WO2018221703A1 - 接触分解用又は水素化脱硫用触媒構造体、該触媒構造体を有する接触分解装置及び水素化脱硫装置、並びに接触分解用又は水素化脱硫用触媒構造体の製造方法 - Google Patents

接触分解用又は水素化脱硫用触媒構造体、該触媒構造体を有する接触分解装置及び水素化脱硫装置、並びに接触分解用又は水素化脱硫用触媒構造体の製造方法 Download PDF

Info

Publication number
WO2018221703A1
WO2018221703A1 PCT/JP2018/021091 JP2018021091W WO2018221703A1 WO 2018221703 A1 WO2018221703 A1 WO 2018221703A1 JP 2018021091 W JP2018021091 W JP 2018021091W WO 2018221703 A1 WO2018221703 A1 WO 2018221703A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
catalytic cracking
hydrodesulfurization
metal
oxide fine
Prior art date
Application number
PCT/JP2018/021091
Other languages
English (en)
French (fr)
Inventor
禎宏 加藤
將行 福嶋
尋子 高橋
祐一郎 馬場
可織 関根
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to EP18810103.4A priority Critical patent/EP3632547A4/en
Priority to JP2019521331A priority patent/JP7316935B2/ja
Priority to CN201880036313.9A priority patent/CN110730687A/zh
Publication of WO2018221703A1 publication Critical patent/WO2018221703A1/ja
Priority to US16/698,558 priority patent/US11654422B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0352Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0352Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
    • B01J29/0354Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0352Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
    • B01J29/0356Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0358Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/185Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/22Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/605Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/61Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/61Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing iron group metals, noble metals or copper
    • B01J29/62Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/61Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing iron group metals, noble metals or copper
    • B01J29/63Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/64Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/655Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/67Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/68Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/69Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7038MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7057Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7084MTW-type, e.g. ZSM-12, NU-13, TPZ-12 or Theta-3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7088MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/7215Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/7269MTW-type, e.g. ZSM-12, NU-13, TPZ-12 or Theta-3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/7276MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7415Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7476MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7676MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7815Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7876MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0211Impregnation using a colloidal suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • B01J37/105Hydropyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/12After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation
    • B01J2229/126After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation in order to reduce the pore-mouth size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/22After treatment, characterised by the effect to be obtained to destroy the molecular sieve structure or part thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/34Reaction with organic or organometallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/38Base treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the present invention relates to a catalytic cracking or hydrodesulfurization catalyst structure, and in particular, a catalytic cracking or hydrodesulfurization catalyst structure used for reforming crude oil, heavy oil, etc., and a contact having the catalyst structure.
  • the present invention relates to a cracking apparatus, hydrodesulfurization apparatus, and a method for producing a catalytic structure for catalytic cracking or hydrodesulfurization.
  • Oil refinery refineries produce petrochemical raw materials called naphtha and various fuels such as heavy oil, light oil, kerosene, gasoline, and LP gas from crude oil. Since crude oil is a mixture in which various impurities are mixed in addition to the above petrochemical raw materials and various fuels, a step of distilling and separating each component contained in the crude oil is required.
  • crude oil is heated on the shelf in the tower of the atmospheric distillation apparatus using the boiling point difference of each component to separate the components, and the separated substances are concentrated.
  • low-boiling substances such as LP gas and naphtha are extracted from the upper shelf of the atmospheric distillation apparatus, and high-boiling substances such as heavy oil are extracted from the bottom of the atmospheric distillation apparatus.
  • various fuel products are manufactured by giving secondary treatments, such as desulfurization, to each separated and concentrated substance.
  • Fluid catalytic cracking which is one of the secondary treatments described above, decomposes high-boiling hydrocarbons such as vacuum gas oil and atmospheric residue at a reaction temperature of about 500 to 550 ° C with a solid acid catalyst.
  • This is a process for producing high-octane gasoline.
  • a catalytic cracking of atmospheric residual oil using a catalyst for example, a method of producing light oil or carbon dioxide from heavy oil by catalytic cracking in a steam atmosphere using an iron oxide catalyst containing zirconia and alumina Has been proposed (Non-Patent Document 1). In this method, it is reported that the alkene / alkane ratio in the light oil decreased when the ratio of water vapor to the raw material was increased or the zirconia content in the catalyst was increased.
  • Non-Patent Document 1 since a composite oxide catalyst containing zirconia, alumina, and iron oxide is simply used, it is affected by the force or heat received from a fluid such as a reformed substance during the catalytic cracking process. Therefore, there is a problem that aggregation (sintering) of the catalyst particles is likely to occur and the catalytic activity is lowered.
  • An object of the present invention is to achieve a catalytic cracking process or a hydrodesulfurization process that suppresses a decrease in catalytic activity, and in addition, a contact that can easily and stably obtain a material to be reformed.
  • An object of the present invention is to provide a catalytic structure for cracking or hydrodesulfurization, a catalytic cracking apparatus and hydrodesulfurization apparatus including the catalytic structure, and a method for producing a catalytic structure for catalytic cracking or hydrodesulfurization.
  • a catalytic structure for catalytic cracking or hydrodesulfurization has a porous structure composed of a zeolite-type compound, and At least one metal oxide fine particle
  • the carrier has a passage communicating with each other, and the metal oxide fine particle is present in at least the passage of the carrier, and the metal oxide fine particle Is made of a material containing any one or more of oxides of Fe, Al, Zn, Zr, Cu, Co, Ni, Ce, Nb, Ti, Mo, V, Cr, Pd and Ru.
  • the gist configuration of the present invention is as follows.
  • a porous support composed of a zeolite-type compound; At least one metal oxide fine particle inherent in the carrier; With The carrier has passages communicating with each other; The metal oxide fine particles are present in at least the passage of the carrier;
  • the metal oxide fine particles include any one or more of oxides of Fe, Al, Zn, Zr, Cu, Co, Ni, Ce, Nb, Ti, Mo, V, Cr, Pd, and Ru.
  • the metal oxide fine particles are composite metal oxide fine particles composed of a material containing two or more kinds of metal oxides, A first metal oxide in which the composite metal oxide fine particles contain any one or more of oxides of Fe, Al, Zn, Cu, Co, Ni, Nb, Mo, V, Cr and Pd; For catalytic cracking or hydrodesulfurization according to the above [1], comprising a second metal oxide containing any one or more of Zr, Ce, Ti and Ru oxides Catalyst structure.
  • the passage includes any one of a one-dimensional hole, a two-dimensional hole, and a three-dimensional hole defined by a skeleton structure of the zeolite-type compound, and the one-dimensional hole, the two-dimensional hole, and the three-dimensional hole.
  • [16] The catalytic cracking or hydrodesulfurization catalyst structure according to any one of the above [1] to [15], wherein the catalyst structure has a cylindrical shape, a leaf shape, a dumbbell column shape, or a ring shape pellet shape .
  • [17] The catalytic structure for catalytic cracking or hydrodesulfurization according to [16] above, wherein the average particle size of the catalyst structure is 100 ⁇ m to 15 cm.
  • [19] A hydrodesulfurization apparatus having the catalyst structure according to any one of [1] to [17].
  • a process for producing a catalyst structure for catalytic cracking or hydrodesulfurization comprising: [21] The catalytic decomposition according to [20] above, wherein a nonionic surfactant is added in an amount of 50 to 500% by mass with respect to the precursor material (A) before the firing step. For producing a catalyst structure for use or hydrodesulfurization.
  • the precursor material (A) is impregnated with the metal-containing solution by adding the metal-containing solution to the precursor material (A) in a plurality of times.
  • the addition amount of the metal-containing solution added to the precursor material (A) is changed to the precursor material (A). In terms of the ratio of the silicon (Si) constituting the precursor material (A) to the metal element (M) contained in the metal-containing solution added to (atom ratio Si / M), it is 10 to 1000.
  • the method for producing a catalytic cracking or hydrodesulfurization catalyst structure according to any one of the above [20] to [22], wherein the catalyst structure is adjusted as described above.
  • the metal element (M) contained in the metal-containing solution is Fe, Al, Zn, Zr, Cu, Co, Ni, Ce, Nb, Ti, Mo, V, Cr, Pd, and Ru.
  • the amount of the metal-containing solution added to the precursor material (A) is set to the precursor material.
  • a process for producing a catalytic cracking or hydrodesulfurization catalyst structure according to any one of the above [20] to [22], wherein [26]
  • the metal element (M) contained in the metal-containing solution is any one or more of Fe, Al, Zn, Cu, Co, Ni, Nb, Mo, V, Cr, and Pd.
  • a catalytic structure for cracking or hydrodesulfurization can be provided, and a catalytic cracking apparatus or hydrodesulfurization apparatus provided with the catalyst structure can be provided.
  • FIG. 1 schematically shows the internal structure of a catalytic cracking or hydrodesulfurization catalyst structure according to an embodiment of the present invention.
  • FIG. 1 (a) is a perspective view (partially shown). Is shown in a transverse section.), FIG. 1 (b) is a partially enlarged sectional view.
  • FIG. 2 is a partially enlarged cross-sectional view for explaining an example of the function of the catalyst structure of FIG. 1, FIG. 2 (a) is a diagram illustrating the sieve function, and FIG. 2 (b) is a diagram illustrating the catalytic ability.
  • FIG. 3 is a flowchart showing an example of a method for producing the catalyst structure of FIG.
  • FIG. 4 is a schematic view showing a modification of the catalyst structure of FIG.
  • FIG. 1 is a diagram schematically showing a configuration of a catalytic cracking or hydrodesulfurization catalyst structure according to an embodiment of the present invention, in which (a) is a perspective view (a part is shown in cross section), (B) is a partial expanded sectional view. Note that the catalyst structure in FIG. 1 shows an example, and the shape, dimensions, etc. of each component according to the present invention are not limited to those in FIG.
  • a catalytic structure 1 for catalytic cracking or hydrodesulfurization (hereinafter simply referred to as catalyst structure) includes a porous structure carrier 10 composed of a zeolite type compound, And at least one metal oxide fine particle 20 inherent in the carrier 10.
  • the plurality of metal oxide fine particles 20, 20,... are enclosed in the porous structure of the carrier 10.
  • the metal oxide fine particles 20 may be any substance having catalytic ability (catalytic activity). Details of the metal oxide fine particles will be described later.
  • the carrier 10 has a porous structure and, as shown in FIG. 1 (b), preferably has a plurality of holes 11a, 11a,.
  • the metal oxide fine particles 20 are present in at least the passage 11 of the carrier 10, and are preferably held in at least the passage 11 of the carrier 10.
  • the movement of the metal oxide fine particles 20 in the carrier 10 is regulated, and aggregation of the metal oxide fine particles 20 and 20 is effectively prevented.
  • a reduction in the effective surface area of the metal oxide fine particles 20 can be effectively suppressed, and the catalytic activity of the metal oxide fine particles 20 lasts for a long time. That is, according to the catalyst structure 1, it is possible to suppress a decrease in the catalyst activity due to the aggregation of the metal oxide fine particles 20, and to extend the life of the catalyst structure 1. Further, by extending the life of the catalyst structure 1, the replacement frequency of the catalyst structure 1 can be reduced, the amount of used catalyst structure 1 discarded can be greatly reduced, and resource saving can be achieved. .
  • the catalyst structure when the catalyst structure is used in a fluid (for example, heavy oil or a reformed gas such as NOx), there is a possibility of receiving an external force from the fluid. In this case, there is a problem that if the catalyst substance is only held on the outer surface of the carrier 10 in an adhering state, it is likely to be detached from the outer surface of the carrier 10 due to the external force from the fluid.
  • the metal oxide fine particles 20 are held in at least the passage 11 of the carrier 10, so that the metal oxide fine particles 20 are detached from the carrier 10 even under the influence of an external force due to the fluid. Hard to do.
  • the fluid flows into the passage 11 from the hole 11a of the carrier 10, so that the speed of the fluid flowing in the passage 11 depends on the flow path resistance (friction force).
  • This is considered to be slower than the speed of the fluid flowing on the outer surface of the carrier 10.
  • the pressure that the metal oxide fine particles 20 held in the passage 11 receive from the fluid is lower than the pressure that the catalyst substance receives from the fluid outside the support 10. Therefore, it is possible to effectively suppress the separation of the metal oxide fine particles 20 existing in the carrier 11, and it is possible to stably maintain the catalytic activity of the metal oxide fine particles 20 for a long period of time.
  • the flow path resistance as described above is considered to increase as the passage 11 of the carrier 10 has a plurality of bends and branches and the inside of the carrier 10 has a more complicated and three-dimensional structure. .
  • the passage 11 includes any one of a one-dimensional hole, a two-dimensional hole, and a three-dimensional hole defined by a skeleton structure of the zeolite type compound, and the one-dimensional hole, the two-dimensional hole, and the three-dimensional hole. It is preferable to have an enlarged diameter portion 12 different from both. At this time, the metal oxide fine particles 20 are preferably present at least in the enlarged diameter portion 12, and more preferably included in at least the enlarged diameter portion 12.
  • a one-dimensional hole means a tunnel-type or cage-type hole forming a one-dimensional channel, or a plurality of tunnel-type or cage-type holes forming a plurality of one-dimensional channels (a plurality of one-dimensional holes). Channel).
  • a two-dimensional hole refers to a two-dimensional channel in which a plurality of one-dimensional channels are two-dimensionally connected.
  • a three-dimensional hole refers to a three-dimensional channel in which a plurality of one-dimensional channels are three-dimensionally connected. Point to.
  • the metal oxide fine particles 20 and the carrier 10 do not necessarily need to be in direct contact with each other, and another substance (for example, a surfactant or the like) is present between the metal oxide fine particles 20 and the carrier 10.
  • the metal oxide fine particles 20 may be indirectly held on the carrier 10 with the intervening state.
  • FIG. 1B shows a case where the metal oxide fine particles 20 are enclosed by the enlarged diameter portion 12, but the present invention is not limited to this configuration, and the metal oxide fine particles 20 are partially expanded. You may exist in the channel
  • the passage 11 is formed in a three-dimensional manner inside the carrier 10 including a branch portion or a merge portion, and the enlarged diameter portion 12 is preferably provided in the branch portion or the merge portion of the passage 11. .
  • the average inner diameter DF of the passage 11 formed in the carrier 10 is calculated from the average value of the short diameter and the long diameter of the hole 11a constituting any one of the one-dimensional hole, the two-dimensional hole, and the three-dimensional hole.
  • the thickness is 0.1 to 1.5 nm, preferably 0.5 to 0.8 nm.
  • the inner diameter DE of the enlarged diameter portion 12 is, for example, 0.5 to 50 nm, preferably 1.1 to 40 nm, and more preferably 1.1 to 3.3 nm.
  • the inner diameter D E of the enlarged diameter section 12 depends on for example the pore size of which will be described later precursor material (A), and the average particle diameter D C of the metal oxide particles 20 to be inclusion.
  • the inner diameter DE of the enlarged diameter portion 12 is a size that can enclose the metal oxide fine particles 20.
  • the carrier 10 is composed of a zeolite type compound.
  • Zeolite type compounds include, for example, zeolites (aluminosilicates), cation exchange zeolites, silicate compounds such as silicalite, zeolite related compounds such as aluminoborate, aluminoarsenate, germanate, molybdenum phosphate, etc. And phosphate-based zeolite-like substances.
  • the zeolite type compound is preferably a silicate compound.
  • the framework structure of zeolite type compounds is FAU type (Y type or X type), MTW type, MFI type (ZSM-5), FER type (ferrierite), LTA type (A type), MWW type (MCM-22) , MOR type (mordenite), LTL type (L type), BEA type (beta type), etc., preferably MFI type, more preferably ZSM-5.
  • a plurality of pores having a pore size corresponding to each skeleton structure are formed.
  • the maximum pore size of the MFI type is 0.636 nm (6.36 mm), and the average pore size is 0.560 nm (5.60 mm). is there.
  • metal oxide fine particles 20 will be described in detail.
  • the average inner diameter D F is larger than the inner diameter D E of the expanded diameter portion 12 (D F ⁇ D C ⁇ D E ).
  • Such metal oxide fine particles are preferably enclosed by the enlarged diameter portion 12 in the passage 11, and movement of the metal oxide fine particles in the carrier 10 is restricted. Therefore, even when the metal oxide fine particles receive an external force from the fluid, the movement of the metal oxide fine particles in the carrier 10 is suppressed, and the enlarged diameter portions 12 and 12 dispersedly arranged in the passage 11 of the carrier 10. It is possible to effectively prevent the metal oxide fine particles included in each of.
