WO2022004541A1 - 金属被覆樹脂粒子及びその製造方法、金属被覆樹脂粒子を含む導電性ペースト並びに導電性フィルム - Google Patents

金属被覆樹脂粒子及びその製造方法、金属被覆樹脂粒子を含む導電性ペースト並びに導電性フィルム Download PDF

Info

Publication number
WO2022004541A1
WO2022004541A1 PCT/JP2021/023899 JP2021023899W WO2022004541A1 WO 2022004541 A1 WO2022004541 A1 WO 2022004541A1 JP 2021023899 W JP2021023899 W JP 2021023899W WO 2022004541 A1 WO2022004541 A1 WO 2022004541A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
silver
tin
mass
layer
Prior art date
Application number
PCT/JP2021/023899
Other languages
English (en)
French (fr)
Inventor
謙介 影山
啓 木之下
修 坂谷
Original Assignee
三菱マテリアル電子化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル電子化成株式会社 filed Critical 三菱マテリアル電子化成株式会社
Priority to CN202180037574.4A priority Critical patent/CN115698379A/zh
Priority to JP2021568739A priority patent/JP7049536B1/ja
Priority to US17/924,019 priority patent/US20230173537A1/en
Priority to EP21834279.8A priority patent/EP4177375A1/en
Priority to KR1020227042512A priority patent/KR20230033642A/ko
Publication of WO2022004541A1 publication Critical patent/WO2022004541A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • B05D1/38Successively applying liquids or other fluent materials, e.g. without intermediate treatment with intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/30Processes for applying liquids or other fluent materials performed by gravity only, i.e. flow coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/285Sensitising or activating with tin based compound or composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • B05D2201/02Polymeric substrate

Definitions

  • the present invention relates to metal-coated resin particles suitable as a conductive filler contained in a conductive material and a method for producing the same.
  • the present invention also relates to a conductive paste and a conductive film containing the metal-coated resin particles.
  • this application claims priority based on Japanese Patent Application No. 2020-115826 filed in Japan on July 3, 2020, and the contents thereof are incorporated herein by reference.
  • conductive paste As a conductive material to replace lead solder or non-lead solder, conductive paste, conductive spacer, conductive film, die attach film, etc., which is a mixture of silver-coated resin particles coated with silver on resin particles and resin. Adhesives are known.
  • the conductive adhesive is used as a material for forming electronic components such as electrodes or electrical wiring included in electronic devices such as solar cell panels, liquid crystal displays and touch panels, electronic display devices or semiconductor elements.
  • a spherical resin particle, a tin adsorbing layer provided on the surface of the spherical resin particle, and silver coated on the surface of the tin adsorbing layer are provided, and silver is provided with respect to 100 parts by mass of the silver-coated spherical resin particle.
  • silver-coated spherical resin particles characterized by an amount of 2 to 80 parts by mass and a silver crystallite diameter measured by X-ray diffractometry of 18 to 24 nm (eg, patent).
  • Document 1 see claim 1, claim 6, paragraph [0011]), paragraph [0013], paragraph [0026]).
  • the silver-coated spherical resin particles have a step of pretreating the spherical resin particles with an aqueous solution of a tin compound, and then a step of performing electroless silver plating on the spherical resin particles with a reducing agent. Is produced by setting the temperature of the aqueous solution of the tin compound to 20 to 45 ° C.
  • Patent Document 1 describes that according to this method, silver-coated spherical resin particles having excellent conductivity, excellent adhesion between spherical resin particles and silver, and suitable for a conductive filler can be easily produced. There is.
  • a binder resin is mixed with the silver-coated spherical resin particles to prepare a conductive paste, and the conductive paste is used as a circuit layer made of, for example, copper and a semiconductor chip.
  • the conductive film laminates and adheres the semiconductor chip to the circuit layer and secures the conductivity between the circuit layer and the semiconductor chip.
  • the silver-coated spherical resin particles shown in Patent Document 1 have excellent adhesion between the spherical resin particles and silver, but when a severe heat cycle is applied to the conductive film and thermal stress repeatedly acts on the conductive film, the resin particles and silver. Due to the difference in the coefficient of thermal expansion between the two, the silver coating layer may peel off from the surface of the spherical resin particles because the thermal stress cannot be sufficiently relaxed, and the peeled part becomes the starting point of cracks in the conductive film and is conductive. It has been required that the silver-coated layer have higher adhesion to the spherical resin particles in order to reduce the stress.
  • An object of the present invention is to provide metal-coated resin particles which are used as a conductive filler in a conductive film and have excellent adhesion of a metal-coated layer to core resin particles when a severe heat cycle is applied to the conductive film. There is something in it.
  • Another object of the present invention is to provide a conductive paste and a conductive film capable of forming a conductive film having high conductivity and thermal conductivity.
  • the first aspect of the present invention is a metal-coated resin particle having a spherical core resin particle and a metal-coated resin particle provided on the surface of the core resin particle, and the metal-coated layer is the core resin particle.
  • a tin intermediate layer (however, 0.1 ⁇ x ⁇ 4, 0.1 ⁇ y ⁇ 5) composed of one or more metallic tins and / or tin compounds selected from the above, and the surface of the tin intermediate layer. It is a metal-coated resin particle characterized by being composed of a second silver layer formed in.
  • a second aspect of the present invention is an invention based on the first aspect, wherein the first silver layer has an average thickness of 10 nm to 100 nm, and the tin intermediate layer has an average thickness of 2 nm to 20 nm.
  • the second silver layer is a metal-coated resin particle having an average thickness of 50 nm to 150 nm and an average particle size of 1 ⁇ m to 110 ⁇ m.
  • the third aspect of the present invention is a conductive paste containing 70% by mass to 90% by mass of the metal-coated resin particles and 10% by mass to 30% by mass of the binder resin according to the first or second aspect.
  • the fourth aspect of the present invention is that when the conductive paste is 100% by mass, the metal-coated resin particles of the first or second aspect are 10% by mass to 80% by mass, spherical or aspect ratio (major axis / minor axis). ) Is 5 or less, and is a conductive paste containing 10% by mass to 70% by mass of flat silver particles and 10% by mass to 30% by mass of a binder resin.
  • the fifth aspect of the present invention is a conductive film using the conductive paste of the third aspect.
  • the sixth aspect of the present invention is a conductive film using the conductive paste of the fourth aspect.
  • the seventh aspect of the present invention is a step of mixing spherical core resin particles with an aqueous solution of a tin compound to adsorb tin on the surface of the core resin particles to form a tin adsorption layer, and a tin adsorption layer on the surface.
  • a part of an aqueous solution containing a predetermined amount of silver salt and a silver complexing agent (hereinafter, also referred to as silver salt or the like) is added to a slurry in which the core resin particles in which the above-mentioned particles are formed are dispersed in water, and a reducing agent and pH are added.
  • the core resin particles are subjected to electroless silver plating in the mixed solution by dropping and mixing together with the adjusting agent to replace the tin adsorption layer with the first silver layer, and the mixed solution is stirred.
  • the step of forming a tin intermediate layer on the surface of the first silver layer by holding for a predetermined time, and the balance of an aqueous solution (silver salt or the like) containing the predetermined amount of silver salt and a silver complexing agent in the mixed solution.
  • the core resin particles are continuously subjected to electroless silver plating in the mixed solution by further dropping and mixing with the reducing agent and the pH adjusting agent to form a second silver layer on the surface of the tin intermediate layer. It is a method for producing metal-coated resin particles including a step.
  • the eighth aspect of the present invention is an invention based on the seventh aspect, and when the predetermined amount is 100% by mass, a part of the aqueous solution containing the silver salt and the silver complexing agent is 5% by mass.
  • This is a method for producing metal-coated resin particles in which the amount exceeds 70% by mass and the balance of the aqueous solution containing the silver salt and the silver complexing agent is 30% by mass or more and less than 95% by mass.
  • a ninth aspect of the present invention is the invention based on the seventh or eighth aspect, wherein the temperature of the aqueous solution of the tin compound when the spherical core resin particles are mixed with the aqueous solution of the tin compound is 45 ° C.
  • This is a method for producing metal-coated resin particles having a temperature exceeding 90 ° C. or lower.
  • the spherical metal-coated resin particles according to the first aspect of the present invention have spherical core resin particles and a metal-coated layer provided on the surface of the core resin particles.
  • the tin intermediate layer has the effect of relieving thermal stress, so the metal-coated layer is a core resin. It is difficult to peel off from the surface of the particles, and the metal coating layer has excellent adhesion to the core resin particles, whereby a conductive film having high conductivity and thermal conductivity can be obtained.
  • the first silver layer, the tin intermediate layer, and the second silver layer each have a predetermined thickness range, so that a severe heat cycle is applied to the metal-coated layer.
  • the metal coating layer is more difficult to peel off from the surface of the core resin particles when thermal stress is repeatedly applied, and the metal coating layer has better adhesion to the core resin particles, thereby conducting conductivity and heat conduction. A conductive film having higher properties can be obtained.
  • the conductive paste of the third and fourth viewpoints of the present invention contains the metal-coated resin particles as a conductive filler, and the conductive paste forms the conductive films of the fifth and sixth viewpoints.
  • a conductive film that does not deteriorate in electrical resistance and thermal conductivity as compared with the conventional conductive film containing metal-coated resin particles as a conductive filler is formed. can do.
  • the conductive paste of the fourth aspect further contains spherical or flat silver particles having an aspect ratio (major axis / minor axis) of 5 or less as a conductive filler, the contact ratio between the metal-coated resin particles and the silver particles. Has the effect of further enhancing the conductivity and the thermal conductivity by increasing the amount.
  • a tin adsorption layer formed on the surface of the core resin particles is mixed by dropping a part of a predetermined amount of silver salt or the like. Tin is replaced with silver in the mixed solution to form a first silver layer. Then, the tin intermediate layer is formed on the surface of the first silver layer by holding the mixture for a predetermined time while stirring. Next, a second silver layer is formed on the surface of the tin intermediate layer by dropping a predetermined amount of the balance of silver salt or the like into the mixed solution and mixing the mixture.
  • a metal coating layer composed of three layers of a first silver layer, a tin intermediate layer and a second silver layer is formed on the surface of the core resin particles.
  • the tin intermediate layer divides the thickness of the silver layer into two
  • metal-coated resin particles are used as a conductive filler in the conductive film, and when a severe heat cycle is applied to the conductive film, thermal stress is applied. ease. As a result, the metal coating layer is difficult to peel off from the surface of the core resin particles, and the metal coating resin particles having excellent adhesion to the core resin particles can be produced.
  • the predetermined amount when the predetermined amount is 100% by mass, a part of the aqueous solution containing the silver salt and the silver complexing agent exceeds 5% by mass and 70% by mass. % Or less, and the balance of the aqueous solution containing the silver salt and the silver complexing agent is 30% by mass or more and less than 95% by mass. Therefore, the thickness of the first silver layer and the thickness of the second silver layer are desired. It can be controlled to a range.
  • the temperature of the aqueous solution of the tin compound when the spherical core resin particles are mixed with the aqueous solution of the tin compound is more than 45 ° C. and 90 ° C. or lower. Therefore, the amount of tin adsorbed on the surface of the core resin particles of tin ions in the aqueous solution is increased, and the thickness of the first silver layer can be increased.
  • FIG. 2A is a photograph of the metal-coated resin particles in the conductive film after the thermal cycle test of the bonded body using the conductive paste obtained in Test Example 1 taken with a scanning electron microscope (30,000 times). It is a figure.
  • FIG. 2B shows a transmission electron microscope (100,000 times) in which the portions of the first silver layer, the tin intermediate layer, and the second silver layer of the spherical metal-coated resin particles shown in FIG. 2A are enlarged. It is a photograph taken. It is a flow figure which shows the manufacturing method of the metal-coated resin particles which concerns on embodiment of this invention. It is a photographic figure which photographed the metal-coated resin particle in the conductive film after the cold-heat cycle test of the bonded body using the conductive paste obtained in the comparative test example 1 with a scanning electron microscope (30,000 times).
  • the spherical metal-coated resin particles 10 of the present embodiment are composed of the spherical core resin particles 11 and the metal coating layer 12 covering the spherical core resin particles 11.
  • the metal coating layer 12 is formed on the surface of the first silver layer 12a formed on the surface of the core resin particles 11, the tin intermediate layer 12b formed on the surface of the first silver layer 12a, and the tin intermediate layer 12b. It is composed of the second silver layer 12c.
  • the average particle size of the core resin particles 11 is preferably 1 ⁇ m or more and 110 ⁇ m or less, and more preferably 1 ⁇ m or more and 50 ⁇ m or less. If the average particle size is less than 1 ⁇ m, the surface area of the resin particles becomes large, and it is necessary to increase the amount of silver in order to obtain the conductivity required for the conductive particles. If the average particle size is larger than 110 ⁇ m, it tends to be difficult to apply the silver-coated resin particles to a fine pattern. Considering the average particle size of the core resin particles 11 and the thickness of the metal coating layer 12 described below, the metal-coated resin particles 10 have an average particle size of 1 ⁇ m to 50 ⁇ m, preferably 2 ⁇ m to 30 ⁇ m. This average particle size is a volume-based median diameter measured by a laser diffraction type particle size distribution meter (model name: SDLD200VER manufactured by Shimadzu Corporation).
  • the core resin particles 11 are preferably more spherical, but elliptical particles or the surface of the particles may have some irregularities larger than the roughened dents. However, if there are sharp protrusions, the adhesion of the plating film will decrease when plated, and the dispersibility in the binder will decrease when mixed with the binder, which is the resin, making the metal-coated resin particles isotropically conductive. It is not preferable because it causes a loss of conductivity and reproduction of insulating properties when used as a paste or an anisotropic conductive paste.
  • the core resin particles 11 are not limited to solid particles, and may be hollow.
  • the aspect ratio which is the ratio of the major axis to the minor axis of the resin particles, is preferably in the range of 1 to 1.5, more preferably in the range of 1 to 1.3, and even more preferably in the range of 1 to 1.1.
  • This aspect ratio is determined by measuring the ratio of the major axis to the minor axis (major axis / minor axis) of one particle by observing 10 particles with a scanning electron microscope (model name: SU-1500 manufactured by Hitachi High-Technologies Corporation). Is the average value.
  • Examples of the core resin particles 11 include silicone resin particles, aramid resin particles, fluororesin particles, polysulfone resin particles, polyether resin particles, polyimide resin particles, polyamideimide resin particles, epoxy resin particles, phenol resin particles, and acrylic resin particles. , Acrylic-styrene copolymer particles, polyurethane particles, rubber particles, styrene resin particles, and resin particles having a core-shell structure can be used.
  • the silicone resin particles include polysilsesquioxane (PSQ) resin particles and polymethylsilsesquiosaxan (PMSQ) resin particles.
  • Examples of the aramid resin particles include polymethaphenylene isophthalamide (MPIA) resin particles and polyparaphenylene terephthalamide (PPTA) resin particles.
  • Examples of fluorine-based particles include polytetrafluoroethylene (PTFE) resin particles, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride (THV) resin particles, polyvinylidene fluoride (PVDF) -based resin particles, and polychlorotrifluoro.
  • PCTFE Ethylene
  • ECTFE chlorotrifluoroethylene-ethylene
  • ETFE tetrafluoroethylene-ethylene
  • FEP tetrafluoroethylene-hexafluoropropylene
  • tetrafluoroethylene -Examples include perfluoroalkyl vinyl ether (PFA) -based resin particles.
  • PFA perfluoroalkyl vinyl ether
