WO2019071751A1 - Tft基板及其制作方法与oled面板的制作方法 - Google Patents

Tft基板及其制作方法与oled面板的制作方法 Download PDF

Info

Publication number
WO2019071751A1
WO2019071751A1 PCT/CN2017/112971 CN2017112971W WO2019071751A1 WO 2019071751 A1 WO2019071751 A1 WO 2019071751A1 CN 2017112971 W CN2017112971 W CN 2017112971W WO 2019071751 A1 WO2019071751 A1 WO 2019071751A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating layer
gate
interlayer insulating
contact region
Prior art date
Application number
PCT/CN2017/112971
Other languages
English (en)
French (fr)
Inventor
刘兆松
徐源竣
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to EP17928176.1A priority Critical patent/EP3703111A4/en
Priority to JP2020513574A priority patent/JP7058724B2/ja
Priority to KR1020207013117A priority patent/KR102284344B1/ko
Priority to US15/579,530 priority patent/US10497620B2/en
Publication of WO2019071751A1 publication Critical patent/WO2019071751A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L2021/775Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate comprising a plurality of TFTs on a non-semiconducting substrate, e.g. driving circuits for AMLCDs

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a TFT substrate, a method for fabricating the same, and a method for fabricating the OLED panel.
  • the top gate self-aligned oxide semiconductor TFT is a common type of TFT in an OLED panel.
  • the material of the interlayer insulating layer is usually selected from silicon nitride (SiN x ) and silicon oxide (SiO x ).
  • the step S2 includes:
  • the material of the first interlayer insulating layer comprises silicon oxynitride, and the material of the second interlayer insulating layer comprises silicon oxide;
  • the active layer includes a channel region corresponding to a lower portion of the gate insulating layer and is respectively located in the channel region a source contact region and a drain contact region on both sides, wherein the material of the source contact region and the drain contact region is a conductive metal oxide semiconductor material, and the material of the channel region is metal oxide for maintaining semiconductor characteristics Semiconductor material
  • the thickness of the first interlayer insulating layer is smaller than the thickness of the second interlayer insulating layer.
  • the invention also provides a method for manufacturing an OLED panel, comprising the following steps:
  • Step S20 forming a passivation layer covering the source and the drain on the second interlayer insulating layer of the TFT substrate, and etching a first via hole corresponding to the source electrode on the passivation layer;
  • Step S30 forming an OLED anode on the flat layer, the OLED anode contacting the source via the third via hole;
  • Step S50 forming an organic light-emitting layer on the anode of the OLED in the opening;
  • Step S60 forming a cathode on the pixel defining layer and the organic light emitting layer in the opening.
  • the TFT substrate of the present invention is obtained by the above-mentioned TFT substrate fabrication method, and the performance of the gate and the active layer is stable, and the TFT device has strong working stability.
  • the method for fabricating the OLED panel of the present invention uses the above-mentioned method for fabricating a TFT substrate to fabricate a TFT substrate, which can ensure a stable working stability of the TFT device, thereby ensuring good luminescent stability of the OLED panel.
  • FIG. 8 are schematic diagrams showing the step S2 of the method for fabricating the TFT substrate of the present invention.
  • FIG. 11 is a micrograph of the second interlayer insulating layer after the second interlayer insulating layer is formed in the method for fabricating the TFT substrate of the present invention
  • FIG. 13 is a flow chart of a method of fabricating an OLED panel of the present invention.
  • FIG. 14 is a schematic diagram of steps S20 to S60 of the method for fabricating an OLED panel of the present invention and a schematic structural view of the OLED panel of the present invention.
  • the thickness of the buffer layer 30 is The material of the buffer layer 30 includes silicon oxide (SiO x ).
  • the gate insulating layer 50 is etched by using the photoresist layer 52 and the gate electrode 60 as a barrier layer, and only the portion corresponding to the underside of the gate electrode 60 is left, and the remaining portions are etched and removed.
  • the gate insulating layer 50 is located on the active layer 40 and is vertically aligned with the gate 60.
  • the gate 60 and the gate insulating layer 50 define a channel region on the active layer 40 corresponding to the underlying gate insulating layer 50. 41 and a source contact region 42 and a drain contact region 43 respectively located on both sides of the channel region 41;
  • the photoresist layer 52, the gate electrode 60 and the gate insulating layer 50 are used as a barrier layer, and the active layer 40 is plasma-treated to oxidize the metal of the source contact region 42 and the drain contact region 43.
  • the material semiconductor material becomes a conductor, and the metal oxide semiconductor material of the channel region 41 maintains semiconductor characteristics; as shown in FIG. 8, after the plasma processing process is finished, the photoresist layer 52 is peeled off.
  • the metal oxide semiconductor material is indium gallium zinc oxide (IGZO)
  • the reaction gas used in the chemical vapor deposition process of silicon nitride (SiN x ) is known to include silane and ammonia (NH 3 ), wherein ammonia easily introduces hydrogen into the active layer 40, resulting in a metal oxide semiconductor material.
  • the material of the first interlayer insulating layer 71 includes silicon oxynitride, and the material of the second interlayer insulating layer 72 includes silicon oxide;
  • the thickness of the gate insulating layer 50 is The material of the gate insulating layer 50 includes silicon oxide (SiO x ).
  • Step S20 referring to FIG. 14, a passivation layer 90 covering the source electrode 81 and the drain electrode 82 is formed on the second interlayer insulating layer 72 of the TFT substrate 100, and is formed on the passivation layer 90 by etching. a first via 901 above the source 81;
  • the thickness of the pixel defining layer 93 is The material of the pixel defining layer 93 is an organic photoresist material, and the composition and type of the organic photoresist material are not limited.
  • the present invention further provides an OLED panel comprising: a TFT substrate 100 as described above, and a second interlayer insulating layer 72 disposed on the TFT substrate 100 and a passivation layer 90 covering the source 81 and the drain 82, a flat layer 91 disposed on the passivation layer 90, an OLED anode 92 disposed on the flat layer 91, and the flat layer 91 and the OLED a pixel defining layer 93 on the anode 92, an opening 935 disposed on the pixel defining layer 93 and corresponding to the OLED anode 92, an organic light emitting layer disposed in the opening 935 and located on the OLED anode 92 94, and a cathode 95 disposed on the pixel defining layer 93 and the organic light emitting layer 94;
  • the passivation layer 90 and the flat layer 91 are provided with a third through hole 913 corresponding to the upper side of the source 81, and the OLED anode 92 is in contact with the source 81 via the third through hole 913.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种TFT基板及其制作方法与OLED面板的制作方法,其中TFT基板的制作方法包括:首先在缓冲层(30)上形成覆盖栅极(60)与有源层(40)的第一层间绝缘层(71),并将第一层间绝缘层的材料设置为氮氧化硅,能够保护栅极表面的金属铜不被氧化,保证栅极性能稳定,同时防止过多的氢元素被引入到有源层中;进一步地,在第一层间绝缘层上方形成第二层间绝缘层(72),并将第二层间绝缘层的材料设置为氧化硅,能够避免过多的氢元素被引入到有源层中,保证有源层的性能稳定,提升TFT器件的工作稳定性。TFT基板的栅极与有源层的性能稳定,TFT器件具有较强的工作稳定性。

