US20120042631A1 - Catalyst materials for ammonia oxidation in lean-burn engine exhaust - Google Patents

Catalyst materials for ammonia oxidation in lean-burn engine exhaust Download PDF

Info

Publication number
US20120042631A1
US20120042631A1 US12/860,180 US86018010A US2012042631A1 US 20120042631 A1 US20120042631 A1 US 20120042631A1 US 86018010 A US86018010 A US 86018010A US 2012042631 A1 US2012042631 A1 US 2012042631A1
Authority
US
United States
Prior art keywords
exhaust
catalyst
clean
lean
exhaust flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/860,180
Inventor
Steven J. Schmieg
Wei Li
Chang H. Kim
Gongshin Qi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Priority to US12/860,180 priority Critical patent/US20120042631A1/en
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, CHANG H., LI, WEI, QI, GONGSHIN, SCHMIEG, STEVEN J.
Assigned to WILMINGTON TRUST COMPANY reassignment WILMINGTON TRUST COMPANY SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to GM Global Technology Operations LLC reassignment GM Global Technology Operations LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Priority to DE102011109946A priority patent/DE102011109946A1/en
Priority to CN2011103054372A priority patent/CN102400744A/en
Publication of US20120042631A1 publication Critical patent/US20120042631A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9463Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/402Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/502Beta zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9436Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1616NH3-slip from catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the technical field relates generally to exhaust aftertreatment systems that treat the exhaust produced by a lean-burn engine and, more particularly, to catalyst materials that may be used to oxidize ammonia, among others, and help prevent ammonia slip to the atmosphere.
  • Lean-burn engines such as diesel engines and certain spark-ignition engines are supplied with, and combust, a lean mixture of air and fuel (oxygen-rich mixture) to achieve more efficient fuel economy.
  • the exhaust emitted from such engines engine during periods of lean-burn operation may include a relatively high content of nitrogen (N 2 ) and oxygen (O 2 ), a relatively low content of carbon monoxide (CO) and unburned/partially-burned hydrocarbons (HC's), possibly some suspended particulate matter (i.e., in diesel engines), and small amounts of nitrogen oxides primarily comprised of NO and NO 2 (collectively referred to as NO X ).
  • the NO X constituency of the exhaust may fluctuate between about 50 and about 1500 ppm and generally comprises far greater amounts NO than NO 2 along with nominal amounts of N 2 O.
  • the hot engine exhaust which can reach temperatures of up to about 900° C., often needs to be treated before it can be released to the atmosphere.
  • An exhaust aftertreatment system may be associated with the lean-burn engine to help remove unwanted gaseous emissions and particulate matter that may be present in the lean-burn engine exhaust.
  • the exhaust aftertreatment system may be configured to receive an exhaust flow from the lean-burn engine and generally aspires to cooperatively (1) oxidize CO into carbon dioxide (CO 2 ), (2) oxidize HC's into CO 2 and water (H 2 O), (3) convert NO X gases into nitrogen (N 2 ) and O 2 , and (4) filter off or otherwise destroy any suspended particulate matter.
  • CO 2 carbon dioxide
  • H 2 O oxidize HC's into CO 2 and water
  • N 2 nitrogen
  • O 2 oxygen
  • a variety of exhaust aftertreatment system architectures that employ specially-catalyzed components have been devised and are able to sufficiently facilitate these reactions so that the exhaust expelled to the environment contains a much more desirable chemical makeup.
  • ammonia may also be passively generated from native NO X in the exhaust flow by periodically cycling a rich air/fuel mixture to the lean-burn engine and communicating the resultant engine exhaust over a close-coupled three-way-catalyst (TWC).
  • TWC three-way-catalyst
  • the NH 3 produced may then be stored on a downstream SCR catalyst and consumed when the lean-burn engine is combusting a lean air/fuel mixture.
  • Other exhaust aftertreatment design systems may include one or more lean NO X traps (LNT) that occasionally have to be regenerated and desulfated which, in turn, may cause NH 3 to be introduced into the exhaust flow.
  • LNT lean NO X traps
  • a clean-up oxidation catalyst is oftentimes included at or near the end of the exhaust aftertreatment system to oxidize any residual NH 3 and other gaseous emissions that might otherwise escape to the atmosphere.
  • Ammonia that manages to pass through the exhaust aftertreatment system is often referred to as “ammonia slip.”
  • the clean-up oxidation catalyst used at this particular juncture of the exhaust aftertreatment system is traditionally formulated with about 5 to 10 g/ft 3 of platinum group metals (PGM's) dispersed on a high-surface area support material such as alumina. Most or all of the clean-up oxidation catalyst's PGM loading is generally attributable to platinum, although smaller amounts of palladium and rhodium may also be included, if desired.
  • a honeycomb flow-through monolith structure may carry the clean-up oxidation catalyst within several hundred to several thousand parallel flow-through cells to ensure sufficient contact between the exhaust flow and the clean-up oxidation catalyst.
  • the PGM's commonly used to make the clean-up oxidation catalyst are quite expensive and have been shown, in some instances, to exhibit poor thermal durability when exposed to relatively high-temperature engine exhaust.
  • the N 2 selectivity of PGM-based clean-up oxidation catalysts can also be affected by thermal aging and fluctuations in the temperature and chemical composition of the exhaust flow. Such affects on N 2 selectivity can cause the clean-up oxidation catalyst to oxidize NH 3 into NO X —instead of N 2 —at an unacceptably high rate and thus lower the overall NO X conversion efficiency of the exhaust aftertreatment system.
  • a clean-up oxidation catalyst that comprises a selective catalytic reduction (SCR) catalyst and metal oxide particles selected from the group consisting of perovskite oxide particles and manganese-containing mixed metal oxide particles, and mixtures thereof, dispersed on the SCR catalyst may be employed at or near the end of an exhaust aftertreatment system to help prevent ammonia slip and the escape of unwanted gaseous emissions to the atmosphere.
  • the clean-up oxidation catalyst can selectively oxidize NH 3 to N 2 in the hot, oxygen-abundant exhaust flow emanated from a lean-burn engine and communicated through the exhaust aftertreatment system.
  • platinum group metals such as platinum and palladium
  • FIG. 1 is a generalized and schematic depiction of an exhaust aftertreatment system for a lean-burn engine that includes an exhaust gas treatment subsystem and a clean-up oxidation catalyst downstream from the exhaust gas treatment subsystem.
  • FIG. 2 is a generalized and schematic illustration of the relevant parts of one exemplary embodiment of the exhaust gas treatment subsystem.
  • FIG. 3 is a generalized and schematic illustration of the relevant parts of another exemplary embodiment of the exhaust gas treatment subsystem.
  • FIG. 4 is a graph that shows the oxidation capabilities of La 0.9 Sr 0.1 CoO 3 particles for various reactions when exposed to simulated lean-burn engine exhaust.
  • FIG. 5 is a graph that shows the NH 3 oxidation performance, when exposed to simulated lean-burn engine exhaust, of a degreened Fe/ ⁇ -zeolite SCR catalyst, La 0.9 Sr 0.1 CoO 3 particles, and three degreened clean-up oxidation catalysts each with a different La 0.9 Sr 0.1 CoO 3 particle loading.
  • FIG. 6 is a graph that shows the NH 3 oxidation performance, when exposed to simulated lean-burn engine exhaust, of a high-temperature aged Fe/ ⁇ -zeolite SCR catalyst, La 0.9 Sr 0.1 CoO 3 particles, and three high-temperature aged clean-up oxidation catalysts each with a different La 0.9 Sr 0.1 CoO 3 particle loading.
  • FIG. 7 is a graph that shows how much of the NH 3 oxidation shown in FIG. 5 resulted in the formation of NO X .
  • FIG. 8 is a graph that shows how much of the NH 3 oxidation shown in FIG. 6 resulted in the formation of NO X .
  • FIG. 9 is a graph that shows the NH 3 oxidation performance and the N 2 selectivity, when exposed to simulate lean-burn engine exhaust, of a degreened and a high-temperature aged clean-up oxidation catalyst material having 12 wt. % La 0.9 Sr 0.1 CoO 3 particles loaded onto a Fe/ ⁇ -zeolite SCR catalyst and, for comparison purposes, a conventional platinum-containing catalyst.
  • a clean-up oxidation catalyst that comprises metal oxide particles dispersed on a selective catalytic reduction (SCR) catalyst may be employed at or near the end of an exhaust aftertreatment system to help prevent ammonia slip and the escape of unwanted gaseous emissions to the atmosphere.
  • the metal oxide particles may be selected from the group consisting of perovskite oxide particles, manganese-containing mixed metal oxide particles, and mixtures thereof.
  • the clean-up oxidation catalyst can selectively oxidize NH 3 to N 2 in the hot, oxygen-abundant exhaust flow emanated from a lean-burn engine and communicated through an upstream portion of the exhaust aftertreatment system.
  • the temperature at which optimum NH 3 oxidation occurs and the oxidation reaction's N 2 selectivity can be influenced by the loading of the metal oxide particles as well as the aging of the clean-up oxidation catalyst.
  • the inclusion of PGM's in the clean-up oxidation catalyst, although not prohibited, is not needed to achieve satisfactory NH 3 oxidation over a robust temperature range.
  • the opportunity to reduce the amount of PGM's used in an exhaust aftertreatment system can contribute to significant cost savings and help counteract the durability and N 2 selectivity issues sometimes observed in PGM-based catalysts.
  • FIG. 1 depicts a generalized and schematic illustration of an exhaust aftertreatment system 10 for managing an exhaust flow 20 produced by a lean-burn engine 12 that is combusting a lean air/fuel (A/F) mixture 18 .
  • the exhaust aftertreatment system 10 receives the exhaust flow 20 from the lean-burn engine 12 and communicates a treated exhaust flow 24 downstream for expulsion to the atmosphere.
  • the exhaust aftertreatment system 10 may include an exhaust gas treatment subsystem 14 and a clean-up oxidation catalyst 16 .
  • the exhaust gas treatment subsystem 14 decreases to acceptable levels the amount of unwanted gaseous emissions and, if present, particulate matter that are contained in the exhaust flow 20 .
  • the clean-up oxidation catalyst 16 oxidizes any NH 3 contained in an intermediate exhaust flow 22 that flows from the exhaust gas treatment subsystem 14 to help prevent ammonia slip to the atmosphere.
  • the treated exhaust flow 24 may flow through other mechanical equipment, such as a muffler, after engaging the clean-up oxidation catalyst 16 but generally does not interact with any additional catalysts before being released to the atmosphere.
  • the lean-burn engine 12 may be any engine that is constructed and designed to combust the lean A/F mixture 18 at least part of the time.
  • the lean A/F mixture 18 supplied to the lean-burn engine 12 generally contains more air than is stoichiometrically needed to combust the associated fuel.
  • Known mechanical or electronic mechanisms may be used to control the air to fuel mass ratio of the lean A/F mixture 18 which, in general, often ranges from about 15 to about 65 depending on the engine load, RPM, and the type of lean-burn engine 12 (i.e., diesel or spark-ignition) being operated.
  • Examples of engines that may be employed as the lean-burn engine 12 include a charge compression-ignition (diesel) engine, a lean-burn spark-ignition (gasoline) engine such as spark-ignition direct injection (SIDI) engine, or a homogeneous charge compression ignition (HCCI) engine.
  • a charge compression-ignition (diesel) engine such as spark-ignition direct injection (SIDI) engine, or a homogeneous charge compression ignition (HCCI) engine.
  • SIDI spark-ignition direct injection
  • HCCI homogeneous charge compression ignition
  • the combustion of the lean A/F mixture 18 in the lean-burn engine 12 generates mechanical power and the exhaust flow 20 that is supplied to the exhaust aftertreatment system 10 .
  • the exhaust flow 20 generally includes a relatively large amount of N 2 and O 2 , possibly some suspended particulate matter composed of uncombusted high-molecular weight hydrocarbons, and various unwanted gaseous emissions comprised of the following: (1) CO, (2) HC's, and (3) a NO X contingent primarily comprised of NO and NO 2 .
  • the NO X contingent of the exhaust flow 20 may fluctuate between about 50 and about 1500 ppm.
  • the proportion of NO and NO 2 particles in the NO X contingent usually ranges from approximately 80%-95% NO and approximately 5%-20% NO 2 .
  • Such a NO/NO 2 particle distribution corresponds to a molar ratio of NO to NO 2 that ranges from about 4 to about 19.
  • the exhaust flow 20 may reach temperatures of up to 900° C. depending the distance between the lean-burn engine 12 and the exhaust aftertreatment system 10 as well as the presence of any intervening components such as a turbocharger turbine and/or an EGR bleed line.
  • the exhaust gas treatment subsystem 14 encompasses a large variety of system architectures that operate to remove a substantial portion of the CO, HC's, NO X , and particulate matter, if present, from the exhaust flow 20 .
  • a NO X abatement component such as a lean NO X trap or a selective catalytic reduction (SCR) catalytic converter, may be included in the exhaust gas treatment subsystem 14 to reduce NO X to N 2 in the oxidative environment of the exhaust flow 20 .
  • An assortment of other components such as, but not limited to, diesel oxidation converters, three-way catalytic converters, diesel particulate filters, and reductant metering devices are available and can be assembled to operate with the NO X abatement component, either individually or in select combinations with one another, to constitute the exhaust gas treatment subsystem 14 .
  • the intermediate exhaust flow produced by the exhaust gas treatment subsystem 14 primarily includes N 2 , O 2 , H 2 O, and CO 2 .
  • the intended operation of the exhaust gas treatment subsystem 14 and, in particular, the NO X abatement component, may further result in NH 3 being present in the intermediate exhaust flow 22 as well as acceptable residual amounts of CO, HC's, NO X , and particulate matter.
