WO2023089656A1 - 半導体光電極の製造方法 - Google Patents

半導体光電極の製造方法 Download PDF

Info

Publication number
WO2023089656A1
WO2023089656A1 PCT/JP2021/042044 JP2021042044W WO2023089656A1 WO 2023089656 A1 WO2023089656 A1 WO 2023089656A1 JP 2021042044 W JP2021042044 W JP 2021042044W WO 2023089656 A1 WO2023089656 A1 WO 2023089656A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
semiconductor thin
semiconductor
photoelectrode
oxidation
Prior art date
Application number
PCT/JP2021/042044
Other languages
English (en)
French (fr)
Inventor
裕也 渦巻
紗弓 里
晃洋 鴻野
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/042044 priority Critical patent/WO2023089656A1/ja
Publication of WO2023089656A1 publication Critical patent/WO2023089656A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form

Definitions

  • the present invention relates to a method for manufacturing a semiconductor photoelectrode.
  • a device that generates hydrogen by a water splitting reaction using a semiconductor photoelectrode has an oxidation tank and a reduction tank that are connected via a proton exchange membrane. and a reduction electrode.
  • the oxidation electrode and the reduction electrode are electrically connected by a conducting wire.
  • the water splitting reaction using a photocatalyst consists of a water oxidation reaction and a proton reduction reaction.
  • an n-type photocatalyst material is irradiated with light, electrons and holes are generated and separated in the photocatalyst.
  • the holes move to the surface of the photocatalytic material and contribute to the water oxidation reaction.
  • the electrons move to the reduction electrode and contribute to the proton reduction reaction.
  • such oxidation-reduction reactions proceed and water-splitting reactions occur.
  • the oxide electrode is a semiconductor thin film, such as a gallium nitride (GaN) thin film grown on a sapphire substrate, gallium nitride, gallium nitride, and aluminum gallium nitride (AlGaN), or gallium nitride and indium gallium nitride (InGaN) on a sapphire substrate.
  • GaN gallium nitride
  • AlGaN aluminum gallium nitride
  • InGaN indium gallium nitride
  • a NiO layer for example, is formed as a catalyst material on the semiconductor surface for the purpose of promoting the oxygen generation reaction and suppressing the etching reaction.
  • NiO is formed by undergoing an oxidation process by heat treatment.
  • the present invention has been made in view of the above, and an object of the present invention is to improve the life of the light energy conversion efficiency of a semiconductor photoelectrode.
  • a method for manufacturing a semiconductor photoelectrode according to one aspect of the present invention comprises the steps of: forming a semiconductor thin film on an insulating or conductive substrate; roughening the surface of the semiconductor thin film; and heat-treating the semiconductor thin film on which the metal layer is formed.
  • the lifetime of the light energy conversion efficiency of the semiconductor photoelectrode can be improved.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the semiconductor photoelectrode of this embodiment.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of the semiconductor photoelectrode of this embodiment.
  • FIG. 3 is a flow chart showing an example of a method for manufacturing the semiconductor photoelectrode of FIG.
  • FIG. 4 is a flow chart showing an example of a method for manufacturing the semiconductor photoelectrode of FIG.
  • FIG. 5 is a diagram showing an outline of an apparatus for conducting an oxidation-reduction reaction test.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the semiconductor photoelectrode of this embodiment.
  • the semiconductor photoelectrode shown in FIG. 1 comprises an insulating or conductive substrate 11 , a semiconductor thin film 12 arranged on the substrate 11 , and a catalyst layer 13 arranged on the semiconductor thin film 12 .
  • the catalyst layer 13 By forming the catalyst layer 13 on the surface-roughened semiconductor thin film 12, the length of the interface between the semiconductor thin film 12 and the catalyst layer 13 is increased and the adhesion is improved.
  • an insulating or conductive substrate such as a GaN substrate, a sapphire substrate, a glass substrate, or a Si substrate is used.
  • Gallium nitride, aluminum gallium nitride, or indium gallium nitride is used for the semiconductor thin film 12 .
  • the semiconductor thin film 12 may include metal oxides such as titanium oxide (TiO 2 ) and tungsten oxide (WO 3 ) having photocatalytic functions, or compound semiconductors such as tantalum nitride (Ta 3 N 5 ) and cadmium sulfide (CdS). may be used.
  • the catalyst layer 13 uses one or more metals selected from Ni, Co, Cu, W, Ta, Pd, Ru, Fe, Zn, and Nb, or oxides made of metals.
  • the film thickness of the catalyst layer 13 is desirably 1 nm to 10 nm, particularly 1 nm to 3 nm through which light can be sufficiently transmitted.
  • the catalyst layer 13 may cover only part of the surface of the semiconductor thin film 12 .
  • a second semiconductor thin film 14 may be provided between the semiconductor thin film 12 and the catalyst layer 13 .
  • the surface of the second semiconductor thin film 14 is roughened. That is, the semiconductor photoelectrode of FIG. 2 has the catalyst layer 13 on the second semiconductor thin film 14 having a roughened surface.
  • the catalyst layer 13 may cover only part of the surface of the second semiconductor thin film 14 .
