WO2020116151A1 - 窒化物半導体光電極の製造方法 - Google Patents

窒化物半導体光電極の製造方法 Download PDF

Info

Publication number
WO2020116151A1
WO2020116151A1 PCT/JP2019/045259 JP2019045259W WO2020116151A1 WO 2020116151 A1 WO2020116151 A1 WO 2020116151A1 JP 2019045259 W JP2019045259 W JP 2019045259W WO 2020116151 A1 WO2020116151 A1 WO 2020116151A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
heat treatment
electrode
layer
gallium nitride
Prior art date
Application number
PCT/JP2019/045259
Other languages
English (en)
French (fr)
Inventor
裕也 渦巻
紗弓 里
陽子 小野
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/292,361 priority Critical patent/US20220002886A1/en
Publication of WO2020116151A1 publication Critical patent/WO2020116151A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/049Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/069Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compound; consisting of two or more compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/50Cells or assemblies of cells comprising photoelectrodes; Assemblies of constructional parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02244Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of a metallic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a method for producing a nitride semiconductor photoelectrode having a photocatalytic function that exhibits a catalytic function by light irradiation to cause a chemical reaction of an oxidation target material or a reduction target material.
  • Fig. 3 shows a water decomposing device using semiconductor photoelectrodes.
  • the water decomposition reaction using a photocatalyst consists of an oxidation reaction of water and a reduction reaction of protons, and they are as follows.
  • the n-type photocatalyst material is irradiated with light, electrons and holes are generated and separated in the photocatalyst.
  • the holes move to the surface of the photocatalytic material and contribute to the oxidation reaction of water.
  • the electrons move to the reduction electrode and contribute to the reduction reaction of protons.
  • such a redox reaction proceeds and a water splitting reaction occurs.
  • the oxidation tank 110 includes an aqueous solution 111 and an oxidation electrode 112.
  • the oxidation electrode 112 is in contact with the aqueous solution 111.
  • the aqueous solution 111 is, for example, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, or hydrochloric acid.
  • the oxidation electrode 112 is a nitride semiconductor, titanium oxide, or amorphous silicon.
  • the reduction tank 120 includes an aqueous solution 121 and a reduction electrode 122.
  • the reduction electrode 122 is in contact with the aqueous solution 121.
  • the aqueous solution 121 is, for example, a potassium hydrogen carbonate aqueous solution, a sodium hydrogen carbonate aqueous solution, a potassium chloride aqueous solution, or a sodium chloride aqueous solution.
  • the reduction electrode 122 is a metal or a metal compound, and is, for example, nickel, iron, gold, platinum, silver, copper, indium, or titanium.
  • a proton film 130 is sandwiched between the oxidation tank 110 and the reduction tank 120, and the protons generated in the oxidation tank 110 diffuse into the reduction tank 120 via the proton film 130.
  • the proton film 130 is, for example, Nafion (registered trademark), which is a perfluorocarbon material composed of a hydrophobic Teflon skeleton made of carbon-fluorine and a perfluoro side chain having a sulfonic acid group.
  • the oxidation electrode 112 and the reduction electrode 122 are electrically connected by a conducting wire 132, and electrons are transferred from the oxidation electrode 112 to the reduction electrode 122.
  • the light source 140 is, for example, a xenon lamp, a mercury lamp, a halogen lamp, a pseudo solar light source, sunlight, or a combination thereof.
  • Light having a wavelength that can be absorbed by the material forming the oxidation electrode 112 is irradiated. For example, in an electrode made of gallium nitride, the wavelength that can be absorbed is 365 nm or less.
  • FIG. 4 shows the configuration (cross section) of the conventional oxidation electrode 112.
  • the oxidation electrode 112 is a semiconductor thin film, and for example, the gallium nitride thin film 12 grown on the sapphire substrate 11 is used.
  • nickel oxide 13 is formed on the gallium nitride thin film 12 as a co-catalyst for generating oxygen.
  • a nickel thin film (about 1 nm) is vapor-deposited on the gallium nitride thin film 12 and heat-treated in the air for about 1 hour on a hot plate set at about 300° C. to form the nickel oxide 13.
  • the oxide electrode 112 as shown in FIG. 4 When the oxide electrode 112 as shown in FIG. 4 is used, among the electrons and holes generated in the gallium nitride thin film 12, holes move from the gallium nitride thin film 12 to the nickel oxide 13 and water on the surface of the nickel oxide 13. Oxidation reaction proceeds. In order for holes to move smoothly, the valence band of the gallium nitride semiconductor needs to be at a level lower than the valence band of nickel oxide. However, for example, in the case of a visible-responsive semiconductor photocatalyst thin film such as indium gallium nitride that can be expected to improve the light absorption rate, the level of the valence band becomes higher as the band gap becomes narrower.
  • the valence band of nickel oxide 13 produced by the conventional method is located at a level lower than the valence band of the visible-responsive semiconductor photocatalyst thin film, and a barrier that prevents holes from moving is generated. Even if the absorptance is improved, holes cannot move due to the generated barrier, and there is a problem that the light energy conversion efficiency is lowered.
  • the present invention has been made in view of the above-mentioned conventional technique, and an object thereof is to provide a method for manufacturing a nitride semiconductor photoelectrode capable of improving the light energy conversion efficiency.
  • the invention according to a first aspect is a method for manufacturing a nitride semiconductor photoelectrode, which comprises a first step of forming an n-type gallium nitride layer on an insulating or conductive substrate, A second step of forming an indium gallium nitride layer on the n-type gallium nitride layer, a third step of forming a nickel layer on the indium gallium nitride layer, and a fourth step of heat-treating the nickel layer in an oxygen atmosphere.
  • the point is to include and.
  • the gist of the invention according to the second aspect is that in the invention according to the first aspect, metal organic chemical vapor deposition (MOCVD) is used in the first step and the second step.
  • MOCVD metal organic chemical vapor deposition
  • the gist of the invention according to the third aspect is that in the invention according to the first or second aspect, an electron beam (EB) vapor deposition method is used in the third step.
  • EB electron beam
  • the invention according to a fourth aspect is the invention according to any one of the first to third aspects, wherein the fourth step is a temperature of 250° C. or higher and 400° C. or lower, and a holding time is 30 minutes or longer and 2 hours.
  • the main points are as follows.
  • the invention according to a fifth aspect is the invention according to any one of the first to fourth aspects, wherein the nickel layer after the fourth step is an oxygen-excessive nickel oxide layer, and is used as a p-type semiconductor. The point is to show the characteristics.
  • FIG. 6 is a cross-sectional view of a nitride semiconductor photoelectrode in an example of the present invention. It is a block diagram of the water decomposition apparatus by a semiconductor photoelectrode. It is sectional drawing of the conventional oxidation electrode.
  • the oxygen generating co-catalyst is heat-treated in an oxygen atmosphere to obtain oxygen.
  • a nitride semiconductor photoelectrode having an interface in which the valence band of the oxygen generating co-catalyst is higher than the valence band of the nitride semiconductor thin film is obtained by using an excess oxide material to form a p-type semiconductor. By using it, the efficiency of light energy conversion is improved.
  • FIG. 1 shows a manufacturing process of the nitride semiconductor photoelectrode in Example 1.
  • a sapphire substrate was used as the substrate.
  • a silicon-doped n-GaN semiconductor thin film was epitaxially grown by MOCVD on a 2-inch sapphire substrate (first step).
  • Ammonia gas and trimethylgallium were used as the growth raw materials, silane gas was used as the n-type impurity source, and hydrogen was used as the carrier gas to be fed into the growth furnace.
  • the film thickness of n-GaN was set to 2 ⁇ m, which is sufficient to absorb light.
  • the carrier density was 3 ⁇ 10 18 cm ⁇ 3 .
  • indium gallium nitride InGaN with an indium composition ratio of 5% was grown (second step).
  • Ammonia gas, trimethylgallium, and trimethylindium were used as growth raw materials, and hydrogen was used as a carrier gas to be fed into the growth furnace.
  • the film thickness was 100 nm, which was sufficient to absorb light sufficiently.
  • a 2-inch semiconductor thin film was cleaved into four equal parts, and one of them was used for electrode production.
  • EB was vapor-deposited with Ni having a thickness of about 1 nm on the InGaN surface (third step). Then, this semiconductor thin film was put into an electric furnace and heat-treated at 200° C. for 15 minutes in an oxygen atmosphere (fourth step).
  • NiO As a result of elemental analysis of the cross section, it was found that NiO was formed because Ni and O were detected. From the TEM observation result of the cross section, the film thickness of NiO was about 2 nm. Further, it was found by titrating the formed NiO that O was excessively contained with respect to Ni.
  • FIG. 2 is a cross-sectional view showing the structure of the nitride semiconductor photoelectrode in Example 1.
  • the nitride semiconductor photoelectrode in Example 1 has an insulating or conductive substrate (sapphire substrate) 1 and an n-type gallium nitride (n-GaN) layer 2 arranged on the substrate 1.
  • n-GaN n-type gallium nitride
  • InGaN indium gallium nitride
  • NiO oxygen-rich nickel oxide
  • ⁇ Nickel oxide which is a co-catalyst for oxygen generation, exhibits characteristics as a p-type semiconductor when it has an oxygen-rich composition.
  • the aqueous solution 111 was a 1 mol/l sodium hydroxide aqueous solution.
  • the aqueous solution 121 was a 0.5 mol/l potassium hydrogen carbonate aqueous solution.
  • Platinum manufactured by Niraco
  • Nafion registered trademark
  • each reaction tank 110/120 was sampled at an arbitrary time during the light irradiation, and the reaction product was analyzed by a gas chromatograph. As a result, it was confirmed that oxygen was produced in the oxidation tank 110 and hydrogen was produced in the reduction tank 120.
  • Example 2 a nitride semiconductor electrode was produced in which the heat treatment step (fourth step) of Example 1 was performed at 200° C. for 30 minutes.
  • the other points are similar to those of the first embodiment.
  • Example 3 a nitride semiconductor electrode was produced in which the heat treatment process of Example 1 was performed at 200° C. for 1 hour. The other points are similar to those of the first embodiment.
  • Example 4 a nitride semiconductor electrode was produced in which the heat treatment process of Example 1 was performed at 200° C. for 2 hours. The other points are similar to those of the first embodiment.
  • Example 5 a nitride semiconductor electrode was produced by setting the heat treatment step of Example 1 to 200° C. for 3 hours.
  • the other points are similar to those of the first embodiment.
  • Example 6 a nitride semiconductor electrode was produced in which the heat treatment process of Example 1 was performed at 200° C. for 4 hours. The other points are similar to those of the first embodiment.
  • Example 7 a nitride semiconductor electrode was produced in which the heat treatment process of Example 1 was performed at 250° C. for 15 minutes. The other points are similar to those of the first embodiment.
  • Example 8 a nitride semiconductor electrode was produced in which the heat treatment process of Example 1 was performed at 250° C. for 30 minutes. The other points are similar to those of the first embodiment.
  • Example 9 a nitride semiconductor electrode was produced in which the heat treatment step of Example 1 was 250° C. for 1 hour.
  • the other points are similar to those of the first embodiment.
  • Example 10 a nitride semiconductor electrode was produced in which the heat treatment process of Example 1 was performed at 250° C. for 2 hours. The other points are similar to those of the first embodiment.
  • Example 11 a nitride semiconductor electrode was produced in which the heat treatment step of Example 1 was 250° C. for 3 hours.
  • the other points are similar to those of the first embodiment.
  • Example 12 a nitride semiconductor electrode was produced in which the heat treatment process of Example 1 was performed at 250° C. for 4 hours. The other points are similar to those of the first embodiment.
  • Example 13 a nitride semiconductor electrode was produced in which the heat treatment step of Example 1 was 300° C. for 15 minutes. The other points are similar to those of the first embodiment.
  • Example 14 a nitride semiconductor electrode was produced in which the heat treatment process of Example 1 was performed at 300° C. for 30 minutes. The other points are similar to those of the first embodiment.
  • Example 15 a nitride semiconductor electrode was produced in which the heat treatment step of Example 1 was 300° C. for 1 hour. The other points are similar to those of the first embodiment.
  • Example 16 a nitride semiconductor electrode was produced in which the heat treatment step of Example 1 was 300° C. for 2 hours. The other points are similar to those of the first embodiment.
  • Example 17 a nitride semiconductor electrode was produced in which the heat treatment step of Example 1 was 300° C. for 3 hours. The other points are similar to those of the first embodiment.
  • Example 18 a nitride semiconductor electrode was produced by setting the heat treatment step of Example 1 to 300° C. for 4 hours.
  • the other points are similar to those of the first embodiment.
  • Example 19 a nitride semiconductor electrode was produced in which the heat treatment process of Example 1 was 400° C. for 15 minutes. The other points are similar to those of the first embodiment.
  • Example 20 a nitride semiconductor electrode was produced in which the heat treatment process of Example 1 was 400° C. for 30 minutes. The other points are similar to those of the first embodiment.
  • Example 21 a nitride semiconductor electrode was produced in which the heat treatment step of Example 1 was 400° C. for 1 hour.
  • the other points are similar to those of the first embodiment.
  • Example 22 a nitride semiconductor electrode was produced in which the heat treatment process of Example 1 was 400° C. for 2 hours. The other points are similar to those of the first embodiment.
  • Example 23 a nitride semiconductor electrode was produced by setting the heat treatment step of Example 1 to 400° C. for 3 hours.
  • the other points are similar to those of the first embodiment.
  • Example 24 a nitride semiconductor electrode was produced by setting the heat treatment step of Example 1 to 400° C. for 4 hours.
  • the other points are similar to those of the first embodiment.
  • Example 25 a nitride semiconductor electrode was produced in which the heat treatment step of Example 1 was performed at 500° C. for 15 minutes. The other points are similar to those of the first embodiment.
  • Example 26 a nitride semiconductor electrode was produced in which the heat treatment process of Example 1 was performed at 500° C. for 30 minutes. The other points are similar to those of the first embodiment.
  • Example 27 a nitride semiconductor electrode was produced in which the heat treatment process of Example 1 was performed at 500° C. for 1 hour. The other points are similar to those of the first embodiment.
  • Example 28 a nitride semiconductor electrode was produced in which the heat treatment process of Example 1 was performed at 500° C. for 2 hours. The other points are similar to those of the first embodiment.
  • Example 29 a nitride semiconductor electrode was produced in which the heat treatment process of Example 1 was performed at 500° C. for 3 hours. The other points are similar to those of the first embodiment.
  • Example 30 a nitride semiconductor electrode was produced in which the heat treatment process of Example 1 was performed at 500° C. for 4 hours. The other points are similar to those of the first embodiment.
  • Comparative Example 1 a nitride semiconductor electrode was produced by using the heat treatment process of Example 8 in an air atmosphere. The other points are similar to those of the first embodiment.
  • Comparative Example 2 a nitride semiconductor electrode was produced by using the heat treatment process of Example 9 in an air atmosphere. The other points are similar to those of the first embodiment.
  • Comparative Example 3 a nitride semiconductor electrode was produced by using the heat treatment process of Example 10 in an air atmosphere. The other points are similar to those of the first embodiment.
  • Comparative Example 4 a nitride semiconductor electrode was produced by using the heat treatment process of Example 14 in an air atmosphere. The other points are similar to those of the first embodiment.
  • Comparative Example 5 a nitride semiconductor electrode was produced by using the heat treatment process of Example 15 in an air atmosphere. The other points are similar to those of the first embodiment.
  • Comparative Example 6 a nitride semiconductor electrode was produced by using the heat treatment process of Example 16 in an air atmosphere. The other points are similar to those of the first embodiment.
  • Comparative Example 7 a nitride semiconductor electrode was produced by using the heat treatment process of Example 20 in an air atmosphere. The other points are similar to those of the first embodiment.
  • Comparative Example 8 a nitride semiconductor electrode was produced by using the heat treatment process of Example 21 in an air atmosphere. The other points are similar to those of the first embodiment.
  • Comparative Example 9 a nitride semiconductor electrode was produced by using the heat treatment process of Example 22 in an air atmosphere. The other points are similar to those of the first embodiment.
  • Table 1 shows the amounts of oxygen/hydrogen gas produced 10 hours after the light irradiation in Examples and Comparative Examples. The amount of each gas produced was normalized by the surface area of the semiconductor photoelectrode. It was found that oxygen and hydrogen were generated upon light irradiation in all cases.
  • the amount of hydrogen/oxygen produced was low at any heat treatment holding time.
  • the heat treatment temperature is 500° C. or higher, Ni is rapidly oxidized and thermally expanded into NiO by the high temperature heat treatment, and voids are generated at the interface with the photocatalyst thin film, so that the electrode performance deterioration starts from the voids. It is considered that, after 10 hours, the catalyst was roughly deactivated.
  • the heat treatment conditions for NiO formation were a temperature of 250°C or higher and 400°C or lower and a holding time of 30 minutes or longer and 2 hours or shorter.
  • the hydrogen/oxygen production amounts of Examples 8, 9, 10, 14, 15, 16, 20, 21, and 22 are higher than those of Comparative Examples 1, 3, 4, 5, 6, 7, 8, and 9. All were 10 times, and it was found that the atmosphere during the heat treatment had to be an oxygen atmosphere. When the atmosphere is air, it is considered that NiO does not become oxygen-rich NiO and holes cannot move through the barrier at the interface between NiO and InGaN.
  • the fourth step was performed in an electric furnace in the examples, it may be heat treatment on a hot plate installed in a groove box in an oxygen atmosphere.
  • the aqueous solution 111 used for the redox reaction test may be an aqueous solution of potassium hydroxide or hydrochloric acid other than sodium hydroxide.
  • the aqueous solution 121 may be a sodium hydrogen carbonate aqueous solution, a potassium chloride aqueous solution, or a sodium chloride aqueous solution other than potassium hydrogen carbonate.
  • hydrogen was used as the target product in the examples, carbon dioxide can be obtained by changing the reducing electrode 122 (eg, Ni, Fe, Au, Pt, Ag, Cu, In, Ti, Co, Ru) or the atmosphere in the cell. It is also possible to generate a carbon compound by the reduction reaction of and an ammonia by the reduction reaction of nitrogen.
  • the method for manufacturing a nitride semiconductor photoelectrode includes the first step of forming the n-type gallium nitride layer 2 on the insulating or conductive substrate 1 and the n-type gallium nitride.
  • a second step of forming the indium gallium nitride layer 3 on the layer 2 includes a third step of forming the nickel layer 4 on the indium gallium nitride layer 3, and a fourth step of heat-treating the nickel layer 4 in an oxygen atmosphere. Including.
  • MOCVD metal organic chemical vapor deposition
  • EB electron beam
  • the fourth step is performed at a temperature of 250° C. or higher and 400° C. or lower and a holding time of 30 minutes or longer and 2 hours or shorter. As a result, it is possible to realize a nitride semiconductor photoelectrode that can maintain the light energy conversion efficiency with high efficiency for a long time.
  • the nickel layer 4 after the fourth step becomes the oxygen-excessive nickel oxide layer 4 and exhibits characteristics as a p-type semiconductor.
  • holes generated in the indium gallium nitride semiconductor thin film by light irradiation can move to nickel oxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

光エネルギー変換効率の向上を図ることが可能な窒化物半導体光電極の製造方法を提供する。窒化物半導体光電極の製造方法は、絶縁性または導電性の基板1上にn型窒化ガリウム層2を形成する第1工程と、n型窒化ガリウム層2上に窒化インジウムガリウム層3を形成する第2工程と、窒化インジウムガリウム層3上にニッケル層4を形成する第3工程と、酸素雰囲気中においてニッケル層4を熱処理する第4工程とを含む。

Description

窒化物半導体光電極の製造方法
 本発明は、光照射により触媒機能を発揮して酸化ターゲット物質または還元ターゲット物質の化学反応を引き起こす光触媒機能を有する窒化物半導体光電極の製造方法に関する。
 従来例として、図3に半導体光電極による水の分解装置を示す。光触媒を用いた水の分解反応は、水の酸化反応とプロトンの還元反応からなり、それぞれ下記のとおりである。n型の光触媒材料に光を照射した場合、光触媒中で電子と正孔が生成分離する。正孔は光触媒材料の表面に移動し、水の酸化反応に寄与する。一方、電子は還元電極に移動し、プロトンの還元反応に寄与する。理想的には、このような酸化還元反応が進行し、水分解反応が生じる。
 酸化反応:2H2O + 4h+→ O+ 4H                 (1)
 還元反応:4H+ + 4e- → 2H2                    (2)
 具体的には、図3に示すように、酸化槽110は水溶液111と酸化電極112を具備している。酸化電極112は水溶液111に接している。水溶液111は例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液、塩酸である。酸化電極112は窒化物半導体や酸化チタン、アモルファスシリコンである。還元槽120は水溶液121と還元電極122を具備している。還元電極122は水溶液121に接している。水溶液121は例えば、炭酸水素カリウム水溶液、炭酸水素ナトリウム水溶液、塩化カリウム水溶液、塩化ナトリウム水溶液である。還元電極122は金属や金属化合物であり、例えば、ニッケル、鉄、金、白金、銀、銅、インジウム、チタンである。酸化槽110と還元槽120の間には、プロトン膜130が挟まれており、酸化槽110で生成したプロトンがプロトン膜130を介し、還元槽120へ拡散していく。プロトン膜130は例えば、ナフィオン(登録商標)であり、炭素-フッ素からなる疎水性テフロン骨格とスルホン酸基を持つパーフルオロ側鎖から構成されるパーフルオロカーボン材料である。酸化電極112と還元電極122は導線132で電気的に接続されており、酸化電極112から還元電極122へ電子の移動がなされている。光源140は例えば、キセノンランプ、水銀ランプ、ハロゲンランプ、疑似太陽光源、太陽光又はこれらの組み合わせである。酸化電極112を構成する材料が吸収可能な波長の光が照射される。例えば、窒化ガリウムで構成される電極では、吸収可能な波長は365nm以下の波長である。
 図4に従来の酸化電極112の構成(断面)を示す。図4のような従来例では、酸化電極112は半導体薄膜であり、例えば、サファイア基板11上に成長した窒化ガリウム薄膜12が用いられる。また、窒化ガリウム薄膜12上には、酸素発生用の助触媒として酸化ニッケル13が形成されている。従来は、窒化ガリウム薄膜12上にニッケル薄膜(1nm程度)を蒸着し、約300℃に設定されたホットプレート上で約1時間程度空気中で熱処理することで酸化ニッケル13を形成している。
S. Yotsuhashi, et al., "CO2Conversion with Light and Water by GaN Photoelectrode", Japanese Journal of Applied Physics, The Japan Society of Applied Physics, 2012, Volume 51, pp. 02BP07-1-02BP07-3 小野陽子ら、「窒化物半導体電極上に形成したNiO薄膜の光電流特性への効果」、2017年電気化学秋季大会、1L31.
 図4のような酸化電極112を用いた場合、窒化ガリウム薄膜12で生じた電子・正孔のうち、正孔は窒化ガリウム薄膜12中から酸化ニッケル13へ移動し、酸化ニッケル13の表面で水の酸化反応が進行する。正孔がスムーズに移動するためには、窒化ガリウム半導体の価電子帯が酸化ニッケルの価電子帯よりも低い準位にある必要がある。しかし、例えば、窒化インジウムガリウムのように光吸収率向上が期待できる可視応答化半導体光触媒薄膜の場合、バンドギャップが狭くなるに従い、価電子帯の準位が高くなる。従来の手法で作製された酸化ニッケル13の価電子帯は、可視応答化半導体光触媒薄膜の価電子帯よりも低い準位に位置してしまい、正孔が移動できない障壁が生成されるため、光吸収率を向上しても、生成する障壁により正孔が移動できず、光エネルギー変換効率が低下する問題がある。
 本発明は、上述した従来の技術に鑑み、光エネルギー変換効率の向上を図ることが可能な窒化物半導体光電極の製造方法を提供することを目的とする。
 上記目的を達成するため、第1の態様に係る発明は、窒化物半導体光電極の製造方法であって、絶縁性または導電性の基板上にn型窒化ガリウム層を形成する第1工程と、前記n型窒化ガリウム層上に窒化インジウムガリウム層を形成する第2工程と、前記窒化インジウムガリウム層上にニッケル層を形成する第3工程と、酸素雰囲気中において前記ニッケル層を熱処理する第4工程とを含むことを要旨とする。
 第2の態様に係る発明は、第1の態様に係る発明において、前記第1工程および前記第2工程で、有機金属気相成長法(MOCVD)を用いることを要旨とする。
 第3の態様に係る発明は、第1または第2の態様に係る発明において、前記第3工程で、電子ビーム(EB)蒸着法を用いることを要旨とする。
 第4の態様に係る発明は、第1から第3のいずれか1つの態様に係る発明において、前記第4工程が、250℃以上400℃以下の温度であり、保持時間が30分以上2時間以下で行われることを要旨とする。
 第5の態様に係る発明は、第1から第4のいずれか1つの態様に係る発明において、前記第4工程後の前記ニッケル層が、酸素過剰の酸化ニッケル層となり、p型の半導体としての特性を示すことを要旨とする。
 本発明によれば、光エネルギー変換効率の向上を図ることが可能な窒化物半導体光電極の製造方法を提供することが可能である。
本発明の実施例における窒化物半導体光電極の製造工程を示す図である。 本発明の実施例における窒化物半導体光電極の断面図である。 半導体光電極による水の分解装置の構成図である。 従来の酸化電極の断面図である。
 以下に、実施例によって本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において変更を加えても構わない。
 <概要>
 本発明は、窒化物半導体薄膜で生成した電荷を酸素発生用助触媒に受け渡す際の価電子帯に生じる障壁を低減するため、酸素発生用助触媒を酸素雰囲気中で熱処理することにより、酸素過剰の酸化物材料とすることで、p型半導体とし、酸素発生用助触媒の価電子帯が窒化物半導体薄膜の価電子帯よりも高い準位に位置する界面を持つ窒化物半導体光電極を用いることで、光エネルギー変換効率の向上を図る。
 <実施例1>
 (窒化物半導体光電極の作製)
 図1に、実施例1における窒化物半導体光電極の製造工程を示す。
 基板としてはサファイア基板を用いた。2インチのサファイア基板上に、シリコンをドープしたn-GaN半導体薄膜をMOCVD法によりエピタキシャル成長させた(第1工程)。成長原料には、アンモニアガス、トリメチルガリウムを用い、n型不純物源にはシランガスを、成長炉内に送るキャリアガスには水素を用いた。n-GaNの膜厚は光を吸収するに十分足る2μmとした。キャリア密度は3×1018cm-3であった。その後、インジウムの組成比を5%とした窒化インジウムガリウムInGaNを成長した(第2工程)。成長原料には、アンモニアガス、トリメチルガリウム、トリメチルインジウムを、成長炉内に送るキャリアガスには水素を用いた。膜厚は光を十分に吸収するに足る100nmとした。その後、2インチの半導体薄膜を4等分にへき開し、そのうちの1枚を電極作製に使用した。次に、InGaN表面に膜厚約1nmのNiをEB蒸着した(第3工程)。その後、この半導体薄膜を電気炉に入れ、酸素雰囲気中、200℃、15分間熱処理した(第4工程)。
 断面の元素分析を行った結果、NiとOが検出されたことから、NiOが形成されていることがわかった。断面のTEM観察結果から、NiOの膜厚は約2nmであった。また、形成したNiOを滴定することで、OがNiに対して過剰に含まれていることがわかった。
 (窒化物半導体光電極の構成)
 図2は、実施例1における窒化物半導体光電極の構成を示す断面図である。実施例1における窒化物半導体光電極は、図2に示すように、絶縁性または導電性の基板(サファイア基板)1と、基板1上に配置されたn型窒化ガリウム(n-GaN)層2と、n型窒化ガリウム層2上に配置された窒化インジウムガリウム(InGaN)層3と、窒化インジウムガリウム層3上に配置された酸素過剰の酸化ニッケル(NiO)層4とを備える。
 酸素発生用の助触媒である酸化ニッケルは酸素過剰の組成となった場合、p型の半導体としての特性を示す。これにより、窒化インジウムガリウム半導体薄膜上に酸素過剰の酸化ニッケルを形成した窒化物半導体光電極を製造することで、光照射によって窒化インジウムガリウム半導体薄膜中で生じる正孔が酸化ニッケルへ移動できるようになる。このように、半導体電極での電荷分離(電子・正孔の生成と分離)を促進することによって光エネルギー変換効率の向上を図ることが可能となる。
 (酸化還元反応試験)
 次に、実施例1における酸化還元反応試験について説明する。ここでも、水の分解装置の構成図(図3)を用いるが、既に説明した点については詳しい説明を省略する。
 酸化還元反応試験では、InGaN表面をけがき、n-GaN表面を露出した。露出したn-GaN表面の一部に導線を接続し、Inを用いてはんだ付けした。その後、インジウム表面が露出しないようにエポキシ樹脂で被覆した。これを図3の酸化電極112として設置した。水溶液111は1mol/lの水酸化ナトリウム水溶液とした。ここで、水溶液121は0.5mol/lの炭酸水素カリウム水溶液とした。還元電極122は白金(ニラコ製)、プロトン膜130はナフィオン(登録商標)を用いた。各反応槽110・120において窒素ガスを10ml/min.で流し、サンプルの光照射面積を1cmとし、水溶液111・121の攪拌は撹拌子とスターラーを用いて250rpmの回転速度で各反応槽110・120の底の中心位置で攪拌した。反応槽110・120内が窒素ガスに十分に置換された後、光源140を上述の手順で作製した半導体光電極のNiOが形成されている面に向くように固定した。光源140には300Wの高圧キセノンランプ(照度5mW/cm)を用いて、半導体光電極に均一に光を照射した。光照射中任意の時間に、各反応槽110・120内のガスを採取し、ガスクロマトグラフにて反応生成物を分析した。その結果、酸化槽110では酸素が、還元槽120では水素が生成されていることを確認した。
 <実施例2>
 実施例2では、実施例1の熱処理工程(第4工程)を200℃、30分間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例3>
 実施例3では、実施例1の熱処理工程を200℃、1時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例4>
 実施例4では、実施例1の熱処理工程を200℃、2時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例5>
 実施例5では、実施例1の熱処理工程を200℃、3時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例6>
 実施例6では、実施例1の熱処理工程を200℃、4時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例7>
 実施例7では、実施例1の熱処理工程を250℃、15分間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例8>
 実施例8では、実施例1の熱処理工程を250℃、30分間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例9>
 実施例9では、実施例1の熱処理工程を250℃、1時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例10>
 実施例10では、実施例1の熱処理工程を250℃、2時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例11>
 実施例11では、実施例1の熱処理工程を250℃、3時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例12>
 実施例12では、実施例1の熱処理工程を250℃、4時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例13>
 実施例13では、実施例1の熱処理工程を300℃、15分間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例14>
 実施例14では、実施例1の熱処理工程を300℃、30分間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例15>
 実施例15では、実施例1の熱処理工程を300℃、1時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例16>
 実施例16では、実施例1の熱処理工程を300℃、2時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例17>
 実施例17では、実施例1の熱処理工程を300℃、3時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例18>
 実施例18では、実施例1の熱処理工程を300℃、4時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例19>
 実施例19では、実施例1の熱処理工程を400℃、15分間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例20>
 実施例20では、実施例1の熱処理工程を400℃、30分間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例21>
 実施例21では、実施例1の熱処理工程を400℃、1時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例22>
 実施例22では、実施例1の熱処理工程を400℃、2時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例23>
 実施例23では、実施例1の熱処理工程を400℃、3時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例24>
 実施例24では、実施例1の熱処理工程を400℃、4時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例25>
 実施例25では、実施例1の熱処理工程を500℃、15分間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例26>
 実施例26では、実施例1の熱処理工程を500℃、30分間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例27>
 実施例27では、実施例1の熱処理工程を500℃、1時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例28>
 実施例28では、実施例1の熱処理工程を500℃、2時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例29>
 実施例29では、実施例1の熱処理工程を500℃、3時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施例30>
 実施例30では、実施例1の熱処理工程を500℃、4時間とした窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <比較対象事例1>
 比較対象事例1では、実施例8の熱処理工程を空気雰囲気として窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <比較対象事例2>
 比較対象事例2では、実施例9の熱処理工程を空気雰囲気として窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <比較対象事例3>
 比較対象事例3では、実施例10の熱処理工程を空気雰囲気として窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <比較対象事例4>
 比較対象事例4では、実施例14の熱処理工程を空気雰囲気として窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <比較対象事例5>
 比較対象事例5では、実施例15の熱処理工程を空気雰囲気として窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <比較対象事例6>
 比較対象事例6では、実施例16の熱処理工程を空気雰囲気として窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <比較対象事例7>
 比較対象事例7では、実施例20の熱処理工程を空気雰囲気として窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <比較対象事例8>
 比較対象事例8では、実施例21の熱処理工程を空気雰囲気として窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <比較対象事例9>
 比較対象事例9では、実施例22の熱処理工程を空気雰囲気として窒化物半導体電極を作製した。その他の点においては実施例1と同様である。
 <実施の効果>
 実施例および比較対象例における、光照射から10時間後の酸素・水素ガスの生成量を表1に示す。各ガスの生成量は、半導体光電極の表面積で規格化して示した。どの例でも光照射時に、酸素と水素が生成されていることがわかった。
 実施例8、9、10、14、15、16、20、21、22の水素・酸素生成量は、その他の実施例に比べて、10倍であることがわかった。
 実施例1、2、3、4、5、6では、いずれの熱処理保持時間でも水素・酸素の生成量が低かった。熱処理温度が200℃以下の場合は、Niが十分に酸化されていないこと、あるいはNiOが酸素過剰となっていないためと考えられる。
 実施例25、26、27、28、29、30では、いずれの熱処理保持時間でも水素・酸素の生成量が低かった。熱処理温度が500℃以上の場合は、Niが高温熱処理によって急激にNiOへと酸化・熱膨張し、光触媒薄膜との界面に空隙が生成されたことで、空隙を起点とした電極性能劣化が進行し10時間後にはおおよそ触媒として失活したためと考えられる。
 実施例7、13、19では、いずれの熱処理温度でも水素・酸素の生成量が低かった。熱処理保持時間が15分以下の場合は、Niが十分に酸化されていないこと、あるいはNiOが酸素過剰となっていないためと考えられる。
 実施例11、12、17、18、23、24では、いずれの熱処理温度でも水素・酸素の生成量が低かった。熱処理保持時間が3時間以上の場合は、Niが長時間の熱処理によってNiOへと酸化・熱膨張した際、光触媒薄膜との界面に空隙が生成されたことで、空隙を起点とした電極性能劣化が進行し10時間後にはおおよそ触媒として失活したためと考えられる。
 これら結果より、NiO形成の熱処理条件は、温度が250℃以上400℃以下、保持時間が30分以上2時間以下ということを抽出した。また、実施例8、9、10、14、15、16、20、21、22の水素・酸素生成量は、比較対象事例1、3、4、5、6、7、8、9に比べていずれも10倍であり、熱処理の際の雰囲気が酸素雰囲気である必要が分かった。雰囲気が空気の場合、NiOが酸素過剰NiOとならず、NiOとInGaN界面の障壁を正孔が移動できないことが影響していると考えられる。
 以上から、熱処理工程を酸素雰囲気で250℃以上400℃以下の温度、保持時間が30分以上2時間以下とすることで、水分解反応による水素・酸素生成量の増加(光エネルギー変換効率の高効率化)を図ることができた。
Figure JPOXMLDOC01-appb-T000001
 
 <変形例>
 上記では幾つかの実施例について記載したが、開示の一部をなす論述および図面は例示的なものであり、限定するものであると理解すべきではない。この開示から当業者には様々な代替実施例および運用技術が明らかとなろう。
 例えば、第4工程は、実施例では電気炉中で実施したが、酸素雰囲気のグルーブボックス内に設置したホットプレート上での熱処理でも構わない。酸化還元反応試験に用いる水溶液111は水酸化ナトリウム以外に、水酸化カリウム水溶液、塩酸でも構わない。水溶液121は炭酸水素カリウム以外に炭酸水素ナトリウム水溶液、塩化カリウム水溶液、塩化ナトリウム水溶液でも構わない。実施例では目的生成物を水素としたが、還元電極122(例えば、Ni、Fe、Au、Pt、Ag、Cu、In、Ti、Co、Ru)やセル内の雰囲気を変えることで、二酸化炭素の還元反応による炭素化合物の生成や、窒素の還元反応によるアンモニアの生成も可能である。
 <まとめ>
 以上説明したように、本発明の実施例における窒化物半導体光電極の製造方法は、絶縁性または導電性の基板1上にn型窒化ガリウム層2を形成する第1工程と、n型窒化ガリウム層2上に窒化インジウムガリウム層3を形成する第2工程と、窒化インジウムガリウム層3上にニッケル層4を形成する第3工程と、酸素雰囲気中においてニッケル層4を熱処理する第4工程とを含む。このように、窒化インジウムガリウム半導体薄膜上にニッケルを形成した後、酸素雰囲気で熱処理し、酸素過剰の酸化ニッケルを形成した窒化物半導体光電極を製造することで、光吸収率の高い半導体薄膜に対して、正孔が移動できない障壁を生成しない酸素発生用の助触媒を形成し、光エネルギー変換効率の向上を図ることが可能となる。
 また、第1工程および第2工程では、有機金属気相成長法(MOCVD)を用いるのが望ましい。これにより、他の方法と比べて膜厚の偏差が少なく、高速成長が可能であるため、電荷の移動障壁を低減した半導体光電極を効率よく作製することが可能となる。
 また、第3工程では、電子ビーム(EB)蒸着法を用いるのが望ましい。これにより、他の方法と比べて高純度の薄膜を形成できるため、電荷の移動障壁を低減した半導体光電極を効率よく作製することが可能となる。
 また、第4工程は、250℃以上400℃以下の温度であり、保持時間が30分以上2時間以下で行われるのが望ましい。これにより、光エネルギー変換効率を高効率で長時間維持できる窒化物半導体光電極を実現することが可能となる。
 また、第4工程後のニッケル層4は、酸素過剰の酸化ニッケル層4となり、p型の半導体としての特性を示す。これにより、光照射によって窒化インジウムガリウム半導体薄膜中で生じる正孔が酸化ニッケルへ移動できるようになる。
 1…基板
 2…n型窒化ガリウム層
 3…窒化インジウムガリウム層
 4…酸化ニッケル層(ニッケル層)
 110…酸化槽
 111…水溶液
 112…酸化電極
 120…還元槽
 121…水溶液
 122…還元電極
 130…プロトン膜
 132…導線
 140…光源

Claims (5)

  1.  絶縁性または導電性の基板上にn型窒化ガリウム層を形成する第1工程と、
     前記n型窒化ガリウム層上に窒化インジウムガリウム層を形成する第2工程と、
     前記窒化インジウムガリウム層上にニッケル層を形成する第3工程と、
     酸素雰囲気中において前記ニッケル層を熱処理する第4工程と
     を含むことを特徴とする窒化物半導体光電極の製造方法。
  2.  前記第1工程および前記第2工程では、有機金属気相成長法(MOCVD)を用いることを特徴とする請求項1に記載の窒化物半導体光電極の製造方法。
  3.  前記第3工程では、電子ビーム(EB)蒸着法を用いることを特徴とする請求項1または2に記載の窒化物半導体光電極の製造方法。
  4.  前記第4工程は、250℃以上400℃以下の温度であり、保持時間が30分以上2時間以下で行われることを特徴とする請求項1から3のいずれか1項に記載の窒化物半導体光電極の製造方法。
  5.  前記第4工程後の前記ニッケル層は、酸素過剰の酸化ニッケル層となり、p型の半導体としての特性を示すことを特徴とする請求項1から4のいずれか1項に記載の窒化物半導体光電極の製造方法。
PCT/JP2019/045259 2018-12-03 2019-11-19 窒化物半導体光電極の製造方法 WO2020116151A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/292,361 US20220002886A1 (en) 2018-12-03 2019-11-19 Method for Producing Nitride Semiconductor Photoelectrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-226249 2018-12-03
JP2018226249A JP7137070B2 (ja) 2018-12-03 2018-12-03 窒化物半導体光電極の製造方法

Publications (1)

Publication Number Publication Date
WO2020116151A1 true WO2020116151A1 (ja) 2020-06-11

Family

ID=70975440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045259 WO2020116151A1 (ja) 2018-12-03 2019-11-19 窒化物半導体光電極の製造方法

Country Status (3)

Country Link
US (1) US20220002886A1 (ja)
JP (1) JP7137070B2 (ja)
WO (1) WO2020116151A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102468800B1 (ko) * 2021-01-27 2022-11-17 인천대학교 산학협력단 투명 적층 광전기화학 장치 및 이의 제조방법
WO2023089654A1 (ja) * 2021-11-16 2023-05-25 日本電信電話株式会社 半導体光電極の製造方法
WO2023238394A1 (ja) * 2022-06-10 2023-12-14 日本電信電話株式会社 窒化物半導体光電極

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010591A (ja) * 2008-06-30 2010-01-14 Toshiba Corp 半導体発光装置
JP2013115112A (ja) * 2011-11-25 2013-06-10 Sumitomo Electric Ind Ltd 複合基板の製造方法および半導体デバイスの製造方法
JP2015147190A (ja) * 2014-02-07 2015-08-20 学校法人東京理科大学 光触媒半導体素子、光触媒酸化還元反応装置および光電気化学反応実行方法
JP2017017173A (ja) * 2015-06-30 2017-01-19 サンケン電気株式会社 半導体装置
JP2017210666A (ja) * 2016-05-27 2017-11-30 パナソニックIpマネジメント株式会社 二酸化炭素の還元方法、及び二酸化炭素の還元装置
JP2018204044A (ja) * 2017-05-30 2018-12-27 日本電信電話株式会社 半導体電極とその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420736B1 (en) * 2000-07-26 2002-07-16 Axt, Inc. Window for gallium nitride light emitting diode
JP2004131567A (ja) * 2002-10-09 2004-04-30 Hamamatsu Photonics Kk 発光体と、これを用いた電子線検出器、走査型電子顕微鏡及び質量分析装置
US7482635B2 (en) * 2004-02-24 2009-01-27 Showa Denko K.K. Gallium nitride-based compound semiconductor multilayer structure and production method thereof
US20060234411A1 (en) * 2005-04-15 2006-10-19 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing nitride semiconductor light emitting diode
JP4986445B2 (ja) * 2005-12-13 2012-07-25 昭和電工株式会社 窒化ガリウム系化合物半導体発光素子
KR100867518B1 (ko) * 2006-09-06 2008-11-07 삼성전기주식회사 질화물계 반도체 발광소자의 제조방법
US8110889B2 (en) * 2009-04-28 2012-02-07 Applied Materials, Inc. MOCVD single chamber split process for LED manufacturing
JP5961557B2 (ja) * 2010-01-27 2016-08-02 イェイル ユニヴァーシティ GaNデバイスのための導電率ベースの選択的エッチング及びその用途
JP6256598B2 (ja) * 2014-04-14 2018-01-10 富士通株式会社 光合成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010591A (ja) * 2008-06-30 2010-01-14 Toshiba Corp 半導体発光装置
JP2013115112A (ja) * 2011-11-25 2013-06-10 Sumitomo Electric Ind Ltd 複合基板の製造方法および半導体デバイスの製造方法
JP2015147190A (ja) * 2014-02-07 2015-08-20 学校法人東京理科大学 光触媒半導体素子、光触媒酸化還元反応装置および光電気化学反応実行方法
JP2017017173A (ja) * 2015-06-30 2017-01-19 サンケン電気株式会社 半導体装置
JP2017210666A (ja) * 2016-05-27 2017-11-30 パナソニックIpマネジメント株式会社 二酸化炭素の還元方法、及び二酸化炭素の還元装置
JP2018204044A (ja) * 2017-05-30 2018-12-27 日本電信電話株式会社 半導体電極とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEKIMOTO, TAKEYUKI ET AL.: "Analysis of products from photoelectrochemical reduction of 13C02 by GaN-Si based tandem photoelectrode", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 120, 27 June 2016 (2016-06-27), pages 13970 - 13975, XP055715997 *

Also Published As

Publication number Publication date
JP2020090690A (ja) 2020-06-11
US20220002886A1 (en) 2022-01-06
JP7137070B2 (ja) 2022-09-14

Similar Documents

Publication Publication Date Title
US8709228B2 (en) Method for reducing carbon dioxide
Jang et al. Metal‐Free Artificial Photosynthesis of Carbon Monoxide Using N‐Doped ZnTe Nanorod Photocathode Decorated with N‐Doped Carbon Electrocatalyst Layer
WO2020116151A1 (ja) 窒化物半導体光電極の製造方法
JP5236124B1 (ja) 二酸化炭素を還元する方法
JP5636139B2 (ja) 二酸化炭素還元用光化学電極、および該光化学電極を用いて二酸化炭素を還元する方法
JP6875636B2 (ja) 半導体電極とその製造方法
JP6715172B2 (ja) 半導体光電極の製造方法
JP5742597B2 (ja) 水素を生成する方法
JP2018090862A (ja) 半導体光電極
JP6898566B2 (ja) 半導体光電極
WO2019230343A1 (ja) 半導体光電極
US20230407498A1 (en) Water splitting device protection
WO2020116153A1 (ja) 半導体光電極
JP7343810B2 (ja) 窒化物半導体光電極の製造方法
WO2023089654A1 (ja) 半導体光電極の製造方法
US20240044022A1 (en) Semiconductor Photoelectrode and Method for Manufacturing Same
WO2023089656A1 (ja) 半導体光電極の製造方法
WO2024116358A1 (ja) 半導体光電極
JP7485991B2 (ja) 半導体光電極および半導体光電極の製造方法
WO2023089655A1 (ja) 半導体光電極
WO2021240591A1 (ja) 窒化物半導体光触媒薄膜の製造方法
WO2024116357A1 (ja) 半導体光電極
WO2023238387A1 (ja) 窒化物半導体光電極およびその製造方法
WO2022254617A1 (ja) 酸化還元反応装置
WO2022254618A1 (ja) 酸化還元反応装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892556

Country of ref document: EP

Kind code of ref document: A1