  • polysulfone resin particles include polyphenylene sulfide (PPS) resin particles, polyether-sulfone (PES) resin particles and the like.
  • polyether resin particles examples include polyether ether ketone (PEEK) resin particles, polyphenylene ether (PPE) resin particles, and the like.
  • phenol resin particles examples include novolak-type phenol resin particles, resol-type phenol resin particles, and phenol resin particles obtained by modifying a part thereof.
  • polyurethane particles examples include polyester-based polyurethane particles and polyol-based polyurethane particles.
  • rubber particles include silicone rubber particles, fluororubber particles and the like.
  • resin particles having a core-shell structure examples include resin particles of an acrylic resin core-silicone resin shell. The resin particles of the acrylic resin core-silicone resin shell are produced by coating the acrylic resin particles with a silicone resin film.
  • the first silver layer 12a which is an inner layer, has an average thickness of 10 nm to 100 nm
  • the tin intermediate layer 12b has an average thickness of 2 nm to 20 nm
  • the second silver layer which is an outer layer.
  • 12c preferably has an average thickness of 50 nm to 150 nm.
  • the more preferable average thickness of the first silver layer 12a is 10 nm to 90 nm
  • the more preferable average thickness of the tin intermediate layer 12b is 3 nm to 15 nm
  • the more preferable average thickness of the second silver layer 12c is 60 nm to 140 nm. Is.
  • the tin intermediate layer 12b may come into direct contact with the core resin particles 11, which is the same as the characteristics of the conventional metal-coated resin particles, and the effect of the present invention cannot be obtained.
  • the average thickness of the first silver layer 12a exceeds 100 nm, the thickness of the metal coating layer 12 including the thicknesses of the tin intermediate layer and the second silver layer becomes large, and the metal coating layer 12 becomes the core resin particles 11. It is easy to peel off from the metal-coated resin particles 10, and the conductivity of the metal-coated resin particles 10 is likely to be low.
  • the average thickness of the tin intermediate layer 12b is less than 2 nm, the effect of relaxing the thermal stress generated in the metal coating layer 12 when the metal coating resin particles 10 are thermally loaded is reduced, and the conventional metal coating resin is reduced. The characteristics of the particles are the same, and the effect of the present invention is difficult to obtain.
  • the average thickness of the tin intermediate layer 12b exceeds 20 nm, the thickness of the metal coating layer 12 including the thicknesses of the first silver layer and the second silver layer becomes large, and the conductivity of the metal coating resin particles 10 becomes high. It tends to be low. If the thickness of the metal coating layer 12 is not increased, the thicknesses of the first and second silver layers are relatively small, and the conductivity of the metal coating resin particles 10 tends to be low.
  • the tin intermediate layer 12b is easily exposed on the outer surface of the metal-coated resin particles 10, and the powder volume resistance of the metal-coated resin particles 10 becomes high, so that the metal-coated resin particles 10 are coated with metal.
  • the conductivity of the resin particles 10 tends to be low.
  • the average thickness of the second silver layer 12c exceeds 150 nm, the thickness of the metal coating layer 12 including the thicknesses of the first silver layer and the tin intermediate layer becomes large, and the metal coating layer 12 becomes the core resin particles 11. It becomes easy to peel off from.
  • the average thickness of the first silver layer 12a, the tin intermediate layer 12b, and the second silver layer 12c is obtained as follows. First, the spherical metal-coated resin particles 10 sprinkled on the carbon sample table are subjected to cross-sectional exposure processing to a thickness of about 100 nm using a FIB (focused ion beam device) to prepare a sample. Next, the cross-sectional shape at the interface between the metal-coated layer and the core resin particles in the sample whose cross-section was exposed using a scanning electron microscope (SEM) was determined for 10 metal-coated resin particles 10 by 5,000 nm square on the surface of the core resin particles 11. In order to observe the entire metal coating layer 12 without duplication, the thickness of each of the first silver layer 12a, the tin intermediate layer 12b, and the second silver layer 12c was measured. Let the average value of 10 pieces be the average thickness of each layer.
  • SEM scanning electron microscope
  • the total silver coating amount (content) of the first silver layer 12a and the second silver layer 12c with respect to the metal-coated resin particles 10 depends on the average particle size of the core resin particles 11 and has the required conductivity. It is determined by the degree, and is preferably 2 parts by mass to 90 parts by mass with respect to 100 parts by mass of the metal-coated resin particles.
  • the silver content is less than 2 parts by mass with respect to 100 parts by mass of the metal-coated resin particles, when the metal-coated resin particles are dispersed as conductive particles, it is difficult to make contact between the silver and sufficient conductivity is imparted. Can be difficult.
  • the silver content exceeds 90 parts by mass the specific gravity becomes large, the cost becomes high, and the conductivity tends to be saturated.
  • the silver content is more preferably 28 parts by mass to 85 parts by mass, further preferably 28 parts by mass to 80 parts by mass.
  • the ratio of the amount of silver in the second silver layer 12c is preferably 1: 2 to 5.
  • the tin content of the tin intermediate layer with respect to the metal-coated resin particles 10 is the amount of tin contained in the metallic tin and / or the tin compound constituting the tin intermediate layer.
  • the tin content depends on the average particle size of the core resin particles 11 and the coating amount of the tin intermediate layer, and is preferably 1 part by mass to 5 parts by mass with respect to 100 parts by mass of the metal-coated resin particles.
  • this manufacturing method includes a step S01 of forming a tin adsorption layer on the surface of the core resin particles 11 and a step S02 of substituting tin in the tin adsorption layer with silver to form a first silver layer.
  • tin which is a metal lower than silver
  • tin which is a metal lower than silver
  • the core resin particles 11 are adsorbed on the surface of the core resin particles 11 to form a tin adsorption layer.
  • the core resin particles are dispersed in water in advance, an aqueous solution of the tin compound is added to the dispersion, and the mixture is stirred.
  • the core resin particles 11 may be added to the aqueous solution of the tin compound and stirred.
  • divalent ions of tin are adsorbed on the surface of the core resin particles 11.
  • the core resin particles 11 on which tin is adsorbed are separated by filtration and washed with water.
  • the stirring time is appropriately determined depending on the temperature of the following aqueous solution of the tin compound and the content of the tin compound, but is preferably 0.5 to 24 hours.
  • the temperature of the aqueous solution of the tin compound is preferably in the range of more than 45 ° C and 90 ° C or less. It is more preferable that the temperature exceeds 45 ° C and is 80 ° C or lower. At 45 ° C. or lower, tin ions in the aqueous solution of the tin compound are less likely to be activated, and tin is less likely to be adsorbed on the surface of the core resin particles.
  • the tin compound when the temperature of the aqueous solution of the tin compound exceeds 90 ° C., the tin compound is oxidized and the aqueous solution becomes unstable, and the tin in the aqueous solution of the tin compound may not sufficiently adhere to the core resin particles.
  • Examples of the tin compound used in the tin adsorption treatment include stannous chloride, stannous fluoride, stannous bromide, stannous iodide and the like.
  • stannous chloride the content of stannous chloride in the aqueous solution of the tin compound is preferably 10 g / dm 3 to 100 g / dm 3.
  • the content of stannous chloride is 10 g / dm 3 or more, a uniform tin coating can be formed on the surface of the resin particles.
  • the content of stannous chloride is 100 g / dm 3 or less, it is easy to suppress the amount of unavoidable impurities in stannous chloride.
  • the stannous chloride can be contained in the aqueous solution of the tin compound until it is saturated.
  • Aqueous solution of tin compounds preferably contain hydrochloric acid 0.5 cm 3 ⁇ 2 cm 3 with respect to stannous 1g chloride.
  • Hydrochloric acid is added as hydrochloric acid having a concentration of 35% by mass.
  • the amount of hydrochloric acid is 0.5 cm 3 or more, the solubility of stannous chloride can be improved and the hydrolysis of tin can be suppressed.
  • the amount of hydrochloric acid is 2 cm 3 or less, the pH of the aqueous solution of the tin compound does not become too low, so that tin can be efficiently adsorbed on the resin particles.
  • first silver layer forming step S02 the core resin particles 11 having the tin adsorption layer formed on the surface are dispersed in water to prepare a slurry, and an aqueous solution containing a predetermined amount of silver salt and a silver complexing agent in the slurry ( A part of (silver salt, etc.) is dropped and mixed together with a reducing agent and a pH adjusting agent, electroless silver plating is performed on the core resin particles in this mixed solution, and the tin adsorption layer is formed on the first silver layer 12a (Fig.). Refer to 1.).
  • a part of the silver salt or the like is preferably more than 5% by mass and 70% by mass or less, preferably 10% by mass or more and 40% by mass or less, when the predetermined amount is 100% by mass. Is more preferable.
  • the amount is determined by the thickness of the first silver layer to be formed.
  • the residual amount of the silver salt or the like is preferably 30% by mass or more and less than 95% by mass, and more preferably 60% by mass or more and 90% by mass or less.
  • the temperature of the mixture is preferably 15 ° C to 30 ° C.
  • the crystallites of the first silver layer 12a become coarse, and if the temperature exceeds 30 ° C, the fineness of the silver film is lost due to the rapid growth of the first silver layer, which is a plating film, and the first silver layer 12a Is easy to peel off from the core resin particles 11.
  • the divalent ions of tin adsorbed on the surface of the core resin particles 11 in the above-mentioned tin adsorption treatment are dissolved as tetravalent ions and emit divalent electrons.
  • silver ions receive electrons and precipitate as a metal at the portion of the core resin particles 11 where tin has been adsorbed.
  • the substitution reaction between tin and silver is completed, and in this substitution reaction, the catalyst is oxidized by the reducing agent and electrons are released to the solution.
  • the silver ions inside receive the electrons and silver is deposited.
  • the surface of the core resin particles 11 is coated with the first silver layer 12a and formed.
  • the adsorbed tin layer undergoes a substitution reaction between tin and silver in the initial stage of electroless plating, and after the substitution reaction is completed, silver is coated by an electroless plating reaction with a reducing agent.
  • some tin divalent ions in the tin compound aqueous solution are replaced with silver, and the remaining tin divalent ions in the tin compound aqueous solution are used to form the next tin intermediate layer. ..
  • silver salt silver nitrate, silver dissolved in nitric acid, or the like can be used.
  • the silver complexing agent is preferably completely dissolved in the plating solution.
  • salts such as ammonia, ethylenediamine tetraacetic acid, ethylenediamine tetraacetic acid tetrasodium, nitrotriacetic acid, triethylenetetraammine hexaacetic acid, sodium thiosulfate, succinate, succinateimide, and citrate should be used.
  • an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide can be used.
  • formalin As the reducing agent, formalin, glucose, Rochelle salt (potassium sodium tartrate), hydrazine and its derivatives, hydroquinone, L-ascorbic acid, formic acid and the like can be used.
  • formalin which is an aqueous solution of formaldehyde
  • a mixture of at least two or more kinds of reducing agents containing formaldehyde is more preferable
  • a mixture of a reducing agent containing formaldehyde and glucose is most preferable.
  • the tin intermediate layer forming process In the tin intermediate layer forming step S03, the tin released in the mixed solution that could not be completely replaced due to the formation of the first silver layer 12a as a surplus is deposited on the surface of the first silver layer 12a to form the tin intermediate layer 12b. Form.
  • the amount of free tin in the mixed solution can be determined by analysis, and if necessary, a tin compound may be added separately to adjust the concentration of free tin.
  • the mixed solution In order to form the tin intermediate layer 12b, the mixed solution is held for a predetermined time while stirring.
  • the predetermined holding time is appropriately determined depending on the temperature of the mixed solution and the amount of freed tin, but is preferably 0.5 hour to 1.5 hours.
  • the temperature of the mixture is preferably in the range of 10 ° C to 30 ° C.
  • the liberated tin becomes divalent ions and becomes tin hydroxide (Sn (OH) 2 ) by the alkaline aqueous solution of the pH adjuster, and is formed on the surface of the first silver layer 12a. It accumulates and becomes the tin intermediate layer 12b.
  • the tin intermediate layer 12b is one or more metallic tins selected from the group consisting of tin (Sn), tin oxide (Sn x Oy ) and tin hydroxide (Sn x (OH) y). Alternatively, it is composed of a tin compound (provided that 0.1 ⁇ x ⁇ 4, 0.1 ⁇ y ⁇ 5).
  • the balance (silver salt, etc.) of the aqueous solution containing the predetermined amount of silver salt and the silver complexing agent in the mixed solution is reduced in the same manner as the reducing agent and pH adjusting agent used in step S02.
  • electroless silver plating is continuously performed on the core resin particles 11 in this mixed solution to form a second silver layer 12c on the surface of the tin intermediate layer 12b.
  • the metal-coated resin particles 10 are obtained.
  • the balance of the silver salt or the like is preferably 30% by mass or more and less than 95% by mass, and 60% by mass or more and 90% by mass or less, when the predetermined amount is 100% by mass. More preferred.
  • the amount is determined by the thickness of the second silver layer to be formed.
  • the temperature of the mixture is preferably 10 ° C to 30 ° C. The reason why this temperature range is preferable is the same as the reason described in step S02.
  • the metal-coated resin particles 10 of the present embodiment are excellent as a conductive filler, and in particular, a conductive adhesive, a conductive film (sheet), a conductive rubber (elastomer), a conductive pressure-sensitive adhesive, a heat-dissipating sheet, and a heat-dissipating grease.
  • TIM Thermal Interface Material
  • a conductive filler of a conductive material such as a conductive spacer.
  • Conductive adhesives are classified into isotropic conductive adhesives (ICA: Isotropic Conductive Adhesive) and anisotropic conductive adhesives (ACA: Anisotropic Conductive Adhesive). Further, it has a paste-like, film-like, or ink-like form depending on the form of the binder.
  • ICA Isotropic Conductive Adhesive
  • ACA Anisotropic Conductive Adhesive
  • the binder shrinks when the binder is cured, so that the fillers come into contact with each other in the vertical, horizontal, and diagonal directions, so that the conductor to be connected and the filler come into contact with each other to increase the conductivity. can get. It is also possible to form the sheet with an isotropic conductive adhesive.
  • the filler is dispersed in the binder and the anisotropic conductive adhesive is sandwiched between the conductors to be connected.
  • the filler between the conductors to be connected and the conductor to be connected come into contact with each other in the vertical direction, and conductivity can be obtained.
  • the fillers are arranged in the lateral direction via the binder which is an insulator, and the fillers do not come into contact with each other, so that conductivity cannot be obtained.
  • the conductive adhesive examples include anisotropic or isotropic conductive paste, anisotropic or isotropic conductive ink, and the like.