  • a semiconductor thin film 12 is formed on an insulating or conductive substrate 11 .
  • the semiconductor thin film 12 may be formed using metal organic chemical vapor deposition (MOCVD).
  • step 2 the surface of the semiconductor thin film 12 is roughened.
  • the method of roughening the semiconductor thin film 12 may be dry etching such as plasma etching, ion etching, ion beam etching, or electron cyclone resonance etching.
  • a metal layer that will form the catalyst layer 13 is formed on the semiconductor thin film 12 .
  • the metal layer may be formed by vacuum-depositing a metal on the surface of the semiconductor thin film 12 .
  • step 4 the semiconductor thin film on which the metal layer is formed is heat-treated.
  • the method for manufacturing the semiconductor photoelectrode shown in FIG. 4 is obtained by adding a step of forming a second semiconductor thin film to the method for manufacturing the semiconductor photoelectrode shown in FIG.
  • a semiconductor thin film 12 is formed on an insulating or conductive substrate 11 in step 1-1.
  • a second semiconductor thin film 14 is formed on the semiconductor thin film 12 in step 1-2.
  • the second semiconductor thin film 14 may be formed using the MOCVD method.
  • step 2 the surface of the second semiconductor thin film 14 is roughened.
  • step 3 a metal layer that will form the catalyst layer 13 is formed on the second semiconductor thin film 14 .
  • step 4 the semiconductor thin film on which the metal layer is formed is heat-treated.
  • Example 1 The semiconductor photoelectrode of Example 1 was produced using the production method shown in FIG.
  • step 1 an n-GaN semiconductor thin film was epitaxially grown on a GaN substrate by MOCVD.
  • Ammonia gas and trimethylgallium were used as growth raw materials, and hydrogen was used as a carrier gas sent into the growth furnace.
  • Si was used as a dopant element.
  • the film thickness of n-GaN was set to 2 ⁇ m.
  • Carrier density was 3 ⁇ 10 18 cm ⁇ 3 .
  • step 2 the surface of the n-GaN semiconductor thin film was roughened by dry etching (plasma etching). At this time, a mixed gas of CF4 and Ar was used as an etching gas. The pressure inside the etching chamber was 1 Pa. When the surface roughness Ra of the semiconductor surface was measured by AFM, it was confirmed that the surface roughness Ra of 0.1 nm was increased to about 1 nm.
  • step 3 Ni with a film thickness of about 1 nm was vacuum-deposited on the roughened surface of the n-GaN semiconductor thin film.
  • step 4 the semiconductor thin film on which the Ni layer was formed was heat-treated in the air at 300°C for 1 hour to form a NiO layer.
  • TEM observation of the cross section of the sample revealed that the NiO film thickness was 2 nm.
  • the semiconductor photoelectrode of Example 1 was obtained through the above steps.
  • Example 2 The semiconductor photoelectrode of Example 2 was produced using the production method of FIG.
  • step 1-1 an n-GaN semiconductor thin film was epitaxially grown on the GaN substrate by MOCVD.
  • Ammonia gas and trimethylgallium were used as growth raw materials, and hydrogen was used as a carrier gas sent into the growth furnace.
  • Si was used as a dopant element.
  • the film thickness of n-GaN was set to 2 ⁇ m.
  • Carrier density was 3 ⁇ 10 18 cm ⁇ 3 .
  • step 1-2 an Al 0.1 Ga 0.9 N semiconductor thin film was epitaxially grown on the n-GaN semiconductor thin film by MOCVD.
  • Ammonia gas, trimethylgallium, and trimethylaluminum were used as growth raw materials, and hydrogen was used as a carrier gas sent into the growth furnace.
  • step 2 the surface of the AlGaN semiconductor thin film was roughened by dry etching (plasma etching). At this time, a mixed gas of CF4 and Ar was used as an etching gas. The pressure inside the etching chamber was 1 Pa. When the surface roughness Ra of the semiconductor surface was measured by AFM, it was confirmed that the surface roughness Ra of 0.2 nm was roughened to about 1 nm.
  • step 3 Ni with a film thickness of about 1 nm was vacuum-deposited on the AlGaN semiconductor thin film.
  • step 4 the semiconductor thin film on which the Ni layer was formed was heat-treated in the air at 300°C for 1 hour to form a NiO layer.
  • TEM observation of the cross section of the sample revealed that the NiO film thickness was 2 nm.
  • the semiconductor photoelectrode of Example 2 was obtained through the above steps.
  • Example 3 The semiconductor photoelectrode of Example 3 was produced using the production method of FIG.
  • the second semiconductor thin film 14 is different from the second embodiment.
  • step 1-1 an n-GaN semiconductor thin film was epitaxially grown on the GaN substrate by MOCVD.
  • Ammonia gas and trimethylgallium were used as growth raw materials, and hydrogen was used as a carrier gas sent into the growth furnace.
  • Si was used as a dopant element.
  • the film thickness of n-GaN was set to 2 ⁇ m.
  • Carrier density was 3 ⁇ 10 18 cm ⁇ 3 .
  • step 1-2 an In 0.05 Ga 0.95 N semiconductor thin film was epitaxially grown on the n-GaN semiconductor thin film by MOCVD.
  • Ammonia gas, trimethylgallium, and trimethylindium were used as growth raw materials, and hydrogen was used as a carrier gas sent into the growth furnace.
  • step 2 the surface of the InGaN semiconductor thin film was roughened by dry etching (plasma etching). At this time, a mixed gas of CF4 and Ar was used as an etching gas. The pressure inside the etching chamber was 1 Pa. When the surface roughness Ra of the semiconductor surface was measured by AFM, it was confirmed that the surface roughness Ra of 0.2 nm was roughened to about 1 nm.
  • step 3 Ni with a film thickness of about 1 nm was vacuum-deposited on the InGaN semiconductor thin film.
  • step 4 the semiconductor thin film on which the Ni layer was formed was heat-treated in the air at 300°C for 1 hour to form a NiO layer.
  • TEM observation of the cross section of the sample revealed that the NiO film thickness was 2 nm.
  • the semiconductor photoelectrode of Example 3 was obtained through the above steps.
  • Comparative Example 1 The semiconductor photoelectrode of Comparative Example 1 differs from that of Example 1 in that the NiO layer was formed without the roughening step. Other points are the same as the first embodiment.
  • Comparative Example 2 The semiconductor photoelectrode of Comparative Example 2 differs from that of Example 2 in that the NiO layer was formed without the roughening step. Other points are the same as the second embodiment.
  • Comparative Example 3 The semiconductor photoelectrode of Comparative Example 3 differs from that of Example 3 in that the NiO layer was formed without the roughening step. Other points are the same as those of the third embodiment.
  • the apparatus in FIG. 5 includes an oxidation tank 110 and a reduction tank 120.
  • the oxidation tank 110 contains an aqueous solution 111 and an oxidation electrode 112 is contained in the aqueous solution 111 .
  • An aqueous solution 121 is placed in the reduction tank 120 , and a reduction electrode 122 is placed in the aqueous solution 121 .
  • a 1 mol/l sodium hydroxide aqueous solution was used as the aqueous solution 111 in the oxidation tank 110 .
  • a potassium hydroxide aqueous solution or hydrochloric acid may be used as the aqueous solution 111.
  • a semiconductor photoelectrode to be tested was used as the oxidation electrode 112 .
  • the n-GaN surface was scribed, a conductive wire was connected to a portion of the surface, and soldered using indium.
  • An oxidation electrode 112 covered with an epoxy resin was installed so as not to be exposed.
  • a 0.5 mol/l potassium hydrogen carbonate aqueous solution was used as the aqueous solution 121 in the reduction tank 120 .
  • a sodium bicarbonate aqueous solution, a potassium chloride aqueous solution, or a sodium chloride aqueous solution may be used.
  • the reduction electrode 122 may be any metal or metal compound. Nickel, iron, gold, silver, copper, indium, or titanium, for example, may be used as the reduction electrode 122 .
  • the oxidation tank 110 and the reduction tank 120 are connected via the proton membrane 130 .
  • Protons generated in the oxidation tank 110 diffuse through the proton membrane 130 to the reduction tank 120 .
  • Nafion (registered trademark) was used for the proton membrane 130 .
  • Nafion is a perfluorocarbon material composed of a hydrophobic Teflon skeleton composed of carbon-fluorine and a perfluoro side chain having a sulfonic acid group.
  • the oxidation electrode 112 and the reduction electrode 122 are electrically connected by a conducting wire 132 , and electrons move from the oxidation electrode 112 to the reduction electrode 122 .
  • a 300 W high pressure xenon lamp (illuminance 5 mW/cm 2 ) was used as the light source 140 .
  • the light source 140 may irradiate light having a wavelength that can be absorbed by the material forming the semiconductor photoelectrode provided as the oxidation electrode 112 .
  • the wavelength that the oxide electrode 112 can absorb is 365 nm or less.
  • a light source such as a xenon lamp, a mercury lamp, a halogen lamp, a pseudo-sunlight light source, or sunlight may be used, or a combination of these light sources may be used.
  • the light source 140 is fixed so as to face the NiO-formed surface of the semiconductor photoelectrode to be tested, which is installed as the oxidation electrode 112, and the semiconductor photoelectrode is uniformly exposed to the light. irradiated with light.
  • Table 1 shows the amount of oxygen/hydrogen gas generated with respect to the light irradiation time in Examples 1 to 3 and Comparative Examples 1 to 3. The amount of each gas produced is shown as normalized by the surface area of the semiconductor photoelectrode. In all cases, it was found that oxygen and hydrogen were generated during light irradiation.
  • Example 1 the production amount immediately after light irradiation is not significantly different from that in Comparative Example 1, but when comparing the production amounts after 50 hours and 100 hours from light irradiation, Example 1 is compared to Comparative Example 1. Therefore, it was found that the degree of decrease in the production amount was small and the service life was extended. It is considered that this is because good adhesion can be maintained for a long period of time due to an increase in the interface length at the interface between the semiconductor and NiO.
  • the method for manufacturing a semiconductor photoelectrode includes the steps of forming the semiconductor thin film 12 on the insulating or conductive substrate 11, roughening the surface of the semiconductor thin film 12, A step of forming a metal layer on the roughened surface of the thin film 12; The adhesion of the interface is improved. Thereby, the lifetime of the light energy conversion efficiency of the semiconductor photoelectrode can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

絶縁性または導電性の基板11上に半導体薄膜12を形成する工程と、半導体薄膜12の表面を粗化する工程と、半導体薄膜12の粗化された表面に金属層を形成する工程と、金属層を形成した半導体薄膜12を熱処理する工程を有する半導体光電極の製造方法である。

Description

半導体光電極の製造方法
 本発明は、半導体光電極の製造方法に関する。
 半導体光電極を用いた水の分解反応により水素を生成する装置は、プロトン交換膜を介してつながっている酸化槽と還元槽を有し、酸化槽に水溶液と酸化電極を入れ、還元槽に水溶液と還元電極を入れる。酸化電極と還元電極とは導線で電気的に接続される。
 光触媒を用いた水の分解反応は、水の酸化反応とプロトンの還元反応からなる。n型の光触媒材料に光を照射すると、光触媒中で電子と正孔が生成分離する。正孔は光触媒材料の表面に移動し、水の酸化反応に寄与する。一方、電子は還元電極に移動し、プロトンの還元反応に寄与する。理想的には、このような酸化還元反応が進行し、水分解反応が生じる。
 酸化反応:2H2O+4h+→O2+4H+
 還元反応:4H++4e-→2H2
S. Yotsuhashi, et al., "CO2 Conversion with Light and Water by GaN Photoelectrode", Japanese Journal of Applied Physics, The Japan Society of Applied Physics, 2012, Volume 51, pp. 02BP07-1-02BP07-3
 酸化電極は半導体薄膜であり、例えば、サファイア基板上に成長した窒化ガリウム(GaN)薄膜、サファイア基板上に窒化ガリウムと窒化ガリウムと窒化アルミニウムガリウム(AlGaN)または窒化ガリウムと窒化インジウムガリウム(InGaN)等を積層したヘテロ構造が用いられる。水溶液中で窒化ガリウム系薄膜に光を照射すると薄膜の表面で酸素が発生する。一方、次式に示すとおり、窒化ガリウムと正孔が直接的に反応するエッチング反応により、目的とする水の酸化反応場が失われて、活性が低下するという問題があった。
 エッチング反応:2GaN+6h++3H2O→N2+6H++Ga23
 酸素生成反応を促進し、かつ、エッチング反応を抑制することを目的として、半導体表面上に触媒材料として例えばNiO層を形成する。半導体表面上にNiO層を形成する際、半導体表面上に金属Ni薄膜を形成したのち、熱処理による酸化工程を経ることで、NiOを形成していた。
 しかしながら、目的の反応が進行するにつれ、半導体と触媒層の界面では剥離が進行し、触媒の機能が失活すること、および半導体の劣化が進み、期待する触媒層の活性やエッチング反応抑制効果が損なわれるという問題があった。
 本発明は、上記に鑑みてなされたものであり、半導体光電極の光エネルギー変換効率の寿命を向上することを目的とする。
 本発明の一態様の半導体光電極の製造方法は、絶縁性または導電性の基板上に半導体薄膜を形成する工程と、前記半導体薄膜の表面を粗化する工程と、前記半導体薄膜の粗化された表面に金属層を形成する工程と、前記金属層を形成した半導体薄膜を熱処理する工程と、を有する。
 本発明によれば、半導体光電極の光エネルギー変換効率の寿命を向上できる。
図1は、本実施形態の半導体光電極の構成の一例を示す断面図である。 図2は、本実施形態の半導体光電極の構成の一例を示す断面図である。 図3は、図1の半導体光電極の製造方法の一例を示すフローチャートである。 図4は、図2の半導体光電極の製造方法の一例を示すフローチャートである。 図5は、酸化還元反応試験を行う装置の概要を示す図である。
 以下、本発明の実施の形態について図面を用いて説明する。なお、本発明は以下で説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において変更を加えても構わない。
 [半導体光電極の構成]
 図1は、本実施形態の半導体光電極の構成の一例を示す断面図である。図1に示す半導体光電極は、絶縁性または導電性の基板11、基板11上に配置された半導体薄膜12、半導体薄膜12上に配置された触媒層13を備える。表面が粗化された半導体薄膜12上に触媒層13を形成することで半導体薄膜12と触媒層13界面の界面長を増加し、密着性を向上させている。
 基板11には、GaN基板、サファイア基板、ガラス基板、あるいはSi基板などの絶縁性または導電性の基板を用いる。
 半導体薄膜12には、窒化ガリウム、窒化アルミニウムガリウム、または窒化インジウムガリウムを用いる。あるいは、半導体薄膜12には、光触媒機能を有する酸化チタン(TiO2)、酸化タングステン(WO3)等の金属酸化物、もしくは窒化タンタル(Ta35)、硫化カドミウム(CdS)等の化合物半導体を用いてもよい。
 触媒層13には、Ni、Co、Cu、W、Ta、Pd、Ru、Fe、Zn、Nbのうち1種類以上の金属あるいは金属からなる酸化物を用いる。触媒層13の膜厚は、1nmから10nm、特に、光を十分に透過することができる1nmから3nmが望ましい。触媒層13は半導体薄膜12の表面の一部のみを被覆してもよい。
 また、図2に示すように、半導体薄膜12と触媒層13の間に、第2の半導体薄膜14を備えてもよい。第2の半導体薄膜14の表面が粗化される。つまり、図2の半導体光電極は、表面が粗化された第2の半導体薄膜14上に触媒層13を備える。触媒層13は第2の半導体薄膜14の表面の一部のみを被覆してもよい。
 [半導体光電極の製造方法]
 図3を参照し、図1の半導体光電極の製造方法の一例について説明する。
 工程1にて、絶縁性または導電性の基板11上に半導体薄膜12を形成する。半導体薄膜12は、有機金属気相成長法(MOCVD)を用いて形成してよい。
 工程2にて、半導体薄膜12の表面を粗化する。半導体薄膜12の粗化手法は、プラズマエッチング、イオンエッチング、イオンビームエッチング、電子サイクロン共鳴エッチングなど、ドライエッチングであればよい。
 工程3にて、触媒層13のもととなる金属層を半導体薄膜12上に形成する。金属層は、半導体薄膜12の表面に金属を真空蒸着して形成してよい。
 工程4にて、金属層を形成した半導体薄膜を熱処理する。
 図4を参照し、図2の半導体光電極の製造方法の一例について説明する。図4の半導体光電極の製造方法は、図3の半導体光電極の製造方法に、第2の半導体薄膜を形成する工程を追加したものである。
 工程1-1にて、絶縁性または導電性の基板11上に半導体薄膜12を形成する。
 工程1-2にて、半導体薄膜12上に第2の半導体薄膜14を形成する。第2の半導体薄膜14は、MOCVD法を用いて形成してよい。
 工程2にて、第2の半導体薄膜14の表面を粗化する。
 工程3にて、触媒層13のもととなる金属層を第2の半導体薄膜14上に形成する。
 工程4にて、金属層を形成した半導体薄膜を熱処理する。
 [実施例と比較対象例の作製]
 以下、本実施形態の半導体光電極を作製した実施例1から3について説明する。また、金属層を熱処理して触媒層を形成した比較対象例1から3についても説明する。
 <実施例1>
 実施例1の半導体光電極は図3の製造方法を用いて作製した。
 工程1にて、GaN基板上に、n-GaN半導体薄膜をMOCVD法によりエピタキシャル成長させた。成長原料には、アンモニアガス、トリメチルガリウムを用い、成長炉内に送るキャリアガスには水素を用いた。ドーパント元素としてSiを用いた。n-GaNの膜厚は2μmとした。キャリア密度は3×1018cm-3であった。
 工程2にて、ドライエッチング(プラズマエッチング)により、n-GaN半導体薄膜の表面を粗化した。このとき、エッチング用のガスとして、CF4とArの混合ガスを用いた。エッチングのチャンバ内圧力は1Paとした。AFMにより半導体表面の表面粗さRaを測定すると、0.1nmだったものが、約1nmまで粗化されたことを確認した。
 工程3にて、n-GaN半導体薄膜の粗化した表面上に、膜厚約1nmのNiを真空蒸着した。
 工程4にて、Ni層を形成した半導体薄膜を、空気中で1時間、300℃で熱処理し、NiO層を形成した。試料断面をTEM観察すると、NiOの膜厚は2nmであった。
 以上の工程により、実施例1の半導体光電極を得た。
 <実施例2>
 実施例2の半導体光電極は図4の製造方法を用いて作製した。
 工程1-1にて、GaN基板上に、n-GaN半導体薄膜をMOCVD法によりエピタキシャル成長させた。成長原料には、アンモニアガス、トリメチルガリウムを用い、成長炉内に送るキャリアガスには水素を用いた。ドーパント元素としてSiを用いた。n-GaNの膜厚は2μmとした。キャリア密度は3×1018cm-3であった。
 工程1-2にて、n-GaN半導体薄膜上に、Al0.1Ga0.9N半導体薄膜をMOCVD法によりエピタキシャル成長させた。成長原料には、アンモニアガス、トリメチルガリウム、トリメチルアルミニウムを用い、成長炉内に送るキャリアガスには水素を用いた。
 工程2にて、ドライエッチング(プラズマエッチング)により、AlGaN半導体薄膜の表面を粗化した。このとき、エッチング用のガスとして、CF4とArの混合ガスを用いた。エッチングのチャンバ内圧力は1Paとした。AFMにより半導体表面の表面粗さRaを測定すると、0.2nmだったものが、約1nmまで粗化されたことを確認した。
 工程3にて、AlGaN半導体薄膜上に、膜厚約1nmのNiを真空蒸着した。
 工程4にて、Ni層を形成した半導体薄膜を、空気中で300℃、1時間熱処理し、NiO層を形成した。試料断面をTEM観察すると、NiOの膜厚は2nmであった。
 以上の工程により、実施例2の半導体光電極を得た。
 <実施例3>
 実施例3の半導体光電極は図4の製造方法を用いて作製した。実施例2とは、第2の半導体薄膜14が異なる。
 工程1-1にて、GaN基板上に、n-GaN半導体薄膜をMOCVD法によりエピタキシャル成長させた。成長原料には、アンモニアガス、トリメチルガリウムを用い、成長炉内に送るキャリアガスには水素を用いた。ドーパント元素としてSiを用いた。n-GaNの膜厚は2μmとした。キャリア密度は3×1018cm-3であった。
 工程1-2にて、n-GaN半導体薄膜上に、In0.05Ga0.95N半導体薄膜をMOCVD法によりエピタキシャル成長させた。成長原料には、アンモニアガス、トリメチルガリウム、トリメチルインジウムを用い、成長炉内に送るキャリアガスには水素を用いた。
 工程2にて、ドライエッチング(プラズマエッチング)により、InGaN半導体薄膜の表面を粗化した。このとき、エッチング用のガスとして、CF4とArの混合ガスを用いた。エッチングのチャンバ内圧力は1Paとした。AFMにより半導体表面の表面粗さRaを測定すると、0.2nmだったものが、約1nmまで粗化されたことを確認した。
 工程3にて、InGaN半導体薄膜上に、膜厚約1nmのNiを真空蒸着した。
 工程4にて、Ni層を形成した半導体薄膜を、空気中で300℃、1時間熱処理し、NiO層を形成した。試料断面をTEM観察すると、NiOの膜厚は2nmであった。
 以上の工程により、実施例3の半導体光電極を得た。
 <比較対象例1>
 比較対象例1の半導体光電極は、実施例1と比較して、粗化工程を介さず、NiO層を形成した点で相違する。その他の点においては実施例1と同様である。
 <比較対象例2>
 比較対象例2の半導体光電極は、実施例2と比較して、粗化工程を介さず、NiO層を形成した点で相違する。その他の点においては実施例2と同様である。
 <比較対象例3>
 比較対象例3の半導体光電極は、実施例3と比較して、粗化工程を介さず、NiO層を形成した点で相違する。その他の点においては実施例3と同様である。
 [酸化還元反応試験]
 実施例1から3と比較対象例1から3について図5の装置を用いて酸化還元反応試験を行った。
 図5の装置は、酸化槽110と還元槽120を備える。酸化槽110には、水溶液111が入れられ、酸化電極112が水溶液111中に入れられる。還元槽120には、水溶液121が入れられ、還元電極122が水溶液121中に入れられる。
 酸化槽110の水溶液111には、1mol/lの水酸化ナトリウム水溶液を用いた。水溶液111として、水酸化カリウム水溶液または塩酸を用いてもよい。
 酸化電極112には、試験対象の半導体光電極を用いた。具体的には、実施例1から3および比較対象例1から3のそれぞれについて、n-GaN表面をけがき、表面の一部に導線を接続し、インジウムを用いてはんだ付けし、インジウム表面が露出しないようにエポキシ樹脂で被覆したものを酸化電極112として設置した。
 還元槽120の水溶液121には、0.5mol/lの炭酸水素カリウム水溶液を用いた。水溶液121として、炭酸水素ナトリウム水溶液、塩化カリウム水溶液、または塩化ナトリウム水溶液を用いてもよい。
 還元電極122には白金(ニラコ製)を用いた。還元電極122は金属または金属化合物であればよい。還元電極122として、例えば、ニッケル、鉄、金、銀、銅、インジウム、またはチタンを用いてもよい。
 酸化槽110と還元槽120はプロトン膜130を介して繋がっている。酸化槽110で生成したプロトンはプロトン膜130を介して還元槽120へ拡散する。プロトン膜130には、ナフィオン(登録商標)を用いた。ナフィオンは、炭素-フッ素からなる疎水性テフロン骨格とスルホン酸基を持つパーフルオロ側鎖から構成されるパーフルオロカーボン材料である。
 酸化電極112と還元電極122は導線132で電気的に接続されており、酸化電極112から還元電極122へ電子が移動する。
 光源140として、300Wの高圧キセノンランプ(照度5mW/cm2)を用いた。光源140は、酸化電極112として設置する半導体光電極を構成する材料が吸収可能な波長の光を照射できればよい。例えば、酸化電極112が窒化ガリウムで構成される場合、酸化電極112が吸収可能な波長は365nm以下の波長である。光源140としては、キセノンランプ、水銀ランプ、ハロゲンランプ、疑似太陽光源、または太陽光などの光源を用いてもよいし、これらの光源を組み合わせてもよい。
 酸化還元反応試験では、各反応槽において窒素ガスを10ml/minで流し、試料面積を1cm2とし、撹拌子とスターラーを用いて250rpmの回転速度で各反応槽の底の中心位置で水溶液111,121を攪拌した。
 反応槽内が窒素ガスに十分に置換された後、光源140を酸化電極112として設置した試験対象の半導体光電極のNiOが形成されている面を向くように固定し、半導体光電極に均一に光を照射した。
 光照射直後、50時間後、および100時間後に、各反応槽内のガスを採取し、ガスクロマトグラフにて反応生成物を分析した。その結果、酸化槽110では酸素が、還元槽120では水素が生成していることを確認した。
 なお、実施例では目的生成物を水素としたが、還元電極の金属(例えば、Ni、Fe、Au、Pt、Ag、Cu、In、Ti、Co、Ru)あるいはセル内の雰囲気を変えることで、二酸化炭素の還元反応による炭素化合物の生成、または窒素の還元反応によるアンモニアの生成も可能である。
 [試験結果]
 実施例1から3および比較対象例1から3における、光照射時間に対する酸素・水素ガスの生成量を表1に示す。各ガスの生成量は、半導体光電極の表面積で規格化して示した。どの例でも光照射時に、酸素と水素が生成していることがわかった。
Figure JPOXMLDOC01-appb-T000001
 実施例1は比較対象例1に比べて、光照射直後の生成量は大きく変わらないものの、光照射から50時間、100時間後の生成量を比較すると、実施例1は比較対象例1に比べて、生成量の低下度は小さく、長寿命化されていることが分かった。これは、半導体とNiO界面においてその界面長が増えたことにより、良好な密着性を長時間維持できたためと考える。
 実施例2,3および比較対象例2,3についても同様の結果であった。
 以上説明したように、本実施形態の半導体光電極の製造方法は、絶縁性または導電性の基板11上に半導体薄膜12を形成する工程と、半導体薄膜12の表面を粗化する工程と、半導体薄膜12の粗化された表面に金属層を形成する工程と、金属層を形成した半導体薄膜12を熱処理する工程を有する半導体薄膜の表面をドライエッチングで粗化することで、半導体薄膜と触媒層界面の密着性が向上する。これにより、半導体光電極の光エネルギー変換効率の寿命を向上できる。
 11 基板
 12 半導体薄膜
 13 触媒層
 14 半導体薄膜

Claims (2)

  1.  絶縁性または導電性の基板上に半導体薄膜を形成する工程と、
     前記半導体薄膜の表面を粗化する工程と、
     前記半導体薄膜の粗化された表面に金属層を形成する工程と、
     前記金属層を形成した半導体薄膜を熱処理する工程と、を有する
     半導体光電極の製造方法。
  2.  請求項1に記載の半導体光電極の製造方法であって、
     前記半導体薄膜の表面に第2の半導体薄膜を形成する工程を有し、
     前記表面を粗化する工程では、前記第2の半導体薄膜の表面を粗化し、
     前記金属層を形成する工程では、前記第2の半導体薄膜の粗化された表面に前記金属層を形成する
     半導体光電極の製造方法。
PCT/JP2021/042044 2021-11-16 2021-11-16 半導体光電極の製造方法 WO2023089656A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042044 WO2023089656A1 (ja) 2021-11-16 2021-11-16 半導体光電極の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042044 WO2023089656A1 (ja) 2021-11-16 2021-11-16 半導体光電極の製造方法

Publications (1)

Publication Number Publication Date
WO2023089656A1 true WO2023089656A1 (ja) 2023-05-25

Family

ID=86396385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042044 WO2023089656A1 (ja) 2021-11-16 2021-11-16 半導体光電極の製造方法

Country Status (1)

Country Link
WO (1) WO2023089656A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263770A (ja) * 2008-03-31 2009-11-12 Permelec Electrode Ltd 電解用電極の製造方法
JP2015086420A (ja) * 2013-10-29 2015-05-07 国立大学法人横浜国立大学 アルカリ水電解用陽極
WO2016076106A1 (ja) * 2014-11-12 2016-05-19 富士フイルム株式会社 水素発生電極
JP2018204044A (ja) * 2017-05-30 2018-12-27 日本電信電話株式会社 半導体電極とその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263770A (ja) * 2008-03-31 2009-11-12 Permelec Electrode Ltd 電解用電極の製造方法
JP2015086420A (ja) * 2013-10-29 2015-05-07 国立大学法人横浜国立大学 アルカリ水電解用陽極
WO2016076106A1 (ja) * 2014-11-12 2016-05-19 富士フイルム株式会社 水素発生電極
JP2018204044A (ja) * 2017-05-30 2018-12-27 日本電信電話株式会社 半導体電極とその製造方法

Similar Documents

Publication Publication Date Title
Jang et al. Metal‐Free Artificial Photosynthesis of Carbon Monoxide Using N‐Doped ZnTe Nanorod Photocathode Decorated with N‐Doped Carbon Electrocatalyst Layer
JP5236124B1 (ja) 二酸化炭素を還元する方法
US9551077B2 (en) Photoelectrode used for carbon dioxide reduction and method for reducing carbon dioxide using the photoelectrode
US9157158B2 (en) Method for producing alcohol
WO2020116151A1 (ja) 窒化物半導体光電極の製造方法
EP1944083A1 (en) Group iii/v nitride semiconductor, photocatalyst semiconductor element, photocatalytic redox reaction apparatus, and photoelectrochemical reaction execution method
JP6715172B2 (ja) 半導体光電極の製造方法
JP2018204044A (ja) 半導体電極とその製造方法
JP5742597B2 (ja) 水素を生成する方法
JP2018090862A (ja) 半導体光電極
WO2023089656A1 (ja) 半導体光電極の製造方法
WO2023089654A1 (ja) 半導体光電極の製造方法
WO2020116153A1 (ja) 半導体光電極
JP6898566B2 (ja) 半導体光電極
US20230392269A1 (en) Semiconductor Photoelectrode and Method for Manufacturing Same
US20240044022A1 (en) Semiconductor Photoelectrode and Method for Manufacturing Same
JP2015050224A (ja) Iii−v族窒化物半導体、半導体発光素子、半導体発光装置、光触媒半導体素子、光触媒酸化還元反応装置および光電気化学反応実行方法
WO2023089655A1 (ja) 半導体光電極
US20210123150A1 (en) Semiconductor Photoelectrode
JP7343810B2 (ja) 窒化物半導体光電極の製造方法
WO2024116358A1 (ja) 半導体光電極
WO2023238394A1 (ja) 窒化物半導体光電極
WO2023238387A1 (ja) 窒化物半導体光電極およびその製造方法
WO2024116357A1 (ja) 半導体光電極
JP7406167B2 (ja) 窒化物半導体光触媒薄膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964672

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023561950

Country of ref document: JP

Kind code of ref document: A