Description

TFT基板及其制作方法与OLED面板的制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种TFT基板及其制作方法与OLED面板的制作方法。
背景技术
液晶显示装置(Liquid Crystal Display,LCD)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用,如:移动电话、个人数字助理(PDA)、数字相机、计算机屏幕或笔记本电脑屏幕等。
有机发光二极管(Organic Light-Emitting Diode,OLED)显示器,也称为有机电致发光显示器,是一种新兴的平板显示装置,由于其具有制备工艺简单、成本低、功耗低、发光亮度高、工作温度适应范围广、体积轻薄、响应速度快,而且易于实现彩色显示和大屏幕显示、易于实现和集成电路驱动器相匹配、易于实现柔性显示等优点,因而具有广阔的应用前景。
OLED按照驱动方式可以分为无源矩阵型OLED(Passive Matrix OLED,PMOLED)和有源矩阵型OLED(Active Matrix OLED,AMOLED)两大类,即直接寻址和薄膜晶体管矩阵寻址两类。其中,AMOLED具有呈阵列式排布的像素,属于主动显示类型,发光效能高,通常用作高清晰度的大尺寸显示装置。
薄膜晶体管(Thin Film Transistor,简称TFT)是目前液晶显示装置和有源矩阵型OLED显示装置中的主要驱动元件,直接关系到高性能平板显示装置的发展方向。薄膜晶体管具有多种结构,制备相应结构的薄膜晶体管的材料也具有多种,非晶硅(a-Si)材料是比较常见的一种。然而,随着液晶显示装置和OLED显示装置朝着大尺寸和高分辨率的方向发展,传统的a-Si仅有1cm2/(Vs)左右的迁移率已经无法满足要求,以铟镓锌氧化物(IGZO)为代表的金属氧化物材料具备超过10cm2/(Vs)以上的迁移率,而且相应薄膜晶体管的制备与现有的a-Si为半导体驱动的薄膜晶体管产线的兼容性好,近年来迅速成为显示领域研发的重点。
顶栅自对准氧化物半导体TFT是OLED面板中常见的TFT类型,在顶栅自对准氧化物半导体TFT的制程中,通常需要在氧化物半导体层与栅极上覆盖层间绝缘层(Inter Layer Dielectric,ILD),层间绝缘层的材料通常在氮化硅(SiNx)与氧化硅(SiOx)中选择,由于氮化硅的化学气相沉积制程 需要通入氨气(NH3),而氨气容易将过多的氢元素引入到氧化物半导体层中,导致氧化物半导体层的性能劣化,因此本领域一般选择氧化硅材料来制作层间绝缘层,避免在氧化物半导体层中引入过多的氢元素,然而,由于氧化硅的化学气相沉积制程需要通入一氧化二氮(N2O),而一氧化二氮容易对栅极表面的金属铜进行氧化,从而造成TFT器件性能出现异常。
发明内容
本发明的目的在于提供一种TFT基板的制作方法,能够保护栅极表面的金属铜不被氧化,保证栅极性能稳定,同时防止过多的氢元素被引入到有源层中,保证有源层的性能稳定,提升TFT器件的工作稳定性。
本发明的目的还在于提供一种TFT基板,采用上述TFT基板的制作方法制得,TFT器件具有较强的工作稳定性。
本发明的目的还在于提供一种OLED面板的制作方法,采用上述TFT基板的制作方法制作TFT基板,能够保证TFT器件具有较强的工作稳定性,从而保证OLED面板具有较好的发光稳定性。
为实现上述目的,本发明提供一种TFT基板的制作方法,包括如下步骤:
步骤S1、提供衬底基板,在所述衬底基板上形成遮光层,在所述衬底基板上形成覆盖所述遮光层的缓冲层,在所述缓冲层上形成对应于所述遮光层上方的有源层,所述有源层的材料为金属氧化物半导体材料;
步骤S2、在所述有源层上形成栅极绝缘层,在所述栅极绝缘层上形成栅极,所述栅极与栅极绝缘层上下对齐,所述栅极与栅极绝缘层在有源层上限定出对应于栅极绝缘层下方的沟道区以及分别位于沟道区两侧的源极接触区与漏极接触区;
对有源层的源极接触区与漏极接触区进行导体化处理,使源极接触区与漏极接触区的金属氧化物半导体材料变为导体,沟道区的金属氧化物半导体材料保持半导体特性;
步骤S3、在所述缓冲层上形成覆盖所述栅极与有源层的第一层间绝缘层,所述第一层间绝缘层的材料包括氮氧化硅;
在所述第一层间绝缘层上形成第二层间绝缘层,所述第二层间绝缘层的材料包括氧化硅;
步骤S4、在所述第一层间绝缘层与第二层间绝缘层上形成分别对应于源极接触区与漏极接触区上方的第一通孔与第二通孔;
在所述第二层间绝缘层上形成源极与漏极,所述源极与漏极分别通过 第一通孔与第二通孔和有源层的源极接触区与漏极接触区电性连接,制得TFT基板。
所述氮氧化硅采用化学气相沉积方法制得,反应气体包括硅烷、氨气及一氧化二氮;所述氧化硅采用化学气相沉积方法制得,反应气体包括硅烷与一氧化二氮。
所述第一层间绝缘层的厚度小于所述第二层间绝缘层的厚度。
所述第一层间绝缘层的厚度为
Figure PCTCN2017112971-appb-000001
所述第二层间绝缘层的厚度为
Figure PCTCN2017112971-appb-000002
所述步骤S2包括:
在所述缓冲层上形成覆盖所述有源层的栅极绝缘层,在所述栅极绝缘层上沉积栅极金属层;
在所述栅极金属层上形成光阻层,利用黄光制程对所述光阻层进行图形化处理,保留下来的光阻层在所述栅极金属层上定义出栅极图案;
以所述光阻层为阻挡层,对所述栅极金属层进行蚀刻,得到对应于有源层上方的栅极;
以所述光阻层与栅极为阻挡层,对栅极绝缘层进行蚀刻,仅保留对应于栅极下方的部分,其余部分均被蚀刻去除,保留的栅极绝缘层位于有源层上并与栅极上下对齐,所述栅极与栅极绝缘层在有源层上限定出对应于栅极绝缘层下方的沟道区以及分别位于沟道区两侧的源极接触区与漏极接触区;
以光阻层、栅极与栅极绝缘层为阻挡层,对有源层进行等离子体处理,使源极接触区与漏极接触区的金属氧化物半导体材料变为导体,沟道区的金属氧化物半导体材料保持半导体特性;等离子体处理制程结束后,剥离光阻层。
本发明还提供一种TFT基板,包括:衬底基板、设于所述衬底基板上的遮光层、设于所述衬底基板上且覆盖所述遮光层的缓冲层、设于所述缓冲层上且对应于所述遮光层上方的有源层、设于所述有源层上的栅极绝缘层、设于所述栅极绝缘层上且与所述栅极绝缘层上下对齐的栅极、设于所述缓冲层上且覆盖所述栅极与有源层的第一层间绝缘层、设于所述第一层间绝缘层上的第二层间绝缘层、以及设于所述第二层间绝缘层上的源极与漏极;
所述第一层间绝缘层的材料包括氮氧化硅,所述第二层间绝缘层的材料包括氧化硅;
所述有源层包括对应于栅极绝缘层下方的沟道区以及分别位于沟道区 两侧的源极接触区与漏极接触区,所述源极接触区与漏极接触区的材料为导体化的金属氧化物半导体材料,所述沟道区的材料为保持半导体特性的金属氧化物半导体材料;
所述第一层间绝缘层与第二层间绝缘层上设有分别对应于源极接触区与漏极接触区上方的第一通孔与第二通孔;所述源极与漏极分别通过第一通孔与第二通孔和有源层的源极接触区与漏极接触区电性连接。
所述第一层间绝缘层的厚度小于所述第二层间绝缘层的厚度。
所述第一层间绝缘层的厚度为
Figure PCTCN2017112971-appb-000003
所述第二层间绝缘层的厚度为
Figure PCTCN2017112971-appb-000004