  • a number of factors and component operating requirements related to the lean-burn engine 12 and the exhaust gas treatment subsystem 14 may be responsible for the presence of NH 3 in the intermediate exhaust flow 22 despite the sophisticated control strategies often associated with the exhaust aftertreatment system 10 .
  • One exemplary embodiment of the exhaust gas treatment subsystem 14 which is identified as 14 a and depicted in FIG. 2 , includes a diesel oxidation converter 30 , an ammonia-SCR catalytic converter 32 located downstream of the diesel oxidation converter 30 , a diesel particulate filter 34 located downstream of the ammonia-SCR catalytic converter 32 , and a urea metering system 36 .
  • the exhaust gas treatment subsystem 14 a shown and described here may be used when the exhaust aftertreatment system 10 is coupled to a diesel engine.
  • the diesel oxidation converter 30 receives the exhaust flow 20 from the lean-burn engine 12 .
  • the diesel oxidation converter 30 houses a diesel oxidation catalyst that may comprise a combination of platinum and palladium or some other suitable oxidation catalyst formulation.
  • the exhaust flow 20 traverses the diesel oxidation converter 30 and achieves intimate exposure with the diesel oxidation catalyst to promote the oxidation of CO (to CO 2 ), HC's (to CO 2 and H 2 O) and NO (to NO 2 ).
  • the oxidation of NO by the diesel oxidation catalyst typically does not decrease the NO X content in the exhaust flow 20 ; instead, the molar ratio of NO to NO 2 is merely decreased as NO is oxidized to NO 2 .
  • This downward adjustment to the NO:NO 2 molar ratio may be desirable since the downstream ammonia-SCR catalyst 32 may convert NO X to N 2 at lower temperatures more efficiently as the molar ratio of NO to NO 2 decreases from that which is typically generated by the lean-burn engine 12 .
  • the exhaust flow 20 exiting the diesel oxidation converter 30 is then combined with NH 3 to form an exhaust mixture 44 .
  • the NH 3 may be supplied by the urea metering device 36 which includes an on-board and refillable urea storage tank 38 fluidly connected to a urea injector 40 .
  • Urea which is stored in the urea storage tank 38 , may be injected into the exhaust flow 20 exiting the diesel oxidation converter 30 through the urea injector 40 .
  • the urea then quickly evaporates and undergoes thermolysis and hydrolysis reactions in the hot and oxygen-abundant exhaust flow 20 to generate NH 3 and form the exhaust mixture 44 .
  • the amount of urea injected into the exhaust flow 20 may be monitored and controlled by known control techniques that attempt to regulate the amount of NH 3 present in the exhaust mixture 20 despite fluctuations in the temperature, chemical composition, and flow rate of the exhaust flow 20 .
  • a mixer 42 or other suitable device may be provided upstream of the ammonia-SCR catalytic converter 32 to help evaporate the injected urea and homogeneously distribute small particles of NH 3 throughout the exhaust mixture 44 .
  • the ammonia-SCR catalytic converter 32 receives the exhaust mixture 44 and discharges a NO X -treated exhaust flow 46 .
  • the ammonia-SCR catalytic converter 32 houses an appropriate ammonia-SCR catalyst that can absorb NH 3 and facilitate the reduction of NO X in the oxidative environment fostered by the exhaust mixture 44 .
  • the exhaust mixture 44 traverses the ammonia-SCR catalytic converter 32 and achieves intimate exposure with the ammonia-SCR catalyst to enable the reduction of NO X , largely to N 2 and H 2 O, in the presence of NH 3 and O 2 .
  • the newly-generated N 2 is then communicated from the ammonia-SCR catalytic converter 32 in the NO X -treated exhaust flow 46 .
  • the ammonia-SCR catalyst may comprise, for example, an ion-exchanged base-metal zeolite such as a Cu/zeolite or a Fe/zeolite.
  • a base-metal zeolite such as a Cu/zeolite or a Fe/zeolite.
  • zeolite crystal structures including ⁇ -zeolites and MFI-type zeolites are commonly used to make the ammonia-SCR catalyst.
  • Supported base metal oxides such as V 2 O 5 -WO 3 /TiO 2 and V 2 O 5 /TiO 2 , may also be employed to formulate the ammonia-SCR catalyst.
  • a number of factors may influence the dynamic operating conditions of the ammonia-SCR catalytic converter 32 and result in NH 3 being present in the NO X -treated exhaust flow 46 and ultimately the intermediate exhaust flow 22 .
  • Fast increases in the temperature or flow rate of the exhaust mixture 46 and/or the over-injection of urea into the exhaust flow 20 may trigger the release of significant amounts of NH 3 from the ammonia-SCR catalyst or simply allow NH 3 to pass through the ammonia-SCR catalytic converter 32 unabsorbed and unreacted.
  • the NO X -treated exhaust mixture 46 discharged from the ammonia-SCR catalytic converter 32 is then supplied to the diesel particulate filter 34 to remove any suspended particulate matter.
  • the diesel particulate filter 34 may be constructed according to any known design.
  • the intermediate exhaust flow 22 emerges from the diesel particulate filter 34 .
  • the exhaust gas treatment subsystem 14 a may be altered to operate with a spark-ignition engine by substituting a catalytic converter that houses a three-way-catalyst (TWC) for the diesel oxidation converter 30 and removing the diesel particulate filter 34 .
  • the TWC may comprise a combination of platinum, palladium, and rhodium, or it may comprise some other suitable catalyst formulation.
  • FIG. 3 Another exemplary embodiment of the exhaust gas treatment subsystem 14 , which is identified as 14 b and depicted in FIG. 3 , includes a catalytic converter 50 and a lean-NO X trap (LNT) 52 located downstream of the catalytic converter 50 .
  • the exhaust gas treatment system 14 b shown and described here may be used when the exhaust aftertreatment system 10 is coupled to a spark-ignition engine such as a SIDI engine.
  • the catalytic converter 50 receives the exhaust flow 20 from the lean-burn engine 12 .
  • the catalytic converter 50 houses a TWC catalyst that may comprise a combination of platinum, palladium, and rhodium. Other suitable TWC formulations may of course be employed.
  • the exhaust flow 20 traverses the catalytic converter 50 and achieves intimate exposure with the TWC catalyst to promote the oxidation of CO (to CO 2 ) and HC's (to CO 2 and H 2 O).
  • the TWC catalyst generally does not include a high enough proportional platinum loading to oxidize NO and significantly change the NO to NO 2 molar ratio in the exhaust flow 20 .
  • the TWC catalyst can also oxidize CO and HC's and simultaneously reduce NO X to N 2 during momentary periods when the lean-burn engine 12 is supplied with a rich A/F mixture to, for example, regenerate or desulfate the LNT 52 .
  • the LNT 52 receives the exhaust flow 20 exiting the catalytic converter 50 .
  • the exhaust flow 20 traverses the LNT 52 and achieves intimate contact with a LNT catalyst housed in the LNT 52 .
  • the LNT catalyst exhibits NO 2 trapping and NO X conversion capabilities and generally comprises an oxidation catalyst, a NO X storage catalyst, and a NO X reduction catalyst.
  • the oxidation catalyst oxidizes NO to NO 2 and the NO X storage catalyst traps or “stores” NO 2 as a nitrate species as the exhaust flow 20 traverses the LNT 52 .
  • the oxidation catalyst may also oxidize other gaseous emissions such as CO and HC's, if present.
  • the NO X reduction catalyst catalyzes the reduction of NO and NO 2 into N 2 during regeneration of the LNT 52 .
  • a typical LNT catalyst formulation may comprise, for example, an alumina washcoat appropriately loaded with platinum, rhodium, and barium carbonate (BaCO 3 ).
  • the NO X storage capacity of the LNT catalyst is not unlimited and at some point may need to be regenerated or purged of NO X -derived nitrate compounds.
  • the LNT catalyst may be regenerated by introducing reductants—such as CO, HC's and H 2 —into the exhaust flow 20 . This may be accomplished by decreasing the air to fuel mass ratio of the lean A/F mixture 18 so that the lean-burn engine 12 combusts a stoichiometric or rich A/F mixture.
  • the resultant delivery of rich-burn exhaust effluents to the LNT 52 by way of the exhaust flow 20 causes the NO X -derived nitrate compounds stored in the LNT catalyst to become thermodynamically unstable which, in turn, triggers the release of NO X and the regeneration of future NO X storage sites.
  • the liberated NO X is then reduced to N 2 by excess reductants.
  • the newly-generated N 2 is communicated from the LNT 52 in the intermediate exhaust flow 22 .
  • Some NH 3 may also be introduced into the intermediate exhaust flow 22 since it is possible for the NO X reduction catalyst to reduce NO X to NH 3 —instead of N 2 —during regeneration.
  • an oxidation catalyst such as a diesel oxidation catalyst or a two-way-catalyst, may be provided upstream of the LNT 52 in addition to the catalytic converter 50 to lower the NO to NO 2 molar ratio in the exhaust flow 20 .
  • This downward adjustment to the NO:NO 2 molar ratio may be desirable since the downstream LNT 52 may convert NO X to N 2 at lower temperatures more efficiently as the molar ratio of NO to NO 2 decreases from that which is typically generated by the lean-burn engine 12 .
  • the exhaust gas treatment subsystem 14 b may be altered to operate with a diesel engine by substituting a diesel oxidation converter that houses a diesel oxidation catalyst for the catalytic converter 50 and adding a diesel particulate filter.
  • the combustion of diesel fuel in the lean-burn engine 12 may additionally require periodic desulfation of the LNT catalyst to remove accumulate sulfur oxides (SO X ).
  • the LNT catalyst may be desulfated, for example, by introducing reductants into the exhaust flow 20 and heating the LNT catalyst to elevated temperatures of about 600° C. The desulfation of the LNT catalyst may cause NH 3 to be introduced into the intermediate exhaust flow 22 in much the same way that regeneration of the LNT catalyst does.
  • the clean-up oxidation catalyst 16 receives the intermediate exhaust flow 22 and oxidizes any residual NH 3 to N 2 .
  • Other unwanted gaseous emissions that may have slipped through the exhaust gas treatment subsystem 14 may also be oxidized.
  • the clean-up oxidation catalyst 16 may, in one embodiment, be housed in a separate catalytic converter device that is fluidly connected to the end of the exhaust gas treatment subsystem 14 .
  • the clean-up oxidation catalyst 16 may, for example, be carried on a support body contained within a canister.
  • the canister may be constructed to communicate the intermediate exhaust flow 22 across or through the substrate body to induce intimate exposure between the intermediate exhaust flow 22 and the clean-up oxidation catalyst 16 .
  • Various constructions of the substrate body are possible.
  • the substrate body may be a monolithic honeycomb structure that includes several hundred to several thousand parallel flow-through cells per square inch. Each of the flow-through cells may be defined by a wall surface to which the clean-up oxidation catalyst 16 is washcoated.
  • the monolithic honeycomb structure may be formed from a material capable of withstanding the temperatures and chemical environment associated with the intermediate exhaust flow 22 . Some specific examples of materials that may be used include ceramics such as extruded cordierite, ⁇ -alumina, silicon carbide, silicon nitride, zirconia, mullite, spodumene, alumina-silica-magnesia, zirconium silicate, sillimanite, petalite, or a heat and corrosion resistant metal such as titanium or stainless steel.
  • the clean-up oxidation catalyst 16 may also, in another embodiment, be zone coated onto the trailing end of the most-downstream component or components included in the exhaust gas treatment subsystem 14 that communicate the intermediate flow 22 such as, for example, and with reference to FIG. 2 , the diesel particulate filter 34 .
  • the clean-up oxidation catalyst 16 comprises metal oxide particles selected from the group consisting of perovskite oxide particles and manganese-containing mixed metal oxide particles dispersed on a selective catalytic reduction (SCR) catalyst.
  • SCR selective catalytic reduction
  • the clean-up oxidation catalyst 16 can catalyze the oxidation of appreciable amounts of any NH 3 contained in the intermediate exhaust flow 22 into N 2 and H 2 O.
  • the metal oxide particle loading and the aging of the clean-up oxidation catalyst 16 can influence the catalytic activity of the clean-up oxidation catalyst 16 including the temperature at which optimum NH 3 oxidation occurs and the NH 3 oxidation reaction's N 2 selectivity.
  • the clean-up oxidation catalyst 16 may also, in a related and coupled NH 3 reaction, catalytically reduce the amount of any residual NO X contained in the intermediate exhaust flow 22 if both NO X and NH 3 are present. Any appropriate technique may be used to disperse the metal oxide particles onto the SCR catalyst including washcoating and incipient wet impregnation.
  • the perovskite oxide particles that may be dispersed on the SCR catalyst encompass a class of compounds defined by the general formula ABO 3 .
  • the “A” and “B” atoms may be complimentary cations of different sizes that coordinate with oxygen anions.
  • a unit cell of the ABO 3 crystal structure may feature a cubic closest packing arrangement with the “A” cation, which is generally the larger of the two cations, centrally located and surrounded by eight “B” cations situated in the octahedral voids of the packing arrangement.
  • the “A” and “B” cations in such a packing arrangement respectively coordinate with twelve and six oxygen anions.
  • the unit cell of the ABO 3 crystal structure is not necessarily limited to a cubic closest packing arrangement.
  • the perovskite oxide particles may comprise the same perovskite oxide or a mixture of two or more perovskite oxides.
  • a great many combinations of perovskite oxides are available for use in the clean-up oxidation catalyst 16 since no fewer than 27 cations may be employed as the “A” cation and no fewer than 36 cations may be employed as the “B” cation.
  • a listing of the cations most frequently employed as the “A” cation includes those of calcium (Ca), strontium (Sr), barium (Ba), bismuth (Bi), cadmium (Cd), cerium (Ce), lead (Pb), yttrium (Y), and lanthanum (La) while a listing of the cations most commonly employed as the “B” cation includes those of cobalt (Co), titanium (Ti), zirconium (Zr), niobium (Nb), tin (Sn), cerium (Ce), aluminum (Al), nickel (Ni), chromium (Cr), manganese (Mn), copper (Cu), and iron (Fe).
  • perovskite oxides that may constitute all or part of the perovskite oxide particles include LaCoO 3 , La 0.9 Sr 0.1 CoO 3 , LaMnO 3 , La 0.9 Sr 0.1 MnO 3 , LaFeO 3 , and LaSr 0.1 Fe 0.9 O 3 .
  • the manganese-containing mixed metal oxide particles that may be dispersed on the SCR catalyst may include at least one of manganese-cerium oxides, Mn X Ce Y O Z , manganese-zirconium oxides, Mn X Zr W O Z , or manganese-cerium-zirconium oxides, Mn X Ce Y Zr W O Z , with X ranging from 0.02 to 0.98, Y ranging from 0.02 to 0.98, W ranging from 0.02 to 0.98, and Z ranging from 1.0 to 3.0.
  • manganese-containing mixed metal oxides include, but are not limited to, 0.5MnO V -0.5CeO 2 where V ranges from 2 to 3, 0.3MnO V -0.7CeO 2 where V ranges from 2 to 3, 0.1MnO V -0.9CeO 2 where V ranges from 2 to 3, Mn 0.1 Ce 0.9 O 2 , Mn 0.2 Ce 0.8 O 1.9 , and Mn 0.5 Ce 0.5 O 1.75 .
  • the perovskite oxide particles and the manganese-containing mixed metal oxide particles can help the clean-up oxidation catalyst 16 catalytically oxidize NH 3 to N 2 just as efficiently as platinum when exposed to the hot and oxygen-abundant intermediate exhaust flow 22 . While not wishing to be bound by theory, it is believed that the perovskite oxide particles and the manganese-containing mixed metal oxide particles have the ability to donate oxygen anions to NH 3 molecules while temporarily forming oxygen vacancies in their crystal structures. Readily available oxygen contained in the engine exhaust then disassociates to fill those oxygen anion vacancies and possibly react with additional NH 3 molecules.
  • the ability of the perovskite oxide particles and the manganese-containing mixed metal oxide particles to efficiently oxidize NH 3 may significantly diminish or altogether eliminate the need to include PGM's such as platinum in the clean-up oxidation catalyst 16 .
  • the clean-up oxidation catalyst 16 may, as a result, provide the exhaust aftertreatment system 10 with a smaller amount of PGM's than a comparable exhaust aftertreatment system that incorporates a conventional PGM-based clean-up oxidation catalyst to prevent ammonia slip and the escape of other unwanted gaseous emissions.
  • the amount of the metal oxide particles present in the clean-up oxidation catalyst 16 may range from about 0.1 wt. % to about 20 wt. %, more specifically from about 0.5 wt. % to about 15 wt. %, and even more specifically from about 1.0 wt. % to about 12 wt. %, based on the weight of the clean-up oxidation catalyst 16 .
  • the specific metal oxide particle loading may be chosen, if desired, based on the normal expected operating temperature window of the exhaust flow 20 and the aging of the clean-up oxidation catalyst 16 .
  • a degreened (lightly-aged) clean-up oxidation catalyst 16 with a higher metal oxide particle loading greater than about 5 wt.
  • a degreened clean-up oxidation catalyst 16 with a lower metal oxide particle loading (less than about 2 wt. %) tends to oxidize NH 3 to N 2 more consistently with complete or almost complete N 2 selectivity at both lower temperatures (up to about 350° C.) and higher temperatures (above about 350° C.).
  • High-temperature aging can further affect the NH 3 oxidation efficiency and the N 2 selectivity of the clean-up oxidation catalyst 16 . Such aging, in general, improves the N 2 selectivity of the clean-up oxidation catalyst 16 at higher temperatures at the expense of NH 3 oxidation efficiency at lower temperatures.
  • the SCR catalyst may be any material that can help facilitate the oxidation of NH 3 to N 2 when exposed to the intermediate exhaust 22 .
  • the SCR catalyst is generally a porous and high-surface area material—a wide variety of which are commercially available.
  • the specific SCR catalyst used to formulate the clean-up oxidation catalyst 16 may be an ion-exchanged base metal zeolite or silver-supported alumina (Ag/Al 2 O 3 ).
  • the zeolite may be a ⁇ -type zeolite, a Y-type zeolite, or a MFI-type zeolite.
  • ion-exchanged base metal zeolites that may be used include, but are not limited to, a ⁇ -zeolite that is ion-exchanged with Cu or Fe, a MFI-type zeolite that is ion exchanged with Cu or Fe, and a Y-type zeolite that is ion-exchanged with Na, Ba, Cu, or CuCo.
  • the particular composition of the clean-up oxidation catalyst 16 may be formulated based on a number of factors including the type and normal expected operating parameters of the lean-burn engine 12 and the design and construction of the exhaust gas treatment system 10 .
  • the clean-up oxidation catalyst 16 may, for example, comprise about 10-15 wt. % metal oxide particles washcoated onto a copper exchanged or iron exchanged ⁇ -zeolite. This particular catalyst composition may be employed if the lean-burn engine 12 is expected to generally operate at low speeds and/or with a low load demand.
  • the clean-up oxidation catalyst 16 may also, as another example, comprise about 0.5-2.0 wt. % metal oxide particles washcoated onto a copper exchanged or iron exchanged ⁇ -zeolite.
  • This particular catalyst composition may be employed if the lean-burn engine 12 is expected to generally operate at high speeds and/or with a high load demand.
  • Other compositions of the clean-up oxidation catalyst 16 may of course be formulated and utilized by skilled artisans who are familiar with lean-burn engine exhaust aftertreatment technology.
  • This Example demonstrates the catalytic activity of several exemplary clean-up oxidation catalysts that were evaluated in a laboratory reactor configured to flow a simulated lean-burn engine exhaust feedstream.
  • Each of the exemplary clean-up oxidation catalysts evaluated had a different weight percent loading of La 0.9 Sr 0.1 CoO 3 particles washcoated onto a Fe/ ⁇ -zeolite and was either degreened or subjected to high-temperature aging.
  • the weight percent loading of the La 0.9 Sr 0.1 CoO 3 particles for each exemplary clean-up oxidation catalyst is based on the weight of the clean-up oxidation catalyst (i.e., the total weight of the La 0.9 Sr 0.1 CoO 3 particles and the SCR catalyst).
  • a citric acid method was used to prepare a quantity of La 0.9 Sr 0.1 CoO 3 particles.
  • appropriate amounts of La(NO 3 ) 3 .6H 2 O, Co(NO 3 ) 2 .6H 2 O, and Sr(NO 3 ) 2 were dissolved in distilled water with citric acid monohydrate.
  • the amount of water used was 46.2 mL per gram of La(NO 3 ) 3 .6H 2 O, and the citric acid was added to the distilled water in a 10 wt. % excess to ensure complete complexation of the metal ions.
  • the solution was set on a stirring and heating plate and stirred for 1 hour at room temperature. The solution was then heated to 80° C.
  • the prepared La 0.9 Sr 0.1 CoO 3 particles were characterized by N 2 physisorption for surface area measurements and X-ray diffraction for their bulk structure measurements.
  • the La 0.9 Sr 0.1 CoO 3 particles were then ball milled with 6.33 mL of water per gram of the La 0.9 Sr 0.1 CoO 3 particles for 18 hours. Afterwards, the slurry was stirred continuously and 0.33 mL HNO 3 (0.1M) per gram of the La 0.9 Sr 0.1 CoO 3 particles and 5 mL of water per gram of the La 0.9 Sr 0.1 CoO 3 particles was added. The resulting washcoat solution had a concentration of 0.114 grams of La 0.9 Sr 0.1 CoO 3 particles per mL.
  • the slurry was washcoated onto a monolithic honeycomb core sample (3 ⁇ 4 inch diameter by 1 inch length with a flow-through cell density of 400 per square inch) that had already been washcoated with the Fe/ ⁇ -zeolite.
  • a monolithic honeycomb core sample (3 ⁇ 4 inch diameter by 1 inch length with a flow-through cell density of 400 per square inch) that had already been washcoated with the Fe/ ⁇ -zeolite.
  • the monolithic honeycomb core sample was dried and calcined at 550° C. for 5 hours in static air.
  • Monolithic core samples were also prepared that included only a Fe/ ⁇ -zeolite SCR catalyst, only La 0.9 Sr 0.1 CoO 3 particles, and a conventional platinum-containing catalyst, all for comparative evaluation purposes.
  • the Fe/ ⁇ -zeolite SCR catalysts were either degreened or high-temperature aged similar to the clean-up oxidation catalysts.
  • the La 0.9 Sr 0.1 CoO 3 particles alone were aged slightly different as indicated below.
  • FIG. 4 shows the catalytic performance of the La 0.9 Sr 0.1 CoO 3 particles for various reactions at temperatures ranging from 150° C. to 550° C. Temperature (° C.) is plotted on the X-axis and conversion (%) is plotted on the Y-axis.
  • the conversion of NO (NO+O 2 ) is identified by numeral 60
  • the conversion of NH 3 (NH 3 +O 2 ) is identified by numeral 62
  • the conversion of NO X (NO+NH 3 +O 2 ) is identified by numeral 64 .
  • the La 0.9 Sr 0.1 CoO 3 particles were hydrothermally aged in air+10% H 2 O for 5 hours at 700° C.
  • the La 0.9 Sr 0.1 CoO 3 particles oxidized NO and NH 3 rather well at temperatures above about 225° C. and 350° C., respectively.
  • the undesirable oxidation of NH 3 into NO X occurred at temperatures of about 250° C. to about 450° C.
  • the oxidation of NH 3 to N 2 was much preferred over the oxidation of NO X to N 2 . This oxidation selectivity resulted in the overall NO X conversion being negative.
  • FIGS. 5-8 depict some catalytic performance data of the exemplary clean-up oxidation catalysts. The same catalytic performance data for the Fe/zeolite SCR catalyst and the La 0.9 Sr 0.1 CoO 3 particles are also shown for comparison purposes.
  • FIGS. 5 and 6 show the NH 3 oxidation performance, in the absence of NO, of the Fe/ ⁇ -zeolite SCR catalyst alone, the La 0.9 Sr 0.1 CoO 3 particles alone, and the clean-up oxidation catalysts at temperatures ranging from 150° C. to 550° C. Temperature (° C.) is plotted on the X-axis and NH 3 conversion (%) is plotted on the Y-axis.
  • the Fe/ ⁇ -zeolite SCR catalyst and the clean-up catalysts represented in FIG. 5 were degreened while the Fe/ ⁇ -zeolite SCR catalyst and the clean-up oxidation catalysts represented in FIG. 6 were high-temperature aged.
  • the NH 3 conversion of the Fe/ ⁇ -zeolite SCR catalyst is identified by numeral 70 in FIG. 5 and numeral 70 ′ in FIG. 6
  • the NH 3 conversion of the La 0.9 Sr 0.1 CoO 3 particles is identified by numeral 72 in FIG. 5 and numeral 72 ′ in FIG. 6
  • the NH 3 conversion of the clean-up oxidation catalyst having 1.0 wt. % perovskite oxide particles is identified as numeral 74 in FIG. 5 and numeral 74 ′ in FIG. 6
  • the NH 3 conversion of the clean-up oxidation catalyst having 5.5 wt. % perovskite oxide particles is identified as numeral 76 in FIG. 5 and numeral 76 ′ in FIG. 6
  • the NH 3 conversion of the clean-up oxidation catalyst having 12.0 wt. % perovskite oxide particles is identified as numeral 78 in FIG. 5 and numeral 78 ′ in FIG. 6 .
  • the degreened clean-up oxidation catalysts having a 5.5 wt. % and 12 wt. % La 0.9 Sr 0.1 CoO 3 particle loading ( FIG. 5 ) oxidized NH 3 more effectively than the La 0.9 Sr 0.1 CoO 3 particles alone while the high-temperature aged clean-up oxidation catalysts with the same La 0.9 Sr 0.1 CoO 3 particles loadings ( FIG. 6 ) oxidized NH 3 quite comparably to the La 0.9 Sr 0.1 CoO 3 particles alone.
  • FIGS. 7 and 8 are related to FIGS. 5 and 6 , respectively, and show how much of the oxidized NH 3 formed NO X .
  • Temperature (° C.) is plotted on the X-axis and NO X selectivity (%)—i.e., the conversion of NH 3 to NO X —is plotted on the Y-axis.
  • the Fe/ ⁇ -zeolite SCR catalyst and the clean-up oxidation catalysts represented in FIG. 7 were degreened while the Fe/ ⁇ -zeolite SCR catalyst and the clean-up oxidation catalysts represented in FIG. 8 were high-temperature aged.
  • the La 0.9 Sr 0.1 CoO 3 particles in both of FIGS. 7 and 8 were hydrothermally aged for 5 hours at 700° C.
  • the NO X selectivity of the Fe/ ⁇ -zeolite SCR catalyst is identified by numeral 80 in FIG. 7 and numeral 80 ′ in FIG. 8
  • the NO X selectivity of the La 0.9 Sr 0.1 CoO 3 particles is identified by numeral 82 in FIG. 7 and numeral 82 ′ in FIG. 8
  • the NO X selectivity of the clean-up oxidation catalyst having 1.0 wt. % perovskite oxide particles is identified as numeral 84 in FIG. 7 and numeral 84 ′ in FIG. 8
  • the NO X conversion of the clean-up oxidation catalyst having 5.5 wt. % perovskite oxide particles is identified as numeral 86 in FIG. 7 and numeral 86 ′ in FIG. 8
  • the NO X conversion of the clean-up oxidation catalyst having 12.0 wt. % perovskite oxide particles is identified as numeral 88 in FIG. 7 and numeral 88 ′ in FIG. 8 .
  • the La 0.9 Sr 0.1 CoO 3 particles alone began to oxidize NH 3 to NO X quite readily at temperatures above about 300° C. while the Fe/ ⁇ -zeolite SCR catalyst—both degreened and high-temperature aged—produced essentially no NO X .
  • the degreened and the high-temperature aged clean-up oxidation catalysts having a 1.0 wt. % La 0.9 Sr 0.1 CoO 3 particle loading also generated very little NO X , if any.
  • FIG. 9 relates to FIGS. 5-8 and compares the NH 3 oxidation performance and the N 2 selectivity of the degreened and high-temperature aged 12 wt. % La 0.9 Sr 0.1 CoO 3 particle loaded clean-up oxidation catalysts with that of the conventional platinum-containing catalyst. Temperature (° C.) is plotted on the X-axis and both NH 3 conversion (%) and N 2 selectivity (%) are plotted on the Y-axis.
  • the conventional platinum-containing catalyst included 5 g/ft 3 of platinum supported on alumina.
  • the 12 wt. % La 0.9 Sr 0.1 CoO 3 particle loaded clean-up oxidation catalysts were exposed to the same simulated exhaust feedstream as recited in the description of FIGS.
  • the conventional platinum-containing catalyst was exposed to a simulated exhaust feedstream at a space velocity of about 60,000 h ⁇ 1 that comprised approximately 12% O 2 , 4.5% H 2 O, 4.5% CO 2 , 200 ppm NH 3 , and the balance N 2 .
  • the NH 3 conversion of the degreened 12 wt. % La 0.9 Sr 0.1 CoO 3 particle loaded clean-up oxidation catalyst is identified by numeral 90
  • the N 2 selectivity of the degreened 12 wt. % La 0.9 Sr 0.1 CoO 3 particle loaded clean-up oxidation catalyst is identified by numeral 92
  • the NH 3 conversion of the high-temperature aged 12 wt. % La 0.9 Sr 0.1 CoO 3 particle loaded clean-up oxidation catalyst is identified by numeral 94
  • % La 0.9 Sr 0.1 CoO 3 particle loaded clean-up oxidation catalyst is identified by numeral 96
  • the NH 3 conversion of the conventional platinum-containing catalyst is identified by numeral 98
  • the N 2 selectivity of the conventional platinum-containing catalyst is identified by numeral 100 .
  • both of the degreened and the high-temperature aged 12 wt. % La 0.9 Sr 0.1 CoO 3 particle loaded clean-up oxidation catalysts demonstrated at least comparable and, in many respects superior, N 2 selectivity and NH 3 oxidation performance to that of the conventional platinum-containing catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

An exhaust aftertreatment system and a method for treating exhaust produced by a lean-burn engine are provided. The exhaust aftertreatment system may include an exhaust gas treatment subsystem and a clean-up oxidation catalyst located downstream of the exhaust gas treatment subsystem. The clean-up oxidation catalyst can selectively oxidize NH3 to N2 in the hot, oxygen-abundant exhaust flow emanated from the lean-burn engine and passed through the exhaust gas treatment subsystem to help prevent ammonia slip to the atmosphere. The clean-up oxidation catalyst comprises perovskite oxide particles and/or manganese-containing mixed metal oxide particles dispersed on a selective catalytic reduction (SCR) catalyst.

Description

    TECHNICAL FIELD
  • The technical field relates generally to exhaust aftertreatment systems that treat the exhaust produced by a lean-burn engine and, more particularly, to catalyst materials that may be used to oxidize ammonia, among others, and help prevent ammonia slip to the atmosphere.
  • BACKGROUND
  • Lean-burn engines such as diesel engines and certain spark-ignition engines are supplied with, and combust, a lean mixture of air and fuel (oxygen-rich mixture) to achieve more efficient fuel economy. The exhaust emitted from such engines engine during periods of lean-burn operation may include a relatively high content of nitrogen (N2) and oxygen (O2), a relatively low content of carbon monoxide (CO) and unburned/partially-burned hydrocarbons (HC's), possibly some suspended particulate matter (i.e., in diesel engines), and small amounts of nitrogen oxides primarily comprised of NO and NO2 (collectively referred to as NOX). The NOX constituency of the exhaust may fluctuate between about 50 and about 1500 ppm and generally comprises far greater amounts NO than NO2 along with nominal amounts of N2O. The hot engine exhaust, which can reach temperatures of up to about 900° C., often needs to be treated before it can be released to the atmosphere.
  • An exhaust aftertreatment system may be associated with the lean-burn engine to help remove unwanted gaseous emissions and particulate matter that may be present in the lean-burn engine exhaust. The exhaust aftertreatment system may be configured to receive an exhaust flow from the lean-burn engine and generally aspires to cooperatively (1) oxidize CO into carbon dioxide (CO2), (2) oxidize HC's into CO2 and water (H2O), (3) convert NOX gases into nitrogen (N2) and O2, and (4) filter off or otherwise destroy any suspended particulate matter. A variety of exhaust aftertreatment system architectures that employ specially-catalyzed components have been devised and are able to sufficiently facilitate these reactions so that the exhaust expelled to the environment contains a much more desirable chemical makeup.
  • The normal operation of many exhaust aftertreatment system designs can result in ammonia (NH3) being introduced into the exhaust flow. Some exhaust aftertreatment system designs, for example, deliberately introduce controlled amounts of NH3 into the exhaust flow to provide a reductant species that reduces NOX to N2 over a selective catalytic reduction (SCR) catalyst. A metering system that directly injects NH3 or an NH3 precursor (i.e., urea) into the exhaust flow may be employed to supply NH3 to the SCR catalyst. Ammonia may also be passively generated from native NOX in the exhaust flow by periodically cycling a rich air/fuel mixture to the lean-burn engine and communicating the resultant engine exhaust over a close-coupled three-way-catalyst (TWC). The NH3 produced may then be stored on a downstream SCR catalyst and consumed when the lean-burn engine is combusting a lean air/fuel mixture. Other exhaust aftertreatment design systems, as another example, may include one or more lean NOX traps (LNT) that occasionally have to be regenerated and desulfated which, in turn, may cause NH3 to be introduced into the exhaust flow.
  • A clean-up oxidation catalyst is oftentimes included at or near the end of the exhaust aftertreatment system to oxidize any residual NH3 and other gaseous emissions that might otherwise escape to the atmosphere. Ammonia that manages to pass through the exhaust aftertreatment system is often referred to as “ammonia slip.” The clean-up oxidation catalyst used at this particular juncture of the exhaust aftertreatment system is traditionally formulated with about 5 to 10 g/ft3 of platinum group metals (PGM's) dispersed on a high-surface area support material such as alumina. Most or all of the clean-up oxidation catalyst's PGM loading is generally attributable to platinum, although smaller amounts of palladium and rhodium may also be included, if desired. A honeycomb flow-through monolith structure may carry the clean-up oxidation catalyst within several hundred to several thousand parallel flow-through cells to ensure sufficient contact between the exhaust flow and the clean-up oxidation catalyst.
  • The PGM's commonly used to make the clean-up oxidation catalyst, however, are quite expensive and have been shown, in some instances, to exhibit poor thermal durability when exposed to relatively high-temperature engine exhaust. The N2 selectivity of PGM-based clean-up oxidation catalysts can also be affected by thermal aging and fluctuations in the temperature and chemical composition of the exhaust flow. Such affects on N2 selectivity can cause the clean-up oxidation catalyst to oxidize NH3 into NOX—instead of N2—at an unacceptably high rate and thus lower the overall NOX conversion efficiency of the exhaust aftertreatment system.
  • SUMMARY OF EXEMPLARY EMBODIMENTS
  • A clean-up oxidation catalyst that comprises a selective catalytic reduction (SCR) catalyst and metal oxide particles selected from the group consisting of perovskite oxide particles and manganese-containing mixed metal oxide particles, and mixtures thereof, dispersed on the SCR catalyst may be employed at or near the end of an exhaust aftertreatment system to help prevent ammonia slip and the escape of unwanted gaseous emissions to the atmosphere. The clean-up oxidation catalyst can selectively oxidize NH3 to N2 in the hot, oxygen-abundant exhaust flow emanated from a lean-burn engine and communicated through the exhaust aftertreatment system. The inclusion of platinum group metals, such as platinum and palladium, in the clean-up oxidation catalyst may be avoided. Other exemplary and more detailed embodiments of the invention will become apparent from the detailed description that follows.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Exemplary embodiments of the invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
  • FIG. 1 is a generalized and schematic depiction of an exhaust aftertreatment system for a lean-burn engine that includes an exhaust gas treatment subsystem and a clean-up oxidation catalyst downstream from the exhaust gas treatment subsystem.
  • FIG. 2 is a generalized and schematic illustration of the relevant parts of one exemplary embodiment of the exhaust gas treatment subsystem.
  • FIG. 3 is a generalized and schematic illustration of the relevant parts of another exemplary embodiment of the exhaust gas treatment subsystem.
  • FIG. 4 is a graph that shows the oxidation capabilities of La0.9Sr0.1CoO3 particles for various reactions when exposed to simulated lean-burn engine exhaust.
  • FIG. 5 is a graph that shows the NH3 oxidation performance, when exposed to simulated lean-burn engine exhaust, of a degreened Fe/β-zeolite SCR catalyst, La0.9Sr0.1CoO3 particles, and three degreened clean-up oxidation catalysts each with a different La0.9Sr0.1CoO3 particle loading.
  • FIG. 6 is a graph that shows the NH3 oxidation performance, when exposed to simulated lean-burn engine exhaust, of a high-temperature aged Fe/β-zeolite SCR catalyst, La0.9Sr0.1CoO3 particles, and three high-temperature aged clean-up oxidation catalysts each with a different La0.9Sr0.1CoO3 particle loading.
  • FIG. 7 is a graph that shows how much of the NH3 oxidation shown in FIG. 5 resulted in the formation of NOX.
  • FIG. 8 is a graph that shows how much of the NH3 oxidation shown in FIG. 6 resulted in the formation of NOX.
  • FIG. 9 is a graph that shows the NH3 oxidation performance and the N2 selectivity, when exposed to simulate lean-burn engine exhaust, of a degreened and a high-temperature aged clean-up oxidation catalyst material having 12 wt. % La0.9Sr0.1CoO3 particles loaded onto a Fe/β-zeolite SCR catalyst and, for comparison purposes, a conventional platinum-containing catalyst.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • The following description is merely exemplary in nature and is in no way intended to limit the claimed invention(s), its application, or its uses.
  • A clean-up oxidation catalyst that comprises metal oxide particles dispersed on a selective catalytic reduction (SCR) catalyst may be employed at or near the end of an exhaust aftertreatment system to help prevent ammonia slip and the escape of unwanted gaseous emissions to the atmosphere. The metal oxide particles may be selected from the group consisting of perovskite oxide particles, manganese-containing mixed metal oxide particles, and mixtures thereof. The clean-up oxidation catalyst can selectively oxidize NH3 to N2 in the hot, oxygen-abundant exhaust flow emanated from a lean-burn engine and communicated through an upstream portion of the exhaust aftertreatment system. The temperature at which optimum NH3 oxidation occurs and the oxidation reaction's N2 selectivity can be influenced by the loading of the metal oxide particles as well as the aging of the clean-up oxidation catalyst. The inclusion of PGM's in the clean-up oxidation catalyst, although not prohibited, is not needed to achieve satisfactory NH3 oxidation over a robust temperature range. The opportunity to reduce the amount of PGM's used in an exhaust aftertreatment system can contribute to significant cost savings and help counteract the durability and N2 selectivity issues sometimes observed in PGM-based catalysts.
  • FIG. 1 depicts a generalized and schematic illustration of an exhaust aftertreatment system 10 for managing an exhaust flow 20 produced by a lean-burn engine 12 that is combusting a lean air/fuel (A/F) mixture 18. The exhaust aftertreatment system 10 receives the exhaust flow 20 from the lean-burn engine 12 and communicates a treated exhaust flow 24 downstream for expulsion to the atmosphere. The exhaust aftertreatment system 10, as illustrated here, may include an exhaust gas treatment subsystem 14 and a clean-up oxidation catalyst 16. The exhaust gas treatment subsystem 14 decreases to acceptable levels the amount of unwanted gaseous emissions and, if present, particulate matter that are contained in the exhaust flow 20. The clean-up oxidation catalyst 16 oxidizes any NH3 contained in an intermediate exhaust flow 22 that flows from the exhaust gas treatment subsystem 14 to help prevent ammonia slip to the atmosphere. The treated exhaust flow 24 may flow through other mechanical equipment, such as a muffler, after engaging the clean-up oxidation catalyst 16 but generally does not interact with any additional catalysts before being released to the atmosphere.
  • The lean-burn engine 12 may be any engine that is constructed and designed to combust the lean A/F mixture 18 at least part of the time. The lean A/F mixture 18 supplied to the lean-burn engine 12 generally contains more air than is stoichiometrically needed to combust the associated fuel. Known mechanical or electronic mechanisms may be used to control the air to fuel mass ratio of the lean A/F mixture 18 which, in general, often ranges from about 15 to about 65 depending on the engine load, RPM, and the type of lean-burn engine 12 (i.e., diesel or spark-ignition) being operated. Examples of engines that may be employed as the lean-burn engine 12 include a charge compression-ignition (diesel) engine, a lean-burn spark-ignition (gasoline) engine such as spark-ignition direct injection (SIDI) engine, or a homogeneous charge compression ignition (HCCI) engine. The general construction and operating requirements of these types of engines are well known to skilled artisans and, as such, need not be described in further detail.
  • The combustion of the lean A/F mixture 18 in the lean-burn engine 12 generates mechanical power and the exhaust flow 20 that is supplied to the exhaust aftertreatment system 10. The exhaust flow 20 generally includes a relatively large amount of N2 and O2, possibly some suspended particulate matter composed of uncombusted high-molecular weight hydrocarbons, and various unwanted gaseous emissions comprised of the following: (1) CO, (2) HC's, and (3) a NOX contingent primarily comprised of NO and NO2. The NOX contingent of the exhaust flow 20 may fluctuate between about 50 and about 1500 ppm. The proportion of NO and NO2 particles in the NOX contingent usually ranges from approximately 80%-95% NO and approximately 5%-20% NO2. Such a NO/NO2 particle distribution corresponds to a molar ratio of NO to NO2 that ranges from about 4 to about 19. The exhaust flow 20 may reach temperatures of up to 900° C. depending the distance between the lean-burn engine 12 and the exhaust aftertreatment system 10 as well as the presence of any intervening components such as a turbocharger turbine and/or an EGR bleed line. The temperature of the exhaust flow 20 along with the O2 content, which is relatively high, and the CO and HC's content, which are relatively low, promote an oxidizing environment in the exhaust flow 20.
  • The exhaust gas treatment subsystem 14 encompasses a large variety of system architectures that operate to remove a substantial portion of the CO, HC's, NOX, and particulate matter, if present, from the exhaust flow 20. A NOX abatement component, such as a lean NOX trap or a selective catalytic reduction (SCR) catalytic converter, may be included in the exhaust gas treatment subsystem 14 to reduce NOX to N2 in the oxidative environment of the exhaust flow 20. An assortment of other components such as, but not limited to, diesel oxidation converters, three-way catalytic converters, diesel particulate filters, and reductant metering devices are available and can be assembled to operate with the NOX abatement component, either individually or in select combinations with one another, to constitute the exhaust gas treatment subsystem 14.
  • The intermediate exhaust flow produced by the exhaust gas treatment subsystem 14 primarily includes N2, O2, H2O, and CO2. The intended operation of the exhaust gas treatment subsystem 14 and, in particular, the NOX abatement component, may further result in NH3 being present in the intermediate exhaust flow 22 as well as acceptable residual amounts of CO, HC's, NOX, and particulate matter. A number of factors and component operating requirements related to the lean-burn engine 12 and the exhaust gas treatment subsystem 14 may be responsible for the presence of NH3 in the intermediate exhaust flow 22 despite the sophisticated control strategies often associated with the exhaust aftertreatment system 10.
  • One exemplary embodiment of the exhaust gas treatment subsystem 14, which is identified as 14 a and depicted in FIG. 2, includes a diesel oxidation converter 30, an ammonia-SCR catalytic converter 32 located downstream of the diesel oxidation converter 30, a diesel particulate filter 34 located downstream of the ammonia-SCR catalytic converter 32, and a urea metering system 36. The exhaust gas treatment subsystem 14 a shown and described here may be used when the exhaust aftertreatment system 10 is coupled to a diesel engine.
  • The diesel oxidation converter 30 receives the exhaust flow 20 from the lean-burn engine 12. The diesel oxidation converter 30 houses a diesel oxidation catalyst that may comprise a combination of platinum and palladium or some other suitable oxidation catalyst formulation. The exhaust flow 20 traverses the diesel oxidation converter 30 and achieves intimate exposure with the diesel oxidation catalyst to promote the oxidation of CO (to CO2), HC's (to CO2 and H2O) and NO (to NO2). The oxidation of NO by the diesel oxidation catalyst typically does not decrease the NOX content in the exhaust flow 20; instead, the molar ratio of NO to NO2 is merely decreased as NO is oxidized to NO2. This downward adjustment to the NO:NO2 molar ratio may be desirable since the downstream ammonia-SCR catalyst 32 may convert NOX to N2 at lower temperatures more efficiently as the molar ratio of NO to NO2 decreases from that which is typically generated by the lean-burn engine 12.
  • The exhaust flow 20 exiting the diesel oxidation converter 30 is then combined with NH3 to form an exhaust mixture 44. The NH3 may be supplied by the urea metering device 36 which includes an on-board and refillable urea storage tank 38 fluidly connected to a urea injector 40. Urea, which is stored in the urea storage tank 38, may be injected into the exhaust flow 20 exiting the diesel oxidation converter 30 through the urea injector 40. The urea then quickly evaporates and undergoes thermolysis and hydrolysis reactions in the hot and oxygen-abundant exhaust flow 20 to generate NH3 and form the exhaust mixture 44. The amount of urea injected into the exhaust flow 20 may be monitored and controlled by known control techniques that attempt to regulate the amount of NH3 present in the exhaust mixture 20 despite fluctuations in the temperature, chemical composition, and flow rate of the exhaust flow 20. A mixer 42 or other suitable device may be provided upstream of the ammonia-SCR catalytic converter 32 to help evaporate the injected urea and homogeneously distribute small particles of NH3 throughout the exhaust mixture 44.
  • The ammonia-SCR catalytic converter 32 receives the exhaust mixture 44 and discharges a NOX-treated exhaust flow 46. The ammonia-SCR catalytic converter 32 houses an appropriate ammonia-SCR catalyst that can absorb NH3 and facilitate the reduction of NOX in the oxidative environment fostered by the exhaust mixture 44. The exhaust mixture 44 traverses the ammonia-SCR catalytic converter 32 and achieves intimate exposure with the ammonia-SCR catalyst to enable the reduction of NOX, largely to N2 and H2O, in the presence of NH3 and O2. The newly-generated N2 is then communicated from the ammonia-SCR catalytic converter 32 in the NOX-treated exhaust flow 46. The ammonia-SCR catalyst may comprise, for example, an ion-exchanged base-metal zeolite such as a Cu/zeolite or a Fe/zeolite. Several different zeolite crystal structures including β-zeolites and MFI-type zeolites are commonly used to make the ammonia-SCR catalyst. Supported base metal oxides, such as V2O5-WO3/TiO2 and V2O5/TiO2, may also be employed to formulate the ammonia-SCR catalyst.
  • A number of factors may influence the dynamic operating conditions of the ammonia-SCR catalytic converter 32 and result in NH3 being present in the NOX-treated exhaust flow 46 and ultimately the intermediate exhaust flow 22. Fast increases in the temperature or flow rate of the exhaust mixture 46 and/or the over-injection of urea into the exhaust flow 20, for instance, may trigger the release of significant amounts of NH3 from the ammonia-SCR catalyst or simply allow NH3 to pass through the ammonia-SCR catalytic converter 32 unabsorbed and unreacted.
  • The NOX-treated exhaust mixture 46 discharged from the ammonia-SCR catalytic converter 32 is then supplied to the diesel particulate filter 34 to remove any suspended particulate matter. The diesel particulate filter 34 may be constructed according to any known design. The intermediate exhaust flow 22 emerges from the diesel particulate filter 34.
  • Skilled artisans will appreciate that many modifications can be made to the exhaust gas treatment subsystem 14 a. For example, ammonia may be directly injected into the exhaust flow 20 instead of urea to form the exhaust mixture 44. As another example, the diesel particulate filter 34 may be placed between the diesel oxidation converter 30 and the ammonia-SCR catalytic converter 32 or combined with the diesel oxidation converter 30. As yet another example, the exhaust gas treatment subsystem 14 a may be altered to operate with a spark-ignition engine by substituting a catalytic converter that houses a three-way-catalyst (TWC) for the diesel oxidation converter 30 and removing the diesel particulate filter 34. The TWC may comprise a combination of platinum, palladium, and rhodium, or it may comprise some other suitable catalyst formulation.
  • Another exemplary embodiment of the exhaust gas treatment subsystem 14, which is identified as 14 b and depicted in FIG. 3, includes a catalytic converter 50 and a lean-NOX trap (LNT) 52 located downstream of the catalytic converter 50. The exhaust gas treatment system 14 b shown and described here may be used when the exhaust aftertreatment system 10 is coupled to a spark-ignition engine such as a SIDI engine.
  • The catalytic converter 50 receives the exhaust flow 20 from the lean-burn engine 12. The catalytic converter 50 houses a TWC catalyst that may comprise a combination of platinum, palladium, and rhodium. Other suitable TWC formulations may of course be employed. The exhaust flow 20 traverses the catalytic converter 50 and achieves intimate exposure with the TWC catalyst to promote the oxidation of CO (to CO2) and HC's (to CO2 and H2O). The TWC catalyst generally does not include a high enough proportional platinum loading to oxidize NO and significantly change the NO to NO2 molar ratio in the exhaust flow 20. The TWC catalyst can also oxidize CO and HC's and simultaneously reduce NOX to N2 during momentary periods when the lean-burn engine 12 is supplied with a rich A/F mixture to, for example, regenerate or desulfate the LNT 52.
  • The LNT 52 receives the exhaust flow 20 exiting the catalytic converter 50. The exhaust flow 20 traverses the LNT 52 and achieves intimate contact with a LNT catalyst housed in the LNT 52. The LNT catalyst exhibits NO2 trapping and NOX conversion capabilities and generally comprises an oxidation catalyst, a NOX storage catalyst, and a NOX reduction catalyst. The oxidation catalyst oxidizes NO to NO2 and the NOX storage catalyst traps or “stores” NO2 as a nitrate species as the exhaust flow 20 traverses the LNT 52. The oxidation catalyst may also oxidize other gaseous emissions such as CO and HC's, if present. The NOX reduction catalyst, as described below, catalyzes the reduction of NO and NO2 into N2 during regeneration of the LNT 52. A typical LNT catalyst formulation may comprise, for example, an alumina washcoat appropriately loaded with platinum, rhodium, and barium carbonate (BaCO3).
  • The NOX storage capacity of the LNT catalyst is not unlimited and at some point may need to be regenerated or purged of NOX-derived nitrate compounds. The LNT catalyst may be regenerated by introducing reductants—such as CO, HC's and H2—into the exhaust flow 20. This may be accomplished by decreasing the air to fuel mass ratio of the lean A/F mixture 18 so that the lean-burn engine 12 combusts a stoichiometric or rich A/F mixture. The resultant delivery of rich-burn exhaust effluents to the LNT 52 by way of the exhaust flow 20 causes the NOX-derived nitrate compounds stored in the LNT catalyst to become thermodynamically unstable which, in turn, triggers the release of NOX and the regeneration of future NOX storage sites. The liberated NOX is then reduced to N2 by excess reductants. The newly-generated N2 is communicated from the LNT 52 in the intermediate exhaust flow 22. Some NH3 may also be introduced into the intermediate exhaust flow 22 since it is possible for the NOX reduction catalyst to reduce NOX to NH3—instead of N2—during regeneration.
  • Skilled artisans will appreciate, much like before, that many modifications can be made to the exhaust gas treatment subsystem 14 b. For example, an oxidation catalyst, such as a diesel oxidation catalyst or a two-way-catalyst, may be provided upstream of the LNT 52 in addition to the catalytic converter 50 to lower the NO to NO2 molar ratio in the exhaust flow 20. This downward adjustment to the NO:NO2 molar ratio may be desirable since the downstream LNT 52 may convert NOX to N2 at lower temperatures more efficiently as the molar ratio of NO to NO2 decreases from that which is typically generated by the lean-burn engine 12. As another example, the exhaust gas treatment subsystem 14 b may be altered to operate with a diesel engine by substituting a diesel oxidation converter that houses a diesel oxidation catalyst for the catalytic converter 50 and adding a diesel particulate filter. The combustion of diesel fuel in the lean-burn engine 12, however, may additionally require periodic desulfation of the LNT catalyst to remove accumulate sulfur oxides (SOX). The LNT catalyst may be desulfated, for example, by introducing reductants into the exhaust flow 20 and heating the LNT catalyst to elevated temperatures of about 600° C. The desulfation of the LNT catalyst may cause NH3 to be introduced into the intermediate exhaust flow 22 in much the same way that regeneration of the LNT catalyst does. While the problem of accumulated SOX in the LNT catalyst is more prevalent when the lean-burn engine 12 is a diesel engine, desulfaton of the LNT catalyst or desulfation-like procedures may also be practiced under certain circumstances when the lean-burn engine is a spark-ignition engine.
  • Referring back to FIG. 1, the clean-up oxidation catalyst 16 receives the intermediate exhaust flow 22 and oxidizes any residual NH3 to N2. Other unwanted gaseous emissions that may have slipped through the exhaust gas treatment subsystem 14 may also be oxidized. The clean-up oxidation catalyst 16 may, in one embodiment, be housed in a separate catalytic converter device that is fluidly connected to the end of the exhaust gas treatment subsystem 14. The clean-up oxidation catalyst 16 may, for example, be carried on a support body contained within a canister. The canister may be constructed to communicate the intermediate exhaust flow 22 across or through the substrate body to induce intimate exposure between the intermediate exhaust flow 22 and the clean-up oxidation catalyst 16. Various constructions of the substrate body are possible. The substrate body may be a monolithic honeycomb structure that includes several hundred to several thousand parallel flow-through cells per square inch. Each of the flow-through cells may be defined by a wall surface to which the clean-up oxidation catalyst 16 is washcoated. The monolithic honeycomb structure may be formed from a material capable of withstanding the temperatures and chemical environment associated with the intermediate exhaust flow 22. Some specific examples of materials that may be used include ceramics such as extruded cordierite, α-alumina, silicon carbide, silicon nitride, zirconia, mullite, spodumene, alumina-silica-magnesia, zirconium silicate, sillimanite, petalite, or a heat and corrosion resistant metal such as titanium or stainless steel. The clean-up oxidation catalyst 16 may also, in another embodiment, be zone coated onto the trailing end of the most-downstream component or components included in the exhaust gas treatment subsystem 14 that communicate the intermediate flow 22 such as, for example, and with reference to FIG. 2, the diesel particulate filter 34.
  • The clean-up oxidation catalyst 16 comprises metal oxide particles selected from the group consisting of perovskite oxide particles and manganese-containing mixed metal oxide particles dispersed on a selective catalytic reduction (SCR) catalyst. The clean-up oxidation catalyst 16 can catalyze the oxidation of appreciable amounts of any NH3 contained in the intermediate exhaust flow 22 into N2 and H2O. The metal oxide particle loading and the aging of the clean-up oxidation catalyst 16 can influence the catalytic activity of the clean-up oxidation catalyst 16 including the temperature at which optimum NH3 oxidation occurs and the NH3 oxidation reaction's N2 selectivity. The clean-up oxidation catalyst 16 may also, in a related and coupled NH3 reaction, catalytically reduce the amount of any residual NOX contained in the intermediate exhaust flow 22 if both NOX and NH3 are present. Any appropriate technique may be used to disperse the metal oxide particles onto the SCR catalyst including washcoating and incipient wet impregnation.
  • The perovskite oxide particles that may be dispersed on the SCR catalyst encompass a class of compounds defined by the general formula ABO3. The “A” and “B” atoms may be complimentary cations of different sizes that coordinate with oxygen anions. A unit cell of the ABO3 crystal structure may feature a cubic closest packing arrangement with the “A” cation, which is generally the larger of the two cations, centrally located and surrounded by eight “B” cations situated in the octahedral voids of the packing arrangement. The “A” and “B” cations in such a packing arrangement respectively coordinate with twelve and six oxygen anions. The unit cell of the ABO3 crystal structure, however, is not necessarily limited to a cubic closest packing arrangement. Certain combinations of the “A” and “B” cations may indeed deviate from the cubic closest packing arrangement and assume, for instance, an orthorhombic, rhombohedral, or monoclinic packing structure. Small amounts of the “A” and/or “B” cations, moreover, may be substituted with different yet similarly sized “A1” and “B1” promoter cations to give a supercell crystal structure derived from the general ABO3 crystal structure and designated by the general formula A1-XA1XB1-YB1YO3, where both X and Y range from 0 to 1.
  • The perovskite oxide particles may comprise the same perovskite oxide or a mixture of two or more perovskite oxides. A great many combinations of perovskite oxides are available for use in the clean-up oxidation catalyst 16 since no fewer than 27 cations may be employed as the “A” cation and no fewer than 36 cations may be employed as the “B” cation. A listing of the cations most frequently employed as the “A” cation includes those of calcium (Ca), strontium (Sr), barium (Ba), bismuth (Bi), cadmium (Cd), cerium (Ce), lead (Pb), yttrium (Y), and lanthanum (La) while a listing of the cations most commonly employed as the “B” cation includes those of cobalt (Co), titanium (Ti), zirconium (Zr), niobium (Nb), tin (Sn), cerium (Ce), aluminum (Al), nickel (Ni), chromium (Cr), manganese (Mn), copper (Cu), and iron (Fe). Some specific and exemplary perovskite oxides that may constitute all or part of the perovskite oxide particles include LaCoO3, La0.9Sr0.1CoO3 , LaMnO3, La0.9Sr0.1MnO3, LaFeO3, and LaSr0.1Fe0.9O3.
  • The manganese-containing mixed metal oxide particles that may be dispersed on the SCR catalyst may include at least one of manganese-cerium oxides, MnXCeYOZ, manganese-zirconium oxides, MnXZrWOZ, or manganese-cerium-zirconium oxides, MnXCeYZrWOZ, with X ranging from 0.02 to 0.98, Y ranging from 0.02 to 0.98, W ranging from 0.02 to 0.98, and Z ranging from 1.0 to 3.0. Some specific examples of suitable manganese-containing mixed metal oxides include, but are not limited to, 0.5MnOV-0.5CeO2 where V ranges from 2 to 3, 0.3MnOV-0.7CeO2 where V ranges from 2 to 3, 0.1MnOV-0.9CeO2 where V ranges from 2 to 3, Mn0.1Ce0.9O2, Mn0.2Ce0.8O1.9, and Mn0.5Ce0.5O1.75.
  • The perovskite oxide particles and the manganese-containing mixed metal oxide particles, either alone or in combination, can help the clean-up oxidation catalyst 16 catalytically oxidize NH3 to N2 just as efficiently as platinum when exposed to the hot and oxygen-abundant intermediate exhaust flow 22. While not wishing to be bound by theory, it is believed that the perovskite oxide particles and the manganese-containing mixed metal oxide particles have the ability to donate oxygen anions to NH3 molecules while temporarily forming oxygen vacancies in their crystal structures. Readily available oxygen contained in the engine exhaust then disassociates to fill those oxygen anion vacancies and possibly react with additional NH3 molecules. The ability of the perovskite oxide particles and the manganese-containing mixed metal oxide particles to efficiently oxidize NH3 may significantly diminish or altogether eliminate the need to include PGM's such as platinum in the clean-up oxidation catalyst 16. The clean-up oxidation catalyst 16 may, as a result, provide the exhaust aftertreatment system 10 with a smaller amount of PGM's than a comparable exhaust aftertreatment system that incorporates a conventional PGM-based clean-up oxidation catalyst to prevent ammonia slip and the escape of other unwanted gaseous emissions.
  • The amount of the metal oxide particles present in the clean-up oxidation catalyst 16 may range from about 0.1 wt. % to about 20 wt. %, more specifically from about 0.5 wt. % to about 15 wt. %, and even more specifically from about 1.0 wt. % to about 12 wt. %, based on the weight of the clean-up oxidation catalyst 16. The specific metal oxide particle loading may be chosen, if desired, based on the normal expected operating temperature window of the exhaust flow 20 and the aging of the clean-up oxidation catalyst 16. A degreened (lightly-aged) clean-up oxidation catalyst 16 with a higher metal oxide particle loading (greater than about 5 wt. %), for example, tends to oxidize NH3 to N2 quite efficiently at lower exhaust temperatures (up to about 350° C.) although, at higher temperatures (above about 350° C.), it begins to oxidize some NH3 to NOX instead of N2. As another example, a degreened clean-up oxidation catalyst 16 with a lower metal oxide particle loading (less than about 2 wt. %) tends to oxidize NH3 to N2 more consistently with complete or almost complete N2 selectivity at both lower temperatures (up to about 350° C.) and higher temperatures (above about 350° C.). High-temperature aging can further affect the NH3 oxidation efficiency and the N2 selectivity of the clean-up oxidation catalyst 16. Such aging, in general, improves the N2 selectivity of the clean-up oxidation catalyst 16 at higher temperatures at the expense of NH3 oxidation efficiency at lower temperatures.
  • The SCR catalyst may be any material that can help facilitate the oxidation of NH3 to N2 when exposed to the intermediate exhaust 22. The SCR catalyst is generally a porous and high-surface area material—a wide variety of which are commercially available. The specific SCR catalyst used to formulate the clean-up oxidation catalyst 16 may be an ion-exchanged base metal zeolite or silver-supported alumina (Ag/Al2O3). The zeolite may be a β-type zeolite, a Y-type zeolite, or a MFI-type zeolite. Some specific examples of suitable ion-exchanged base metal zeolites that may be used include, but are not limited to, a β-zeolite that is ion-exchanged with Cu or Fe, a MFI-type zeolite that is ion exchanged with Cu or Fe, and a Y-type zeolite that is ion-exchanged with Na, Ba, Cu, or CuCo.
  • The particular composition of the clean-up oxidation catalyst 16 may be formulated based on a number of factors including the type and normal expected operating parameters of the lean-burn engine 12 and the design and construction of the exhaust gas treatment system 10. The clean-up oxidation catalyst 16 may, for example, comprise about 10-15 wt. % metal oxide particles washcoated onto a copper exchanged or iron exchanged β-zeolite. This particular catalyst composition may be employed if the lean-burn engine 12 is expected to generally operate at low speeds and/or with a low load demand. The clean-up oxidation catalyst 16 may also, as another example, comprise about 0.5-2.0 wt. % metal oxide particles washcoated onto a copper exchanged or iron exchanged β-zeolite. This particular catalyst composition may be employed if the lean-burn engine 12 is expected to generally operate at high speeds and/or with a high load demand. Other compositions of the clean-up oxidation catalyst 16 may of course be formulated and utilized by skilled artisans who are familiar with lean-burn engine exhaust aftertreatment technology.
  • EXAMPLE
  • This Example demonstrates the catalytic activity of several exemplary clean-up oxidation catalysts that were evaluated in a laboratory reactor configured to flow a simulated lean-burn engine exhaust feedstream. Each of the exemplary clean-up oxidation catalysts evaluated had a different weight percent loading of La0.9Sr0.1CoO3 particles washcoated onto a Fe/β-zeolite and was either degreened or subjected to high-temperature aging. The weight percent loading of the La0.9Sr0.1CoO3 particles for each exemplary clean-up oxidation catalyst is based on the weight of the clean-up oxidation catalyst (i.e., the total weight of the La0.9Sr0.1CoO3 particles and the SCR catalyst). While this Example evaluates different loadings of La0.9Sr0.1CoO3 particles (perovskite oxide particles) on a Fe/β-zeolite SCR catalyst, it is expected that the same general results and data would be achieved by either mixing the perovskite oxide particles with manganese-containing mixed metal oxide particles or completely substituting the perovskite oxide particles for manganese-containing mixed metal oxide particles.
  • A citric acid method was used to prepare a quantity of La0.9Sr0.1CoO3 particles. First, appropriate amounts of La(NO3)3.6H2O, Co(NO3)2.6H2O, and Sr(NO3)2 were dissolved in distilled water with citric acid monohydrate. The amount of water used was 46.2 mL per gram of La(NO3)3.6H2O, and the citric acid was added to the distilled water in a 10 wt. % excess to ensure complete complexation of the metal ions. The solution was set on a stirring and heating plate and stirred for 1 hour at room temperature. The solution was then heated to 80° C. under continuous stirring to slowly evaporate the water until the solution became a viscous gel and started evolving NO/NO2 gases. The resulting spongy material was crushed and calcined at 700° C. for about 5 hours in static air. The temperature was then ramped down at a rate of 10° C. per minute. When the temperature reached just below 300° C., the citrate ions combusted vigorously and caused a large spike in temperature and powder displacement. The powder was thus covered with several layers of ZrO2 balls to prevent such powder displacement yet still allow for gas mobility. The prepared La0.9Sr0.1CoO3 particles were characterized by N2 physisorption for surface area measurements and X-ray diffraction for their bulk structure measurements.
  • The La0.9Sr0.1CoO3 particles were then ball milled with 6.33 mL of water per gram of the La0.9Sr0.1CoO3 particles for 18 hours. Afterwards, the slurry was stirred continuously and 0.33 mL HNO3 (0.1M) per gram of the La0.9Sr0.1CoO3 particles and 5 mL of water per gram of the La0.9Sr0.1CoO3 particles was added. The resulting washcoat solution had a concentration of 0.114 grams of La0.9Sr0.1CoO3 particles per mL. The slurry was washcoated onto a monolithic honeycomb core sample (¾ inch diameter by 1 inch length with a flow-through cell density of 400 per square inch) that had already been washcoated with the Fe/β-zeolite. Next, after washcoating of the La0.9Sr0.1CoO3 particles, the monolithic honeycomb core sample was dried and calcined at 550° C. for 5 hours in static air.
  • This procedure was repeated several times to prepare monolithic honeycomb core samples that had a La0.9Sr0.1CoO3 particle loading of either 1.0, 5.5, or 12 wt. %. Two core samples were prepared for each wt % loading of La0.9Sr0.1CoO3 particles. One clean-up catalyst at each La0.9Sr0.1CoO3 particle loading was degreened and the other was high-temperature aged. The degreened clean-up oxidation catalysts were hydrothermally aged in air+10% H2O for 5 hours at 550° C. The high-temperature aged clean-up oxidation catalysts were hydrothermally aged in air+10% H2O for 48 hours at 700° C.
  • Monolithic core samples were also prepared that included only a Fe/β-zeolite SCR catalyst, only La0.9Sr0.1CoO3 particles, and a conventional platinum-containing catalyst, all for comparative evaluation purposes. The Fe/β-zeolite SCR catalysts were either degreened or high-temperature aged similar to the clean-up oxidation catalysts. The La0.9Sr0.1CoO3 particles alone were aged slightly different as indicated below.
  • FIG. 4 shows the catalytic performance of the La0.9Sr0.1CoO3 particles for various reactions at temperatures ranging from 150° C. to 550° C. Temperature (° C.) is plotted on the X-axis and conversion (%) is plotted on the Y-axis. The conversion of NO (NO+O2) is identified by numeral 60, the conversion of NH3 (NH3+O2) is identified by numeral 62, and the conversion of NOX (NO+NH3+O2) is identified by numeral 64. The La0.9Sr0.1CoO3 particles were hydrothermally aged in air+10% H2O for 5 hours at 700° C. The simulated exhaust feedstream passed over the La0.9Sr0.1CoO3 particles to determine NO conversion (60) had a space velocity of about 30,000 h−1 and comprised approximately 10% O2, 400 ppm NO, and the balance N2. The simulated exhaust feedstream passed over the La0.9Sr0.1CoO3 particles to determine NH3 conversion (62) had a space velocity of about 30,000 h−1 and comprised approximately 10% O2, 5% H2O, 5% CO2, 200 ppm NH3, and the balance N2. The simulated exhaust feedstream passed over the La0.9Sr0.1CoO3 particles to determine NOX conversion (64) had a space velocity of about 30,000 h−1 and comprised approximately 10% O2, 5% H2O, 5% CO2, 200 ppm NO, 200 ppm NH3, and the balance N2.
  • As shown in FIG. 4, the La0.9Sr0.1CoO3 particles oxidized NO and NH3 rather well at temperatures above about 225° C. and 350° C., respectively. The undesirable oxidation of NH3 into NOX, however, occurred at temperatures of about 250° C. to about 450° C. At temperatures above about 450° C., as shown, the oxidation of NH3 to N2 was much preferred over the oxidation of NOX to N2. This oxidation selectivity resulted in the overall NOX conversion being negative.
  • FIGS. 5-8 depict some catalytic performance data of the exemplary clean-up oxidation catalysts. The same catalytic performance data for the Fe/zeolite SCR catalyst and the La0.9Sr0.1CoO3 particles are also shown for comparison purposes.
  • FIGS. 5 and 6 show the NH3 oxidation performance, in the absence of NO, of the Fe/β-zeolite SCR catalyst alone, the La0.9Sr0.1CoO3 particles alone, and the clean-up oxidation catalysts at temperatures ranging from 150° C. to 550° C. Temperature (° C.) is plotted on the X-axis and NH3 conversion (%) is plotted on the Y-axis. The Fe/β-zeolite SCR catalyst and the clean-up catalysts represented in FIG. 5 were degreened while the Fe/β-zeolite SCR catalyst and the clean-up oxidation catalysts represented in FIG. 6 were high-temperature aged. The La0.9Sr0.1CoO3 particles in both of FIGS. 5 and 6 were hydrothermally aged for 5 hours at 700° C. The simulated exhaust feedstream passed over the Fe/β-zeolite SCR catalyst and the clean-up oxidation catalysts had a space velocity of about 30,000 h−1 and comprised approximately 10% O2, 5% H2O, 5% CO2, 200 ppm NH3, and the balance N2.
  • The NH3 conversion of the Fe/β-zeolite SCR catalyst is identified by numeral 70 in FIG. 5 and numeral 70′ in FIG. 6, the NH3 conversion of the La0.9Sr0.1CoO3 particles is identified by numeral 72 in FIG. 5 and numeral 72′ in FIG. 6, the NH3 conversion of the clean-up oxidation catalyst having 1.0 wt. % perovskite oxide particles is identified as numeral 74 in FIG. 5 and numeral 74′ in FIG. 6, the NH3 conversion of the clean-up oxidation catalyst having 5.5 wt. % perovskite oxide particles is identified as numeral 76 in FIG. 5 and numeral 76′ in FIG. 6, and the NH3 conversion of the clean-up oxidation catalyst having 12.0 wt. % perovskite oxide particles is identified as numeral 78 in FIG. 5 and numeral 78′ in FIG. 6.
  • As shown in FIGS. 5 and 6, the degreened clean-up oxidation catalysts having a 5.5 wt. % and 12 wt. % La0.9Sr0.1CoO3 particle loading (FIG. 5) oxidized NH3 more effectively than the La0.9Sr0.1CoO3 particles alone while the high-temperature aged clean-up oxidation catalysts with the same La0.9Sr0.1CoO3 particles loadings (FIG. 6) oxidized NH3 quite comparably to the La0.9Sr0.1CoO3 particles alone. The clean-up oxidation catalysts having a 1.0 wt. % La0.9Sr0.1CoO3 particle loading—both degreened and high-temperature aged—and the Fe/β-zeolite SCR catalyst alone oxidized NH3 to a lesser extent.
  • FIGS. 7 and 8 are related to FIGS. 5 and 6, respectively, and show how much of the oxidized NH3 formed NOX. Temperature (° C.) is plotted on the X-axis and NOX selectivity (%)—i.e., the conversion of NH3 to NOX—is plotted on the Y-axis. The Fe/β-zeolite SCR catalyst and the clean-up oxidation catalysts represented in FIG. 7 were degreened while the Fe/β-zeolite SCR catalyst and the clean-up oxidation catalysts represented in FIG. 8 were high-temperature aged. The La0.9Sr0.1CoO3 particles in both of FIGS. 7 and 8 were hydrothermally aged for 5 hours at 700° C.
  • The NOX selectivity of the Fe/β-zeolite SCR catalyst is identified by numeral 80 in FIG. 7 and numeral 80′ in FIG. 8, the NOX selectivity of the La0.9Sr0.1CoO3 particles is identified by numeral 82 in FIG. 7 and numeral 82′ in FIG. 8, the NOX selectivity of the clean-up oxidation catalyst having 1.0 wt. % perovskite oxide particles is identified as numeral 84 in FIG. 7 and numeral 84′ in FIG. 8, the NOX conversion of the clean-up oxidation catalyst having 5.5 wt. % perovskite oxide particles is identified as numeral 86 in FIG. 7 and numeral 86′ in FIG. 8, and the NOX conversion of the clean-up oxidation catalyst having 12.0 wt. % perovskite oxide particles is identified as numeral 88 in FIG. 7 and numeral 88′ in FIG. 8.
  • As can be seen, the La0.9Sr0.1CoO3 particles alone began to oxidize NH3 to NOX quite readily at temperatures above about 300° C. while the Fe/β-zeolite SCR catalyst—both degreened and high-temperature aged—produced essentially no NOX. The degreened and the high-temperature aged clean-up oxidation catalysts having a 1.0 wt. % La0.9Sr0.1CoO3 particle loading also generated very little NOX, if any. The degreened and the high-temperature aged clean-up oxidation catalysts with 5.5 wt. % and 12 wt. % La0.9Sr0.1CoO3 particle loadings, however, showed an uptick in NOX selectivity once temperatures eclipsed about 400° C. This increase in NOX selectivity was less pronounced for the high-temperature aged 5.5 wt. % and 12 wt. % La0.9Sr0.1CoO3 particle loaded clean-up oxidation catalysts than for the corresponding degreened clean-up oxidation catalysts.
  • FIG. 9 relates to FIGS. 5-8 and compares the NH3 oxidation performance and the N2 selectivity of the degreened and high-temperature aged 12 wt. % La0.9Sr0.1CoO3 particle loaded clean-up oxidation catalysts with that of the conventional platinum-containing catalyst. Temperature (° C.) is plotted on the X-axis and both NH3 conversion (%) and N2 selectivity (%) are plotted on the Y-axis. The conventional platinum-containing catalyst included 5 g/ft3 of platinum supported on alumina. The 12 wt. % La0.9Sr0.1CoO3 particle loaded clean-up oxidation catalysts were exposed to the same simulated exhaust feedstream as recited in the description of FIGS. 5-6. The conventional platinum-containing catalyst was exposed to a simulated exhaust feedstream at a space velocity of about 60,000 h−1 that comprised approximately 12% O2, 4.5% H2O, 4.5% CO2, 200 ppm NH3, and the balance N2.
  • The NH3 conversion of the degreened 12 wt. % La0.9Sr0.1CoO3 particle loaded clean-up oxidation catalyst is identified by numeral 90, the N2 selectivity of the degreened 12 wt. % La0.9Sr0.1CoO3 particle loaded clean-up oxidation catalyst is identified by numeral 92, the NH3 conversion of the high-temperature aged 12 wt. % La0.9Sr0.1CoO3 particle loaded clean-up oxidation catalyst is identified by numeral 94, the N2 selectivity of the high-temperature aged 12 wt. % La0.9Sr0.1CoO3 particle loaded clean-up oxidation catalyst is identified by numeral 96, the NH3 conversion of the conventional platinum-containing catalyst is identified by numeral 98, and the N2 selectivity of the conventional platinum-containing catalyst is identified by numeral 100.
  • As shown, both of the degreened and the high-temperature aged 12 wt. % La0.9Sr0.1CoO3 particle loaded clean-up oxidation catalysts demonstrated at least comparable and, in many respects superior, N2 selectivity and NH3 oxidation performance to that of the conventional platinum-containing catalyst.
  • The above description of embodiments is merely exemplary in nature and, thus, variations thereof are not to be regarded as a departure from the spirit and scope of the invention.

Claims (20)

What is claimed is:
1. An exhaust aftertreatment system for removing gaseous emissions and suspended particulate matter, if present, contained in exhaust produced by a lean-burn engine that is combusting a lean mixture of air and fuel, the exhaust aftertreatment system comprising:
an exhaust gas treatment subsystem that receives an exhaust flow from the lean-burn engine and communicates an intermediate exhaust flow, the exhaust gas treatment subsystem comprising a NOX abatement component and operating to oxidize carbon monoxide and unburned and/or partially burned hydrocarbons, remove suspended particulate matter if present, and reduce NOX so that the intermediate exhaust flow comprises a lesser amount of carbon monoxide, unburned and/or partially burned hydrocarbons, suspended particulate matter if present, and NOX than the exhaust flow; and
a clean-up oxidation catalyst that receives the intermediate exhaust flow from the exhaust gas treatment subsystem and communicates a treated exhaust flow, the treated exhaust flow being communicated to the atmosphere without being exposed to another catalyst material after the clean-up oxidation catalyst, the clean-up oxidation catalyst comprising (1) a selective catalytic reduction catalyst and (2) metal oxide particles dispersed on the selective catalytic reduction catalyst, wherein the metal oxide particles are selected from the group consisting of perovskite oxide particles, manganese-containing mixed metal oxide particles, and mixtures thereof, and wherein the metal oxide particles are present in an amount that ranges from about 0.1 wt. % to about 20 wt. % based on the weight of the clean-up oxidation catalyst.
2. The exhaust aftertreatment system set forth in claim 1, wherein the perovskite oxide particles comprise at least one of LaCoO3, La0.9Sr0.1CoO3, LaMnO3, La0.9Sr0.1MnO3, LaFeO3, or LaSr0.1Fe0.9O3, and wherein the manganese-containing mixed metal oxide particles comprise at least one of MnXCeYOZ, MnXZrWOZ, or MnXCeYZrWOZ in which X ranges from 0.02 to 0.98, Y ranges from 0.02 to 0.98, W ranges from 0.02 to 0.98, and Z ranges from 1.0 to 3.0.
3. The exhaust aftertreatment system set forth in claim 1, wherein the selective catalytic reduction catalyst comprises silver-supported alumina, an ion-exchanged base-metal zeolite, or a base metal oxide selected from the group consisting of V2O5-WO3/TiO2, V2O5/TiO2, and mixtures thereof.
4. The exhaust aftertreatment system set forth in claim 3, wherein the ion-exchanged base-metal zeolite comprises at least one of a β-zeolite that is ion-exchanged with at least one of a Cu or Fe, a MFI-type zeolite that is ion-exchanged with at least one of a Cu or Fe, or a Y-type zeolite that is ion-exchanged with at least one of a Na, Ba, Cu, Co, or CuCo.
5. The exhaust aftertreatment system set forth in claim 1, wherein the amount of metal oxide particles dispersed on the selective catalytic reduction catalyst ranges from about 0.5 wt. % to about 15 wt. % based on the weight of the clean-up oxidation catalyst.
6. The exhaust aftertreatment system set forth in claim 1, wherein the amount of metal oxide particles dispersed on the selective catalytic reduction catalyst ranges from about 1.0 wt. % to about 12 wt. % based on the weight of the clean-up oxidation catalyst.
7. The exhaust aftertreatment system set forth in claim 1, wherein the NOX abatement component is a lean NOX trap that comprises a LNT catalyst.
8. The exhaust aftertreatment system set forth in claim 7, wherein the exhaust gas treatment subsystem further comprises at least one of a diesel oxidation converter or a catalytic converter located upstream of the lean-NOX trap, wherein the diesel oxidation converter comprises a diesel oxidation catalyst and the catalytic converter comprises a three-way-catalyst.
9. The exhaust aftertreatment system set forth in claim 1, wherein the NOX abatement component is an ammonia-SCR catalytic converter that comprises an ammonia-SCR catalyst.
10. The exhaust aftertreatment system set forth in claim 9, wherein the exhaust gas treatment subsystem further comprises at least one of a diesel oxidation converter or a catalytic converter located upstream of the ammonia-SCR catalytic converter, wherein the diesel oxidation converter comprises a diesel oxidation catalyst and the catalytic converter comprises a three-way-catalyst.
11. The exhaust aftertreatment system set forth in claim 9, wherein the exhaust gas treatment subsystem further comprises a urea-metering device that introduces urea into the exhaust flow to form an exhaust mixture that comprises ammonia and the exhaust flow, and wherein the ammonia-SCR catalytic converter receives the exhaust mixture.
12. The exhaust aftertreatment system set forth in claim 1, wherein the clean-up oxidation catalyst is carried on a support body and housed in a canister that is fluidly connected to the exhaust gas treatment subsystem.
13. A method for removing gaseous emissions and suspended particulate matter, if present, contained in exhaust produced by a lean-burn engine that is combusting a lean mixture of air and fuel, the method comprising:
supplying a lean-burn engine with a lean mixture of air and fuel;
combusting the lean mixture of air and fuel in the lean-burn engine to produce an exhaust flow;
delivering the exhaust flow to an exhaust gas treatment subsystem that comprises a NOX abatement component that can catalytically reduce NOX to N2;
operating the exhaust gas treatment subsystem to produce an intermediate exhaust flow that comprises a lesser amount of carbon monoxide, unburned and/or partially burned hydrocarbons, suspended particulate matter if present, and NOX than the exhaust flow; and
delivering the intermediate exhaust flow to a clean-up oxidation catalyst to oxidize ammonia, if present, and produce a treated exhaust flow, the clean-up oxidation catalyst comprising (1) a selective catalytic reduction catalyst and (2) metal oxide particles dispersed on the selective catalystic reduction catalyst, wherein the metal oxide particles are selected from the group consisting of perovskite oxide particles, manganese-containing mixed metal oxide particles, and mixtures thereof.
14. The method set forth in claim 13, further comprising communicating the treated exhaust flow to the atmosphere without exposing the treated exhaust flow to another catalyst material after the clean-up oxidation catalyst.
15. The method set forth in claim 13, wherein operating the exhaust gas treatment subsystem comprises:
delivering the exhaust flow to a diesel oxidation converter or a catalytic converter, the diesel oxidation converter comprising a diesel oxidation catalyst and the catalytic converter comprising a three-way-catalyst; and
delivering the exhaust flow to a lean-NOX trap that includes a LNT catalyst that includes an oxidation catalyst, a NOX storage catalyst, and a NOX reduction catalyst.
16. The method set forth in claim 13, wherein operating the exhaust gas treatment subsystem comprises:
delivering the exhaust flow to a diesel oxidation converter or a catalytic converter, the diesel oxidation converter comprising a diesel oxidation catalyst and the catalytic converter comprising a three-way-catalyst;
introducing ammonia into the exhaust flow to form an exhaust mixture; and
delivering the exhaust mixture to an ammonia-SCR catalytic converter that comprises an ammonia-SCR catalyst.
17. The method set forth in claim 13, wherein the metal oxide particles comprise at least one of LaCoO3, La0.9Sr0.1CoO3, LaMnO3, La0.9Sr0.1MnO3, LaFeO3, LaSr0.1Fe0.9O3, MnXCeYOZ, MnXZrWOZ, or MnXCeYZrWOZ in which X ranges from 0.02 to 0.98 Y ranges from 0.02 to 0.98, W ranges from 0.02 to 0.98, and Z ranges from 1.0 to 3.0.
18. The method set forth in claim 13, wherein the selective catalytic reduction catalyst comprises at least one of silver-supported alumina, an ion-exchanged base-metal zeolite, or a base metal oxide selected from the group consisting of V2O5-WO3/TiO2, V2O5/TiO2, and mixtures thereof.
19. The method set forth in claim 18, wherein the ion-exchanged base-metal zeolite comprises at least one of a β-zeolite that is ion-exchanged with at least one of a Cu or Fe, a MFI-type zeolite that is ion-exchanged with at least one of a Cu or Fe, or a Y-type zeolite that is ion-exchanged with at least one of a Na, Ba, Cu, Co, or CuCo.
20. The method set forth in claim 13, wherein the metal oxide particles are dispersed on the selective catalytic reduction catalyst in an amount that ranges from about 0.1 wt. % to about 20 wt. % based on the weight of the clean-up oxidation catalyst.
US12/860,180 2010-08-20 2010-08-20 Catalyst materials for ammonia oxidation in lean-burn engine exhaust Abandoned US20120042631A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/860,180 US20120042631A1 (en) 2010-08-20 2010-08-20 Catalyst materials for ammonia oxidation in lean-burn engine exhaust
DE102011109946A DE102011109946A1 (en) 2010-08-20 2011-08-10 Catalyst materials for ammonia oxidation in lean-burn engine exhaust gas
CN2011103054372A CN102400744A (en) 2010-08-20 2011-08-19 Catalyst materials for ammonia oxidation in lean-burn engine exhaust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/860,180 US20120042631A1 (en) 2010-08-20 2010-08-20 Catalyst materials for ammonia oxidation in lean-burn engine exhaust

Publications (1)

Publication Number Publication Date
US20120042631A1 true US20120042631A1 (en) 2012-02-23

Family

ID=45557520

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/860,180 Abandoned US20120042631A1 (en) 2010-08-20 2010-08-20 Catalyst materials for ammonia oxidation in lean-burn engine exhaust

Country Status (3)

Country Link
US (1) US20120042631A1 (en)
CN (1) CN102400744A (en)
DE (1) DE102011109946A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765092B2 (en) 2011-06-03 2014-07-01 GM Global Technology Operations LLC Non-stoichiometric perovskite oxide oxidation catalyst for oxidizing NO to NO2
US20150049574A1 (en) * 2013-08-16 2015-02-19 Cummins Emission Solutions Inc. Air curtain for urea mixing chamber
US20150224486A1 (en) * 2012-08-17 2015-08-13 Johnson Matthey Public Limited Company ZEOLITE PROMOTED V/TiW CATALYSTS
US20160001228A1 (en) * 2014-07-02 2016-01-07 Johnson Matthey Public Limited Company Perovskite with an ovlerlayer scr component as an ammonia oxidation catalyst and a system for exhaust emission control on diesel engines
US20160222901A1 (en) * 2013-09-11 2016-08-04 Umicore Ag & Co. Kg Reduction of n2o in the exhaust gas of lean-burn petrol engines
EP3151960A2 (en) * 2014-06-04 2017-04-12 Johnson Matthey Public Limited Company Non-pgm ammonia slip catalyst
JP2017512279A (en) * 2014-02-27 2017-05-18 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Exhaust system with N2O catalyst in exhaust gas recirculation circuit
US10005031B2 (en) 2015-12-08 2018-06-26 GM Global Technology Operations LLC Dual-layer catalyst
US10046310B2 (en) 2015-10-05 2018-08-14 GM Global Technology Operations LLC Catalytic converters with age-suppressing catalysts
US10159960B2 (en) 2016-10-25 2018-12-25 GM Global Technology Operations LLC Catalysts with atomically dispersed platinum group metal complexes
US10422036B2 (en) 2015-10-23 2019-09-24 GM Global Technology Operations LLC Suppressing aging of platinum group metal particles in a catalytic converter
US11547987B2 (en) 2017-05-31 2023-01-10 Furukawa Electric Co., Ltd. Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method
US11648543B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648538B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11654422B2 (en) 2017-05-31 2023-05-23 Furukawa Electric Co., Ltd. Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization
US11655157B2 (en) 2017-05-31 2023-05-23 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11666894B2 (en) 2017-05-31 2023-06-06 Furukawa Electric Co., Ltd. Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
US11680211B2 (en) 2017-05-31 2023-06-20 Furukawa Electric Co., Ltd. Structured catalyst for hydrodesulfurization, hydrodesulfurization device including the structured catalyst, and method for producing structured catalyst for hydrodesulfurization
US11684909B2 (en) 2017-05-31 2023-06-27 Furukawa Electric Co., Ltd. Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon
US11904306B2 (en) 2017-05-31 2024-02-20 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8466083B2 (en) 2010-08-27 2013-06-18 GM Global Technology Operations LLC Bi-functional catalyst materials for lean exhaust NOx reduction
CN104415749A (en) * 2013-08-22 2015-03-18 上海郎特汽车净化器有限公司 SCR catalyst used for processing diesel-engine tail gas NOx and preparation method thereof
KR101703624B1 (en) 2015-09-30 2017-02-07 현대자동차 주식회사 Exhaust gas processing system
CN108472585B (en) * 2015-11-05 2021-10-26 韩国机械研究院 Process exhaust gas pollutant removal apparatus having regeneration device for pollutant oxidation catalyst
CN106807386A (en) * 2016-12-27 2017-06-09 中国科学院上海硅酸盐研究所 A kind of Ca-Ti ore type carbon-smoke combustion effective catalyst and its preparation method and application
US10697340B1 (en) * 2019-01-31 2020-06-30 Hyundai Motor Company After treatment system and after treatment method for lean-burn engine
CN113847123B (en) * 2020-06-28 2022-11-25 长城汽车股份有限公司 Vehicle and tail gas aftertreatment system thereof
CN111841572B (en) * 2020-08-06 2021-04-30 合肥神舟催化净化器股份有限公司 High-acidity single-coating perovskite-based ammonia oxidation catalyst for diesel engine and preparation and application methods thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020042341A1 (en) * 1996-04-10 2002-04-11 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds and methods of making and using thereof
US6919047B1 (en) * 2000-10-10 2005-07-19 Corning Incorporated Reduction of nitrogen oxides in diesel exhaust gases and fuel injection system
US20050241296A1 (en) * 2004-05-03 2005-11-03 Mccabe Robert W Exhaust after-treatment system for a lean burn internal combustion engine
US20090263300A1 (en) * 2008-04-16 2009-10-22 Yang Xiaolin D Stabilized Iridium and Ruthenium Catalysts
US20100236224A1 (en) * 2009-03-20 2010-09-23 Basf Catalysts Llc Emissions Treatment System With Lean NOx Trap
US20110232362A1 (en) * 2010-03-23 2011-09-29 Caterpillar Inc. Detection of exhaust filter effectiveness

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020042341A1 (en) * 1996-04-10 2002-04-11 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds and methods of making and using thereof
US6919047B1 (en) * 2000-10-10 2005-07-19 Corning Incorporated Reduction of nitrogen oxides in diesel exhaust gases and fuel injection system
US20050241296A1 (en) * 2004-05-03 2005-11-03 Mccabe Robert W Exhaust after-treatment system for a lean burn internal combustion engine
US20090263300A1 (en) * 2008-04-16 2009-10-22 Yang Xiaolin D Stabilized Iridium and Ruthenium Catalysts
US20100236224A1 (en) * 2009-03-20 2010-09-23 Basf Catalysts Llc Emissions Treatment System With Lean NOx Trap
US20110232362A1 (en) * 2010-03-23 2011-09-29 Caterpillar Inc. Detection of exhaust filter effectiveness

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Simakov, A.V. "Catalytic Conversion of Nitrogen Containing Compounds over Monolithlic Oxid Catalysts". Elsevier. React. Kinet. Catal. Lett. 60, 331-338 (1997) *
Wallin, Mikala. "Studies on Lean NOx reduction with ammonia. Catalysts and Sensors". Chalmers University of Technology. (2005). *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765092B2 (en) 2011-06-03 2014-07-01 GM Global Technology Operations LLC Non-stoichiometric perovskite oxide oxidation catalyst for oxidizing NO to NO2
US20150224486A1 (en) * 2012-08-17 2015-08-13 Johnson Matthey Public Limited Company ZEOLITE PROMOTED V/TiW CATALYSTS
US10252252B2 (en) * 2012-08-17 2019-04-09 Johnson Matthey Public Limited Company Zeolite promoted V/TiW catalysts
US20150049574A1 (en) * 2013-08-16 2015-02-19 Cummins Emission Solutions Inc. Air curtain for urea mixing chamber
US9926822B2 (en) * 2013-08-16 2018-03-27 Cummins Emission Solutions, Inc. Air curtain for urea mixing chamber
US10605138B2 (en) 2013-08-16 2020-03-31 Cummins Emission Solutions Inc. Air curtain for urea mixing chamber
USRE48525E1 (en) * 2013-08-16 2021-04-20 Cummins Emission Solutions Inc. Air curtain for urea mixing chamber
US20160222901A1 (en) * 2013-09-11 2016-08-04 Umicore Ag & Co. Kg Reduction of n2o in the exhaust gas of lean-burn petrol engines
US9719446B2 (en) * 2013-09-11 2017-08-01 Umicore Ag & Co. Kg Reduction of N2O in the exhaust gas of lean-burn petrol engines
JP2017512279A (en) * 2014-02-27 2017-05-18 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Exhaust system with N2O catalyst in exhaust gas recirculation circuit
EP3151960A2 (en) * 2014-06-04 2017-04-12 Johnson Matthey Public Limited Company Non-pgm ammonia slip catalyst
US11198094B2 (en) 2014-06-04 2021-12-14 Johnson Matthey Public Limited Company Non-PGM ammonia slip catalyst
EP3151960B1 (en) * 2014-06-04 2022-02-16 Johnson Matthey Public Limited Company Non-pgm ammonia slip catalyst
RU2715701C2 (en) * 2014-06-04 2020-03-03 Джонсон Мэтти Паблик Лимитед Компани Non-platinum group metal ammonia slip catalyst
EP3981509A1 (en) * 2014-06-04 2022-04-13 Johnson Matthey Public Limited Company Non-pgm ammonia slip catalyst
GB2531389B (en) * 2014-07-02 2017-04-12 Johnson Matthey Plc Layered ammonia slip catalyst comprising an SCR catalyst and perovskite layers
WO2016004151A1 (en) * 2014-07-02 2016-01-07 Johnson Matthey Public Limited Company Perovskite with an ovlerlayer scr component as an ammonia oxidation catalyst and a system for exhaust emission control on diesel engines
US20160001228A1 (en) * 2014-07-02 2016-01-07 Johnson Matthey Public Limited Company Perovskite with an ovlerlayer scr component as an ammonia oxidation catalyst and a system for exhaust emission control on diesel engines
GB2531389A (en) * 2014-07-02 2016-04-20 Johnson Matthey Plc Ammonia slip catalyst and a system containing it for exhaust emission control on diesel engines
US9649596B2 (en) * 2014-07-02 2017-05-16 Johnson Matthey Public Limited Company Perovskite with an ovlerlayer SCR component as an ammonia oxidation catalyst and a system for exhaust emission control on diesel engines
CN107073460A (en) * 2014-07-02 2017-08-18 庄信万丰股份有限公司 It is used as the perovskite with coating SCR components and the system for dual fuel of diesel engine control of ammoxidation catalyst
JP2017521246A (en) * 2014-07-02 2017-08-03 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Perovskite with top layer SCR component as ammonia oxidation catalyst and system for exhaust emission control in diesel engines
US10046310B2 (en) 2015-10-05 2018-08-14 GM Global Technology Operations LLC Catalytic converters with age-suppressing catalysts
US10422036B2 (en) 2015-10-23 2019-09-24 GM Global Technology Operations LLC Suppressing aging of platinum group metal particles in a catalytic converter
US10005031B2 (en) 2015-12-08 2018-06-26 GM Global Technology Operations LLC Dual-layer catalyst
US10159960B2 (en) 2016-10-25 2018-12-25 GM Global Technology Operations LLC Catalysts with atomically dispersed platinum group metal complexes
US11648538B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648543B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11547987B2 (en) 2017-05-31 2023-01-10 Furukawa Electric Co., Ltd. Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method
US11654422B2 (en) 2017-05-31 2023-05-23 Furukawa Electric Co., Ltd. Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization
US11655157B2 (en) 2017-05-31 2023-05-23 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11666894B2 (en) 2017-05-31 2023-06-06 Furukawa Electric Co., Ltd. Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
US11680211B2 (en) 2017-05-31 2023-06-20 Furukawa Electric Co., Ltd. Structured catalyst for hydrodesulfurization, hydrodesulfurization device including the structured catalyst, and method for producing structured catalyst for hydrodesulfurization
US11684909B2 (en) 2017-05-31 2023-06-27 Furukawa Electric Co., Ltd. Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon
US11904306B2 (en) 2017-05-31 2024-02-20 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure

Also Published As

Publication number Publication date
DE102011109946A1 (en) 2012-02-23
CN102400744A (en) 2012-04-04

Similar Documents

Publication Publication Date Title
US20120042631A1 (en) Catalyst materials for ammonia oxidation in lean-burn engine exhaust
US8466083B2 (en) Bi-functional catalyst materials for lean exhaust NOx reduction
US8409518B2 (en) Sulfur tolerant perovskite supported catalysts
US8539760B2 (en) Catalyst materials for NOx oxidation in an exhaust aftertreatment system that uses passive ammonia SCR
US9011809B2 (en) Ammonia oxidation catalyst, exhaust gas purification device using same, and exhaust gas purification method
US8865615B2 (en) Ammonia oxidation catalyst, exhaust gas purification device using same, and exhaust gas purification method
US7071141B2 (en) Perovskite catalyst system for lean burn engines
US8513155B2 (en) Perovskite-type compounds for use in lean NOx traps
JP5110954B2 (en) Exhaust gas purification catalyst apparatus using selective reduction catalyst and exhaust gas purification method
KR100241666B1 (en) Catalyst for purifying oxygen rich exhaust gas
JP2019048295A (en) V/TiW CATALYST ACTIVATED BY ZEOLITE
US8268274B2 (en) Catalyst combinations and methods and systems for oxidizing nitric oxide in a gas stream
US6214307B1 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
US9216410B2 (en) Systems and methods for using Pd1+ in a TWC
JP2018535818A (en) Catalyst filter having soot catalyst and SCR catalyst
KR20030090728A (en) SOx Tolerant NOx Trap Catalysts and Methods of Making and Using the Same
JP2007534467A (en) Noble metal catalyst stabilized with iron oxide for removing pollutants from exhaust gas from lean burn engine
KR20140015295A (en) Nox absorber catalyst
US20090025375A1 (en) Catalyst composition and structure for a diesel-fueled autothermal reformer placed in and exhaust stream
KR20070073598A (en) Layered sox tolerant nox trap catalysts and methods of making and using the same
JP2004523686A (en) Catalyst and method for removing NOx and SOx from gas streams
JP3800200B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JP2015183587A (en) Emission control device, emission control method and emission control catalyst for heat engine
JP2005023895A (en) Method and device for exhaust-emission control for lean-burn-system internal combustion engine
JP2000042370A (en) Catalyst device for purifying exhaust gas and its using method

Legal Events

Date Code Title Description
AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHMIEG, STEVEN J.;LI, WEI;KIM, CHANG H.;AND OTHERS;REEL/FRAME:024866/0758

Effective date: 20100811

AS Assignment

Owner name: WILMINGTON TRUST COMPANY, DELAWARE

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025324/0658

Effective date: 20101027

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025781/0333

Effective date: 20101202

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION