm以下であり、30nm以上60nm以下であることがより好ましく、35nm以上55nm以下であることが更に好ましい。別の実施形態において単斜晶ジルコニアの結晶粒径(D)は30nm以上50nm以下、更には35nm以上50nm以下であることが挙げられ、35nm以上45nm以下、更には36nm以上40nm以下であってもよい。
 本実施形態の粉末は、アルミナ(Al)、ゲルマニア(GeO)及びシリカ(SiO)の群から選ばれる1以上の添加成分を含んでいてもよい。添加成分は、アルミナ及びゲルマニアの少なくともいずれかであることが好ましく、アルミナであることがより好ましい。添加成分を含むことで、ジルコニアの安定化剤の含有量が少ない場合であっても、焼結時の割れなどの欠陥が生じにくく、焼結時の歩留まりが低下しにくくなる。添加成分の含有量は、粉末のジルコニア、イットリア及び添加成分の合計質量に対する添加成分の質量割合として、0.05質量%以上30質量%以下であることが挙げられ、好ましくは0.1質量%を超え25質量%以下、より好ましくは0.2質量%以上20質量%以下、更に好ましくは0.23質量%以上6質量%以下であることが挙げられる。
 本実施形態の粉末は、不純物を含まないことが好ましく、例えばリン(P)の含有量が、それぞれ、0.1質量%以下及び0.1質量%未満であることが例示できる。一方、ジルコニアのハフニア(HfO)等の不可避不純物を含んでいてもよい。
 本実施形態の粉末は、BET比表面積が6m/g以上20m/g未満であることが例示できる。BET比表面積が6m/g以上であることで、比較的低い温度から焼結が進行しやすくなる。また、20m/g未満であることで、粉末の物理的な凝集が抑制される傾向がある。これらの効果がより得られやすくなるため、BET比表面積は好ましくは8m/以上18m/g以下、より好ましくは10m/g以上17m/g以下、更に好ましくは10m/g以上15m/g以下、更により好ましくは10m/gを超え15m/g以下である。
 本実施形態の粉末は、メジアン径が0.05μm以上0.3μm以下であることが好ましく、0.1μm以上0.2μm以下であることが好ましい。
 本実施形態の粉末は、体積粒子径分布曲線がマルチモーダルの分布であることが例示でき、体積粒子径分布曲線が少なくとも粒子径0.05μm以上0.2μm以下及び粒子径0.2μmを超え0.5μm以下にピークを有する分布、更には粒子径0.05μm以上0.2μm以下及び粒子径0.3μm以上0.5μm以下にピーク(極値)を有する分布であることが好ましい。体積粒子径分布曲線が、例えばバイモーダルの分布など、マルチモーダルの分布である粉末は、成形時の充填性が高くなりやすい。得られる成形体の密度が高くなる傾向があるため、体積粒子径分布曲線における粒子径0.05μm以上0.2μm以下のピークに対する、粒子径0.3μm以上0.5μmのピークの割合(以下、「粒子径ピーク比」ともいう。)は、好ましくは0を超え1未満、より好ましくは0.1以上0.9以下、更に好ましくは0.2以上0.8以下である。
 本実施形態の粉末は成形性が高いことが好ましく、本実施形態の粉末を圧力70±5MPaで一軸加圧成形した後に、圧力196±5MPaで冷間静水圧プレス(以下、「CIP」ともいう。)で処理して成形体とした場合の該成形体の相対密度(以下、「成形体密度」ともいう。)が49%以上56%以下であることが好ましく、50%以上54%以下であることがより好ましい。
 本実施形態の粉末は、流動性を改善するための樹脂等を含んでいてもよく、本実施形態の粉末と樹脂を含む組成物(以下、「コンパウンド」ともいう。)としてもよい。コンパウンドが含有する樹脂は、セラミックス組成物に使用される公知の樹脂であればよく、例えば、熱可塑性樹脂が挙げられる。好ましい樹脂として、アクリル樹脂、ポリスチレン及びポリアルキルカーボネートからなる群のいずれか1以上、好ましくはアクリル樹脂が例示できる。
 コンパウンド中の粉末の含有量として、コンパウンドの質量に対する粉末の質量割合として、50質量%以上97質量%以下、70質量%以上95質量%以下、80質量%以上90質量%以下、などが例示できる。コンパウンド中の粉末の含有量は、コンパウンドの質量に対する、樹脂を除去後のコンパウンドの質量割合から求めればよい。樹脂の除去方法は任意であるが、例えば、大気中200℃以上500℃以下の熱処理が挙げられる。
 コンパウンドは樹脂以外に、ワックス等の成分を添加剤として含んでいてもよい。これらの成分を含むことで成形型からの離形性が良くなる等の付加的な効果が得られる。ワックス等の成分としては、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、アクリロニトリル-スチレン共重合体、エチレン-酢酸ビニル共重合体、スチレン-ブタジエン共重合体、ポリアセタール樹脂、石油系ワックス、合成系ワックス、植物系ワックス、ステアリン酸、フタル酸エステル系可塑剤及びアジピン酸エステルの群から選ばれる1以上が例示できる。
 本実施形態の粉末は、仮焼体や焼結体の前駆体として使用することができ、粉砕機用部材,精密機械部品,光コネクター部品等の構造材料、歯科材等の生体材料、装飾部材及び電子機器外装部品等の外装材料の原料粉末に適している。
 本実施形態の粉末を焼結体等とする場合、粉末を成形した後、公知の方法で仮焼又は焼結すればよい。
 本実施形態の粉末を成形体とする場合、成形は公知の方法、例えば、一軸プレス、冷間静水圧プレス、スリップキャスティング及び射出成形の群から選ばれる少なくとも1種、によって行えばよい。コンパウンドなど、樹脂を使用して成形を作製した場合は、必要に応じ、得られる成形体を熱処理して樹脂を除去してもよい。熱処理条件として、大気中、400℃以上800℃未満が例示できる。
 成形体は、必要に応じて、仮焼してもよい。仮焼は、粉末の焼結温度未満で熱処理すればよく、例えば、大気中、800℃以上1200℃未満で熱処理すればよい。これにより、仮焼体が得られる。
 焼結は、公知の方法、例えば加圧焼結、真空焼結及び常圧焼結の群から選ばれる1以上、が適用できる。簡便であり、工業的に適用しやすいため、焼結は常圧焼結であることが好ましく、大気中、1200℃以上1550℃以下、好ましくは1250℃以上1500℃以下の常圧焼結がより好ましく、大気中、1300℃以上1450℃以下の常圧焼結であることが更に好ましい。また、常圧焼結以外の焼結を施さないことが好ましい。焼結時間は任意であるが0.5時間以上5時間以下、が例示できる。
 次に、本実施形態の粉末の製造方法について説明する。
 本実施形態の粉末は上述の特徴を有していれば、製造方法は任意である。本実施形態の粉末の好ましい製造方法として、平均ゾル粒径が150nm以上400nm以下であり単斜晶ジルコニアを含有するジルコニアを含むジルコニアゾル、及び安定化剤源、を含む組成物を、950℃以上1250℃以下で熱処理して仮焼粉末とする工程、及び、該仮焼粉末を粉砕する工程、を含む製造方法、が挙げられる。
 平均ゾル粒径が150nm以上400nm以下であり単斜晶ジルコニアを含有するジルコニアを含むジルコニアゾル、及び安定化剤源、を含む組成物を、950℃以上1250℃以下で熱処理して仮焼粉末とする工程(以下、「粉末仮焼工程」ともいう。)により、本実施形態の粉末の前駆体である仮焼粉末が得られる。
 粉末仮焼工程では、950℃以上1250℃以下、更には1000℃以上1250℃以下で熱処理する。熱処理が950℃以上であることで、常圧焼結で緻密化しやすい粉末が得られる。一方、熱処理が1250℃以下であることで、粉砕によって分散しやすい粉末が得られやすくなる。熱処理の時間は熱処理温度により異なるが、例えば30分以上2時間以下が挙げられる。
 熱処理の雰囲気は任意であり、酸化雰囲気、還元雰囲気、不活性雰囲気及び真空雰囲気の群から選ばれるいずれかが例示でき、酸化雰囲気であることが好ましく、大気雰囲気であることがより好ましい。
 ジルコニアゾルは、平均ゾル粒径が150nm以上400nm以下であり、好ましくは180nm以上400nm以下、より好ましくは185nm以上300nm以下である。平均ゾル粒径は、150nm以上270nm以下、更には150nm以上200nm以下、又は、190nm以上400nm以下、更には200nm以上300nm以下であってもよい。
 ジルコニアゾルは単斜晶ジルコニアを含有するジルコニアを含み、結晶性ジルコニアからなるジルコニアを含むジルコニアゾル(以下、「結晶性ジルコニアゾル」ともいう。)であることが好ましく、主相が単斜晶ジルコニアである結晶性ジルコニアを含むジルコニアゾルであることがより好ましい。
 粉砕しやすくなる傾向があるため、ジルコニアゾルは、以下の式で求められるジルコニウム元素量(以下、「吸着ジルコニウム量」ともいう。)が0質量%以上1質量%以下であることが好ましく、0質量%以上0.5質量%以下であることがより好ましく、0質量%以上0.01質量%以下であることが更に好ましい。
          WZr=(m/m)×100
 上記式において、WZrは吸着ジルコニウム量(質量%)である。mはジルコニアゾルを純水に分散させたスラリーを、分画分子量が500以上300万以下である限外濾過膜を使用した限外濾過することで得られる濾液中のジルコニウム量をジルコニア(ZrO)換算した質量(mg)である。濾液中のジルコニウム量はICP分析で測定すればよい。mは、限外濾過前のジルコニアゾルを大気雰囲気下、1000℃、1時間で熱処理した後の質量(mg)である。m及びmの測定は、それぞれ、限外濾過前のジルコニアゾルを同量用意して行えばよい。
 粉末仮焼工程に供するジルコニアゾルは、上述の特徴を有していればよく、その製造方法は任意である。ジルコニアゾルの製造方法として水熱合成法及び加水分解法の少なくともいずれかが例示できる。水熱合成法では、溶媒存在下でジルコニウム塩とアルカリ等とを混合して得られる共沈物を100~200℃で熱処理することでジルコニアゾルが得られる。また、加水分解法では、溶媒存在下でジルコニウム塩を加熱することで該ジルコニウム塩が加水分解してジルコニアゾルが得られる。このように、ジルコニアゾルは水熱合成法又は加水分解法で得られるジルコニアゾルであることが例示でき、加水分解法で得られるジルコニアゾルであることが好ましい。
 ジルコニアゾルの製造方法で使用される前駆体としてジルコニウム塩が挙げられる。ジルコニウム塩は、オキシ塩化ジルコニウム、硝酸ジルコニル、塩化ジルコニウム及び硫酸ジルコニウムの群から選ばれる1種以上が例示でき、硝酸ジルコニル及びオキシ塩化ジルコニウムの少なくともいずれかであることが好ましく、オキシ塩化ジルコニウムであることがより好ましい。
 以下、ジルコニアゾルの好ましい製造方法として、加水分解法を例に挙げて説明する。
 加水分解の条件は、ジルコニウム塩の加水分解が十分に進行する任意の条件であればよく、例えば、ジルコニウム塩水溶液を130時間以上200時間以下で煮沸還流することが挙げられる。ジルコニウム塩水溶液中の陰イオン濃度を0.2mol/L以上0.6mol/L以下、更には0.3mol/L以上0.6mol/L以下として加水分解することで、平均ゾル粒子径が大きくなる傾向がある。
 安定化剤源は、安定化剤及びその前駆体となる化合物の少なくともいずれかであればよく、安定化剤の前駆体となる酸化物、水酸化物、オキシ水酸化物、塩化物、酢酸塩、硝酸塩及び硫酸塩の群から選ばれる1種以上が例示でき、塩化物及び硝酸塩の少なくともいずれかであることが好ましい。安定化剤源は、イットリア及びその前駆体となるイットリウム化合物の少なくともいずれかであることが好ましい。好ましい安定化剤源(以下、イットリア等を含む安定化剤を、それぞれ「イットリア源」等ともいう。)として、塩化イットリウム、硝酸イットリウム及び酸化イットリウムの群から選ばれる1種以上、更には塩化イットリウム及び酸化イットリウムの少なくともいずれかが挙げられる。安定化剤源がイットリア源である場合、組成物のイットリア源の含有量は、組成物のジルコニウム(Zr)及びイットリウム(Y)を、それぞれ、ZrO及びY換算した値の合計に対する、イットリア源をY換算したモル割合として、1.0mol%以上2.5mol%以下、更には1.1mol%以上2.0mol%以下であることが例示でき、1.2mol%以上2.0mol%未満であることが好ましく、1.2mol%以上1.8mol%以下であることがより好ましい。
 粉末仮焼工程に供する組成物は、上述のジルコニアゾル、及び安定化剤源を含んでいればよく、安定化剤源の全部又は一部がジルコニアゾルに固溶していてもよい。
 例えば、ジルコニウム塩と安定化剤源とを混合して加水分解すること、又は、ジルコニウム塩、安定化剤源及びアルカリ等とを混合して共沈物とすること、などの方法により、安定化剤源の少なくとも一部がジルコニアに固溶しやすくなる。
 粉末仮焼工程に供する組成物は、アルミナ源、ゲルマニア源及びシリカ源の群から選ばれる1以上の添加成分源を含有してもよい。添加成分源は、アルミナ源及びゲルマニア源の少なくともいずれかであることが好ましく、アルミナ源であることが好ましい。
 アルミナ源は、アルミナ及びその前駆体となるアルミニウム化合物の少なくともいずれかであり、アルミナ、水酸化アルミニウム、硝酸アルミニウム及び塩化アルミニウムの群から選ばれる1種以上が例示でき、アルミナであることが好ましく、アルミナゾル及びアルミナ粉末の少なくともいずれかであることがより好ましい。
 ゲルマニア源は、ゲルマニア及びその前駆体となるゲルマニウム化合物の少なくともいずれかであり、ゲルマニア、水酸化ゲルマニウム及び塩化ゲルマニウムの群から選ばれる1種以上が例示でき、ゲルマニアであることが好ましく、ゲルマニアゾル及びゲルマニア粉末の少なくともいずれかであることがより好ましい。
 シリカ源は、シリカ及びその前駆体となるケイ素化合物の少なくともいずれかであり、シリカ、及びオルトケイ酸テトラエチルの群から選ばれる1種以上が例示でき、シリカであることが好ましく、シリカ粉末、シリカゾル、ヒュームドシリカ及び沈降法シリカの少なくともいずれかであることがより好ましい。
 添加成分源の含有量は、組成物のZr、Y、並びに、Al、Ge及びSiを、それぞれ、ZrO、Y、並びに、Al、GeO及びSiOとして換算した合計質量に対する、Al、Ge及びSiをそれぞれAl、GeO及びSiO換算した質量の合計割合として0.05質量%以上30質量%以下であることが挙げられ、0.1質量%を超え25質量%以下であることが好ましく、0.2質量%以上20質量%以下であることがより好ましい。
 例えば、アルミナ源の含有量は、組成物のZr、Y及びAlをそれぞれZrO、Y及びAlとして換算した合計質量に対するアルミナ源をAl換算した質量の割合として0.05質量%以上30質量%以下であることが挙げられ、0.1質量%を超え25質量%以下であることが好ましく、0.2質量%以上20質量%以下であることがより好ましい。
 また、ゲルマニア源の含有量は、組成物のZr、Y及びGeをそれぞれZrO、Y及びGeOとして換算した合計質量に対するゲルマニア源をGeO換算した質量の割合として0.05質量%以上30質量%以下であることが挙げられ、0.1質量%を超え25質量%以下であることが好ましく、0.2質量%以上20質量%以下であることがより好ましい。
 また、シリカ源の含有量は、組成物のZr、Y及びSiをそれぞれZrO、Y及びSiOとして換算した合計質量に対するシリカ源をSiO換算した質量の割合として0.05質量%以上30質量%以下であることが挙げられ、0.1質量%を超え25質量%以下であることが好ましく、0.2質量%以上20質量%以下であることがより好ましい。
 仮焼粉末の物性として、それぞれ、BET比表面積が3m/g以上15m/g以下であること、単斜晶の結晶子径が20nm以上60nm以下であることが例示できる。
 仮焼粉末を粉砕する工程(以下、「粉砕工程」ともいう。)では、仮焼粉末を粉砕処理する。安定化剤含有量が低いジルコニアは、焼結時に割れや欠けなどが発生やすい。これに対し、本実施形態における仮焼粉末を粉砕処理することで焼結時の歩留まりが高くなりやすく、更には得られる焼結体が水熱劣化しにくくなる傾向がある。
 所望の組成の粉末を得るため、粉砕工程では、仮焼粉末に代わり、仮焼粉末並びに、アルミナ源、添加成分源の混合粉末を粉砕してもよい。添加成分源は、上述の添加成分源が例示できる。粉砕工程において添加成分源を混合する場合は、添加成分源の含有量が、混合粉末のZr、Y、並びに、Al、Ge及びSiの群から選ばれる1以上をそれぞれZrO、Y、並びに、Al、GeO及びSiOに換算した合計質量に対する、AlをAlに換算した質量割合、GeをGeOに換算した質量割合及びSiをSiOに換算した質量割合の合計が0.05質量%以上30質量%以下、好ましくは0.1質量%を超え25質量%以下、より好ましくは0.2質量%以上20質量%以下となるように、添加成分源及び仮焼粉末を混合すればよい。
 粉砕方法は任意であり、湿式粉砕及び乾式粉砕の少なくともいずれかであればよく、湿式粉砕であることが好ましい。具体的な湿式粉砕として、ボールミル、振動ミル及び連続式媒体撹拌ミルの群から選ばれる1以上が例示でき、ボールミルであることが好ましい。ボールミルによる粉砕条件として、例えば、仮焼粉末を、溶媒と混合して、スラリー質量に対する仮焼粉末の質量割合が30質量%以上60質量%以下であるスラリーとし、該スラリーを直径1mm以上15mm以下のジルコニアボールを粉砕媒体として、10時間以上100時間以下、粉砕することが挙げられる。
 湿式粉砕後、任意の方法で乾燥して粉末とすればよい。乾燥条件として、大気中、110℃~130℃が例示できる。
 粉末の操作性を向上させるため、本実施形態の粉末の製造方法において、粉末を顆粒化する工程(以下、「顆粒化工程」ともいう。)を含んでいてもよい。顆粒化は任意の方法であるが、粉末と溶媒とを混合したスラリーを噴霧造粒すること、が挙げられる。該溶媒は水及びアルコールの少なくともいずれか、好ましくは水である。顆粒化された粉末(以下、「粉末顆粒」ともいう。)は、平均顆粒径が30μm以上80μm以下、更には50μm以上60μm以下であること、及び、嵩密度が1.00g/cm以上1.40g/cm以下、更には1.10g/cm以上1.30g/cm以下であることが挙げられる。
 以下、実施例を使用して本開示について説明する。しかしながら、本開示はこれらの実施例に限定されるものではない。
(平均ゾル粒径)
 ジルコニアゾルの平均ゾル粒径は、動的光散乱式粒子径分布測定装置(装置名:UPA-UT151、マイクロトラック・ベル社製)を用いて測定した。試料の前処理として、水和ジルコニアゾル含有溶液を純水に懸濁させ、超音波ホモジナイザーを用いて3分間分散させた。
(粉末の単斜晶率、正方晶率、D及びD
 一般的なX線回折装置(商品名:UltimaIIV、リガク社製)を使用し、粉末試料のXRDパターンを得た。XRD測定の条件は以下のとおりである。
      線源       : CuKα線(λ=0.15418nm)
      測定モード    : 連続スキャン
      スキャンスピード : 4°/分
      ステップ幅    : 0.02°
      測定範囲     : 2θ=26°~33°
 得られたXRDパターン及び計算プログラムとして“PRO-FIT”を使用し、式(1)、(2)、(4)及び(5)により、それぞれ、単斜晶率、正方晶率、D及びDを求めた。
(BET比表面積)
 一般的な流動式比表面積自動測定装置(装置名:フローソーブIII2305、島津製作所社製)、及び吸着ガスとして窒素を使用し、JIS R 1626-1996に準じた方法で粉末試料のBET比表面積を測定した。測定に先立ち、粉末試料は大気中、250℃で30分間の脱気処理を施し、前処理とした。
(粒子径分布測定)
 マイクロトラック粒度分布計(商品名:MT3000II、マイクロトラック・ベル社製)のHRAモードにより、粉末試料の体積粒子径分布曲線を測定し、メジアン径を測定した。測定に先立ち、粉末試料を純水に懸濁させ、超音波ホモジナイザーを用いて10分間分散させ、前処理とした。
(成形体密度)
 成形体試料の質量を天秤で測定し、また、体積をノギスで測定して寸法から求めた。得られた質量及び体積から実測密度を求めた。理論密度は、式(5)~(8)から求め、理論密度(ρ)に対する実測密度(ρ)の値から相対密度(%)を求め、成形体密度とした。
(焼結体の単斜晶率及び単斜晶強度比)
 粉末試料のXRD測定条件と同じ条件で焼結体試料をXRD測定した。得られたXRDパターン及び計算プログラムとして“PRO-FIT”を使用し、式(1)及び(3)により、それぞれ、単斜晶率、及び単斜晶強度比を求めた。
 XRD測定には、平面研削盤を使用して表面を削った後、耐水ペーパー(800番)による自動研磨、平均粒径3μmのダイヤモンドスラリーによる自動研磨、及び、0.03μmのコロイダルシリカによる自動研磨、の順で鏡面研磨処理を施し、表面粗さ(Ra)≦0.04μmとした焼結体試料を使用した。自動研磨には、自動研磨装置(装置名:MECATECH 334、PRESI社製)を使用した。
(焼結体密度)
 焼結体試料の実測密度をアルキメデス法により測定した。測定に先立ち、乾燥後の焼結体の質量を測定した後,焼結体を水中に配置し、これを1時間煮沸し、前処理とした。理論密度は、式(5)~(8)から求め、理論密度(ρ)に対する実測密度(ρ)の値から相対密度(%)を求め、焼結体密度とした。
(平均結晶粒径)
 電界放出型走査型電子顕微鏡観察により得られた焼結体試料のSEM観察図を使用したプラニメトリック法により平均結晶粒径を求めた。すなわち、SEM観察図に面積が既知の円を描き、当該円内の結晶粒子数(Nc)及び当該円の円周上の結晶粒子数(Ni)を計測した。
 合計の結晶粒子数が(Nc+Ni)が250±50個とした上で、以下の式を使用して平均結晶粒径を求めた。
   平均結晶粒径=(Nc+(1/2)×Ni)/(A/M
 上式において、Ncは円内の結晶粒子数、Niは円の円周上の結晶粒子数、Aは円の面積、及び、Mは走査型電子顕微鏡観察の倍率(5000倍)である。なお、ひとつのSEM観察図における結晶粒子数(Nc+Ni)が200個未満である場合、複数のSEM観察図を用いて(Nc+Ni)を250±50個とした。
 測定に先立ち、焼結体試料は鏡面研磨した後、熱エッチング処理を施すことで前処理とした。鏡面研磨は、平面研削盤で焼結体表面を削ったあとに、鏡面研磨装置で平均粒径9μm、6μm及び1μmのダイヤモンド砥粒を順番に用いて研磨した。
(破壊靱性値)
 焼結体試料の破壊靱性値は、JIS R1607に規定されたSEPB法に準じた方法で測定した。測定は、支点間距離30mmで、幅4mm、厚さ3mmの柱形状の焼結体試料を使用して行い、10回測定した平均値を破壊靭性値した。
(曲げ強度)
 焼結体試料の曲げ強度は、JIS R1601に準じた三点曲げ試験で測定した。の測定は、支点間距離30mmで、幅4mm、厚さ3mmの柱形状の焼結体試料を使用して行い、10回測定した平均値をもって曲げ強度とした。
(全光線透過率)
 全光線透過率の測定は、分光光度計(装置名:V-650、日本分光社製)を使用し、JIS K 7361に準じた方法により行った。測定には円板形状の試料を使用した。測定に先立ち、当該試料の両面を研磨し、試料厚み1mm及び表面粗さ(Ra)が0.02μm以下とした。波長220~850nmの光を当該試料に透過させて、積分球で集光することで各波長における透過率を測定し、波長600nmにおける透過率を、全光線透過率とした。
 実施例1
 ジルコニウム濃度及び塩化物イオン濃度が、それぞれ、0.4mol/Lであるオキシ塩化ジルコニウム水溶液を加水分解した。加水分解後の水溶液は限外濾過膜(分画分子量:6000)を使用して限外濾過し、平均ゾル粒径250nmであるジルコニアゾルを得た。得られたジルコニアゾルのWZrは検出限界以下(0.01質量%以下)であった。
 限外濾過後のジルコニアゾル水溶液に、イットリアが1.6mol%となるように塩化イットリウム6水和物及びアンモニア水溶液を添加して沈殿物を得た。得られた沈殿物は、純水洗浄及び大気中での乾燥後、大気中、仮焼温度1025℃で2時間仮焼して仮焼粉末とした。得られた仮焼粉のBET比表面積は12.5m/g、及び単斜晶の結晶子径は35nmであった。
 当該仮焼粉末を純水に混合してスラリーとした後に、これをジルコニアボールを使用してボールミル処理した後、これを大気中、120℃で乾燥させて、イットリア含有量1.6mol%のイットリア含有ジルコニアからなる粉末を得、これを本実施例の粉末とした。本実施例の粉末は、イットリアが全てジルコニア固溶しており、その結晶相は単斜晶ジルコニア及び正方晶ジルコニアであった。また、メジアン径は0.15μmであり、体積粒子径分布曲線は粒子径0.14μm及び粒子径0.33μmにピークを有するバイモーダルの分布であり、粒子径ピーク比は0.39であった。
 本実施例の粉末を、圧力70MPaの金型プレス、及び圧力196MPaのCIP処理し、成形体とした。得られた成形体を大気中、焼結温度1300℃、2時間の常圧焼結をして焼結体を得た。
 実施例2
 仮焼粉末と、Al換算で0.25質量%のアルミナゾルとの混合粉末をボールミル処理したこと以外は実施例1と同様な方法で、Al換算で0.25質量%のアルミナを含み、残部が1.6mol%イットリア含有ジルコニアからなる粉末を得た。本実施例の粉末のメジアン径は0.15μmであり、体積粒子径分布曲線は粒子径0.14μm及び粒子径0.32μmにピークを有するバイモーダルの分布であり、粒子径ピーク比は0.37であった。
 当該粉末を使用したこと、及び焼結温度を1250℃にしたこと以外は、実施例1と同様の方法で成形体及び焼結体を得た。
 実施例3
 仮焼温度を1130℃としたこと、及び、仮焼粉末と、Al換算で0.25質量%のアルミナゾルとの混合粉末をボールミル処理したこと以外は実施例1と同様な方法で、Al換算で0.25質量%のアルミナを含み、残部が1.6mol%イットリア含有ジルコニアからなる粉末を得た。
 得られた仮焼粉のBET比表面積は6.7m/g、及び単斜晶の結晶子径は44nmであった。また、本実施例の粉末のメジアン径は0.18μmであり、体積粒子径分布曲線は粒子径0.14μm及び粒子径0.36μmにピークを有するバイモーダルの分布であり、粒子径ピーク比は0.85であった。
 当該粉末を使用したこと以外は、実施例1と同様の方法で成形体及び焼結体を得た。
 実施例4
 限外濾過後のジルコニアゾル水溶液に、イットリアが2mol%となるように塩化イットリウム6水和物を添加したこと、及び、仮焼粉末と、Al換算で0.25質量%のアルミナゾルとの混合粉末をボールミル処理したこと以外は実施例1と同様な方法で、Al換算で0.25質量%のアルミナを含み、残部が2mol%イットリア含有ジルコニアからなる粉末を得た。本実施例の粉末のメジアン径は0.15μmであり、体積粒子径分布曲線は粒子径0.14μm及び粒子径0.33μmにピークを有するバイモーダルの分布であり、粒子径ピーク比は0.33であった。
 当該粉末を使用したこと、及び焼結温度を1500℃としたこと以外は、実施例1と同様の方法で成形体及び焼結体を得た。
 実施例5
 仮焼粉末と、Al換算で20質量%のアルミナ粉末との混合粉末をボールミル処理したこと以外は実施例1と同様な方法で、Al換算で20質量%のアルミナを含み、残部が1.6mol%イットリア含有ジルコニアからなる粉末を得た。本実施例の粉末のメジアン径は0.15μmであり、体積粒子径分布曲線は粒子径0.14μm及び粒子径0.35μmにピークを有するバイモーダルの分布であり、粒子径ピーク比は0.41であった。また、正方晶ジルコニアの結晶子径(D)は42nmであった。
 当該粉末を使用したこと、及び焼結温度を1350℃としたこと以外は、実施例1と同様の方法で成形体及び焼結体を得た。
 実施例6
 仮焼温度を1130℃としたこと、及び、仮焼粉末と、Al換算で20質量%のアルミナ粉末との混合粉末をボールミル処理したこと以外は実施例1と同様な方法で、Al換算で20質量%のアルミナを含み、残部が1.6mol%イットリア含有ジルコニアからなる粉末を得た。本実施例の粉末のメジアン径は0.16μmであり、体積粒子径分布曲線は粒子径0.14μm及び粒子径0.35μmにピークを有するバイモーダルの分布であり、粒子径ピーク比は0.67であった。
 当該粉末を使用したこと及び焼結温度を1400℃としたこと以外は、実施例1と同様の方法で成形体及び焼結体を得た。
 実施例7
 限外濾過後のジルコニアゾル水溶液に、イットリアが2mol%となるように塩化イットリウム6水和物を添加したこと、及び、仮焼粉末と、Al換算で5質量%のアルミナゾルとの混合粉末をボールミル処理したこと以外は実施例1と同様な方法で、Al換算で5質量%のアルミナを含み、残部が2mol%イットリア含有ジルコニアからなる粉末を得た。本実施例の粉末のメジアン径は0.15μmであり、体積粒子径分布曲線は粒子径0.14μm及び粒子径0.35μmにピークを有するバイモーダルの分布であり、粒子径ピーク比は0.41であった。
 当該粉末を使用したこと、及び焼結温度を1500℃にしたこと以外は、実施例1と同様の方法で成形体及び焼結体を得た。
 実施例8
 仮焼粉末と、Al換算で0.5質量%のアルミナゾルとの混合粉末をボールミル処理したこと以外は実施例1と同様な方法で、Al換算で0.5質量%のアルミナを含み、残部が1.6mol%イットリア含有ジルコニアからなる粉末を得た。本実施例の粉末のメジアン径は0.15μmであり、体積粒子径分布曲線は粒子径0.14μm及び粒子径0.32μmにピークを有するバイモーダルの分布であり、粒子径ピーク比は0.49であった。
 当該粉末を使用したこと、及び焼結温度を1250℃にしたこと以外は、実施例1と同様の方法で成形体及び焼結体を得た。
 実施例9
 仮焼粉末と、Al換算で1質量%のアルミナゾルとの混合粉末をボールミル処理したこと以外は実施例1と同様な方法で、Al換算で1質量%のアルミナを含み、残部が1.6mol%イットリア含有ジルコニアからなる粉末を得た。本実施例の粉末のメジアン径は0.15μmであり、体積粒子径分布曲線は粒子径0.14μm及び粒子径0.34μmにピークを有するバイモーダルの分布であり、粒子径ピーク比は0.49であった。
 当該粉末を使用したこと、及び焼結温度を1250℃にしたこと以外は、実施例1と同様の方法で成形体及び焼結体を得た。
 実施例10
 仮焼粉末と、GeO換算0.25質量%の酸化ゲルマニウムとの混合粉末をボールミル処理したこと以外は実施例1と同様な方法で、GeO換算0.25質量%の酸化ゲルマニウムを含み、残部が1.6mol%イットリア含有ジルコニアからなる粉末を得た。本実施例の粉末のメジアン径は0.14μmであり、体積粒子径分布曲線は粒子径0.14μm及び粒子径0.34μmにピークを有するバイモーダルの分布であり、粒子径ピーク比は0.37であった。
 当該粉末を使用したこと、及び焼結温度を1250℃にしたこと以外は、実施例1と同様の方法で成形体及び焼結体を得た。
 実施例11
 仮焼粉末と、SiO換算で0.25質量%のシリカゾルとの混合粉末をボールミル処理したこと以外は実施例1と同様な方法で、SiO換算で0.25質量%のシリカを含み、残部が1.6mol%イットリア含有ジルコニアからなる粉末を得た。本実施例の粉末のメジアン径は0.18μmであり、体積粒子径分布曲線は粒子径0.14μm及び粒子径0.35μmにピークを有するバイモーダルの分布であり、粒子径ピーク比は0.89であった。
 当該粉末を使用したこと、及び焼結温度を1350℃にしたこと以外は、実施例1と同様の方法で成形体及び焼結体を得た。
 実施例12
 仮焼粉末と、Al換算で0.25質量%のアルミナゾル及びGeO換算0.25質量%の酸化ゲルマニウムとの混合粉末をボールミル処理したこと以外は実施例1と同様な方法で、Al換算で0.25質量%のアルミナ及びGeO換算0.25質量%の酸化ゲルマニウムを含み、残部が1.6mol%イットリア含有ジルコニアからなる粉末を得た。本実施例の粉末のメジアン径は0.15μmであり、体積粒子径分布曲線は粒子径0.14μm及び粒子径0.34μmにピークを有するバイモーダルの分布であり、粒子径ピーク比は0.37であった。
 当該粉末を使用したこと、及び焼結温度を1200℃にしたこと以外は、実施例1と同様の方法で成形体及び焼結体を得た。
 比較例1
 ジルコニウム濃度及び塩化物イオン濃度が、それぞれ、0.37mol/L及び0.74mol/Lであるオキシ塩化ジルコニウム水溶液を加水分解した。加水分解後の水溶液は限外濾過膜(分画分子量:6000)を使用して限外濾過し、平均ゾル粒径100nmであるジルコニアゾルを得た。得られたジルコニアゾルのWZrは9質量%であった。
 限外濾過後のジルコニアゾル水溶液に、イットリアが2mol%となるように塩化イットリウム6水和物及びアンモニア水溶液を添加して沈殿物を得た。得られた沈殿物は、純水洗浄及び大気中での乾燥後、大気中、仮焼温度1000℃で2時間仮焼して仮焼粉末とした。
 当該仮焼粉末を純水に混合してスラリーとした後に、これをジルコニアボールを使用してボールミル処理した後、これを大気中、120℃で乾燥させて、イットリア含有量2mol%のイットリア含有ジルコニアからなる粉末を得、これを本比較例の粉末とした。
 本比較例の粉末を、圧力70MPaの金型プレス、及び圧力196MPaのCIP処理し、成形体とした。得られた成形体を大気中、焼結温度1450℃、2時間の常圧焼結をして焼結体を得た。
 比較例2
 仮焼粉末と、Al換算で0.25質量%のアルミナ粉末との混合粉末をボールミル処理したこと以外は比較例1と同様な方法で、Al換算で0.25質量%のアルミナを含み、残部が2mol%イットリア含有ジルコニアからなる粉末を得た。
 当該粉末を使用したこと以外は、比較例1と同様の方法で成形体及び焼結体を得た。
 比較例3
 仮焼粉末と、Al換算で5質量%のアルミナ粉末との混合粉末をボールミル処理したこと以外は比較例1と同様な方法で、Al換算で5質量%のアルミナを含み、
残部が2mol%イットリア含有ジルコニアからなる粉末を得た。
 当該粉末を使用したこと以外は、比較例1と同様の方法で成形体及び焼結体を得た。
 比較例4
 限外濾過後のジルコニアゾル水溶液に、イットリアが0.9mol%となるように塩化イットリウム6水和物及びアンモニア水溶液を添加して沈殿物を得たこと以外は実施例1と同様な方法で0.5mol%イットリア含有ジルコニアからなる粉末を得た。
 当該粉末を、圧力70MPaの金型プレス、及び圧力196MPaのCIP処理し、成形体とした。得られた成形体を大気中、焼結温度1300℃、2時間の常圧焼結をして焼結体を得たが、密度が低く、かつ、多数のクラックが発生して焼結体特性を評価することができなかった。
 これらの実施例及び比較例の粉末の評価結果を表1に、焼結体の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
 上表より、実施例及び比較例1乃至3は、いずれの粉末も安定化剤含有量(イットリア含有量)及び添加剤の含有量は同程度であるが、実施例に対して比較例1乃至3は、Dが小さく、なおかつ、単斜晶率が低いことが分かる。更に、実施例に対して比較例4はDが小さいことが分かる。
Figure JPOXMLDOC01-appb-T000002
 上表より、成形体密度は実施例が49%以上、更には50%以上、比較例が49%未満、更には48%未満であり、本実施例の粉末は充填性が高いことが分かる。一方、安定化剤含有量が1.0mol%以上である焼結体の焼結体密度は実施例及び比較例のいずれも同程度であったが、実施例の破壊靭性値が6.5MPa・m0.5以上であるのに対し、比較例の破壊靭性値は6MPa・m0.5未満であり、本実施例の粉末から高い破壊靭性を有する焼結体が常圧焼結で得られることが分かる。比較例1の焼結体は、単斜晶ジルコニアの(111)面に相当するXRDピークを有していないため、単斜晶強度比が算出できなかった。さらに、比較例4の焼結体は、クラック等の欠陥を大量に含み、鏡面研磨等の測定試料への加工で焼結体が崩壊するため、焼結体密度以外の測定ができなかった。
 また、実施例1及び5の焼結体についてJIS R1607で規定されたIF法に準じた方法で破壊靭性を測定した。IF法により測定される破壊靭性は、それぞれ、17.9MPa・m1/5及び11.1MPa・m1/5あった。IF法とSEPB法とで測定される破壊靭性の上昇度合は異なるが、いずれも、IF法により測定される破壊靭性はSEPB法とで測定される破壊靭性よりも高い値であった。
 実施例13
 実施例1と同様な方法で粉末を得た。得られた粉末を使用したこと、及び、焼結温度を1400℃としたこと以外は実施例1と同様な方法で焼結体を得た。
 実施例14
 実施例2と同様な方法で粉末を得た。得られた粉末を使用したこと、及び、焼結温度を1350℃としたこと以外は実施例2と同様な方法で焼結体を得た。
 実施例15
 実施例3と同様な方法で粉末を得た。得られた粉末を使用したこと、及び、焼結温度を1400℃としたこと以外は実施例3と同様な方法で焼結体を得た。
 実施例16
 実施例5と同様な方法で粉末を得た。得られた粉末を使用したこと、及び、焼結温度を1500℃としたこと以外は実施例5と同様な方法で焼結体を得た。
 実施例17
 実施例6と同様な方法で粉末を得た。得られた粉末を使用したこと、及び、焼結温度を1500℃としたこと以外は実施例6と同様な方法で焼結体を得た。
 実施例18
 実施例8と同様な方法で粉末を得た。得られた粉末を使用したこと、及び、焼結温度を1350℃としたこと以外は実施例8と同様な方法で焼結体を得た。
 実施例19
 実施例9と同様な方法で粉末を得た。得られた粉末を使用したこと、及び、焼結温度を1350℃としたこと以外は実施例9と同様な方法で焼結体を得た。
 実施例20
 実施例10と同様な方法で粉末を得た。得られた粉末を使用したこと、及び、焼結温度を1350℃としたこと以外は実施例10と同様な方法で焼結体を得た。
 実施例21
 実施例12と同様な方法で粉末を得た。得られた粉末を使用したこと、及び、焼結温度を1250℃としたこと以外は実施例12と同様な方法で焼結体を得た。
 実施例22
 実施例12と同様な方法で粉末を得た。得られた粉末を使用したこと、及び、焼結温度を1350℃としたこと以外は実施例12と同様な方法で焼結体を得た。
 比較例5
 比較例1と同様な方法で粉末を得た。得られた粉末を使用したこと、及び、焼結温度を1500℃としたこと以外は比較例1と同様な方法で焼結体を得た。
Figure JPOXMLDOC01-appb-T000003
 実施例の焼結体は、SEPB法で測定された破壊靭性値が7MPa・m0.5以上であった。
 測定例1(水熱劣化試験)
 実施例2と同様な方法で焼結体を得、これを鏡面研磨した後、140℃の熱水中に浸漬させることで水熱劣化試験を行い、浸漬6時間後及び10時間後の焼結体表面の単斜晶率を求めた。また、比較測定例として、3mol%イットリア含有ジルコニア焼結体を同様に処理及び評価した。結果を下表に示す。
 比較測定例の焼結体は、限外濾過後のジルコニアゾル水溶液に、イットリアが3mol%となるように塩化イットリウム6水和物を添加したこと以外は比較例1と同様な方法で得られた3mol%イットリア含有ジルコニアからなる粉末を、圧力70MPaの金型プレス、及び圧力196MPaのCIP処理をして成形体とし、これを大気中、焼結温度1500℃、2時間の常圧焼結することで作製した。なお、比較測定例の焼結体の破壊靭性値は4.8MPa・m0.5であった。
Figure JPOXMLDOC01-appb-T000004
 水熱劣化試験前の焼結体は、測定例及び比較測定例のいずれも、結晶相の主相が正方晶ジルコニアであった。水熱劣化試験により正方晶ジルコニアが単斜晶ジルコニアに相変位することで焼結体が劣化する。比較測定例と比べ、測定例は安定化剤含有量が低い焼結体であるにも関わらず、水熱劣化試験後の単斜晶率が低く、劣化しにくい焼結体であることが分かる。なお、水熱劣化試験前の比較測定例の焼結体は単斜晶率が0%及び正方晶率が70%であり、残部が立方晶であったため、残存正方晶率(△T%)は4%であり、10時間の水熱劣化試験により、該焼結体の正方晶ジルコニアのほぼすべてが単斜晶ジルコニアに相転移したと考えられる。これに対し、水熱劣化試験前の測定例の焼結体は正方晶率が94%及び単斜晶率が6%であったため、残存正方晶率(△T%)は85%であり、また、10時間の水熱劣化試験後であっても、相転移しない正方晶ジルコニアを多く有することが考えられる。
 測定例2(残存正方晶率)
 実施例1及び13、比較例1及び5の焼結体を鏡面研磨した後、140℃の熱水中に6時間浸漬させ、残存正方晶率を求めた。結果を下表に示す。
Figure JPOXMLDOC01-appb-T000005
 実施例の焼結体の残存正方晶率は65%以上であり、安定化剤含有量が多い比較例よりも正方晶ジルコニアから単斜晶ジルコニアへの変態が生じにくいことが分かる。
 測定例3(残存正方晶率)
 実施例2乃至4、14及び15、比較例2の焼結体を鏡面研磨した後、140℃の熱水中に6時間浸漬させ、残存正方晶率を求めた。結果を下表に示す。
Figure JPOXMLDOC01-appb-T000006
 実施例の焼結体の残存正方晶率は65%以上であり、比較例と比べて正方晶ジルコニアから単斜晶ジルコニアへの変態が生じにくいことが分かる。さらに、実施例4は、比較例2と安定化剤含有量が同じであり、焼結温度が高いにもかかわらず、残存正方晶率が高いことが分かる。
 測定例4(残存正方晶率)
 実施例5乃至12、16乃至22、比較例3の焼結体を鏡面研磨した後、140℃の熱水中に6時間浸漬させ、残存正方晶率を求めた。結果を下表に示す。
Figure JPOXMLDOC01-appb-T000007
 実施例の焼結体の残存正方晶率は70%以上であり、比較例と比べて正方晶ジルコニアから単斜晶ジルコニアへの変態が生じにくいことが分かる。また、実施例22の焼結体は添加成分として計0.5質量%のアルミナ及びゲルマニアを含む焼結体である。アルミナを20質量%含む実施例6の焼結体と比べ、実施例22の焼結体はより高温で焼結して得られたにもかかわらず、残存正方晶率を示すことが分かる。
 また、焼結温度及び安定化剤含有量が同じである実施例1、3及び6(並びに、実施例5、18及び19)から、添加成分(アルミナ)の含有量が高いほど、残存正方晶率が高くなる傾向があった。
 測定例5(全光線透過率)
 実施例2、8、9及び14、並びに、比較例2の焼結体を使用し、全光線透過率を測定した。結果を下表に示す。
Figure JPOXMLDOC01-appb-T000008
 実施例の焼結体はいずれも添加成分が0.2質量%以上であるにも関わらず、全光線透過率が25%以上40%以下であった。また、実施例2及び14より、焼結温度の上昇に伴い、全光線透過率が高くなった。これに対し、比較例2の焼結体は、より高い焼結温度であるにも関わらず、全光線透過率が20%未満であった。
 さらに、実施例2の焼結体を加工し厚さ0.2mmとして、同様に全光線透過率を測定した。その結果、厚さ0.2mmにおける全光線透過率は46%あった。なお、比較例2の焼結体を同様に加工しようとしたところ、加工中に焼結体が割れ、厚さ0.2mm以下の測定試料とすることができなかった。
 測定例6(直線透過率)
 実施例の焼結体を、それぞれ、試料厚さ0.09mmに加工した。いずれも亀裂等が入ることなく、試料厚み0.09mmの測定試料への加工ができた。なお、比較例の焼結体は加工中に亀裂や割れ等の欠陥が生じたため、0.2mmへの加工もできなかった。
 試料厚さ0.09mmの焼結体について直線透過率を測定した。主な実施例の直線透過率の値を下表に示す。
Figure JPOXMLDOC01-appb-T000009
 実施例2、3及び14より、焼結温度の上昇に伴い、直線透過率が低下することが分かる。また、実施例3と比べ、アルミナを含有しない実施例1の焼結体は直線透過率が高く、実施例8の焼結体は直線透過率が低いことが分かる。さらに、実施例11、14、20及び21の比較より、添加剤の種類により直線透過率が異なることが分かる。
 測定例7(コンパウンドの評価)
 実施例2及び3の粉末を、それぞれ、使用しコンパウンドを作製した。すなわち、粉末を150℃で1時間以上乾燥させた後、混練機(装置名:ラボニーダーミルTDR-3型、トーシン社製)に、得られるコンパウンド質量に対する粉末の質量が85質量%となるように、粉末とアクリル樹脂添加し、160℃で混練することでコンパウンドを得た。混練開始から15分後において、混練機にかかるトルク(N・m)を測定することで、コンパウンドの混練性を評価した。トルクの値が小さいほど、容易に混錬できるコンパウンド、すなわち混練性に優れるコンパウンドとなる。
 流動性は、フローテスターによるコンパウンド試料の流動速度を測定することで評価した。測定には一般的なフローテスター(装置名:フローテスターCFT500D、島津製作所社製)を用い、シリンジにコンパウンドを充填した。以下の条件でコンパウンドに荷重を加え、シリンジから射出されるコンパウンドの体積速度(cm/s)を測定することで、流動性を確認した。測定条件を以下に示す。体積速度の値が大きいほど、溶融状態で流れやすいコンパウンド、すなわち流動性に優れるコンパウンドとなる。
       シリンジ面積   :1cm
       ダイ穴径     :直径1mm
       ダイ長さ     :2mm
       荷重       :50kg
       測定温度     :160℃
       コンパウンド密度 :3.0g/cm
 また、比較測定例としてBET比表面積が15.0m/g及び平均粒子径(メジアン径)が1.1μmである3mol%イットリア含有ジルコニア粉末を同様に評価した。コンパウンドの評価結果を下表に示す。なお、比較測定例の粉末は混練性が低く、160℃での混練ができなかった。そのため、下表における比較測定例の混練性は170℃で混錬した際の値を示している。
Figure JPOXMLDOC01-appb-T000010
 比較測定例の粉末に対し、BET比表面積の低い実施例3の粉末は、混練性及び流動性のいずれも優れており、特に流動性が顕著に高かった。さらに、実施例2と比較測定例の粉末は互いに同程度のBET比表面積を有しているにも関わらず、比較測定例の粉末に対し、実施例2の粉末は流動性が非常に高かった。これらの結果より、実施例の粉末は、粉末と樹脂からなる組成物(コンパウンド)としても優れた効果を有することが分かる。
 平成31年4月25日に出願された日本国特許出願2019-084550号、令和1年8月1日に出願された日本国特許出願2019-142437号、及び、令和1年11月25日に出願された日本国特許出願2019-211944号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本開示の明細書の開示として、取り入れる。

Claims (19)

  1.  安定化剤を含有するジルコニアを含み、単斜晶率が0.5%以上であることを特徴とする焼結体。
  2.  単斜晶ジルコニアの(111)面に相当するXRDピークの面積強度に対する、単斜晶ジルコニアの(11-1)面に相当するXRDピークの面積強度の比が0以上である請求項1に記載の焼結体。
  3.  前記安定化剤が、イットリア、カルシア、マグネシア及びセリアの群から選ばれる1種以上である請求項1又は2に記載の焼結体。
  4.  前記安定化剤の含有量が1.0mol%以上2.5mol%未満である請求項1乃至3のいずれか一項に記載の焼結体。
  5.  JIS R1607で規定されたSEPB法に準じた方法で測定される破壊靭性値が6MPa・m0.5以上11MPa・m0.5以下である請求項1乃至4のいずれか一項に記載の焼結体。
  6.  アルミナ、ゲルマニア及びシリカの群から選ばれる1以上の添加成分を含む請求項1乃至5のいずれか一項に記載の焼結体。
  7.  前記添加成分がアルミナである請求項1乃至6のいずれか一項に記載の焼結体。
  8.  前記ジルコニアが、単斜晶ジルコニアと、正方晶ジルコニア及び立方晶ジルコニアの少なくともいずれかと、を含む請求項1乃至7のいずれか一項に記載の焼結体。
  9.  140℃の熱水中で6時間浸漬処理前の正方晶率に対する、140℃の熱水中で6時間浸漬処理後の正方晶率の割合が15%以上である請求項1乃至8のいずれか一項に記載の焼結体。
  10.  安定化剤を含有し、単斜晶率が70%を超えるジルコニアを含み、単斜晶ジルコニアの結晶子径が23nmを超え80nm以下であることを特徴とする粉末を使用することを特徴とする請求項1乃至9のいずれか一項に記載の焼結体の製造方法。
  11.  安定化剤を含有し、単斜晶率が70%を超えるジルコニアを含み、単斜晶ジルコニアの結晶子径が23nmを超え80nm以下であることを特徴とする粉末。
  12.  前記ジルコニアの結晶相が、単斜晶ジルコニア及び正方晶ジルコニアを含む請求項11に記載の粉末。
  13.  前記安定化剤が、イットリア、カルシア、マグネシア及びセリアの群から選ばれる1種以上である請求項11又は12に記載の粉末。
  14.  前記安定化剤の含有量が1.0mol%以上2.5mol%未満である請求項11乃至13のいずれか一項に記載の粉末。
  15.  アルミナ、ゲルマニア及びシリカの群から選ばれる1以上の添加成分を含む請求項11乃至14のいずれか一項に記載の粉末。
  16.  前記添加成分の含有量が0.1質量%以上30質量%以下である請求項15に記載の粉末。
  17.  BET比表面積が6m/g以上20m/g未満である請求項11乃至16のいずれか一項に記載の粉末。
  18.  メジアン径が0.05μm以上0.3μm以下である請求項11乃至17のいずれか一項に記載の粉末。
  19.  請求項1乃至9のいずれか一項に記載の焼結体を含む部材。
PCT/JP2020/015468 2019-04-25 2020-04-06 焼結体、粉末及びその製造方法 WO2020217942A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20795777.0A EP3960721A4 (en) 2019-04-25 2020-04-06 SINTERED BODIES, POWDER AND METHOD OF MAKING THEREOF
US17/605,332 US20220212999A1 (en) 2019-04-25 2020-04-06 Sintered body, powder and method for producing the same
KR1020217033887A KR20220002300A (ko) 2019-04-25 2020-04-06 소결체, 분말 및 그의 제조 방법
CN202080030839.3A CN113727957A (zh) 2019-04-25 2020-04-06 烧结体、粉末及其制造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019-084550 2019-04-25
JP2019084550 2019-04-25
JP2019142437 2019-08-01
JP2019-142437 2019-08-01
JP2019211944 2019-11-25
JP2019-211944 2019-11-25

Publications (1)

Publication Number Publication Date
WO2020217942A1 true WO2020217942A1 (ja) 2020-10-29

Family

ID=72942242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015468 WO2020217942A1 (ja) 2019-04-25 2020-04-06 焼結体、粉末及びその製造方法

Country Status (6)

Country Link
US (1) US20220212999A1 (ja)
EP (1) EP3960721A4 (ja)
JP (1) JP2021088501A (ja)
KR (1) KR20220002300A (ja)
CN (1) CN113727957A (ja)
WO (1) WO2020217942A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168734A1 (ja) * 2021-02-03 2022-08-11 国立大学法人 東京大学 カバー部材
WO2022168731A1 (ja) * 2021-02-03 2022-08-11 国立大学法人 東京大学 焼結体及びその製造方法
WO2023163205A1 (ja) * 2022-02-28 2023-08-31 東ソー株式会社 焼結体、焼結体の製造方法、粉末、及び、仮焼体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215419A1 (ja) * 2020-04-22 2021-10-28 東ソー株式会社 焼結体及びその製造方法
WO2023127900A1 (ja) * 2021-12-27 2023-07-06 東ソー株式会社 焼結体、焼結体の製造方法、焼結体の原料粉末、及び、仮焼体

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240757A (ja) * 1997-10-13 1999-09-07 Tosoh Corp ジルコニア焼結体及びその製造方法並びにその用途
JP2003128461A (ja) * 2001-10-18 2003-05-08 Nitsukatoo:Kk 耐久性に優れたジルコニア質焼結体およびそれを用いた粉砕・分散機用部材
JP2003192452A (ja) * 2001-10-16 2003-07-09 Toray Ind Inc ジルコニア粉末およびその焼結体
JP2004182554A (ja) * 2002-12-05 2004-07-02 Toray Ind Inc ジルコニア粉末
JP2006240928A (ja) * 2005-03-04 2006-09-14 Tosoh Corp ジルコニア微粉末及びその製造方法
JP2008024555A (ja) * 2006-07-21 2008-02-07 Tosoh Corp ジルコニア微粉末及びその製造方法並びにその用途
JP2008081325A (ja) * 2006-09-25 2008-04-10 Tosoh Corp ジルコニア微粉末及びその製造方法
JP2010105892A (ja) * 2008-10-31 2010-05-13 Kanto Denka Kogyo Co Ltd ジルコニア微粒子及びその製造方法
JP2011178610A (ja) 2010-03-02 2011-09-15 Noritake Co Ltd ジルコニア焼結体、並びにその焼結用組成物及び仮焼体
JP2017226555A (ja) 2016-06-20 2017-12-28 学校法人同志社 ZrO2−Al2O3系セラミックス焼結体及びその作製法
JP2019084550A (ja) 2017-11-02 2019-06-06 株式会社東芝 レーザーピーニング装置およびレーザーピーニング方法
JP2019142437A (ja) 2018-02-23 2019-08-29 株式会社東海理化電機製作所 ウェビング巻取装置
JP2019211944A (ja) 2018-06-04 2019-12-12 アルパイン株式会社 画像処理装置および画像処理方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3230216A1 (de) * 1981-08-13 1983-08-04 Ngk Spark Plug Co., Ltd., Nagoya, Aichi Sinterkoerper mit hoher zaehigkeit
JPS59182270A (ja) * 1983-03-30 1984-10-17 日産自動車株式会社 高強度・高靭性ジルコニア磁器
JPS63139050A (ja) * 1986-11-28 1988-06-10 住友化学工業株式会社 ジルコニア質セラミツクス
US5180696A (en) * 1987-06-11 1993-01-19 Hitachi Metals, Ltd. High-toughness zro2 sintered body and method of producing same
WO2003033433A1 (fr) * 2001-10-18 2003-04-24 Nikkato Corporation Produit fritte a base de zircone presentant une excellente durabilite et element resistant a l'abrasion comprenant ce dernier
JP2004075425A (ja) * 2002-08-12 2004-03-11 Nitsukatoo:Kk 部分安定化ジルコニア焼結体
JP4470378B2 (ja) * 2003-02-28 2010-06-02 住友化学株式会社 ジルコニア焼結体およびその製造方法
EP2263988B1 (en) * 2008-04-09 2016-03-30 Tosoh Corporation Light-transmitting sintered zirconia compact, process for producing the same, and use thereof
JP6221434B2 (ja) * 2012-08-17 2017-11-01 東ソー株式会社 ジルコニア焼結体及びその製造方法
JP6260226B2 (ja) * 2012-12-21 2018-01-17 東ソー株式会社 ジルコニア−アルミナ複合焼結体及びその製造方法
TW201524936A (zh) * 2013-12-19 2015-07-01 Tosoh Corp 白色氧化鋯燒結體及其製造方法以及含有其的構件
PT107543A (pt) * 2014-03-27 2015-09-28 Innovnano Materiais Avançados Sa Material cerâmico sinterizado, composicão em pó para a sua obtenção, processo de fabrico e respectivas peças cerâmicas
JP6405699B2 (ja) * 2014-05-22 2018-10-17 東ソー株式会社 ジルコニア焼結体及びその製造方法
JP7062900B2 (ja) * 2017-03-31 2022-05-09 東ソー株式会社 ジルコニア粉末及びその製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240757A (ja) * 1997-10-13 1999-09-07 Tosoh Corp ジルコニア焼結体及びその製造方法並びにその用途
JP2003192452A (ja) * 2001-10-16 2003-07-09 Toray Ind Inc ジルコニア粉末およびその焼結体
JP2003128461A (ja) * 2001-10-18 2003-05-08 Nitsukatoo:Kk 耐久性に優れたジルコニア質焼結体およびそれを用いた粉砕・分散機用部材
JP2004182554A (ja) * 2002-12-05 2004-07-02 Toray Ind Inc ジルコニア粉末
JP2006240928A (ja) * 2005-03-04 2006-09-14 Tosoh Corp ジルコニア微粉末及びその製造方法
JP2008024555A (ja) * 2006-07-21 2008-02-07 Tosoh Corp ジルコニア微粉末及びその製造方法並びにその用途
JP2008081325A (ja) * 2006-09-25 2008-04-10 Tosoh Corp ジルコニア微粉末及びその製造方法
JP2010105892A (ja) * 2008-10-31 2010-05-13 Kanto Denka Kogyo Co Ltd ジルコニア微粒子及びその製造方法
JP2011178610A (ja) 2010-03-02 2011-09-15 Noritake Co Ltd ジルコニア焼結体、並びにその焼結用組成物及び仮焼体
JP2017226555A (ja) 2016-06-20 2017-12-28 学校法人同志社 ZrO2−Al2O3系セラミックス焼結体及びその作製法
JP2019084550A (ja) 2017-11-02 2019-06-06 株式会社東芝 レーザーピーニング装置およびレーザーピーニング方法
JP2019142437A (ja) 2018-02-23 2019-08-29 株式会社東海理化電機製作所 ウェビング巻取装置
JP2019211944A (ja) 2018-06-04 2019-12-12 アルパイン株式会社 画像処理装置および画像処理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. TORAYA, J. APPL. CRYSTALLOGR., vol. 19, 1986, pages 440 - 447
See also references of EP3960721A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168734A1 (ja) * 2021-02-03 2022-08-11 国立大学法人 東京大学 カバー部材
WO2022168731A1 (ja) * 2021-02-03 2022-08-11 国立大学法人 東京大学 焼結体及びその製造方法
WO2023163205A1 (ja) * 2022-02-28 2023-08-31 東ソー株式会社 焼結体、焼結体の製造方法、粉末、及び、仮焼体

Also Published As

Publication number Publication date
CN113727957A (zh) 2021-11-30
JP2021088501A (ja) 2021-06-10
EP3960721A1 (en) 2022-03-02
KR20220002300A (ko) 2022-01-06
EP3960721A4 (en) 2023-01-25
US20220212999A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
WO2020217942A1 (ja) 焼結体、粉末及びその製造方法
JP5817859B2 (ja) 透光性ジルコニア焼結体及びその製造方法並びに用途
JP4178216B2 (ja) ジルコニア焼結体及びその製造方法並びにその用途
WO2009125793A1 (ja) 透光性ジルコニア焼結体及びその製造方法並びにその用途
JP7077552B2 (ja) ジルコニア焼結体及びその製造方法
JP5034349B2 (ja) ジルコニア微粉末及びその製造方法並びにその用途
KR20230129196A (ko) 투광성 지르코니아 소결체 및 지르코니아 분말, 그리고 그의 용도
JP2010150063A (ja) 透光性ジルコニア焼結体及びその製造方法並びに用途
JP7062900B2 (ja) ジルコニア粉末及びその製造方法
WO2021215419A1 (ja) 焼結体及びその製造方法
JP5707667B2 (ja) 透光性ジルコニア焼結体及びその製造方法及びその用途
US11746054B2 (en) Zirconia sintered body and method for manufacturing the same
JP6665542B2 (ja) ジルコニア粉末及びその製造方法
JP5748012B2 (ja) 透光性ジルコニア焼結体及びその製造方法及びその用途
WO2023145766A1 (ja) 粉末及びその製造方法
JP6221434B2 (ja) ジルコニア焼結体及びその製造方法
JP2023126191A (ja) 焼結体、焼結体の製造方法、粉末、及び、仮焼体
JP6862702B2 (ja) ジルコニア仮焼体及びその製造方法
WO2023042893A1 (ja) 粉末組成物、仮焼体、焼結体及びその製造方法
JP7472956B2 (ja) 粉末及びその製造方法
JPH042613A (ja) アルミナ‐ジルコニア複合粉末および焼結体の製造方法
JP2024045046A (ja) ジルコニア組成物及びその製造方法
JPS6283367A (ja) ジルコニア焼結体の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020795777

Country of ref document: EP

Effective date: 20211125