本发明还提供一种OLED面板的制作方法,包括如下步骤:
步骤S10、按照如上文所述的TFT基板的制作方法制得TFT基板;
步骤S20、在所述TFT基板的第二层间绝缘层上形成覆盖源极与漏极的钝化层,并在所述钝化层上蚀刻形成对应于源极上方的第一过孔;
在所述钝化层上形成平坦层,并采用黄光制程在所述平坦层上形成第二过孔,所述第一过孔与第二过孔上下对应且相互贯通,共同构成第三通孔;
步骤S30、在所述平坦层上形成OLED阳极,所述OLED阳极经由第三通孔与源极相接触;
步骤S40、在所述平坦层与OLED阳极上形成像素定义层,并采用黄光制程在所述像素定义层上形成对应于所述OLED阳极上方的开口;
步骤S50、在所述开口内的OLED阳极上形成有机发光层;
步骤S60、在所述像素定义层及所述开口内的有机发光层上形成阴极。
本发明的有益效果:本发明的TFT基板的制作方法首先在缓冲层上形成覆盖栅极与有源层的第一层间绝缘层,并将第一层间绝缘层的材料设置为氮氧化硅,能够保护栅极表面的金属铜不被氧化,保证栅极性能稳定,同时防止过多的氢元素被引入到有源层中;进一步的,在第一层间绝缘层上方形成第二层间绝缘层,并将第二层间绝缘层的材料设置为氧化硅,能够避免过多的氢元素被引入到有源层中,保证有源层的性能稳定,提升TFT器件的工作稳定性。本发明的TFT基板采用上述TFT基板的制作方法制得,其栅极与有源层的性能稳定,TFT器件具有较强的工作稳定性。本发明的OLED面板的制作方法采用上述TFT基板的制作方法制作TFT基板,能够保证TFT器件具有较强的工作稳定性,从而保证OLED面板具有较好的发光稳定性。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本 发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的TFT基板的制作方法的流程图;
图2为本发明的TFT基板的制作方法的步骤S1的示意图;
图3至图8为本发明的TFT基板的制作方法的步骤S2的示意图;
图9为本发明的TFT基板的制作方法的步骤S3的示意图;
图10为现有的顶栅自对准氧化物半导体TFT制程中制作完氧化硅材料的层间绝缘层后的显微镜照片;
图11为本发明的TFT基板的制作方法中制作完第二层间绝缘层后的显微镜照片;
图12为本发明的TFT基板的制作方法的步骤S4的示意图及本发明的TFT基板的结构示意图;
图13为本发明的OLED面板的制作方法的流程图;
图14为本发明的OLED面板的制作方法的步骤S20至步骤S60的参考示意图及本发明的OLED面板的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种TFT基板的制作方法,包括如下步骤:
步骤S1、如图2所示,提供衬底基板10,在所述衬底基板10上形成遮光层20,在所述衬底基板10上形成覆盖所述遮光层20的缓冲层30,在所述缓冲层30上形成对应于所述遮光层20上方的有源层40,所述有源层40的材料为金属氧化物半导体材料。
具体的,在制作遮光层20之前,还需要对所述衬底基板10进行清洗。
具体的,通过在衬底基板10上沉积一层金属并利用一道黄光和蚀刻制程得到所述遮光层20。
具体的,所述遮光层20的面积大于所述有源层40的面积,且所述遮光层20在衬底基板10上的正投影覆盖所述有源层40在衬底基板10上的 正投影,从而使所述遮光层20能够对有源层40进行完全遮盖,防止有源层40受到光线照射造成TFT阈值电压负漂,提升TFT的工作稳定性。
具体的,所述衬底基板10为玻璃基板。
具体的,所述遮光层20的厚度为
Figure PCTCN2017112971-appb-000005
所述遮光层20的材料为金属;优选的,所述遮光层20的材料包括钼(Mo)、铝(Al)、铜(Cu)、钛(Ti)中的一种或多种的合金。
具体的,所述缓冲层30的厚度为
Figure PCTCN2017112971-appb-000006
所述缓冲层30的材料包括氧化硅(SiOx)。
具体的,所述有源层40的厚度为
Figure PCTCN2017112971-appb-000007
所述金属氧化物半导体材料包括铟镓锌氧化物(IGZO)、铟锌锡氧化物(IZTO)、铟镓锌锡氧化物(IGZTO)中的一种或多种。
步骤S2、如图3至图8所示,在所述有源层40上形成栅极绝缘层50,在所述栅极绝缘层50上形成栅极60,所述栅极60与栅极绝缘层50上下对齐,所述栅极60与栅极绝缘层50在有源层40上限定出对应于栅极绝缘层50下方的沟道区41以及分别位于沟道区41两侧的源极接触区42与漏极接触区43;
对有源层40的源极接触区42与漏极接触区43进行导体化处理,使源极接触区42与漏极接触区43的金属氧化物半导体材料变为导体,沟道区41的金属氧化物半导体材料保持半导体特性。
具体的,所述步骤S2包括:
如图3所示,在所述缓冲层30上形成覆盖所述有源层40的栅极绝缘层50,在所述栅极绝缘层50上沉积栅极金属层51;
如图4所示,在所述栅极金属层51上形成光阻层52,利用黄光制程对所述光阻层52进行图形化处理,保留下来的光阻层52在所述栅极金属层51上定义出栅极图案;
如图5所示,以所述光阻层52为阻挡层,对所述栅极金属层51进行蚀刻,得到对应于有源层40上方的栅极60;
如图6所示,以所述光阻层52与栅极60为阻挡层,对栅极绝缘层50进行蚀刻,仅保留对应于栅极60下方的部分,其余部分均被蚀刻去除,保留的栅极绝缘层50位于有源层40上并与栅极60上下对齐,所述栅极60与栅极绝缘层50在有源层40上限定出对应于栅极绝缘层50下方的沟道区41以及分别位于沟道区41两侧的源极接触区42与漏极接触区43;
如图7所示,以光阻层52、栅极60与栅极绝缘层50为阻挡层,对有源层40进行等离子体处理,使源极接触区42与漏极接触区43的金属氧化 物半导体材料变为导体,沟道区41的金属氧化物半导体材料保持半导体特性;如图8所示,等离子体处理制程结束后,剥离光阻层52。
对有源层40进行等离子体处理后,能够降低源极接触区42与漏极接触区43的金属氧化物半导体材料中的氧元素含量,使金属氧化物半导体材料的电阻率下降,变为导体。
具体的,所述栅极绝缘层50的厚度为
Figure PCTCN2017112971-appb-000008
所述栅极绝缘层50的材料包括氧化硅(SiOx)。
具体的,所述栅极60的厚度为
Figure PCTCN2017112971-appb-000009
所述栅极60包括设于所述栅极绝缘层50上的第一栅极层与设于所述第一栅极层上的第二栅极层,所述第一栅极层的材料为钼(Mo)、钛(Ti)、或者钼钛合金,所述第二栅极层的材料为铜(Cu)。
具体的,所述等离子体包括氦气等离子体、氩气等离子体及氨气等离子体中的一种或多种。
具体的,所述金属氧化物半导体材料为铟镓锌氧化物(IGZO)时,等离子体处理之前,所述铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X1,其中X1介于1和10之间,等离子体处理之后,所述铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X2,其中X2小于1。因此,对有源层40进行等离子体处理后,所述有源层40的源极接触区42与漏极接触区43的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X2,其中X2小于1,所述有源层40的沟道区41的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X1,其中X1介于1和10之间。
本发明采用顶栅自对准结构,利用栅极60和栅极绝缘层50在有源层40上定义出对应于栅极绝缘层50下方的沟道区41以及分别位于沟道区41两侧的源极接触区42与漏极接触区43,在有源层40的等离子体处理过程中,所述栅极60和栅极绝缘层50能够保护有源层40的沟道区41不被导体化。
步骤S3、如图9所示,在所述缓冲层30上形成覆盖所述栅极60与有源层40的第一层间绝缘层71,所述第一层间绝缘层71的材料包括氮氧化硅(SiOxNy);
在所述第一层间绝缘层71上形成第二层间绝缘层72,所述第二层间绝缘层72的材料包括氧化硅(SiOx)。
具体的,所述氮氧化硅采用化学气相沉积方法制得,反应气体包括硅烷、氨气(NH3)及一氧化二氮(N2O)。所述硅烷优选为甲硅烷(SiH4)。
具体的,所述氧化硅采用化学气相沉积方法制得,反应气体包括硅烷与一氧化二氮(N2O)。所述硅烷优选为甲硅烷(SiH4)。
具体的,所述第一层间绝缘层71的厚度小于所述第二层间绝缘层72的厚度。
优选的,所述第一层间绝缘层71的厚度为
Figure PCTCN2017112971-appb-000010
所述第二层间绝缘层72的厚度为
Figure PCTCN2017112971-appb-000011
已知氮化硅(SiNx)的化学气相沉积制程采用的反应气体包括硅烷与氨气(NH3),其中氨气容易将氢元素引入到有源层40中,导致金属氧化物半导体材料的性能劣化,而氧化硅(SiOx)的化学气相沉积制程需要通入一氧化二氮(N2O),因此容易对栅极60表面的金属铜进行氧化;本发明将第一层间绝缘层71的材料设置为氮氧化硅,与氧化硅相比,减小了一氧化二氮的引入,保护栅极60表面的金属铜不被氧化,与氮化硅相比,减少了氨气的引入,防止过多的氢元素被引入到有源层40中;本发明将第二层间绝缘层72的材料设置为氧化硅,与氮化硅相比,能够避免引入氨气,防止过多的氢元素被引入到有源层40中,保证有源层40的性能稳定,提升TFT器件的工作稳定性。
图10为现有的顶栅自对准氧化物半导体TFT制程中制作完氧化硅材料的层间绝缘层后的显微镜照片,从图10中可以看出,栅极金属层(灰色区域)表面的铜被严重氧化,栅极金属层的表面粗糙不平,因此容易造成TFT器件的性能劣化,工作不稳定;图11为本发明的TFT基板的制作方法中制作完第二层间绝缘层后的显微镜照片,从图11中可以看出,栅极金属层(白色区域)表面的铜基本上没有被氧化,栅极金属层的表面光滑,保证TFT器件的工作稳定性。
步骤S4、如图12所示,在所述第一层间绝缘层71与第二层间绝缘层72上形成分别对应于源极接触区42与漏极接触区43上方的第一通孔721与第二通孔722;
在所述第二层间绝缘层72上形成源极81与漏极82,所述源极81与漏极82分别通过第一通孔721与第二通孔722和有源层40的源极接触区42与漏极接触区43电性连接,制得TFT基板100。
具体的,通过在所述第二层间绝缘层72上沉积金属层并图案化得到所述源极81与漏极82。
具体的,所述源极81与漏极82的厚度均为
Figure PCTCN2017112971-appb-000012
所述源极81与漏极82均包括设于所述第二层间绝缘层72上的第一金属层与设于所述第一金属层上的第二金属层,所述第一金属层的材料为钼(Mo)、钛(Ti)、 或者钼钛合金,所述第二金属层的材料为铜(Cu)。
上述TFT基板的制作方法制得的TFT为顶栅自对准结构的氧化物半导体TFT,也即是说,理论上,所述栅极60与栅极绝缘层50上下对齐,尺寸一致,但是实际生产中制得的栅极60的尺寸往往略小于栅极绝缘层50的尺寸,因此,本申请中描述的“所述栅极60与栅极绝缘层50上下对齐”这一技术特征仅用来表示本申请的TFT具有顶栅自对准结构,并不表示“所述栅极60与栅极绝缘层50”在尺寸上不存在任何差异,凡是与本发明构思相同,且采用顶栅自对准工艺制作的TFT结构及制作方法均属于本发明的保护范围。
上述TFT基板的制作方法首先在缓冲层30上形成覆盖栅极60与有源层40的第一层间绝缘层71,并将第一层间绝缘层71的材料设置为氮氧化硅,能够保护栅极60表面的金属铜不被氧化,保证栅极60性能稳定,同时防止过多的氢元素被引入到有源层40中;进一步的,在第一层间绝缘层71上方形成第二层间绝缘层72,并将第二层间绝缘层72的材料设置为氧化硅,能够避免过多的氢元素被引入到有源层40中,保证有源层40的性能稳定,提升TFT器件的工作稳定性。
请参阅图12,基于上述TFT基板的制作方法,本发明还提供一种TFT基板100,包括:衬底基板10、设于所述衬底基板10上的遮光层20、设于所述衬底基板10上且覆盖所述遮光层20的缓冲层30、设于所述缓冲层30上且对应于所述遮光层20上方的有源层40、设于所述有源层40上的栅极绝缘层50、设于所述栅极绝缘层50上且与所述栅极绝缘层50上下对齐的栅极60、设于所述缓冲层30上且覆盖所述栅极60与有源层40的第一层间绝缘层71、设于所述第一层间绝缘层71上的第二层间绝缘层72、以及设于所述第二层间绝缘层72上的源极81与漏极82;
所述第一层间绝缘层71的材料包括氮氧化硅,所述第二层间绝缘层72的材料包括氧化硅;
所述有源层40包括对应于栅极绝缘层50下方的沟道区41以及分别位于沟道区41两侧的源极接触区42与漏极接触区43,所述源极接触区42与漏极接触区43的材料为导体化的金属氧化物半导体材料,所述沟道区41的材料为保持半导体特性的金属氧化物半导体材料;
所述第一层间绝缘层71与第二层间绝缘层72上设有分别对应于源极接触区42与漏极接触区43上方的第一通孔721与第二通孔722;所述源极81与漏极82分别通过第一通孔721与第二通孔722和有源层40的源极接触区42与漏极接触区43电性连接。
具体的,所述遮光层20的面积大于所述有源层40的面积,且所述遮光层20在衬底基板10上的正投影覆盖所述有源层40在衬底基板10上的正投影,从而使所述遮光层20能够对有源层40进行完全遮盖,防止有源层40受到光线照射造成TFT阈值电压负漂,提升TFT的工作稳定性。
具体的,所述衬底基板10为玻璃基板。
具体的,所述遮光层20的厚度为
Figure PCTCN2017112971-appb-000013
所述遮光层20的材料为金属;优选的,所述遮光层20的材料包括钼(Mo)、铝(Al)、铜(Cu)、钛(Ti)中的一种或多种的合金。
具体的,所述缓冲层30的厚度为
Figure PCTCN2017112971-appb-000014
所述缓冲层30的材料包括氧化硅(SiOx)。
具体的,所述有源层40的厚度为
Figure PCTCN2017112971-appb-000015
所述金属氧化物半导体材料包括铟镓锌氧化物(IGZO)、铟锌锡氧化物(IZTO)、铟镓锌锡氧化物(IGZTO)中的一种或多种。
具体的,所述栅极绝缘层50的厚度为
Figure PCTCN2017112971-appb-000016
所述栅极绝缘层50的材料包括氧化硅(SiOx)。
具体的,所述栅极60的厚度为
Figure PCTCN2017112971-appb-000017
所述栅极60包括设于所述栅极绝缘层50上的第一栅极层与设于所述第一栅极层上的第二栅极层,所述第一栅极层的材料为钼(Mo)、钛(Ti)、或者钼钛合金,所述第二栅极层的材料为铜(Cu)。
具体的,所述源极81与漏极82的厚度均为
Figure PCTCN2017112971-appb-000018
所述源极81与漏极82均包括设于所述第二层间绝缘层72上的第一金属层与设于所述第一金属层上的第二金属层,所述第一金属层的材料为钼(Mo)、钛(Ti)、或者钼钛合金,所述第二金属层的材料为铜(Cu)。
具体的,所述金属氧化物半导体材料为铟镓锌氧化物(IGZO)时,所述有源层40的源极接触区42与漏极接触区43的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X2,其中X2小于1,所述有源层40的沟道区41的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X1,其中X1介于1和10之间。
具体的,所述第一层间绝缘层71的厚度小于所述第二层间绝缘层72的厚度。
优选的,所述第一层间绝缘层71的厚度为
Figure PCTCN2017112971-appb-000019
所述第二层间绝缘层72的厚度为
Figure PCTCN2017112971-appb-000020
上述TFT基板将设于缓冲层30上且覆盖栅极60与有源层40的第一层间绝缘层71的材料设置为氮氧化硅,能够保护栅极60表面的金属铜不被 氧化,保证栅极60性能稳定,同时防止过多的氢元素被引入到有源层40中;进一步的,将设于第一层间绝缘层71上方的第二层间绝缘层72的材料设置为氧化硅,能够避免过多的氢元素被引入到有源层40中,保证有源层40的性能稳定,提升TFT器件的工作稳定性。
请参阅图13,基于上述TFT基板的制作方法,本发明还提供一种OLED面板的制作方法,包括如下步骤:
步骤S10、请参阅图1至图12,按照上述TFT基板的制作方法制得TFT基板100。
步骤S20、请参阅图14,在所述TFT基板100的第二层间绝缘层72上形成覆盖源极81与漏极82的钝化层90,并在所述钝化层90上蚀刻形成对应于源极81上方的第一过孔901;
在所述钝化层90上形成平坦层91,并采用黄光制程在所述平坦层91上形成第二过孔912,所述第一过孔901与第二过孔912上下对应且相互贯通,共同构成第三通孔913。
具体的,所述钝化层90的厚度为
Figure PCTCN2017112971-appb-000021
所述钝化层90的材料包括氧化硅(SiOx)。
具体的,所述平坦层91的厚度为
Figure PCTCN2017112971-appb-000022
所述平坦层91的材料为有机光阻材料,所述有机光阻材料的成分和类型不限。
步骤S30、请参阅图14,在所述平坦层91上形成OLED阳极92,所述OLED阳极92经由第三通孔913与源极81相接触。
具体的,所述OLED阳极92的厚度为
Figure PCTCN2017112971-appb-000023
所述OLED阳极92的材料包括透明导电金属氧化物,所述透明导电金属氧化物优选为氧化铟锡(ITO)。
步骤S40、请参阅图14,在所述平坦层91与OLED阳极92上形成像素定义层93,并采用黄光制程在所述像素定义层93上形成对应于所述OLED阳极92上方的开口935。
具体的,所述像素定义层93的厚度为
Figure PCTCN2017112971-appb-000024
所述像素定义层93的材料为有机光阻材料,所述有机光阻材料的成分和类型不限。
具体的,所述开口935的面积小于所述OLED阳极92的面积,保证所述开口935的底部铺满阳极材料。
步骤S50、请参阅图14,在所述开口935内的OLED阳极92上形成有机发光层94。
具体的,所述有机发光层94包括在所述OLED阳极92上从下至上依次层叠的空穴注入层、空穴传输层、发光层、及电子传输层。
具体的,所述有机发光层94采用蒸镀或喷墨打印(IJP)技术制作。
步骤S60、请参阅图14,在所述像素定义层93及所述开口935内的有机发光层94上形成阴极95。至此,完成OLED面板的制作。
具体的,所述阴极95的材料为金属,优选为银。
具体的,所述阴极95具有足够薄的厚度和良好的透光性,使得有机发光层94发出的光可以从所述阴极95中射出。
上述OLED面板的制作方法采用上述TFT基板的制作方法制作TFT基板,能够保证栅极60与有源层40的性能稳定,提升TFT器件的工作稳定性,从而保证OLED面板具有较好的发光稳定性。
请参阅图14,基于上述OLED面板的制作方法,本发明还提供一种OLED面板,包括:如上文所述的TFT基板100、设于所述TFT基板100的第二层间绝缘层72上且覆盖源极81与漏极82的钝化层90、设于所述钝化层90上的平坦层91、设于所述平坦层91上的OLED阳极92、设于所述平坦层91与OLED阳极92上的像素定义层93、设于所述像素定义层93上且对应于所述OLED阳极92上方的开口935、设于所述开口935内且位于所述OLED阳极92上的有机发光层94、以及设于所述像素定义层93与有机发光层94上的阴极95;
所述钝化层90与平坦层91上设有对应于源极81上方的第三通孔913,所述OLED阳极92经由第三通孔913与源极81相接触。
具体的,所述第三通孔913包括设于所述钝化层90上的第一过孔901与设于所述平坦层91的第二过孔912,所述第一过孔901与第二过孔912上下对应且相互贯通。
具体的,所述开口935的面积小于所述OLED阳极92的面积,保证所述开口935的底部铺满阳极材料。
具体的,所述有机发光层94包括在所述OLED阳极92上从下至上依次层叠设置的空穴注入层、空穴传输层、发光层、及电子传输层。
具体的,所述阴极95的材料为金属,优选为银。
上述OLED面板含有上述TFT基板,其栅极60与有源层40的性能稳定,TFT器件具有较强的工作稳定性,因此OLED面板具有较好的发光稳定性。
综上所述,本发明提供一种TFT基板及其制作方法与OLED面板的制作方法。本发明的TFT基板的制作方法首先在缓冲层上形成覆盖栅极与有源层的第一层间绝缘层,并将第一层间绝缘层的材料设置为氮氧化硅,能够保护栅极表面的金属铜不被氧化,保证栅极性能稳定,同时防止过多的 氢元素被引入到有源层中;进一步的,在第一层间绝缘层上方形成第二层间绝缘层,并将第二层间绝缘层的材料设置为氧化硅,能够避免过多的氢元素被引入到有源层中,保证有源层的性能稳定,提升TFT器件的工作稳定性。本发明的TFT基板采用上述TFT基板的制作方法制得,其栅极与有源层的性能稳定,TFT器件具有较强的工作稳定性。本发明的OLED面板的制作方法采用上述TFT基板的制作方法制作TFT基板,能够保证TFT器件具有较强的工作稳定性,从而保证OLED面板具有较好的发光稳定性。本发明的OLED面板含有上述TFT基板,其TFT器件具有较强的工作稳定性,因此OLED面板具有较好的发光稳定性。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (9)

  1. 一种TFT基板的制作方法,包括如下步骤:
    步骤S1、提供衬底基板,在所述衬底基板上形成遮光层,在所述衬底基板上形成覆盖所述遮光层的缓冲层,在所述缓冲层上形成对应于所述遮光层上方的有源层,所述有源层的材料为金属氧化物半导体材料;
    步骤S2、在所述有源层上形成栅极绝缘层,在所述栅极绝缘层上形成栅极,所述栅极与栅极绝缘层上下对齐,所述栅极与栅极绝缘层在有源层上限定出对应于栅极绝缘层下方的沟道区以及分别位于沟道区两侧的源极接触区与漏极接触区;
    对有源层的源极接触区与漏极接触区进行导体化处理,使源极接触区与漏极接触区的金属氧化物半导体材料变为导体,沟道区的金属氧化物半导体材料保持半导体特性;
    步骤S3、在所述缓冲层上形成覆盖所述栅极与有源层的第一层间绝缘层,所述第一层间绝缘层的材料包括氮氧化硅;
    在所述第一层间绝缘层上形成第二层间绝缘层,所述第二层间绝缘层的材料包括氧化硅;
    步骤S4、在所述第一层间绝缘层与第二层间绝缘层上形成分别对应于源极接触区与漏极接触区上方的第一通孔与第二通孔;
    在所述第二层间绝缘层上形成源极与漏极,所述源极与漏极分别通过第一通孔与第二通孔和有源层的源极接触区与漏极接触区电性连接,制得TFT基板。
  2. 如权利要求1所述的TFT基板的制作方法,其中,所述氮氧化硅采用化学气相沉积方法制得,反应气体包括硅烷、氨气及一氧化二氮;所述氧化硅采用化学气相沉积方法制得,反应气体包括硅烷与一氧化二氮。
  3. 如权利要求1所述的TFT基板的制作方法,其中,所述第一层间绝缘层的厚度小于所述第二层间绝缘层的厚度。
  4. 如权利要求3所述的TFT基板的制作方法,其中,所述第一层间绝缘层的厚度为
    Figure PCTCN2017112971-appb-100001
    所述第二层间绝缘层的厚度为
    Figure PCTCN2017112971-appb-100002
  5. 如权利要求1所述的TFT基板的制作方法,其中,所述步骤S2包括:
    在所述缓冲层上形成覆盖所述有源层的栅极绝缘层,在所述栅极绝缘层上沉积栅极金属层;
    在所述栅极金属层上形成光阻层,利用黄光制程对所述光阻层进行图形化处理,保留下来的光阻层在所述栅极金属层上定义出栅极图案;
    以所述光阻层为阻挡层,对所述栅极金属层进行蚀刻,得到对应于有源层上方的栅极;
    以所述光阻层与栅极为阻挡层,对栅极绝缘层进行蚀刻,仅保留对应于栅极下方的部分,其余部分均被蚀刻去除,保留的栅极绝缘层位于有源层上并与栅极上下对齐,所述栅极与栅极绝缘层在有源层上限定出对应于栅极绝缘层下方的沟道区以及分别位于沟道区两侧的源极接触区与漏极接触区;
    以光阻层、栅极与栅极绝缘层为阻挡层,对有源层进行等离子体处理,使源极接触区与漏极接触区的金属氧化物半导体材料变为导体,沟道区的金属氧化物半导体材料保持半导体特性;等离子体处理制程结束后,剥离光阻层。
  6. 一种TFT基板,包括:衬底基板、设于所述衬底基板上的遮光层、设于所述衬底基板上且覆盖所述遮光层的缓冲层、设于所述缓冲层上且对应于所述遮光层上方的有源层、设于所述有源层上的栅极绝缘层、设于所述栅极绝缘层上且与所述栅极绝缘层上下对齐的栅极、设于所述缓冲层上且覆盖所述栅极与有源层的第一层间绝缘层、设于所述第一层间绝缘层上的第二层间绝缘层、以及设于所述第二层间绝缘层上的源极与漏极;
    所述第一层间绝缘层的材料包括氮氧化硅,所述第二层间绝缘层的材料包括氧化硅;
    所述有源层包括对应于栅极绝缘层下方的沟道区以及分别位于沟道区两侧的源极接触区与漏极接触区,所述源极接触区与漏极接触区的材料为导体化的金属氧化物半导体材料,所述沟道区的材料为保持半导体特性的金属氧化物半导体材料;
    所述第一层间绝缘层与第二层间绝缘层上设有分别对应于源极接触区与漏极接触区上方的第一通孔与第二通孔;所述源极与漏极分别通过第一通孔与第二通孔和有源层的源极接触区与漏极接触区电性连接。
  7. 如权利要求6所述的TFT基板,其中,所述第一层间绝缘层的厚度小于所述第二层间绝缘层的厚度。
  8. 如权利要求7所述的TFT基板,其中,所述第一层间绝缘层的厚度为
    Figure PCTCN2017112971-appb-100003
    所述第二层间绝缘层的厚度为
    Figure PCTCN2017112971-appb-100004
  9. 一种OLED面板的制作方法,包括如下步骤:
    步骤S10、按照如权利要求1所述的TFT基板的制作方法制得TFT基 板;
    步骤S20、在所述TFT基板的第二层间绝缘层上形成覆盖源极与漏极的钝化层,并在所述钝化层上蚀刻形成对应于源极上方的第一过孔;
    在所述钝化层上形成平坦层,并采用黄光制程在所述平坦层上形成第二过孔,所述第一过孔与第二过孔上下对应且相互贯通,共同构成第三通孔;
    步骤S30、在所述平坦层上形成OLED阳极,所述OLED阳极经由第三通孔与源极相接触;
    步骤S40、在所述平坦层与OLED阳极上形成像素定义层,并采用黄光制程在所述像素定义层上形成对应于所述OLED阳极上方的开口;
    步骤S50、在所述开口内的OLED阳极上形成有机发光层;
    步骤S60、在所述像素定义层及所述开口内的有机发光层上形成阴极。
PCT/CN2017/112971 2017-10-09 2017-11-25 Tft基板及其制作方法与oled面板的制作方法 WO2019071751A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17928176.1A EP3703111A4 (en) 2017-10-09 2017-11-25 TFT SUBSTRATE, ITS MANUFACTURING PROCESS AND OLED PANEL MANUFACTURING PROCESS
JP2020513574A JP7058724B2 (ja) 2017-10-09 2017-11-25 Tft基板とその製造方法、及びoledパネルの製造方法
KR1020207013117A KR102284344B1 (ko) 2017-10-09 2017-11-25 Tft기판과 그의 제조방법, 및 oled패널의 제조방법
US15/579,530 US10497620B2 (en) 2017-10-09 2017-11-25 TFT substrate and manufacturing method thereof and manufacturing method of OLED panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710931305.8A CN107689345B (zh) 2017-10-09 2017-10-09 Tft基板及其制作方法与oled面板及其制作方法
CN201710931305.8 2017-10-09

Publications (1)

Publication Number Publication Date
WO2019071751A1 true WO2019071751A1 (zh) 2019-04-18

Family

ID=61154162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112971 WO2019071751A1 (zh) 2017-10-09 2017-11-25 Tft基板及其制作方法与oled面板的制作方法

Country Status (6)

Country Link
US (1) US10497620B2 (zh)
EP (1) EP3703111A4 (zh)
JP (1) JP7058724B2 (zh)
KR (1) KR102284344B1 (zh)
CN (1) CN107689345B (zh)
WO (1) WO2019071751A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169947B (zh) * 2018-01-31 2023-04-21 京东方科技集团股份有限公司 阵列基板及其制造方法、触控显示装置
CN108493195B (zh) * 2018-03-29 2020-05-29 深圳市华星光电半导体显示技术有限公司 柔性tft背板的制作方法及柔性tft背板
CN108711548B (zh) * 2018-05-21 2020-04-10 深圳市华星光电技术有限公司 金属氧化物薄膜晶体管及其制作方法、显示器
CN109585566B (zh) * 2018-11-14 2021-05-18 惠科股份有限公司 一种阵列基板、阵列基板的制作方法和显示面板
CN109686793A (zh) * 2018-12-24 2019-04-26 合肥鑫晟光电科技有限公司 薄膜晶体管及制备方法、阵列基板、显示装置
CN109696759A (zh) 2018-12-29 2019-04-30 武汉华星光电技术有限公司 高穿透性液晶显示面板制造方法及其显示面板
JP7487119B2 (ja) * 2019-02-15 2024-05-20 株式会社半導体エネルギー研究所 半導体装置の作製方法
CN110391186A (zh) * 2019-07-09 2019-10-29 武汉华星光电半导体显示技术有限公司 阵列基板及其制备方法
CN110416313A (zh) * 2019-07-19 2019-11-05 深圳市华星光电半导体显示技术有限公司 薄膜晶体管基板及其制作方法
CN110610967A (zh) 2019-08-28 2019-12-24 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
CN111430414A (zh) * 2020-03-31 2020-07-17 京东方科技集团股份有限公司 Oled显示面板及制备方法、显示装置
CN111326082B (zh) * 2020-04-14 2021-08-03 Tcl华星光电技术有限公司 背板单元及其制造方法、显示装置
US11526079B2 (en) 2020-04-14 2022-12-13 Tcl China Star Optoelectronics Technology Co., Ltd. Backplane unit and its manufacturing method and display device
CN111681960A (zh) * 2020-05-12 2020-09-18 福建华佳彩有限公司 一种tft结构的制作方法
CN111668268A (zh) * 2020-06-02 2020-09-15 福建华佳彩有限公司 一种oled显示装置及制作方法
CN111668280A (zh) * 2020-06-30 2020-09-15 福建华佳彩有限公司 一种具有夹层结构的显示面板及制作方法
CN111883542A (zh) * 2020-07-28 2020-11-03 北海惠科光电技术有限公司 阵列基板的制备方法、阵列基板及显示装置
CN111900195B (zh) * 2020-09-08 2023-12-19 京东方科技集团股份有限公司 显示基板及其制备方法和显示装置
CN112599533A (zh) * 2020-12-04 2021-04-02 福建华佳彩有限公司 一种透明显示面板结构及其制备方法
CN112670301A (zh) * 2020-12-24 2021-04-16 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法
CN113745246B (zh) * 2021-08-16 2023-10-03 深圳市华星光电半导体显示技术有限公司 基板及显示面板
JP2023045215A (ja) * 2021-09-21 2023-04-03 キオクシア株式会社 半導体装置及び半導体記憶装置
CN116096118A (zh) * 2021-11-03 2023-05-09 京东方科技集团股份有限公司 发光器件及其控制方法、发光基板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174743B1 (en) * 1998-12-08 2001-01-16 Advanced Micro Devices, Inc. Method of reducing incidence of stress-induced voiding in semiconductor interconnect lines
CN101681072A (zh) * 2007-07-27 2010-03-24 夏普株式会社 电路基板、显示装置和液晶显示装置
CN104716193A (zh) * 2013-12-11 2015-06-17 昆山工研院新型平板显示技术中心有限公司 一种薄膜晶体管及其制备方法和应用
CN104882485A (zh) * 2015-03-30 2015-09-02 深超光电(深圳)有限公司 薄膜晶体管及其制造方法
CN106571306A (zh) * 2016-10-27 2017-04-19 武汉华星光电技术有限公司 薄膜晶体管及其制造方法
CN107134461A (zh) * 2017-06-28 2017-09-05 深圳市华星光电技术有限公司 薄膜晶体管阵列基板及其制备方法、oled显示装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825496B2 (en) * 2001-01-17 2004-11-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7474002B2 (en) * 2001-10-30 2009-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having dielectric film having aperture portion
KR20050113045A (ko) * 2004-05-28 2005-12-01 삼성에스디아이 주식회사 유기 전계 발광 표시 소자 및 그 제조방법
US7211825B2 (en) * 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2008103253A (ja) * 2006-10-20 2008-05-01 Mitsubishi Electric Corp 表示装置及びその製造方法
KR101623961B1 (ko) * 2009-12-02 2016-05-26 삼성전자주식회사 트랜지스터와 그 제조방법 및 트랜지스터를 포함하는 전자소자
US8530273B2 (en) * 2010-09-29 2013-09-10 Guardian Industries Corp. Method of making oxide thin film transistor array
US8796683B2 (en) * 2011-12-23 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9735280B2 (en) * 2012-03-02 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, and method for forming oxide film
KR20130111872A (ko) * 2012-04-02 2013-10-11 삼성디스플레이 주식회사 박막 트랜지스터, 이를 포함하는 박막 트랜지스터 표시판 및 그 제조 방법
JP6142151B2 (ja) * 2012-07-31 2017-06-07 株式会社Joled 表示装置および電子機器
KR102305310B1 (ko) * 2012-12-28 2021-09-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 및 반도체 장치의 제작 방법
US8975625B2 (en) * 2013-05-14 2015-03-10 Applied Materials, Inc. TFT with insert in passivation layer or etch stop layer
US9985055B2 (en) * 2013-10-09 2018-05-29 Sharp Kabushiki Kaisha Semiconductor device and method for manufacturing same
TWI685116B (zh) * 2014-02-07 2020-02-11 日商半導體能源研究所股份有限公司 半導體裝置
US10325937B2 (en) * 2014-02-24 2019-06-18 Lg Display Co., Ltd. Thin film transistor substrate with intermediate insulating layer and display using the same
CN104393017B (zh) * 2014-10-31 2017-12-15 京东方科技集团股份有限公司 阵列基板的制作方法、阵列基板及显示装置
KR102281848B1 (ko) * 2015-01-26 2021-07-26 삼성디스플레이 주식회사 박막 트랜지스터 제조 방법과 박막 트랜지스터
KR102326170B1 (ko) * 2015-04-20 2021-11-17 엘지디스플레이 주식회사 박막 트랜지스터 기판 및 그 제조 방법
CN105097838B (zh) * 2015-07-16 2018-03-02 武汉华星光电技术有限公司 显示面板及薄膜晶体管阵列基板
KR102367215B1 (ko) * 2015-08-31 2022-02-24 엘지디스플레이 주식회사 유기발광표시장치
JP2017108065A (ja) * 2015-12-11 2017-06-15 株式会社半導体エネルギー研究所 半導体装置の作製方法および該半導体装置を有する表示装置の作製方法
KR102402599B1 (ko) * 2015-12-16 2022-05-26 삼성디스플레이 주식회사 트랜지스터 표시판 및 그 제조 방법
KR102483229B1 (ko) * 2015-12-31 2022-12-29 엘지디스플레이 주식회사 유기발광 표시장치
CN106129122B (zh) * 2016-08-31 2018-12-11 京东方科技集团股份有限公司 氧化物薄膜晶体管及其制备方法、阵列基板、显示装置
KR102315502B1 (ko) * 2017-04-14 2021-10-22 삼성디스플레이 주식회사 표시 기판
JP2018195632A (ja) * 2017-05-15 2018-12-06 株式会社ジャパンディスプレイ 半導体装置および表示装置
US10331253B2 (en) * 2017-06-30 2019-06-25 Wuhan China Star Optoelectronics Technology Co., Ltd. In-cell touch screen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174743B1 (en) * 1998-12-08 2001-01-16 Advanced Micro Devices, Inc. Method of reducing incidence of stress-induced voiding in semiconductor interconnect lines
CN101681072A (zh) * 2007-07-27 2010-03-24 夏普株式会社 电路基板、显示装置和液晶显示装置
CN104716193A (zh) * 2013-12-11 2015-06-17 昆山工研院新型平板显示技术中心有限公司 一种薄膜晶体管及其制备方法和应用
CN104882485A (zh) * 2015-03-30 2015-09-02 深超光电(深圳)有限公司 薄膜晶体管及其制造方法
CN106571306A (zh) * 2016-10-27 2017-04-19 武汉华星光电技术有限公司 薄膜晶体管及其制造方法
CN107134461A (zh) * 2017-06-28 2017-09-05 深圳市华星光电技术有限公司 薄膜晶体管阵列基板及其制备方法、oled显示装置

Also Published As

Publication number Publication date
CN107689345A (zh) 2018-02-13
US10497620B2 (en) 2019-12-03
EP3703111A4 (en) 2021-09-22
EP3703111A1 (en) 2020-09-02
KR20200060761A (ko) 2020-06-01
JP2020532876A (ja) 2020-11-12
JP7058724B2 (ja) 2022-04-22
US20190229017A1 (en) 2019-07-25
CN107689345B (zh) 2020-04-28
KR102284344B1 (ko) 2021-08-04

Similar Documents

Publication Publication Date Title
CN107689345B (zh) Tft基板及其制作方法与oled面板及其制作方法
US10403757B2 (en) Top-gate self-aligned metal oxide semiconductor TFT and method of making the same
US9178072B2 (en) Thin film transistor and display device
WO2016176886A1 (zh) 柔性oled及其制作方法
CN107611085B (zh) Oled背板的制作方法
US9991319B2 (en) Thin film transistor, method of manufacturing the thin film transistor and flat panel display having the thin film transistor
WO2020238384A1 (zh) 阵列基板的制作方法、阵列基板、显示面板及显示装置
WO2020155801A1 (zh) 阵列基板及其制作方法和显示面板
US8633479B2 (en) Display device with metal oxidel layer and method for manufacturing the same
CN110718571A (zh) 显示基板及其制备方法、显示装置
WO2020253336A1 (zh) 显示基板及其制造方法、有机发光二极管显示装置
WO2017049835A1 (zh) 薄膜晶体管及其制备方法、阵列基板和显示装置
US11925064B2 (en) Manufacturing method of display substrate and display device
CN110783490A (zh) 显示面板及其制备方法
WO2022116313A1 (zh) 一种阵列基板、显示面板及其制备方法
CN114203778A (zh) 有源矩阵oled显示面板及其制备方法
WO2019100492A1 (zh) 背沟道蚀刻型tft基板及其制作方法
WO2019080254A1 (zh) 背沟道蚀刻型氧化物半导体tft基板及其制作方法
CN111312826B (zh) 一种显示面板及其制作方法、显示模组及电子装置
US20240164158A1 (en) Display panel and manufacturing method thereof
CN113629073B (zh) Tft背板与显示面板
US20220352275A1 (en) Oled display panel and method of manufacturing same
KR100637166B1 (ko) 평판표시장치의 제조방법
WO2023173467A1 (zh) Oled 显示面板及其制作方法
CN114613815A (zh) 显示面板及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207013117

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017928176

Country of ref document: EP

Effective date: 20200511