  • the average particle diameter D C of the metal oxide fine particles in both cases the primary particles and the secondary particles is preferably 0.1 ⁇ 50 nm, more preferably less than 30nm over 0.1 nm, more preferably Is from 0.5 nm to 14.0 nm, particularly preferably from 1.0 to 3.3 nm.
  • the ratio of the average particle diameter D C of the metal oxide fine particles to the average inner diameter D F of the passage 11 (D C / D F ) is preferably 0.06 to 500, more preferably 0.1 to 36. More preferably, it is 1.1 to 36, and particularly preferably 1.7 to 4.5.
  • the metal element (M) of the metal oxide fine particles is preferably contained in an amount of 0.5 to 2.5% by mass with respect to the catalyst structure 1, and 0.5 to 2.5% with respect to the catalyst structure 1. It is more preferable that it is contained at 1.5% by mass.
  • the metal element (M) is Co
  • the content (mass%) of the Co element is represented by ⁇ (mass of Co element) / (mass of all elements of the catalyst structure 1) ⁇ ⁇ 100. .
  • the metal oxide fine particles may be composed of a metal oxide, for example, may be composed of a single metal oxide, or may be composed of two or more kinds of composite metal oxides.
  • the “metal oxide” (as a material) constituting the metal oxide fine particles includes an oxide containing one kind of metal element (M) and two or more kinds of metal elements (M). It is a general term for oxides containing one or more metal elements (M).
  • Such metal oxide fine particles may be any one or more of Fe, Al, Zn, Zr, Cu, Co, Ni, Ce, Nb, Ti, Mo, V, Cr, Pd, and Ru. It is comprised with the material containing. Further, when the metal oxide fine particles are composite metal oxide fine particles composed of a material containing two or more kinds of metal oxides, the composite metal oxide fine particles are Fe, Al, Zn, Cu, Co, Ni, A first metal oxide containing any one or more of Nb, Mo, V, Cr and Pd oxides, and a second containing one or more of Zr, Ti, Ru and Ce oxides It is preferable to have a metal oxide. Examples of the first metal oxide include iron oxide (FeOx), and examples of the second metal oxide include zirconium oxide (ZrOx).
  • the ratio of silicon (Si) constituting the carrier 10 to the metal element (M) constituting the metal oxide fine particles is preferably 10 to 1000, preferably 50 to 200. More preferably. If the ratio is greater than 1000, the activity as a catalyst substance may not be sufficiently obtained, such as low activity. On the other hand, if the ratio is less than 10, the ratio of the metal oxide fine particles becomes too large, and the strength of the carrier 10 tends to decrease.
  • the metal oxide fine particles referred to here are metal oxide fine particles held or supported inside the carrier 10, and do not include metal oxide fine particles attached to the outer surface of the carrier 10.
  • the ratio of the silicon (Si) constituting the carrier 10 to the metal element (M) constituting the first metal oxide is 10 to 1000
  • the ratio of the other metal element (m) constituting the second metal oxide to the metal element (M) is 0.01. Is preferably ⁇ 1.
  • the catalyst structure 1 includes a porous support 10 and at least one metal oxide fine particle 20 present in the support.
  • the catalyst structure 1 exhibits catalytic activity according to the metal oxide fine particles 20 when the metal oxide fine particles 20 existing in the carrier come into contact with the fluid. Specifically, the fluid that has contacted the outer surface 10a of the catalyst structure 1 flows into the carrier 10 through the holes 11a formed in the outer surface 10a, is guided into the passage 11, and moves through the passage 11. Then, it goes out of the catalyst structure 1 through another hole 11a.
  • a reaction for example, catalytic reaction
  • the catalyst structure 1 has molecular sieving ability because the carrier has a porous structure.
  • the catalyst structure 1 has a molecular sieving ability that permeates predetermined molecules contained in heavy oil such as crude oil or residual oil.
  • the molecular sieving ability of the catalyst structure 1 will be described with reference to FIG. 2A as an example where the fluid is a liquid containing benzene, propylene and mesitylene.
  • a compound for example, benzene, propylene
  • a compound composed of molecules having a size smaller than the diameter of the hole 11a, in other words, smaller than the inner diameter of the passage 11, enters the carrier 10. be able to.
  • a compound (for example, mesitylene) composed of molecules having a size exceeding the pore diameter of the pores 11 a cannot enter the carrier 10.
  • the reaction of the compound that cannot enter the carrier 10 is restricted, and the compound that can enter the carrier 10 can be reacted.
  • the metal oxide fine particles 20 are included in the enlarged diameter portion 12 of the passage 11 as shown in FIG.
  • the metal oxide fine particles 20 are metal oxide fine particles
  • the average particle diameter D C of the metal oxide fine particles is larger than the average inner diameter D F of the passage 11 is smaller than the inner diameter D E of the enlarged diameter portion 12 (D F ⁇ D C ⁇ D E )
  • a small passage 13 is formed between the metal oxide fine particles and the enlarged diameter portion 12. Therefore, as shown by the arrow in FIG. 2B, the fluid that has entered the small passage 13 comes into contact with the metal oxide fine particles. Since each metal oxide fine particle is enclosed by the enlarged diameter part 12, the movement in the support
  • a molecule entering the passage 11 comes into contact with the metal oxide fine particle 20
  • a molecule is generated by a catalytic decomposition reaction with one metal oxide (first metal oxide) of the metal oxide fine particle 20.
  • one metal oxide for example, iron oxide
  • one heavy oil is decomposed to generate a plurality of other heavy oils.
  • a plurality of light oils may be generated from one heavy oil, and other heavy oils and light oils may be generated from one heavy oil.
  • the heavy component can be reformed to other heavy oil, light oil or the like.
  • radicals are generated in the cleaved portion of the heavy oil or light oil after decomposition due to the decomposition of the heavy oil by the catalytic cracking reaction, and the heavy oil or light oil after decomposition is not present due to the presence of this radical. It is in a stable state.
  • the metal oxide fine particles 20 contain another metal oxide (second metal oxide) (for example, zirconium oxide) other than the one metal oxide, the metal oxide is activated by the catalytic function of the other metal oxide.
  • Hydrogen can be generated from moisture such as water vapor existing in the vicinity of the fine particles 20. Therefore, hydrogen molecules can be generated by supplying moisture to the catalyst structure (particularly, the second metal oxide) without separately supplying hydrogen gas to the catalyst structure as in the prior art. Hydrogen molecules are supplied to the radicals generated in the cleavage portion, the radicals disappear, and the heavy oil or light oil after decomposition can be stabilized.
  • the metal oxide fine particles 20 can be used for hydrodesulfurization reaction in addition to the catalytic cracking reaction. Specifically, when the molecules that have entered the passage 11 come into contact with the metal oxide fine particles 20, the molecules (substance to be modified) are modified by a desulfurization reaction that occurs in a hydrogen molecular environment. By performing hydrodesulfurization treatment with the metal oxide fine particles 20 in this way, crude oil, heavy oil, or the like can be modified.
  • FIG. 3 is a flowchart showing a method for manufacturing the catalyst structure 1 of FIG.
  • an example of a method for producing a catalyst structure will be described, taking as an example the case where the catalyst substance present in the carrier is metal oxide fine particles.
  • Step S1 Preparation process
  • a precursor material (A) for obtaining a porous structure carrier composed of a zeolite-type compound is prepared.
  • the precursor material (A) is preferably a regular mesoporous material, and can be appropriately selected according to the type (composition) of the zeolite-type compound constituting the support of the catalyst structure.
  • the regular mesoporous material when the zeolitic compound constituting the support of the catalyst structure is a silicate compound, the regular mesoporous material has a one-dimensional, two-dimensional or three-dimensional pore having a pore diameter of 1 to 50 nm. It is preferably a compound composed of a Si—O skeleton having a uniform size and regularly developed.
  • Such regular mesoporous materials can be obtained as various composites depending on the synthesis conditions. Specific examples of the composites include, for example, SBA-1, SBA-15, SBA-16, KIT-6, FSM- 16, MCM-41, etc., among which MCM-41 is preferable.
  • the pore diameter of SBA-1 is 10 to 30 nm
  • the pore diameter of SBA-15 is 6 to 10 nm
  • the pore diameter of SBA-16 is 6 nm
  • the pore diameter of KIT-6 is 9 nm
  • the pore diameter of FSM-16 is 3
  • the pore diameter of MCM-41 is 1 to 10 nm.
  • regular mesoporous materials include mesoporous silica, mesoporous aluminosilicate, and mesoporous metallosilicate.
  • the precursor material (A) may be a commercially available product or a synthetic product.
  • the precursor material (A) can be performed by a known method for synthesizing regular mesoporous materials. For example, a mixed solution containing a raw material containing the constituent elements of the precursor material (A) and a templating agent for defining the structure of the precursor material (A) is prepared, and the pH is adjusted as necessary. Hydrothermal treatment (hydrothermal synthesis) is performed. Thereafter, the precipitate (product) obtained by hydrothermal treatment is recovered (for example, filtered), washed and dried as necessary, and further calcined to form a regular mesoporous material in powder form. A precursor material (A) is obtained.
  • a solvent of the mixed solution for example, water, an organic solvent such as alcohol, or a mixed solvent thereof can be used.
  • a raw material is selected according to the kind of support
  • carrier for example, silica agents, such as tetraethoxysilane (TEOS), fumed silica, quartz sand, etc. are mentioned.
  • TEOS tetraethoxysilane
  • templating agent various surfactants, block copolymers and the like can be used, and it is preferable to select according to the kind of the compound of the regular mesoporous material.
  • a surfactant such as hexadecyltrimethylammonium bromide is preferred.
  • the hydrothermal treatment can be performed, for example, in a sealed container at 80 to 800 ° C., 5 hours to 240 hours, and treatment conditions of 0 to 2000 kPa.
  • the firing treatment can be performed, for example, in air at 350 to 850 ° C. for 2 to 30 hours.
  • Step S2 impregnation step
  • the prepared precursor material (A) is impregnated with the metal-containing solution to obtain the precursor material (B).
  • the metal-containing solution may be a solution containing a metal component (for example, metal ion) corresponding to the metal element (M) constituting the metal oxide fine particles of the catalyst structure.
  • the metal element (M ) can be prepared by dissolving the metal salt.
  • metal salts include metal salts such as chlorides, hydroxides, oxides, sulfates, nitrates, etc. Among them, nitrates are preferable.
  • the solvent for example, water, an organic solvent such as alcohol, or a mixed solvent thereof can be used.
  • the method for impregnating the precursor material (A) with the metal-containing solution is not particularly limited.
  • a plurality of metal-containing solutions are mixed while stirring the powdery precursor material (A) before the firing step described later. It is preferable to add in small portions in portions.
  • a surfactant as an additive is added in advance to the precursor material (A) before adding the metal-containing solution. It is preferable to add it.
  • Such an additive has a function of coating the outer surface of the precursor material (A), suppresses the metal-containing solution added thereafter from adhering to the outer surface of the precursor material (A), and the metal It is considered that the contained solution is more likely to enter the pores of the precursor material (A).
  • nonionic surfactants such as polyoxyethylene oleyl ether, polyoxyethylene alkyl ether, and polyoxyethylene alkylphenyl ether. Since these surfactants have a large molecular size and cannot penetrate into the pores of the precursor material (A), they do not adhere to the inside of the pores, and the metal-containing solution penetrates into the pores. It is thought not to interfere.
  • the nonionic surfactant is preferably added in an amount of 50 to 500% by mass with respect to the precursor material (A) before the firing step described later.
  • the addition amount of the nonionic surfactant to the precursor material (A) is less than 50% by mass, the above-described inhibitory action is hardly exhibited, and the nonionic surfactant is added to the precursor material (A) at 500. Addition of more than% by mass is not preferable because the viscosity increases excessively. Therefore, the addition amount of the nonionic surfactant with respect to the precursor material (A) is set to a value within the above range.
  • the amount of the metal-containing solution added to the precursor material (A) is the amount of the metal element (M) contained in the metal-containing solution impregnated in the precursor material (A) (that is, the precursor material (B It is preferable to adjust appropriately in consideration of the amount of the metal element (M) contained in ().
  • the addition amount of the metal-containing solution added to the precursor material (A) is the metal element (M) contained in the metal-containing solution added to the precursor material (A)
  • the ratio of silicon (Si) constituting the precursor material (A) atomic ratio Si / M
  • it is preferably adjusted to be 10 to 1000, and adjusted to be 50 to 200. It is more preferable.
  • the metal element (M) of the metal oxide fine particles is contained at 0.5 to 2.5 mass% with respect to the catalyst structure.
  • the metal element (M) contained in the metal-containing solution is any one of Fe, Al, Zn, Zr, Cu, Co, Ni, Ce, Nb, Ti, Mo, V, Cr, Pd, and Ru. Or it is 2 or more types and is an element which comprises the metal oxide of metal oxide fine particles.
  • the amount of the metal element (M) present in the pores is the same as the metal concentration of the metal-containing solution, the presence or absence of the additive, and other conditions such as temperature and pressure. If so, it is roughly proportional to the amount of the metal-containing solution added to the precursor material (A).
  • the amount of the metal element (M) inherent in the precursor material (B) is proportional to the amount of the metal element constituting the metal oxide fine particles inherent in the support of the catalyst structure.
  • the metal-containing solution can be sufficiently impregnated inside the pores of the precursor material (A), and thus It is possible to adjust the amount of metal oxide fine particles incorporated in the support of the catalyst structure.
  • the amount of addition of the metal-containing solution added to the precursor material (A) is the same as that of the precursor material (A) with respect to the metal element (M) contained in the metal-containing solution added to the precursor material (A).
  • the ratio of (m) (atomic number ratio m / M) can be adjusted to be 0.01 to 1.
  • the metal element (M) contained in the metal-containing solution is one or more of Fe, Al, Zn, Cu, Co, Ni, Nb, Mo, V, Cr, and Pd, and is a composite It is an element constituting the first metal oxide contained in the metal oxide fine particles.
  • the other metal element (m) contained in the metal-containing solution is any one or more of Zr, Ti, Ru, and Ce, and the second metal oxide contained in the composite metal oxide fine particles. Is an element that constitutes
  • a cleaning treatment may be performed as necessary.
  • the cleaning solution water, an organic solvent such as alcohol, or a mixed solution thereof can be used.
  • the drying treatment include natural drying overnight or high temperature drying at 150 ° C. or lower.
  • the regular mesopores of the precursor material (A) are obtained by performing the baking treatment described later in a state where a large amount of moisture contained in the metal-containing solution and the moisture of the cleaning solution remain in the precursor material (A). Since the skeletal structure as a substance may be broken, it is preferable to dry it sufficiently.
  • Step S3 Firing step
  • the precursor material (B) obtained by impregnating the precursor material (A) for impregnating the porous material structure composed of the zeolite type compound with the metal-containing solution is calcined to obtain the precursor material (C). Get.
  • the calcination treatment is preferably performed, for example, in air at 350 to 850 ° C. for 2 to 30 hours.
  • the metal component impregnated in the pores of the regular mesoporous material grows in crystal, and metal oxide fine particles are formed in the pores.
  • Step S4 Hydrothermal treatment process
  • a mixed solution in which the precursor material (C) and the structure directing agent are mixed is prepared, and the precursor material (C) obtained by firing the precursor material (B) is subjected to hydrothermal treatment to form a catalyst. Get a structure.
  • the structure directing agent is a templating agent for defining the skeletal structure of the support of the catalyst structure, and for example, a surfactant can be used.
  • the structure directing agent is preferably selected according to the skeleton structure of the support of the catalyst structure.
  • a surfactant such as tetramethylammonium bromide (TMABr), tetraethylammonium bromide (TEABr), tetrapropylammonium bromide (TPABr), etc. Is preferred.
  • the mixing of the precursor material (C) and the structure directing agent may be performed during the hydrothermal treatment step or before the hydrothermal treatment step.
  • the preparation method of the said mixed solution is not specifically limited, A precursor material (C), a structure directing agent, and a solvent may be mixed simultaneously, or precursor material (C) and structure prescription
  • each agent is dispersed in each solution, each dispersion solution may be mixed.
  • the solvent for example, water, an organic solvent such as alcohol, or a mixed solvent thereof can be used.
  • the pH of the mixed solution is preferably adjusted using an acid or a base before hydrothermal treatment.
  • the hydrothermal treatment can be performed by a known method.
  • the hydrothermal treatment is preferably performed in a sealed container at 80 to 800 ° C., 5 hours to 240 hours, and 0 to 2000 kPa.
  • the hydrothermal treatment is preferably performed in a basic atmosphere.
  • the reaction mechanism here is not necessarily clear, by performing hydrothermal treatment using the precursor material (C) as a raw material, the skeleton structure of the precursor material (C) as a regular mesoporous material gradually collapses. While the position of the metal oxide fine particles inside the pores of the precursor material (C) is generally maintained, a new skeletal structure (porous structure) is formed as a support for the catalyst structure by the action of the structure directing agent. Is done.
  • the catalyst structure thus obtained includes a porous structure carrier and metal oxide fine particles inherent in the carrier, and the carrier has a passage in which a plurality of pores communicate with each other due to the porous structure. At least a part of the metal oxide fine particles is present in the passage of the carrier.
  • a mixed solution in which the precursor material (C) and the structure directing agent are mixed is prepared, and the precursor material (C) is hydrothermally treated.
  • the precursor material (C) may be hydrothermally treated without mixing the precursor material (C) and the structure directing agent.
  • the precipitate (catalyst structure) obtained after the hydrothermal treatment is preferably recovered (for example, filtered), then washed, dried and fired as necessary.
  • the cleaning solution water, an organic solvent such as alcohol, or a mixed solution thereof can be used.
  • the drying treatment include natural drying overnight or high temperature drying at 150 ° C. or lower.
  • the calcination treatment is performed in a state where a large amount of moisture remains in the precipitate, the skeletal structure as the support of the catalyst structure may be broken. Therefore, it is preferable that the precipitate is sufficiently dried.
  • the firing treatment can be performed, for example, in air at 350 to 850 ° C. for 2 to 30 hours.
  • the structure directing agent attached to the catalyst structure is burned away.
  • the catalyst structure can be used as it is without subjecting the recovered precipitate to a firing treatment depending on the purpose of use. For example, if the environment in which the catalyst structure is used is a high-temperature environment in an oxidizing atmosphere, the structure directing agent will be burned down by exposure to the environment for a certain period of time. Since it is obtained, it can be used as it is.
  • FIG. 4 is a schematic view showing a modification of the catalyst structure 1 of FIG.
  • the catalyst structure 1 of FIG. 1 shows a case where the support 10 and the metal oxide fine particles 20 existing in the support 10 are provided.
  • the present invention is not limited to this configuration.
  • the catalyst structure 2 may further include at least one other metal oxide fine particle 30 held on the outer surface 10 a of the support 10.
  • the metal oxide fine particles 30 are substances that exhibit one or more catalytic ability.
  • the catalytic ability of the other metal oxide fine particles 30 may be the same as or different from the catalytic ability of the metal oxide fine particles 20.
  • the material of the other metal oxide fine particles 30 may be the same as the material of the metal oxide fine particles 20, May be different. According to this configuration, the content of the catalyst material held in the catalyst structure 2 can be increased, and the catalytic activity of the catalyst material can be further promoted.
  • the content of the metal oxide fine particles 20 inherent in the carrier 10 is preferably larger than the content of the other metal oxide fine particles 30 held on the outer surface 10 a of the carrier 10.
  • the catalytic ability of the metal oxide fine particles 20 held inside the carrier 10 becomes dominant, and the catalytic ability of the catalytic substance is stably exhibited.
  • the metal oxide fine particles 20 may be any one or more of oxides of Fe, Al, Zn, Zr, Cu, Co, Ni, Ce, Nb, Ti, Mo, V, Cr, Pd, and Ru. Since it is composed of a material containing hydrogen, hydrogen can be generated from moisture by the catalytic function of one or more of these metal oxides, and radicals generated in the cleaved portion of heavy oil or light oil after decomposition Hydrogen can be supplied to the base to eliminate the radicals, and the heavy oil or light oil after decomposition can be stabilized.
  • the metal oxide fine particles 20 are composite metal oxide fine particles composed of a material containing two or more kinds of metal oxides, and the composite metal oxide fine particles are Fe, Al, Zn, Cu, Co, Ni. , Nb, Mo, V, Cr and Pd oxides, or any one or more of Zr, Ti, Ru and Ce oxides. Since the second metal oxide containing the second metal oxide, the catalytic activity is reduced due to the interaction between the hydrocarbon decomposability of the first metal oxide and the water decomposability of the second metal oxide (reducing hydrogen, if reduced). Can be further suppressed, and more efficient catalytic cracking treatment can be realized, and in addition, it is possible to obtain the reformed substance more easily and stably.
  • the average particle diameter D C of the metal oxide particles 20 is greater than the average internal diameter D F of the passage 11, since and is equal to or smaller than the inner diameter D E of the enlarged diameter portion 12, the metal oxide within the enlarged diameter portion 12
  • the object fine particles 20 can be reliably included, and aggregation of the metal oxide fine particles 20 can be reliably prevented.
  • the catalytic function of the metal oxide fine particles 20 can be maximized.
  • the catalytic cracking treatment of the heavy component which has not been sufficiently utilized so far can be promoted, and desulfurized naphtha, desulfurized kerosene, desulfurized light oil.
  • the yield of desulfurized heavy oil and the like can be improved.
  • the appearance of the catalyst structure is powder, but is not limited thereto, and may be a cylindrical shape, a leaf shape, a dumbbell column shape, or a ring-shaped pellet shape.
  • the method for forming the catalyst structure is not particularly limited in order to obtain the above-mentioned shape, but a general method such as extrusion, tableting, or granulation in oil can be used. Further, for example, after a catalyst powder is molded with a uniaxial pressurizer to prepare a catalyst structure, the catalyst molded body is passed through a sieve while being crushed, and at least one secondary particle having a target secondary particle diameter is used. You may obtain the method of obtaining the catalyst structure comprised.
  • a state in which the catalyst structure is granulated by the above method can be referred to as a catalyst structure or a catalyst molded body.
  • a catalyst structure having an average particle diameter (or an average of equivalent circle diameters) of, for example, 100 ⁇ m to 15 cm can be formed.
  • a binder such as alumina may be mixed and molded.
  • the catalyst structure or catalyst molded body has the shape and dimensions described above, so that when the crude oil, heavy oil, or a fraction obtained by distilling crude oil is desulfurized, the heavy oil fraction is prevented from clogging the catalyst layer. be able to.
  • the catalytic cracking apparatus which has the said catalytic cracking catalyst structure may be provided.
  • the catalytic cracking apparatus includes, for example, a reactor disposed downstream of a distillation apparatus in an oil refining plant, a substance supply unit that supplies a substance separated by the distillation apparatus to the reactor, and a product generated by a cracking reaction And a product discharge section for discharging the product.
  • the catalytic cracking catalyst structure can be used in the reactor of the apparatus having such a configuration.
  • the hydrodesulfurization apparatus which has the said catalyst structure for hydrodesulfurization may be provided.
  • the hydrodesulfurization apparatus is, for example, a reactor disposed downstream of a distillation apparatus in an oil refinery plant, and a substance supply unit to which a substance (hydrocarbon) separated by the distillation apparatus is supplied, and water is supplied.
  • the hydrodesulfurization catalyst structure can be used in an apparatus having such a configuration. That is, by performing a step of supplying crude oil, heavy oil or a fraction thereof to the catalyst structure and a step of supplying moisture to the catalyst structure, oil, heavy oil or a fraction thereof Can be catalytically cracked and hydrodesulfurized.
  • the catalyst structure is used in a catalytic cracking apparatus or hydrodesulfurization apparatus, and a crude oil, heavy oil, or a fraction obtained by distilling them is subjected to catalytic cracking or hydrodesulfurization in the catalytic cracking apparatus or hydrodesulfurization apparatus
  • a crude oil, heavy oil, or a fraction obtained by distilling them is subjected to catalytic cracking or hydrodesulfurization in the catalytic cracking apparatus or hydrodesulfurization apparatus
  • type of precursor material (A) (“type of precursor material (A): surfactant”).
  • CTL-41 hexadecyltrimethylammonium bromide (CTAB) (manufactured by Wako Pure Chemical Industries, Ltd.)
  • SBA-1 Pluronic P123 (BASF)
  • metal element (M) constituting the type of metal oxide fine particles shown in Tables 1 to 8
  • metal salt containing the metal element (M) is dissolved in water to obtain a metal-containing aqueous solution.
  • the following metal salts were used according to the type of metal oxide fine particles (“metal oxide fine particles: metal salt”).
  • CoO x Cobalt nitrate (II) hexahydrate (Wako Pure Chemical Industries, Ltd.) NiO x : Nickel nitrate (II) hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) FeO x : Iron (III) nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) CuO x : Copper nitrate (II) trihydrate (Wako Pure Chemical Industries, Ltd.) ZrO x : Zirconyl nitrate dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.)
  • the metal-containing aqueous solution is added to the powdery precursor material (A) in small portions in small portions, and dried at room temperature (20 ° C. ⁇ 10 ° C.) for 12 hours or more to obtain the precursor material (B).
  • polyoxyethylene (15) as an additive with respect to the precursor material (A) before adding the metal-containing aqueous solution Pretreatment was performed by adding an aqueous solution of oleyl ether (NIKKOL BO-15V, manufactured by Nikko Chemicals Co., Ltd.), and then the metal-containing aqueous solution was added as described above. In the case of “None” in the presence or absence of the additive, the pretreatment with the additive as described above is not performed.
  • the addition amount of the metal-containing aqueous solution added to the precursor material (A) is the ratio of silicon (Si) constituting the precursor material (A) to the metal element (M) contained in the metal-containing aqueous solution (
  • the numerical values when converted to the atomic ratio (Si / M) were adjusted to the values shown in Tables 1-8.
  • precursor material (B) impregnated with the metal-containing aqueous solution obtained as described above was fired in the air at 600 ° C. for 24 hours to obtain a precursor material (C).
  • Comparative Example 1 Comparative Example 1, cobalt oxide powder (II, III) (manufactured by Sigma Aldrich Japan LLC) having an average particle size of 50 nm or less was mixed with MFI type silicalite, and a functional substance was formed on the outer surface of silicalite as a skeleton. As a result, a functional structure having cobalt oxide fine particles adhered thereto was obtained. MFI type silicalite was synthesized in the same manner as in Examples 52 to 57 except for the step of adding metal.
  • Comparative Example 2 MFI type silicalite was synthesized by the same method as Comparative Example 1 except that the step of attaching the cobalt oxide fine particles was omitted.
  • the catalyst structure in which the metal oxide is CoOx / ZrOx fine particles is cut out by FIB (focused ion beam) processing, and SEM (SU8020, manufactured by Hitachi High-Technologies Corporation), EDX (X-Max). Elemental analysis was performed using HR-GDMS (manufactured by Ametech Co., Ltd., Model Nu AstruM), and Co and Zr elements were detected. From the results of cross-sectional observation by TEM, SEM / EDX and GDMS, it was confirmed that CoOx / ZrOx fine particles were present inside the carrier.
  • Fe 2 O 3 fine particles of various sizes are randomly present in a particle size range of about 50 nm to 400 nm, whereas the average particle size obtained from the TEM image is 1.2 nm to 2.
  • a scattering peak having a particle size of 10 nm or less was detected in the SAXS measurement result. From the SAXS measurement result and the cross-sectional measurement result by SEM / EDX, it was found that a catalyst substance having a particle size of 10 nm or less was present in the carrier in a very dispersed state with a uniform particle size.
  • the amount of metal was determined by using ICP (high frequency inductively coupled plasma) alone or a combination of ICP and XRF (fluorescence X-ray analysis).
  • XRF energy dispersive X-ray fluorescence spectrometer “SEA1200VX”, manufactured by SSI Nanotechnology Inc.) was performed under the conditions of a vacuum atmosphere, an acceleration voltage of 15 kV (using a Cr filter), or an acceleration voltage of 50 kV (using a Pb filter).
  • Catalytic activity was evaluated under the following conditions. First, 0.2 g of the catalyst structure is charged into an atmospheric pressure flow reactor, nitrogen gas (N 2 ) is used as a carrier gas (5 ml / min), 400 ° C., 2 hours, butylbenzene (heavy oil model) The substance was decomposed. After completion of the reaction, the collected product gas and product liquid were subjected to component analysis by gas chromatography mass spectrometry (GC / MS). Note that TRACE 1310GC (manufactured by Thermo Fisher Scientific Co., Ltd., detector: thermal conductivity detector) was used as the product gas analyzer, and TRACE DSQ (Thermo Fisher Scientific) was used as the product liquid analyzer.
  • GC / MS gas chromatography mass spectrometry
  • the yield of the above compound is expressed as a percentage (mol%) of the total amount (mol) of a compound having a molecular weight smaller than that of butylbenzene contained in the product solution with respect to the amount (mol) of butylbenzene before the start of the reaction. Calculated.
  • the yield of the compound having a molecular weight smaller than that of butylbenzene contained in the product solution is 40 mol% or more, it is determined that the catalytic activity (resolution) is excellent, and “ ⁇ ”, 25 mol%
  • the catalyst activity is good, the catalyst activity is good when it is less than 40 mol%, and when the catalyst activity is not good when it is 10 mol% or more and less than 25 mol%, it is judged as acceptable level.
  • “ ⁇ ” and less than 10 mol% the catalyst activity was judged to be inferior (impossible), and “x” was assigned.
  • the yield of the compound by the catalyst structure after heating (the present evaluation (2)) relative to the yield of the compound by the catalyst structure before the heating (the yield obtained in the evaluation (1)).
  • the percentage (%) of the yield obtained in step 1) was calculated.
  • the yield of the above compound by the catalyst structure after heating (the yield determined in this evaluation (2)) is the yield of the above compound by the catalyst structure before heating (in the above evaluation (1)).
  • Comparative Example 2 is a support itself and does not have a catalyst material. Therefore, in the performance evaluation, only the support of Comparative Example 2 was filled instead of the catalyst structure. The results are shown in Table 8.
  • the amount of metal (mass%) enclosed in the support of the catalyst structure measured in the above evaluation [C], and the yield of the compound having a molecular weight smaller than that of butylbenzene contained in the product liquid (mol%) ) was evaluated.
  • the evaluation method was the same as the evaluation method performed in “(1) Catalytic activity” in [D] “Performance evaluation”.
  • the yield of the compound having a molecular weight smaller than that of butylbenzene contained in the product liquid is 32 mol% or more, and in the decomposition reaction of butylbenzene. It was found that the catalyst activity was above the acceptable level. The reason why the catalytic activity does not increase any more when the metal content (mass%) included in the support becomes 0.8 mass% or more (Si / M ⁇ 100), for example, the crystal strength of the support decreases. In addition, it can be assumed that the amount of coke deposited on the catalyst surface increases and the active sites decrease.
  • the catalyst structure of Comparative Example 1 in which the catalyst material is attached only to the outer surface of the carrier has a catalytic activity in the decomposition reaction of butylbenzene as compared with the carrier of Comparative Example 2 that does not have any catalyst material.
  • the durability as a catalyst was inferior to the catalyst structures of Examples 1 to 384.
  • Comparative Example 2 which does not have any catalyst substance shows almost no catalytic activity in the decomposition reaction of butylbenzene, and compared with the catalyst structures of Examples 1 to 384, the catalytic activity and durability Both were inferior.
  • the catalyst structures (Examples 1 to 384) have excellent catalytic activity in catalytic cracking activity or hydrodesulfurization activity, and are excellent in durability as a catalyst.
  • Example 1 to 384 a plurality of examples (see Table 9) that were excellent in both the evaluation results of activity evaluation and heat resistance evaluation were selected, and the coking amount was measured and evaluated.
  • a catalyst tube (inner diameter 10 mm) is filled with 0.25 g of the catalyst structure of each example in the upper stage of a zeolite catalyst in which commercially available iron oxide (manufactured by Wako) is included, and a reaction tube is produced. Then, 10% by weight of heavy oil (diluted in toluene) was supplied to the reaction tube at 2.9 mL / min and distilled water at 5 mL / min, and reacted at 470 ° C. for 2 hours.
  • heavy oil diluted in toluene
  • the amount of coke deposited (mass%) of each catalyst structure was measured and evaluated.
  • the amount of coke deposited was the same as above except that the upper stage of the reaction tube was filled with a zeolite catalyst in which iron oxide fine particles were held inside the support and the lower stage was filled with a catalyst structure in which FeOx fine particles were included. (Mass%) was measured and evaluated. The results are shown in Table 9.
  • the catalyst structure includes a porous support composed of a zeolite-type compound and at least one metal oxide fine particle inherent in the support, the support having a passage communicating with each other, and the metal Oxide fine particles are present in at least the passage of the carrier, and the metal oxide fine particles are Fe, Al, Zn, Zr, Cu, Co, Ni, Ce, Nb, Ti, Mo, V, Cr,
  • the catalyst structure is made of a material containing one or more of Pd and Ru oxides.
  • a method of using the catalyst structure according to (1) above characterized by comprising: (3) The catalyst structure is used in a catalytic cracking apparatus or hydrodesulfurization apparatus, and a fraction obtained by distilling crude oil is decomposed or desulfurized by the catalytic cracking apparatus or hydrodesulfurization apparatus. A method of using the catalyst structure according to (1) or (2) above.
  • catalyst structure 10 support 10a outer surface 11 passage 11a hole 12 enlarged diameter part 20 metal oxide fine particle 30 metal oxide fine particle D C average particle diameter D F average inner diameter D E inner diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

触媒活性の低下を抑制して、効率的な接触分解処理を実現することができ、加えて被改質物質を簡便且つ安定的に得ることができる接触分解用又は水素化脱硫用触媒構造体を提供する。 接触分解用又は水素化脱硫用触媒構造体(1)は、ゼオライト型化合物で構成される多孔質構造の担体(10)と、担体(10)に内在する少なくとも1つの金属酸化物微粒子(20)と、を備え、担体(10)が、互いに連通する通路(11)を有し、金属酸化物微粒子(20)が、担体(10)の少なくとも通路(11)に存在しており、金属酸化物微粒子(20)が、Fe、Al、Zn、Zr、Cu、Co、Ni、Ce、Nb、Ti、Mo、V、Cr、Pd及びRuの酸化物うちのいずれか又は2種以上を含む材料で構成されている。

Description

接触分解用又は水素化脱硫用触媒構造体、該触媒構造体を有する接触分解装置及び水素化脱硫装置、並びに接触分解用又は水素化脱硫用触媒構造体の製造方法
 本発明は、接触分解用又は水素化脱硫用触媒構造体に関し、特に、原油や重質油等の改質に用いられる接触分解用又は水素化脱硫用触媒構造体、該触媒構造体を有する接触分解装置及び水素化脱硫装置、並びに接触分解用又は水素化脱硫用触媒構造体の製造方法に関する。
 石油コンビナートの製油所では、原油から、ナフサと呼ばれる石油化学原料や、重油、軽油、灯油、ガソリン、LPガス等の各種燃料が製造されている。原油は、上記の石油化学原料や各種燃料の他、様々な不純物が混ざり合った混合物であるため、原油に含まれる各成分を蒸留、分離する工程が必要となる。
 そこで石油精製プロセスでは、各成分の沸点差を利用し、常圧蒸留装置における塔内の棚段で原油を加熱して成分毎に分離し、分離後の各物質を濃縮している。これにより、LPガス、ナフサ等の低沸点物質が常圧蒸留装置の上部棚段で取り出されると共に、重油等の高沸点物質が常圧蒸留装置の底部から取り出される。そして、分離、濃縮された各物質に脱硫等の二次処理を施すことにより、各種燃料製品が製造される。
 上記二次処理の1つである流動接触分解(FCC:fluid catalytic cracking)は、減圧軽油、常圧残油などの高沸点炭化水素を約500~550℃の反応温度で固体酸触媒により分解し、高オクタン価ガソリンを製造する工程である。触媒を用いた常圧残油の接触分解としては、例えば、ジルコニア及びアルミナを含む酸化鉄系触媒を用い、水蒸気雰囲気下での接触分解により、重質油から軽質油や二酸化炭素を生成する方法が提案されている(非特許文献1)。この方法では、原料に対する水蒸気の割合を増加させたり、或いは触媒中のジルコニア含有量を増加させると、軽質油におけるアルケン/アルカン比が減少したと報告されている。
麓 恵里,外3名,"水蒸気由来水素種と酸素種を利用した酸化鉄系触媒による重質油の接触分解",Vol.58(2015),No.5,Journal of the Japan Petroleum Institute,p329-335,[平成29年5月17日検索],インターネット〈URL:https://www.jstage.jst.go.jp/article/jpi/58/5/58_329/_pdf〉
 現在、我が国では日本の製油所で対応可能な原油を調達して処理しているが、原油の重質化等に伴い、将来的に重質油を処理せざるを得ない状況が想定される。このため、重質油の低硫黄化及び重質油からのナフサ、軽油への分解などのニーズから、重質油の分解処理や水素化脱硫処理の重要性が高まってきている。これまで、経験則から重質油の接触分解反応の研究が行われてきたが、重質油の効率的な接触分解処理や水素化脱硫処理を実現し得るための十分な知見は得られていない。例えば、非特許文献1の技術では、単にジルコニア、アルミナ及び酸化鉄を含む複合酸化物触媒を用いているため、接触分解処理中に被改質物質等の流体から受ける力や熱などの影響に因って触媒粒子同士の凝集(シンタリング)が発生し易く、触媒活性が低下するという問題がある。
 また、従来の酸化鉄系触媒を用いた重質油の接触分解反応では、酸化鉄中の酸素における開裂反応によって重質油が分解するが、分解後の重質油の開裂部分にラジカルが発生していて不安定な状態であるため、別途Hガスを供給して開裂部分のラジカルを消滅させて、分解後の重質油を安定化させる必要があり、煩雑な作業を要する。
 本発明の目的は、触媒活性の低下を抑制して、効率的な接触分解処理又は水素化脱硫処理を実現することができ、加えて被改質物質を簡便且つ安定的に得ることができる接触分解用又は水素化脱硫用触媒構造体、該触媒構造体を備える接触分解装置及び水素化脱硫装置、並びに接触分解用又は水素化脱硫用触媒構造体の製造方法を提供することにある。
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、接触分解用又は水素化脱硫用触媒構造体が、ゼオライト型化合物で構成される多孔質構造の担体と、前記担体に内在する少なくとも1つの金属酸化物微粒子と、を備え、前記担体が、互いに連通する通路を有し、前記金属酸化物微粒子が、前記担体の少なくとも前記通路に存在しており、前記金属酸化物微粒子が、Fe、Al、Zn、Zr、Cu、Co、Ni、Ce、Nb、Ti、Mo、V、Cr、Pd及びRuの酸化物うちのいずれか又は2種以上を含む材料で構成されていることによって、触媒物質の触媒活性低下を抑制し、長寿命化を実現できる触媒構造体が得られることを見出し、かかる知見に基づき本発明を完成させるに至った。
 すなわち、本発明の要旨構成は、以下のとおりである。
[1]ゼオライト型化合物で構成される多孔質構造の担体と、
 前記担体に内在する少なくとも1つの金属酸化物微粒子と、
を備え、
 前記担体が、互いに連通する通路を有し、
 前記金属酸化物微粒子が、前記担体の少なくとも前記通路に存在しており、
 前記金属酸化物微粒子が、Fe、Al、Zn、Zr、Cu、Co、Ni、Ce、Nb、Ti、Mo、V、Cr、Pd及びRuの酸化物のうちのいずれか又は2種以上を含む材料で構成されていることを特徴とする、接触分解用又は水素化脱硫用触媒構造体。
[2]前記金属酸化物微粒子が、2種以上の金属酸化物を含む材料で構成された複合金属酸化物微粒子であり、
 前記複合金属酸化物微粒子が、Fe、Al、Zn、Cu、Co、Ni、Nb、Mo、V、Cr及びPdの酸化物のうちのいずれか又は2種以上を含む第1金属酸化物と、Zr、Ce、Ti及びRuの酸化物のうちのいずれか又は2種以上を含む第2金属酸化物とを有することを特徴とする、上記[1]に記載の接触分解用又は水素化脱硫用触媒構造体。
[3]前記通路は、前記ゼオライト型化合物の骨格構造によって画定される一次元孔、二次元孔及び三次元孔のうちのいずれかと、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれとも異なる拡径部とを有し、かつ
 前記金属酸化物微粒子が、少なくとも前記拡径部に存在していることを特徴とする、上記[1]に記載の接触分解用又は水素化脱硫用触媒構造体。
[4]前記拡径部は、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれかを構成する複数の孔同士を連通している、上記[3]に記載の接触分解用又は水素化脱硫用触媒構造体。
[5]前記金属酸化物微粒子の平均粒径が、前記通路の平均内径よりも大きく、且つ前記拡径部の内径以下であることを特徴とする、上記[3]又は[4]に記載の接触分解用又は水素化脱硫用触媒構造体。
[6]前記金属酸化物微粒子の金属元素(M)が、前記触媒構造体に対して0.5~2.5質量%で含有されていることを特徴とする、上記[1]~[5]のいずれかに記載の接触分解用又は水素化脱硫用触媒構造体。
[7]前記金属酸化物微粒子の平均粒径が、0.1nm~50nmであることを特徴とする、上記[1]~[5]のいずれかに記載の接触分解用又は水素化脱硫用触媒構造体。
[8]前記金属酸化物微粒子の平均粒径が、0.5nm~14.0nmであることを特徴とする、上記[7]に記載の接触分解用又は水素化脱硫用触媒構造体。
[9]前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、0.06~500であることを特徴とする、上記[1]~[8]のいずれかに記載の接触分解用又は水素化脱硫用触媒構造体。
[10]前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、0.1~36であることを特徴とする、上記[9]に記載の接触分解用又は水素化脱硫用触媒構造体。
[11]前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、1.7~4.5であることを特徴とする、上記[10]に記載の接触分解用又は水素化脱硫用触媒構造体。
[12]前記通路の平均内径は、0.1nm~1.5nmであり、
 前記拡径部の内径は、0.5nm~50nmであることを特徴とする、上記[3]~[11]のいずれかに記載の接触分解用又は水素化脱硫用触媒構造体。
[13]前記担体の外表面に保持された少なくとも1つの他の金属酸化物微粒子を更に備えることを特徴とする、上記[1]~[12]のいずれかに記載の接触分解用又は水素化脱硫用触媒構造体。
[14]前記担体に内在する前記少なくとも1つの金属酸化物微粒子の含有量が、前記担体の外表面に保持された前記少なくとも1つの他の金属酸化物微粒子の含有量よりも多いことを特徴とする、上記[13]に記載の接触分解用又は水素化脱硫用触媒構造体。
[15]前記ゼオライト型化合物は、ケイ酸塩化合物であることを特徴とする、上記[1]~[14]のいずれかに記載の接触分解用又は水素化脱硫用触媒構造体。
[16]円柱状、葉状、ダンベル柱状、またはリング状のペレット形状を有することを特徴とする、上記[1]~[15]のいずれかに記載の接触分解用又は水素化脱硫用触媒構造体。
[17]前記触媒構造体の平均粒径が、100μm~15cmであることを特徴とする、上記[16]に記載の接触分解用又は水素化脱硫用触媒構造体。
[18]上記[1]~[17]のいずれかに記載の触媒構造体を有する接触分解装置。
[19]上記[1]~[17]のいずれかに記載の触媒構造体を有する水素化脱硫装置。
[20]ゼオライト型化合物で構成される多孔質構造の担体を得るための前駆体材料(A)に金属含有溶液が含浸された前駆体材料(B)を焼成する焼成工程と、
 前記前駆体材料(B)を焼成して得られた前駆体材料(C)を水熱処理する水熱処理工程と、
 を有することを特徴とする、接触分解用又は水素化脱硫用触媒構造体の製造方法。
[21]前記焼成工程の前に、非イオン性界面活性剤を、前記前駆体材料(A)に対して50~500質量%添加することを特徴とする、上記[20]に記載の接触分解用又は水素化脱硫用触媒構造体の製造方法。
[22]前記焼成工程の前に、前記前駆体材料(A)に前記金属含有溶液を複数回に分けて添加することで、前記前駆体材料(A)に前記金属含有溶液を含浸させることを特徴とする、上記[20]又は[21]に記載の接触分解用又は水素化脱硫用触媒構造体の製造方法。
[23]前記焼成工程の前に前記前駆体材料(A)に前記金属含有溶液を含浸させる際に、前駆体材料(A)に添加する金属含有溶液の添加量を、前駆体材料(A)に添加する金属含有溶液中に含まれる金属元素(M)に対する、前駆体材料(A)を構成するケイ素(Si)の比(原子数比Si/M)に換算して、10~1000となるように調整することを特徴とする、上記[20]~[22]のいずれかに記載の接触分解用又は水素化脱硫用触媒構造体の製造方法。
[24]前記金属含有溶液中に含まれる金属元素(M)が、Fe、Al、Zn、Zr、Cu、Co、Ni、Ce、Nb、Ti、Mo、V、Cr、Pd及びRuのうちのいずれか又は2種以上であることを特徴とする、上記[23]に記載の接触分解用又は水素化脱硫用触媒構造体の製造方法。
[25]前記焼成工程の前に前記前駆体材料(A)に前記金属含有溶液を含浸させる際に、前記前駆体材料(A)に添加する前記金属含有溶液の添加量を、前記前駆体材料(A)に添加する前記金属含有溶液中に含まれる金属元素(M)に対する、前記前駆体材料(A)を構成するケイ素(Si)の割合(原子数比Si/M)に換算して、10~1000とし、且つ前記金属元素(M)に対する、前記金属含有溶液中に含まれる他の金属元素(m)の割合(原子数比m/M)が0.01~1となるように調整することを特徴とする、上記[20]~[22]のいずれかに記載の接触分解用又は水素化脱硫用触媒構造体の製造方法。
[26]前記金属含有溶液中に含まれる金属元素(M)が、Fe、Al、Zn、Cu、Co、Ni、Nb、Mo、V、Cr及びPdのうちのいずれか又は2種以上であり、且つ、
 前記他の金属元素(m)が、Zr、Ti、Ru及びCeのうちのいずれか又は2種以上であることを特徴とする、上記[25]に記載の接触分解用又は水素化脱硫用触媒構造体の製造方法。
[27]前記水熱処理工程において、前記前駆体材料(C)と構造規定剤とを混合することを特徴とする、上記[20]に記載の接触分解用又は水素化脱硫用触媒構造体の製造方法。
[28]前記水熱処理工程が塩基性雰囲気下で行われることを特徴とする、上記[20]に記載の接触分解用又は水素化脱硫用触媒構造体の製造方法。
 本発明によれば、触媒活性の低下を抑制して、効率的な接触分解処理又は水素化脱硫処理を実現することができ、加えて被改質物質を簡便且つ安定的に得ることができる接触分解用又は水素化脱硫用触媒構造体を提供することができ、また、該触媒構造体を備える接触分解装置又は水素化脱硫装置を提供することができる。
図1は、本発明の実施形態に係る接触分解用又は水素化脱硫用触媒構造体の内部構造が分かるように概略的に示したものであって、図1(a)は斜視図(一部を横断面で示す。)、図1(b)は部分拡大断面図である。 図2は、図1の触媒構造体の機能の一例を説明するための部分拡大断面図であり、図2(a)は篩機能、図2(b)は触媒能を説明する図である。 図3は、図1の触媒構造体の製造方法の一例を示すフローチャートである。 図4は、図1の触媒構造体の変形例を示す模式図である。
 以下、本発明の実施形態を、図面を参照しながら詳細に説明する。
[触媒構造体の構成]
 図1は、本発明の実施形態に係る接触分解用又は水素化脱硫用触媒構造体の構成を概略的に示す図であり、(a)は斜視図(一部を横断面で示す。)、(b)は部分拡大断面図である。なお、図1における触媒構造体は、その一例を示すものであり、本発明に係る各構成の形状、寸法等は、図1のものに限られないものとする。
 図1(a)に示されるように、接触分解用又は水素化脱硫用触媒構造体1(以下、単に触媒構造体という)は、ゼオライト型化合物で構成される多孔質構造の担体10と、該担体10に内在する、少なくとも1つの金属酸化物微粒子20とを備える。
 触媒構造体1において、複数の金属酸化物微粒子20,20,・・・は、担体10の多孔質構造の内部に包接されている。金属酸化物微粒子20は、触媒能(触媒活性)を有する物質であればよい。金属酸化物微粒子については、詳しくは後述する。
 担体10は、多孔質構造であり、図1(b)に示すように、好適には複数の孔11a,11a,・・・が形成されることにより、互いに連通する通路11を有する。ここで金属酸化物微粒子20は、担体10の少なくとも通路11に存在しており、好ましくは担体10の少なくとも通路11に保持されている。
 このような構成により、担体10内での金属酸化物微粒子20の移動が規制され、金属酸化物微粒子20、20同士の凝集が有効に防止されている。その結果、金属酸化物微粒子20としての有効表面積の減少を効果的に抑制することができ、金属酸化物微粒子20の触媒活性は長期にわたって持続する。すなわち、触媒構造体1によれば、金属酸化物微粒子20の凝集による触媒活性の低下を抑制でき、触媒構造体1としての長寿命化を図ることができる。また、触媒構造体1の長寿命化により、触媒構造体1の交換頻度を低減でき、使用済みの触媒構造体1の廃棄量を大幅に低減することができ、省資源化を図ることができる。
 通常、触媒構造体を、流体(例えば、重質油や、NOx等の改質ガスなど)の中で用いる場合、流体から外力を受ける可能性がある。この場合、触媒物質が、担体10の外表面に付着状態で保持されているだけであると、流体からの外力の影響で担体10の外表面から離脱しやすいという問題がある。これに対し、触媒構造体1では、金属酸化物微粒子20は担体10の少なくとも通路11に保持されているため、流体による外力の影響を受けたとしても、担体10から金属酸化物微粒子20が離脱しにくい。すなわち、触媒構造体1が流体内にある場合、流体は担体10の孔11aから、通路11内に流入するため、通路11内を流れる流体の速さは、流路抵抗(摩擦力)により、担体10の外表面を流れる流体の速さに比べて、遅くなると考えられる。このような流路抵抗の影響により、通路11内に保持された金属酸化物微粒子20が流体から受ける圧力は、担体10の外部において触媒物質が流体から受ける圧力に比べて低くなる。そのため、担体11に内在する金属酸化物微粒子20が離脱することを効果的に抑制でき、金属酸化物微粒子20の触媒活性を長期的に安定して維持することが可能となる。なお、上記のような流路抵抗は、担体10の通路11が、曲がりや分岐を複数有し、担体10の内部がより複雑で三次元的な立体構造となっているほど、大きくなると考えられる。
 また、通路11は、ゼオライト型化合物の骨格構造によって画定される一次元孔、二次元孔及び三次元孔のうちのいずれかと、上記一次元孔、上記二次元孔及び上記三次元孔のうちのいずれとも異なる拡径部12とを有していることが好ましい。このとき、金属酸化物微粒子20は、少なくとも拡径部12に存在していることが好ましく、少なくとも拡径部12に包接されていることがより好ましい。ここでいう一次元孔とは、一次元チャンネルを形成しているトンネル型またはケージ型の孔、もしくは複数の一次元チャンネルを形成しているトンネル型またはケージ型の複数の孔(複数の一次元チャンネル)を指す。また、二次元孔とは、複数の一次元チャンネルが二次元的に連結された二次元チャンネルを指し、三次元孔とは、複数の一次元チャンネルが三次元的に連結された三次元チャンネルを指す。
 これにより、金属酸化物微粒子20の担体10内での移動がさらに規制され、金属酸化物微粒子20の離脱や、金属酸化物微粒子20、20同士の凝集をさらに有効に防止することができる。包接とは、金属酸化物微粒子20が担体10に内包されている状態を指す。このとき金属酸化物微粒子20と担体10とは、必ずしも直接的に互いが接触している必要はなく、金属酸化物微粒子20と担体10との間に他の物質(例えば、界面活性剤等)が介在した状態で、金属酸化物微粒子20が担体10に間接的に保持されていてもよい。
 図1(b)では金属酸化物微粒子20が拡径部12に包接されている場合を示しているが、この構成だけには限定されず、金属酸化物微粒子20は、その一部が拡径部12の外側にはみ出した状態で通路11に存在していてもよい。また、金属酸化物微粒子20は、拡径部12以外の通路11の部分(例えば通路11の内壁部分)に部分的に埋設され、または固着等によって保持されていてもよい。
 また、拡径部12は、上記一次元孔、上記二次元孔及び上記三次元孔のうちのいずれかを構成する複数の孔11a,11a同士を連通しているのが好ましい。これにより、担体10の内部に、一次元孔、二次元孔又は三次元孔とは異なる別途の通路が設けられるので、触媒物質20の機能をより発揮させることができる。
 また、通路11は、担体10の内部に、分岐部または合流部を含んで三次元的に形成されており、拡径部12は、通路11の上記分岐部または合流部に設けられるのが好ましい。
 担体10に形成された通路11の平均内径Dは、上記一次元孔、二次元孔及び三次元孔のうちのいずれかを構成する孔11aの短径及び長径の平均値から算出され、例えば0.1~1.5nmであり、好ましくは0.5~0.8nmである。
 また、拡径部12の内径Dは、例えば0.5~50nmであり、好ましくは1.1~40nm、より好ましくは1.1~3.3nmである。拡径部12の内径Dは、例えば後述する前駆体材料(A)の細孔径、及び包接される金属酸化物微粒子20の平均粒径Dに依存する。拡径部12の内径Dは、金属酸化物微粒子20を包接し得る大きさである。
 担体10は、ゼオライト型化合物で構成される。ゼオライト型化合物としては、例えば、ゼオライト(アルミノケイ酸塩)、陽イオン交換ゼオライト、シリカライト等のケイ酸塩化合物、アルミノホウ酸塩、アルミノヒ酸塩、ゲルマニウム酸塩等のゼオライト類縁化合物、リン酸モリブデン等のリン酸塩系ゼオライト類似物質などが挙げられる。中でも、ゼオライト型化合物はケイ酸塩化合物であることが好ましい。
 ゼオライト型化合物の骨格構造は、FAU型(Y型またはX型)、MTW型、MFI型(ZSM-5)、FER型(フェリエライト)、LTA型(A型)、MWW型(MCM-22)、MOR型(モルデナイト)、LTL型(L型)、BEA型(ベータ型)などの中から選択され、好ましくはMFI型であり、より好ましくはZSM-5である。ゼオライト型化合物には、各骨格構造に応じた孔径を有する孔が複数形成されており、例えばMFI型の最大孔径は0.636nm(6.36Å)、平均孔径0.560nm(5.60Å)である。
 以下、金属酸化物微粒子20について詳しく説明する。
 金属酸化物微粒子20は、一次粒子である場合と、一次粒子が凝集して形成した二次粒子である場合とがあるが、金属酸化物微粒子の平均粒径Dは、好ましくは通路11の平均内径Dよりも大きく、且つ拡径部12の内径D以下である(D<D≦D)。このような金属酸化物微粒子は、通路11内では、好適には拡径部12に包接されており、担体10内での金属酸化物微粒子の移動が規制される。よって、金属酸化物微粒子が流体から外力を受けた場合であっても、担体10内での金属酸化物微粒子の移動が抑制され、担体10の通路11に分散配置された拡径部12、12、・・のそれぞれに包接された金属酸化物微粒子同士が接触するのを有効に防止することができる。
 また、金属酸化物微粒子の平均粒径Dは、一次粒子および二次粒子のいずれの場合も、好ましくは0.1~50nmであり、より好ましくは0.1nm以上30nm未満であり、さらに好ましくは0.5nm~14.0nm、特に好ましくは1.0~3.3nmである。また、通路11の平均内径Dに対する金属酸化物微粒子の平均粒径Dの割合(D/D)は、好ましくは0.06~500であり、より好ましくは0.1~36であり、更に好ましくは1.1~36であり、特に好ましくは1.7~4.5である。
 また、金属酸化物微粒子の金属元素(M)は、触媒構造体1に対して0.5~2.5質量%で含有されているのが好ましく、触媒構造体1に対して0.5~1.5質量%で含有されているのがより好ましい。例えば、金属元素(M)がCoである場合、Co元素の含有量(質量%)は、{(Co元素の質量)/(触媒構造体1の全元素の質量)}×100で表される。
 上記金属酸化物微粒子は、金属酸化物で構成されていればよく、例えば、単一の金属酸化物で構成されていてもよく、あるいは2種以上の複合金属酸化物で構成されていてもよい。なお、本明細書において、金属酸化物微粒子を構成する(材質としての)「金属酸化物」は、1種の金属元素(M)を含む酸化物と、2種以上の金属元素(M)を含む複合金属酸化物とを含む意味であり、1種以上の金属元素(M)を含む酸化物の総称である。
 このような金属酸化物微粒子は、Fe、Al、Zn、Zr、Cu、Co、Ni、Ce、Nb、Ti、Mo、V、Cr、Pd及びRuの酸化物のうちのいずれか又は2種以上を含む材料で構成される。
 また、金属酸化物微粒子が、2種以上の金属酸化物を含む材料で構成された複合金属酸化物微粒子である場合、複合金属酸化物微粒子は、Fe、Al、Zn、Cu、Co、Ni、Nb、Mo、V、Cr及びPdの酸化物うちのいずれか又は2種以上を含む第1金属酸化物と、Zr、Ti、Ru及びCeの酸化物のいずれか又は2種以上を含む第2金属酸化物とを有するのが好ましい。上記第1金属酸化物としては、例えば酸化鉄(FeOx)挙げられ、上記第2金属酸化物としては、例えば酸化ジルコニウム(ZrOx)が挙げられる。
 また、金属酸化物微粒子を構成する金属元素(M)に対する、担体10を構成するケイ素(Si)の割合(原子数比Si/M)は、10~1000であるのが好ましく、50~200であるのがより好ましい。上記割合が1000より大きいと、活性が低いなど、触媒物質としての作用が十分に得られない可能性がある。一方、上記割合が10よりも小さいと、金属酸化物微粒子の割合が大きくなりすぎて、担体10の強度が低下する傾向がある。なお、ここでいう金属酸化物微粒子は、担体10の内部に保持され、または担持された金属酸化物微粒子をいい、担体10の外表面に付着した金属酸化物微粒子を含まない。
 金属酸化物微粒子が上記複合金属酸化物微粒子である場合には、上記第1金属酸化物を構成する金属元素(M)に対する、担体10を構成するケイ素(Si)の割合(原子数比Si/M)は、10~1000であり、且つ上記金属元素(M)に対する、上記第2金属酸化物を構成する他の金属元素(m)の割合(原子数比m/M)が、0.01~1であるのが好ましい。
[触媒構造体の触媒活性]
 触媒構造体1は、上記のとおり、多孔質構造の担体10と、担体に内在する少なくとも1つの金属酸化物微粒子20とを備える。触媒構造体1は、担体に内在する金属酸化物微粒子20が流体と接触することにより、金属酸化物微粒子20に応じた触媒活性を発揮する。具体的に、触媒構造体1の外表面10aに接触した流体は、外表面10aに形成された孔11aから担体10内部に流入して通路11内に誘導され、通路11内を通って移動し、他の孔11aを通じて触媒構造体1の外部へ出る。流体が通路11内を通って移動する経路において、通路11に保持された金属酸化物微粒子20と接触することによって、金属酸化物微粒子20の触媒活性に応じた反応(例えば、触媒反応)が生じる。また、触媒構造体1は、担体が多孔質構造であることにより、分子篩能を有する。触媒構造体1は、例えば原油や、残渣油等の重質油に含まれる所定分子を透過する分子篩能を有する。
 まず、触媒構造体1の分子篩能について、図2(a)を用いて、流体がベンゼン、プロピレン及びメシチレンを含む液体である場合を例として説明する。図2(a)に示すように、孔11aの孔径以下、言い換えれば、通路11の内径以下の大きさを有する分子で構成される化合物(例えば、ベンゼン、プロピレン)は、担体10内に浸入することができる。一方、孔11aの孔径を超える大きさを有する分子で構成される化合物(例えば、メシチレン)は、担体10内へ浸入することができない。このように、流体が複数種類の化合物を含んでいる場合に、担体10内に浸入することができない化合物の反応は規制され、担体10内に浸入することができる化合物を反応させることができる。
 反応によって担体10内で生成した化合物のうち、孔11aの孔径以下の大きさを有する分子で構成される化合物のみが孔11aを通じて担体10の外部へ出ることができ、反応生成物として得られる。一方、孔11aから担体10の外部へ出ることができない化合物は、担体10の外部へ出ることができる大きさの分子で構成される化合物に変換させれば、担体10の外部へ出すことができる。このように、触媒構造体1を用いることにより、特定の反応生成物を選択的に得ることができる。
 触媒構造体1では、図2(b)に示すように、通路11の拡径部12に金属酸化物微粒子20が包接されている。金属酸化物微粒子20が金属酸化物微粒子であるとき、金属酸化物微粒子の平均粒径Dが、通路11の平均内径Dよりも大きく、拡径部12の内径Dよりも小さい場合には(D<D<D)、金属酸化物微粒子と拡径部12との間に小通路13が形成される。そこで、図2(b)中の矢印に示すように、小通路13に浸入した流体が金属酸化物微粒子と接触する。各金属酸化物微粒子は、拡径部12に包接されているため、担体10内での移動が制限されている。これにより、担体10内における金属酸化物微粒子同士の凝集が防止される。その結果、金属酸化物微粒子と流体との大きな接触面積を安定して維持することができる。
 具体的には、通路11に浸入した分子が金属酸化物微粒子20に接触すると、金属酸化物微粒子20の一の金属酸化物(第1金属酸化物)による接触分解反応によって分子(被改質物質)が改質される。例えば、上記一の金属酸化物(例えば、酸化鉄)を触媒とする場合、一の重質油を分解して他の複数の重質油を生成する。或いは、一の重質油から複数の軽質油が生成されてもよいし、一の重質油から他の重質油と軽質油とが生成されてもよい。このように金属酸化物触媒による接触分解処理を行うことにより、重質成分を他の重質油、軽質油等に改質することができる。
 また、上記接触分解反応による重質油の分解によって、分解後の重質油或いは軽質油の開裂部分にラジカルが発生しており、このラジカルの存在により分解後の重質油或いは軽質油が不安定な状態となっている。金属酸化物微粒子20が、上記一の金属酸化物以外の他の金属酸化物(第2金属酸化物)(例えば、酸化ジルコニウム)を含む場合、他の金属酸化物の触媒機能によって、金属酸化物微粒子20近傍に存在する水蒸気などの水分から水素を生成することができる。このため、従来のように触媒構造体に水素ガスを別途供給しなくても、触媒構造体(特に、第2金属酸化物)に水分を供給することで水素分子を発生させることができ、上記開裂部分に発生しているラジカルに水素分子が供給されて当該ラジカルが消滅し、分解後の重質油或いは軽質油を安定化させることができる。
 また、金属酸化物微粒子20は、上記接触分解反応以外に、水素化脱硫反応に用いることができる。具体的には、通路11に浸入した分子が金属酸化物微粒子20に接触すると、水素分子環境下で生じる脱硫反応によって分子(被改質物質)が改質される。このように金属酸化物微粒子20による水素化脱硫処理を行うことにより、原油や重質油等を改質することができる。
[触媒構造体の製造方法]
 図3は、図1の触媒構造体1の製造方法を示すフローチャートである。以下、担体に内在する触媒物質が金属酸化物微粒子である場合を例に、触媒構造体の製造方法の一例を説明する。
(ステップS1:準備工程)
 図3に示すように、まず、ゼオライト型化合物で構成される多孔質構造の担体を得るための前駆体材料(A)を準備する。前駆体材料(A)は、好ましくは規則性メソ細孔物質であり、触媒構造体の担体を構成するゼオライト型化合物の種類(組成)に応じて適宜選択できる。
 ここで、触媒構造体の担体を構成するゼオライト型化合物がケイ酸塩化合物である場合には、規則性メソ細孔物質は、細孔径1~50nmの細孔が1次元、2次元または3次元に均一な大きさかつ規則的に発達したSi-O骨格からなる化合物であることが好ましい。このような規則性メソ細孔物質は、合成条件によって様々な合成物として得られるが、合成物の具体例としては、例えばSBA-1、SBA-15、SBA-16、KIT-6、FSM-16、MCM-41等が挙げられ、中でもMCM-41が好ましい。なお、SBA-1の細孔径は10~30nm、SBA-15の細孔径は6~10nm、SBA-16の細孔径は6nm、KIT-6の細孔径は9nm、FSM-16の細孔径は3~5nm、MCM-41の細孔径は1~10nmである。また、このような規則性メソ細孔物質としては、例えばメソポーラスシリカ、メソポーラスアルミノシリケート、メソポーラスメタロシリケート等が挙げられる。
 前駆体材料(A)は、市販品および合成品のいずれであってもよい。前駆体材料(A)を合成する場合には、公知の規則性メソ細孔物質の合成方法により行うことができる。例えば、前駆体材料(A)の構成元素を含有する原料と、前駆体材料(A)の構造を規定するための鋳型剤とを含む混合溶液を調製し、必要に応じてpHを調整して、水熱処理(水熱合成)を行う。その後、水熱処理により得られた沈殿物(生成物)を回収(例えば、ろ別)し、必要に応じて洗浄および乾燥し、さらに焼成することで、粉末状の規則性メソ細孔物質である前駆体材料(A)が得られる。ここで、混合溶液の溶媒としては、例えば水、またはアルコール等の有機溶媒、若しくはこれらの混合溶媒等を用いることができる。また、原料は、担体の種類に応じて選択されるが、例えばテトラエトキシシラン(TEOS)等のシリカ剤、フュームドシリカ、石英砂等が挙げられる。また、鋳型剤としては、各種界面活性剤、ブロックコポリマー等を用いることができ、規則性メソ細孔物質の合成物の種類に応じて選択することが好ましく、例えばMCM-41を作製する場合にはヘキサデシルトリメチルアンモニウムブロミド等の界面活性剤が好適である。水熱処理は、例えば、密閉容器内で、80~800℃、5時間~240時間、0~2000kPaの処理条件で行うことができる。焼成処理は、例えば、空気中で、350~850℃、2~30時間の処理条件で行うことができる。
 (ステップS2:含浸工程)
 次に、準備した前駆体材料(A)に、金属含有溶液を含浸させ、前駆体材料(B)を得る。
 金属含有溶液は、触媒構造体の金属酸化物微粒子を構成する金属元素(M)に対応する金属成分(例えば、金属イオン)を含有する溶液であればよく、例えば、溶媒に、金属元素(M)を含有する金属塩を溶解させることにより調製できる。このような金属塩としては、例えば、塩化物、水酸化物、酸化物、硫酸塩、硝酸塩等の金属塩が挙げられ、中でも硝酸塩が好ましい。溶媒としては、例えば水、またはアルコール等の有機溶媒、若しくはこれらの混合溶媒等を用いることができる。
 前駆体材料(A)に金属含有溶液を含浸させる方法は、特に限定されないが、例えば、後述する焼成工程の前に、粉末状の前駆体材料(A)を撹拌しながら、金属含有溶液を複数回に分けて少量ずつ添加することが好ましい。また、前駆体材料(A)の細孔内部に金属含有溶液がより浸入し易くなる観点から、前駆体材料(A)に、金属含有溶液を添加する前に予め、添加剤として界面活性剤を添加しておくことが好ましい。このような添加剤は、前駆体材料(A)の外表面を被覆する働きがあり、その後に添加される金属含有溶液が前駆体材料(A)の外表面に付着することを抑制し、金属含有溶液が前駆体材料(A)の細孔内部により浸入し易くなると考えられる。
 このような添加剤としては、例えばポリオキシエチレンオレイルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル等の非イオン性界面活性剤が挙げられる。これらの界面活性剤は、分子サイズが大きく前駆体材料(A)の細孔内部には浸入できないため、細孔の内部に付着することは無く、金属含有溶液が細孔内部に浸入することを妨げないと考えられる。非イオン性界面活性剤の添加方法としては、例えば、後述する焼成工程の前に、非イオン性界面活性剤を、前駆体材料(A)に対して50~500質量%添加するのが好ましい。非イオン性界面活性剤の前駆体材料(A)に対する添加量が50質量%未満であると上記の抑制作用が発現し難く、非イオン性界面活性剤を前駆体材料(A)に対して500質量%よりも多く添加すると粘度が上がりすぎるので好ましくない。よって、非イオン性界面活性剤の前駆体材料(A)に対する添加量を上記範囲内の値とする。
 また、前駆体材料(A)に添加する金属含有溶液の添加量は、前駆体材料(A)に含浸させる金属含有溶液中に含まれる金属元素(M)の量(すなわち、前駆体材料(B)に内在させる金属元素(M)の量)を考慮して、適宜調整することが好ましい。例えば、後述する焼成工程の前に、前駆体材料(A)に添加する金属含有溶液の添加量を、前駆体材料(A)に添加する金属含有溶液中に含まれる金属元素(M)に対する、前駆体材料(A)を構成するケイ素(Si)の比(原子数比Si/M)に換算して、10~1000となるように調整することが好ましく、50~200となるように調整することがより好ましい。例えば、前駆体材料(A)に金属含有溶液を添加する前に、添加剤として界面活性剤を前駆体材料(A)に添加した場合、前駆体材料(A)に添加する金属含有溶液の添加量を、原子数比Si/Mに換算して50~200とすることで、金属酸化物微粒子の金属元素(M)を、触媒構造体に対して0.5~2.5質量%で含有させることができる。この場合、金属含有溶液に含まれる金属元素(M)は、Fe、Al、Zn、Zr、Cu、Co、Ni、Ce、Nb、Ti、Mo、V、Cr、Pd及びRuのうちのいずれか又は2種以上であり、金属酸化物微粒子の金属酸化物を構成する元素である。前駆体材料(B)の状態で、その細孔内部に存在する金属元素(M)の量は、金属含有溶液の金属濃度や、上記添加剤の有無、その他温度や圧力等の諸条件が同じであれば、前駆体材料(A)に添加する金属含有溶液の添加量に概ね比例する。また、前駆体材料(B)に内在する金属元素(M)の量は、触媒構造体の担体に内在する金属酸化物微粒子を構成する金属元素の量と比例関係にある。したがって、前駆体材料(A)に添加する金属含有溶液の添加量を上記範囲に制御することにより、前駆体材料(A)の細孔内部に金属含有溶液を十分に含浸させることができ、ひいては、触媒構造体の担体に内在させる金属酸化物微粒子の量を調整することができる。
 また、前駆体材料(A)に添加する金属含有溶液の添加量を、前駆体材料(A)に添加する金属含有溶液中に含まれる金属元素(M)に対する、前駆体材料(A)を構成するケイ素(Si)の割合(原子数比Si/M)に換算して、10~1000、好ましくは50~200とし、且つ金属元素(M)に対する、金属含有溶液中に含まれる他の金属元素(m)の割合(原子数比m/M)が0.01~1となるように調整することができる。この場合、金属含有溶液に含まれる金属元素(M)は、Fe、Al、Zn、Cu、Co、Ni、Nb、Mo、V、Cr及びPdのうちのいずれか又は2種以上であり、複合金属酸化物微粒子に含まれる第1金属酸化物を構成する元素である。また、金属含有溶液に含まれる他の金属元素(m)は、Zr、Ti、Ru及びCeのうちのいずれか又は2種以上であり、上記複合金属酸化物微粒子に含まれる第2金属酸化物を構成する元素である。
 前駆体材料(A)に金属含有溶液を含浸させた後は、必要に応じて、洗浄処理を行ってもよい。洗浄溶液として、水、またはアルコール等の有機溶媒、若しくはこれらの混合溶液を用いることができる。また、前駆体材料(A)に金属含有溶液を含浸させ、必要に応じて洗浄処理を行った後、さらに乾燥処理を施すことが好ましい。乾燥処理としては、一晩程度の自然乾燥や、150℃以下の高温乾燥が挙げられる。なお、金属含有溶液に含まれる水分や、洗浄溶液の水分が、前駆体材料(A)に多く残った状態で、後述の焼成処理を行うと、前駆体材料(A)の規則性メソ細孔物質としての骨格構造が壊れる恐れがあるので、十分に乾燥するのが好ましい。
(ステップS3:焼成工程)
 次に、ゼオライト型化合物で構成される多孔質構造の担体を得るための前駆体材料(A)に金属含有溶液が含浸された前駆体材料(B)を焼成して、前駆体材料(C)を得る。
 焼成処理は、例えば、空気中で、350~850℃、2~30時間の処理条件で行うことが好ましい。このような焼成処理により、規則性メソ細孔物質の孔内に含浸された金属成分が結晶成長して、孔内で金属酸化物微粒子が形成される。
(ステップS4:水熱処理工程)
 次いで、前駆体材料(C)と構造規定剤とを混合した混合溶液を調製し、前記前駆体材料(B)を焼成して得られた前駆体材料(C)を水熱処理をして、触媒構造体を得る。
 構造規定剤は、触媒構造体の担体の骨格構造を規定するための鋳型剤であり、例えば界面活性剤を用いることができる。構造規定剤は、触媒構造体の担体の骨格構造に応じて選択することが好ましく、例えばテトラメチルアンモニウムブロミド(TMABr)、テトラエチルアンモニウムブロミド(TEABr)、テトラプロピルアンモニウムブロミド(TPABr)等の界面活性剤が好適である。
 前駆体材料(C)と構造規定剤との混合は、本水熱処理工程時に行ってもよいし、水熱処理工程の前に行ってもよい。また、上記混合溶液の調製方法は、特に限定されず、前駆体材料(C)と、構造規定剤と、溶媒とを同時に混合してもよいし、溶媒に前駆体材料(C)と構造規定剤とをそれぞれ個々の溶液に分散させた状態にした後に、それぞれの分散溶液を混合してもよい。溶媒としては、例えば水、またはアルコール等の有機溶媒、若しくはこれらの混合溶媒等を用いることができる。また、混合溶液は、水熱処理を行う前に、酸または塩基を用いてpHを調整しておくことが好ましい。
 水熱処理は、公知の方法で行うことができ、例えば、密閉容器内で、80~800℃、5時間~240時間、0~2000kPaの処理条件で行うことが好ましい。また、水熱処理は、塩基性雰囲気下で行われることが好ましい。ここでの反応メカニズムは必ずしも明らかではないが、前駆体材料(C)を原料として水熱処理を行うことにより、前駆体材料(C)の規則性メソ細孔物質としての骨格構造は次第に崩れるが、前駆体材料(C)の細孔内部での金属酸化物微粒子の位置は概ね維持されたまま、構造規定剤の作用により、触媒構造体の担体としての新たな骨格構造(多孔質構造)が形成される。このようにして得られた触媒構造体は、多孔質構造の担体と、担体に内在する金属酸化物微粒子を備え、さらに担体はその多孔質構造により複数の孔が互いに連通した通路を有し、金属酸化物微粒子はその少なくとも一部分が担体の通路に存在している。
 また、本実施形態では、上記水熱処理工程において、前駆体材料(C)と構造規定剤とを混合した混合溶液を調製して、前駆体材料(C)を水熱処理しているが、これに限らず、前駆体材料(C)と構造規定剤とを混合すること無く、前駆体材料(C)を水熱処理してもよい。
 水熱処理後に得られる沈殿物(触媒構造体)は、回収(例えば、ろ別)後、必要に応じて洗浄、乾燥および焼成することが好ましい。洗浄溶液としては、水、またはアルコール等の有機溶媒、若しくはこれらの混合溶液を用いることができる。乾燥処理としては、一晩程度の自然乾燥や、150℃以下の高温乾燥が挙げられる。なお、沈殿物に水分が多く残った状態で、焼成処理を行うと、触媒構造体の担体としての骨格構造が壊れる恐れがあるので、十分に乾燥するのが好ましい。また、焼成処理は、例えば、空気中で、350~850℃、2~30時間の処理条件で行うことができる。このような焼成処理により、触媒構造体に付着していた構造規定剤が焼失する。また、触媒構造体は、使用目的に応じて、回収後の沈殿物を焼成処理することなくそのまま用いることもできる。例えば、触媒構造体の使用する環境が、酸化性雰囲気の高温環境である場合には、使用環境に一定時間晒すことで、構造規定剤は焼失し、焼成処理した場合と同様の触媒構造体が得られるので、そのまま使用することが可能となる。
 [触媒構造体1の変形例]
 図4は、図1の触媒構造体1の変形例を示す模式図である。
 図1の触媒構造体1は、担体10と、担体10に内在する金属酸化物微粒子20とを備える場合を示しているが、この構成だけには限定されず、例えば、図4に示すように、触媒構造体2が、担体10の外表面10aに保持された少なくとも1つの他の金属酸化物微粒子30を更に備えていてもよい。
 この金属酸化物微粒子30は、一又は複数の触媒能を発揮する物質である。他の金属酸化物微粒子30が有する触媒能は、金属酸化物微粒子20が有する触媒能と同一であってもよいし、異なっていてもよい。また、金属酸化物微粒子20,30の双方が同一の触媒能を有する物質である場合、他の金属酸化物微粒子30の材料は、金属酸化物微粒子20の材料と同一であってもよいし、異なっていてもよい。本構成によれば、触媒構造体2に保持された触媒物質の含有量を増大することができ、触媒物質の触媒活性を更に促進することができる。
 この場合、担体10に内在する金属酸化物微粒子20の含有量は、担体10の外表面10aに保持された他の金属酸化物微粒子30の含有量よりも多いことが好ましい。これにより、担体10の内部に保持された金属酸化物微粒子20による触媒能が支配的となり、安定的に触媒物質の触媒能が発揮される。
 本実施形態によれば、金属酸化物微粒子20同士の凝集(シンタリング)を防止することができる。また、金属酸化物微粒子20が、Fe、Al、Zn、Zr、Cu、Co、Ni、Ce、Nb、Ti、Mo、V、Cr、Pd及びRuの酸化物うちのいずれか又は2種以上を含む材料で構成されているので、これら金属酸化物のいずれか又は複数の触媒機能によって水分から水素を生成することができ、また、分解後の重質油或いは軽質油の開裂部分に発生したラジカルに水素を供給して当該ラジカルを消滅させることができ、分解後の重質油或いは軽質油を安定化することができる。また、従来の接触分解処理と比較して、分解後の重質油或いは軽質油のラジカルを消滅するための水素ガスを供給する必要が無い。したがって、触媒活性の低下を抑制して、効率的な接触分解処理を実現することができ、加えて被改質物質を簡便且つ安定的に得ることができる。
 また、金属酸化物微粒子20が、2種以上の金属酸化物を含む材料で構成された複合金属酸化物微粒子であり、該複合金属酸化物微粒子が、Fe、Al、Zn、Cu、Co、Ni、Nb、Mo、V、Cr及びPdの酸化物のうちのいずれか又は2種以上を含む第1金属酸化物と、Zr、Ti、Ru及びCeの酸化物のうちのいずれか又は2種以上を含む第2金属酸化物とを有するので、第1金属酸化物の炭化水素分解能と、第2金属酸化物の水分解能(還元すれば、水素生成能)との相互作用により、触媒活性の低下を更に抑制して、より効率的な接触分解処理を実現することができ、加えて被改質物質をより簡便且つ安定的に得ることが可能となる。
 また、上記金属酸化物微粒子20の平均粒径Dが、通路11の平均内径Dよりも大きく、且つ拡径部12の内径D以下であるので、拡径部12の内部に金属酸化物微粒子20を確実に包接することができ、金属酸化物微粒子20同士の凝集を確実に防止することができる。また、触媒としての有効表面積を広く確保することができるので、金属酸化物微粒子20の触媒機能を最大化することが可能となる。
 特に、重質成分の改質の際に触媒構造体1を用いることにより、これまで十分に利用できなかった重質成分の接触分解処理を促進することができ、脱硫ナフサ、脱硫灯油、脱硫軽油、脱硫重油等の得率を向上することができる。
 以上、本発明の実施形態に係る触媒構造体について述べたが、本発明は上記実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。
 例えば、上記実施形態では、触媒構造体の外観は粉体であるが、これに限らず、円柱状、葉状、ダンベル柱状、またはリング状のペレット形状であってもよい。上記形状を得るため触媒構造体の成形方法は、特に限定されないが、例えば押出成形、打錠成形あるいは油中造粒等の一般的な方法を用いることができる。また、例えば、触媒粉を一軸加圧器で成形して触媒構造体を作製した後、該触媒成形体を砕きながら篩に通して、目的とする二次粒子径を有する少なくとも1つの二次粒子で構成される触媒構造体を得る方法を得てもよい。上記のような方法にて触媒構造体を造粒した状態のものを、触媒構造体あるいは触媒成形体と称することができる。触媒構造体を造粒する場合、例えば平均粒径(あるいは円相当径の平均)が、例えば100μm~15cmである触媒構造体を成形することができる。触媒構造体を数センチ以上に大型化する際には、アルミナなどのバインダを混ぜて成型しても良い。触媒構造体あるいは触媒成形体が上記形状、寸法を有することにより、原油や重質油或いは原油を蒸留した留分を脱硫する際に、重質油留分等が触媒層に詰まるのを防止することができる。
 また、上記接触分解用触媒構造体を有する接触分解装置が提供されてもよい。接触分解装置は、例えば、石油精製プラントにおける蒸留装置の下流に配置された反応器と、該反応器に蒸留装置で分離された物質を供給する物質供給部と、分解反応によって生成された生成物質を排出する生成物質排出部とを備える。このような構成を有する装置の反応器に接触分解用触媒構造体を用いることができる。また、上記水素化脱硫用触媒構造体を有する水素化脱硫装置が提供されてもよい。水素化脱硫装置は、例えば、石油精製プラントにおける蒸留装置の下流に配置された反応器であって、蒸留装置で分離された物質(炭化水素)が供給される物質供給部と、水分が供給される水分供給部と、脱硫反応によって生成された生成物質を排出する生成物質排出部とを備える。このような構成を有する装置に水素化脱硫用触媒構造体を用いることができる。
 すなわち、上記触媒構造体に、原油、重質油或いはこれらの留分を供給する工程と、前記触媒構造体に水分を供給する工程とを行うことで、油、重質油或いはこれらの留分を接触分解及び水素化脱硫することができる。例えば、上記触媒構造体を接触分解装置或いは水素化脱硫装置に用いて、原油、重質油或いはこれらを蒸留した留分を、上記接触分解装置或いは水素化脱硫装置で接触分解或いは水素化脱硫することで、上記同様の効果を奏することができる。
(実施例1~384)
[前駆体材料(A)の合成]
 シリカ剤(テトラエトキシシラン(TEOS)、和光純薬工業株式会社製)と、鋳型剤としての界面活性剤とを混合した混合水溶液を作製し、適宜pH調整を行い、密閉容器内で、80~350℃、100時間、水熱処理を行った。その後、生成した沈殿物をろ別し、水およびエタノールで洗浄し、さらに600℃、24時間、空気中で焼成して、表1~8に示される種類および孔径の前駆体材料(A)を得た。なお、界面活性剤は、前駆体材料(A)の種類に応じて(「前駆体材料(A)の種類:界面活性剤」)以下のものを用いた。
・MCM-41:ヘキサデシルトリメチルアンモニウムブロミド(CTAB)(和光純薬工業株式会社製)
・SBA-1:Pluronic P123(BASF社製)
[前駆体材料(B)および(C)の作製]
 次に、表1~8に示される種類の金属酸化物微粒子を構成する金属元素(M)に応じて、該金属元素(M)を含有する金属塩を、水に溶解させて、金属含有水溶液を調製した。なお、金属塩は、金属酸化物微粒子の種類に応じて(「金属酸化物微粒子:金属塩」)以下のものを用いた。
・CoO:硝酸コバルト(II)六水和物(和光純薬工業社製)
・NiO:硝酸ニッケル(II)六水和物(和光純薬工業社製)
・FeO:硝酸鉄(III)九水和物(和光純薬工業社製)
・CuO:硝酸銅(II)三水和物(和光純薬工業社製)
・ZrO:硝酸ジルコニル二水和物(和光純薬工業社製)
 次に、粉末状の前駆体材料(A)に、金属含有水溶液を複数回に分けて少量ずつ添加し、室温(20℃±10℃)で12時間以上乾燥させて、前駆体材料(B)を得た。
 なお、表1~8に示す添加剤の有無の条件が「有り」の場合は、金属含有水溶液を添加する前の前駆体材料(A)に対して、添加剤としてのポリオキシエチレン(15)オレイルエーテル(NIKKOL BO-15V、日光ケミカルズ株式会社製)の水溶液を添加する前処理を行い、その後、上記のように金属含有水溶液を添加した。なお、添加剤の有無の条件で「無し」の場合については、上記のような添加剤による前処理は行っていない。
 また、前駆体材料(A)に添加する金属含有水溶液の添加量は、該金属含有水溶液中に含まれる金属元素(M)に対する、前駆体材料(A)を構成するケイ素(Si)の比(原子数比Si/M)に換算したときの数値が、表1~8の値になるように調整した。このとき、硝酸コバルト(II)六水和物、硝酸ニッケル(II)六水和物、硝酸鉄(III)九水和物又は硝酸銅(II)三水和物を、Si/M=1000、500、200及び100のいずれかとなる量と、硝酸ジルコニル二水和物をZr/M=0.1(原子数比m/M)となるよう量を分取して混合したものを、滴下した。
 次に、上記のようにして得られた金属含有水溶液を含浸させた前駆体材料(B)を、600℃、24時間、空気中で焼成して、前駆体材料(C)を得た。
[触媒構造体の合成]
 上記のようにして得られた前駆体材料(C)と、表1~8に示す構造規定剤とを混合して混合水溶液を作製し、密閉容器内で、80~350℃、表1~8に示すpHおよび時間の条件で、水熱処理を行った。その後、生成した沈殿物をろ別し、水洗し、100℃で12時間以上乾燥させ、さらに600℃、24時間、空気中で焼成して、表1~8に示す担体と触媒物質としての金属酸化物微粒子(M0.9Zr0.1合金微粒子)とを有する触媒構造体を得た(実施例1~384)。
(比較例1)
 比較例1では、MFI型シリカライトに平均粒径50nm以下の酸化コバルト粉末(II,III)(シグマ アルドリッチ ジャパン合同会社製)を混合し、骨格体としてのシリカライトの外表面に、機能性物質として酸化コバルト微粒子を付着させた機能性構造体を得た。MFI型シリカライトは、金属を添加する工程以外は、実施例52~57と同様の方法で合成した。
(比較例2)
 比較例2では、酸化コバルト微粒子を付着させる工程を省略したこと以外は、比較例1と同様の方法にてMFI型シリカライトを合成した。
[評価]
 上記実施例の触媒構造体、及び比較例1のシリカライトについて、以下に示す条件で、各種特性評価を行った。
[A]断面観察
 担体と触媒物質とを備える上記実施例の触媒構造体、及び比較例1のシリカライトについて、粉砕法にて観察試料を作製し、透過電子顕微鏡(TEM)(TITAN G2、FEI社製)を用いて、断面観察を行った。
 その結果、上記実施例の触媒構造体では、シリカライトまたはゼオライトからなる担体の内部に触媒物質が内在し、保持されていることが確認された。一方、比較例のシリカライトでは、触媒物質が担体の外表面に付着しているのみで、担体の内部には存在していなかった。
 また、上記実施例のうち金属酸化物がCoOx/ZrOx微粒子である触媒構造体について、FIB(集束イオンビーム)加工により断面を切り出し、SEM(SU8020、日立ハイテクノロジーズ社製)、EDX(X-Max、堀場製作所製)、HR-GDMS(アメテック株式会社製, Model Nu AstruM)を用いて元素分析を実施したところ、CoとZr元素が検出された。
 上記TEM、SEM/EDX及びGDMSによる断面観察の結果から、担体内部にCoOx/ZrOx微粒子が存在していることが確認された。
[B]担体の通路の平均内径および触媒物質の平均粒径
 上記評価[A]で行った断面観察により撮影したTEM画像にて、担体の通路を、任意に500個選択し、それぞれの長径および短径を測定し、その平均値からそれぞれの内径を算出し(N=500)、さらに内径の平均値を求めて、担体の通路の平均内径Dとした。また、触媒物質についても同様に、上記TEM画像から、触媒物質を、任意に500個選択し、それぞれの粒径を測定して(N=500)、その平均値を求めて、触媒物質の平均粒径Dとした。結果を表1~8に示す。
 また、触媒物質の平均粒径及び分散状態を確認するため、SAXS(小角X線散乱)を用いて分析した。SAXSによる測定は、Spring-8のビームラインBL19B2を用いて行った。得られたSAXSデータは、Guinier近似法により球形モデルでフィッティングを行い、粒径を算出した。粒径は、金属酸化物がFeOx/ZrOx微粒子である触媒構造体について測定した。また、比較対象として、市販品であるFe微粒子(Wako製)をSEMにて観察、測定した。
 この結果、市販品では粒径約50nm~400nmの範囲で様々なサイズのFe微粒子がランダムに存在しているのに対し、TEM画像から求めた平均粒径が1.2nm~2.0nmの各実施例の触媒構造体では、SAXSの測定結果においても粒径が10nm以下の散乱ピークが検出された。SAXSの測定結果とSEM/EDXによる断面の測定結果から、担体内部に、粒径10nm以下の触媒物質が、粒径が揃いかつ非常に高い分散状態で存在していることが分かった。
[C]金属含有溶液の添加量と担体内部に包接された金属量との関係
 原子数比Si/M=50,100,200,1000(M=Co、Ni、Fe、Cu)の添加量で、金属酸化物微粒子を担体内部に包接させた触媒構造体を作製し、その後、上記添加量で作製された触媒構造体の担体内部に包接された金属量(質量%)を測定した。尚、本測定において原子数比Si/M=100,200,1000の触媒構造体は、それぞれ実施例1~384のうちの原子数比Si/M=100,200,1000の触媒構造体と同様の方法で金属含有溶液の添加量を調整して作製し、原子数比Si/M=50の触媒構造体は、金属含有溶液の添加量を異ならせたこと以外は、原子数比Si/M=100,200,1000の触媒構造体と同様の方法で作製した。
 金属量の定量は、ICP(高周波誘導結合プラズマ)単体か、或いはICPとXRF(蛍光X線分析)を組み合わせて行った。XRF(エネルギー分散型蛍光X線分析装置「SEA1200VX」、エスエスアイ・ナノテクノロジー社製)は、真空雰囲気、加速電圧15kV(Crフィルター使用)或いは加速電圧50kV(Pbフィルター使用)の条件で行った。
 XRFは、金属の存在量を蛍光強度で算出する方法であり、XRF単体では定量値(質量%換算)を算出できない。そこで、Si/M=100で金属を添加した触媒構造体の金属量は、ICP分析により定量し、Si/M=50および100未満で金属を添加した触媒構造体の金属量は、XRF測定結果とICP測定結果を元に算出した。
 この結果、少なくとも原子数比Si/Mが50~1000の範囲内で、金属含有溶液の添加量の増加に伴って、構造体に包接された金属量が増大していることが確認された。
[D]性能評価
 上記実施例の触媒構造体および比較例のシリカライトについて、触媒物質(触媒物質)がもつ触媒能(性能)を評価した。結果を表1~8に示す。
(1)触媒活性
 触媒活性は、以下の条件で評価した。
 まず、触媒構造体を、常圧流通式反応装置に0.2g充填し、窒素ガス(N)をキャリアガス(5ml/min)とし、400℃、2時間、ブチルベンゼン(重質油のモデル物質)の分解反応を行った。
 反応終了後に、回収した生成ガスおよび生成液を、ガスクロマトグラフィー質量分析法(GC/MS)により成分分析した。なお、生成ガスの分析装置には、TRACE 1310GC(サーモフィッシャーサイエンティフィック株式会社製、検出器:熱伝導度検出器)を用い、生成液の分析装置には、TRACE DSQ(サーモフィッシャーサイエンティフィック株式会社製、検出器:質量検出器、イオン化方法:EI(イオン源温度250℃、MSトランスファーライン温度320℃、検出器:熱伝導度検出器))を用いた。
 さらに、上記成分分析の結果に基づき、ブチルベンゼンよりも分子量が小さい化合物(具体的には、ベンゼン、トルエン、エチルベンゼン、スチレン、クメン、メタン、エタン、エチレン、プロパン、プロピレン、ブタン、ブテン等)の収率(mol%)を求めた。上記化合物の収率は、反応開始前のブチルベンゼンの物質量(mol)に対する、生成液中に含まれるブチルベンゼンよりも分子量が小さい化合物の物質量の総量(mol)の百分率(mol%)として算出した。
 本実施例では、生成液中に含まれるブチルベンゼンよりも分子量が小さい化合物の収率が、40mol%以上である場合を触媒活性(分解能)が優れていると判定して「◎」、25mol%以上40mol%未満である場合を触媒活性が良好であると判定して「○」、10mol%以上25mol%未満である場合を触媒活性が良好ではないものの合格レベル(可)であると判定して「△」、そして10mol%未満である場合を触媒活性が劣る(不可)と判定して「×」とした。
(2)耐久性(寿命)
 耐久性は、以下の条件で評価した。
 まず、上記評価(1)で使用した触媒構造体を回収し、650℃で、12時間加熱して、加熱後の触媒構造体を作製した。次に、得られた加熱後の触媒構造体を用いて、上記評価(1)と同様の方法により、ブチルベンゼン(重質油のモデル物質)の分解反応を行い、さらに上記評価(1)と同様の方法で、生成ガスおよび生成液の成分分析を行った。
 得られた分析結果に基づき、上記評価(1)と同様の方法で、ブチルベンゼンよりも分子量が小さい化合物の収率(mol%)を求めた。さらに、加熱前の触媒構造体による上記化合物の収率(上記評価(1)で求めた収率)と比較して、加熱後の触媒構造体による上記化合物の収率が、どの程度維持されているかを比較した。具体的には、加熱前の触媒構造体による上記化合物の収率(上記評価(1)で求めた収率)に対する、上記加熱後の触媒構造体による上記化合物の収率(本評価(2)で求めた収率)の百分率(%)を算出した。
 本実施例では、加熱後の触媒構造体による上記化合物の収率(本評価(2)で求めた収率)が、加熱前の触媒構造体による上記化合物の収率(上記評価(1)で求めた収率)に比べて、80%以上維持されている場合を耐久性(耐熱性)が優れていると判定して「◎」、60%以上80%未満維持されている場合を耐久性(耐熱性)が良好であると判定して「○」、40%以上60%未満維持されている場合を耐久性(耐熱性)が良好ではないものの合格レベル(可)であると判定して「△」、そして40%未満に低下している場合を耐久性(耐熱性)が劣る(不可)と判定して「×」とした。
 なお、比較例1~2についても、上記評価(1)および(2)と同様の性能評価を行った。比較例2は、担体そのものであり、触媒物質は有していない。そのため、上記性能評価では、触媒構造体に替えて、比較例2の担体のみを充填した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表1~8から明らかなように、断面観察により担体の内部に触媒物質が保持されていることが確認された触媒構造体(実施例1~384)は、単に触媒物質が担体の外表面に付着しているだけの触媒構造体(比較例1)または触媒物質を何ら有していない担体そのもの(比較例2)と比較して、ブチルベンゼンの分解反応において優れた触媒活性を示し、触媒としての耐久性にも優れていることが分かった。
 また、上記評価[C]で測定された触媒構造体の担体内部に包接された金属量(質量%)と、生成液中に含まれるブチルベンゼンよりも分子量が小さい化合物の収率(mol%)との関係を評価した。評価方法は、上記[D]「性能評価」における「(1)触媒活性」で行った評価方法と同じとした。
 その結果、各実施例において、前駆体材料(A)に添加する金属含有溶液の添加量が、原子数比Si/M(M=Fe)に換算して50~200(触媒構造体に対する金属酸化物微粒子の含有量が0.5~2.5質量%)であると、生成液中に含まれるブチルベンゼンよりも分子量が小さい化合物の収率が、32mol%以上となり、ブチルベンゼンの分解反応における触媒活性が合格レベル以上であることが分かった。担体内部に包接された金属量(質量%)が0.8質量%以上になると触媒活性がそれ以上増大しなくなるのは(Si/M≦100)、例えば、担体の結晶強度が低下することや、触媒表面のコーク析出量が増大して活性点が減少することなどに起因すると推察することができる。
 一方、担体の外表面にのみ触媒物質を付着させた比較例1の触媒構造体は、触媒物質を何ら有していない比較例2の担体そのものと比較して、ブチルベンゼンの分解反応における触媒活性は改善されるものの、実施例1~384の触媒構造体に比べて、触媒としての耐久性は劣っていた。
 また、触媒物質を何ら有していない比較例2の担体そのものは、ブチルベンゼンの分解反応において触媒活性は殆ど示さず、実施例1~384の触媒構造体と比較して、触媒活性および耐久性の双方が劣っていた。
 上記結果より、触媒構造体(実施例1~384)は、接触分解活性或いは水素化脱硫活性においても優れた触媒活性を示し、触媒としての耐久性に優れると推察することができる。
 更に、実施例1~384のうち、活性評価及び耐熱性評価の判定結果がいずれも優れていた複数の実施例(表9参照)を選択し、コーキング量の測定及び評価を行った。触媒管(内径10mm)の上段に、市販品である酸化鉄(Wako製)を包接させたゼオライト触媒、下段に各実施例の触媒構造体を0.25gずつ充填して反応管を作製し、この反応管に、10質量%の重質油(トルエン希釈)を2.9mL/min、蒸留水を5mL/minで供給し、470℃、2hで反応させた。その後、各触媒構造体のコーク析出量(質量%)を測定、評価した。コーク析出量が2質量%未満である場合を良好「〇」、2質量%以上3質量%未満を合格レベル「△」、3質量%以上を不良「×」とした。
 また、反応管の上段に、酸化鉄微粒子が担体内部に保持されたゼオライト触媒、下段にFeOx微粒子を包接させた触媒構造体を充填したこと以外は、上記と同様の方法で、コーク析出量(質量%)を測定、評価した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9の結果から、複合酸化物微粒子が担体内部に保持された触媒構造体では、FeOx微粒子が担体内部に保持された触媒構造体(比較例3~6)及び酸化鉄が担体内部に保持されたゼオライト触媒(比較例7)と比較して、コーク析出量が少なく、触媒性能がより優れていることが分かった。これは、複合酸化物微粒子に含まれるZrOxの水分子解離能により、水から水素が生成し、分解されたラジカル状態の重質油が水素によって安定化されたためと考えられる。
[他の実施態様]
 (1)原油、重質油或いはこれらの留分を接触分解又は水素化脱硫するために触媒構造体を使用する方法であって、
 前記触媒構造体が、ゼオライト型化合物で構成される多孔質構造の担体と、前記担体に内在する少なくとも1つの金属酸化物微粒子とを備え、前記担体が、互いに連通する通路を有し、前記金属酸化物微粒子が、前記担体の少なくとも前記通路に存在しており、前記金属酸化物微粒子が、Fe、Al、Zn、Zr、Cu、Co、Ni、Ce、Nb、Ti、Mo、V、Cr、Pd及びRuの酸化物のうちのいずれか又は2種以上を含む材料で構成されていることを特徴とする、触媒構造体を使用する方法。
 (2)前記触媒構造体に、原油を蒸留した留分を供給する工程と、
 前記触媒構造体に水分を供給する工程と、
 を有することを特徴とする、上記(1)記載の触媒構造体を使用する方法。
 (3)前記触媒構造体を接触分解装置或いは水素化脱硫装置に用いて、原油を蒸留した留分を、前記接触分解装置或いは前記水素化脱硫装置で分解処理或いは脱硫処理することを特徴とする、上記(1)又は(2)に記載の触媒構造体を使用する方法。
 1 触媒構造体
10 担体
10a 外表面
11 通路
11a 孔
12 拡径部
20 金属酸化物微粒子
30 金属酸化物微粒子
  平均粒径
  平均内径
  内径

Claims (28)

  1.  ゼオライト型化合物で構成される多孔質構造の担体と、
     前記担体に内在する少なくとも1つの金属酸化物微粒子と、
    を備え、
     前記担体が、互いに連通する通路を有し、
     前記金属酸化物微粒子が、前記担体の少なくとも前記通路に存在しており、
     前記金属酸化物微粒子が、Fe、Al、Zn、Zr、Cu、Co、Ni、Ce、Nb、Ti、Mo、V、Cr、Pd及びRuの酸化物のうちのいずれか又は2種以上を含む材料で構成されていることを特徴とする、接触分解用又は水素化脱硫用触媒構造体。
  2.  前記金属酸化物微粒子が、2種以上の金属酸化物を含む材料で構成された複合金属酸化物微粒子であり、
     前記複合金属酸化物微粒子が、Fe、Al、Zn、Cu、Co、Ni、Nb、Mo、V、Cr及びPdの酸化物のうちのいずれか又は2種以上を含む第1金属酸化物と、Zr、Ce、Ti及びRuの酸化物のうちのいずれか又は2種以上を含む第2金属酸化物とを有することを特徴とする、請求項1に記載の接触分解用又は水素化脱硫用触媒構造体。
  3.  前記通路は、前記ゼオライト型化合物の骨格構造によって画定される一次元孔、二次元孔及び三次元孔のうちのいずれかと、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれとも異なる拡径部とを有し、かつ
     前記金属酸化物微粒子が、少なくとも前記拡径部に存在していることを特徴とする、請求項1に記載の接触分解用又は水素化脱硫用触媒構造体。
  4.  前記拡径部は、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれかを構成する複数の孔同士を連通している、請求項3に記載の接触分解用又は水素化脱硫用触媒構造体。
  5.  前記金属酸化物微粒子の平均粒径が、前記通路の平均内径よりも大きく、且つ前記拡径部の内径以下であることを特徴とする、請求項3又は4に記載の接触分解用又は水素化脱硫用触媒構造体。
  6.  前記金属酸化物微粒子の金属元素(M)が、前記触媒構造体に対して0.5~2.5質量%で含有されていることを特徴とする、請求項1~5のいずれか1項に記載の接触分解用又は水素化脱硫用触媒構造体。
  7.  前記金属酸化物微粒子の平均粒径が、0.1nm~50nmであることを特徴とする、請求項1~6のいずれか1項に記載の接触分解用又は水素化脱硫用触媒構造体。
  8.  前記金属酸化物微粒子の平均粒径が、0.5nm~14.0nmであることを特徴とする、請求項7に記載の接触分解用又は水素化脱硫用触媒構造体。
  9.  前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、0.06~500であることを特徴とする、請求項1~8のいずれか1項に記載の接触分解用又は水素化脱硫用触媒構造体。
  10.  前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、0.1~36であることを特徴とする、請求項9に記載の接触分解用又は水素化脱硫用触媒構造体。
  11.  前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、1.7~4.5であることを特徴とする、請求項10に記載の接触分解用又は水素化脱硫用触媒構造体。
  12.  前記通路の平均内径は、0.1nm~1.5nmであり、
     前記拡径部の内径は、0.5nm~50nmであることを特徴とする、請求項3~11のいずれか1項に記載の接触分解用又は水素化脱硫用触媒構造体。
  13.  前記担体の外表面に保持された少なくとも1つの他の金属酸化物微粒子を更に備えることを特徴とする、請求項1~12のいずれか1項に記載の接触分解用又は水素化脱硫用触媒構造体。
  14.  前記担体に内在する前記少なくとも1つの金属酸化物微粒子の含有量が、前記担体の外表面に保持された前記少なくとも1つの他の金属酸化物微粒子の含有量よりも多いことを特徴とする、請求項13に記載の接触分解用又は水素化脱硫用触媒構造体。
  15.  前記ゼオライト型化合物は、ケイ酸塩化合物であることを特徴とする、請求項1~14のいずれか1項に記載の接触分解用又は水素化脱硫用触媒構造体。
  16.  円柱状、葉状、ダンベル柱状、またはリング状のペレット形状を有することを特徴とする、請求項1~15のいずれか1項に記載の接触分解用又は水素化脱硫用触媒構造体。
  17.  前記触媒構造体の平均粒径が、100μm~15cmであることを特徴とする、請求項16に記載の接触分解用又は水素化脱硫用触媒構造体。
  18.  請求項1~17のいずれか1項に記載の触媒構造体を有する接触分解装置。
  19.  請求項1~17のいずれか1項に記載の触媒構造体を有する水素化脱硫装置。
  20.  ゼオライト型化合物で構成される多孔質構造の担体を得るための前駆体材料(A)に金属含有溶液が含浸された前駆体材料(B)を焼成する焼成工程と、
     前記前駆体材料(B)を焼成して得られた前駆体材料(C)を水熱処理する水熱処理工程と、
     を有することを特徴とする、接触分解用又は水素化脱硫用触媒構造体の製造方法。
  21.  前記焼成工程の前に、非イオン性界面活性剤を、前記前駆体材料(A)に対して50~500質量%添加することを特徴とする、請求項20に記載の接触分解用又は水素化脱硫用触媒構造体の製造方法。
  22.  前記焼成工程の前に、前記前駆体材料(A)に前記金属含有溶液を複数回に分けて添加することで、前記前駆体材料(A)に前記金属含有溶液を含浸させることを特徴とする、請求項20又は21に記載の接触分解用又は水素化脱硫用触媒構造体の製造方法。
  23.  前記焼成工程の前に前記前駆体材料(A)に前記金属含有溶液を含浸させる際に、前駆体材料(A)に添加する金属含有溶液の添加量を、前駆体材料(A)に添加する金属含有溶液中に含まれる金属元素(M)に対する、前駆体材料(A)を構成するケイ素(Si)の比(原子数比Si/M)に換算して、10~1000となるように調整することを特徴とする、請求項20~22のいずれか1項に記載の接触分解用又は水素化脱硫用触媒構造体の製造方法。
  24.  前記金属含有溶液中に含まれる金属元素(M)が、Fe、Al、Zn、Zr、Cu、Co、Ni、Ce、Nb、Ti、Mo、V、Cr、Pd及びRuのうちのいずれか又は2種以上であることを特徴とする、請求項23に記載の接触分解用又は水素化脱硫用触媒構造体の製造方法。
  25.  前記焼成工程の前に前記前駆体材料(A)に前記金属含有溶液を含浸させる際に、前記前駆体材料(A)に添加する前記金属含有溶液の添加量を、前記前駆体材料(A)に添加する前記金属含有溶液中に含まれる金属元素(M)に対する、前記前駆体材料(A)を構成するケイ素(Si)の割合(原子数比Si/M)に換算して、10~1000とし、且つ前記金属元素(M)に対する、前記金属含有溶液中に含まれる他の金属元素(m)の割合(原子数比m/M)が0.01~1となるように調整することを特徴とする、請求項20~22のいずれか1項に記載の接触分解用又は水素化脱硫用触媒構造体の製造方法。
  26.  前記金属含有溶液中に含まれる金属元素(M)が、Fe、Al、Zn、Cu、Co、Ni、Nb、Mo、V、Cr及びPdのうちのいずれか又は2種以上であり、且つ、
     前記他の金属元素(m)が、Zr、Ti、Ru及びCeのうちのいずれか又は2種以上であることを特徴とする、請求項25に記載の接触分解用又は水素化脱硫用触媒構造体の製造方法。
  27.  前記水熱処理工程において、前記前駆体材料(C)と構造規定剤とを混合することを特徴とする、請求項20に記載の接触分解用又は水素化脱硫用触媒構造体の製造方法。
  28.  前記水熱処理工程が塩基性雰囲気下で行われることを特徴とする、請求項20に記載の接触分解用又は水素化脱硫用触媒構造体の製造方法。
PCT/JP2018/021091 2017-05-31 2018-05-31 接触分解用又は水素化脱硫用触媒構造体、該触媒構造体を有する接触分解装置及び水素化脱硫装置、並びに接触分解用又は水素化脱硫用触媒構造体の製造方法 WO2018221703A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18810103.4A EP3632547A4 (en) 2017-05-31 2018-05-31 CATALYST STRUCTURE FOR CATALYTIC CRACKING OR HYDRODESULFURATION, DEVICE FOR CATALYTIC CRACKING AND HYDRODESULFURATION DEVICE USING THE ABOVE CATALYST STRUCTURE AND MANUFACTURING PROCESSES FOR HYDRODESULFURATION
JP2019521331A JP7316935B2 (ja) 2017-05-31 2018-05-31 接触分解用又は水素化脱硫用触媒構造体、該触媒構造体を有する接触分解装置及び水素化脱硫装置、並びに接触分解用又は水素化脱硫用触媒構造体の製造方法
CN201880036313.9A CN110730687A (zh) 2017-05-31 2018-05-31 催化裂化用或加氢脱硫用催化剂结构体、具有该催化剂结构体的催化裂化装置以及加氢脱硫装置、以及催化裂化用或加氢脱硫用催化剂结构体的制造方法
US16/698,558 US11654422B2 (en) 2017-05-31 2019-11-27 Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-108641 2017-05-31
JP2017108641 2017-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/698,558 Continuation US11654422B2 (en) 2017-05-31 2019-11-27 Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization

Publications (1)

Publication Number Publication Date
WO2018221703A1 true WO2018221703A1 (ja) 2018-12-06

Family

ID=64454819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021091 WO2018221703A1 (ja) 2017-05-31 2018-05-31 接触分解用又は水素化脱硫用触媒構造体、該触媒構造体を有する接触分解装置及び水素化脱硫装置、並びに接触分解用又は水素化脱硫用触媒構造体の製造方法

Country Status (5)

Country Link
US (1) US11654422B2 (ja)
EP (1) EP3632547A4 (ja)
JP (1) JP7316935B2 (ja)
CN (1) CN110730687A (ja)
WO (1) WO2018221703A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018276618B2 (en) 2017-05-31 2021-05-27 Furukawa Electric Co., Ltd. Functional structure and production method for functional structure
JP7352910B2 (ja) 2017-05-31 2023-09-29 国立大学法人北海道大学 機能性構造体及び機能性構造体の製造方法
EP3632542A4 (en) 2017-05-31 2021-01-06 Furukawa Electric Co., Ltd. DIRECT OR REVERSE CONVERSION CATALYST STRUCTURE AND PRODUCTION PROCESS OF THE SAME, DIRECT OR REVERSE REACTION DEVICE, PROCESS FOR THE PRODUCTION OF CARBON DIOXIDE AND HYDROGEN, AND PROCESS FOR THE PRODUCTION OF CARBON MONOXIDE AND WATER
AU2018277966B2 (en) 2017-05-31 2021-05-27 Furukawa Electric Co., Ltd. Functional structure and production method for functional structure
JP7316934B2 (ja) 2017-05-31 2023-07-28 古河電気工業株式会社 水素化脱硫用触媒構造体、該触媒構造体を備える水素化脱硫装置及び水素化脱硫用触媒構造体の製造方法
JP7340198B2 (ja) 2017-05-31 2023-09-07 国立大学法人北海道大学 機能性構造体及び機能性構造体の製造方法
WO2018221706A1 (ja) 2017-05-31 2018-12-06 古河電気工業株式会社 メタノール改質触媒構造体、メタノール改質用装置、メタノール改質触媒構造体の製造方法及びオレフィンまたは芳香族炭化水素の少なくとも一方の製造方法
EP3632554A4 (en) 2017-05-31 2021-04-21 Furukawa Electric Co., Ltd. EXHAUST GAS PURIFICATION OXIDATION CATALYST STRUCTURE AND PRODUCTION PROCESS, VEHICLE EXHAUST GAS TREATMENT DEVICE, CATALYST MOLDED BODY AND GAS PURIFICATION PROCESS.
WO2020116470A1 (ja) * 2018-12-03 2020-06-11 国立大学法人北海道大学 機能性構造体
CN113164938B (zh) * 2018-12-03 2024-05-31 古河电气工业株式会社 催化剂结构体及其制造方法、以及使用了该催化剂结构体的烃的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505830A (ja) * 2005-08-31 2009-02-12 インステイチユート メキシカノ デル ペトロレオ 石油留分の水素化転化のための触媒組成物を調製する方法
JP2010527769A (ja) * 2007-05-24 2010-08-19 サウディ ベーシック インダストリーズ コーポレイション 炭化水素を転化するためのGeゼオライト触媒、その製造方法および使用方法
JP2016529190A (ja) * 2013-07-05 2016-09-23 ダンマークス・テクニスケ・ユニヴェルシテット ゼオライト及びゼオ型を製造する方法
JP2017128480A (ja) * 2016-01-20 2017-07-27 日揮触媒化成株式会社 金属粒子を内包したゼオライト

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898180A (en) * 1970-07-23 1975-08-05 Ici Ltd Catalyst pellet
JPS5746925A (en) 1980-09-03 1982-03-17 Res Assoc Petroleum Alternat Dev<Rapad> Preparation of hydrocarbon
US4552855A (en) 1982-12-30 1985-11-12 Ozin Geoffrey A Metal zeolite catalyst preparation
US5026673A (en) 1989-06-23 1991-06-25 University Of Delaware Stable zeolite-supported transition metal catalysts, methods for making them, and uses thereof
JP2771321B2 (ja) 1990-11-09 1998-07-02 日本碍子株式会社 排気ガス浄化用触媒組成物、排気ガス浄化用触媒及びその製造方法
US5275720A (en) 1990-11-30 1994-01-04 Union Oil Company Of California Gasoline hydrocracking catalyst and process
US5236575A (en) 1991-06-19 1993-08-17 Mobil Oil Corp. Synthetic porous crystalline mcm-49, its synthesis and use
JPH0549943A (ja) 1991-08-20 1993-03-02 Sakai Chem Ind Co Ltd 酸化触媒
JPH06142456A (ja) 1992-11-08 1994-05-24 Sekiyu Sangyo Kasseika Center 排ガス中の窒素酸化物の除去方法
JPH0796195A (ja) 1993-09-29 1995-04-11 Hino Motors Ltd 排ガス浄化触媒
JP2006021994A (ja) 1993-12-28 2006-01-26 Toto Ltd 光触媒機能を有する多機能材の製造方法
US5849652A (en) 1994-03-14 1998-12-15 Northeastern University Metal containing catalysts and methods for making same
JPH08155303A (ja) 1994-12-01 1996-06-18 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒担体と排ガス浄化用触媒及び排ガス浄化用触媒担体の製造方法ならびに排ガス浄化方法
CN1223602A (zh) 1996-05-29 1999-07-21 埃克森化学专利公司 含金属的沸石催化剂,其制备方法及其在烃转化中的应用
JP2001504084A (ja) 1996-05-29 2001-03-27 エクソン・ケミカル・パテンツ・インク トルエンのパラキシレンへのメチル化
EP0958050A1 (en) 1996-05-29 1999-11-24 Exxon Chemical Patents Inc. Metal-containing zeolite catalyst, preparation thereof and use for hydrocarbon conversion
JPH11151440A (ja) 1997-07-18 1999-06-08 Tokyo Gas Co Ltd 窒素酸化物の分解除去用触媒及び窒素酸化物の分解除去方法
JPH1133412A (ja) 1997-07-23 1999-02-09 Unitika Ltd 金属担持触媒の製造方法
JP2000197822A (ja) 1999-01-08 2000-07-18 Tokyo Gas Co Ltd 窒素酸化物の分解除去用触媒及び窒素酸化物の分解除去方法
JP3897143B2 (ja) 1999-05-11 2007-03-22 富士電機ホールディングス株式会社 改質装置とその起動方法及び燃料電池発電装置
US6930219B2 (en) 1999-09-07 2005-08-16 Abb Lummus Global Inc. Mesoporous material with active metals
US7074373B1 (en) 2000-11-13 2006-07-11 Harvest Energy Technology, Inc. Thermally-integrated low temperature water-gas shift reactor apparatus and process
FR2819432B1 (fr) 2001-01-18 2003-04-11 Rhodia Chimie Sa Catalyseur mesostructure integrant des particules de dimensions nanometriques
JP2002255537A (ja) 2001-02-22 2002-09-11 National Institute Of Advanced Industrial & Technology 固体酸触媒
JP2002336704A (ja) 2001-05-18 2002-11-26 Masaru Ichikawa メタンの芳香族化反応触媒およびその調製方法
US6881703B2 (en) 2001-08-08 2005-04-19 Corning Incorporated Thermally conductive honeycombs for chemical reactors
JP2003230838A (ja) 2001-12-06 2003-08-19 Denso Corp セラミック触媒体
CA2511173A1 (en) 2002-12-20 2004-07-15 Honda Giken Kogyo Kabushiki Kaisha Noble metal-free nickel catalyst formulations for hydrogen generation
JP2005170903A (ja) 2003-12-15 2005-06-30 Idemitsu Kosan Co Ltd ビシクロ[2.2.1]ヘプタン誘導体の製造方法
JP4334336B2 (ja) 2003-12-26 2009-09-30 株式会社フジクラ 光スイッチ
WO2005083013A1 (en) 2004-01-30 2005-09-09 Millennium Chemicals Coating composition having surface depolluting properties
JP4469975B2 (ja) 2004-03-23 2010-06-02 国立大学法人広島大学 光触媒複合体およびこれを用いた有機物質変換方法
JP5194249B2 (ja) 2004-03-29 2013-05-08 国立大学法人広島大学 複合多孔体およびその製造方法、並びにこれを用いた有機物質変換方法
US20090325790A1 (en) 2004-06-17 2009-12-31 Yale University Size-controllable transition metal clusters in mcm-41 for improving chemical catalysis
PL1861478T3 (pl) 2005-03-16 2012-07-31 Fuelcor Llc Układy i sposoby do wytwarzania syntetycznych związków węglowodorowych
EP1866083B1 (en) 2005-03-24 2021-06-30 University of Regina Nickel on Ceria/Zirconia catalyst
FR2886636B1 (fr) 2005-06-02 2007-08-03 Inst Francais Du Petrole Materiau inorganique presentant des nanoparticules metalliques piegees dans une matrice mesostructuree
CN100392047C (zh) 2005-06-09 2008-06-04 中国科学院大连化学物理研究所 一种石油烃类催化氧化裂解制烯烃的方法
WO2007000847A1 (ja) 2005-06-29 2007-01-04 Ibiden Co., Ltd. ハニカム構造体
JP5102034B2 (ja) 2005-08-26 2012-12-19 住江織物株式会社 酸化タングステン系光触媒及びその製造方法並びに消臭・防汚機能を有する繊維布帛
JP4879574B2 (ja) 2005-09-16 2012-02-22 旭化成ケミカルズ株式会社 エチレン及びプロピレンの製造方法
BRPI0615893B1 (pt) 2005-09-16 2016-01-19 Asahi Kasei Chemicals Corp método para produzir etileno e propileno
JP2007130525A (ja) 2005-11-08 2007-05-31 Nissan Motor Co Ltd 包接触媒及びその製造方法
JP5076377B2 (ja) 2006-07-03 2012-11-21 トヨタ自動車株式会社 排ガス浄化触媒
US7592291B2 (en) 2006-08-15 2009-09-22 Batelle Energy Alliance, Llc Method of fabricating a catalytic structure
US7879749B2 (en) 2006-08-15 2011-02-01 Battelle Energy Alliance, Llc Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons
CN101130466B (zh) 2006-08-23 2011-05-04 中国科学院大连化学物理研究所 制取低碳烯烃流态化催化反应装置的开工方法
CN101362959B (zh) 2007-08-09 2012-09-05 中国石油化工股份有限公司 一种制取丙烯和高辛烷值汽油的催化转化方法
WO2009096548A1 (ja) 2008-02-01 2009-08-06 Shimadzu System Solutions Co., Ltd. 銀-酸化チタン-ゼオライト吸着分解素材及びその製造方法
FR2929264B1 (fr) 2008-03-31 2010-03-19 Inst Francais Du Petrole Materiau inorganique forme de particules spheriques de taille specifique et presentant des nanoparticules metalliques piegees dans une matrice mesostructuree
JP2009255014A (ja) 2008-04-21 2009-11-05 Mitsubishi Chemicals Corp メタノールからオレフィンを製造するための触媒
US8273932B2 (en) 2008-06-10 2012-09-25 Mitsui Chemicals, Inc. Process for producing alkylated aromatic compounds and process for producing phenol
JP4639247B2 (ja) 2008-07-23 2011-02-23 石油資源開発株式会社 炭化水素リフォーミング用触媒およびその製造方法ならびにこれを用いた合成ガスの製法
JP2010099638A (ja) 2008-10-27 2010-05-06 Nissan Motor Co Ltd 触媒、排ガス浄化用触媒及び触媒の製造方法
WO2010097108A1 (en) 2009-02-27 2010-09-02 Haldor Topsøe A/S Process for the preparation of hybrid zeolite or zeolite-like materials
US9187702B2 (en) 2009-07-01 2015-11-17 Chevron U.S.A. Inc. Hydroprocessing catalyst and method of making the same
JP5700376B2 (ja) 2009-07-30 2015-04-15 三菱化学株式会社 プロピレンの製造方法及びプロピレン製造用触媒
JP2012250133A (ja) 2009-09-30 2012-12-20 Toto Ltd 光触媒塗装体およびそのための光触媒コーティング液
JP5105007B2 (ja) 2009-11-27 2012-12-19 株式会社村田製作所 逆シフト反応用触媒およびそれを用いた合成ガスの製造方法
WO2011128968A1 (ja) 2010-04-12 2011-10-20 株式会社メタルテック 光触媒塗料
JP6003643B2 (ja) 2010-06-10 2016-10-05 宇部興産株式会社 アルキル化反応用触媒及び該触媒を用いたアルキル芳香族炭化水素化合物の製造方法
US20120042631A1 (en) 2010-08-20 2012-02-23 Gm Global Technology Operations, Inc. Catalyst materials for ammonia oxidation in lean-burn engine exhaust
US8539760B2 (en) 2010-09-14 2013-09-24 GM Global Technology Operations LLC Catalyst materials for NOx oxidation in an exhaust aftertreatment system that uses passive ammonia SCR
FR2969513B1 (fr) * 2010-12-22 2013-04-12 IFP Energies Nouvelles Procede de preparation d'un materiau spherique a porosite hierarchisee comprenant des particules metalliques piegees dans une matrice mesostructuree
JP5552067B2 (ja) 2011-01-26 2014-07-16 住友ゴム工業株式会社 合成システム、タイヤ用ゴム薬品、タイヤ用合成ゴム及び空気入りタイヤ
EP2543654B1 (en) 2011-01-26 2018-09-12 Sumitomo Rubber Industries, Ltd. Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
JP2012160394A (ja) 2011-02-02 2012-08-23 Sony Corp 酸化物半導体層の製造方法
JP2012170951A (ja) 2011-02-24 2012-09-10 Kyushu Univ 光触媒−吸着材複合粉体
JP2012210557A (ja) 2011-03-30 2012-11-01 Panasonic Corp 撥水性光触媒組成物及び撥水性光触媒塗膜
CN102247887B (zh) 2011-05-20 2013-03-06 汕头大学 一种高效低载量甲烷芳构化催化剂的制备方法
CN103648643B (zh) 2011-06-05 2016-10-05 庄信万丰股份有限公司 用于处理废气的pgm催化剂
GB201118228D0 (en) 2011-10-21 2011-12-07 Ingen Gtl Ltd Methods of preparation and forming supported active metal catalysts and precursors
CA2851988C (en) 2011-10-21 2019-05-21 Igtl Technology Ltd Methods of preparation and forming supported active metal catalysts and precursors
JP6061872B2 (ja) 2012-01-31 2017-01-18 国立研究開発法人科学技術振興機構 酸化チタンメソ結晶
WO2013123299A1 (en) 2012-02-17 2013-08-22 Kior, Inc. Mesoporous zeolite-containing catalysts for the thermoconversion of biomass and for upgrading bio-oils
JP5972678B2 (ja) 2012-06-14 2016-08-17 三菱化学株式会社 合成ガス製造用触媒および合成ガスの製造方法
CN103663490B (zh) 2012-09-26 2016-04-20 中国科学院大连化学物理研究所 一种sapo-34分子筛及其合成方法
US9573121B2 (en) * 2012-11-08 2017-02-21 Rive Technology, Inc. Mesoporous zeolite catalyst supports
JP5762386B2 (ja) 2012-11-28 2015-08-12 株式会社日立製作所 シフト触媒、石炭ガス化プラントのガス精製方法及びガス精製設備
US9931623B2 (en) 2012-11-30 2018-04-03 Hiroshima University Method for producing metal nanoparticle complex, and metal nanoparticle complex produced by said method
WO2014122620A1 (en) 2013-02-09 2014-08-14 Indian Oil Corporation Limited Hydroprocessing catalyst composition and process thereof
EP2960317B1 (en) 2013-02-21 2021-01-06 JX Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
JP6005251B2 (ja) 2013-02-27 2016-10-12 三菱重工業株式会社 Coシフト触媒の製造方法及びガス化ガスの精製方法
KR102221550B1 (ko) 2013-03-22 2021-03-02 삼성전자주식회사 탄화수소 개질용 촉매 및 그 제조 방법
JP6221127B2 (ja) 2013-05-01 2017-11-01 国立大学法人山梨大学 金属微粒子の製造方法、燃料電池用電極触媒の製造方法、担持金属微粒子触媒、及び燃料電池用電極触媒
CN104650291B (zh) 2013-11-19 2018-02-02 中国石油天然气股份有限公司 采用烯烃复分解催化剂制备补强丁苯橡胶的方法
CN104774639A (zh) 2014-01-13 2015-07-15 通用电气公司 烃类裂解方法和装置
JP6234297B2 (ja) 2014-03-27 2017-11-22 株式会社タカギ ゼオライト成形体およびその製造方法
JP6379273B2 (ja) 2014-04-10 2018-08-22 ダンマークス・テクニスケ・ユニヴェルシテット ゼオライト及びゼオタイプに金属ナノ粒子を組み入れる一般的方法
JP6303850B2 (ja) 2014-06-18 2018-04-04 株式会社Ihi 触媒の製造方法
US9938157B2 (en) 2014-07-23 2018-04-10 Chevron U.S.A. Inc. Interzeolite transformation and metal encapsulation in the absence of an SDA
JP6604501B2 (ja) 2014-09-16 2019-11-13 国立大学法人山梨大学 アンモニア分解触媒とその製造方法および、これを用いた装置
JP6344764B2 (ja) 2014-09-30 2018-06-20 国立大学法人山口大学 イソプロピルアルコールの保管方法および充填体
US9682367B2 (en) 2014-10-22 2017-06-20 King Fahd University Of Petroleum And Minerals Monolith structure loaded with metal promoted nanozeolites for enhanced propylene selectivity in methanol conversion
JP6427387B2 (ja) 2014-10-31 2018-11-21 地方独立行政法人東京都立産業技術研究センター 量子ドット複合光触媒
JP2015165138A (ja) 2015-04-30 2015-09-17 日野自動車株式会社 排ガス浄化装置
WO2016181622A1 (ja) 2015-05-12 2016-11-17 日本曹達株式会社 光触媒含有塗布液及び光触媒担持構造体
US10532961B2 (en) 2015-07-02 2020-01-14 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Catalyst and method of preparing light olefin directly from synthesis gas by one-step process
JP6598576B2 (ja) 2015-08-17 2019-10-30 学校法人東京理科大学 積層体及び積層体の製造方法
JP6489990B2 (ja) 2015-09-30 2019-03-27 Jxtgエネルギー株式会社 炭化水素油の水素化脱硫触媒およびその製造方法
US20180311651A1 (en) * 2015-10-30 2018-11-01 Sabic Global Technologies B.V. Use of hollow zeolites doped with bimetallic or trimetallic particles for hydrocarbon reforming reactions
CN105347359B (zh) 2015-11-27 2017-10-03 中国石油大学(北京) 一种孔道内含固体酸的沸石分子筛的合成及其应用
CN106362787B (zh) 2016-08-06 2019-01-08 浙江大学 一种沸石固载光催化剂的制备方法
JP7316934B2 (ja) 2017-05-31 2023-07-28 古河電気工業株式会社 水素化脱硫用触媒構造体、該触媒構造体を備える水素化脱硫装置及び水素化脱硫用触媒構造体の製造方法
US11161101B2 (en) 2017-05-31 2021-11-02 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
EP3632542A4 (en) 2017-05-31 2021-01-06 Furukawa Electric Co., Ltd. DIRECT OR REVERSE CONVERSION CATALYST STRUCTURE AND PRODUCTION PROCESS OF THE SAME, DIRECT OR REVERSE REACTION DEVICE, PROCESS FOR THE PRODUCTION OF CARBON DIOXIDE AND HYDROGEN, AND PROCESS FOR THE PRODUCTION OF CARBON MONOXIDE AND WATER
JP7352910B2 (ja) 2017-05-31 2023-09-29 国立大学法人北海道大学 機能性構造体及び機能性構造体の製造方法
AU2018277966B2 (en) 2017-05-31 2021-05-27 Furukawa Electric Co., Ltd. Functional structure and production method for functional structure
EP3632554A4 (en) 2017-05-31 2021-04-21 Furukawa Electric Co., Ltd. EXHAUST GAS PURIFICATION OXIDATION CATALYST STRUCTURE AND PRODUCTION PROCESS, VEHICLE EXHAUST GAS TREATMENT DEVICE, CATALYST MOLDED BODY AND GAS PURIFICATION PROCESS.
CN110709168A (zh) 2017-05-31 2020-01-17 古河电气工业株式会社 光催化剂结构体、光催化剂结构体组合物、光催化剂包覆材料、光催化剂结构体的制造方法以及醛类的分解方法
WO2018221706A1 (ja) 2017-05-31 2018-12-06 古河電気工業株式会社 メタノール改質触媒構造体、メタノール改質用装置、メタノール改質触媒構造体の製造方法及びオレフィンまたは芳香族炭化水素の少なくとも一方の製造方法
AU2018276618B2 (en) 2017-05-31 2021-05-27 Furukawa Electric Co., Ltd. Functional structure and production method for functional structure
JP7340198B2 (ja) 2017-05-31 2023-09-07 国立大学法人北海道大学 機能性構造体及び機能性構造体の製造方法
WO2018221704A1 (ja) 2017-05-31 2018-12-06 古河電気工業株式会社 芳香族炭化水素製造用触媒構造体、その芳香族炭化水素製造用触媒構造体を備える芳香族炭化水素製造装置、芳香族炭化水素製造用触媒構造体の製造方法及び芳香族炭化水素の製造方法
CN111447995A (zh) 2017-09-29 2020-07-24 哈佛学院院长及董事 具有部分包埋的催化纳米颗粒的强化催化材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505830A (ja) * 2005-08-31 2009-02-12 インステイチユート メキシカノ デル ペトロレオ 石油留分の水素化転化のための触媒組成物を調製する方法
JP2010527769A (ja) * 2007-05-24 2010-08-19 サウディ ベーシック インダストリーズ コーポレイション 炭化水素を転化するためのGeゼオライト触媒、その製造方法および使用方法
JP2016529190A (ja) * 2013-07-05 2016-09-23 ダンマークス・テクニスケ・ユニヴェルシテット ゼオライト及びゼオ型を製造する方法
JP2017128480A (ja) * 2016-01-20 2017-07-27 日揮触媒化成株式会社 金属粒子を内包したゼオライト

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERI FUMOTO: "Catalytic Cracking of Heavy Oil by Iron Oxide-Based Catalyst Using Steam-Derived Hydrogen Species and Oxygen Species", JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, vol. 58, no. 5, 2015, pages 329 - 335, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/jpi/5/58_329/_pdf>
See also references of EP3632547A4

Also Published As

Publication number Publication date
JPWO2018221703A1 (ja) 2020-03-26
EP3632547A1 (en) 2020-04-08
CN110730687A (zh) 2020-01-24
US20200094229A1 (en) 2020-03-26
EP3632547A4 (en) 2020-12-16
JP7316935B2 (ja) 2023-07-28
US11654422B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2018221703A1 (ja) 接触分解用又は水素化脱硫用触媒構造体、該触媒構造体を有する接触分解装置及び水素化脱硫装置、並びに接触分解用又は水素化脱硫用触媒構造体の製造方法
WO2018221690A1 (ja) 機能性構造体及び機能性構造体の製造方法
WO2018221694A1 (ja) 水素化脱硫用触媒構造体、該触媒構造体を備える水素化脱硫装置及び水素化脱硫用触媒構造体の製造方法
US11648538B2 (en) Functional structural body and method for making functional structural body
AU2018277967B2 (en) Functional structure and production method for functional structure
WO2020116468A1 (ja) 機能性構造体
JP7348717B2 (ja) ブテンから生成されるオレフィン製造用触媒構造体、該触媒構造体を有するオレフィン製造装置及びオレフィン製造用触媒構造体の製造方法
WO2018221695A1 (ja) 流動接触分解用構造体及びその製造方法、並びに、これを備える流動接触分解用装置
JP2018202387A (ja) 機能性構造体およびその製造方法
JP2018202390A (ja) オレフィンから生成される共役ジエン製造用触媒構造体、該触媒構造体を有する共役ジエン製造装置及び共役ジエン製造用触媒構造体の製造方法
JP7323114B2 (ja) 機能性構造体及び機能性構造体の製造方法
JP7348716B2 (ja) ナフサから生成されるオレフィン製造用触媒構造体、該触媒構造体を備えるオレフィン製造装置及びオレフィン製造用触媒構造体の製造方法
JP7295614B2 (ja) Fcc副生分解油から生成される芳香族化合物製造用触媒構造体、該触媒構造体を有する芳香族化合物製造装置及び芳香族化合物製造用触媒構造体の製造方法
WO2018221705A1 (ja) 水素化分解用触媒構造体、その水素化分解用触媒構造体を備える水素化分解装置及び水素化分解用触媒構造体の製造方法
JP2018202393A (ja) エチレンから生成されるオレフィン製造用触媒構造体、該触媒構造体を備える低級オレフィン製造装置及びオレフィン製造用触媒構造体の製造方法
WO2020116470A1 (ja) 機能性構造体
JP2020089812A (ja) 機能性構造体および軽質炭化水素ガスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018810103

Country of ref document: EP

Effective date: 20200102