  • the conductive adhesive is prepared by uniformly mixing the metal-coated resin particles and the insulating binder resin using a kneader such as a planetary mixer or a three-roll mill. In the conductive adhesive, the metal-coated resin particles are uniformly dispersed in the insulating binder resin.
  • the content of the metal-coated resin particles is not particularly limited, and is appropriately determined depending on the intended use and the like.
  • the conductive paste When the conductive paste is 100% by mass, it is preferable to contain 70% by mass to 90% by mass of the metal-coated resin particles and 10% by mass to 30% by mass of the binder resin in order to obtain conductivity and thermal conductivity.
  • the conductive paste may further contain spherical or flat silver particles having an aspect ratio (major axis / minor axis) of 5 or less as a conductive filler. can.
  • the average particle size of the silver particles is preferably 10 ⁇ m or less.
  • the metal-coated resin particles are contained in an amount of 10% by mass to 80% by mass
  • the silver particles are contained in an amount of 10% by mass to 70% by mass
  • the binder resin is contained in an amount of 10% by mass to 30% by mass. This is preferable from the viewpoint of further increasing the conductivity and thermal conductivity.
  • the insulating binder resin in the conductive adhesive is not particularly limited, and examples thereof include a thermoplastic resin and a composition that is cured by heat or light such as a curable resin composition.
  • examples of the thermoplastic resin include styrene-butadiene block copolymers, acrylic resins, ethylene-vinyl acetate resins, and phenoxy resins.
  • examples of the thermosetting resin composition include a resin composition containing a resin such as a silicone resin or an epoxy resin or a mixture thereof as a main component.
  • the conductive film examples include an anisotropic or isotropic conductive film formed into a film.
  • the conductive film is produced by first preparing a resin composition in which metal-coated resin particles are dispersed in an insulating binder resin, and then applying this resin composition to the surface of a support film such as PET.
  • This resin composition is prepared by uniformly mixing the metal-coated resin particles and the insulating binder resin using a kneader such as a planetary mixer or a three-roll mill.
  • the metal-coated resin particles are uniformly dispersed in the insulating binder resin on the support film.
  • the insulating binder resin in the conductive film examples include a resin composition containing a resin such as an acrylic resin, a silicone resin, an epoxy resin, or a phenoxy resin or a mixture thereof as a main component.
  • the content of the metal-coated resin particles in the resin composition in the conductive film is not particularly limited and is appropriately determined depending on the intended use and the like, but is 0.5% by mass to 90% by mass with respect to 100% by mass of the binder resin. It is preferably in the range of%.
  • the conductive rubber there is a conductive rubber molded into a sheet shape or a rectangular parallelepiped shape, and it can be used as a heat dissipation sheet or a conductive connector.
  • the conductive rubber is first added by kneading the binder rubber, the vulcanizing agent, and the metal-coated resin particles using a biaxial roll or the like, and then heating or pressurizing the conductive rubber using a heating press or a dryer. It is made by vulcanization and molding.
  • the binder rubber in the conductive rubber include nitrile rubber, acrylic rubber, styrene-butadiene rubber, silicone rubber, and fluororubber.
  • the content of the metal-coated resin particles in the composition of the conductive rubber is not particularly limited and is appropriately determined depending on the intended use and the like, but is 0.5% by mass to 90% by mass with respect to 100% by mass of the binder rubber. Within the range is preferred.
  • the conductive pressure-sensitive adhesive examples include a conductive pressure-sensitive adhesive or a conductive gel molded into a sheet or a rectangular shape, and can be used as an electric contact material, a heat-dissipating sheet, and an electrode.
  • a pressure-sensitive adhesive composition in which metal-coated resin particles are dispersed in a pressure-sensitive adhesive that serves as an insulating binder is prepared, and then this pressure-sensitive adhesive composition is applied to the surface of a support film such as PET. It is produced by.
  • the binder pressure-sensitive adhesive in the conductive pressure-sensitive adhesive include acrylic-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, and silicone-based pressure-sensitive adhesives.
  • the content of the metal-coated resin particles in the composition in the conductive pressure-sensitive adhesive is not particularly limited and is appropriately determined depending on the intended use and the like, but is 0.5% by mass to 90% by mass with respect to 100% by mass of the pressure-sensitive adhesive. It is preferably in the range of%.
  • the heat-dissipating grease includes a mixture of non-volatile base oil and metal-coated resin particles, and can be used as a heat-dissipating material.
  • Thermal paste is prepared by uniformly mixing base oil and metal-coated resin particles using a kneader such as a planetary mixer or a three-roll mill.
  • the base oil used for the heat-dissipating grease include silicone oil-based base oil, mineral oil-based base oil, synthetic hydrocarbon-based base oil, ester-based base oil, ether-based base oil and glycol-based base oil, or a combination thereof. Can be done.
  • the content of the metal-coated resin particles in the composition in the thermal paste is not particularly limited and is appropriately determined depending on the intended use, etc., but is 0.5% by mass to 90% by mass with respect to 100% by mass of the base oil. Within the range is preferred.
  • the conductive spacer is used in a liquid crystal display device by electrically connecting the wiring portions of two upper and lower substrates sandwiching a liquid crystal substance vertically and vertically and holding the gap between the substrates to a predetermined size.
  • the metal-coated resin particles are added to an insulating binder resin such as a thermosetting resin or an ultraviolet light-curing adhesive, and then the metal-coated resin particles and the binder resin are mixed with a planetary mixer or a three-roll mill.
  • a resin composition is prepared by uniformly mixing using a kneader such as the above, and then the above resin composition is applied to one or both of the wiring portions of the upper and lower substrates and the two substrates are attached. It is made by combining.
  • the content of the metal-coated resin particles is not particularly limited and is appropriately determined depending on the intended use and the like, but is preferably in the range of 2% by mass to 10% by mass with respect to 100% by mass of the binder resin.
  • tin chloride aqueous solution (SnCl 2 aqueous solution) was prepared for tin adsorption treatment.
  • the tin chloride aqueous solution was prepared by diluting to 1 dm 3 of water (measured up) using stannous 15g chloride, the volumetric flask hydrochloride 15cm 3 volume 1 dm 3.
  • This aqueous tin chloride solution was stored at a liquid temperature of 27 ° C.
  • hydrochloric acid hydrochloric acid having a concentration of 35% by mass was used.
  • silver nitrate silver salt
  • 53 cm 3 of 25 mass% ammonia water and 175 cm 3 of water were mixed to prepare 256 g of a silver ammonia complex aqueous solution (silver salt or the like) containing silver nitrate.
  • acrylic resin particles PMMA crosslinked beads having an average particle size of 3 ⁇ m were prepared.
  • 9 g of the core resin particles were dispersed in water to prepare a dispersion, the above tin chloride aqueous solution was added to the dispersion, the temperature was adjusted to 60 ° C., and the mixture was stirred at this temperature for 5 hours (tin adsorption layer forming step). ). Then, the core resin particles were separated by filtration and washed with water.
  • the core resin particles are dispersed again in water to prepare a slurry having a liquid temperature of 15 ° C., and while stirring the slurry, a reducing agent (35% by mass% aqueous formaldehyde solution) and a pH adjuster (sodium hydroxide aqueous solution) are added to the slurry. ) And 85 g of silver salt or the like (silver ammonia complex aqueous solution) were sequentially added dropwise to prepare a mixed solution. The dropping amount of the silver salt or the like was 33.3% by mass when the first prepared silver salt or the like (predetermined amount of silver salt or the like) was 100% by mass (first silver layer forming step).
  • the mixed liquid having a liquid temperature of 20 ° C. was held while stirring for 1 hour (tin intermediate layer forming step). Subsequently, when the predetermined amount of silver salt or the like initially prepared is 100% by mass, the remaining 66.7% by mass of the silver salt or the like (silver-ammonia complex aqueous solution) is stirred with a mixed solution having a liquid temperature of 20 ° C. While dropping into the mixed solution (second silver layer forming step). As a result, metal-coated resin particles having a metal-coated layer on the core resin particles were obtained.
  • the cross section of the metal-coated resin particles was observed with a scanning electron microscope, it had a three-layer structure, and when the composition was analyzed by EDX (energy dispersive X-ray analysis), the first layer and the third layer were Ag, respectively. Yes, Sn and O (oxygen) were detected in the second layer of the intermediate layer.
  • EDX energy dispersive X-ray analysis
  • Table 1 below shows (1) the amount, temperature, and stirring time of the SnCl 2 aqueous solution in the tin adsorption layer forming step, (2) the amount of a predetermined amount of silver salt, etc. (silver ammonia complex aqueous solution), and (3) the first. 1 Temperature of silver salt, etc. in the silver layer forming step, dropping time, ratio of dropping amount to predetermined amount of silver salt, etc., (4) Temperature of mixed solution in tin intermediate layer forming step, holding time, (5) Second silver The temperature of the silver salt or the like in the layer forming step, the dropping time, and the ratio of the dropping amount to the predetermined amount of the silver salt or the like are shown.
  • Example 2 to 10 in order to change the thickness of each of the first silver layer, the tin intermediate layer, and the second silver layer, as shown in Table 1, the manufacturing conditions of each step are changed to change the metal coating resin. Manufactured particles.
  • Comparative Example 1 was an example in which a silver salt or the like (silver-ammonia complex aqueous solution) was continuously dropped and the entire amount was dropped at once to form a tin intermediate layer.
  • a silver salt or the like silver-ammonia complex aqueous solution
  • the average particle size of the coated resin particles is shown in Table 2 below. The average thickness of each layer and the average particle size of the particles were measured by the method described above.
  • Test Example 1 80% by mass of the metal-coated resin particles of Example 1 as a conductive filler and 20% by mass of a polyfunctional epoxy resin (ADEKA, ADEKA RESIN EP-3950S) as a binder resin are mixed. , Conductive paste was prepared. The composition of this conductive paste (type and proportion of metal-coated resin particles, average particle size, shape and proportion of silver particles, type and proportion of binder resin) is shown in Table 3 below.
  • Test Examples 2 to 13 As shown in Table 3 above, the content of each metal-coated resin particle of Examples 2 to 10 is the same as or changed from the content of Test Example 1, and Test Examples 2 to 13 are used. The conductive paste of was prepared. Test Examples 6 and 8 to 11 show examples containing metal-coated resin particles and silver particles.
  • a bonded body was prepared using each of the 14 types of conductive pastes obtained in Test Examples 1 to 13 and Comparative Test Example 1, and the bonded body was subjected to a thermal cycle test. Further, a molded product was prepared from the above conductive paste, and the molded product was thermally cured to measure the thermal conductivity of the cured product.
  • each conductive paste is applied onto a square copper plate having a length and a width of 20 mm and a width of 20 mm, respectively, in a pattern having a length, a width and a thickness of 2 mm, a width and a thickness of 2 mm and 30 ⁇ m, respectively.
  • a coating film was formed.
  • a square silicon chip having a length and a width of 2 mm and 2 mm, respectively, was placed on the coating film. Next, this is placed in an electric furnace and held at a temperature of 180 ° C.
  • the initial bonding area is the area to be bonded before bonding, that is, the area of the silicon chip. Since the peeling is shown by the white part in the joint in the ultrasonic flaw detection image, the area of this white part is defined as the peeling area.
  • FIG. 2A shows the metal-coated resin particles in the conductive film after the cold cycle test of the bonded body using the conductive paste obtained in Test Example 1 with a scanning electron microscope (Hitachi High Technologies Co., Ltd.). A photograph taken at a magnification of 30,000 by (manufactured by, model name: SU-1500) is shown, and FIG. 2 (b) shows the first silver layer and tin intermediate of the spherical metal-coated resin particles shown in FIG. 2 (a). The figure which magnified the part of the layer and the 2nd silver layer and took a photograph with a transmission electron microscope (manufactured by JEOL Ltd., model name: JEM-2-1-F) at 100,000 times is shown. Each reference numeral shown in FIGS.
  • FIG. 4 the metal-coated resin particles in the conductive film after the cold cycle test of the bonded body using the conductive paste obtained in Comparative Test Example 1 are shown in a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation). , Model name: SU-1500) is shown in the photograph taken at 30,000 times.
  • reference numeral 1 is a core resin particle
  • reference numeral 2 is a metal coating layer
  • reference numeral 3 is a gap
  • reference numeral 5 is a metal coating resin particle.
  • the metal-coated layer 2 was peeled off from the surface of the core resin particles 1 to form a gap 3, but the metal-coated resin particles shown in FIGS. 2 (a) and 2 (b) were formed. In the resin particles 10, the metal coating layer 12 was not peeled off from the surface of the core resin particles 11.
  • the conductive paste of Comparative Test Example 1 was prepared by a conventional method in which a silver salt or the like (silver-ammonia complex aqueous solution) was continuously dropped and the entire amount was dropped at once to form a tin intermediate layer. Since the metal-coated resin particles of Comparative Example 1 were used, the bonding ratio of the bonded body after the thermal cycle test was as low as 60%. Further, it was found that the thermal conductivity of the sample prepared by using this conductive paste was as low as 3 W / m ⁇ K, and the thermal conductivity was not good.
  • a silver salt or the like silver-ammonia complex aqueous solution
  • a test satisfying the requirement of the first aspect of the present invention in which a conductive paste is prepared using metal-coated resin particles having a tin intermediate layer in which a conductive paste is prepared using metal-coated resin particles having a tin intermediate layer.
  • the bonding rates of the bonded bodies after the thermal cycle test were 75% and 77%, respectively, which were higher than the bonding rate of 60% in Comparative Test Example 1.
  • the thermal conductivity of the samples prepared using these conductive pastes of Test Examples 12 and 13 is 5 W / m ⁇ K and 6 W / m ⁇ K, which are higher than the thermal conductivity of 3 W / m ⁇ K of Comparative Test Example 1, respectively. It was K.
  • the joining ratio of the joined body after the thermal cycle test is 80% to 100%, which is the same as that of Test Examples 12 and 13. It showed a higher bonding rate in comparison.
  • the thermal conductivity of the samples prepared using the conductive pastes of Test Examples 1 to 11 is 6 W / m ⁇ K to 15 W / m ⁇ K, which is higher than that of Test Examples 12 and 13. showed that.
  • the spherical metal-coated resin particles of the present invention are conductive materials that form electronic components such as electrodes or electrical wiring included in electronic devices such as solar cell panels, liquid crystal displays and touch panels, electronic display devices or semiconductor devices. It can be used as a conductive filler for sex adhesives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

球状のコア樹脂粒子(11)と、コア樹脂粒子(11)の表面に設けられた金属被覆層(12)を有し、金属被覆層(12)が、コア樹脂粒子(11)の表面に形成された第1銀層(12a)と、この第1銀層(11a)の表面に形成された錫(Sn)、酸化錫(Snxy)及び水酸化錫(Snx(OH)y)からなる群より選ばれた1種又は2種以上の金属錫及び/又は錫化合物からなる錫中間層(ただし、0.1<x<4、0.1<y<5)(12b)と、この錫中間層(12b)の表面に形成された第2銀層(12c)とにより構成された金属被覆樹脂粒子(10)である。

Description

金属被覆樹脂粒子及びその製造方法、金属被覆樹脂粒子を含む導電性ペースト並びに導電性フィルム
  本発明は、導電性材料に含まれる導電性フィラーとして好適な金属被覆樹脂粒子及びその製造方法に関する。また本発明は上記金属被覆樹脂粒子を含む導電性ペースト及び導電性フィルムに関するものである。なお、本願は、2020年7月3日に、日本に出願された特願2020-115826号に基づき優先権を主張し、その内容をここに援用する。
  鉛はんだ又は非鉛はんだを代替する導電性材料として、樹脂粒子に銀を被覆した銀被覆樹脂粒子と樹脂とを混合した導電性ペースト、導電性スペーサ、導電性フィルム、ダイアタッチフィルム等の導電性接着剤が知られている。導電性接着剤は、太陽電池パネル、液晶ディスプレイ、タッチパネル等の電子機器、電子表示機器又は半導体素子等が備える電極又は電気配線等の電子部品を形成する材料に使用されている。
  従来、球状樹脂粒子と、この球状樹脂粒子の表面に設けられた錫吸着層と、この錫吸着層の表面に被覆された銀を具備し、銀被覆球状樹脂粒子100質量部に対して、銀の量が2~80質量部であり、かつX線回折法により測定される銀の結晶子径が18~24nmであることを特徴とする銀被覆球状樹脂粒子が開示されている(例えば、特許文献1(請求項1、請求項6、段落[0011])、段落[0013]、段落[0026]参照。)。この銀被覆球状樹脂粒子は、球状樹脂粒子に、錫化合物の水溶液による前処理を行う工程と、 次いで、球状樹脂粒子に、還元剤を用いて無電解銀めっきを行う工程を有し、前処理において、錫化合物の水溶液の温度を20~45℃とすることにより製造される。特許文献1には、この方法によれば、導電性に優れ、かつ球状樹脂粒子と銀の密着性に優れ、導電性フィラーに適した銀被覆球状樹脂粒子を容易に製造できる旨が記載されている。
 特許文献1に示された銀被覆球状樹脂粒子では、この銀被覆球状樹脂粒子にバインダ樹脂を混合して導電性ペーストを調製し、この導電性ペーストを例えば銅等からなる回路層と半導体チップとの間に塗布し乾燥・硬化させることにより導電性膜を形成した場合、この導電性膜が回路層に半導体チップを積層接着するとともに回路層及び半導体チップ間の導電性を確保する。
国際公開第2012/023566号公報
 特許文献1に示された銀被覆球状樹脂粒子は、球状樹脂粒子と銀の密着性に優れるけれども、上記導電性膜に厳しいヒートサイクルが負荷されて熱応力が繰り返し作用するときには、樹脂粒子と銀の双方の熱膨張率の差から、熱応力を十分に緩和できずに球状樹脂粒子の表面から銀被覆層が剥離することがあり、その剥離した部分が導電性膜のクラックの起点となり導電性を低下させるため、球状樹脂粒子に対する銀被覆層のより一層高い密着性が求められていた。
  本発明の目的は、導電性フィラーとして導電性膜に用いてこの導電性膜に厳しいヒートサイクルが負荷されたときにコア樹脂粒子に対する金属被覆層の密着性に優れた金属被覆樹脂粒子を提供することにある。本発明の別の目的は、導電性と熱伝導性が高い導電性フィルムを形成できる導電性ペースト及び導電性フィルムを提供することにある。
 本発明の第1の観点は、球状のコア樹脂粒子と、前記コア樹脂粒子の表面に設けられた金属被覆層を有する金属被覆樹脂粒子であって、前記金属被覆層が、前記コア樹脂粒子の表面に形成された第1銀層と、前記第1銀層の表面に形成された錫(Sn)、酸化錫(Snxy)及び水酸化錫(Snx(OH)y)からなる群より選ばれた1種又は2種以上の金属錫及び/又は錫化合物からなる錫中間層(ただし、0.1<x<4、0.1<y<5)と、前記錫中間層の表面に形成された第2銀層とにより構成されたことを特徴とする金属被覆樹脂粒子である。
  本発明の第2の観点は、第1の観点に基づく発明であって、前記第1銀層が10nm~100nmの平均厚さを有し、前記錫中間層が2nm~20nmの平均厚さを有し、前記第2銀層が50nm~150nmの平均厚さを有する、平均粒径が1μm~110μmである金属被覆樹脂粒子である。
 本発明の第3の観点は、第1又は第2の観点の金属被覆樹脂粒子を70質量%~90質量%、バインダ樹脂を10質量%~30質量%それぞれ含む導電性ペーストである。
 本発明の第4の観点は、導電性ペーストを100質量%とするとき、第1又は第2の観点の金属被覆樹脂粒子を10質量%~80質量%、球状又はアスペクト比(長径/短径)が5以下である扁平状の銀粒子を10質量%~70質量%、バインダ樹脂を10質量%~30質量%それぞれ含む導電性ペーストである。
 本発明の第5の観点は、第3の観点の導電性ペーストを使用した導電性フィルムである。
 本発明の第6の観点は、第4の観点の導電性ペーストを使用した導電性フィルムである。
 本発明の第7の観点は、球状のコア樹脂粒子を錫化合物の水溶液に混合して前記コア樹脂粒子の表面に錫を吸着させて錫吸着層を形成する工程と、前記表面に錫吸着層が形成されたコア樹脂粒子を水に分散させたスラリーに、所定量の銀塩及び銀錯体化剤を含む水溶液(以下、銀塩等ということもある。)の一部を、還元剤及びpH調整剤とともに滴下して混合し、この混合液中で前記コア樹脂粒子に無電解銀めっきを行って、前記錫吸着層を第1銀層に置換形成する工程と、前記混合液を攪拌しながら所定時間保持して、前記第1銀層の表面に錫中間層を形成する工程と、前記混合液に前記所定量の銀塩及び銀錯体化剤を含む水溶液(銀塩等)の残部を、前記還元剤及び前記pH調整剤とともに更に滴下して混合し、この混合液中で前記コア樹脂粒子に無電解銀めっきを続けて行って、前記錫中間層の表面に第2銀層を形成する工程とを含む金属被覆樹脂粒子の製造方法である。
 本発明の第8の観点は、第7の観点に基づく発明であって、前記所定量を100質量%とするとき、前記銀塩及び銀錯体化剤を含む水溶液の一部が5質量%を超え70質量%以下であり、前記銀塩及び銀錯体化剤を含む水溶液の残部が30質量%以上95質量%未満である金属被覆樹脂粒子の製造方法である。
 本発明の第9の観点は、第7又は第8の観点に基づく発明であって、前記球状のコア樹脂粒子を錫化合物の水溶液に混合するときの前記錫化合物の水溶液の温度が45℃を超え90℃以下である金属被覆樹脂粒子の製造方法である。
  本発明の第1の観点の球状の金属被覆樹脂粒子は、球状のコア樹脂粒子と、このコア樹脂粒子の表面に設けられた金属被覆層を有する。そしてこの金属被覆層がコア樹脂粒子の表面に形成された第1銀層と、この第1銀層の表面に形成された錫中間層と、この錫中間層の表面に形成された第2銀層とにより構成される。第1銀層と第2銀層の間に錫中間層を有することにより、コア樹脂粒子表面に形成される銀層の厚さが二分される。金属被覆樹脂粒子を導電性フィラーとして導電性膜に用いてこの導電性膜に厳しいヒートサイクルが負荷されたときに、錫中間層は熱応力を緩和する作用があるため、金属被覆層はコア樹脂粒子の表面から剥離しにくく、金属被覆層はコア樹脂粒子に対して密着性に優れ、これにより導電性と熱伝導性の高い導電性膜が得られる。
  本発明の第2の観点の球状の金属被覆樹脂粒子は、第1銀層、錫中間層、第2銀層がそれぞれ所定の厚さ範囲を有することにより、金属被覆層に厳しいヒートサイクルが負荷され、熱応力が繰り返しかかったときに、金属被覆層はコア樹脂粒子の表面からより一層剥離しにくく、金属被覆層はコア樹脂粒子に対してより密着性に優れ、これにより導電性と熱伝導性のより高い導電性膜が得られる。
  本発明の第3及び第4の観点の導電性ペーストは、上記金属被覆樹脂粒子を導電性フィラーとして含有することにより、この導電性ペーストで第5及び第6の観点の導電性フィルムを形成し、この導電性フィルムにて厳しいヒートサイクルが負荷されたときに、従来の金属被覆樹脂粒子を導電性フィラーとして含む導電性フィルムに比べて、電気抵抗や熱伝導度が劣化しない導電性フィルムを形成することができる。特に第4の観点の導電性ペーストは、球状又はアスペクト比(長径/短径)が5以下である扁平状の銀粒子を導電性フィラーとして更に含むため、金属被覆樹脂粒子と銀粒子の接触割合が増加することにより、導電性及び熱伝導性をより高める効果を有する。
  本発明の第7の観点の金属被覆樹脂粒子の製造方法では、先ず、コア樹脂粒子の表面に形成された錫吸着層を、所定量の銀塩等の一部を滴下し混合することにより、混合液中で錫を銀で置換して第1銀層を形成する。次いで混合液を撹拌しながら所定時間保持することにより第1銀層の表面に錫中間層を形成する。次に所定量の銀塩等の残部を混合液に滴下し混合することにより、錫中間層の表面に第2銀層を形成する。こうすることにより、コア樹脂粒子表面に第1銀層、錫中間層及び第2銀層の三層からなる金属被覆層が形成される。ここで錫中間層は、銀層の厚さを二分するため、金属被覆樹脂粒子を導電性フィラーとして導電性膜に用いてこの導電性膜に厳しいヒートサイクルが負荷されたときに、熱応力を緩和する。この結果、金属被覆層がコア樹脂粒子の表面から剥離しにくく、金属被覆層がコア樹脂粒子に対して密着性に優れた金属被覆樹脂粒子を製造することができる。
 本発明の第8の観点の金属被覆樹脂粒子の製造方法では、前記所定量を100質量%とするとき、前記銀塩及び銀錯体化剤を含む水溶液の一部が5質量%を超え70質量%以下であり、前記銀塩及び銀錯体化剤を含む水溶液の残部が30質量%以上95質量%未満であるため、第1銀層の厚さ及び第2銀層の厚さをそれぞれ所望の範囲に制御することができる。
 本発明の第9の観点の金属被覆樹脂粒子の製造方法では、前記球状のコア樹脂粒子を錫化合物の水溶液に混合するときの前記錫化合物の水溶液の温度が45℃を超え90℃以下であるため、前記水溶液中の錫イオンのコア樹脂粒子表面への錫の吸着量が増加し、第1銀層の厚さを大きくすることができる。
本発明の実施形態に係る金属被覆樹脂粒子全体を示す断面模式図とその一部分を拡大して示す断面模式図である。 図2(a)は試験例1で得られた導電性ペーストを用いた接合体の冷熱サイクル試験後の導電性膜中の金属被覆樹脂粒子を走査型電子顕微鏡(3万倍)で撮影した写真図である。図2(b)は図2(a)に示した球状の金属被覆樹脂粒子の第1銀層、錫中間層及び第2銀層の部分を拡大して透過型電子顕微鏡(10万倍)で撮影した写真図である。 本発明の実施形態に係る金属被覆樹脂粒子の製造方法を示すフロー図である。 比較試験例1で得られた導電性ペーストを用いた接合体の冷熱サイクル試験後の導電性膜中の金属被覆樹脂粒子を走査型電子顕微鏡(3万倍)で撮影した写真図である。
  次に本発明を実施するための形態を図面に基づいて説明する。
〔金属被覆樹脂粒子〕
  まず、本実施形態の球状の金属被覆樹脂粒子について説明する。図1に示すように、本実施形態の球状の金属被覆樹脂粒子10は、球状のコア樹脂粒子11と、この球状のコア樹脂粒子11を被覆する金属被覆層12とから構成される。金属被覆層12は、コア樹脂粒子11の表面に形成された第1銀層12aと、この第1銀層12aの表面に形成された錫中間層12bと、この錫中間層12bの表面に形成された第2銀層12cとにより構成される。
(コア樹脂粒子)
 コア樹脂粒子11は、平均粒径が1μm以上110μm以下であることが好ましく、1μm以上50μm以下であることが更に好ましい。平均粒径が1μm未満では樹脂粒子の表面積が大きくなり、導電性粒子として必要な導電性を得るための銀を多くする必要がある。平均粒径が110μmより大きいと銀被覆樹脂粒子を微細なパターンに適用することが困難になり易い。金属被覆樹脂粒子10は、コア樹脂粒子11の平均粒径と、次に述べる金属被覆層12の厚さを考慮すると、その平均粒径は1μm~50μm、好ましくは2μm~30μmである。この平均粒径は、レーザー回折式粒度分布計(島津製作所社製  型式名:SDLD200VER)により測定した体積基準のメジアン径である。
 コア樹脂粒子11は、球形に近いほど好ましいが、楕円形の粒子や粒子の表面に粗面化の凹みより大きな若干の凹凸があってもかまわない。ただし鋭利な突起がある場合には、めっきした場合にめっき被膜の密着性の低下、樹脂であるバインダと混合した場合にバインダ内での分散性の低下によって、金属被覆樹脂粒子を等方性導電ペースト、異方性導電ペーストとして用いるときの導電性付与、絶縁性の再現を損ねる原因となるため好ましくない。コア樹脂粒子11は中実に限らず、中空であってもよい。樹脂粒子の長径と短径の比であるアスペクト比は、1~1.5の範囲が好ましく、1~1.3の範囲がより好ましく、1~1.1の範囲が更に好ましい。このアスペクト比は、10個の粒子について走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製  型式名:SU-1500)観察により一粒子の長径と短径の比(長径/短径)を計測し、これらを平均した値である。
 コア樹脂粒子11としては、例えば、シリコーン樹脂粒子、アラミド樹脂粒子、フッ素樹脂粒子、ポリスルホン樹脂粒子、ポリエーテル樹脂粒子、ポリイミド樹脂粒子、ポリアミドイミド樹脂粒子、エポキシ樹脂粒子、フェノール樹脂粒子、アクリル樹脂粒子、アクリル-スチレン共重合体粒子、ポリウレタン粒子、ゴム粒子、スチレン樹脂粒子、コアシェル構造を有する樹脂粒子を用いることができる。シリコーン樹脂粒子の例としては、ポリシルセスキオキサン(PSQ)樹脂粒子、ポリメチルシルセスキオサキサン(PMSQ)樹脂粒子が挙げられる。アラミド樹脂粒子の例としては、ポリメタフェニレンイソフタラミド(MPIA)樹脂粒子、ポリパラフェニレンテレフタルアミド(PPTA)樹脂粒子が挙げられる。フッ素系粒子の例としては、ポリテトラフルオロエチレン(PTFE)樹脂粒子、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド(THV)樹脂粒子、ポリビニリデンフルオライド(PVDF)系樹脂粒子、ポリクロロトリフルオロエチレン(PCTFE)系樹脂粒子、クロロトリフルオロエチレン-エチレン(ECTFE)系樹脂粒子、テトラフルオロエチレン-エチレン(ETFE)系樹脂粒子、テトラフルオロエチレン-ヘキサフルオロプロピレン(FEP)系樹脂粒子、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル(PFA)系樹脂粒子等が挙げられる。ポリスルホン樹脂粒子の例としては、ポリフェニレンスルフィド(PPS)樹脂粒子、ポリエーテル-スルホン(PES)樹脂粒子等が挙げられる。ポリエーテル樹脂粒子の例としては、ポリエーテル・エーテル・ケトン(PEEK)樹脂粒子、ポリフェニレンエーテル(PPE)樹脂粒子等が挙げられる。フェノール樹脂粒子の例としては、ノボラック型フェノール樹脂粒子、レゾール型フェノール樹脂粒子、またはそれらの一部を変性したフェノール樹脂粒子等が挙げられる。ポリウレタン粒子としては、ポリエステル系ポリウレタン粒子、ポリオール系ポリウレタン粒子等が挙げられる。ゴム粒子の例としては、シリコーンゴム粒子、フッ素ゴム粒子等が挙げられる。コアシェル構造を有する樹脂粒子の例としては、アクリル樹脂コア-シリコーン樹脂シェルの樹脂粒子が挙げられる。アクリル樹脂コア-シリコーン樹脂シェルの樹脂粒子は、アクリル樹脂粒子にシリコーン樹脂膜を被覆することにより作製される。
