WO2016063684A1 - 導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シート - Google Patents

導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シート Download PDF

Info

Publication number
WO2016063684A1
WO2016063684A1 PCT/JP2015/077414 JP2015077414W WO2016063684A1 WO 2016063684 A1 WO2016063684 A1 WO 2016063684A1 JP 2015077414 W JP2015077414 W JP 2015077414W WO 2016063684 A1 WO2016063684 A1 WO 2016063684A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
conductive
core
particles
conductive particles
Prior art date
Application number
PCT/JP2015/077414
Other languages
English (en)
French (fr)
Inventor
英人 森
勉 野坂
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to KR1020177013750A priority Critical patent/KR102011643B1/ko
Priority to CN201580057689.4A priority patent/CN107073577B/zh
Priority to EP15853551.8A priority patent/EP3210696B1/en
Priority to US15/520,855 priority patent/US20170333989A1/en
Publication of WO2016063684A1 publication Critical patent/WO2016063684A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber

Definitions

  • the present invention relates to conductive particles, conductive powder, conductive polymer composition, and anisotropic conductive sheet.
  • anisotropic conductive sheets and anisotropic conductive films having special conductivity in the thickness direction are widely used.
  • Patent Document 1 discloses a crystalline Ni alloy particle (core) containing a semimetal (C, B, P, Si, As, Te, Ge, Sb, etc.) and a thickness of 1 ⁇ m or less on the surface of the core.
  • a conductive particle having a structure having an Au plating layer is described.
  • Patent Document 2 discloses a spherical NiP fine particle (core) having a surface layer portion containing Ni as a main component and containing NiP intermetallic compound, and conductive particles having an Au plating layer on the surface of the core.
  • Patent Document 3 includes a reduction precipitation type spherical NiP fine particle (core) that contains Ni, P, and Cu and can further contain Sn, a method for producing the same, and Au on the surface of the core.
  • Conductive particles are described.
  • Patent Documents 4 and 5 describe conductive particles having a structure having a Pd layer on the outermost surface of conductive fine particles.
  • the surface of a resin fine particle (core) has a plating layer having a thickness of, for example, 40 nm to 150 nm containing Ni and P of 7% by mass or more, and the outermost surface has a thickness of, for example, 10 nm to 50 nm
  • a conductive particle having a Pd layer is described.
  • Patent Document 5 has a base film with a crystal structure containing Ni and 1% by mass or more and less than 10% by mass of P on the surface of core particle (core) whose material is not limited, and Ni,
  • core particle core
  • a conductive particle having an upper layer film of a crystal structure including P and M (one or more of W, Pd, Pt, and Mo) and further having an outermost layer film made of Au or Pd is described. ing.
  • JP 2002-363603 A JP 2006-131978 A JP 2009-197317 A JP 2011-175951 A Japanese Patent Laid-Open No. 2014-13660
  • Ni particles containing Ni and P are used as a core.
  • the NiP particles themselves are conductive particles and are produced, for example, by a wet electroless reduction reaction using hypophosphorous acid as a reducing agent.
  • NiP particles containing P or the like have a larger volume resistance value and lower conductivity than high-purity Ni particles not containing P or the like (hereinafter referred to as “pure Ni particles”). Pure Ni particles can be produced, for example, by a wet electroless reduction reaction using hydrazine as a reducing agent, but the maximum particle size that can be produced is, for example, 5 ⁇ m.
  • the electroconductive particle of patent document 4, 5 can also use a nonmetallic particle as a core.
  • the volume resistivity of non-metallic particles is much larger than that of NiP particles, and the conductivity is low.
  • the NiP used as the core is described in any of Patent Documents 1 to 5 without paying attention to the volume resistivity of the core itself.
  • the volume resistivity of the particles as a whole was reduced to increase the conductivity.
  • the Au plating layer has been used extensively with little change over time in conductivity, it is expensive.
  • application of Ag, Cu, Al or the like is also conceivable.
  • Ag has better conductivity than Au, but has problems such as migration, sulfidation, and oxidation.
  • Cu and Al have good conductivity, but have problems such as oxidation.
  • An object of the present invention is to provide conductive particles that have a remarkably smaller volume resistivity than conventional ones when intended for conductive particles made of NiP particles having no Au plating layer on the outermost surface.
  • conductive particles made of NiP particles having an Au plating layer on the outermost surface are provided, conductive particles having a smaller volume resistivity than conventional ones are provided.
  • An object of the present invention is to provide inexpensive conductive particles having a small plating layer thickness. Also, applying conductive particles made of NiP particles having a smaller volume resistivity than the prior art, conductive powder that is an aggregate of the conductive particles, a conductive polymer composition using the conductive powder, And an anisotropic conductive sheet using the conductive polymer composition.
  • the present inventor found a relationship between the amount of P contained in the NiP particles and the volume resistivity of the NiP particles, as well as NiP particles produced by a wet electroless reduction reaction using hypophosphorous acid as a conventional reducing agent.
  • the inventors have found a novel configuration of conductive particles that can be applied, and have reached the present invention.
  • the conductive particle of the embodiment of the present invention has a spherical Ni core containing P of 5% by mass or more and 15% by mass or less, and a first plating layer covering the surface of the Ni core, and the first plating.
  • the layer is a pure Ni plating layer or a Ni plating layer containing 4.0 mass% or less of P.
  • the thickness of the first plating layer is not less than 0.1 ⁇ m and not more than 10 ⁇ m.
  • the Ni core has a diameter of 1 ⁇ m or more and 100 ⁇ m or less.
  • a second plating layer covering a surface of the first plating layer is provided, and the second plating layer is an Au plating layer having a thickness of 5 nm to 200 nm.
  • the conductive powder according to the embodiment of the present invention is a powder containing any one of the above-described conductive particles, and the median diameter d50 in the cumulative volume distribution curve is 3 ⁇ m or more and 100 ⁇ m or less, and (d90-d10 ) /D50 ⁇ 0.8.
  • a conductive polymer composition according to an embodiment of the present invention includes the above-described conductive powder and a polymer, and the polymer is, for example, rubber, a thermoplastic resin, a thermosetting resin, or a photocurable resin. Resin.
  • An anisotropic conductive sheet according to an embodiment of the present invention is formed from the above conductive polymer composition, and the conductive particles are arranged in the thickness direction.
  • the volume resistivity of conductive particles made of NiP particles that do not have an Au plating layer on the outermost surface can be made much smaller than before.
  • the volume resistivity of the conductive particles made of NiP particles having the Au plating layer on the outermost surface can be made smaller than before.
  • FIG. It is a figure which shows the cross-sectional image of the electroconductive particle by embodiment of this invention. It is a figure which shows the cross-sectional image of the electroconductive particle by another embodiment of this invention. It is a figure (photograph) which shows the cross-sectional SEM image of the electroconductive particle 10a of Example 2. FIG. It is a figure which shows the structure of the apparatus used for the measurement of the volume resistivity of electroconductive particle.
  • An important feature of the present invention lies in the configuration having a pure Ni plating layer or a Ni plating layer containing a small amount of P on the surface of a spherical Ni core (NiP particles) containing P.
  • the conductive particles of the embodiment of the present invention have a spherical Ni core containing 5 mass% or more and 15 mass% or less of P, and a first plating layer that covers the surface of the Ni core, and the first plating layer Is a pure Ni plating layer or a Ni plating layer containing 4.0 mass% or less of P.
  • the conventional NiP particles in which hypophosphorous acid is generally used as the reducing agent contain 5% by mass or more of P.
  • the first plating layer according to the present invention is a Ni containing 4.0 mass% or less in consideration of variation in the P content ratio so as to be surely smaller than the P content ratio in the Ni core. Let it be a plating layer.
  • P in the said Ni plating layer is less than 0.1 mass%, the said 1st plating layer is corresponded to the pure Ni plating layer which does not contain P substantially.
  • the conductive particles according to the present invention can have a volume resistivity that is particularly smaller than that of conventional NiP particles.
  • FIG. 1 the cross-sectional image of the electroconductive particle 10 by embodiment of this invention is shown.
  • the conductive particles 10 have a spherical Ni core 11 (NiP particles) containing Ni and P, and a first plating layer 12 that covers the surface of the Ni core 11.
  • NiP particles NiP particles
  • the spherical shape referred to in the present invention is assumed to be a sphere having a sphericity of 0.80 or more or a shape close thereto because it is required to be not a flat shape when used for an anisotropic conductive sheet, for example.
  • FIG. 2 shows a cross-sectional image of conductive particles 10a according to another embodiment of the present invention.
  • the conductive particles 20 include a spherical Ni core 11 containing Ni and P (NiP particles), a first plating layer 12 that covers the surface of the Ni core 11, and an Au plating layer 13 that covers the surface of the first plating layer 12.
  • NiP particles Ni and P particles
  • symbol is shared by FIG. 1 and FIG.
  • the diameter (particle diameter) of the Ni core 11 used for the conductive particles 10 and 10a is preferably 1 ⁇ m or more and 100 ⁇ m or less, for example.
  • the diameter of the Ni core 11 is less than 1 ⁇ m, the aggregation of the Ni core 11 becomes intense, and it becomes difficult to handle the Ni core 11 as an aggregate (powder).
  • the diameter of the Ni core 11 exceeds 100 ⁇ m, the possibility that the Ni core 11 protrudes from the conductive path and causes a short circuit between adjacent wirings, for example, increases.
  • the diameter of the Ni core 11 is preferably 3 ⁇ m or more, and preferably 30 ⁇ m or less.
  • the diameter of the Ni core 11 is 3 ⁇ m or more, the aggregation of the Ni core 11 is reduced in the plating process when forming the first plating layer, which is practical.
  • the diameter of the Ni core 11 is 30 ⁇ m or less, the protrusion from the conductive path is eliminated or reduced.
  • the conductive powder (hereinafter referred to as “Ni powder”) as an aggregate of the conductive particles 10 and 10a using the Ni core 11 has a median diameter d50 in an integrated volume distribution curve of 3 ⁇ m or more and 100 ⁇ m or less. It is preferable that (d90 ⁇ d10) /d50 ⁇ 0.8.
  • the median diameter d50 can be a measure of the average particle diameter of the Ni powder.
  • (d90-d10) / d50 exceeds 0.8, there is a large variation in particle size, and there are conductive particles with a small particle size that do not come into contact with the wiring or electrode in the conductive path. May be reduced.
  • d10 and d90 represent particle sizes at which the integrated volume fraction is 10% and 90%, respectively.
  • the particle size distribution in the present specification refers to that obtained by the laser diffraction scattering method unless otherwise specified.
  • the conductive particles described in Patent Document 2 or 3 can be suitably used as the Ni core 11 of the conductive particles 10 and 10a.
  • the Ni powder which is a conductive powder manufactured by the manufacturing method described in Patent Document 3, is monodispersed and has a narrow particle size distribution, and therefore satisfies the relationship of (d90 ⁇ d10) /d50 ⁇ 0.8. Ni powder to be manufactured can be easily manufactured.
  • the Ni core 11 is mainly composed of Ni (nickel) and contains P (phosphorus). P can be added as a starting component in the reaction treatment liquid for the purpose of promoting the growth of the core due to Ni reduction precipitation in the process of making the Ni core 11.
  • the amount of P contained in the Ni core 11 is preferably as small as possible because the volume resistivity of the Ni core 11 itself is lowered. Specifically, in order for the Ni core 11 to exhibit the effects of the present invention, if the P content exceeds 15% by mass, the volume resistivity of the Ni core 11 is significantly increased. Those containing ⁇ 15% by mass of P are used, preferably those containing 10% by mass or less.
  • the Ni core 11 may contain 0.01% by mass to 18% by mass of Cu (copper) in addition to P described above.
  • Cu can be added as a starting component in the reaction solution for the purpose of suppressing core growth and aggregation.
  • the amount of Cu contained in the Ni core 11 is preferably as small as possible because the volume resistivity of the Ni core 11 itself is lowered. When Cu content exceeds 18 mass%, the adhesiveness of the Ni core 11 and the 1st plating layer 12 may fall.
  • the Ni core 11 may contain 0.05% by mass to 10% by mass of Sn (tin) in addition to the above-described P and Cu. Similar to Cu, Sn can be added as a starting component in the reaction treatment liquid for the purpose of suppressing the growth and aggregation of the core. The amount of Sn contained in the Ni core 11 is preferably as small as possible because the volume resistivity of the Ni core 11 itself is lowered. If the Sn content exceeds 10% by mass, the adhesion between the Ni core 11 and the first plating layer 12 may be reduced.
  • the above-described Cu and Sn act as a catalyst poison for the nucleation reaction when producing the powder used for the Ni core 11, so that it becomes possible to easily produce a monodispersed powder with a narrow particle size distribution. . Cu and Sn co-deposit in the growth process of NiP conductive particles.
  • the first plating layer 12 provided on the surface of the Ni core 11 is a pure Ni plating layer or a Ni plating layer containing 4.0 mass% or less of P (hereinafter referred to as “low P—Ni plating layer”).
  • the pure Ni plating layer can be formed by an electroless plating method or an electrolytic plating method.
  • the low P—Ni plating layer is generally formed by an electroless reduction plating method.
  • the thickness of the first plating layer 12 is preferably 0.1 ⁇ m or more and 10 ⁇ m or less. If the thickness of the 1st plating layer 12 is less than 0.1 micrometer, the volume resistivity of the particle
  • the first plating layer 12 is provided on the surface of the Ni core 11 and the Au plating layer 13 is further provided on the surface of the first plating layer 12 (conductive particles 10a).
  • the conductive particles 10 a having the Au plating layer 13 on the outermost surface can have a smaller volume resistivity than the particles (conductive particles 10) having the first plating layer 12 on the surface of the Ni core 11.
  • the Au plating layer 13 is generally formed by an electroless plating method, but is preferably by an electroless displacement plating method rather than an electroless reduction plating method.
  • the Au plating layer 13 (electroless replacement Au plating layer) formed by the electroless displacement plating method is more than the first plating layer 12 (pure Ni plating layer or low P—Ni plating layer) than the electroless reduction Au plating layer. Good adhesion.
  • the thickness of the Au plating layer 13 is preferably 5 nm or more and 200 nm or less. If the thickness of the Au plating layer 13 is less than 5 nm, the volume resistivity of the conductive particles 10a may not be sufficiently smaller than the particles having the first plating layer 12 on the surface of the Ni core 11 (conductive particles 10). is there. Further, the volume resistivity of the conductive particles 10a is not costly because even if the thickness of the Au plating layer 13 exceeds 200 nm, there is no particular change corresponding to the increment of the thickness. Yes, not practical. From the viewpoint of the volume resistivity reduction effect and the cost, a more preferable thickness of the Au plating layer 13 is 10 nm or more and 100 nm or less.
  • an electroless substitution / reduction plating method in which electroless substitution Au plating and electroless reduction Au plating are performed in one plating process, or no
  • a plating process for increasing the thickness of the Au plating layer to, for example, 150 nm by an electroless reduction plating method may be used.
  • the conductive particle 10 according to the embodiment of the present invention has the Ni core 11 and the first plating layer 12 (pure Ni plating layer or low P—Ni plating layer) covering the surface of the Ni core 11, the conventional NiP. Compared with particles (conductive particles), the volume resistivity can be particularly reduced. Therefore, by applying the conductive particles 10 according to the embodiment of the present invention, it is possible to obtain Ni powder (conductive powder) having a smaller volume resistivity and better conductivity than using conventional NiP particles. In addition, a conductive polymer composition having good conductivity and an anisotropic conductive sheet using the Ni powder can be obtained.
  • the conductive particles 10a according to another embodiment of the present invention include an Au plating layer 13 having better conductivity than the first plating layer 12 (pure Ni plating layer or low P—Ni plating layer). Since the surface is covered, the volume resistivity can be further reduced as compared with the conductive particles 10. Therefore, by applying the conductive particles 10a according to another embodiment of the present invention, the Ni powder having a smaller volume resistivity and better conductivity than using the conductive particles having the Au plating layer on the surface of the conventional NiP particles. (Conductive powder) can be obtained. In addition, a conductive polymer composition having good conductivity and an anisotropic conductive sheet using the Ni powder can be obtained.
  • the conductive particles 10 and 10a according to the embodiment of the present invention can be manufactured, for example, by the following method.
  • Ni powder that is an aggregate of spherical Ni cores 11 containing P is prepared.
  • Ni powder produced by the method described in Patent Document 3 is preferable.
  • nickel sulfate hexahydrate, copper sulfate pentahydrate, sodium stannate trihydrate, and the molar ratio of Ni, Cu, and Sn is 0.29: 0.01: 0.05.
  • dissolved in pure water to prepare 15 (dm 3 ) of an aqueous metal salt solution.
  • NiP particles containing Cu and Sn are produced as described above.
  • NiP particle diameter (particle diameter) And the like have an effect that the diameter of the particles can be increased easily and stably.
  • sodium acetate was dissolved in pure water to a concentration of 1.0 (kmol / m 3 ), and sodium hydroxide was further added to prepare 15 (dm 3 ) of pH adjusted aqueous solution.
  • said metal salt aqueous solution and pH adjustment aqueous solution were stirred and mixed, and it was set as the mixed aqueous solution of 30 (dm ⁇ 3 >), and the value of 8.1 was shown when pH was measured.
  • the mixed aqueous solution was heated and held at 343 (K) by an external heater while bubbling with N 2 gas, and stirring was continued.
  • 15 (dm 3 ) of a reducing agent aqueous solution in which sodium phosphinate (sodium hypophosphite) was dissolved in pure water at a concentration of 1.8 (kmol / m 3 ) was prepared.
  • K the mixed aqueous solution of 30 (dm 3 ) and the reducing agent aqueous solution of 15 (dm 3 ) were mixed so as to have a temperature of 343 ⁇ 1 (K).
  • Ni powder was obtained by the electroless reduction plating method using the electroless reduction plating solution thus prepared.
  • the Ni core 11 constituting the manufactured Ni powder has a component composition in which P is 7.4% by mass, Cu is 3.9% by mass, Sn is 0.3% by mass, and the balance is Ni. It was.
  • NiP particles are produced in the same manner as described above without blending copper sulfate pentahydrate as a Cu source or sodium stannate trihydrate as a Sn source into the electroless reduction plating solution. be able to. In this case, the NiP particles do not contain Cu or Sn.
  • Ni powders used for the Ni core were those having a median diameter d50 of 20 ⁇ m and (d90 ⁇ d10) / d50 of 0.7.
  • the Ni powder used for the Ni core had a median diameter d50 of 6 ⁇ m and (d90 ⁇ d10) / d50 of 0.7.
  • Example 1 A low P—Ni plating layer (first plating layer 12) was formed on the surface of the Ni core 11 using the Ni core 11 manufactured by the method described above. Specifically, an electroless reduced Ni plating solution (hereinafter referred to as “Ni plating solution”) having a predetermined component composition was prepared and heated using an external heater to adjust the temperature of the Ni plating solution to a predetermined level. . Subsequently, the Ni concentration in the solution was adjusted to a predetermined value while stirring the Ni plating solution. Thereafter, the Ni core 11 washed with water after removing the oxide film on the surface by performing acid treatment was put into the Ni plating solution.
  • Ni plating solution an electroless reduced Ni plating solution having a predetermined component composition
  • conductive particles 10 having a low P—Ni plating layer having a thickness of about 1.3 ⁇ m on the surface of the Ni core 11 were obtained by electroless reduction plating.
  • This low P—Ni plating layer was qualitatively analyzed by energy dispersive X-ray spectroscopy (EDX), and as a result, it contained 1.4 mass% of P and the balance was Ni.
  • Example 2 An Au plating layer 13 (second plating layer) was further formed on the surface of the conductive particles 10 obtained in Example 1, that is, on the surface of the low P—Ni plating layer (first plating layer 12).
  • an electroless replacement Au plating solution (hereinafter referred to as “substitution Au plating solution”) was prepared and heated using an external heater to adjust the temperature of the replacement Au plating solution to a predetermined value.
  • the Au concentration was adjusted to a predetermined value by adjusting the Au potassium cyanide concentration in the solution while stirring the substitutional Au plating solution.
  • the conductive particles 10 subjected to acid treatment and water washing were put into a substitutional Au plating solution.
  • conductive particles 10a having an electroless Au plating layer (second plating layer) having a thickness of about 20 nm on the surface of the low P—Ni plating layer were obtained by an electroless displacement plating method.
  • Example 3 Similarly to Example 1 described above, a low P—Ni plating layer (first film thickness of about 2.6 ⁇ m) is formed on the surface of the Ni core 11 by electroless reduction plating with varying Ni concentration in the Ni plating solution. Conductive particles 10 having a plating layer 12) were obtained. As a result of qualitative analysis of this low P—Ni plating layer by EDX, it contained 1.3% by mass of P, and the balance was Ni.
  • Example 4 Similarly to Example 2 described above, the thickness of the surface of the low P—Ni plating layer (first plating layer 12) of the conductive particles 10 obtained in Example 3 is increased by electroless displacement plating. Conductive particles 10a having an electroless Au plating layer (second plating layer) of about 20 nm were obtained.
  • FIG. 3 shows a scanning electron microscope (SEM: Scanning Electron) of the cross section of the conductive particle 10a having the Ni core 11, the low P—Ni plating layer, and the Au plating layer 13 obtained in Example 4.
  • SEM Scanning Electron
  • Example 5 Using the conductive particles 10 obtained in Example 3 described above having the low P—Ni plating layer (first plating layer 12) having a thickness of about 2.6 ⁇ m on the surface of the Ni core 11, the surface thereof is used. Conductive particles 10a having an Au plating layer 13 (second plating layer) having a thickness of about 100 nm were obtained. Specifically, in one plating process, a general-purpose electroless Au plating solution capable of performing the electroless substitution Au plating process and the electroless reduction Au plating process substantially simultaneously is prepared, and an external heater is used. The temperature of the electroless Au plating solution was adjusted to a predetermined value by heating.
  • the Au concentration was adjusted to a predetermined value by adjusting the potassium potassium cyanide concentration in the solution while stirring the electroless Au plating solution.
  • the electroconductive particle 10 which performed acid treatment and water washing was thrown into the electroless Au plating solution.
  • an electroless Au plating layer (second plating layer) having a thickness of about 100 nm is formed on the surface of the low P—Ni plating layer (first plating layer 12) by the electroless substitution Au plating method and the electroless reduction Au plating method.
  • the electroconductive particle 10a which has) was obtained.
  • Example 6 Using the Ni core 11 manufactured by the method described above, a high purity pure Ni plating layer (first plating layer 12) substantially free of P and other semimetals was formed on the surface of the Ni core 11. Specifically, an electroless reduced Ni plating solution (hereinafter referred to as “pure Ni plating solution”) having a predetermined component composition in which an element other than Ni such as P is hardly contained in the plating layer is prepared, and an external heater is prepared. was used to adjust the temperature of the pure Ni plating solution to a predetermined value. Subsequently, the Ni concentration in the solution was adjusted to a predetermined value while stirring the pure Ni plating solution.
  • pure Ni plating solution an electroless reduced Ni plating solution having a predetermined component composition in which an element other than Ni such as P is hardly contained in the plating layer is prepared, and an external heater is prepared.
  • the Ni core 11 washed with water after performing an acid treatment to remove the surface oxide film was put into the pure Ni plating solution.
  • the electroconductive particle 10 which has the pure Ni plating layer (1st plating layer 12) whose thickness is about 0.9 micrometer and P is less than 0.1 mass% on the surface of the Ni core 11 by the electroless reduction plating method.
  • Example 7 Further, similarly to Example 1 described above, the thickness of the pure Ni plating layer (first plating layer 12) of the conductive particles 10 obtained in Example 6 is about 20 nm by electroless displacement plating. Conductive particles 10a having an electroless Au plating layer (second plating layer) were obtained.
  • Comparative Example 1 The Ni core 11 manufactured by the method described above is referred to as Comparative Example 1. That is, since the Ni core 11 does not have the first plating layer 12 (pure Ni plating layer or low P—Ni plating layer) or the second plating layer (Au plating layer 13), the Ni core 11 is substantially different from conventional NiP particles. It may be considered as equivalent conductive particles.
  • Ni core conductive particles having an electroless Au plating layer having a thickness of about 20 nm on the surface of the Ni core 11 by electroless displacement plating.
  • Au plating particles ”).
  • Ni core 11a particle diameter of 6 ⁇ m (hereinafter referred to as “Ni core 11a” in order to distinguish it from the Ni core 11 in Examples 1 to 4 and Comparative Examples 1 and 2) was obtained. Subsequently, a Pd plating layer made of Pd (palladium) was formed on the surface of the obtained Ni core 11a.
  • an electroless reduced Pd plating solution (hereinafter referred to as “Pd plating solution”) having a predetermined component composition was prepared and heated using an external heater to adjust the temperature of the Pd plating solution to a predetermined level. . Subsequently, the Pd concentration in the solution was adjusted to a predetermined value while stirring the Pd plating solution. Thereafter, the Ni core 11a washed with water after removing the oxide film on the surface by performing acid treatment was put into the Pd plating solution. Then, conductive particles having an electroless Pd plating layer with a thickness of about 30 nm on the surface of the Ni core 11a (hereinafter referred to as “Ni core Pd plating particles”) were obtained by electroless reduction plating.
  • Ni core Pd plating particles conductive particles having an electroless Pd plating layer with a thickness of about 30 nm on the surface of the Ni core 11a
  • Table 1 shows the diameter (particle size) of the Ni core, the first plating layer, and the second plating layer. Type and thickness, and volume resistivity are shown.
  • the volume resistivity Rc of the conductive particles was measured using a measuring apparatus having the configuration shown in FIG. 4 using the conductive powder as an aggregate of the conductive particles as a sample powder. Specifically, 1.15 g of sample powder 20 is placed in a cylinder 21 having an inner diameter D provided with a copper jig 22 at the bottom, and about 22 MPa in the direction of an arrow 24 from the opening side of the cylinder 21 by a copper piston 23. The distance L between the copper jig 22 and the copper piston 23 was kept constant with the load applied. The copper jig 22 and the copper piston 23 were produced so that their resistance values were substantially equal.
  • the thicknesses of the pure Ni plating layer and the low P—Ni plating layer were determined by arithmetic averaging by measuring the thickness at a plurality of locations of the plating layer observed in the cross-sectional SEM image of the conductive particles.
  • the thickness of the Au plating layer and the Pd plating layer in the case of having the first plating layer includes the chemical composition and mass of the conductive particles, the Ni core density and particle size (median diameter), the total surface area, and the plating layer.
  • the total surface area is determined as Ni core
  • the chemical component of the conductive particles can be analyzed using an ICP emission analyzer after dissolving a certain amount of conductive particles in, for example, aqua regia and diluting with pure water. A nitric acid-based solution can also be used for dissolving Ni.
  • the density of Au is the density of 19.32 g / cm 3
  • Pd is the density of 11.99 g / cm 3
  • Ni core is 7.8 g / cm 3.
  • the total surface area of the Ni core having the first plating layer includes the surface area of the Ni core having one first plating layer (the surface area of a sphere having a median diameter d50) and the first plating layer included in the sample powder. The product was the product of the total number of Ni cores.
  • Example 3 Comparing Example 1 and Example 3 of the low P—Ni plating layer, Example 3 in which the thickness of the plating layer is twice that of Example 1 has a volume resistivity of about 0.76 of Example 1. It was twice. Further, when the low P—Ni plating layer (Example 4) provided with the same thickness of the Au plating layer and the pure Ni plating layer (Example 7) were compared, the volume resistivity of both was the same. It was. Therefore, when a low P—Ni plating layer is selected as the first plating layer 12 of the conductive particles 10 shown in FIG. 1, it is preferable to increase the thickness of the low P—Ni plating layer. It has been found that the resistivity can be made smaller. This point is also considered to be the same when a pure Ni plating layer is selected as the first plating layer 12 of the conductive particles 10 shown in FIG. 1, and the volume resistivity increases as the thickness of the pure Ni plating layer increases. Is considered to be smaller.
  • the thickness of the plating layer is about 0.35 times that of the low P—Ni plating layer (Example 3).
  • a pure Ni plating layer (Example 6) had a volume resistivity of about 0.62 times that of Example 3. Therefore, when selecting the kind of the 1st plating layer 12 of the electroconductive particle 10 shown in FIG. 1, it turned out that it is preferably a pure Ni plating layer.
  • the low P—Ni plating layer has practical advantages such as a shorter plating treatment time and a lower plating solution because the formation rate of the plating layer is higher than that of the pure Ni plating layer.
  • Example 5 Comparing Example 4 and Example 5 in which the Au plating layer 13 having a different thickness was provided on the surface of the conductive particle 10 having the same configuration of the Ni core 11 and the low P—Ni plating layer, the thickness of the Au plating layer was compared.
  • Example 5 which is 5 times as large as Example 4 (80 nm larger), the volume resistivity was about 0.67 times that of Example 4 (0.1 ⁇ 10 ⁇ 5 ⁇ m smaller). Therefore, although it is preferable to make the Au plating layer thicker, it is considered preferable to select a pure Ni plating layer as the first plating layer and increase the thickness of the pure Ni plating layer from the viewpoint of cost reduction. .
  • the volume resistivity of the conductive particles made of NiP particles having no Au plating layer on the outermost surface can be remarkably reduced as compared with the conventional case.
  • grains which have Au plating layer of the same thickness on the outermost surface it has confirmed that the volume resistivity could be made smaller than before. Therefore, according to the present invention, depending on the required conductive performance, the thickness of the Au plating layer can be made smaller than before and the cost can be reduced.
  • conductive particles having a volume resistivity of about 0.7 ⁇ 10 ⁇ 5 ⁇ m (corresponding to Comparative Example 2) are required, conductive particles having a volume resistivity of 0.4 ⁇ 10 ⁇ 5 ⁇ m.
  • the thickness of the Au plating layer in Example 2 is 20 nm, even if the thickness of the Au plating layer of the conductive particles is reduced to about 10 nm, it is about 0.7 ⁇ 10 ⁇ 5 ⁇ m. It is thought that the volume resistivity of can be obtained.
  • the conductive powder according to the embodiment of the present invention is selected so that the median diameter d50 in the integrated volume distribution curve is 3 ⁇ m or more and 100 ⁇ m or less and (d90 ⁇ d10) /d50 ⁇ 0.8. It is the aggregate
  • an aggregate of conductive particles according to the present invention is prepared, and the conductive particles having the d50 in the range of 3 ⁇ m to 100 ⁇ m are selected by, for example, a sieving method, and further (d90 -D10) /d50 ⁇ 0.8 can be obtained by similarly sorting the conductive particles.
  • the conductive powder according to the present invention is a conductive powder having a good conductivity with a smaller volume resistivity than the conventional one, a sharp particle size distribution and a small variation.
  • the conductive polymer composition according to the embodiment of the present invention comprises a conductive powder, which is an aggregate of conductive particles according to the present invention having a smaller volume resistivity than the above-described conventional ones and good conductivity, and a polymer. Including. Therefore, the conductive polymer composition according to the present invention is a conductive polymer composition having a smaller volume resistivity than the conventional one and good conductivity. Unless otherwise specified, the polymer is electrically insulating. As the polymer, various known polymer materials can be used depending on the application. The polymer material is, for example, rubber, thermoplastic resin, thermosetting resin, or photocurable resin.
  • the conductive polymer composition according to the embodiment of the present invention can be widely used for anisotropic conductive sheets (ACF), anisotropic conductive pastes (ACP), and the like.
  • ACF anisotropic conductive sheets
  • ACP anisotropic conductive pastes
  • the content rate of electroconductive particle is suitably set according to a use, it is 3% or more and 50% or less in terms of volume fraction, Preferably it is 5% or more and 30% or less.
  • the conductive particles 10 and the conductive particles 10a constituting the conductive powder described above are conductive particles according to the present invention having a smaller volume resistivity and better conductivity than the prior art, and a Ni core mainly composed of Ni. 11 shows ferromagnetism. Therefore, by applying the polymer composition of the embodiment according to the present invention, an anisotropic conductive sheet is formed in which the conductive particles 10 or the conductive particles 10a are continuously arranged at substantially equal intervals in the thickness direction by a magnetic field. be able to. Therefore, the anisotropic conductive sheet according to the present invention has good conductivity because the volume resistivity is smaller in the thickness direction than in the past, and the sheet surface direction perpendicular to the thickness direction is relatively more conductive than in the past.
  • an anisotropic conductive sheet with increased anisotropy is obtained.
  • rubber or elastomer
  • a pressure-sensitive anisotropic conductive sheet can be obtained.
  • the pressure-sensitive anisotropic conductive sheet exhibits conductivity only when pressed (compressed) in the thickness direction of the sheet, and has a property of returning to insulation when the pressing is stopped.
  • the pressure-sensitive anisotropic conductive sheet is suitably used for applications in which electrical connection is temporarily formed in inspection of a wiring board or a semiconductor device.
  • Various known rubbers including elastomers
  • curable silicone rubber is preferred.
  • thermosetting resin or a photocurable resin is used as the polymer.
  • various epoxy resins are used as the thermosetting resin
  • acrylic resin is used as the photocurable resin.
  • the present invention can be applied to conductive particles, conductive powders, conductive polymer compositions, and anisotropic conductive sheets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Non-Insulated Conductors (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Chemically Coating (AREA)

Abstract

従来よりも体積抵抗率が特段に小さく導電性が良好で、望ましくは安価な導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シートを提供する。導電性粒子10は、5~15質量%以下のPを含む球状のNiコア11の表面を覆う第1めっき層12(純Niめっき層または4.0質量%以下のPを含むNiめっき層)を有する。さらに導電性粒子は、第1めっき層12の表面を覆う厚さが5~200nmのAuめっき層を有することもできる。導電性粉体は、導電性粒子を含む粉体で、メジアン径d50が3~100μm、かつ(d90-d10)/d50≦0.8である。導電性高分子組成物は前記導電性粉体と高分子を含む。異方性導電シートは、前記導電性高分子組成物から形成され、前記導電性粒子が厚さ方向に配列されている。

Description

導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シート
 本発明は、導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シートに関する。
 近年、Pなどの半金属を含む球状のNi合金粒子をコアとする導電性粒子、その導電性粒子の集合体である導電性粉体、その導電性粉体を用いた導電性高分子組成物、およびその導電性高分子組成物を用いた導電シート(導電フィルム)は、電子部品間の電気的な接続を行う用途などに広く用いられている。特に、小型の電気機器(例えば携帯電話など)では、厚さ方向に特段の導電性を有する異方性導電シートや異方性導電フィルムが広く利用されている。
 上述したNi合金粒子は、自らも導電性粒子であるが、導電性に優れるとともに金属特性的に安定なAuめっき層を表面に設けることが一般的に行われている。例えば、特許文献1には、半金属(C、B、P、Si、As、Te、Ge、Sbなど)を含む結晶質のNi合金粒子(コア)と、そのコアの表面に1μm以下の厚さのAuめっき層を有する構成の導電性粒子が記載されている。特許文献2には、Niを主体にPを含み、NiP金属間化合物が分散した表層部を有する球状NiP微小粒子(コア)と、そのコアの表面にAuめっき層を有する構成の導電性粒子が記載されている。特許文献3には、Ni、P、およびCuを含み、さらにSnを含むことができる還元析出型球状NiP微小粒子(コア)と、その製造方法、および、そのコアの表面にAuを有する構成の導電性粒子が記載されている。
 また、特許文献4、5には、導電性微粒子の最表面にPd層を有する構成の導電性粒子が記載されている。特許文献4には、例えば樹脂微粒子(コア)の表面にNiおよび7質量%以上のPを含む厚さが例えば40nm~150nmのめっき層を有し、さらに最表面に厚さが例えば10nm~50nmのPd層を有する構成の導電性粒子が記載されている。特許文献5には、材質が限定されない芯材粒子(コア)の表面にNiおよび1質量%以上10質量%未満のPを含む結晶構造の下地皮膜を有し、その下地皮膜の表面にNi、P、およびM(W、Pd、Pt、およびMoのうちの1種以上)を含む結晶構造の上層皮膜を有し、さらにAuまたはPdからなる最外層皮膜を有する構成の導電性粒子が記載されている。
特開2002-363603号公報 特開2006-131978号公報 特開2009-197317号公報 特開2011-175951号公報 特開2014-13660号公報
 特許文献1~3に記載の導電性粒子は、NiおよびPなどを含むNi粒子(以下、「NiP粒子」という。)がコアとして使用されている。NiP粒子は、自らも導電性粒子であり、例えば還元剤に次亜リン酸を用いる湿式無電解還元反応によって製造されている。しかし、Pなどを含むNiP粒子は、Pなどを含まない高純度のNi粒子(以下、「純Ni粒子」という。)よりも体積抵抗値が大きく導電性が低い。純Ni粒子は、例えば還元剤にヒドラジンを用いる湿式無電解還元反応によって製造することができるが、製造可能な最大粒子径は例えば5μmである。このため、例えば20μm~50μmの粒子径が求められる場合、NiP粒子が使用されていた。また、特許文献4、5に記載の導電性粒子は、コアとして非金属粒子も使用できる。しかし、非金属粒子の体積抵抗率はNiP粒子よりも格段に大きく導電性が低い。
 上述したようにコアの体積抵抗率が大きく導電性が低い場合、そのコア自体の体積抵抗率に着目されることなく特許文献1~5のいずれにも記載されているように、コアとなるNiP粒子や非金属粒子の表面に導電性の良いAuめっき層を設けることにより、粒子全体の体積抵抗率を小さくして導電性を高めることが専らであった。しかし、Auめっき層は、導電性の経年変化がほとんどなく多用されているが、高価である。Auに替えて、例えばAg、Cu、Alなどの適用も考えられる。しかし、AgはAuよりも導電性が良いが、マイグレーション、硫化、酸化などの問題がある。CuやAlは導電性が良いが、酸化などの問題がある。さらにAlは、水溶性めっきができないためAl層の形成が高コストになる問題がある。なお、従来から使用されているPdめっき層は、同じ厚さのAuめっき層よりも導電性が低いため、厚さを十分に大きくする必要があった。
 本発明の目的は、最表面にAuめっき層を有さないNiP粒子からなる導電性粒子を対象としたときに、従来よりも体積抵抗率が特段に小さい導電性粒子を提供することである。
 また、最表面にAuめっき層を有するNiP粒子からなる導電性粒子を対象としたときに、従来よりも体積抵抗率が小さい導電性粒子を提供し、求められる導電性能によっては、従来よりもAuめっき層の厚さが小さい安価な導電性粒子を提供することである。
 また、NiP粒子からなる従来よりも体積抵抗率が小さい導電性粒子を適用し、その導電性粒子の集合体である導電性粉体、その導電性粉体を用いた導電性高分子組成物、およびその導電性高分子組成物を用いた異方性導電シートを提供することである。
 本発明者は、NiP粒子に含まれるP量とNiP粒子の体積抵抗率との関係を見出すとともに、従来の還元剤に次亜リン酸を用いる湿式無電解還元反応によって製造されたNiP粒子にも適用することができる導電性粒子の新規な構成を見出し、本発明に到達した。
 すなわち本発明の実施形態の導電性粒子は、5質量%以上15質量%以下のPを含む球状のNiコアと、前記Niコアの表面を覆う第1めっき層とを有し、前記第1めっき層は純Niめっき層または4.0質量%以下のPを含むNiめっき層である。前記第1めっき層の厚さは0.1μm以上10μm以下である。
 ある実施形態において、前記Niコアの直径は1μm以上100μm以下である。
 ある実施形態において、前記第1めっき層の表面を覆う第2めっき層を有し、前記第2めっき層は厚さが5nm以上200nm以下のAuめっき層である。
 本発明の実施形態による導電性粉体は、上記のいずれかの導電性粒子を含む粉体であって、積算体積分布曲線におけるメジアン径d50が3μm以上100μm以下であり、かつ、(d90-d10)/d50≦0.8である。
 本発明の実施形態による導電性高分子組成物は、上記の導電性粉体と、高分子とを含み、前記高分子は、例えば、ゴム、熱可塑性樹脂、熱硬化性樹脂、または光硬化性樹脂である。
 本発明の実施形態による異方性導電シートは、上記の導電性高分子組成物から形成され、前記導電性粒子が厚さ方向に配列されている。
 本発明によれば、最表面にAuめっき層を有さないNiP粒子からなる導電性粒子の体積抵抗率を、従来よりも特段に小さくすることができる。また、最表面にAuめっき層を有するNiP粒子からなる導電性粒子の体積抵抗率を、従来よりも小さくすることができる。また、この構成において、求められる導電性能によっては、従来よりもAuめっき層の厚さが小さい安価な導電性粒子を提供することができる。よって、本発明の実施形態である導電性粒子の適用により、従来よりも体積抵抗率が小さい導電性粒子すなわち導電性の良い導電性粒子の集合体である導電性粉体が得られ、その導電性粉体を用いた導電性の良い導電性高分子組成物および異方性導電シートが得られる。
本発明の実施形態による導電性粒子の断面イメージを示す図である。 本発明の別の実施形態による導電性粒子の断面イメージを示す図である。 実施例2の導電性粒子10aの断面SEM像を示す図(写真)である。 導電性粒子の体積抵抗率の測定に用いた装置の構成を示す図である。
 本発明における重要な特徴は、Pを含む球状のNiコア(NiP粒子)の表面に、純Niめっき層または少量のPを含むNiめっき層を有する構成にある。
 本発明の実施形態の導電性粒子は、5質量%以上15質量%以下のPを含む球状のNiコアと、前記Niコアの表面を覆う第1めっき層とを有し、前記第1めっき層は純Niめっき層または4.0質量%以下のPを含むNiめっき層である。上述したように還元剤に次亜リン酸を用いることが一般的である従来のNiP粒子には、Pが5質量%以上含まれる。よって、本発明に係る前記第1めっき層は、前記NiコアにおけるPの含有比率よりも確実に小さくなるようにPの含有比率のバラツキを考慮し、4.0質量%以下のPを含むNiめっき層とする。なお、前記Niめっき層におけるPが0.1質量%未満であれば、前記第1めっき層は実質的にPを含まない純Niめっき層に相当する。この構成により、本発明に係る導電性粒子は、従来のNiP粒子よりも特段に小さい体積抵抗率を有することができる。
 以下、適宜図面を参照し、本発明の実施形態による導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シートについて説明する。
 図1に、本発明の実施形態による導電性粒子10の断面イメージを示す。導電性粒子10は、NiおよびPを含む球状のNiコア11(NiP粒子)と、Niコア11の表面を覆う第1めっき層12とを有する。本発明でいう球状は、例えば異方性導電シートに用いる場合は扁平な形状でないことが求められることから、0.80以上の真球度を有する真球またはそれに近い形状を想定しているが、これに限定しなくてもよい。また、真球度とは、真球からのずれを表し、複数個の各粒子の直径を長径で割った際に算出される算術平均値であり、値が上限である1.00に近いほど真球に近いことを表す。
 また、図2に、本発明の別の実施形態による導電性粒子10aの断面イメージを示す。導電性粒子20は、NiおよびPを含む球状のNiコア11(NiP粒子)と、Niコア11の表面を覆う第1めっき層12と、第1めっき層12の表面を覆うAuめっき層13とを有する。なお、説明を簡便にするために、図1と図2とで符号を共用している。
 導電性粒子10、10aに用いるNiコア11の直径(粒径)は、例えば1μm以上100μm以下であることが好ましい。Niコア11の直径が1μm未満であると、Niコア11の凝集が激しくなるので、Niコア11を集合体(粉体)として取扱うことが容易でなくなる。Niコア11の直径が100μmを超えると、導電経路からはみ出して、例えば、隣接配線間のショートを引き起こす可能性が高まる。また、Niコア11の直径は、3μm以上であることが好ましく、30μm以下であることが好ましい。Niコア11の直径が3μm以上であると、第1めっき層を形成する際のめっき処理においてNiコア11の凝集が緩和されるので、実用的である。Niコア11の直径が30μm以下であると、導電経路からのはみ出しがなくなるか、あるいは低減される。
 Niコア11を用いた導電性粒子10、10aの集合体としての導電性粉体(以下、「Ni粉体」という。)は、積算体積分布曲線におけるメジアン径d50が3μm以上100μm以下であり、かつ、(d90-d10)/d50≦0.8であることが好ましい。メジアン径d50はNi粉体の平均粒径の目安にすることができる。また、(d90-d10)/d50が0.8を超えると粒径のバラツキが大きく、導電経路において配線または電極に接触しない小粒径の導電性粒子が存在することになるので、接続信頼性が低下する可能性がある。d10およびd90は、それぞれ、積算体積分率が10%および90%となる粒径を表す。なお、本明細書における粒度分布は、特に説明しない限り、レーザー回折散乱法によって求められるものを指す。
 導電性粒子10、10aのNiコア11として、例えば、特許文献2または3に記載の導電性粒子を好適に用いることができる。特許文献3に記載の製造方法によって製造された導電性粉体であるNi粉体は、単分散で、かつ、粒度分布が狭いので、(d90-d10)/d50≦0.8の関係を満足するNi粉体を容易に製造できるという利点を有している。
 Niコア11は、Ni(ニッケル)を主成分とし、P(燐)を含む。Pは、Niコア11の造球過程において、Niの還元析出によるコアの成長を促進する目的で、反応処理液中の出発成分として添加することができる。PがNiコア11に含まれる量は、Niコア11自体の体積抵抗率を低くするとの理由から少量であるほど好ましい。具体的に、Niコア11が本発明の作用効果を奏するためには、Pの含有量が15質量%超にであるとNiコア11の体積抵抗率の上昇が著しいので、全体に対して5~15質量%のPを含むものを使用し、好ましくは10質量%以下のものを使用する。
 また、Niコア11は、上述したPの他、全体に対して0.01質量%~18質量%のCu(銅)を含む場合がある。Cuは、コアの成長や凝集を抑制する目的で、反応処理液中の出発成分として添加することができる。CuがNiコア11に含まれる量は、Niコア11自体の体積抵抗率を低くするとの理由から少量であるほど好ましい。Cu含有量が18質量%超になると、Niコア11と第1めっき層12との密着性が低下する可能性もある。
 また、Niコア11は、上述したPおよびCuの他、全体に対して0.05質量%~10質量%のSn(錫)を含む場合がある。Snは、Cuと同様に、コアの成長や凝集を抑制する目的で、反応処理液中の出発成分として添加することができる。SnがNiコア11に含まれる量は、Niコア11自体の体積抵抗率を低くするとの理由から少量であるほど好ましい。Snの含有量が10質量%超になると、Niコア11と第1めっき層12との密着性が低下する可能性もある。
 上述したCuおよびSnは、Niコア11に用いられる粉体を製造する際に、核生成反応の触媒毒として作用するため単分散で粒度分布の狭い粉体を容易に製造することが可能になる。またCuおよびSnはNiP導電性粒子の成長過程において共析する。
 Niコア11の表面に設ける第1めっき層12は、純Niめっき層または4.0質量%以下のPを含むNiめっき層(以下、「低P-Niめっき層」という。)とする。純Niめっき層は、無電解めっき法や電解めっき法によって形成することができる。低P-Niめっき層は、一般的に無電解還元めっき法によって形成される。
 第1めっき層12の厚さは0.1μm以上10μm以下であることが好ましい。第1めっき層12の厚さが0.1μm未満では、Niコア11の表面に第1めっき層12を有する粒子(導電性粒子10)の体積抵抗率が十分に小さくならない可能性がある。また、Niコア11の表面に第1めっき層12を有する粒子(導電性粒子10)の体積抵抗率は、第1めっき層12の厚さを10μmを超えて大きくしても、その厚さの増分に見合うだけの特段の変化がないので、コスト的に無駄であり実用的でない。
 Niコア11の表面に第1めっき層12を設け、その第1めっき層12の表面にさらにAuめっき層13を設けた粒子(導電性粒子10a)に形成することは好ましい。最表面にAuめっき層13を有する導電性粒子10aは、Niコア11の表面に第1めっき層12を有する粒子(導電性粒子10)よりも体積抵抗率を小さくすることができる。Auめっき層13は、一般的に無電解めっき法によって形成されるが、無電解還元めっき法によるよりも無電解置換めっき法によることが好ましい。無電解置換めっき法によって形成されたAuめっき層13(無電解置換Auめっき層)は、無電解還元Auめっき層よりも、第1めっき層12(純Niめっき層または低P-Niめっき層)との密着性が良い。
 Auめっき層13の厚さは5nm以上200nm以下であることが好ましい。Auめっき層13の厚さが5nm未満では、導電性粒子10aの体積抵抗率がNiコア11の表面に第1めっき層12を有する粒子(導電性粒子10)よりも十分に小さくならない可能性がある。また、導電性粒子10aの体積抵抗率は、Auめっき層13の厚さを200nmを超えて大きくしても、その厚さの増分に見合うだけの特段の変化がないので、コスト的に無駄であり実用的でない。こうした体積抵抗率の低減効果およびコスト的な観点から、Auめっき層13のより好ましい厚さは10nm以上100nm以下である。厚さの大きい例えば50nm以上200nm以下のAuめっき層を形成する場合、無電解置換Auめっきおよび無電解還元Auめっきを一つのめっき処理中に行う無電解置換・還元めっき法によるか、あるいは、無電解置換めっき法によって厚さが例えば50nmのAuめっき層を形成した後に、無電解還元めっき法によってAuめっき層の厚さを例えば150nmまで大きくするめっき処理によればよい。
 本発明の実施形態による導電性粒子10は、Niコア11と、Niコア11の表面を覆う第1めっき層12(純Niめっき層または低P-Niめっき層)とを有するので、従来のNiP粒子(導電性粒子)に比べ、体積抵抗率を特段に小さくすることができる。よって、本発明の実施形態である導電性粒子10の適用により、従来のNiP粒子を用いるよりも体積抵抗率が小さく導電性の良いNi粉体(導電性粉体)を得ることができる。また、そのNi粉体を用いた導電性の良い導電性高分子組成物および異方性導電シートを得ることができる。
 また、本発明の別の実施形態による導電性粒子10aは、第1めっき層12(純Niめっき層または低P-Niめっき層)よりも導電性の良いAuめっき層13が導電性粒子10の表面を覆っているので、導電性粒子10よりもさらに体積抵抗率を小さくすることができる。よって、本発明の別の実施形態である導電性粒子10aの適用により、従来のNiP粒子の表面にAuめっき層を有する導電性粒子を用いるよりも体積抵抗率が小さく導電性の良いNi粉体(導電性粉体)を得ることができる。また、そのNi粉体を用いた導電性の良い導電性高分子組成物および異方性導電シートを得ることができる。
 本発明による実施形態の導電性粒子10、10aは、例えば、以下の方法で製造することができる。
 まず、Pを含む球状のNiコア11の集合体であるNi粉体を準備する。この場合、特許文献3に記載された方法で製造されたNi粉体が好ましい。
 具体的には、硫酸ニッケル六水和物と硫酸銅五水和物と錫酸ナトリウム三水和物とを、NiとCuとSnのモル比が0.29:0.01:0.05となるよう調製して、純水に溶解し、金属塩水溶液を15(dm)作製した。なお、硫酸銅五水和物や、さらに錫酸ナトリウム三水和物を配合することにより、上述したようにCuや、さらにSnを含むNiP粒子が作製されるが、NiP粒子径(粒径)が揃いやすい、容易かつ安定な粒子の大径化が可能になるなどの作用効果を奏する。次に、酢酸ナトリウムを純水に溶解して、1.0(kmol/m)の濃度とし、更に水酸化ナトリウムを加えてpH調製水溶液を15(dm)作製した。そして、上記の金属塩水溶液とpH調製水溶液を撹拌混合し、30(dm)の混合水溶液とし、pHを測定すると8.1の値を示した。そして、上記の混合水溶液をNガスでバブリングしながら外部ヒーターにより343(K)に加熱保持し、撹拌を続けた。次に、純水に1.8(kmol/m)の濃度でホスフィン酸ナトリウム(次亜リン酸ナトリウム)を溶解した還元剤水溶液を15(dm)作製し、こちらも外部ヒーターによって343(K)に加熱した。そして、上記、30(dm)の混合水溶液と15(dm)の還元剤水溶液を、温度が343±1(K)となるように調製した後に混合した。
 このようにして準備した無電解還元めっき液を用いて、無電解還元めっき法によってNi粉体を得た。製造されたNi粉体を構成するNiコア11は、Pが7.4質量%、Cuが3.9質量%、Snが0.3質量%含まれ、残部がNiである成分組成を有していた。なお、無電解還元めっき液中にCu源である硫酸銅五水和物やSn源である錫酸ナトリウム三水和物を配合しなくても、上述した方法と同様にしてNiP粒子を作製することができる。この場合、NiP粒子にはCuやSnは含まれない。
 以下、実施例1~7及び比較例1、2では、Niコアに用いるNi粉体は、メジアン径d50が20μmで、(d90-d10)/d50が0.7のものを用いた。また、比較例3では、Niコアに用いるNi粉体は、メジアン径d50が6μmで、(d90-d10)/d50が0.7のものを用いた。
(実施例1)
 上述した方法で製造したNiコア11を用いて、Niコア11の表面に低P-Niめっき層(第1めっき層12)を形成した。具体的には、所定の成分組成を有する無電解還元Niめっき液(以下、「Niめっき液」という。)を準備し、外部ヒーターを用いて加熱してNiめっき液の温度を所定に調整した。続いて、Niめっき液を攪拌しながら液中のNi濃度を所定に調整した。その後、そのNiめっき液中に、酸処理を行って表面の酸化膜を除去した後に水洗したNiコア11を投入した。そして、無電解還元めっき法により、Niコア11の表面に、厚さが約1.3μmの低P-Niめっき層(第1めっき層12)を有する導電性粒子10を得た。この低P-Niめっき層を、エネルギー分散型X線分光法(EDX:Energy Dispersive X-ray Spectroscopy)によって定性分析した結果、Pを1.4質量%含み、残部がNiであった。
(実施例2)
 実施例1で得られた導電性粒子10の表面に、すなわち低P-Niめっき層(第1めっき層12)の表面に、さらにAuめっき層13(第2めっき層)を形成した。具体的には、無電解置換Auめっき液(以下、「置換型Auめっき液」という。)を準備し、外部ヒーターを用いて加熱して置換型Auめっき液の温度を所定に調整した。続いて、置換型Auめっき液を攪拌しながら液中のシアン化Auカリウム濃度を調整することによってAu濃度を所定に調整した。その後、置換型Auめっき液中に、酸処理および水洗を行った導電性粒子10を投入した。そして、無電解置換めっき法により、低P-Niめっき層の表面に、厚さが約20nmの無電解Auめっき層(第2めっき層)を有する導電性粒子10aを得た。
(実施例3)
 上述した実施例1と同様に、Niめっき液中のNi濃度を変えた無電解還元めっき法により、Niコア11の表面に、厚さが約2.6μmの低P-Niめっき層(第1めっき層12)を有する導電性粒子10を得た。この低P-Niめっき層を、EDXによって定性分析した結果、Pを1.3質量%含み、残部がNiであった。
(実施例4)
 また、上述した実施例2と同様に、無電解置換めっき法により、実施例3で得られた導電性粒子10の低P-Niめっき層(第1めっき層12)の表面に、厚さが約20nmの無電解Auめっき層(第2めっき層)を有する導電性粒子10aを得た。
 図3に、実施例4で得られた、Niコア11と、低P-Niめっき層と、Auめっき層13とを有する導電性粒子10aについて、その断面の走査型電子顕微鏡(SEM:Scanning Electron Microscope)による観察像(断面SEM像)を示す。NiPコア11の周囲を低P-Niめっき層12が覆っている様子が確認される。なお、図3に示す断面SEM像において、約20nmの厚さのAuめっき層13の存在を確認することは難しい。
(実施例5)
 上述した実施例3で得られた、Niコア11の表面に厚さが約2.6μmの低P-Niめっき層(第1めっき層12)を有する導電性粒子10を用いて、その表面に厚さが約100nmのAuめっき層13(第2めっき層)を有する導電性粒子10aを得た。具体的には、一つのめっき処理において、無電解置換Auめっき処理と無電解還元Auめっき処理とを実質的に同時に行うことができる汎用の無電解Auめっき液を準備し、外部ヒーターを用いて加熱して無電解Auめっき液の温度を所定に調整した。続いて、無電解Auめっき液を攪拌しながら液中のシアン化Auカリウム濃度を調整することによってAu濃度を所定に調整した。その後、無電解Auめっき液中に、酸処理および水洗を行った導電性粒子10を投入した。そして、無電解置換Auめっき法および無電解還元Auめっき法により、低P-Niめっき層(第1めっき層12)の表面に、厚さが約100nmの無電解Auめっき層(第2めっき層)を有する導電性粒子10aを得た。
(実施例6)
 上述した方法で製造したNiコア11を用いて、Niコア11の表面にPなどの半金属が実質的に含まれない高純度の純Niめっき層(第1めっき層12)を形成した。具体的には、めっき層中にPなどのNi以外の元素が含まれ難い所定の成分組成を有する無電解還元Niめっき液(以下、「純Niめっき液」という。)を準備し、外部ヒーターを用いて加熱して純Niめっき液の温度を所定に調整した。続いて、純Niめっき液を攪拌しながら液中のNi濃度を所定に調整した。その後、その純Niめっき液中に、酸処理を行って表面の酸化膜を除去した後に水洗したNiコア11を投入した。そして、無電解還元めっき法により、Niコア11の表面に、厚さが約0.9μmでPが0.1質量%未満の純Niめっき層(第1めっき層12)を有する導電性粒子10を得た。
(実施例7)
 また、上述した実施例1と同様に、無電解置換めっき法により、実施例6で得られた導電性粒子10の純Niめっき層(第1めっき層12)の表面に、厚さが約20nmの無電解Auめっき層(第2めっき層)を有する導電性粒子10aを得た。
(比較例1)
 上述した方法で製造したNiコア11を比較例1とする。つまり、Niコア11は、第1めっき層12(純Niめっき層または低P-Niめっき層)や第2めっき層(Auめっき層13)を有さないため、実質的に従来のNiP粒子と同等の導電性粒子と考えてよい。
(比較例2)
 上述した方法で製造したNiコア11を用いて、Niコア11の表面にAuめっき層を形成した。具体的には、上述した実施例1と同様に、無電解置換めっき法により、Niコア11の表面に、厚さが約20nmの無電解Auめっき層を有する導電性粒子(以下、「NiコアAuめっき粒子」という。)を得た。
(比較例3)
 上述したNiコア11と同様な方法により、Pが7.9質量%、Cuが3.3質量%、Snが0.4質量%含まれ、残部がNiである成分組成を有する、粒子の直径(粒径)が6μmのNiコア11(以下、実施例1~4および比較例1、2におけるNiコア11と区別するために「Niコア11a」という。)を得た。続いて、得られたNiコア11aの表面にPd(パラジウム)からなるPdめっき層を形成した。具体的には、所定の成分組成を有する無電解還元Pdめっき液(以下、「Pdめっき液」という。)を準備し、外部ヒーターを用いて加熱してPdめっき液の温度を所定に調整した。続いて、Pdめっき液を攪拌しながら液中のPd濃度を所定に調整した。その後、そのPdめっき液中に、酸処理を行って表面の酸化膜を除去した後に水洗したNiコア11aを投入した。そして、無電解還元めっき法により、Niコア11aの表面に、厚さが約30nmの無電解Pdめっき層を有する導電性粒子(以下、「NiコアPdめっき粒子」という。)を得た。
 上述のようにして得られた実施例1~7および比較例1~3のそれぞれの導電性粒子について、表1に、Niコアの直径(粒径)、第1めっき層および第2めっき層の種類と厚さ、および体積抵抗率を示す。
Figure JPOXMLDOC01-appb-T000001
 導電性粒子の体積抵抗率Rcは、その導電性粒子の集合体である導電性粉体を試料粉体とし、図4に示す構成の測定装置を用いて測定した。具体的には、底部に銅製治具22を設けた内径Dのシリンダ21内に1.15gの試料粉体20を収め、銅製ピストン23によってシリンダ21の開口側から矢印24の方向に約22MPaの荷重を加えた状態で銅製治具22と銅製ピストン23との間隔Lを一定に保持した。なお、銅製治具22と銅製ピストン23は、互いの抵抗値がほぼ同等になるように作製した。続いて、銅製治具22と銅製ピストン23との間で通電し、市販の抵抗計(日置電機製抵抗計3541)によって抵抗値Rmを測定した。こうして測定した全体の抵抗値Rm(Ω)と、銅製治具22および銅製ピストン23の抵抗値Rj(Ω)と、前記内径D(m)および前記間隔L(m)とにより、Rc=(Rm-Rj)×π×(D/2)/Lの式を用いて導電性粒子の体積抵抗率Rc(Ωm)を求めた。
 純Niめっき層および低P-Niめっき層の厚さは、導電性粒子の断面SEM像において観察された当該めっき層の複数の箇所で厚さを計測して算術的平均によって求めた。また、第1めっき層を有する場合のAuめっき層およびPdめっき層の厚さは、導電性粒子の化学成分および質量と、Niコアの密度と粒径(メジアン径)および総表面積と、めっき層を構成するAu、Pdなどの元素の理論密度を用いて、めっき層の厚さ(μm)=(めっき層の質量%/100)×(1/めっき層を構成する元素の密度(g/cm))×(1/第1めっき層を有するNiコアの総表面積(cm))×10000の式を用いて求めたが、第1めっき層を有さない場合は前記総表面積をNiコアの総表面積(cm)とした。導電性粒子の化学成分は、一定量の導電性粒子を例えば王水に溶解し、純水で希釈した後、ICP発光分析装置を用いて分析することができる。なお、Niの溶解には硝酸系溶液を使用することもできる。また、Auの密度は19.32g/cm、Pdの密度は11.99g/cm、Niコアの密度は7.8g/cmである。また、第1めっき層を有するNiコアの総表面積は、1つの第1めっき層を有するNiコアの表面積(メジアン径d50の球の表面積)と、試料粉体に含まれる第1めっき層を有するNiコアの総数との積とした。
(導電性粒子10の体積抵抗率)
 表1に示す体積抵抗率において、本発明に係るNiコア11の表面に第1めっき層12(低P-Niめっき層または純Niめっき層)を有する導電性粒子10(実施例1、3、6)の場合、従来のNiP粒子(比較例1)の約0.03倍(実施例6)から約0.05倍(実施例1)であった。従って、本発明に係る導電性粒子10は、従来の導電性粒子(NiP粒子)よりも特段に小さい体積抵抗率を有していることが確認された。
(導電性粒子10aの体積抵抗率)
 表1に示す体積抵抗率において、本発明に係る第1めっき層12の表面にAuめっき層13を有する導電性粒子10a(実施例2、4、5)の場合、従来のAuめっき層またはPdめっき層を有する導電性粒子(比較例2、3)の約0.29倍(実施例5)から約0.57倍(実施例2)であった。従って、本発明に係る導電性粒子10aは、従来の導電性粒子(NiコアAuめっき粒子またはNiコアPdめっき粒子)よりも小さい体積抵抗率を有していることが確認された。
(第1めっき層の厚さ)
 低P-Niめっき層の実施例1と実施例3とを比べると、めっき層の厚さが実施例1の2倍である実施例3は、体積抵抗率が実施例1の約0.76倍であった。また、さらにAuめっき層を厚さを同じにして設けた低P-Niめっき層(実施例4)と純Niめっき層(実施例7)とを比べると、両者の体積抵抗率は同等であった。従って、図1に示す導電性粒子10の第1めっき層12に低P-Niめっき層を選定する場合、低P-Niめっき層の厚さを大きくすることは好ましく、導電性粒子10の体積抵抗率をより小さくすることができることが分った。この点は、図1に示す導電性粒子10の第1めっき層12に純Niめっき層を選定する場合も同傾向であると考えられ、純Niめっき層の厚さが大きくなれば体積抵抗率が小さくなると考えられる。
(第1めっき層の種類)
 低P-Niめっき層(実施例3)と純Niめっき層(実施例6)とを比べると、めっき層の厚さが低P-Niめっき層(実施例3)の約0.35倍である純Niめっき層(実施例6)は、体積抵抗率が実施例3の約0.62倍であった。従って、図1に示す導電性粒子10の第1めっき層12の種類を選定する場合、好ましくは純Niめっき層であることが分った。なお、低P-Niめっき層は、純Niめっき層に比べ、めっき層の形成速度が大きいためめっき処理時間が短い、めっき液が安価であるなど、実用上の利点がある。
(Auめっき層の厚さ)
 Niコア11および低P-Niめっき層の構成が同じ導電性粒子10の表面に、厚さが異なるAuめっき層13を設けた実施例4と実施例5とを比べると、Auめっき層の厚さが実施例4の5倍(80nm大きい)である実施例5は、体積抵抗率が実施例4の約0.67倍(0.1×10-5Ωm小さい)であった。従って、Auめっき層をより厚くすることも好ましいが、低コスト化の観点から、第1めっき層に純Niめっき層を選定し、純Niめっき層の厚さを大きくすることが好ましいと考えられる。
 以上述べたように、本発明の実施形態によれば、最表面にAuめっき層を有さないNiP粒子からなる導電性粒子の体積抵抗率を、従来よりも特段に小さくできることが確認できた。また、最表面に同じ厚さのAuめっき層を有するNiP粒子からなる導電性粒子の場合、その体積抵抗率を従来よりも小さくできることが確認できた。従って、本発明によれば、求められる導電性能によっては、従来よりもAuめっき層の厚さを小さくして低コスト化できると考えられる。具体的には、例えば0.7×10-5Ωm程度の体積抵抗率の導電性粒子(比較例2相当)が求められる場合、体積抵抗率が0.4×10-5Ωmの導電性粒子(実施例2)のAuめっき層の厚さが20nmであることを参酌すれば、この導電性粒子のAuめっき層の厚さを10nm程度に小さくしても0.7×10-5Ωm程度の体積抵抗率を得ることができると考えられる。
 本発明の実施形態による導電性粉体は、積算体積分布曲線におけるメジアン径d50が3μm以上100μm以下であり、かつ、(d90-d10)/d50≦0.8であるように選別された、上述した従来よりも体積抵抗率が小さく導電性の良い本発明に係る導電性粒子の集合体である。このような導電性粉体は、本発明に係る導電性粒子の集合体を準備し、前記d50が3μm以上100μm以下の範囲である導電性粒子を例えば篩分け法などによって選別し、さらに(d90-d10)/d50≦0.8である導電性粒子を同様に選別することによって得ることができる。実際には、例えば、上述したd50が20μmで、(d90-d10)/d50が0.7である導電性粉体を得ることができた。従って、本発明に係る導電性粉体は、従来よりも体積抵抗率が小さく、粒度分布が急峻でばらつきが小さい導電性の良い導電性粉体となる。
 本発明の実施形態による導電性高分子組成物は、上述した従来よりも体積抵抗率が小さく導電性の良い本発明に係る導電性粒子の集合体である導電性粉体と、高分子とを含む。従って、本発明に係る導電性高分子組成物は、従来よりも体積抵抗率が小さく導電性の良い導電性高分子組成物となる。なお、特に説明しない限り、高分子は電気絶縁性である。高分子としては、用途に応じて種々の公知の高分子材料を用いることができる。高分子材料は、例えば、ゴム、熱可塑性樹脂、熱硬化性樹脂または光硬化性樹脂である。本発明の実施形態による導電性高分子組成物は、異方性導電性シート(ACF)、異方性導電性ペースト(ACP)などに広く用いられ得る。導電性粒子の含有率は、用途に応じて適宜設定されるが、体積分率で、概ね3%以上50%以下であり、好ましくは5%以上30%以下である。
 上述した導電性粉体を構成する導電性粒子10および導電性粒子10aは、従来よりも体積抵抗率が小さく導電性の良い本発明に係る導電性粒子であって、Niを主体とするNiコア11を有しているので、強磁性を示す。従って、本発明による実施形態の高分子組成物の適用により、磁場によって導電性粒子10または導電性粒子10aが厚さ方向にほぼ等間隔で連続的に配列された異方性導電シートを形成することができる。従って、本発明に係る異方性導電シートは、厚さ方向は従来よりも体積抵抗率が小さいために導電性が良く、厚さ方向と直交するシート面方向は相対的に従来よりも導電性が抑制されるために異方性が強まった異方性導電シートとなる。ここで、高分子として、ゴム(またはエラストマー)を用いると、感圧型異方性導電シートを得ることができる。感圧型異方性導電シートは、シートの厚さ方向に加圧(圧縮)した時にだけ導電性を示し、加圧を止めると絶縁性に戻る性質を有している。感圧型異方性導電シートは、配線基板や半導体装置などの検査等において、一時的に電気的な接続を形成する用途に好適に用いられる。ゴムとしては、公知の種々のゴム(エラストマーを含む)を用いることができる。加工性、耐熱性等の観点から、硬化型のシリコーンゴムが好ましい。
 ACFやACPは、液晶表示装置、タブレットPC、携帯電話など電気機器内における電気的な接続を形成するためにも用いられる。これらに用途においては、高分子は、熱硬化性樹脂または光硬化性樹脂が用いられる。熱硬化性樹脂としては、例えば、種々のエポキシ樹脂が用いられ、光硬化性樹脂としてはアクリル樹脂が用いられる。
 本発明は、導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シートに適用できる。
 10   導電性粒子
 10a  導電性粒子
 11   Niコア(NiP粒子)
 12   第1めっき層
 13   Auめっき層
 20   試料粉体
 21   シリンダ
 22   銅製治具
 23   銅製ピストン
 24   矢印

 

Claims (7)

  1.  5質量%以上15質量%以下のPを含む球状のNiコアと、前記Niコアの表面を覆う第1めっき層とを有し、前記第1めっき層は純Niめっき層または4.0質量%以下のPを含むNiめっき層である、導電性粒子。
  2.  前記第1めっき層の厚さは0.1μm以上10μm以下である、請求項1に記載の導電性粒子。
  3.  前記Niコアの直径は1μm以上100μm以下である、請求項1に記載の導電性粒子。
  4.  前記第1めっき層の表面を覆う第2めっき層を有し、前記第2めっき層は厚さが5nm以上200nm以下のAuめっき層である、請求項1に記載の導電性粒子。
  5.  請求項1に記載の導電性粒子を含む粉体であって、積算体積分布曲線におけるメジアン径d50が3μm以上100μm以下であり、かつ、[(d90-d10)/d50]≦0.8である、導電性粉体。
  6.  請求項5に記載の導電性粉体と、高分子とを含み、前記高分子は、ゴム、熱可塑性樹脂、熱硬化性樹脂、または光硬化性樹脂である、導電性高分子組成物。
  7.  請求項6に記載の導電性高分子組成物から形成され、前記導電性粒子が厚さ方向に配列された、異方性導電シート。

     
     
PCT/JP2015/077414 2014-10-24 2015-09-29 導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シート WO2016063684A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177013750A KR102011643B1 (ko) 2014-10-24 2015-09-29 도전성 입자, 도전성 분체, 도전성 고분자 조성물 및 이방성 도전 시트
CN201580057689.4A CN107073577B (zh) 2014-10-24 2015-09-29 导电性颗粒、导电性粉体、导电性高分子组合物和各向异性导电片
EP15853551.8A EP3210696B1 (en) 2014-10-24 2015-09-29 Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
US15/520,855 US20170333989A1 (en) 2014-10-24 2015-09-29 Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-217570 2014-10-24
JP2014217570A JP6443732B2 (ja) 2014-10-24 2014-10-24 導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シート

Publications (1)

Publication Number Publication Date
WO2016063684A1 true WO2016063684A1 (ja) 2016-04-28

Family

ID=55760729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077414 WO2016063684A1 (ja) 2014-10-24 2015-09-29 導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シート

Country Status (7)

Country Link
US (1) US20170333989A1 (ja)
EP (1) EP3210696B1 (ja)
JP (1) JP6443732B2 (ja)
KR (1) KR102011643B1 (ja)
CN (1) CN107073577B (ja)
TW (1) TWI666655B (ja)
WO (1) WO2016063684A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459293B2 (ja) * 2014-08-18 2019-01-30 日立金属株式会社 はんだ被覆ボールおよびその製造方法
US11380585B2 (en) * 2015-04-20 2022-07-05 Mitsubishi Electric Corporation Semiconductor device manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034879A (ja) * 2001-07-26 2003-02-07 Sony Chem Corp Niメッキ粒子及びその製造方法
JP2006131978A (ja) * 2004-11-09 2006-05-25 Akita Pref Gov Shigen Gijutsu Kaihatsu Kiko 球状NiP微小粒子およびその製造方法ならびに、異方性導電フィルム用導電粒子
JP2010073681A (ja) * 2009-07-16 2010-04-02 Sony Chemical & Information Device Corp 導電性粒子、並びに異方性導電フィルム、接合体、及び接続方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279306A (ja) * 2000-03-30 2001-10-10 Akita Pref Gov Shigen Gijutsu Kaihatsu Kiko 球状Ni−Pアモルファス金属粉末の製法
JP4524727B2 (ja) 2000-04-26 2010-08-18 日立金属株式会社 異方性導電膜用Ni合金粒およびその製造方法
JP4683598B2 (ja) * 2001-07-06 2011-05-18 三井金属鉱業株式会社 積層セラミックコンデンサ内部電極用の表面処理ニッケル粉及びその製造方法
TW557237B (en) * 2001-09-14 2003-10-11 Sekisui Chemical Co Ltd Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
JP4330494B2 (ja) * 2004-06-28 2009-09-16 シャープ株式会社 ブロードキャスト番組参加システム、及び方法
JP4962706B2 (ja) * 2006-09-29 2012-06-27 日本化学工業株式会社 導電性粒子およびその製造方法
JP2009019974A (ja) * 2007-07-11 2009-01-29 Jsr Corp 異方導電性コネクターの位置決め方法、およびこの異方導電性コネクターと検査用回路基板との位置決め方法、並びに異方導電性コネクター、およびプローブカード
JP5327582B2 (ja) * 2007-10-18 2013-10-30 日立金属株式会社 還元析出型球状NiP微小粒子およびその製造方法
US8124232B2 (en) * 2007-10-22 2012-02-28 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
JP2009221360A (ja) * 2008-03-17 2009-10-01 Tokyo Institute Of Technology 異方導電性樹脂組成物、異方導電性部材、及びその実装方法、並びに電子機器
JP4957838B2 (ja) 2009-08-06 2012-06-20 日立化成工業株式会社 導電性微粒子及び異方性導電材料
JP5410387B2 (ja) * 2010-08-31 2014-02-05 デクセリアルズ株式会社 導電性粒子及びその製造方法、並びに異方性導電フィルム、接合体、及び接続方法
JP6044195B2 (ja) * 2011-09-06 2016-12-14 日立化成株式会社 絶縁被覆用粒子、絶縁被覆導電粒子、異方導電材料及び接続構造体
JP6245792B2 (ja) * 2012-03-29 2017-12-13 デクセリアルズ株式会社 導電性粒子、回路接続材料、実装体、及び実装体の製造方法
JP5973257B2 (ja) 2012-07-03 2016-08-23 日本化学工業株式会社 導電性粒子及びそれを含む導電性材料
JP2014028991A (ja) * 2012-07-31 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd 複合ニッケル微粒子及びその製造方法
KR101686357B1 (ko) * 2013-01-17 2016-12-13 세키스이가가쿠 고교가부시키가이샤 전자 부품용 경화성 조성물 및 접속 구조체
TW201511296A (zh) * 2013-06-20 2015-03-16 Plant PV 用於矽太陽能電池之核-殼型鎳粒子金屬化層

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034879A (ja) * 2001-07-26 2003-02-07 Sony Chem Corp Niメッキ粒子及びその製造方法
JP2006131978A (ja) * 2004-11-09 2006-05-25 Akita Pref Gov Shigen Gijutsu Kaihatsu Kiko 球状NiP微小粒子およびその製造方法ならびに、異方性導電フィルム用導電粒子
JP2010073681A (ja) * 2009-07-16 2010-04-02 Sony Chemical & Information Device Corp 導電性粒子、並びに異方性導電フィルム、接合体、及び接続方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3210696A4 *

Also Published As

Publication number Publication date
TWI666655B (zh) 2019-07-21
EP3210696A4 (en) 2018-05-09
EP3210696A1 (en) 2017-08-30
US20170333989A1 (en) 2017-11-23
TW201618122A (zh) 2016-05-16
EP3210696B1 (en) 2018-10-03
KR102011643B1 (ko) 2019-08-19
JP2016084504A (ja) 2016-05-19
CN107073577A (zh) 2017-08-18
JP6443732B2 (ja) 2018-12-26
KR20170073650A (ko) 2017-06-28
CN107073577B (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
JP5497183B2 (ja) 銀被覆球状樹脂、及びその製造方法、並びに銀被覆球状樹脂を含有する異方性導電接着剤、異方性導電フィルム、及び導電スペーサー
JP5080731B2 (ja) 微粒銀粒子付着銀銅複合粉及びその微粒銀粒子付着銀銅複合粉製造方法
EP3192597A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
JP5622127B2 (ja) 還元析出型球状NiP微小粒子およびその製造方法
JP2006225692A (ja) スズコート銅粉及び当該スズコート銅粉を用いた複合導電性ペースト
KR20170031210A (ko) 은 코팅 동분 및 그것을 이용한 도전성 페이스트, 도전성 도료, 도전성 시트
JP2004332047A (ja) 連鎖状金属粉末とその製造方法、及びそれを用いた導電性付与材
KR100880742B1 (ko) 구상 NiP 미소 입자 및 그 제조방법과, 이방성 도전필름용 도전 입자
JP6443732B2 (ja) 導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シート
JP2004111253A (ja) 電子デバイスの電気的接続用導電性組成物および電子デバイス
JP6442240B2 (ja) 銀被覆粒子及びその製造方法
JP5943019B2 (ja) 導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シート
JP2008111175A (ja) 複合金属粉とその製造方法および導電性ペースト
JP4881013B2 (ja) 導電性粉末、導電性ペーストおよび電気回路
WO2017061443A1 (ja) Snコート銅粉、及びそれを用いた導電性ペースト、並びにSnコート銅粉の製造方法
JP5585797B2 (ja) 導電性粒子粉末
CN115698379A (zh) 金属包覆树脂粒子及其制造方法、包含金属包覆树脂粒子的导电性膏以及导电性膜
JP2016138300A (ja) 銅粉、及びそれを用いた銅ペースト、導電性塗料、導電性シート
JP4947687B2 (ja) 異方導電性ゴム用導電性粉末
JP2015004079A (ja) ニッケル粉及びその製造方法
JP2007002299A (ja) 管状金属粉末とその製造方法、異方導電フィルム、導電ペーストならびに触媒
JP2004292850A (ja) 金属粉末とその製造方法およびそれを用いた異方導電膜
JP2015081377A (ja) ニッケル粒子表面へのコバルト含有ニッケル層の被覆方法を含むニッケル粉の製造方法及びそれを用いたニッケル粉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015853551

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177013750

Country of ref document: KR

Kind code of ref document: A