WO2023238387A1 - 窒化物半導体光電極およびその製造方法 - Google Patents

窒化物半導体光電極およびその製造方法 Download PDF

Info

Publication number
WO2023238387A1
WO2023238387A1 PCT/JP2022/023463 JP2022023463W WO2023238387A1 WO 2023238387 A1 WO2023238387 A1 WO 2023238387A1 JP 2022023463 W JP2022023463 W JP 2022023463W WO 2023238387 A1 WO2023238387 A1 WO 2023238387A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
nitride semiconductor
polycrystalline
substrate
photoelectrode
Prior art date
Application number
PCT/JP2022/023463
Other languages
English (en)
French (fr)
Inventor
紗弓 里
裕也 渦巻
晃洋 鴻野
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/023463 priority Critical patent/WO2023238387A1/ja
Publication of WO2023238387A1 publication Critical patent/WO2023238387A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/087Photocatalytic compound

Definitions

  • the present invention relates to a nitride semiconductor photoelectrode and a method for manufacturing the same.
  • Artificial photosynthesis is a technology that advances the oxidation reaction of water and the reduction reaction of protons and carbon dioxide by irradiating a photoelectrode made of a photocatalyst with light. Furthermore, the technique of advancing the oxidation reaction of water and the reduction reaction of carbon dioxide by applying a voltage between an oxidation electrode and a reduction electrode made of metal is called electrolytic reduction of carbon dioxide.
  • the oxidation reaction of water and the reduction reaction of protons are as shown in equations (1) and (2).
  • a photocatalytic material When a photocatalytic material is irradiated with light, electrons and holes are generated and separated in the photocatalyst. The holes move to the surface of the photocatalytic material and contribute to the water oxidation reaction.
  • electrons move to the reduction electrode and contribute to the proton reduction reaction. Ideally, such a redox reaction proceeds and a water splitting reaction occurs.
  • Oxidation reaction 2H 2 O + 4h + ⁇ O 2 + 4H + (1)
  • Reduction reaction 4H + + 4e - ⁇ 2H 2 (2)
  • Artificial photosynthesis technology that uses sunlight or electrolytic reduction technology that uses electricity derived from renewable energy is used to generate hydrogen fuel, which is attracting attention as a green energy source, to manufacture chemical substances from hydrogen and carbon dioxide, and to produce carbon dioxide. It has attracted attention as a technology capable of recycling carbon (producing hydrocarbons such as carbon monoxide, formic acid, and ethylene, and alcohols such as methanol and ethanol), and has been actively researched in recent years.
  • Non-Patent Document 1 reports that by using a gallium nitride semiconductor, which is a nitride semiconductor, as a photocatalytic material, formulas (1) and (2) and the reduction reaction of carbon dioxide proceed.
  • Gallium nitride has a bandgap energy of approximately 3.4 eV and can absorb light with a wavelength of 365 nm or less. It is commonly used because the upper end of its valence band can straddle the oxidation level of water, and the lower end of its conduction band can straddle the reduction level of protons.
  • the ratio of the Gibbs free energy change of hydrogen production to the given light (or sunlight) energy is defined as the solar conversion efficiency, and is expressed as the product of the light absorption rate and the quantum yield. be done. Therefore, in order to improve the conversion efficiency, it is important to improve the light absorption rate in the semiconductor thin film.
  • Tantalum nitride a nitride semiconductor, has a bandgap energy of approximately 2.1 eV and can absorb light with a wavelength of 600 nm or less, making it a candidate material for photoelectrodes.
  • tantalum nitride is difficult to grow as a single-crystal thin film, and it is mainly manufactured by forming a tantalum oxide film and then performing a process (nitriding process) that replaces oxygen atoms with nitrogen atoms, resulting in non-uniform It is difficult to reduce lattice strain caused by defects that occur in crystals by nitriding. The problem is that defects in the crystal serve as starting points for recombination of electrons and holes generated by light irradiation, resulting in a decrease in efficiency.
  • the present invention was made in view of the above problems, and an object of the present invention is to improve the efficiency of the photoelectrochemical water splitting reaction of a nitride semiconductor photoelectrode.
  • a nitride semiconductor photoelectrode includes: a conductive thin film formed on a substrate; a polycrystalline nitride semiconductor thin film with a lattice strain of 0.35% or less formed on the conductive thin film; By irradiating light onto the surface of the polycrystalline nitride semiconductor thin film in an aqueous solution, an oxidation-reduction reaction occurs.
  • a method for manufacturing a nitride semiconductor photoelectrode includes a step of forming a conductive thin film on a substrate, and a step of forming a polycrystalline nitride semiconductor precursor on the conductive thin film. and a step of heat-treating the laminate of the substrate, the conductive thin film, and the precursor in an environment with an ammonia flow rate of 5 L/min or less to obtain a polycrystalline nitride semiconductor thin film.
  • the efficiency of the photoelectrochemical water splitting reaction of a nitride semiconductor photoelectrode can be improved.
  • FIG. 1 is a diagram showing an example of the configuration of a nitride semiconductor photoelectrode of this embodiment.
  • FIG. 2 is a flowchart showing an example of a method for manufacturing a nitride semiconductor photoelectrode.
  • FIG. 3 is a diagram showing an outline of an apparatus for performing a redox reaction test.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a semiconductor photoelectrode (nitride semiconductor photoelectrode) of this embodiment.
  • the semiconductor photoelectrode of this embodiment exhibits a catalytic function of oxidation reaction by light such as sunlight, efficiently causes a chemical reaction of the oxidation target substance, and improves the durability of the material under light irradiation.
  • the semiconductor photoelectrode of this embodiment belongs to solar energy conversion technology and fuel generation technology.
  • the semiconductor photoelectrode shown in FIG. 1 includes: a conductive thin film 2 formed on a substrate 1; a polycrystalline nitride semiconductor thin film 3 with a lattice strain of 0.35% or less formed on the conductive thin film 2; By irradiating light onto the surface of the polycrystalline nitride semiconductor thin film 3 in an aqueous solution, an oxidation-reduction reaction occurs.
  • the substrate 1 may be a conductive substrate or an insulating substrate.
  • an insulating or conductive substrate such as a sapphire substrate, a GaN substrate, a glass substrate, or a Si substrate can be used.
  • a sapphire substrate is used, but similar effects can be obtained by using other insulating or conductive substrates such as a GaN substrate, a glass substrate, or a Si substrate.
  • a conductive material such as an n-GaN thin film, an ITO thin film, an FTO thin film, or a carbon nanotube thin film may be used.
  • a polycrystalline nitride semiconductor thin film 3 is used as the semiconductor thin film.
  • the polycrystalline nitride semiconductor thin film 3 may include tantalum nitride (Ta 3 N 5 ).
  • the polycrystalline nitride semiconductor thin film 3 is also referred to as a semiconductor thin film 3 hereinafter.
  • the semiconductor thin film 3 side of the laminate semiconductor thin film 3, conductive thin film 2, and substrate 1
  • the semiconductor thin film 3 side of the laminate semiconductor thin film 3, conductive thin film 2, and substrate 1
  • the semiconductor The light transmittance of the thin film 3, the conductive thin film 2, and the substrate 1 is preferably 80% or more in the thickness range of 600 nm to 1800 nm.
  • a conductive thin film 2 is formed on a conductive or insulating substrate 1.
  • the conductive thin film 2 may be formed using metal organic chemical vapor deposition (MOCVD).
  • a precursor of a polycrystalline nitride semiconductor thin film 3 is formed on the conductive thin film 2.
  • the precursor may include tantalum oxide (Ta 2 O 5 ).
  • step 3 the laminate (substrate 1, conductive thin film 2, precursor) obtained in steps 1 and 2 is heat treated in an environment with an ammonia flow rate of 5 L/min or less to form a polycrystalline nitride semiconductor thin film 3.
  • the polycrystalline nitride semiconductor thin film 3 may include tantalum nitride (Ta 3 N 5 ).
  • the laminate is preferably heat-treated in an environment where the ammonia flow rate is 2 L/min or less.
  • a semiconductor photoelectrode having the conductive thin film 2 formed on the substrate 1 and the polycrystalline nitride semiconductor thin film 3 formed on the conductive thin film 2 can be manufactured.
  • Example 1 a sapphire substrate was used as the substrate 1, an n-GaN semiconductor thin film was used as the conductive thin film 2, and a tantalum nitride (Ta 3 N 5 ) thin film was used as the semiconductor thin film 3.
  • n-GaN semiconductor thin film was epitaxially grown on the surface of a sapphire substrate by MOCVD. Ammonia gas and trimethyl gallium were used as the growth raw materials, and hydrogen was used as the carrier gas sent into the growth reactor. The n-GaN film thickness was 4 ⁇ m. The carrier density was 4 ⁇ 10 18 cm ⁇ 3 .
  • Ta 2 O 5 tantalum oxide
  • NH 3 ammonia
  • Example 2 The semiconductor photoelectrode of Example 2 was heat-treated at a high temperature of 800° C. or higher while flowing ammonia (NH 3 ) at a flow rate of 5 L/min in the nitriding process of a tantalum oxide (Ta 2 O 5 ) thin film. Other conditions are the same as in Example 1. XRD analysis was performed on the formed Ta 3 N 5 thin film (polycrystalline nitride semiconductor thin film), and the lattice strain of the Ta 3 N 5 thin film was measured by the Williamson-Hall method and was found to be 0.34%.
  • NH 3 ammonia
  • Ta 2 O 5 tantalum oxide
  • Comparative example 1 The semiconductor photoelectrode of Comparative Example 1 was heat-treated at a high temperature of 800° C. or higher while flowing ammonia (NH 3 ) at a flow rate of 10 L/min in the step of nitriding a tantalum oxide (Ta 2 O 5 ) thin film. Other conditions are the same as in Example 1. XRD analysis was performed on the formed Ta 3 N 5 thin film (polycrystalline nitride semiconductor thin film), and the lattice strain of the Ta 3 N 5 thin film was measured by the Williamson-Hall method and was found to be 0.36%.
  • NH 3 ammonia
  • Ta 2 O 5 tantalum oxide
  • the apparatus in FIG. 3 includes an oxidation tank 60 and a reduction tank 70.
  • An aqueous solution 6 is placed in the oxidation tank 60, and the oxidation electrode 11 is placed in the aqueous solution 6.
  • An aqueous solution 7 is placed in the reduction tank 70 , and the reduction electrode 5 is placed in the aqueous solution 7 .
  • aqueous solution 6 in the oxidation tank 60 and the aqueous solution 7 in the reduction tank 70 a 1 mol/l potassium hydroxide aqueous solution was used.
  • a sodium hydroxide aqueous solution, a cesium hydroxide aqueous solution, a rubidium hydroxide aqueous solution, and a hydrochloric acid aqueous solution may be used.
  • a sodium hydroxide aqueous solution in addition to the potassium hydroxide aqueous solution, a sodium hydroxide aqueous solution, a rubidium hydroxide aqueous solution, a cesium hydroxide aqueous solution, a sodium bicarbonate aqueous solution, a potassium bicarbonate aqueous solution, a potassium chloride aqueous solution, and a sodium chloride aqueous solution may be used.
  • a semiconductor photoelectrode to be tested was used as the oxidized electrode 11. Specifically, for each semiconductor photoelectrode of Examples 1 and 2 and Comparative Example 1, a Ta 3 N 5 thin film was marked, a conductive wire was connected to a part of the surface, and soldered using indium (In). did. Thereafter, the indium surface was coated with epoxy resin so as not to be exposed, and was installed as the oxidation electrode 11 shown in FIG.
  • the reduction electrode 5 may be made of a metal or a metal compound.
  • Nafion registered trademark
  • the sample area of the oxidation electrode 11 is set to 1 cm 2
  • the light source 9 is set to the surface where the polycrystalline nitride semiconductor thin film 3 is exposed. It was fixed so that it faced.
  • a 300 W high-pressure xenon lamp (illuminance of about 34 mW/cm 2 at a wavelength of 600 nm or less) was used as the light source 9, and the oxidized electrode 11 (semiconductor photoelectrode) was uniformly irradiated with light.
  • the light source 9 only needs to be able to emit light of a wavelength that can be absorbed by the material constituting the semiconductor photoelectrode installed as the oxidized electrode 11.
  • a light source such as a xenon lamp, a pseudo sunlight source, a halogen lamp, a mercury lamp, or sunlight may be used, or a combination of these light sources may be used.
  • a power supply 10 was connected between the oxidation electrode 11 (semiconductor photoelectrode) and the reduction electrode 5, and a voltage of 2V was applied.
  • the power source 10 may be, for example, a commercial power source, a solar cell, or a power source derived from other renewable energy, or may be a combination of these power sources.
  • the target product was hydrogen, but the metal of the reduction electrode 5 (for example, Ni, Fe, Au, Pt, Ag, Cu, In, Ti, Co, Ru) or the atmosphere inside the cell may be changed. It is also possible to generate a carbon compound by a reduction reaction of carbon dioxide or to generate ammonia by a reduction reaction of nitrogen.
  • the metal of the reduction electrode 5 for example, Ni, Fe, Au, Pt, Ag, Cu, In, Ti, Co, Ru
  • Table 1 shows the photocurrent density and sunlight conversion efficiency one minute after light irradiation in Examples and Comparative Examples.
  • the photocurrent density and sunlight conversion efficiency were calculated from the following equations (6) and (7).
  • the photocurrent density is I(A/cm 2 , Faraday's constant F(C/mol), number of reaction electrons n, Gibbs free energy change of hydrogen production ⁇ G H2 (kJ/mol), applied light energy P( kJ/s cm 2 ).
  • Examples 1 and 2 compared to Comparative Example 1, the photocurrent value and sunlight conversion efficiency 1 minute after light irradiation were larger. Regarding the photocurrent value and sunlight conversion efficiency, Examples 1 and 2 were 2.3 times and 1.4 times higher than Comparative Example 1, respectively.
  • the semiconductor photoelectrode of the present embodiment includes a conductive thin film 2 formed on a substrate 1 and a polycrystalline nitride with a lattice strain of 0.35% or less formed on the conductive thin film 2.
  • a redox reaction occurs by irradiating light onto the surface of the polycrystalline nitride semiconductor thin film 3 in an aqueous solution.
  • the method for manufacturing a semiconductor photoelectrode of this embodiment includes a step of forming a conductive thin film 2 on a substrate 1, and a step of forming a precursor of a polycrystalline nitride semiconductor thin film 3 on the conductive thin film 2. and a step of heat-treating the obtained laminate in an environment with an ammonia flow rate of 5 L/min or less to obtain a polycrystalline nitride semiconductor thin film 3.
  • the nitriding rate of the polycrystalline nitride semiconductor thin film 3 is controlled by the ammonia flow rate, and by reducing the rate to 5 L/min or less, a polycrystalline semiconductor thin film with a lattice strain of 0.35% or less can be formed. . Thereby, the efficiency of the photoelectrochemical water splitting reaction can be improved.
  • Substrate 2 Conductive thin film 3: Porous nitride semiconductor thin film (semiconductor thin film)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

基板1の上に形成された導電性薄膜2と、前記導電性薄膜2の上に形成された、格子歪0.35%以下の多結晶窒化物半導体薄膜3と、を有し、水溶液中で前記多結晶窒化物半導体薄膜3の表面に対向して光を照射することにより、酸化還元反応が生じる窒化物半導体光電極。

Description

窒化物半導体光電極およびその製造方法
 本発明は、窒化物半導体光電極およびその製造方法に関する。
 光触媒からなる光電極への光照射により、水の酸化反応とプロトン・二酸化炭素の還元反応を進行させる技術を人工光合成という。また、金属からなる酸化電極と還元電極の間への電圧印加により、水の酸化反応と二酸化炭素の還元反応を進行させる技術を二酸化炭素の電解還元という。
 特に、水の酸化反応とプロトンの還元反応については、式(1)、(2)のとおりである。光触媒材料に光を照射した場合、光触媒中で電子と正孔が生成分離する。正孔は光触媒材料の表面に移動し、水の酸化反応に寄与する。一方、電子は還元電極に移動し、プロトンの還元反応に寄与する。理想的には、このような酸化還元反応が進行し、水分解反応が生じる。
   酸化反応:2H2O + 4h+→ O+ 4H+     (1)
   還元反応:4H+ + 4e- → 2H2        (2)
 太陽光を利用した人工光合成技術、または、再生可能エネルギー由来の電力を利用した電解還元技術は、グリーンエネルギーとして注目される水素燃料の生成や水素と二酸化炭素を原料とした化学物質の製造、二酸化炭素の再資源化(一酸化炭素、ギ酸、エチレン等の炭化水素やメタノール、エタノール等のアルコール生成)が可能な技術として注目され、近年盛んに研究されている。
 非特許文献1では、光触媒材料に窒化物半導体である窒化ガリウム系半導体を用いることで、式(1), (2)および二酸化炭素の還元反応が進行することが報告されている。
Satoshi Yotsuhashi、外6名、"CO2Conversion with Light and Water by GaN Photoelectrode"、Japanese Journal of Applied Physics、51、2012年、p.02BP07-1-p.02BP07-3
 窒化ガリウムはバンドギャップエネルギーが約3.4 eVであり、波長365 nm以下の光を吸収可能である。その価電子帯の上端が水の酸化準位を、伝導帯の下端がプロトンの還元順位をそれぞれ跨ぐことができる材料であることから、一般的に用いられる。
 式(3), (4)より、与えた光(又は太陽光)エネルギーに対する水素生成のギブスの自由エネルギー変化の割合は太陽光変換効率と定義され、光吸収率と量子収率の掛け算で表される。したがって、変換効率を向上させるためには半導体薄膜における光吸収率を向上させることが重要である。
Figure JPOXMLDOC01-appb-M000001
 この一つの手法として、狭バンドギャップの半導体材料を光電極に用いて、吸収波長範囲を広げることが提案されている。窒化物半導体である窒化タンタルはバンドギャップエネルギーが約2.1 eVであり、波長600 nm以下の光を吸収可能であることから、光電極の候補材料である。
 しかし、窒化タンタルは単結晶薄膜を成長させることが難しく、タンタル酸化物を成膜してから酸素原子を窒素原子に置換する処理(窒化処理)を行って製造することが主流であり、不均一な窒化処理により結晶に生じる欠陥に由来する格子歪を低減することが難しい。結晶の欠陥は光照射により生成される電子と正孔が再結合する起点となるため、効率低下が引き起こされることが問題である。
 本発明は、上記課題に鑑みてなされたものであり、窒化物半導体光電極の光電気化学的水分解反応の効率を向上させることを目的とする。
 本発明の一態様の窒化物半導体光電極は、基板の上に形成された導電性薄膜と、前記導電性薄膜の上に形成された、格子歪0.35%以下の多結晶窒化物半導体薄膜と、を有し、水溶液中で前記多結晶窒化物半導体薄膜の表面に対向して光を照射することにより、酸化還元反応が生じる。
 本発明の一態様の窒化物半導体光電極の製造方法は、基板の上に、導電性薄膜を形成する工程と、前記導電性薄膜の上に、多結晶窒化物半導体の前駆体を形成する工程と、前記基板と、前記導電性薄膜と、前記前駆体の積層体を、アンモニア流量5L/min以下の環境で熱処理して多結晶窒化物半導体薄膜を得る工程と、を有する。
 本発明によれば、窒化物半導体光電極の光電気化学的水分解反応の効率を向上させることができる。
図1は、本実施形態の窒化物半導体光電極の構成の一例を示す図である。 図2は、窒化物半導体光電極の製造方法の一例を示すフローチャートである。 図3は、酸化還元反応試験を行う装置の概要を示す図である。
 以下、本発明の実施の形態について図面を用いて説明する。なお、本発明は以下で説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において変更を加えても構わない。
 [半導体光電極の構成]
 図1は、本実施形態の半導体光電極(窒化物半導体光電極)の構成の一例を示す断面図である。本実施形態の半導体光電極は、太陽光などの光により酸化反応の触媒機能を発揮し、酸化ターゲット物質の化学反応を効率的に引き起こし、光照射下における材料の耐久性を向上させるものである。本実施形態の半導体光電極は、太陽エネルギー変換技術、燃料生成技術に属する。
 図1に示す半導体光電極は、基板1の上に形成された導電性薄膜2と、前記導電性薄膜2の上に形成された、格子歪0.35%以下の多結晶窒化物半導体薄膜3と、を有し、水溶液中で前記多結晶窒化物半導体薄膜3の表面に対向して光を照射することにより、酸化還元反応が生じる。
 基板1は、導電性の基板、または、絶縁性の基板であってもよい。基板1には、例えば、サファイア基板、GaN基板、ガラス基板、あるいはSi基板などの絶縁性または導電性の基板を用いることができる。後述する実施例では、サファイア基板を用いるが、GaN基板、ガラス基板、Si基板など他の絶縁性または導電性の基板を用いても同様の効果が得られる。
 導電性薄膜2には、n-GaN薄膜、ITO薄膜、FTO薄膜、カーボンナノチューブ薄膜などの導電性材料を用いても良い。
 本実施形態では、半導体薄膜として多結晶窒化物半導体薄膜3を用いる。多結晶窒化物半導体薄膜3は、窒化タンタル(Ta3N5)を含んでもよい。多結晶窒化物半導体薄膜3は、以下、半導体薄膜3ともいう。
 また、積層体(半導体薄膜3、導電性薄膜2および基板1)の半導体薄膜3側から光を照射し、基板1側の裏面に透過した光のエネルギーを有効活用することを考慮して、半導体薄膜3、導電性薄膜2および基板1の光透過率は、厚さ600 nm ~ 1800 nmの範囲で80%以上にすることが望ましい。
 [半導体光電極の製造方法]
 図2を参照し、図1の半導体光電極の製造方法の一例について説明する。
 工程1にて、導電性または絶縁性の基板1上に、導電性薄膜2を形成する。導電性薄膜2は、有機金属気相成長法(MOCVD)を用いて形成してよい。
 工程2にて、導電性薄膜2の上に、多結晶窒化物半導体薄膜3の前駆体を形成する。前駆体は、酸化タンタル(Ta2O5)を含んでもよい。
 工程3にて、工程1、2より得られた積層体(基板1、導電性薄膜2、前駆体)を、アンモニア流量5L/min以下の環境で熱処理して、多結晶窒化物半導体薄膜3を得る。多結晶窒化物半導体薄膜3は、窒化タンタル(Ta3N5)を含んでもよい。工程3では、前記積層体を、アンモニア流量2L/min以下の環境で熱処理することが好ましい。
 以上により、基板1の上に形成された導電性薄膜2と、導電性薄膜2の上に形成された多結晶窒化物半導体薄膜3とを有する半導体光電極を作製することができる。
 [実施例と比較例]
 以下、図1に示す本実施形態の半導体光電極を作製した実施例1、2について説明する。また、比較例1についても説明する。
 <実施例1>
 実施例1では、基板1にサファイア基板を、導電性薄膜2にn-GaN半導体薄膜を、半導体薄膜3に窒化タンタル(Ta3N5)薄膜を用いた。
 サファイア基板表面上に、n-GaN半導体薄膜をMOCVD法によりエピタキシャル成長させた。成長原料には、アンモニアガス、トリメチルガリウムを用い、成長炉内に送るキャリアガスには水素を用いた。n-GaNの膜厚は4μmとした。キャリア密度は4×1018 cm-3であった。
 その後、n-GaN半導体薄膜の上に、膜厚約500 nmの酸化タンタル(Ta2O5)薄膜を、スパッタリング成膜した。その後、窒化処理の工程として、得られた積層体にアンモニア(NH3)を流量2 L/minで流しながら800℃以上の高温で熱処理を行った。
 熱処理後の多結晶窒化物半導体薄膜についてXRD分析を実施したところ、Ta3N5結晶であることを同定した。Williamson-Hall法によりTa3N5薄膜の格子歪を測定したところ0.29%であった。Willianson-Hall法では、各ピークの半値幅をβ、ブラッグ角をθ(rad)入射X線波長をλ(nm)、結晶子の大きさをD(nm)、格子歪をεとしたとき、式(5)の関係を用いる。測定値βと測定条件値θ、λを用いて式(5)をプロットし、その傾きから格子歪εを得る。
Figure JPOXMLDOC01-appb-M000002
 <実施例2>
 実施例2の半導体光電極は、酸化タンタル(Ta2O5)薄膜の窒化処理の工程において、アンモニア(NH3)を流量5 L/minで流しながら800℃以上の高温で熱処理した。その他の条件は実施例1と同様である。形成後のTa3N5薄膜(多結晶窒化物半導体薄膜)についてXRD分析を実施し、Williamson-Hall法によりTa3N5薄膜の格子歪を測定したところ0.34%であった。
 <比較例1>
 比較例1の半導体光電極は、酸化タンタル(Ta2O5)薄膜の窒化処理の工程において、アンモニア(NH3)を流量10 L/minで流しながら800℃以上の高温で熱処理した。その他の条件は実施例1と同様である。形成後のTa3N5薄膜(多結晶窒化物半導体薄膜)についてXRD分析を実施し、Williamson-Hall法によりTa3N5薄膜の格子歪を測定したところ0.36%であった。
 <酸化還元反応試験>
 実施例1、2と、比較例1について、図3の装置を用いて酸化還元反応試験を行った。
 図3の装置は、酸化槽60と還元槽70とを備える。酸化槽60には、水溶液6が入れられ、酸化電極11が水溶液6中に入れられる。還元槽70には、水溶液7が入れられ、還元電極5が水溶液7中に入れられる。
 酸化槽60の水溶液6および還元槽70の水溶液7には、ともに1mol/lの水酸化カリウム水溶液を用いた。水溶液6として、水酸化カリウム水溶液以外に、水酸化ナトリウム水溶液、水酸化セシウム水溶液、水酸化ルビジウム水溶液、塩酸水溶液を用いてもよい。水溶液7として、水酸化カリウム水溶液以外に、水酸化ナトリウム水溶液、水酸化ルビジウム水溶液、水酸化セシウム水溶液、炭酸水素ナトリウム水溶液、炭酸水素カリウム水溶液、塩化カリウム水溶液、塩化ナトリウム水溶液を用いてもよい。
 酸化電極11には、試験対象の半導体光電極を用いた。具体的には、実施例1、2および比較対象例1の各半導体光電極について、Ta3N5薄膜をけがき、表面の一部に導線を接続し、インジウム(In)を用いてはんだ付けした。その後、インジウム表面が露出しないようにエポキシ樹脂で被覆したものを、図3の酸化電極11として設置した。
 還元電極5には、白金(ニラコ製)を用いた。還元電極5は、金属または金属化合物であればよい。電解質膜8には、ナフィオン(登録商標)を用いた。各反応槽において、窒素ガスを流し、反応槽内が窒素ガスに十分に置換された後、酸化電極11の試料面積を1 cm2とし、光源9を多結晶窒化物半導体薄膜3が露出した面に向くように固定した。
 光源9には、300 Wの高圧キセノンランプ(波長600nm以下の照度約34 mW/cm2)を用いて、酸化電極11(半導体光電極)に均一に光を照射した。光源9は、酸化電極11として設置する半導体光電極を構成する材料が吸収可能な波長の光を照射できればよい。光源9としては、例えば、キセノンランプ、擬似太陽光源、ハロゲンランプ、水銀ランプまたは太陽光などの光源を用いてもよいし、または、これらの光源を組み合わせてもよい。
 酸化電極11(半導体光電極)と還元電極5の間には、電源10を接続し、電圧2Vを印加した。電源10は、例えば商用電源、太陽電池、その他の再生可能エネルギー由来の電源を用いてもよいし、または、これらの電源を組み合わせてもよい。
 光照射1分後に酸化電極11-還元電極5間の光電流値を測定した。
 なお、実施例では目的生成物を水素としたが、還元電極5の金属(例えば、Ni、Fe、Au、Pt、Ag、Cu、In、Ti、Co、Ru)あるいはセル内の雰囲気を変えることで、二酸化炭素の還元反応による炭素化合物の生成、または、窒素の還元反応によるアンモニアの生成も可能である。
 <試験結果>
 実施例および比較例における、光照射から1分後の光電流密度および太陽光変換効率を、表1に示す。光電流密度および太陽光変換効率は、下記の式(6)、 (7)から算出した。ここで光電流密度をI(A/ cm、ファラデー定数F(C/mol)、反応電子数n、水素生成のギブスの自由エネルギー変化△GH2(kJ/mol)、与えた光エネルギーP(kJ/s cm2)である。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-T000004
 実施例1、2は比較例1に比べて、光照射から1分後の光電流値および太陽光変換効率が大きかった。光電流値と太陽光変換効率については、実施例1、2は比較例1のそれぞれ2.3倍、1.4倍であった。
 これは多結晶窒化タンタル薄膜の欠陥を少なくできたことで、多結晶窒化タンタル薄膜における電子と正孔の再結合確率を低くすることができたためと考える。実施例1、2のように格子歪が0.35%を下回るとより大きな効率向上の効果を得ることができる。太陽光変換効率が0.2%を超えることで、植物の光合成(効率約0.2%)よりも高効率に二酸化炭素を変換できる効果がある。
 以上説明したように、本実施形態の半導体光電極は、基板1の上に形成された導電性薄膜2と、 導電性薄膜2の上に形成された、格子歪0.35%以下の多結晶窒化物半導体薄膜3と、を有し、水溶液中で多結晶窒化物半導体薄膜3の表面に対向して光を照射することにより、酸化還元反応が生じる。
 また、本実施形態の半導体光電極の製造方法は、基板1の上に、導電性薄膜2を形成する工程と、導電性薄膜2の上に、多結晶窒化物半導体薄膜3の前駆体を形成する工程と、得られた積層体を、アンモニア流量5L/min以下の環境で熱処理して多結晶窒化物半導体薄膜3を得る工程と、を有する。
 本実施形態では、多結晶窒化物半導体薄膜3の窒化処理速度をアンモニア流量によって制御し、流量5L/min以下に速度を落とすことで格子歪が0.35%以下の多結晶状態の半導体薄膜を形成できる。これにより、光電気化学的水分解反応の効率を向上させることができる。
1 :基板
2 :導電性薄膜
3 :多孔質窒化物半導体薄膜(半導体薄膜)

Claims (6)

  1.  基板の上に形成された導電性薄膜と、
     前記導電性薄膜の上に形成された、格子歪0.35%以下の多結晶窒化物半導体薄膜と、を有し、
     水溶液中で前記多結晶窒化物半導体薄膜の表面に対向して光を照射することにより、酸化還元反応が生じる
     窒化物半導体光電極。
  2.  前記多結晶窒化物半導体薄膜は、窒化タンタル(Ta3N5)を含む
     請求項1に記載の窒化物半導体光電極。
  3.  基板の上に、導電性薄膜を形成する工程と、
     前記導電性薄膜の上に、多結晶窒化物半導体の前駆体を形成する工程と、
     前記基板と、前記導電性薄膜と、前記前駆体の積層体を、アンモニア流量5L/min以下の環境で熱処理して多結晶窒化物半導体薄膜を得る工程と、を有する
     窒化物半導体光電極の製造方法。
  4.  前記多結晶窒化物半導体薄膜を得る工程は、前記積層体を、アンモニア流量2L/min以下の環境で熱処理する
     請求項3に記載の窒化物半導体光電極の製造方法。
  5.  前記多結晶窒化物半導体薄膜は、窒化タンタル(Ta3N5)を含む
     請求項3または4に記載の窒化物半導体光電極の製造方法。
  6.  前記前駆体は、酸化タンタル(Ta2O5)を含む
     請求項3または4に記載の窒化物半導体光電極の製造方法。
PCT/JP2022/023463 2022-06-10 2022-06-10 窒化物半導体光電極およびその製造方法 WO2023238387A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023463 WO2023238387A1 (ja) 2022-06-10 2022-06-10 窒化物半導体光電極およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023463 WO2023238387A1 (ja) 2022-06-10 2022-06-10 窒化物半導体光電極およびその製造方法

Publications (1)

Publication Number Publication Date
WO2023238387A1 true WO2023238387A1 (ja) 2023-12-14

Family

ID=89117813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023463 WO2023238387A1 (ja) 2022-06-10 2022-06-10 窒化物半導体光電極およびその製造方法

Country Status (1)

Country Link
WO (1) WO2023238387A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062470A1 (fr) * 2001-02-07 2002-08-15 Japan Science And Technology Corporation Photocatalyseurs permettant de decomposer l'eau a l'aide de la lumiere visible
JP2006069804A (ja) * 2004-08-31 2006-03-16 Asahi Kasei Chemicals Corp メソポーラスオキシナイトライド化合物及び/またはメソポーラスナイトライド化合物
JP2007022858A (ja) * 2005-07-19 2007-02-01 Univ Of Tokyo 細孔構造を有する窒化物及びその製造方法
WO2012157193A1 (ja) * 2011-05-16 2012-11-22 パナソニック株式会社 光電極およびその製造方法、光電気化学セルおよびそれを用いたエネルギーシステム、並びに水素生成方法
WO2013133338A1 (ja) * 2012-03-08 2013-09-12 国立大学法人東京大学 光水分解反応用電極およびその製造方法
JP2018162188A (ja) * 2017-03-27 2018-10-18 太平洋セメント株式会社 窒化タンタルの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062470A1 (fr) * 2001-02-07 2002-08-15 Japan Science And Technology Corporation Photocatalyseurs permettant de decomposer l'eau a l'aide de la lumiere visible
JP2006069804A (ja) * 2004-08-31 2006-03-16 Asahi Kasei Chemicals Corp メソポーラスオキシナイトライド化合物及び/またはメソポーラスナイトライド化合物
JP2007022858A (ja) * 2005-07-19 2007-02-01 Univ Of Tokyo 細孔構造を有する窒化物及びその製造方法
WO2012157193A1 (ja) * 2011-05-16 2012-11-22 パナソニック株式会社 光電極およびその製造方法、光電気化学セルおよびそれを用いたエネルギーシステム、並びに水素生成方法
WO2013133338A1 (ja) * 2012-03-08 2013-09-12 国立大学法人東京大学 光水分解反応用電極およびその製造方法
JP2018162188A (ja) * 2017-03-27 2018-10-18 太平洋セメント株式会社 窒化タンタルの製造方法

Similar Documents

Publication Publication Date Title
Zhou et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting
Wang et al. Black TiO2 for solar hydrogen conversion
Dubale et al. Heterostructured Cu 2 O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction
WO2013031063A1 (ja) 二酸化炭素を還元する方法
JP5236124B1 (ja) 二酸化炭素を還元する方法
Hassan et al. Photoelectrochemical water splitting using post-transition metal oxides for hydrogen production: a review
Devi et al. Advancement in electrochemical, photocatalytic, and photoelectrochemical CO2 reduction: Recent progress in the role of oxygen vacancies in catalyst design
WO2014006864A1 (ja) アルコールを生成する方法
WO2020116151A1 (ja) 窒化物半導体光電極の製造方法
JP6715172B2 (ja) 半導体光電極の製造方法
Carminati et al. Challenges and prospects about the graphene role in the design of photoelectrodes for sunlight-driven water splitting
CN111036263B (zh) 一种Si衬底上InGaN纳米柱@Ti-Ni纳米粒子复合结构及其制备方法与应用
WO2023238387A1 (ja) 窒化物半導体光電極およびその製造方法
KR102218173B1 (ko) 광전기화학 전극, 이의 제조방법 및 이를 포함하는 광전기화학 셀
JP2018090862A (ja) 半導体光電極
CN110747506A (zh) 一种过渡金属掺杂的InxGa1-xN纳米柱及其制备方法与应用
WO2023238394A1 (ja) 窒化物半導体光電極
WO2020116153A1 (ja) 半導体光電極
JP6898566B2 (ja) 半導体光電極
WO2019230343A1 (ja) 半導体光電極
JP7343810B2 (ja) 窒化物半導体光電極の製造方法
WO2023089655A1 (ja) 半導体光電極
JP7356067B2 (ja) 二酸化炭素の気相還元装置、および、二酸化炭素の気相還元方法
WO2024116358A1 (ja) 半導体光電極
WO2023089656A1 (ja) 半導体光電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945886

Country of ref document: EP

Kind code of ref document: A1