(金属被覆層)
  金属被覆層12のうち、内層である第1銀層12aは10nm~100nmの平均厚さを有し、錫中間層12bは2nm~20nmの平均厚さを有し、外層である第2銀層12cは50nm~150nmの平均厚さを有することが好ましい。より好ましい第1銀層12aの平均厚さは10nm~90nmであり、より好ましい錫中間層12bの平均厚さは3nm~15nmであり、より好ましい第2銀層12cの平均厚さは60nm~140nmである。第1銀層12aの平均厚さが10nm未満では、錫中間層12bが直接コア樹脂粒子11に接することがあり、従来の金属被覆樹脂粒子の特性と変わらなくなり、本発明の効果が得がたい。第1銀層12aの平均厚さが100nmを超えると、錫中間層と第2銀層の各厚さを加えた金属被覆層12の厚さが大きくなり、金属被覆層12がコア樹脂粒子11から剥離し易く、金属被覆樹脂粒子10の導電性が低くなり易い。
 錫中間層12bの平均厚さが2nm未満では、金属被覆樹脂粒子10に熱的負荷がかかったときの金属被覆層12に生じる熱応力を緩和する作用効果が低下して、従来の金属被覆樹脂粒子の特性と変わらなくなり、本発明の効果が得がたい。錫中間層12bの平均厚さが20nmを超えると、第1銀層と第2銀層の各厚さを加えた金属被覆層12の厚さが大きくなり、金属被覆樹脂粒子10の導電性が低くなり易い。金属被覆層12の厚さを大きくしないようにすると、第1及び第2銀層の厚さが相対的に小さくなり、金属被覆樹脂粒子10の導電性が低くなり易い。第2銀層12cの平均厚さが50nm未満では、錫中間層12bが金属被覆樹脂粒子10の外面に露出し易くなり、金属被覆樹脂粒子10の粉体体積抵抗率が高くなって、金属被覆樹脂粒子10の導電性が低くなり易い。第2銀層12cの平均厚さが150nmを超えると、第1銀層と錫中間層の各厚さを加えた金属被覆層12の厚さが大きくなり、金属被覆層12がコア樹脂粒子11から剥離し易くなる。
  第1銀層12a、錫中間層12b及び第2銀層12cの平均厚さは、以下のようにして求める。まずカーボン製試料台に振りかけた球状の金属被覆樹脂粒子10を、FIB(集束イオンビーム装置)を用いて約100nmの厚みまで断面露出加工した試料を作製する。次に、走査型電子顕微鏡(SEM)を用いて断面露出した試料中の金属被覆層とコア樹脂粒子界面における断面形状を、10個の金属被覆樹脂粒子10について、コア樹脂粒子11の表面5000nm平方の範囲で、金属被覆層12の全体を重複なく観察できるように、複数に分けて観察し、第1銀層12a、錫中間層12b及び第2銀層12cのそれぞれの厚さを測定し、10個の平均値を各層の平均厚さとする。
  金属被覆樹脂粒子10に対する第1銀層12aと第2銀層12cを合計した銀の被覆量(含有量)は、コア樹脂粒子11の平均粒径に依存するとともに、必要とされる導電性の程度により決まり、金属被覆樹脂粒子100質量部に対して、2質量部~90質量部であることが好ましい。金属被覆樹脂粒子100質量部に対して、銀の含有量が2質量部より少ないと導電性粒子として金属被覆樹脂粒子が分散したときに、銀同士の接点が取り難く十分な導電性を付与することが困難になるおそれがある。一方、銀の含有量が90質量部を超えると比重が大きくなりコストも高くなるとともに導電性が飽和し易くなる。この銀の含有量は28質量部~85質量部がより好ましく、28質量部~80質量部が更に好ましい。第1銀層12aの銀の量を1としたときの第2銀層12cの銀の量の比は、1:2~5であることが好ましい。
  金属被覆樹脂粒子10に対する錫中間層の錫の含有量は、錫中間層を構成する金属錫及び/又は錫化合物に含まれる錫の量である。この錫の含有量は、コア樹脂粒子11の平均粒径及び錫中間層の被覆量に依存し、金属被覆樹脂粒子100質量部に対して、1質量部~5質量部であることが好ましい。
〔金属被覆樹脂粒子の製造方法〕
  次に、本実施形態の金属被覆樹脂粒子の製造方法を図3を参照して説明する。図3に示すように、この製造方法は、コア樹脂粒子11の表面に錫吸着層を形成する工程S01と、錫吸着層の錫を銀に置換して第1銀層を形成する工程S02と、第1銀層の表面に錫中間層を形成する工程S03と、錫中間層の表面に第2銀層を形成する工程S04とを経て、金属被覆樹脂粒子10を得る方法である。
(錫吸着層形成工程)
  錫吸着層形成工程S01では、コア樹脂粒子11の表面に銀より卑な金属である錫を吸着させて錫吸着層を形成する。錫吸着処理は、予めコア樹脂粒子を水に分散させておき、この分散液に錫化合物の水溶液を添加し、撹拌する。錫化合物の水溶液にコア樹脂粒子11を添加し、撹拌してもよい。錫吸着処理では、コア樹脂粒子11の表面に錫の2価のイオンが吸着する。錫が吸着したコア樹脂粒子11を濾別して水洗する。上記撹拌時間は、以下の錫化合物の水溶液の温度及び錫化合物の含有量によって適宜決定されるが、好ましくは、0.5時間~24時間である。錫化合物の水溶液の温度は45℃を超え90℃以下の範囲で行うことが好ましい。45℃を超え80℃以下であることがより好ましい。45℃以下では、錫化合物の水溶液中の錫イオンが活性化しにくく、錫がコア樹脂粒子表面に吸着しにくい。上記範囲内で高温になるほど、錫化合物の水溶液中の錫イオンが活性化して、2価の錫イオンがコア樹脂粒子表面に吸着し易くなるとともに吸着しきれなかった2価の錫イオンが上記水溶液中に存在するようになる。この錫吸着処理方法によれば、密着性の悪かったアクリル系樹脂、フェノール系樹脂、スチレン系樹脂等の樹脂の微粒子に対しても、次に説明する無電解めっき処理に初期に十分に吸着した錫と銀が置換されるため、置換した銀が密着して樹脂の表面に密着することができる。しかし錫化合物の水溶液の温度が90℃を超える場合には、錫化合物が酸化するため水溶液が不安定となりコア樹脂粒子に錫化合物の水溶液中の錫が十分に付着しないおそれがある。
 錫吸着処理で使用する錫化合物としては、塩化第一錫、フッ化第一錫、臭化第一錫、ヨウ化第一錫等が挙げられる。塩化第一錫を用いる場合、錫化合物の水溶液中の塩化第一錫の含有量は10g/dm3~100g/dm3が好ましい。塩化第一錫の含有量が10g/dm3以上であれば樹脂粒子の表面に均一な錫の被覆が形成できる。また塩化第一錫の含有量が100g/dm3以下であると塩化第一錫中の不可避不純物の量を抑制しやすい。なお、塩化第一錫は飽和になるまで錫化合物の水溶液に含有することができる。
  錫化合物の水溶液は塩化第一錫1gに対して塩酸0.5cm3~2cm3含有することが好ましい。塩酸は濃度35質量%の塩酸として添加する。塩酸の量が0.5cm3以上であると塩化第一錫溶解性が向上するとともに錫の加水分解を抑制することができる。塩酸の量が2cm3以下であると錫化合物の水溶液のpHが低くなりすぎないので錫を樹脂粒子に効率良く吸着させることができる。
(第1銀層形成工程)
  第1銀層形成工程S02では、表面に錫吸着層が形成されたコア樹脂粒子11を水に分散させてスラリーを調製し、このスラリーに所定量の銀塩及び銀錯体化剤を含む水溶液(銀塩等)の一部を、還元剤及びpH調整剤とともに滴下して混合し、この混合液中でコア樹脂粒子に無電解銀めっきを行って、錫吸着層を第1銀層12a(図1参照。)に置換する。ここで、上記銀塩等の一部とは、上記所定量を100質量%とするとき、5質量%を超え70質量%以下であることが好ましく、10質量%以上40質量%以下であることがより好ましい。形成しようとする第1銀層の厚さに応じてその多寡が決まる。後述する第2銀層形成工程S04で、上記銀塩等の残部として、30質量%以上95質量%未満であることが好ましく、60質量%以上90質量%以下であることがより好ましい。上記混合液の温度は15℃~30℃であることが好ましい。15℃未満では第1銀層12aの結晶子が粗大になり、30℃を超えると、急激なめっき皮膜である第1銀層の成長により銀膜の緻密さが失われ、第1銀層12aがコア樹脂粒子11から剥離し易くなる。
 この第1銀層形成工程では、前述した錫吸着処理でコア樹脂粒子11の表面に吸着した錫の2価のイオンが4価のイオンとなって溶解し2価の電子を放出する。そして、銀のイオンが電子を受け取り金属としてコア樹脂粒子11の錫が吸着していた部分に析出する。その後、すべての錫の2価のイオンが4価のイオンとなって水溶液中に溶解すると、錫と銀の置換反応は終了し、この置換反応で還元剤によって触媒が酸化され電子が放出し溶液中の銀イオンがその電子を受け取り銀が析出する。上記の置換反応と還元反応によって、コア樹脂粒子11の表面に第1銀層12aが被覆され形成される。吸着した錫の層は無電解めっきをする初期の段階では錫と銀の置換反応が起き、置換反応終了後には、還元剤による無電解めっき反応により銀が被覆される。上記置換反応では、錫化合物の水溶液中の一部の錫の2価イオンを銀と置換し、錫化合物の水溶液中の残部の錫2価イオンを次の錫中間層を形成するために使用する。
  上記銀塩としては、硝酸銀、又は銀を硝酸に溶解したもの等を用いることができる。銀錯体化剤はめっき液中で完全に溶解していることが好ましい。銀錯体化剤としては、アンモニア、エチレンジアミン四酢酸、エチレンジアミン四酢酸四ナトリウム、ニトロ三酢酸、トリエチレンテトラアンミン六酢酸、チオ硫酸ナトリウム、コハク酸塩、コハク酸イミド、クエン酸塩等の塩類を用いることができる。pH調整剤としては、水酸化ナトリウム、水酸化カリウム等のアルカリ水溶液を用いることができる。還元剤としては、ホルマリン、ブドウ糖、ロッシェル塩(酒石酸ナトリウムカリウム)、ヒドラジン及びその誘導体、ヒドロキノン、L-アスコルビン酸又はギ酸等を用いることができる。特に、ホルムアルデヒドの水溶液であるホルマリンが好ましく、少なくともホルムアルデヒドを含む2種類以上の還元剤の混合物がより好ましく、更には、ホルムアルデヒドとブドウ糖を含む還元剤の混合物が最も好ましい。
(錫中間層形成工程)
  錫中間層形成工程S03では、余剰分として第1銀層12aの形成のために置換しきれなかった混合液中に遊離した錫を第1銀層12aの表面に堆積させて錫中間層12bを形成する。前記混合液中に遊離した錫の量は分析により求めることができ、必要に応じて別途錫化合物を添加して遊離錫の濃度を調製しておいても良い。錫中間層12bを形成するためには上記混合液を撹拌しながら所定時間保持する。上記所定の保持時間は、混合液の温度及び上記遊離した錫の量によって適宜決定されるが、好ましくは、0.5時間~1.5時間である。また保持時間が長い程、錫中間層12bの厚さが増大する。逆に保持時間が短い程、その厚さは小さくなる。上記混合液の温度は10℃~30℃の範囲にあることが好ましい。上記混合液を撹拌しながら保持すると、上記遊離した錫が2価イオンとなってpH調整剤のアルカリ水溶液により錫水酸化物(Sn(OH)2)になり、第1銀層12aの表面に堆積し、錫中間層12bになる。この錫中間層12bは、錫(Sn)、酸化錫(Snxy)及び水酸化錫(Snx(OH)y)からなる群より選ばれた1種又は2種以上の金属錫及び/又は錫化合物からなる(ただし、0.1<x<4、0.1<y<5)。
(第2銀層形成工程)
 第2銀層形成工程S04では、上記混合液に上記所定量の銀塩及び銀錯体化剤を含む水溶液の残部(銀塩等)を、工程S02で用いた還元剤及びpH調整剤と同じ還元剤及びpH調整剤とともに更に滴下し混合することにより、この混合液中でコア樹脂粒子11に無電解銀めっきを続けて行って、錫中間層12bの表面に第2銀層12cを形成する。これにより金属被覆樹脂粒子10が得られる。前述したように、上記銀塩等の残部は、上記所定量を100質量%とするとき、30質量%以上95質量%未満であることが好ましく、60質量%以上90質量%以下であることがより好ましい。形成しようとする第2銀層の厚さに応じてその多寡が決まる。上記混合液の温度は、10℃~30℃であることが好ましい。この温度範囲が好ましい理由は、工程S02で述べた理由と同じである。
[用途]
 本実施形態の金属被覆樹脂粒子10は、導電性フィラーとして優れており、特に、導電性接着剤、導電性フィルム(シート)、導電性ゴム(エラストマー)、導電性粘着剤、放熱シートや放熱グリス等のTIM(Thermal Interface Material)、又は導電性スペーサなどの導電性材料の導電性フィラーとして最適に適用できる。
(導電性接着剤)
 導電性接着剤は、等方性の導電性接着剤(ICA:Isotropic Conductive Adhesive)と異方性の導電性接着剤(ACA:Anisotropic Conductive Adhesive)に区分される。また、バインダの形態によってペースト状、フィルム状、インク状の形態を有する。等方性の導電性接着剤は、バインダ硬化時にバインダが収縮することで、縦方向、横方向、斜方向ともにフィラーが互いに接触し、これにより接続したい導電物とフィラーが接触して導電性が得られる。等方性の導電性接着剤にてシートを形成することも可能である。異方性の導電性接着剤は、バインダ中にフィラーが分散していて接続したい導電物同士の間に異方性の導電性接着剤を挟み込む。これを縦方向に加圧することで、接続したい導電物の間のフィラーと接続したい導電物が縦方向に接触し導電性が得られる。一方、加圧されていない部分は絶縁物であるバインダを介してフィラー同士が横方向に配置され、互いに接触しないので導電性は得られない。
 導電性接着剤としては、例えば、異方性又は等方性の導電性ペースト、異方性又は等方性の導電性インキなどが挙げられる。導電性接着剤は、金属被覆樹脂粒子と絶縁性のバインダ樹脂とを遊星混合機や三本ロールミルのような混練機を用いて均一に混合して調製される。導電性接着剤では、絶縁性のバインダ樹脂中に金属被覆樹脂粒子が均一に分散する。金属被覆樹脂粒子の含有量は、特に限定されず、用途などに応じて適宜決定される。導電性ペーストを100質量%とするとき、金属被覆樹脂粒子を70質量%~90質量%、バインダ樹脂を10質量%~30質量%それぞれ含むことが導電性と熱伝導性を得るために好ましい。また導電性ペーストは、上述の金属被覆樹脂粒子を導電性フィラーとして含むほか、球状又はアスペクト比(長径/短径)が5以下である扁平状の銀粒子を導電性フィラーとして更に含有させることもできる。銀粒子の平均粒径は10μm以下であることが好ましい。この場合、導電性ペーストを100質量%とするとき、金属被覆樹脂粒子を10質量%~80質量%、銀粒子を10質量%~70質量%、バインダ樹脂を10質量%~30質量%それぞれ含むことが、より導電性と熱伝導性を高める観点から好ましい。
 導電性接着剤における絶縁性のバインダ樹脂としては、特に限定されず、例えば、熱可塑性樹脂や、硬化性樹脂組成物などの熱や光によって硬化する組成物などが挙げられる。熱可塑性樹脂としては、スチレン-ブタジエンブロック共重合体、アクリル樹脂、エチレン-酢酸ビニル樹脂、フェノキシ樹脂などが挙げられる。熱硬化性樹脂組成物としては、シリコーン樹脂、エポキシ樹脂などの樹脂又はそれらの混合物を主成分として含む樹脂組成物が挙げられる。
(導電性フィルム(シート))
 導電性フィルムとしては、フィルム状に成形された異方性又は等方性の導電性フィルムがある。導電性フィルムは、先ず金属被覆樹脂粒子が絶縁性のバインダ樹脂中に分散された樹脂組成物を作製し、次いでこの樹脂組成物をPET等の支持フィルムの表面に塗布することにより作製される。この樹脂組成物は金属被覆樹脂粒子と絶縁性のバインダ樹脂とを遊星混合機や三本ロールミルのような混練機を用いて均一に混合して調製される。導電性フィルムでは、支持体フィルム上で絶縁性のバインダ樹脂中に金属被覆樹脂粒子が均一に分散する。導電性フィルムにおける絶縁性のバインダ樹脂としては、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、フェノキシ樹脂などの樹脂又はそれらの混合物を主成分として含む樹脂組成物が挙げられる。導電性フィルムにおける樹脂組成物中の金属被覆樹脂粒子の含有量は、特に限定されず、用途などに応じて適宜決定されるが、バインダ樹脂100質量%に対して0.5質量%~90質量%の範囲内が好ましい。
(導電性ゴム(エラストマー))
 導電性ゴムとしては、シート状や直方体状に成形された導電性ゴムがあり、放熱シートや導電コネクタとして使用できる。導電性ゴムは、まずバインダゴムと、加硫剤と、金属被覆樹脂粒子とを二軸ロール等を用いて混練し、次いで加熱プレス機や乾燥機を用いて加熱や加圧を実施することにより加硫および成型することで作製される。導電性ゴムにおけるバインダゴムとしては、ニトリルゴム、アクリルゴム、スチレンブタジエンゴム、シリコーンゴム、フッ素ゴムなどが挙げられる。導電性ゴムにおける組成物中の金属被覆樹脂粒子の含有量は、特に限定されず、用途などに応じて適宜決定されるが、バインダゴム100質量%に対して0.5質量%~90質量%の範囲内が好ましい。
(導電性粘着剤)
 導電性粘着剤としては、シート状や直方体状に成形された導電性粘着剤又は導電性ゲルがあり、電気接点材料、放熱シート及び電極として使用できる。導電性粘着剤は、先ず金属被覆樹脂粒子が絶縁性のバインダとなる粘着剤中に分散された粘着性組成物を作製し、次いでこの粘着性組成物をPET等の支持フィルムの表面に塗布することにより作製される。導電性粘着剤におけるバインダ粘着剤としては、アクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤などが挙げられる。導電性粘着剤における組成物中の金属被覆樹脂粒子の含有量は、特に限定されず、用途などに応じて適宜決定されるが、粘着剤100質量%に対して0.5質量%~90質量%の範囲内が好ましい。
(放熱グリス)
 放熱グリスとしては、不揮発性の基油、金属被覆樹脂粒子を混合したものがあり、放熱材料として用いることができる。放熱グリスは基油と金属被覆樹脂粒子を遊星混合機や三本ロールミルのような混練機を用いて均一に混合して調製される。放熱グリスに用いられる基油としては、シリコーンオイル系基油、鉱油系基油、合成炭化水素系基油、エステル系基油、エーテル系基油及びグリコール系基油又はそれらの組合せなどを挙げることができる。放熱グリスにおける組成物中の金属被覆樹脂粒子の含有量は、特に限定されず、用途などに応じて適宜決定されるが、基油100質量%に対して0.5質量%~90質量%の範囲内が好ましい。
(導電性スペーサ)
 導電性スペーサは、液晶表示装置において、液晶物質を挟む上下2枚の基板の配線部分を電気的に上下に接続し、かつ基板の間隙を所定の寸法に保持して使用される。導電性スペーサは、先ず金属被覆樹脂粒子を熱硬化性樹脂や紫外光硬化型接着剤などの絶縁性のバインダ樹脂に添加した後、金属被覆樹脂粒子とバインダ樹脂とを遊星混合機や三本ロールミルのような混練機を用いて均一に混合して樹脂組成物を調製し、次いで上下2枚の基板の配線部分のいずれか一方又は双方に上記樹脂組成物を塗布して2枚の基板を貼り合わせることにより作製される。金属被覆樹脂粒子の含有量は、特に限定されず、用途などに応じて適宜決定されるが、バインダ樹脂100質量%に対して2質量%~10質量%の範囲内が好ましい。
  次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
  錫吸着処理用として塩化錫水溶液(SnCl2水溶液)を準備した。この塩化錫水溶液は、塩化第一錫15g、塩酸15cm3を容量1dm3のメスフラスコを用いて水で1dm3に稀釈(メスアップ)することにより調製した。この塩化錫水溶液を液温27℃で保存した。塩酸は濃度35質量%の塩酸を用いた。また、33gの硝酸銀(銀塩)、53cm3の25質量%アンモニア水、175cm3の水を混合し硝酸銀を含む銀アンモニア錯体水溶液(銀塩等)256gを作製した。
  コア樹脂粒子として、平均粒径が3μmのアクリル樹脂粒子(PMMA架橋ビーズ)を準備した。このコア樹脂粒子9gを水に分散して分散液を調製し、この分散液に上記塩化錫水溶液を添加し、60℃の温度に調整してこの温度で5時間撹拌した(錫吸着層形成工程)。その後、コア樹脂粒子を濾別して水洗した。次いで、このコア樹脂粒子を水に再度分散して液温が15℃のスラリーを調製し、このスラリーを撹拌しながらスラリーに還元剤(35質量%ホルムアルデヒド水溶液)とpH調整剤(水酸化ナトリウム水溶液)と銀塩等(銀アンモニア錯体水溶液)85gを順次滴下し混合液を調製した。この銀塩等の滴下量は、最初に作製した銀塩等(所定量の銀塩等)を100質量%とするとき、33.3質量%であった(第1銀層形成工程)。上記滴下後、液温が20℃の上記混合液を1時間撹拌しながら保持した(錫中間層形成工程)。続いて、最初に作製した所定量の銀塩等を100質量%とするとき、銀塩等(銀アンモニア錯体水溶液)の残部66.7質量%を、液温が20℃の混合液を撹拌しながら混合液に滴下した(第2銀層形成工程)。これによりコア樹脂粒子に金属被覆層を有する金属被覆樹脂粒子を得た。この金属被覆樹脂粒子の断面を走査型電子顕微鏡で観察したところ、三層構造となっており、EDX(エネルギー分散型X線分析)により組成分析したところ、一層目と三層目はそれぞれAgであり、中間層の二層目はSn及びO(酸素)が検出された。
  以下の表1に、(1)錫吸着層形成工程におけるSnCl2水溶液の液量、温度、攪拌時間、(2)所定量の銀塩等(銀アンモニア錯体水溶液)の液量、(3)第1銀層形成工程における銀塩等の温度、滴下時間、所定量の銀塩等に対する滴下量の割合、(4)錫中間層形成工程における混合液の温度、保持時間、(5)第2銀層形成工程における銀塩等の温度、滴下時間、所定量の銀塩等に対する滴下量の割合を、それぞれ示す。
Figure JPOXMLDOC01-appb-T000001
<実施例2~10>
 実施例2~10では、第1銀層、錫中間層及び第2銀層のそれぞれの厚さを変化させるために、表1に示すように、各工程の製造条件を変更して金属被覆樹脂粒子を製造した。
<比較例1>
  銀塩等(銀アンモニア錯体水溶液)を連続して、全量を一度に滴下して錫中間層を形成しない例を比較例1とした。
  上記実施例1~10及び比較例1で得られた金属被覆樹脂粒子の原料であるコア樹脂粒子の種類と平均粒径、金属被覆樹脂粒子の金属被覆層を構成する各層の平均厚さ及び金属被覆樹脂粒子の平均粒径をそれぞれ以下の表2に示す。上記各層の平均厚さ及び粒子の平均粒径は、前述した方法で測定した。
Figure JPOXMLDOC01-appb-T000002
<試験例1>
  試験例1では、導電性フィラーとしての実施例1の金属被覆樹脂粒子80質量%と、バインダ樹脂としての多官能型エポキシ樹脂(ADEKA社製、アデカレジンEP-3950S)20質量%とを混合して、導電性ペーストを調製した。この導電性ペーストの組成(金属被覆樹脂粒子の種類及び割合、銀粒子の平均粒径、形状及び割合、バインダ樹脂の種類及び割合)を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
<試験例2~13>
  実施例2~実施例10の各金属被覆樹脂粒子の含有量を、上記表3に示すように、試験例1の含有量と同じにするか、又は変更して、試験例2~試験例13の導電性ペーストを調製した。試験例6、8~11は、金属被覆樹脂粒子と銀粒子を含有する例を示す。
<比較試験例1>
  上記表3に示すように、比較例1の金属被覆樹脂粒子を単独で用いて、比較試験例1の導電性ペーストを調製した。
<比較試験及び評価>
 試験例1~13及び比較試験例1で得られた14種類の導電性ペーストを用いて接合体をそれぞれ作製し、接合体について冷熱サイクル試験を行った。また上記導電性ペーストから成形体を作り、これを熱硬化させて硬化物の熱伝導度を測定した。
(i) 冷熱サイクル試験
 試験例1~13及び比較試験例1で得られた導電性ペーストを用いて接合体をそれぞれ作製し、これらの接合体について冷熱サイクル試験を行った。具体的には、先ず、各導電性ペーストを、縦及び横がそれぞれ20mm及び20mmである正方形の銅板上に、縦、横及び厚さがそれぞれ2mm、2mm及び30μmであるパターンで塗布して、塗布膜を形成した。次いで、この塗布膜上に縦及び横がそれぞれ2mm及び2mmである正方形のシリコンチップを静置した。次に、これを電気炉に入れて180℃の温度に30分間保持し、塗布膜を硬化させて導電性膜を形成することにより、シリコンチップを導電性膜により銅板に接合して、接合体をそれぞれ作製した。続いて、これらの接合体に冷熱サイクル試験を行った。この冷熱サイクル試験は、冷熱衝撃試験機(エスペック社製:TSB-51)を使用し、上記接合体に対して、液相(3M社製、フロリナートFC-43)で、-20℃に5分間保持した後に、150℃に5分間保持する操作を500サイクル繰返した。そして、冷熱サイクル試験を行う前と行った後の接合体の接合率をそれぞれ測定した。
  上記接合体の接合率の評価方法は次のようにして行った。先ず、接合体に対し、銅板とシリコンチップとの界面の接合率(%)について超音波探傷装置を用いて評価し、次の式(1)から算出した。
    接合率 =(初期接合面積-剥離面積)/初期接合面積×100  ……(1)
  ここで、初期接合面積とは、接合前における接合すべき面積、即ちシリコンチップの面積とした。超音波探傷像において剥離は接合部内の白色部で示されることから、この白色部の面積を剥離面積とした。また、接合層内部や、銅板及びシリコンチップの接合界面にクラックが生じた場合、このクラックは超音波探傷像において白色部で示され、クラックも剥離面積として評価されることになる。この結果を上記表3に示す。
 図2(a)に、試験例1で得られた導電性ペーストを用いた接合体の冷熱サイクル試験後の導電性膜中の金属被覆樹脂粒子を、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ社製、型式名:SU-1500)により3万倍で撮影した写真図を示し、図2(b)に、図2(a)に示した球状の金属被覆樹脂粒子の第1銀層、錫中間層及び第2銀層の部分を拡大して透過型電子顕微鏡(日本電子社製、型式名:JEM-2-1-F)により10万倍で撮影した写真図を示す。図2(a)及び図2(b)において示す各符号は、図1に示す各符号に相応する。
 また図4に、比較試験例1で得られた導電性ペーストを用いた接合体の冷熱サイクル試験後の導電性膜中の金属被覆樹脂粒子を、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ社製、型式名:SU-1500)により3万倍で撮影した写真図を示す。図4において、符号1はコア樹脂粒子、符号2は金属被覆層、符号3は隙間であり、符号5は金属被覆樹脂粒子である。
 図4に示す金属被覆樹脂粒子5では、コア樹脂粒子1の表面から金属被覆層2が剥離して隙間3を形成していたが、図2(a)及び図2(b)に示す金属被覆樹脂粒子10では、コア樹脂粒子11の表面から金属被覆層12が剥離していなかった。
(ii) 熱伝導率
  試験例1~13及び比較試験例1で得られた導電性ペーストを用いて、直径10mm、厚さ1mmの成形体を作り、これを200℃で20分間硬化させて試験用サンプルを作製した。得られたサンプルをレーザーフラッシュ法(株式会社ULVAC製、TC-7000)により熱拡散率を測定し、比熱と密度から熱伝導率(W/m・K)を求めた。この結果を上記表3に示す。
 表3から明らかなように、比較試験例1の導電性ペーストでは、銀塩等(銀アンモニア錯体水溶液)を連続して、全量を一度に滴下し錫中間層を形成しない従来の方法で作製された比較例1の金属被覆樹脂粒子を用いたため、冷熱サイクル試験を行った後の接合体の接合率は、60%と低かった。またこの導電性ペーストを用いて作製したサンプルの熱伝導率は3W/m・Kと低く、熱伝導率が良好でないことが分かった。
 これに対して、本発明の第2の観点の要件は満たさないものの、錫中間層を有する金属被覆樹脂粒子を用いて導電性ペーストを作製した本発明の第1の観点の要件を満たした試験例12、13では、冷熱サイクル試験を行った後の接合体の接合率は、それぞれ75%、77%と、比較試験例1の接合率60%より高かった。またこれらの導電性ペーストを用いて作製したサンプルの試験例12、13の熱伝導率は、それぞれ比較試験例1の熱伝導率3W/m・Kより高い5W/m・K、6W/m・K であった。
  また、本発明の第2の観点の要件を満たした試験例1~11では、冷熱サイクル試験を行った後の接合体の接合率は、80%~100%であり、試験例12及び13と比較してより高い接合率を示した。また試験例1~11の導電性ペーストを用いて作製したサンプルの熱伝導率は、6W/m・K~15W/m・Kであり、試験例12及び13と比較してより高い熱伝導性を示した。
  本発明の球状の金属被覆樹脂粒子は、太陽電池パネル、液晶ディスプレイ、タッチパネル等の電子機器、電子表示機器又は半導体素子等が備える電極又は電気配線等の電子部品を形成する導電性材料である導電性接着剤の導電性フィラーとして利用することができる。

Claims (9)

  1.   球状のコア樹脂粒子と、前記コア樹脂粒子の表面に設けられた金属被覆層を有する金属被覆樹脂粒子であって、
     前記金属被覆層が、前記コア樹脂粒子の表面に形成された第1銀層と、前記第1銀層の表面に形成された錫(Sn)、酸化錫(Snxy)及び水酸化錫(Snx(OH)y)からなる群より選ばれた1種又は2種以上の金属錫及び/又は錫化合物からなる錫中間層(ただし、0.1<x<4、0.1<y<5)と、前記錫中間層の表面に形成された第2銀層とにより構成されたことを特徴とする金属被覆樹脂粒子。
  2.  前記第1銀層が10nm~100nmの平均厚さを有し、前記錫中間層が2nm~20nmの平均厚さを有し、前記第2銀層が50nm~150nmの平均厚さを有する、平均粒径が1μm~110μmである請求項1記載の金属被覆樹脂粒子。
  3.  請求項1又は2記載の金属被覆樹脂粒子を70質量%~90質量%、バインダ樹脂を10質量%~30質量%それぞれ含む導電性ペースト。
  4.  導電性ペーストを100質量%とするとき、請求項1又は2記載の金属被覆樹脂粒子を10質量%~80質量%、球状又はアスペクト比(長径/短径)が5以下である扁平状の銀粒子を10質量%~70質量%、バインダ樹脂を10質量%~30質量%それぞれ含む導電性ペースト。
  5.  請求項3記載の導電性ペーストを使用した導電性フィルム。
  6.  請求項4記載の導電性ペーストを使用した導電性フィルム。
  7.  球状のコア樹脂粒子を錫化合物の水溶液に混合して前記コア樹脂粒子の表面に錫を吸着させて錫吸着層を形成する工程と、
     前記表面に錫吸着層が形成されたコア樹脂粒子を水に分散させたスラリーに、所定量の銀塩及び銀錯体化剤を含む水溶液の一部を、還元剤及びpH調整剤とともに滴下して混合し、この混合液中で前記コア樹脂粒子に無電解銀めっきを行って、前記錫吸着層を第1銀層に置換形成する工程と、
     前記混合液を攪拌しながら所定時間保持して、前記第1銀層の表面に錫中間層を形成する工程と、
      前記混合液に前記所定量の銀塩及び銀錯体化剤を含む水溶液の残部を、前記還元剤及び前記pH調整剤とともに更に滴下して混合し、この混合液中で前記コア樹脂粒子に無電解銀めっきを続けて行って、前記錫中間層の表面に第2銀層を形成する工程とを含む金属被覆樹脂粒子の製造方法。
  8.  前記所定量を100質量%とするとき、前記銀塩及び銀錯体化剤を含む水溶液の一部が5質量%を超え70質量%以下であり、前記銀塩及び銀錯体化剤を含む水溶液の残部が30質量%以上95質量%未満である請求項7記載の金属被覆樹脂粒子の製造方法。
  9.  前記球状のコア樹脂粒子を錫化合物の水溶液に混合するときの前記錫化合物の水溶液の温度が45℃を超え90℃以下である請求項7又は8記載の金属被覆樹脂粒子の製造方法。
PCT/JP2021/023899 2020-07-03 2021-06-24 金属被覆樹脂粒子及びその製造方法、金属被覆樹脂粒子を含む導電性ペースト並びに導電性フィルム WO2022004541A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180037574.4A CN115698379A (zh) 2020-07-03 2021-06-24 金属包覆树脂粒子及其制造方法、包含金属包覆树脂粒子的导电性膏以及导电性膜
JP2021568739A JP7049536B1 (ja) 2020-07-03 2021-06-24 金属被覆樹脂粒子及びその製造方法、金属被覆樹脂粒子を含む導電性ペースト並びに導電性フィルム
US17/924,019 US20230173537A1 (en) 2020-07-03 2021-06-24 Metal coated resin particles, method for producing same, conductive paste containing metal coated resin particles, and conductive film
EP21834279.8A EP4177375A1 (en) 2020-07-03 2021-06-24 Metal coated resin particles, method for producing same, conductive paste containing metal coated resin particles, and conductive film
KR1020227042512A KR20230033642A (ko) 2020-07-03 2021-06-24 금속 피복 수지 입자 및 그 제조 방법, 금속 피복 수지 입자를 포함하는 도전성 페이스트 그리고 도전성 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020115826 2020-07-03
JP2020-115826 2020-07-03

Publications (1)

Publication Number Publication Date
WO2022004541A1 true WO2022004541A1 (ja) 2022-01-06

Family

ID=79315301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023899 WO2022004541A1 (ja) 2020-07-03 2021-06-24 金属被覆樹脂粒子及びその製造方法、金属被覆樹脂粒子を含む導電性ペースト並びに導電性フィルム

Country Status (7)

Country Link
US (1) US20230173537A1 (ja)
EP (1) EP4177375A1 (ja)
JP (1) JP7049536B1 (ja)
KR (1) KR20230033642A (ja)
CN (1) CN115698379A (ja)
TW (1) TW202214368A (ja)
WO (1) WO2022004541A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118079A (ja) * 1988-10-28 1990-05-02 Mitsubishi Metal Corp 銀被覆球状樹脂の製造方法
JP2003197028A (ja) * 2001-12-26 2003-07-11 Sekisui Chem Co Ltd 導電性微粒子、導電性微粒子の製造方法及び異方性導電材料
WO2012023566A1 (ja) 2010-08-20 2012-02-23 三菱マテリアル株式会社 銀被覆球状樹脂、及びその製造方法、並びに銀被覆球状樹脂を含有する異方性導電接着剤、異方性導電フィルム、及び導電スペーサー
WO2019155924A1 (ja) * 2018-02-06 2019-08-15 三菱マテリアル株式会社 銀被覆樹脂粒子
JP2020115826A (ja) 2019-01-28 2020-08-06 株式会社ノーリツ Co2供給装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118079A (ja) * 1988-10-28 1990-05-02 Mitsubishi Metal Corp 銀被覆球状樹脂の製造方法
JP2003197028A (ja) * 2001-12-26 2003-07-11 Sekisui Chem Co Ltd 導電性微粒子、導電性微粒子の製造方法及び異方性導電材料
WO2012023566A1 (ja) 2010-08-20 2012-02-23 三菱マテリアル株式会社 銀被覆球状樹脂、及びその製造方法、並びに銀被覆球状樹脂を含有する異方性導電接着剤、異方性導電フィルム、及び導電スペーサー
WO2019155924A1 (ja) * 2018-02-06 2019-08-15 三菱マテリアル株式会社 銀被覆樹脂粒子
JP2020115826A (ja) 2019-01-28 2020-08-06 株式会社ノーリツ Co2供給装置

Also Published As

Publication number Publication date
TW202214368A (zh) 2022-04-16
JPWO2022004541A1 (ja) 2022-01-06
KR20230033642A (ko) 2023-03-08
CN115698379A (zh) 2023-02-03
JP7049536B1 (ja) 2022-04-06
US20230173537A1 (en) 2023-06-08
EP4177375A1 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
JP5497183B2 (ja) 銀被覆球状樹脂、及びその製造方法、並びに銀被覆球状樹脂を含有する異方性導電接着剤、異方性導電フィルム、及び導電スペーサー
JP6639823B2 (ja) 銀被覆樹脂粒子及びその製造方法並びにそれを用いた導電性ペースト
TWI829633B (zh) 樹脂組成物、樹脂組成物之製造方法及構造體
JPWO2011114747A1 (ja) 導電接続部材
JP6333552B2 (ja) 導電性粒子、導電材料及び接続構造体
TWI662151B (zh) 銀被覆粒子及其製造方法
WO2016114189A1 (ja) 銀被覆樹脂粒子及びその製造方法並びにそれを用いた導電性ペースト
KR20170131930A (ko) 방열 및 전자파 차폐 조성물 및 복합 시트
EP2592127A1 (en) Anisotropic conductive adhesive, process for producing same, connection structure, and process for producing same
TWI771559B (zh) 銀被覆樹脂粒子
JP6386767B2 (ja) 銀被覆球状樹脂粒子及びその製造方法
JP7049536B1 (ja) 金属被覆樹脂粒子及びその製造方法、金属被覆樹脂粒子を含む導電性ペースト並びに導電性フィルム
JP2016195048A (ja) 銀被覆導電性粒子及び該粒子を含有する導電性材料
JP2003141929A (ja) 銅ペースト用の銅粉
JP7093639B2 (ja) 銀被覆樹脂粒子
JP5943019B2 (ja) 導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シート
JP7125319B2 (ja) 銀被覆樹脂粒子及びその製造方法
JP2016219129A (ja) 金属被覆導電性粒子及び該粒子を含有する導電性材料
JPWO2015093597A1 (ja) 銀被覆導電性粒子、導電性ペースト及び導電性膜
JP2021091926A (ja) 非球状の銀被覆樹脂粒子及びその製造方法、非球状の銀被覆樹脂粒子を含む導電性ペースト並びに導電性フィルム
JP2007084704A (ja) 樹脂組成物とこれを用いた回路基板およびパッケージ
WO2016063684A1 (ja) 導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シート
WO2002061766A1 (en) Conductive powder and conductive composition
JP2019157225A (ja) 銀被覆粒子
WO2016121558A1 (ja) 銀被覆粒子及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021568739

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834279

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021834279

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE