WO2019155924A1 - 銀被覆樹脂粒子 - Google Patents

銀被覆樹脂粒子 Download PDF

Info

Publication number
WO2019155924A1
WO2019155924A1 PCT/JP2019/002636 JP2019002636W WO2019155924A1 WO 2019155924 A1 WO2019155924 A1 WO 2019155924A1 JP 2019002636 W JP2019002636 W JP 2019002636W WO 2019155924 A1 WO2019155924 A1 WO 2019155924A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
silver
particles
coated
coated resin
Prior art date
Application number
PCT/JP2019/002636
Other languages
English (en)
French (fr)
Inventor
寛人 赤池
和彦 山▲崎▼
謙介 影山
博一 塚田
Original Assignee
三菱マテリアル株式会社
三菱マテリアル電子化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社, 三菱マテリアル電子化成株式会社 filed Critical 三菱マテリアル株式会社
Priority to JP2019570682A priority Critical patent/JPWO2019155924A1/ja
Priority to CN201980006709.3A priority patent/CN111512400B/zh
Priority to US16/959,552 priority patent/US11542381B2/en
Priority to KR1020207018647A priority patent/KR102506730B1/ko
Priority to EP19750869.0A priority patent/EP3751586A4/en
Publication of WO2019155924A1 publication Critical patent/WO2019155924A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/285Sensitising or activating with tin based compound or composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a silver-coated resin particle having resin particles and a silver coating layer provided on the surface of the resin particles.
  • the silver-coated resin particles have the same conductivity as silver particles, and the resin particles that are the mother particles are softer than the silver particles, and thus have the property of being easily deformed. Therefore, the silver-coated resin particles are used as a conductive filler of a conductive material such as a TIM (Thermal Interface Material) material or a conductive spacer.
  • the silver-coated resin particles used as the conductive filler preferably have a high stress relaxation capability so that the conductive material is not damaged when stress is applied to the conductive material containing the silver-coated resin particles.
  • Patent Document 1 as silver-coated resin particles having high stress relaxation ability, resin particles having an average particle size of 0.1 to 10 ⁇ m are used as resin particles of mother particles, and the amount of silver contained in the silver coating layer is Silver-coated resin particles are disclosed that are 60 to 90 parts by mass with respect to 100 parts by mass of the silver-coated resin particles and have an exothermic peak temperature of 265 ° C. or higher when the silver-coated resin particles are subjected to differential thermal analysis.
  • the silver-coated resin particles described in Patent Document 1 have an exothermic peak temperature of 265 ° C. or higher when subjected to differential thermal analysis, and have resistance to temperature changes, but physical such as tension and compression In some cases, the ability to relax against stress such as impact and thermal stress is insufficient.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide silver-coated resin particles having high relaxation ability against stress.
  • the silver-coated resin particles of the present invention are silver-coated resin particles having resin particles and a silver coating layer provided on the surface of the resin particles.
  • the average value of the compression elastic modulus is in the range of 500 MPa to 15000 MPa, and the coefficient of variation of the 10% compression elastic modulus is 30% or less.
  • the average value of the 10% compression modulus is in the range of 500 MPa to 15000 MPa, and the coefficient of variation of the 10% compression modulus is 30% or less. Since it is low and there is little variation in the 10% compression modulus, when stress is applied, it deforms uniformly and exhibits high relaxation ability. Therefore, in the conductive material containing the silver-coated resin particles of the present invention, when stress is applied, the silver-coated resin particles are uniformly deformed, the stress is relaxed, and the stress is less likely to concentrate at a specific location. Therefore, it becomes difficult to break.
  • the resin particles are silicone resin particles, aramid resin particles, fluorine resin particles, polysulfone resin particles, polyether resin particles, polyimide resin particles, polyamideimide resin particles, epoxy resin particles, phenol resin. Any of particles, acrylic resin particles, acrylic-styrene copolymer particles, polyurethane particles, and resin particles having a core-shell structure may be used.
  • the average particle diameter of the resin particles may be in the range of 0.1 ⁇ m to 30 ⁇ m.
  • the resin particles are less likely to aggregate, the surface area of the resin particles is reduced, and the amount of silver to obtain the necessary conductivity as a conductive filler can be suppressed. And a good silver coating layer can be easily formed.
  • the silver-coated resin particles of the present invention are used as a conductive filler of a conductive material, the reliability can be improved if the average particle diameter is within this range.
  • FIG. 1 is a cross-sectional view of silver-coated resin particles according to an embodiment of the present invention.
  • silver-coated resin particles 10 include resin particles 11 and a silver coating layer 12 provided on the surface of the resin particles 11.
  • the silver-coated resin particles 10 have an average value of 10% compression modulus in a range of 500 MPa to 15000 MPa, and a coefficient of variation of 10% compression modulus is 30% or less.
  • Examples of the resin particles 11 include silicone resin particles, aramid resin particles, fluorine resin particles, polysulfone resin particles, polyether resin particles, polyimide resin particles, polyamideimide resin particles, epoxy resin particles, phenol resin particles, acrylic resin particles, Acrylic-styrene copolymer particles, polyurethane particles, and resin particles having a core-shell structure can be used.
  • Examples of the silicone resin particles include polysilsesquioxane (PSQ) resin particles and polymethylsilsesquioxane (PMSQ) resin particles.
  • Examples of the aramid resin particles include polymetaphenylene isophthalamide (MPIA) resin particles and polyparaphenylene terephthalamide (PPTA) resin particles.
  • fluororesin particles examples include polytetrafluoroethylene (PTFE) resin particles, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride (THV) resin particles, polyvinylidene fluoride (PVDF) resin particles, polychlorotrifluoro Ethylene (PCTFE) resin particles, chlorotrifluoroethylene-ethylene (ECTFE) resin particles, tetrafluoroethylene-ethylene (ETFE) resin particles, tetrafluoroethylene-hexafluoropropylene (FEP) resin particles, tetrafluoroethylene -Perfluoroalkyl vinyl ether (PFA) resin particles and the like.
  • PTFE polytetrafluoroethylene
  • TSV tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride
  • PVDF polyvinylidene fluoride
  • PCTFE polychlorotrifluoro Ethy
  • polysulfone resin particles examples include polyphenylene sulfide (PPS) resin and polyether-sulfone (PES) resin.
  • polyether resin particles examples include polyether ether ketone (PEEK) resin particles, polyphenylene ether (PPE) resin particles, and the like.
  • phenol resin particles examples include novolac type phenol resins, resol type phenol resins, or phenol resins obtained by modifying a part of them.
  • polyurethane particles examples include polyester-based polyurethane particles and polyol-based polyurethane particles.
  • the resin particles having a core-shell structure examples include acrylic resin core-silicone resin shell resin particles. The resin particles of the acrylic resin core-silicone resin shell are produced by coating the acrylic resin particles with a silicone resin film.
  • the resin particles 11 preferably have a 5% mass reduction temperature measured by thermogravimetric analysis of 265 ° C. or higher.
  • the 5% mass reduction temperature refers to the initial weight at 25 ° C. when thermogravimetrically analyzing resin particles obtained by drying moisture physically adsorbed in advance at 120 ° C. in an inert atmosphere. It means the temperature when the mass is decreased by 5% by mass.
  • the heat resistance of a conductive film formed of a conductive paste containing the silver-coated resin particles 10 having a 5% mass reduction temperature of the resin particles 11 of less than 265 ° C. as a conductive filler may be lowered.
  • the conductive film is also heated to the soldering temperature, and the 5% mass reduction temperature of the resin particles 11 is less than 265 ° C.
  • the resin particles 11 may be thermally decomposed and it becomes difficult to maintain the shape of the conductive film.
  • the shape of the resin particle 11 is not particularly limited.
  • the resin particle 11 may be a spherical particle, or may have a different shape such as a flat shape, a plate shape, or a needle shape instead of a spherical shape.
  • the average particle diameter of the resin particles 11 is preferably in the range of 0.1 ⁇ m to 30 ⁇ m, and more preferably in the range of 0.5 ⁇ m to 10 ⁇ m.
  • the average particle diameter of the resin particles 11 is less than 0.1 ⁇ m, the resin particles 11 are likely to aggregate, and the surface area of the resin particles 11 is increased. It is necessary to increase the amount, and it may be difficult to form a good silver coating layer 12.
  • the average particle diameter of the resin particles 11 exceeds 30 ⁇ m, when the silver-coated resin particles 10 are used as the conductive filler of the conductive material, stress concentration tends to occur in the particles having a large particle diameter, and the reliability is lowered. There is a risk of causing.
  • the average particle diameter of the resin particles 11 means the magnification by software (product name: PC SEM) using a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation, model name: SU-1500).
  • the diameter (particle diameter) of 300 resin particles is measured at a magnification of 5000, and the average value calculated is referred to.
  • a value obtained by averaging the long sides of the resin particles 11 is referred to as an average particle diameter.
  • the resin particles 11 preferably have a particle diameter variation coefficient of 30% or less and uniform particle diameters. If the coefficient of variation of the particle diameter of the resin particles 11 exceeds 30% and the particle diameters are not uniform, the reproducibility of imparting conductivity when using the silver-coated resin particles 10 as a conductive filler may be reduced.
  • the coefficient of variation (unit:%) of the particle diameter of the resin particles 11 is calculated from the standard deviation and average particle diameter of the 300 resin particles 11 by the formula: [(standard deviation of particle diameter / average particle diameter) ⁇ 100].
  • the content of the silver coating layer 12 of the silver-coated resin particles 10, that is, the silver content of the silver-coated resin particles 10 is in the range of 25% by mass or more and 90% by mass or less when the mass of the silver-coated resin particles 10 is 100. Preferably, it exists in the range of 40 mass% or more and 85 mass% or less. There exists a possibility that a defect
  • the average particle diameter of the silver-coated resin particles 10 is preferably in the range of 0.2 ⁇ m to 30.5 ⁇ m, and more preferably in the range of 0.6 ⁇ m to 10.5 ⁇ m. This average particle diameter can be measured and calculated by the same method as the average particle diameter of the resin particles 11.
  • the thickness of the silver coating layer 12 is preferably in the range of 0.1 ⁇ m to 0.5 ⁇ m.
  • the thickness of the silver coating layer 12 is less than 0.1 ⁇ m, when the silver coated resin particles 10 are used as the conductive filler, it becomes difficult to take contact between the silver coated resin particles 10, thereby providing sufficient conductivity. It may not be possible.
  • the thickness of the silver coating layer 12 exceeds 0.5 ⁇ m, the silver coated resin particles 10 may not be easily deformed.
  • the 10% compression elastic modulus of the silver-coated resin particles 10 is set within the range of 500 MPa to 15000 MPa.
  • the average value of the 10% compressive elastic modulus is particularly preferably in the range of 1000 MPa to 15000 MPa, and particularly preferably in the range of 5000 MPa to 12000 MPa.
  • the variation coefficient of the 10% compression elastic modulus of the silver-coated resin particles 10 is set to 30% or less. In addition, Preferably it is good to set it as 25% or less.
  • the lower limit is not particularly limited, but may be 0%.
  • the average value of the 10% compression modulus of the silver-coated resin particles 10 is the arithmetic average value of the 10% compression modulus measured for 100 silver-coated resin particles 10.
  • the coefficient of variation (unit:%) of the 10% compression modulus of the silver-coated resin particles 10 is calculated from the arithmetic average value and standard deviation of the 10% compression modulus of the 100 silver-coated resin particles 10 as follows: [(Standard deviation of 10% compression modulus / arithmetic average value of 10% compression modulus) ⁇ 100].
  • the 10% compression elastic modulus of the silver-coated resin particles 10 is a compression elastic modulus when the silver-coated resin particles 10 are compressed 10% in one direction.
  • FIG. 2 is a flowchart showing a method for producing silver-coated resin particles according to an embodiment of the present invention.
  • the method for producing silver-coated resin particles according to this embodiment includes a pretreatment step S01 for performing treatment for facilitating precipitation of silver by electroless plating on the surface of resin particles serving as mother particles. And an electroless silver plating step S02 for forming a silver coating layer on the resin particles by electroless silver plating.
  • the resin particles as the mother particles preferably have an average value of 10% compression modulus in the range of 450 MPa to 14000 MPa and a coefficient of variation of 10% compression modulus of 30% or less.
  • the average value and variation rate of the 10% compression elastic modulus of the resin particles are in the above range, the average value and variation rate of the 10% compression elastic modulus of the silver-coated resin particles can be easily adjusted to the above values.
  • the resin particles may have a high 10% compression modulus variation rate due to the degree of crosslinking and polymerization of the resin constituting the particles and variations in the amount of monomers and oligomers remaining in the resin.
  • the fluctuation of the 10% compression modulus of the resin particles is large, the degree of polymerization of the resin constituting the particles and the amount of monomers and oligomers remaining in the resin vary due to treatment such as heating the resin particles. It is preferable to reduce the fluctuation rate of the 10% compression elastic modulus by reducing.
  • the catalyst adsorbed resin particles are obtained by adsorbing the catalyst on the surface of the resin particles, or the substituted layer is adsorbed to obtain substituted layer adsorbed resin particles.
  • the catalyst palladium or silver nanoparticles can be used.
  • a metal lower than silver such as tin or a compound thereof can be used.
  • the palladium catalyst-adsorbing resin particles can be obtained, for example, by adding palladium compound, hydrochloric acid and a reducing agent to a slurry in which resin particles are dispersed to deposit palladium on the surface of the resin particles.
  • a reducing agent such as palladium chloride, palladium sulfate, palladium nitrate, and palladium ammine complex can be used.
  • the reducing agent include salts containing divalent tin ions such as stannous chloride and stannous sulfate, formalin, glucose, imidazole, Rochelle salt (sodium potassium tartrate), hydrazine and its derivatives, hydroquinone, and L-ascorbine. Acid, formic acid, or the like can be used.
  • the tin-substituted layer-adsorbing resin particles can be obtained, for example, by adding a tin compound and hydrochloric acid to a slurry in which resin particles are dispersed, and depositing, for example, tin hydroxide on the surface of the resin particles.
  • a tin compound and hydrochloric acid for example, stannous chloride, stannous fluoride, stannous bromide, stannous iodide and the like can be used.
  • surface modification may be performed on the resin particles by plasma treatment, ozone treatment, acid treatment, alkali treatment, oxidant treatment, silane treatment, etc. before the pretreatment step S01.
  • plasma treatment ozone treatment, acid treatment, alkali treatment, oxidant treatment, silane treatment, etc. before the pretreatment step S01.
  • a silver coating layer is formed by electroless silver plating on the catalyst adsorbing resin particles or substitution layer adsorbing resin particles obtained in the pretreatment step S01.
  • a slurry is prepared by introducing catalyst adsorption resin particles or substitution layer adsorption resin particles into an aqueous solution containing a complexing agent, a reducing agent, etc.
  • an additive metal Sn, Cu, Bi, Sb
  • a method of preparing a slurry by adding catalyst adsorption resin particles or substitution layer adsorption resin particles into a silver salt aqueous solution containing an agent, and dropping a reducing agent aqueous solution into the slurry, (3) for increasing the recrystallization temperature There is a method in which a metal catalyst adsorbing resin particle is introduced into a silver salt aqueous solution containing an additive metal or a salt thereof, a complexing agent, and a reducing agent to prepare a slurry, and a caustic aqueous solution is dropped into this slurry.
  • silver salt silver nitrate or silver nitrate dissolved in nitric acid
  • Complexing agents include salts such as ammonia, ethylenediaminetetraacetic acid, tetrasodium ethylenediaminetetraacetic acid, nitrotriacetic acid, triethylenetetraamminehexaacetic acid, sodium thiosulfate, succinate, succinimide, citrate or iodide salt
  • formalin, glucose, imidazole, Rochelle salt (sodium potassium tartrate), hydrazine and its derivatives, hydroquinone, L-ascorbic acid or formic acid can be used.
  • formaldehyde is preferable, a mixture of two or more reducing agents including at least formaldehyde is more preferable, and a mixture of reducing agent including formaldehyde and glucose is most preferable.
  • surface treatment may be performed on the obtained silver-coated resin particles.
  • Surface treatment includes fatty acids such as stearic acid, isostearic acid, palmitic acid and oleic acid, dicarboxylic acids such as maleic acid and succinic acid, carboxylic acid polymers such as polyacrylic acid, and amine compounds such as dodecylamine and octadecylamine.
  • Amine polymers such as polyetheramine, sulfide compounds such as octadecyl disulfide, thiol compounds such as dodecanethiol, and silane coupling agents.
  • the silver-coated resin particles 10 of the present embodiment are excellent as a conductive filler, and in particular, a conductive adhesive, a conductive film (sheet), a conductive rubber (elastomer), a conductive adhesive, a heat dissipation sheet, and heat dissipation grease. It can be optimally applied as a conductive filler of a conductive material such as a TIM (Thermal Interface Material) material or a conductive spacer.
  • a conductive adhesive such as a TIM (Thermal Interface Material) material or a conductive spacer.
  • the conductive adhesive is classified into an isotropic conductive adhesive (ICA) and an anisotropic conductive adhesive (ACA). Moreover, it has a paste form, a film form, or an ink form depending on the form of the binder.
  • ICA isotropic conductive adhesive
  • ACA anisotropic conductive adhesive
  • the binder shrinks when the binder is cured, so that the fillers are in contact with each other in the vertical direction, the horizontal direction, and the diagonal direction. can get. It is also possible to form a sheet with an isotropic conductive adhesive.
  • the anisotropic conductive adhesive the anisotropic conductive adhesive is sandwiched between conductive materials in which a filler is dispersed in a binder and the conductive materials to be connected are connected.
  • the conductive material to be connected to the filler between the conductive materials to be connected comes into contact in the vertical direction, and conductivity is obtained.
  • the fillers are arranged in the lateral direction via a binder which is an insulator, and the conductivity is not obtained because they do not contact each other.
  • the conductive adhesive examples include anisotropic or isotropic conductive paste, anisotropic or isotropic conductive ink, and the like.
  • the conductive adhesive is prepared by uniformly mixing the silver-coated resin particles 10 and the insulating binder resin using a kneader such as a planetary mixer or a three-roll mill.
  • the silver-coated resin particles 10 are uniformly dispersed in the insulating binder resin.
  • the content of the silver-coated resin particles 10 is not particularly limited, and is appropriately determined depending on the application, but is preferably in the range of 0.5 to 90 parts by mass with respect to 100 parts by mass of the binder resin.
  • the insulating binder resin in the conductive adhesive is not particularly limited, and examples thereof include a composition that is cured by heat and light, such as a thermoplastic resin and a curable resin composition.
  • a thermoplastic resin include a styrene-butadiene block copolymer, an acrylic resin, and an ethylene-vinyl acetate resin.
  • the curable resin composition include a resin composition containing an epoxy monomer or oligomer having a glycidyl group and a curing agent such as isocyanate.
  • the conductive film As the conductive film, there is an anisotropic or isotropic conductive film formed into a film shape.
  • the conductive film is prepared by first preparing a resin composition in which silver-coated resin particles 10 are dispersed in an insulating binder resin, and then applying the resin composition to the surface of a support film such as PET. .
  • This resin composition is prepared by uniformly mixing the silver-coated resin particles 10 and the insulating binder resin using a kneader such as a planetary mixer or a three-roll mill.
  • the silver-coated resin particles 10 are uniformly dispersed in the insulating binder resin on the support film.
  • the insulating binder resin in the conductive film examples include a resin composition containing, as a main component, a resin such as an acrylic resin, a silicone resin, an epoxy resin, a phenoxy resin, or a mixture thereof.
  • the content of the silver-coated resin particles 10 in the resin composition in the conductive film is not particularly limited, and is appropriately determined depending on the application and the like, but is 0.5 to 90 parts by mass with respect to 100 parts by mass of the binder resin. Within the range of is preferable.
  • Examples of the conductive rubber include conductive rubber formed into a sheet shape or a rectangular parallelepiped shape, and can be used as a heat dissipation sheet or a conductive connector.
  • the conductive rubber is obtained by first kneading the binder rubber, the vulcanizing agent, and the silver-coated resin particles 10 using a biaxial roll or the like, and then performing heating or pressurization using a heating press or a dryer. It is produced by vulcanization and molding.
  • Examples of the binder rubber in the conductive rubber include nitrile rubber, acrylic rubber, styrene butadiene rubber, silicone rubber, and fluorine rubber.
  • the content of the silver-coated resin particles 10 in the composition in the conductive rubber is not particularly limited, and is appropriately determined according to the use etc., but is in the range of 0.5 to 90 parts by mass with respect to 100 parts by mass of the binder rubber.
  • the inside is preferable.
  • the conductive adhesive examples include a conductive adhesive or a conductive gel formed into a sheet shape or a rectangular parallelepiped shape, and can be used as an electrical contact material, a heat dissipation sheet, and an electrode.
  • the conductive adhesive is prepared by first preparing an adhesive composition in which the silver-coated resin particles 10 are dispersed in an adhesive that becomes an insulating binder, and then applying this adhesive composition to the surface of a support film such as PET. It is produced by doing.
  • the binder pressure sensitive adhesive in the conductive pressure sensitive adhesive include acrylic pressure sensitive adhesive, urethane pressure sensitive adhesive, and silicone pressure sensitive adhesive.
  • the content of the silver-coated resin particles 10 in the composition in the conductive pressure-sensitive adhesive is not particularly limited and is appropriately determined depending on the application and the like, but is 0.5 to 90 masses with respect to 100 mass parts of the binder pressure-sensitive adhesive. Within the range of parts is preferred.
  • Heat dissipation grease As the heat dissipation grease, there is a mixture of a non-volatile base oil and silver-coated resin particles 10, which can be used as a heat dissipation material.
  • the heat dissipating grease is prepared by uniformly mixing the base oil and the silver-coated resin particles 10 using a kneader such as a planetary mixer or a three-roll mill.
  • base oils used for heat dissipation grease include silicone oil base oils, mineral oil base oils, synthetic hydrocarbon base oils, ester base oils, ether base oils and glycol base oils, or combinations thereof. Can do.
  • the content of the silver-coated resin particles 10 in the composition of the heat dissipating grease is not particularly limited, and is appropriately determined according to the use and the like. The inside is preferable.
  • the conductive spacer is used by electrically connecting the wiring portions of the two upper and lower substrates sandwiching the liquid crystal substance vertically and holding the gap between the substrates at a predetermined dimension.
  • the silver-coated resin particles 10 are added to an insulating binder resin such as a thermosetting resin or an ultraviolet light curable adhesive, and then the silver-coated resin particles 10 and the binder resin are combined with a planetary mixer or three.
  • a resin composition is prepared by uniformly mixing using a kneader such as this roll mill, and then the above resin composition is applied to one or both of the wiring portions of the upper and lower two substrates to obtain two substrates. It is produced by bonding together.
  • the content of the silver-coated resin particles 10 is not particularly limited, and is appropriately determined depending on the application, but is preferably in the range of 2 to 10 parts by mass with respect to 100 parts by mass of the binder resin.
  • the TIM material and the conductive spacer including the silver-coated resin particles 10 of the present embodiment can be applied even when a high shear force is applied when the mixture of the silver-coated resin particles 10 and the insulating binder resin is kneaded. Further, cracks or cracks or peeling of the silver coating layer 12 from the resin particles 11 hardly occur, and the conductivity is further improved. Thereby, when the silver covering resin particle 10 of this embodiment is used for an anisotropic conductive adhesive, for example, the short circuit of anisotropic conduction (lateral direction) can be avoided and reliability improves.
  • the average value of the 10% compression modulus is in the range of 500 MPa to 15000 MPa, and the coefficient of variation of the 10% compression modulus is Since it is as low as 30% or less and there is little variation in the 10% compression modulus, the ability to relax against stress is high. Therefore, conductive materials such as TIM materials and conductive spacers containing the silver-coated resin particles 10 of the present embodiment have high strength against stress.
  • a stannous chloride aqueous solution was prepared by mixing 10 parts by mass of stannous chloride, 15 parts by mass of hydrochloric acid having a concentration of 35%, and 300 parts by mass of ion-exchanged water. While maintaining the prepared stannous chloride aqueous solution at 30 ° C., 10 parts by mass of the above acrylic-styrene copolymer particles are added to this solution and stirred for 1 hour on the surface of the acrylic-styrene copolymer particles. A tin substitution layer was adsorbed. The produced tin-substituted layer-adsorbing acrylic-styrene copolymer particles were collected by filtration and washed with water.
  • Electroless silver plating process To 500 parts by mass of ion-exchanged water, 10 parts by mass of tetrasodium ethylenediaminetetraacetate, 15 parts by mass of sodium hydroxide, and 10 parts by mass of a 37% by weight aqueous solution of formaldehyde are added and stirred to contain a complexing agent and a reducing agent. An aqueous solution was prepared. Separately, 37 parts by mass of silver nitrate, 30 parts by mass of 25% by mass of ammonia water, and 150 parts by mass of ion-exchanged water were mixed to prepare an aqueous silver nitrate solution.
  • a slurry was prepared by dispersing 10 parts by mass of the tin-substituted layer-adsorbing silicone resin particles obtained in the pretreatment step above in 500 parts by mass of ion-exchanged water. Next, 6 parts by mass of ethylenediaminetetraacetic acid tetrasodium (complexing agent), 8 parts by mass of a 37% by weight aqueous formaldehyde solution (reducing agent), and 15 parts by mass of D-glucose were added to 510 parts by mass of the prepared slurry. By stirring, a tin-substituted layer-adsorbing silicone resin particle slurry containing a complexing agent and a reducing agent was prepared.
  • the tin-substituted layer adsorption resin was used so that the silver content of the silver-coated resin particles in the electroless silver plating step was the same as that shown in Table 1 below.
  • Silver-coated resin particles were produced in the same manner as in Example 1 except that the mixing ratio of the particles, the aqueous solution containing the complexing agent and the reducing agent, and the silver nitrate aqueous solution was changed.
  • Silver-coated resin particles were produced in the same manner as in Example 1 except that the above was changed.
  • the silver-coated resin particles and dilute nitric acid were mixed to dissolve the silver coating layer, and then filtered to remove the resin particles.
  • the amount of silver in the obtained silver coating layer solution was measured with an inductively coupled plasma emission spectroscopic analyzer and converted to the silver content of the silver-coated resin particles.
  • the 10% compression elastic modulus of the silver-coated resin particles was calculated as follows. First, using a micro compression tester (manufactured by Fischer Instruments, model number: HM500), a flat indenter is used to perform a compression test on a single silver-coated resin particle under the conditions of a load change rate of 0.3 mN / s and 20 ° C. It carried out and measured the displacement and load at the time of compressing 10% to the major axis of silver covering resin particles. At this time, the measurement start point (zero point) of the displacement was not the point where the micro compression tester recognized contact with the silver-coated resin particles, but the load applied to the silver-coated resin particles by the micro compression tester was changed. Points.
  • the measured displacement and load were substituted into the following (1) to calculate a 10% compression modulus.
  • the compression test was performed on 100 silver-coated resin particles, and the 10% compression modulus of each particle was calculated. Then, the average value and coefficient of variation of the 10% compression modulus were obtained.
  • the silver-coated resin particle-containing resin film was produced as follows.
  • the epoxy resin composition and the silver-coated resin particles were weighed so that the ratio of the cured epoxy resin composition and the silver-coated resin particles was 60:40 by volume.
  • the weighed epoxy resin composition and the silver-coated resin particles were mixed using a rotation and revolution mixer, and then kneaded using a three-roll mill to prepare a silver-coated resin particle-containing epoxy resin composition paste.
  • the thermosetting epoxy resin composition used had an elongation at break of 10% when cured alone.
  • the prepared silver-coated resin particle-containing epoxy resin composition paste is applied to a Teflon (registered trademark) plate using an applicator and then heated at 150 ° C. for 2 hours to form a silver-coated resin particle-containing epoxy resin composition
  • the object was cured.
  • the cured epoxy resin composition containing silver-coated resin particles is peeled off from the Teflon plate, and a tensile test is performed in accordance with the method described in JIS K 7161 (Plastics-Test method for tensile properties (Part 1: General rules)). 50 test films were prepared.
  • the tensile test was carried out using a universal testing machine (manufactured by Shimadzu Corp., Autograph) in the same manner as described in JIS K 7161, and the strain at the time of breaking the test film was calculated. For 50 test films, the strain at the time of breaking the test film was measured, and the proportion of the test film having a strain at break of 1.0% or less was calculated.
  • the silver-coated resin particle-containing epoxy resin composition containing the silver-coated resin particles of Comparative Examples 1 and 2 having a coefficient of variation of 10% compression modulus exceeding the range of the present invention has a strain at break after curing of 1.0%.
  • the proportion of the following test films increased. This is because the coefficient of variation of the 10% compression elastic modulus of the silver-coated resin particles is too large, so that when the stress is applied, the silver-coated resin particles are deformed unevenly and the relaxation ability of the silver-coated resin particles is reduced. It is thought that.
  • the silver-coated resin particle-containing epoxy resin composition containing the silver-coated resin particles of Comparative Example 3 having an average value of 10% compression modulus exceeding the range of the present invention has a strain at break after curing of 1.0%.
  • the proportion of the following test films increased. This is considered to be because the 10% compression elastic modulus of the silver-coated resin particles became too large, and the relaxation ability of the silver-coated resin particles was lowered.
  • the silver-coated resin particle-containing epoxy resin composition containing the silver-coated resin particles of Invention Examples 1 to 12 having an average value of 10% compression modulus and a coefficient of variation within the scope of the present invention The proportion of test films with a strain at break of 1.0% or less was low. This is probably because the silver-coated resin particles have a high relaxation ability.

Abstract

樹脂粒子(11)と、前記樹脂粒子(11)の表面に設けられた銀被覆層(12)とを有する銀被覆樹脂粒子(10)であって、10%圧縮弾性率の平均値が500MPa以上15000MPa以下の範囲内にあり、10%圧縮弾性率の変動係数が30%以下である銀被覆樹脂粒子。

Description

銀被覆樹脂粒子
 本発明は、樹脂粒子と、この樹脂粒子の表面に設けられた銀被覆層とを有する銀被覆樹脂粒子に関する。
 本願は、2018年2月6日に日本に出願された特願2018-019519号について優先権を主張し、その内容をここに援用する。
 銀被覆樹脂粒子は、銀粒子と同等の導電性を有し、かつ母粒子である樹脂粒子が銀粒子と比較して軟らかいため、変形させやすいという特性を有する。このため、銀被覆樹脂粒子は、TIM(Thermal Interface Material)材料や導電性スペーサなどの導電性材料の導電性フィラーとして利用されている。導電性フィラーとして利用する銀被覆樹脂粒子では、その銀被覆樹脂粒子を含む導電性材料に応力が付与された際に、導電性材料が破損しないように、高い応力緩和能力を有することが好ましい。
 特許文献1には、高い応力緩和能力を有する銀被覆樹脂粒子として、母粒子の樹脂粒子として平均粒径が0.1~10μmの樹脂粒子を用い、銀被覆層に含まれる銀の量を、銀被覆樹脂粒子100質量部に対して60~90質量部とし、かつ銀被覆樹脂粒子を示差熱分析したときの発熱ピーク温度を265℃以上とした銀被覆樹脂粒子が開示されている。
特開2016-130354号公報
 上記特許文献1に記載の銀被覆樹脂粒子は、示差熱分析したときの発熱ピーク温度が265℃以上とされており、温度変化に対する耐性を有しているが、引張りや圧縮などの物理的な衝撃や熱応力などの応力に対する緩和能力が不十分な場合があった。
 この発明は、前述した事情に鑑みてなされたものであって、その目的は、応力に対して高い緩和能力を有する銀被覆樹脂粒子を提供することにある。
[1] 上記の課題を解決するために、本発明の銀被覆樹脂粒子は、樹脂粒子と、前記樹脂粒子の表面に設けられた銀被覆層とを有する銀被覆樹脂粒子であって、10%圧縮弾性率の平均値が500MPa以上15000MPa以下の範囲内にあり、10%圧縮弾性率の変動係数が30%以下であることを特徴としている。
 このような構成とされた本発明の銀被覆樹脂粒子によれば、10%圧縮弾性率の平均値が500MPa以上15000MPa以下の範囲内にあり、10%圧縮弾性率の変動係数が30%以下と低く、10%圧縮弾性率のばらつきが少ないので、応力が付与されたときは、均一に変形し、高い緩和能力を発揮する。よって、本発明の銀被覆樹脂粒子を含む導電性材料においては、応力が付与されたときは銀被覆樹脂粒子が均一に変形し、その応力が緩和されて特定の箇所に応力が集中しにくくなるため、破損しにくくなる。
[2] 前記[1]において、前記樹脂粒子は、シリコーン樹脂粒子、アラミド樹脂粒子、フッ素樹脂粒子、ポリスルホン樹脂粒子、ポリエーテル樹脂粒子、ポリイミド樹脂粒子、ポリアミドイミド樹脂粒子、エポキシ樹脂粒子、フェノール樹脂粒子、アクリル樹脂粒子、アクリル-スチレン共重合体粒子、ポリウレタン粒子、コアシェル構造を有する樹脂粒子のいずれかを用いてもよい。
[3] 前記[1]~[2]において、前記樹脂粒子の平均粒子径は、0.1μm以上30μm以下の範囲内であってもよい。樹脂粒子の平均粒子径が、この範囲内である場合、樹脂粒子が凝集し難く、また樹脂粒子の表面積が小さくなり、導電性フィラーとして必要な導電性を得るための銀の量を抑えることができ、また良好な銀被覆層を形成し易くなる。本発明の銀被覆樹脂粒子を導電性材料の導電性フィラーとして用いた際に、平均粒子径がこの範囲内であれば、信頼性を向上させることが出来る。
 本発明によれば、応力に対して高い緩和能力を有する銀被覆樹脂粒子を提供することが可能となる。
本発明の一実施形態に係る銀被覆樹脂粒子の断面図である。 本発明の一実施形態に係る銀被覆樹脂粒子の製造方法を示すフロー図である。
 以下に、本発明の実施形態について添付した図面を参照して説明する。
[銀被覆樹脂粒子]
 図1は、本発明の一実施形態である銀被覆樹脂粒子の断面図である。
 図1において、銀被覆樹脂粒子10は、樹脂粒子11と、樹脂粒子11の表面に設けられた銀被覆層12とを有する。銀被覆樹脂粒子10は、10%圧縮弾性率の平均値が500MPa以上15000MPa以下の範囲内にあり、10%圧縮弾性率の変動係数が30%以下とされている。
(樹脂粒子)
 樹脂粒子11としては、例えば、シリコーン樹脂粒子、アラミド樹脂粒子、フッ素樹脂粒子、ポリスルホン樹脂粒子、ポリエーテル樹脂粒子、ポリイミド樹脂粒子、ポリアミドイミド樹脂粒子、エポキシ樹脂粒子、フェノール樹脂粒子、アクリル樹脂粒子、アクリル-スチレン共重合体粒子、ポリウレタン粒子、コアシェル構造を有する樹脂粒子を用いることができる。シリコーン樹脂粒子の例としては、ポリシルセスキオキサン(PSQ)樹脂粒子、ポリメチルシルセスキオサキサン(PMSQ)樹脂粒子が挙げられる。アラミド樹脂粒子の例としては、ポリメタフェニレンイソフタラミド(MPIA)樹脂粒子、ポリパラフェニレンテレフタルアミド(PPTA)樹脂粒子が挙げられる。フッ素樹脂粒子の例としては、ポリテトラフルオロエチレン(PTFE)樹脂粒子、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド(THV)樹脂粒子、ポリビニリデンフルオライド(PVDF)系樹脂粒子、ポリクロロトリフルオロエチレン(PCTFE)系樹脂粒子、クロロトリフルオロエチレン-エチレン(ECTFE)系樹脂粒子、テトラフルオロエチレン-エチレン(ETFE)系樹脂粒子、テトラフルオロエチレン-ヘキサフルオロプロピレン(FEP)系樹脂粒子、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル(PFA)系樹脂粒子等が挙げられる。ポリスルホン樹脂粒子の例としては、ポリフェニレンスルフィド(PPS)樹脂、ポリエーテル-スルホン(PES)樹脂等が挙げられる。ポリエーテル樹脂粒子の例としては、ポリエーテル・エーテル・ケトン(PEEK)樹脂粒子、ポリフェニレンエーテル(PPE)樹脂粒子等が挙げられる。フェノール樹脂粒子の例としては、ノボラック型フェノール樹脂、レゾール型フェノール樹脂、またはそれらの一部を変性したフェノール樹脂等が挙げられる。ポリウレタン粒子としては、ポリエステル系ポリウレタン粒子、ポリオール系ポリウレタン粒子等が挙げられる。コアシェル構造を有する樹脂粒子の例としては、アクリル樹脂コア-シリコーン樹脂シェルの樹脂粒子が挙げられる。アクリル樹脂コア-シリコーン樹脂シェルの樹脂粒子は、アクリル樹脂粒子にシリコーン樹脂膜を被覆することにより作製される。
 樹脂粒子11は、熱重量分析によって測定される5%質量減少温度が265℃以上であることが好ましい。なお、本実施形態において、5%質量減少温度とは、事前に物理吸着した水分を120℃で乾燥させた樹脂粒子を、不活性雰囲気中で熱重量分析した際に、25℃における初期重量から5質量%減少したときの温度を意味する。樹脂粒子11の5%質量減少温度が265℃未満である銀被覆樹脂粒子10を導電性フィラーとして含む導電性ペーストにより形成された導電膜の耐熱性が低下するおそれがある。
 すなわち、例えば、この導電膜と同じ基板上に、電子部品をはんだ付けする場合、この導電膜もはんだ付け温度まで加熱されることとなり、樹脂粒子11の5%質量減少温度が265℃未満である場合、樹脂粒子11が熱分解して導電膜の形状を維持しにくくなるおそれがある。
 樹脂粒子11の形状は、特に制限はない。樹脂粒子11は、球状の粒子でもよく、球状でなく異形状、例えば扁平状、板状、針状でもよい。
 樹脂粒子11の平均粒子径は、0.1μm以上30μm以下の範囲内にあることが好ましく、0.5μm以上10μm以下の範囲内にあることがより好ましい。樹脂粒子11の平均粒子径が0.1μm未満である場合では、樹脂粒子11が凝集し易く、また樹脂粒子11の表面積が大きくなり、導電性フィラーとして必要な導電性を得るためには銀の量を多くする必要があり、また良好な銀被覆層12を形成しにくくなるおそれがある。一方、樹脂粒子11の平均粒子径が30μmを超えると、銀被覆樹脂粒子10を導電性材料の導電性フィラーとして用いた際に、粒子径が大きい粒子に応力集中が生じやすく、信頼性を低下させるおそれがある。なお、本明細書において、樹脂粒子11の平均粒子径とは、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製、型式名:SU-1500)を用いて、ソフトウェア(品名:PC SEM)により、倍率5000倍で、300個の樹脂粒子の直径(粒子径)を測定し、算出された平均値をいう。樹脂粒子11が球形状以外の場合は、樹脂粒子11の長辺を平均した値を平均粒子径という。
 また樹脂粒子11は、粒子径の変動係数が30%以下であり、粒子径が揃っていることが好ましい。樹脂粒子11の粒子径の変動係数が30%を超え、粒子径が揃っていないと、銀被覆樹脂粒子10を導電性フィラーとして用いるときの導電性付与の再現性が低下するおそれがある。樹脂粒子11の粒子径の変動係数(単位:%)は、上記300個の樹脂粒子11の粒子径の標準偏差と平均粒子径から、式:[(粒子径の標準偏差/平均粒子径)×100]により求めた値である。
(銀被覆層)
 銀被覆樹脂粒子10の銀被覆層12の含有量、すなわち銀被覆樹脂粒子10の銀の含有量は、銀被覆樹脂粒子10の質量を100とした時に25質量%以上90質量%以下の範囲内にあることが好ましく、40質量%以上85質量%以下の範囲内にあることがより好ましい。銀の含有量が25質量%未満であると、銀被覆層12に欠損が生じるおそれがある。一方、銀の含有量が90質量部を超えると、銀被覆樹脂粒子の比重が大きくなりすぎて、TIM材料や導電性スペーサなどの導電性材料に均一に分散させにくくなるおそれがある。また、銀の含有量が90質量部を超えると銀被覆層12の導電性が飽和するため、それ以上の銀を含有させることは工業的に不利となるおそれがある。
 銀被覆樹脂粒子10の平均粒子径は0.2μm~30.5μmの範囲内とすることが好ましく、0.6μm~10.5μmの範囲内とすることがより好ましい。この平均粒子径は樹脂粒子11の平均粒子径と同様の方法によって測定及び算出できる。
 また、銀被覆層12の厚さは0.1μm以上0.5μm以下の範囲内にあることが好ましい。銀被覆層12の厚さが0.1μm未満であると、導電性フィラーとして銀被覆樹脂粒子10を用いたときに、銀被覆樹脂粒子10同士の接点が取り難くなり、十分な導電性を付与できないおそれがある。一方、銀被覆層12の厚さが0.5μmを超えると、銀被覆樹脂粒子10が変形しにくくなるおそれがある。
(10%圧縮弾性率)
 銀被覆樹脂粒子10の10%圧縮弾性率が500MPa未満であると、銀被覆樹脂粒子10が変形しやすくなりすぎて、銀被覆樹脂粒子10を導電性フィラーとして含む導電性材料から形成される導電膜やコンポジット等の強度が低下する。一方、10%圧縮弾性率が15000MPaを超えると、銀被覆樹脂粒子10が変形しにくくなり、応力に対する緩和能力が低くなる。
 以上の理由から、本実施形態では、銀被覆樹脂粒子10の10%圧縮弾性率を500MPa以上15000MPa以下の範囲内と設定している。10%圧縮弾性率の平均値は、1000MPa以上15000MPa以下の範囲内にあることが特に好ましく、5000MPa以上12000MPa以下の範囲内にあることが特に好ましい。
 また、銀被覆樹脂粒子10の10%圧縮弾性率の変動係数が30%を超える銀被覆樹脂粒子10を導電膜の導電性フィラーとして用いた場合、その導電膜に応力が負荷されたときに、導電膜の特定の箇所に応力が集中しやすくなり、導電膜が破壊しやすくなる。
 このため、本実施形態では、銀被覆樹脂粒子10の10%圧縮弾性率の変動係数を30%以下と設定している。なお、好ましくは25%以下とするとよい。下限は特に限定されるものではないが、0%でもよい。
 ここで、本実施形態において、銀被覆樹脂粒子10の10%圧縮弾性率の平均値は、100個の銀被覆樹脂粒子10について測定した10%圧縮弾性率の算術平均値である。また、銀被覆樹脂粒子10の10%圧縮弾性率の変動係数(単位:%)は、上記100個の銀被覆樹脂粒子10の10%圧縮弾性率の算術平均値と標準偏差とから、式:[(10%圧縮弾性率の標準偏差/10%圧縮弾性率の算術平均値)×100]により求めた値である。銀被覆樹脂粒子10の10%圧縮弾性率は、銀被覆樹脂粒子10を一方向に10%圧縮したときの圧縮弾性率である。
[銀被覆樹脂粒子の製造方法]
 次に、本実施形態の銀被覆樹脂粒子の製造方法を説明する。
 図2は、本発明の一実施形態に係る銀被覆樹脂粒子の製造方法を示すフロー図である。本実施形態の銀被覆樹脂粒子の製造方法は、図2に示すように、母粒子となる樹脂粒子の表面に、無電解めっきによって銀を析出させ易くするための処理を行う前処理工程S01と、樹脂粒子に無電解銀めっきにより銀被覆層を形成する無電解銀めっき工程S02を有する。
 母粒子である樹脂粒子は、10%圧縮弾性率の平均値が450MPa以上14000MPa以下の範囲内にあり、10%圧縮弾性率の変動係数が30%以下であることが好ましい。樹脂粒子の10%圧縮弾性率の平均値および変動率が上記の範囲にあることによって、銀被覆樹脂粒子の10%圧縮弾性率の平均値および変動率を上述の値に調整しやすくなる。
 樹脂粒子は、粒子を構成している樹脂の架橋度や重合度、また樹脂中に残留しているモノマー量やオリゴマー量のばらつきによって、10%圧縮弾性率の変動率が高くなることがある。樹脂粒子の10%圧縮弾性率の変動が大きい場合は、樹脂粒子を加熱するなどの処理によって、粒子を構成している樹脂の重合度や樹脂中に残留しているモノマー量やオリゴマー量のばらつきを低減させることによって、10%圧縮弾性率の変動率を低くすることが好ましい。
(前処理工程)
 前処理工程S01では、樹脂粒子の表面に触媒を吸着させて触媒吸着樹脂粒子を得る、あるいは置換層を吸着させて置換層吸着樹脂粒子を得ることが好ましい。触媒としては、パラジウム、銀ナノ粒子を用いることができる。置換層の材料としては錫などの銀より卑な金属またはその化合物を用いることができる。
 パラジウム触媒吸着樹脂粒子は、例えば、樹脂粒子を分散させたスラリーに、パラジウム化合物と塩酸と、還元剤を加えて、樹脂粒子の表面にパラジウムを析出させることによって得ることができる。パラジウム化合物としては塩化パラジウム、硫酸パラジウム、硝酸パラジウム、及びパラジウムアンミン錯塩などの錯塩等を用いることができる。還元剤としては、例えば塩化第一スズ、硫酸第一スズなど、二価のスズイオンを含む塩や、ホルマリン、ブドウ糖、イミダゾール、ロッシェル塩(酒石酸ナトリウムカリウム)、ヒドラジン及びその誘導体、ヒドロキノン、L-アスコルビン酸又はギ酸等を用いることができる。
 錫置換層吸着樹脂粒子は、例えば、樹脂粒子を分散させたスラリーに、錫化合物と塩酸とを加えて、樹脂粒子の表面に、例えば、水酸化錫などを析出させることによって得ることができる。錫化合物としては、塩化第一錫、フッ化第一錫、臭化第一錫、ヨウ化第一錫等を用いることができる。
 必要に応じて、前処理工程S01を行う前に樹脂粒子に対して、プラズマ処理、オゾン処理、酸処理、アルカリ処理、酸化剤処理、シラン処理などにより表面改質を行ってもよい。これらの表面改質により、樹脂粒子の表面が活性化し、触媒または置換層および銀被覆層と、樹脂粒子との密着性が向上する。
(無電解銀めっき工程)
 無電解銀めっき工程S02では、前処理工程S01で得られた触媒吸着樹脂粒子または置換層吸着樹脂粒子に無電解銀めっきにより銀被覆層を形成する。無電解銀めっきにより銀被覆層を形成する方法としては、(1)錯化剤、還元剤等を含む水溶液中に、触媒吸着樹脂粒子または置換層吸着樹脂粒子を投入してスラリーを調製し、このスラリーに再結晶温度上昇用の添加金属(Sn、Cu、Bi、Sb)またはその塩を含有する銀塩水溶液を滴下する方法、(2)再結晶温度上昇用の添加金属またはその塩と錯化剤とを含む銀塩水溶液中に、触媒吸着樹脂粒子または置換層吸着樹脂粒子を投入してスラリーを調製し、このスラリーに還元剤水溶液を滴下する方法、(3)再結晶温度上昇用の添加金属またはその塩と、錯化剤と、還元剤とを含む銀塩水溶液に、金属触媒吸着樹脂粒子を投入してスラリーを調製し、このスラリーに苛性アルカリ水溶液を滴下する方法が挙げられる。
 銀塩としては、硝酸銀あるいは銀を硝酸に溶解したもの等を用いることができる。錯化剤としては、アンモニア、エチレンジアミン四酢酸、エチレンジアミン四酢酸四ナトリウム、ニトロ三酢酸、トリエチレンテトラアンミン六酢酸、チオ硫酸ナトリウム、コハク酸塩、コハク酸イミド、クエン酸塩又はヨウ化物塩等の塩類を用いることができる。還元剤としては、ホルマリン、ブドウ糖、イミダゾール、ロッシェル塩(酒石酸ナトリウムカリウム)、ヒドラジン及びその誘導体、ヒドロキノン、L-アスコルビン酸又はギ酸等を用いることができる。還元剤としては、ホルムアルデヒドが好ましく、少なくともホルムアルデヒドを含む2種以上の還元剤の混合物がより好ましく、ホルムアルデヒドとブドウ糖を含む還元剤の混合物が最も好ましい。
 必要に応じて、得られた銀被覆樹脂粒子に対して、表面処理を実施してもよい。表面処理としては、ステアリン酸、イソステアリン酸、パルミチン酸、オレイン酸などの脂肪酸、マレイン酸、コハク酸などのジカルボン酸、ポリアクリル酸などのカルボン酸系高分子、ドデシルアミン、オクタデシルアミンなどのアミン化合物、ポリエーテルアミンなどのアミン系高分子、オクタデシルジスルフィドなどのスルフィド化合物、ドデカンチオールなどのチオール化合物、シランカップリング剤等が挙げられる。銀被覆樹脂粒子に対して表面処理を実施することで、後述する用途において導電性フィラーとして用いられる際に、バインダとの親和性を向上することができる。
[用途]
 本実施形態の銀被覆樹脂粒子10は、導電性フィラーとして優れており、特に、導電性接着剤、導電性フィルム(シート)、導電性ゴム(エラストマー)、導電性粘着剤、放熱シートや放熱グリス等のTIM(Thermal Interface Material)材料、または導電性スペーサなどの導電性材料の導電性フィラーとして最適に適用できる。
(導電性接着剤)
 導電性接着剤は、等方性の導電性接着剤(ICA:Isotropic Conductive Adhesive)と異方性の導電性接着剤(ACA:Anisotropic Conductive Adhesive)に区分される。また、バインダの形態によってペースト状、フィルム状、インク状の形態を有する。等方性の導電性接着剤は、バインダ硬化時にバインダが収縮することで、縦方向、横方向、斜方向ともにフィラーが互いに接触し、これにより接続したい導電物とフィラーが接触して導電性が得られる。等方性の導電性接着剤にてシートを形成することも可能である。異方性の導電性接着剤は、バインダ中にフィラーが分散していて接続したい導電物同士の間に異方性の導電性接着剤を挟み込む。これを縦方向に加圧することで、接続したい導電物の間のフィラーと接続したい導電物が縦方向に接触し導電性が得られる。一方、加圧されていない部分は絶縁物であるバインダを介してフィラー同士が横方向に配置され、互いに接触しないので導電性は得られない。 
 導電性接着剤としては、例えば、異方性又は等方性の導電性ペースト、異方性又は等方性の導電性インキなどが挙げられる。導電性接着剤は、銀被覆樹脂粒子10と絶縁性のバインダ樹脂とを遊星混合機や三本ロールミルのような混練機を用いて均一に混合して調製される。導電性接着剤では、絶縁性のバインダ樹脂中に銀被覆樹脂粒子10が均一に分散する。銀被覆樹脂粒子10の含有量は、特に限定されず、用途などに応じて適宜決定されるが、バインダ樹脂100質量部に対して0.5~90質量部の範囲内が好ましい。
 導電性接着剤における絶縁性のバインダ樹脂としては、特に限定されず、例えば、熱可塑性樹脂や、硬化性樹脂組成物などの熱や光によって硬化する組成物などが挙げられる。熱可塑性樹脂としては、スチレン-ブタジエンブロック共重合体、アクリル樹脂、エチレン-酢酸ビニル樹脂などが挙げられる。硬化性樹脂組成物としては、グリシジル基を有するエポキシ系モノマーやオリゴマーと、イソシアネートなどの硬化剤とを含有する樹脂組成物が挙げられる。
(導電性フィルム(シート))
 導電性フィルムとしては、フィルム状に成形された異方性又は等方性の導電性フィルムがある。導電性フィルムは、先ず銀被覆樹脂粒子10が絶縁性のバインダ樹脂中に分散された樹脂組成物を作製し、次いでこの樹脂組成物をPET等の支持フィルムの表面に塗布することにより作製される。この樹脂組成物は銀被覆樹脂粒子10と絶縁性のバインダ樹脂とを遊星混合機や三本ロールミルのような混練機を用いて均一に混合して調製される。導電性フィルムでは、支持体フィルム上で絶縁性のバインダ樹脂中に銀被覆樹脂粒子10が均一に分散する。導電性フィルムにおける絶縁性のバインダ樹脂としては、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、フェノキシ樹脂などの樹脂またはそれらの混合物を主成分として含む樹脂組成物が挙げられる。導電性フィルムにおける樹脂組成物中の銀被覆樹脂粒子10の含有量は、特に限定されず、用途などに応じて適宜決定されるが、バインダ樹脂100質量部に対して0.5~90質量部の範囲内が好ましい。
(導電性ゴム(エラストマー))
 導電性ゴムとしては、シート状や直方体状に成形された導電性ゴムがあり、放熱シートや導電コネクタとして使用できる。導電性ゴムは、まずバインダゴムと、加硫剤と、銀被覆樹脂粒子10とを二軸ロール等を用いて混練し、次いで加熱プレス機や乾燥機を用いて加熱や加圧を実施することにより加硫および成型することで作製される。導電性ゴムにおけるバインダゴムとしては、ニトリルゴム、アクリルゴム、スチレンブタジエンゴム、シリコーンゴム、フッ素ゴムなどが挙げられる。導電性ゴムにおける組成物中の銀被覆樹脂粒子10の含有量は、特に限定されず、用途などに応じて適宜決定されるが、バインダゴム100質量部に対して0.5~90質量部の範囲内が好ましい。
(導電性粘着剤)
 導電性粘着剤としては、シート状や直方体状に成形された導電性粘着剤または導電性ゲルがあり、電気接点材料、放熱シート及び電極として使用できる。導電性粘着剤は、先ず銀被覆樹脂粒子10が絶縁性のバインダとなる粘着剤中に分散された粘着性組成物を作製し、次いでこの粘着性組成物をPET等の支持フィルムの表面に塗布することにより作製される。導電性粘着剤におけるバインダ粘着剤としては、アクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤などが挙げられる。導電性粘着剤における組成物中の銀被覆樹脂粒子10の含有量は、特に限定されず、用途などに応じて適宜決定されるが、バインダ粘着剤100質量部に対して0.5~90質量部の範囲内が好ましい。
(放熱グリス)
 放熱グリスとしては、不揮発性の基油、銀被覆樹脂粒子10を混合したものがあり、放熱材料として用いることができる。放熱グリスは基油と銀被覆樹脂粒子10を遊星混合機や三本ロールミルのような混練機を用いて均一に混合して調製される。放熱グリスに用いられる基油としては、シリコーンオイル系基油、鉱油系基油、合成炭化水素系基油、エステル系基油、エーテル系基油及びグリコール系基油又はそれらの組合せなどを挙げることができる。放熱グリスにおける組成物中の銀被覆樹脂粒子10の含有量は、特に限定されず、用途などに応じて適宜決定されるが、基油100質量部に対して0.5~90質量部の範囲内が好ましい。
(導電性スペーサ)
 導電性スペーサは、液晶表示装置において、液晶物質を挟む上下2枚の基板の配線部分を電気的に上下に接続し、かつ基板の間隙を所定の寸法に保持して使用される。導電性スペーサは、先ず銀被覆樹脂粒子10を熱硬化性樹脂や紫外光硬化型接着剤などの絶縁性のバインダ樹脂に添加した後、銀被覆樹脂粒子10とバインダ樹脂とを遊星混合機や三本ロールミルのような混練機を用いて均一に混合して樹脂組成物を調製し、次いで上下2枚の基板の配線部分のいずれか一方又は双方に上記樹脂組成物を塗布して2枚の基板を貼り合わせることにより作製される。銀被覆樹脂粒子10の含有量は、特に限定されず、用途などに応じて適宜決定されるが、バインダ樹脂100質量部に対して2~10質量部の範囲内が好ましい。 
 本実施形態の銀被覆樹脂粒子10を含むTIM材料や導電性スペーサは、銀被覆樹脂粒子10と絶縁性のバインダ樹脂との混合物を混練するときに高いせん断力をかけても、銀被覆層12に亀裂若しくは割れ又は銀被覆層12の樹脂粒子11からの剥離が生じにくく、その導電性がより向上する。これにより、本実施形態の銀被覆樹脂粒子10を例えば異方性の導電性接着剤に用いた場合、異方導電(横方向)の短絡を回避でき、信頼性が向上する。
 以上のような構成とされた本実施形態である銀被覆樹脂粒子10によれば、10%圧縮弾性率の平均値が500MPa以上15000MPa以下の範囲内にあり、10%圧縮弾性率の変動係数が30%以下と低く、10%圧縮弾性率のばらつきが少ないので、応力に対する緩和能力が高い。よって、本実施形態の銀被覆樹脂粒子10を含むTIM材料や導電性スペーサなどの導電性材料は、応力に対する強度が高くなる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 次に、本発明を実施例により説明するが、これらは本発明を限定するものではない。
[本発明例1]
(母粒子)
 平均粒子径が3μmである球状アクリル-スチレン共重合体の粒子を250℃の真空中で5時間加熱処理して、粒子の架橋度を調整した。この加熱処理後のアクリル-スチレン共重合体粒子は、10%圧縮弾性率の平均値が5600MPaで、変動係数が4.5%であった。
 この加熱処理後のアクリル-スチレン共重合体粒子を母粒子として、以下の方法で銀被覆樹脂粒子を作製した。
(前処理工程)
 塩化第一錫10質量部と、濃度が35%の塩酸15質量部と、イオン交換水300質量部とを混合して塩化第一錫水溶液を調製した。調製した塩化第一錫水溶液を30℃に保温しながら、この溶液に、上記のアクリル-スチレン共重合体粒子10質量部を投入し、1時間撹拌してアクリル-スチレン共重合体粒子の表面に錫置換層を吸着させた。生成した錫置換層吸着アクリル-スチレン共重合体粒子を濾別して回収した後、水洗した。
(無電解銀めっき工程)
 イオン交換水500質量部に、エチレンジアミン四酢酸四ナトリウム10質量部と、水酸化ナトリウム15質量部と、ホルムアルデヒド37質量%水溶液10質量部を加えて、撹拌して、錯化剤及び還元剤を含む水溶液を調製した。
 また、別に、硝酸銀37質量部と、25質量%のアンモニア水30質量部と、イオン交換水150質量部とを混合して、硝酸銀水溶液を調製した。
 次に、上記の錯化剤及び還元剤を含む水溶液535質量部に、上記の前処理工程で得た錫置換層吸着アクリル-スチレン共重合体粒子10質量部を投入し、スラリーを調製した。次いで、調製したスラリーを撹拌しながら、このスラリーに、上記の硝酸銀を含む水溶液217質量部を滴下して、Sn触媒被覆アクリル-スチレン共重合体母粒子の表面に銀被覆層を形成して、銀被覆アクリル-スチレン共重合体粒子スラリーを得た。得られたスラリーを水洗した後、ろ過、乾燥して銀被覆アクリル-スチレン共重合体粒子を得た。
[本発明例2]
(母粒子)
 平均粒子径が4μmである球状シリコーン樹脂粒子を350℃の窒素雰囲気中で5時間加熱処理して、粒子の架橋度を調整したものを母粒子とした。この加熱処理後のシリコーン樹脂粒子は、10%圧縮弾性率の平均値が4470MPaで、変動係数が5.8%であった。
(前処理工程)
 実施例1と同様にして実施して、錫置換層吸着シリコーン樹脂粒子を得た。
(無電解銀めっき工程)
 上記の前処理工程で得た錫置換層吸着シリコーン樹脂粒子10質量部を、イオン交換水500質量部に分散させて、スラリーを調製した。次いで、調製したスラリー510質量部に対して、エチレンジアミン四酢酸四ナトリウム(錯化剤)6質量部と37質量%ホルムアルデヒド水溶液(還元剤)8質量部、D-グルコース15質量部とを加えて、撹拌して、錯化剤及び還元剤を含む錫置換層吸着シリコーン樹脂粒子スラリーを調製した。
 また、別に、硝酸銀30質量部と、25質量%アンモニア水23質量部と、イオン交換水150質量部とを加えて、硝酸銀水溶液を調製した。
 上記の錯化剤及び還元剤を含む錫置換層付きシリコーン樹脂粒子スラリーを撹拌しながら、このスラリーに、上記の硝酸銀水溶液を滴下して、シリコーン樹脂粒子の表面に銀被覆層を形成して、銀被覆樹脂粒子スラリーを得た。得られたスラリーを水洗した後、ろ過、乾燥して銀被覆シリコーン樹脂粒子を得た。
[本発明例3~12]
 母粒子として、下記の表1に示すものを用いたこと、および無電解銀めっき工程において、銀被覆樹脂粒子の銀含有量が同じく下記表1に示す値となるように、錫置換層吸着樹脂粒子と、錯化剤及び還元剤を含む水溶液と、硝酸銀水溶液の配合割合を変更したこと以外は、本発明例1と同様にして銀被覆樹脂粒子を製造した。
[比較例1]
 母粒子として、平均粒子径が8μm、10%圧縮弾性率の平均値が3080MPaで、変動係数が30.5%であるスチレン樹脂粒子を用いた。そして、無電解銀めっき工程において、銀被覆樹脂粒子中の銀含有量が45質量%となるように、錫置換層吸着樹脂粒子と、錯化剤及び還元剤を含む水溶液と、硝酸銀水溶液の配合割合を変更したこと以外は、本発明例1と同様にして銀被覆樹脂粒子を製造した。
[比較例2]
 母粒子として、平均粒子径が4μm、10%圧縮弾性率の平均値が4020MPaで、変動係数が42%であるシリコーン樹脂粒子を用いた。そして、無電解銀めっき工程において、銀被覆樹脂粒子の銀含有量が75質量%となるように、錫置換層吸着樹脂粒子と、錯化剤及び還元剤を含む水溶液と、硝酸銀水溶液の配合割合を変更したこと以外は、本発明例1と同様にして銀被覆樹脂粒子を製造した。
[比較例3]
 母粒子として、平均粒子径が2μm、10%圧縮弾性率の平均値が5300MPaで、変動係数が27.2%であるシリコーン樹脂粒子を用いた。そして、無電解銀めっき工程において、銀被覆樹脂粒子の銀含有量が88質量%となるように、錫置換層吸着樹脂粒子と、錯化剤及び還元剤を含む水溶液と、硝酸銀水溶液の配合割合を変更したこと以外は、本発明例1と同様にして銀被覆樹脂粒子を製造した。
[比較例4]
 母粒子として、平均粒子径が7μm、10%圧縮弾性率の平均値が400MPaで、変動係数が10.8%であるポリウレタン粒子を用いた。そして、無電解銀めっき工程において、銀被覆樹脂粒子の銀含有量が88質量%となるように、錫置換層吸着樹脂粒子と、錯化剤及び還元剤を含む水溶液と、硝酸銀水溶液の配合割合を変更したこと以外は、本発明例1と同様にして銀被覆樹脂粒子を製造した。
[評価]
 本発明例及び比較例で得られた銀被覆樹脂粒子について、以下の評価を行った。その結果を下記の表1に示す。
(銀の含有量)
 銀被覆樹脂粒子と希硝酸とを混合して、銀被覆層を溶解させた後、ろ過して、樹脂粒子を除去した。得られた銀被覆層溶解液中の銀の量を、誘導結合プラズマ発光分光分析装置により測定し、銀被覆樹脂粒子の銀含有量に換算した。
(10%圧縮弾性率)
 銀被覆樹脂粒子の10%圧縮弾性率は、以下のようにして算出した。
まず、微小圧縮試験機(フィッシャーインストルメンツ社製、型番:HM500)を用いて、平面圧子により1つの銀被覆樹脂粒子に対して荷重変化速度0.3mN/s、20℃の条件で圧縮試験を実施し、銀被覆樹脂粒子の長径に対して10%圧縮した際の変位と荷重を測定した。このとき、変位の測定開始点(ゼロ点)は、微小圧縮試験機が銀被覆樹脂粒子との接触を認識した点ではなく、微小圧縮試験機が銀被覆樹脂粒子に付与する荷重を変化させた点とした。次に測定した変位と荷重を、下記(1)に代入して、10%圧縮弾性率を算出した。圧縮試験は銀被覆樹脂粒子100個について実施し、それぞれの粒子の10%圧縮弾性率を算出した。そして、その10%圧縮弾性率の平均値と変動係数を求めた。
10%圧縮弾性率[MPa]=3F/(2SR)1/2  ・・・式(1)
 F:銀被覆樹脂粒子が10%圧縮されたときの荷重[N]
 S:銀被覆樹脂粒子が10%圧縮されたときの変位[mm]
 R:圧縮前の銀被覆樹脂粒子の半径[mm]
(銀被覆樹脂粒子含有樹脂フィルムの引張試験)
 銀被覆樹脂粒子含有樹脂フィルムは、次のようにして作製した。
 エポキシ樹脂組成物と銀被覆樹脂粒子とを、硬化後のエポキシ樹脂組成物と銀被覆樹脂粒子の割合が体積比で60:40となるように秤量した。次いで、秤量したエポキシ樹脂組成物と銀被覆樹脂粒子とを自転公転ミキサーを用いて混合した後、三本ロールミルを用いて混練することにより、銀被覆樹脂粒子含有エポキシ樹脂組成物ペーストを調製した。なお、熱硬化性エポキシ樹脂組成物は、それ単体で硬化させたときの破断時伸びが10%であるものを使用した。
 調製した銀被覆樹脂粒子含有エポキシ樹脂組成物ペーストを、アプリケータを用いてテフロン(登録商標)板に塗布し、次いで150℃、2時間の条件で加熱して、銀被覆樹脂粒子含有エポキシ樹脂組成物を硬化させた。硬化後の銀被覆樹脂粒子含有エポキシ樹脂組成物をテフロン板から剥がし取り、JIS K 7161(プラスチック-引張特性の試験方法(第1部:通則))に記載された方法に準拠して、引張試験用の試験フィルムを50個作製した。
 引張試験は、万能試験機(島津製作所製、オートグラフ)を用いて、同じくJIS K 7161に記載された方法に準拠した方法で実施し、試験フィルム破断時の歪みを算出した。50個の試験フィルムについて、試験フィルム破断時の歪みを測定し、破断時の歪みが1.0%以下の試験フィルムの割合を算出した。
Figure JPOXMLDOC01-appb-T000001
 10%圧縮弾性率の変動係数が本発明の範囲を超える比較例1、2の銀被覆樹脂粒子を含む銀被覆樹脂粒子含有エポキシ樹脂組成物は、硬化後の破断時の歪みが1.0%以下の試験フィルムの割合が多くなった。これは、銀被覆樹脂粒子の10%圧縮弾性率の変動係数が大きくなりすぎたため、応力が付与されたときに銀被覆樹脂粒子が不均一に変形し、銀被覆樹脂粒子の緩和能力が低下したためであると考えられる。
 また、10%圧縮弾性率の平均値が本発明の範囲を超える比較例3の銀被覆樹脂粒子を含む銀被覆樹脂粒子含有エポキシ樹脂組成物は、硬化後の破断時の歪みが1.0%以下の試験フィルムの割合が多くなった。これは、銀被覆樹脂粒子の10%圧縮弾性率が大きくなりすぎたため、銀被覆樹脂粒子の緩和能力が低下したためであると考えられる。
 これに対して、10%圧縮弾性率の平均値と変動係数が本発明の範囲にある本発明例1~12の銀被覆樹脂粒子を含む銀被覆樹脂粒子含有エポキシ樹脂組成物は、硬化後の破断時の歪みが1.0%以下の試験フィルムの割合が低くなった。これは、銀被覆樹脂粒子の緩和能力が高いためであると考えられる。
 以上のことから、本発明によれば、応力に対して高い緩和能力を有する銀被覆樹脂粒子を提供することが可能となることが確認された。
 本発明によれば、応力に対して高い緩和能力を有する銀被覆樹脂粒子を提供することが可能となる。
 10 銀被覆樹脂粒子
 11 樹脂粒子
 12 銀被覆層

Claims (3)

  1.  樹脂粒子と、前記樹脂粒子の表面に設けられた銀被覆層とを有する銀被覆樹脂粒子であって、
     10%圧縮弾性率の平均値が500MPa以上15000MPa以下の範囲内にあり、10%圧縮弾性率の変動係数が30%以下であることを特徴とする銀被覆樹脂粒子。
  2.  前記樹脂粒子は、シリコーン樹脂粒子、アラミド樹脂粒子、フッ素樹脂粒子、ポリスルホン樹脂粒子、ポリエーテル樹脂粒子、ポリイミド樹脂粒子、ポリアミドイミド樹脂粒子、エポキシ樹脂粒子、フェノール樹脂粒子、アクリル樹脂粒子、アクリル-スチレン共重合体粒子、ポリウレタン粒子、コアシェル構造を有する樹脂粒子のいずれかであることを特徴とする請求項1に記載の銀被覆樹脂粒子。
  3. 前記樹脂粒子の平均粒子径は、0.1μm以上30μm以下の範囲内であることを特徴とする請求項1又は請求項2に記載の銀被覆樹脂粒子。
PCT/JP2019/002636 2018-02-06 2019-01-28 銀被覆樹脂粒子 WO2019155924A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019570682A JPWO2019155924A1 (ja) 2018-02-06 2019-01-28 銀被覆樹脂粒子
CN201980006709.3A CN111512400B (zh) 2018-02-06 2019-01-28 银包覆树脂粒子
US16/959,552 US11542381B2 (en) 2018-02-06 2019-01-28 Silver-coated resin particle
KR1020207018647A KR102506730B1 (ko) 2018-02-06 2019-01-28 은 피복 수지 입자
EP19750869.0A EP3751586A4 (en) 2018-02-06 2019-01-28 SILVER COATED RESIN PARTICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018019519 2018-02-06
JP2018-019519 2018-02-06

Publications (1)

Publication Number Publication Date
WO2019155924A1 true WO2019155924A1 (ja) 2019-08-15

Family

ID=67548085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002636 WO2019155924A1 (ja) 2018-02-06 2019-01-28 銀被覆樹脂粒子

Country Status (7)

Country Link
US (1) US11542381B2 (ja)
EP (1) EP3751586A4 (ja)
JP (1) JPWO2019155924A1 (ja)
KR (1) KR102506730B1 (ja)
CN (1) CN111512400B (ja)
TW (1) TWI771559B (ja)
WO (1) WO2019155924A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004541A1 (ja) * 2020-07-03 2022-01-06 三菱マテリアル電子化成株式会社 金属被覆樹脂粒子及びその製造方法、金属被覆樹脂粒子を含む導電性ペースト並びに導電性フィルム
WO2023008279A1 (ja) * 2021-07-28 2023-02-02 住友化学株式会社 積層物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1010610B (el) * 2022-12-16 2024-01-23 Εθνικο Μετσοβιο Πολυτεχνειο, Υβριδικα θερμοσκληρυνομενα σφαιριδια μικροκλιμακας με εναποθεσεις νανοσωματιδιων αργυρου

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193186A (ja) * 1995-01-13 1996-07-30 Sony Chem Corp 異方性導電接着剤用導電粒子及びそれを用いた異方性導電接着剤
WO2005002002A1 (ja) * 2003-06-25 2005-01-06 Hitachi Chemical Co., Ltd. 回路接続材料、これを用いたフィルム状回路接続材料、回路部材の接続構造及びその製造方法
JP2006040546A (ja) * 2004-07-22 2006-02-09 Sanyo Chem Ind Ltd 導電性微粒子
JP2012190795A (ja) * 2011-02-25 2012-10-04 Sekisui Chem Co Ltd 異方性導電材料、接続構造体及び接続構造体の製造方法
JP2013118180A (ja) * 2011-11-02 2013-06-13 Sekisui Chem Co Ltd 異方性導電材料及び接続構造体
JP2014063673A (ja) * 2012-09-21 2014-04-10 Nippon Shokubai Co Ltd 導電性微粒子及びそれを用いた異方性導電材料
JP2014207193A (ja) * 2013-04-15 2014-10-30 株式会社日本触媒 導電性微粒子及びそれを用いた異方性導電材料
JP2015176824A (ja) * 2014-03-17 2015-10-05 株式会社日本触媒 導電性微粒子
JP2016130354A (ja) 2015-01-13 2016-07-21 三菱マテリアル電子化成株式会社 銀被覆樹脂粒子及びその製造方法並びにそれを用いた導電性ペースト
JP2018019519A (ja) 2016-07-28 2018-02-01 東芝三菱電機産業システム株式会社 誘導電動機および誘導電動機システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196559A (en) * 1981-05-28 1982-12-02 Nippon Telegr & Teleph Corp <Ntt> Semiconductor integrated circuit
US5503932A (en) * 1993-11-17 1996-04-02 Nippon Shokubai Co., Ltd. Organic-inorganic composite particles and production process therefor
CN1241974C (zh) * 1998-02-09 2006-02-15 触媒化成工业株式会社 有机聚硅氧烷细颗粒,其制造方法和液晶显示器
JP2001011503A (ja) * 1999-06-25 2001-01-16 Catalysts & Chem Ind Co Ltd 新規な導電性微粒子、および該微粒子の用途
JP2001216841A (ja) * 1999-11-26 2001-08-10 Sekisui Chem Co Ltd 導電性微粒子及び導電接続構造体
JP4278374B2 (ja) * 2002-09-24 2009-06-10 積水化学工業株式会社 導電性微粒子、導電性微粒子の製造方法および導電材料
KR100667374B1 (ko) * 2004-12-16 2007-01-10 제일모직주식회사 이방전도성 접속부재용 고분자 수지 미립자, 전도성 미립자 및 이를 포함한 이방 전도성 접속재료
KR100650284B1 (ko) * 2005-02-22 2006-11-27 제일모직주식회사 도전성능이 우수한 고분자 수지 미립자, 전도성 미립자 및이를 포함한 이방 전도성 접속재료
WO2012002508A1 (ja) * 2010-07-02 2012-01-05 積水化学工業株式会社 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体
CN106133894B (zh) * 2014-04-04 2018-11-16 京瓷株式会社 热固化性树脂组合物、半导体装置及电气电子部件
JP6719859B2 (ja) * 2014-11-14 2020-07-08 株式会社日本触媒 重合体微粒子、導電性微粒子および異方性導電材料
JP6668075B2 (ja) * 2014-11-17 2020-03-18 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
JP6665514B2 (ja) * 2015-01-28 2020-03-13 三菱マテリアル株式会社 銀被覆粒子の製造方法
JP6657924B2 (ja) * 2015-12-22 2020-03-04 三菱マテリアル株式会社 伝熱部材及び伝熱部材の製造方法
JP2018002916A (ja) * 2016-07-05 2018-01-11 三菱マテリアル株式会社 導電性樹脂組成物
JP6216474B1 (ja) * 2017-03-07 2017-10-18 宇部エクシモ株式会社 有機無機複合粒子

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193186A (ja) * 1995-01-13 1996-07-30 Sony Chem Corp 異方性導電接着剤用導電粒子及びそれを用いた異方性導電接着剤
WO2005002002A1 (ja) * 2003-06-25 2005-01-06 Hitachi Chemical Co., Ltd. 回路接続材料、これを用いたフィルム状回路接続材料、回路部材の接続構造及びその製造方法
JP2006040546A (ja) * 2004-07-22 2006-02-09 Sanyo Chem Ind Ltd 導電性微粒子
JP2012190795A (ja) * 2011-02-25 2012-10-04 Sekisui Chem Co Ltd 異方性導電材料、接続構造体及び接続構造体の製造方法
JP2013118180A (ja) * 2011-11-02 2013-06-13 Sekisui Chem Co Ltd 異方性導電材料及び接続構造体
JP2014063673A (ja) * 2012-09-21 2014-04-10 Nippon Shokubai Co Ltd 導電性微粒子及びそれを用いた異方性導電材料
JP2014207193A (ja) * 2013-04-15 2014-10-30 株式会社日本触媒 導電性微粒子及びそれを用いた異方性導電材料
JP2015176824A (ja) * 2014-03-17 2015-10-05 株式会社日本触媒 導電性微粒子
JP2016130354A (ja) 2015-01-13 2016-07-21 三菱マテリアル電子化成株式会社 銀被覆樹脂粒子及びその製造方法並びにそれを用いた導電性ペースト
JP2018019519A (ja) 2016-07-28 2018-02-01 東芝三菱電機産業システム株式会社 誘導電動機および誘導電動機システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3751586A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004541A1 (ja) * 2020-07-03 2022-01-06 三菱マテリアル電子化成株式会社 金属被覆樹脂粒子及びその製造方法、金属被覆樹脂粒子を含む導電性ペースト並びに導電性フィルム
JP7049536B1 (ja) * 2020-07-03 2022-04-06 三菱マテリアル電子化成株式会社 金属被覆樹脂粒子及びその製造方法、金属被覆樹脂粒子を含む導電性ペースト並びに導電性フィルム
WO2023008279A1 (ja) * 2021-07-28 2023-02-02 住友化学株式会社 積層物の製造方法

Also Published As

Publication number Publication date
CN111512400A (zh) 2020-08-07
KR20200092369A (ko) 2020-08-03
TW201940738A (zh) 2019-10-16
JPWO2019155924A1 (ja) 2020-12-03
CN111512400B (zh) 2023-03-10
KR102506730B1 (ko) 2023-03-06
EP3751586A1 (en) 2020-12-16
US11542381B2 (en) 2023-01-03
EP3751586A4 (en) 2021-11-10
TWI771559B (zh) 2022-07-21
US20210363322A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
JP4669905B2 (ja) 導電性粒子、異方性導電材料及び接続構造体
WO2019155924A1 (ja) 銀被覆樹脂粒子
JP5151902B2 (ja) 異方導電性フィルム
WO2014007334A1 (ja) 導電性粒子、樹脂粒子、導電材料及び接続構造体
WO2018163921A1 (ja) 樹脂組成物、樹脂組成物の製造方法、及び構造体
WO2013125388A1 (ja) 異方性導電接続材料、接続構造体、接続構造体の製造方法及び接続方法
JP2014081928A (ja) タッチパネル用導電性粒子、タッチパネル用導電材料及びタッチパネル用接続構造体
WO2020222301A1 (ja) 接続構造体、接続構造体の製造方法、接続材料、及び被覆導電粒子
JP5982217B2 (ja) 導電性粒子、異方性導電材料及び接続構造体
JP2014026971A (ja) 導電性粒子、導電材料及び接続構造体
JP4175347B2 (ja) 異方導電性接着フィルムの製造方法
JP7093639B2 (ja) 銀被覆樹脂粒子
JP7125319B2 (ja) 銀被覆樹脂粒子及びその製造方法
TW201903786A (zh) 樹脂組合物及導通檢查用構件
JP2020184530A (ja) 接続構造体、接続構造体の製造方法、接続材料、及び被覆導電粒子
US20230173537A1 (en) Metal coated resin particles, method for producing same, conductive paste containing metal coated resin particles, and conductive film
JP2019157225A (ja) 銀被覆粒子
JP2021091926A (ja) 非球状の銀被覆樹脂粒子及びその製造方法、非球状の銀被覆樹脂粒子を含む導電性ペースト並びに導電性フィルム
Liu et al. Shell structure control of monodisperse polystyrene‐silver composite microspheres and synthesis of epoxy resin‐based anisotropic conductive adhesives
JP2015005503A (ja) 接続構造体
TW202020097A (zh) 附絕緣性粒子之導電性粒子、導電材料及連接構造體
TW201905142A (zh) 導電性粒子、導電性粒子之製造方法、導電材料及連接構造體
KR20150118381A (ko) 도전 적층체 테이프 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570682

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207018647

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019750869

Country of ref document: EP

Effective date: 20200907