JP2005023895A - Method and device for exhaust-emission control for lean-burn-system internal combustion engine - Google Patents

Method and device for exhaust-emission control for lean-burn-system internal combustion engine Download PDF

Info

Publication number
JP2005023895A
JP2005023895A JP2003270080A JP2003270080A JP2005023895A JP 2005023895 A JP2005023895 A JP 2005023895A JP 2003270080 A JP2003270080 A JP 2003270080A JP 2003270080 A JP2003270080 A JP 2003270080A JP 2005023895 A JP2005023895 A JP 2005023895A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
internal combustion
combustion engine
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003270080A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamazaki
清 山崎
Yasutaka Nagai
康貴 長井
Masaoki Iwasaki
正興 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2003270080A priority Critical patent/JP2005023895A/en
Publication of JP2005023895A publication Critical patent/JP2005023895A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently purify exhaust emission of a lean-burn-system internal combustion engine by reducing NO<SB>x</SB>in the exhaust emission by NH<SB>3</SB>. <P>SOLUTION: A NH<SB>3</SB>-adsorption NO<SB>x</SB>-reduction catalyst 3 is provided in an exhaust emission passage in a lean-burn-system internal combustion engine. On the catalyst, NH<SB>3</SB>is once adsorbed, and NO<SB>x</SB>in the exhaust emission is reduced by the adsorbed NH<SB>3</SB>. At least either one of NH<SB>3</SB>or a precursor of NH<SB>3</SB>is intermittently supplied to the upstream of the NH<SB>3</SB>-adsorption NO<SB>x</SB>-reduction catalyst 3. When NH<SB>3</SB>is supplied in the exhaust gas, the NH<SB>3</SB>is firstly adsorbed in the NH<SB>3</SB>-adsorption NO<SB>x</SB>-reduction catalyst 3, then the adsorbed NH<SB>3</SB>reacts efficiently with NO<SB>x</SB>in the exhaust emission to effect NO<SB>x</SB>-reduction purification. NH<SB>3</SB>reacts with NO<SB>x</SB>at a molar ratio of 1:1, but even if NH<SB>3</SB>is excessively supplied, the excess NH<SB>3</SB>remains in the state of being adsorbed on the NH<SB>3</SB>-adsorption NO<SB>x</SB>-reduction catalyst 3, so NH<SB>3</SB>is not discharged. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は排ガス浄化方法と排ガス浄化装置に関し、詳しくは酸素過剰である希薄燃焼方式内燃機関からの排ガス中のNOx をNH3 で還元して浄化する排ガス浄化方法と排ガス浄化装置に関する。 The present invention relates to an exhaust gas purification method and an exhaust gas purification device, and more particularly to an exhaust gas purification method and an exhaust gas purification device that reduce and purify NO x in exhaust gas from a lean combustion internal combustion engine with excess oxygen with NH 3 .

発電所、各種化学工場あるいは自動車エンジンなどから排出されるNOx は、光化学スモッグや酸性雨の発生原因とされており、その効果的な除去手段の開発が望まれている。例えば希薄燃焼方式内燃機関からの排ガスは、多くの場合酸素を数容量%以上含むため、酸素存在下においてNOx を効率よく浄化できる処理法を用いる必要がある。 NO x emitted from power plants, various chemical factories, automobile engines, etc. is considered to be the cause of photochemical smog and acid rain, and the development of effective removal means is desired. For example, exhaust gas from a lean combustion internal combustion engine often contains several volume% or more of oxygen, and therefore it is necessary to use a treatment method that can efficiently purify NO x in the presence of oxygen.

このような処理法として、例えばゼオライトにCuを担持したNOx 選択還元触媒を用い、排ガス中のHCによってNOx を選択還元して浄化する方法がある。しかし現状のNOx 選択還元触媒には、実用上十分なNOx 浄化性能と耐久性能を満足するものがない。またNOx に対して大過剰のHCを必要とするため、過剰分のHCが排出される恐れがある。 As such a treatment method, for example, there is a method in which NO x selective reduction catalyst in which Cu is supported on zeolite is used, and NO x is selectively reduced and purified by HC in exhaust gas. However, none of the current NO x selective reduction catalysts satisfy practically sufficient NO x purification performance and durability performance. Further, since a large excess of HC is required with respect to NO x , there is a risk that excess HC will be discharged.

また、排ガスをNH3 と接触させるNH3 脱硝法が知られている。このNH3 を還元剤とするNH3 脱硝法は、排ガスに酸素が1容量%以上共存していてもNH3 がNOx と選択的に反応するため、NOx 浄化率及び還元剤の使用効率の点から有利な方法とされている。 Further, NH 3 denitration method of contacting the exhaust gas with the NH 3 is known. NH 3 denitration method of the NH 3 with a reducing agent, utilization efficiency for even oxygen exhaust gas coexist 1 volume% or more NH 3 selectively reacts with NO x, NO x purification rate and a reducing agent This is an advantageous method.

このNH3 脱硝法に用いられるNH3 脱硝触媒としては、例えば「触媒講座7(基本工業触媒反応)」(講談社発行)の第 248頁に記載されているようなV2O5−TiO2触媒や、V−W−Ti系触媒、特開昭53−030995号公報に記載の触媒等が例示される。 Examples of NH 3 denitration catalysts used in this NH 3 denitration method include V 2 O 5 —TiO 2 catalysts as described on page 248 of “Catalyst Course 7 (Basic Industrial Catalytic Reaction)” (published by Kodansha). And a VW-Ti catalyst, a catalyst described in JP-A-53-030995, and the like.

ところがこのようなNH3 脱硝触媒では、SV=10000/h程度の小さい空間速度をもつガスの浄化においては広い温度範囲で高い活性が得られるが、これを超える空間速度の場合には充分な活性が得られない。そのため空間速度が大きな自動車排ガス中などに用いる場合には、充分な活性を得ようとすると必要な触媒量が多くなり、触媒装置が大型化するという欠点がある。 However, with such NH 3 denitration catalyst, high activity is obtained over a wide temperature range in the purification of gas having a small space velocity of about SV = 10000 / h. However, when the space velocity exceeds this, sufficient activity is obtained. Cannot be obtained. For this reason, when it is used in automobile exhaust gas having a large space velocity, there is a drawback in that a sufficient amount of catalyst is required to obtain sufficient activity and the catalyst device is enlarged.

そこで特開平10−146528号公報には、アルミナ( Al2O3)担体に少なくともパラジウム(Pd)と亜鉛(Zn)を担持したNH3 脱硝触媒が開示されている。このNH3 脱硝触媒によれば、SV=10000/hを超えるような高い空間速度領域においても、 300〜 400℃の低い温度で高いNOx 浄化活性が得られる。したがって触媒量が少なくても十分なNOx 浄化活性が得られ、触媒装置を小型化できるので自動車の排ガス浄化用触媒などとして用いることができる。 JP-A-10-146528 discloses an NH 3 denitration catalyst in which at least palladium (Pd) and zinc (Zn) are supported on an alumina (Al 2 O 3 ) support. According to this NH 3 denitration catalyst, high NO x purification activity can be obtained at a low temperature of 300 to 400 ° C. even in a high space velocity region exceeding SV = 10000 / h. Therefore, even if the amount of catalyst is small, sufficient NO x purification activity can be obtained, and the catalyst device can be miniaturized, so that it can be used as an exhaust gas purification catalyst for automobiles.

NOx とNH3 との反応は、(1)式の反応式で表される。 The reaction between NO x and NH 3 is represented by the reaction formula (1).

NO+NH3 +( 1/4)O2 → N2+( 3/2)H2O (1)
NH3 脱硝触媒を用いる場合には、NOx 量に見合うだけの量のNH3 の添加が必要となり、NH3 が過剰に添加された場合には過剰分のNH3 はそのまま排出されてしまうという不具合がある。そこでNH3 の添加量はNOx に対してモル比で1:1となるように精密に制御する必要があるが、運転状況によって排ガス組成が大きく変動する自動車エンジンの場合には、このような制御が困難である。すなわち総量ではNOx :NH3 =1:1であっても、瞬間的にはNOx 又はNH3 が排出されることになってしまう。さらにNH3 脱硝触媒はバナジウムやCuなどの重金属を含むため、自動車の排ガス浄化用触媒としては好ましくない。
NO + NH 3 + (1/4) O 2 → N 2 + (3/2) H 2 O (1)
That in the case of using NH 3 denitration catalyst, the addition of NH 3 in an amount of commensurate to the amount of NO x is required, NH 3 in excess if the NH 3 was excessively added would be directly discharged There is a bug. Therefore, it is necessary to precisely control the addition amount of NH 3 so as to have a molar ratio of 1: 1 with respect to NO x . It is difficult to control. That is, even if NO x : NH 3 = 1: 1 in the total amount, NO x or NH 3 is instantaneously discharged. Furthermore, since NH 3 denitration catalyst contains heavy metals such as vanadium and Cu, it is not preferable as a catalyst for exhaust gas purification of automobiles.

また、特開平05−317652号公報などに記載の、NOx 吸蔵還元型触媒を用いることも考えられる。NOx 吸蔵還元型触媒によれば、リーン雰囲気でNOx が吸蔵され、間欠的にリッチ雰囲気とされたときに放出されたNOx を、豊富に存在する還元成分によって還元浄化することができる。しかし間欠的にリッチ雰囲気とする必要があることから、燃費の抑制には制約が生じる。 Further, according etc. JP-A 05-317652 and JP also conceivable to use a NO x storage-and-reduction type catalyst. According to the NO x storage-reduction catalyst, NO x is occluded in the lean atmosphere, the released NO x when it is intermittently rich atmosphere, it is possible to reduce and purify by extensive reduction component present. However, since it is necessary to intermittently have a rich atmosphere, there are restrictions on the suppression of fuel consumption.

さらにNOx 吸蔵還元型触媒を用い、NOx 吸蔵材に吸蔵されたNOx をNH3 で還元する方法もある。しかしNOx 吸蔵材自体は、NOx とNH3 との反応の触媒とはなり得ない。また、NOx 吸蔵材とPtなどの貴金属とは離間して担持されているために、吸蔵部位と反応部位とが離間することになり、反応のためにはその間をNOx が移動しなければならない。そのため反応性が低く、特に 300℃以下の低温域ではNOx の還元が困難である。そしてNOx 吸蔵材は塩基性であるために、同じ塩基性物質であるNH3 が近接しにくく吸蔵されたNOx との反応性が低い。また排ガス中のSOx がNOx 吸蔵材と反応し、NOx 吸蔵能が消失するという問題もある。
特開昭53−030995号 特開平05−317652号 特開平10−146528号 「触媒講座7(基本工業触媒反応)」(講談社発行)第 248頁
Further using a NO x storage-and-reduction type catalyst is also a method of reducing the NO x occluded in the NO x storage material in NH 3. However, the NO x storage material itself cannot be a catalyst for the reaction between NO x and NH 3 . In addition, since the NO x storage material and the noble metal such as Pt are supported separately from each other, the storage site and the reaction site are separated from each other, and NO x must move between them for the reaction. Don't be. Therefore, the reactivity is low, and it is difficult to reduce NO x especially at a low temperature of 300 ° C or lower. Since the NO x storage material is basic, NH 3, which is the same basic substance, is difficult to approach and has low reactivity with the stored NO x . The SO x in the exhaust gas reacts with the NO x storage material, there is a problem that the NO x storage ability is lost.
JP 53-030995 A JP 05-317652 A JP-A-10-146528 “Catalyst Course 7 (Basic Industrial Catalysis)” (published by Kodansha), page 248

本発明はこのような事情に鑑みてなされたものであり、希薄燃焼方式内燃機関からの排ガス中のNOx をNH3 で還元して効率よく浄化することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to efficiently purify NO x in exhaust gas from a lean combustion internal combustion engine by reducing with NH 3 .

上記課題を解決する本発明の希薄燃焼方式内燃機関の排ガス浄化方法の特徴は、NH3 を一旦吸着し排ガス中のNOx を吸着したNH3 で還元するNH3 吸着NOx 還元触媒を希薄燃焼方式内燃機関の排ガス流路に配置し、NH3 吸着NOx 還元触媒の上流側にNH3 及びNH3 前駆体の少なくとも一方を断続的に供給することにある。 To solve the above problems lean burn characteristics of the exhaust gas purifying method for an internal combustion engine of the present invention, lean burn the adsorbed NH 3 the NO x reduction catalyst for reducing with NH 3 adsorbed the NO x in the exhaust gas temporarily adsorbs NH 3 place in the exhaust gas line of type internal combustion engine is to intermittently supply at least one of NH 3 and NH 3 precursor upstream of the NH 3 adsorbing the NO x reduction catalyst.

NH3 前駆体は尿素又は尿素水溶液であることが望ましい。 The NH 3 precursor is desirably urea or an aqueous urea solution.

また複数の気筒をもつ希薄燃焼方式内燃機関の少なくとも一つの気筒である制御気筒を断続的に燃料過剰のリッチ空燃比で運転し、残りの気筒を常時空気過剰のリーン空燃比で運転し、制御気筒からの排ガス流路に排ガスからNH3 を生成するNH3 生成触媒を配置し、NH3 生成触媒より下流側で全気筒からの排ガスが合流して流れる合流排ガス流路にNH3 吸着NOx 還元触媒を配置し、NH3 生成触媒で生成したNH3 をNH3 吸着NOx 還元触媒でNOx の還元に使用することも好ましい。 In addition, a control cylinder, which is at least one cylinder of a lean combustion internal combustion engine having a plurality of cylinders, is intermittently operated with a rich air-fuel ratio with excessive fuel, and the remaining cylinders are always operated with a lean air-fuel ratio with excessive air to control. An NH 3 generation catalyst that generates NH 3 from exhaust gas is placed in the exhaust gas flow path from the cylinder, and the NH 3 adsorption NO x flows into the combined exhaust gas flow path where exhaust gases from all cylinders flow downstream from the NH 3 generation catalyst. the reduction catalyst is disposed, it is preferred to use the reduction of the NO x and NH 3 generated by the NH 3 synthesizing catalyst by NH 3 adsorbing the NO x reduction catalyst.

そして本発明の希薄燃焼方式内燃機関の排ガス浄化装置の特徴は、希薄燃焼方式内燃機関の排ガス流路に配置されたNH3 及びNH3 前駆体の少なくとも一方を排ガス中に断続的に供給するNH3 供給手段と、NH3 供給手段の下流側に配置されたNH3 を一旦吸着し排ガス中のNOx を吸着したNH3 で還元するNH3 吸着NOx 還元触媒と、を含んでなることにある。 The feature of the exhaust gas purification apparatus of the lean combustion type internal combustion engine of the present invention is that the NH 3 and the NH 3 precursor arranged in the exhaust gas flow path of the lean combustion type internal combustion engine intermittently supply at least one of them into the exhaust gas. 3 a supply means, and the adsorbed NH 3 the NO x reduction catalyst for reducing with NH 3 and NH 3, which is disposed downstream of the supply means once adsorbed NH 3 adsorbed the NO x in the exhaust gas, that comprise is there.

またもう一つの本発明の希薄燃焼方式内燃機関の排ガス浄化装置の特徴は、複数の気筒をもつ希薄燃焼方式内燃機関の少なくとも一つの気筒である制御気筒からの排ガス流路に排ガスからNH3 を生成するNH3 生成触媒を配置し、NH3 生成触媒より下流側で全気筒からの排ガスが合流して流れる合流排ガス流路にNH3 を一旦吸着し排ガス中のNOx を吸着したNH3 で還元するNH3 吸着NOx 還元触媒を配置したことにある。 Another feature of the exhaust gas purification apparatus for a lean combustion internal combustion engine according to the present invention is that NH 3 from exhaust gas is introduced into an exhaust gas flow path from a control cylinder, which is at least one cylinder of a lean combustion internal combustion engine having a plurality of cylinders. the resulting NH 3 synthesizing catalyst arranged in the NH 3 adsorbed the NO x in the exhaust gas temporarily adsorbs NH 3 in the confluent exhaust passage exhaust gas flows merges from all the cylinders from the NH 3 synthesizing catalyst downstream This is because an NH 3 adsorption NO x reduction catalyst to be reduced is arranged.

制御気筒は断続的に燃料過剰のリッチ空燃比で運転され、残りの気筒は常時空気過剰のリーン空燃比で運転されることが望ましい。   It is desirable that the control cylinder is intermittently operated with a rich air-fuel ratio with excess fuel, and the remaining cylinders are always operated with a lean air-fuel ratio with excess air.

NH3 吸着NOx 還元触媒は、β型ゼオライト及びZSM-5型ゼオライトの少なくとも一方に鉄(Fe)を担持してなるものとすることが望ましい。 The NH 3 adsorption NO x reduction catalyst is preferably formed by supporting iron (Fe) on at least one of β-type zeolite and ZSM-5-type zeolite.

本発明の排ガス浄化方法及び排ガス浄化装置によれば、希薄燃焼方式内燃機関からの排ガスを効率よく浄化することができ、しかも燃費の悪化も抑制することができる。   According to the exhaust gas purification method and the exhaust gas purification device of the present invention, exhaust gas from a lean combustion internal combustion engine can be efficiently purified, and deterioration of fuel consumption can be suppressed.

本発明の排ガス浄化方法及び排ガス浄化装置では、NH3 吸着NOx 還元触媒の上流側にNH3を断続的に供給する。このNH3 吸着NOx 還元触媒は、NH3 の吸着能に優れるとともに、(1)式に示したNOx 選択還元反応活性が高い。したがって、排ガス中にNH3 が供給されると、NH3は先ずNH3 吸着NOx 還元触媒に吸着され、NH3 はNOx と効率よく反応してNOx を還元浄化する。また(1)式に従えばNOx とNH3 とはモル比が1:1で反応するが、NH3 を過剰に供給したとしても過剰分はNH3 吸着NOx 還元触媒に吸着された状態を維持するため、NH3 が排出されることがない。したがって反応に十分なNH3 をNH3 吸着NOx 還元触媒に吸着させておくことができ、NOx を十分に還元浄化することができる。 In the exhaust gas purification method and exhaust gas purification apparatus of the present invention, intermittently supplying NH 3 upstream of the NH 3 adsorbing the NO x reduction catalyst. This NH 3 adsorption NO x reduction catalyst is excellent in the adsorption ability of NH 3 and has high NO x selective reduction reaction activity shown in the formula (1). Therefore, when the NH 3 in the exhaust gas is supplied, NH 3 is first adsorbed to the NH 3 adsorbing the NO x reduction catalyst, NH 3 will reduce and purify the NO x reacts well NO x and efficiency. Further, according to the formula (1), NO x and NH 3 react at a molar ratio of 1: 1, but even if NH 3 is supplied in excess, the excess is adsorbed on the NH 3 adsorption NO x reduction catalyst. Therefore, NH 3 is not discharged. Therefore, NH 3 sufficient for the reaction can be adsorbed on the NH 3 adsorption NO x reduction catalyst, and NO x can be sufficiently reduced and purified.

NH3 吸着NOx 還元触媒としては、NH3 を吸着しNOx をNH3 で還元する能力を有するものが用いられ、例えばβ型ゼオライト及びZSM-5型ゼオライトの少なくとも一方に鉄(Fe)を担持してなる触媒を用いることが望ましい。β型ゼオライト及びZSM-5型ゼオライトは、強いブレンステッド酸性質を有している。またβ型ゼオライトやZSM-5型ゼオライトに担持されたFeは、空の電子軌道を生成し易いため、これがルイス酸点となる。したがって、約 500℃以下の温度で多くの酸点にNH3 を吸着することができ、多量のNH3 を吸着することが可能となる。 The NH 3 adsorption the NO x reduction catalyst, those are used which have the ability to reduce in NH 3 and NO x adsorbing NH 3, for example, β-type zeolite and at least one iron of ZSM-5 type zeolite (Fe) It is desirable to use a supported catalyst. β-type zeolite and ZSM-5 type zeolite have strong Bronsted acid properties. Further, Fe supported on β-type zeolite and ZSM-5 type zeolite easily generates empty electron orbits, and this becomes a Lewis acid point. Therefore, NH 3 can be adsorbed at many acid sites at a temperature of about 500 ° C. or less, and a large amount of NH 3 can be adsorbed.

CuやVを含む酸化物触媒は、(1)式の反応に高い活性を示すことが知られ、Feを含む酸化物触媒はこれらよりも活性が低い。しかし、β型ゼオライト及びZSM-5型ゼオライトの少なくとも一方に鉄(Fe)を担持してなる触媒は、CuやVを含む酸化物触媒と同等以上の活性を示す。これは、β型ゼオライトやZSM-5型ゼオライトにイオン交換担持されたFeはきわめて高分散に担持され、酸素原子で覆われる状態となる酸素被毒を受けにくいので、NOx 及びNH3 の活性化能に優れているため、と考えられる。 It is known that an oxide catalyst containing Cu or V shows high activity in the reaction of the formula (1), and an oxide catalyst containing Fe is less active than these. However, a catalyst obtained by supporting iron (Fe) on at least one of β-type zeolite and ZSM-5-type zeolite exhibits an activity equal to or higher than that of an oxide catalyst containing Cu or V. This is because Fe ion-supported on β-type zeolite and ZSM-5-type zeolite is supported in extremely high dispersion and is not susceptible to oxygen poisoning, which is covered with oxygen atoms, so the activity of NO x and NH 3 This is thought to be because of its excellent chemical ability.

したがってβ型ゼオライト及びZSM-5型ゼオライトの少なくとも一方に鉄(Fe)を担持してなる触媒を用いることで、NH3 の吸着能がさらに向上し、NOx の還元浄化性能もさらに向上する。 Therefore, by using a catalyst in which iron (Fe) is supported on at least one of β-type zeolite and ZSM-5-type zeolite, NH 3 adsorption ability is further improved, and NO x reduction and purification performance is further improved.

β型ゼオライト及びZSM-5型ゼオライトの少なくとも一方に鉄(Fe)を担持してなるNH3 吸着NOx 還元触媒において、Feの担持量は Fe2O3として 0.1〜10重量%の範囲であることが望ましい。担持量が 0.1重量%より少ないとNH3 の吸着能及びNOx の還元能が低下し、10重量%より多く担持するとゼオライトに担持されず分離したFeが活性の低いFeの酸化物となるので好ましくない。 In an NH 3 adsorption NO x reduction catalyst in which iron (Fe) is supported on at least one of β-type zeolite and ZSM-5 type zeolite, the supported amount of Fe is in the range of 0.1 to 10% by weight as Fe 2 O 3. It is desirable. If the supported amount is less than 0.1% by weight, the adsorption ability of NH 3 and the reducing ability of NO x are reduced. If the supported amount is more than 10% by weight, the separated Fe becomes an oxide of Fe having low activity without being supported on the zeolite. It is not preferable.

排ガス中にNH3 を供給するには、NH3 ガスを添加する方法、アンモニア水を噴霧添加する方法、あるいは尿素やヘキサメチレンテトラミンなど分解してNH3 を生成する物質(NH3 前駆体)をそのまま又は溶液として噴霧添加する方法などがある。尿素又は尿素水溶液を添加するようにすれば、臭気の問題なく安価に添加することができる。 To supply NH 3 into the exhaust gas, a method of adding NH 3 gas, a method of spraying ammonia water, or a substance that generates NH 3 by decomposition such as urea or hexamethylenetetramine (NH 3 precursor) There is a method of spray addition as it is or as a solution. If urea or urea aqueous solution is added, it can be added at low cost without problems of odor.

NH3 の供給は、断続的に行う。すなわちNH3 の供給時には、NH3 吸着NOx 還元触媒のNH3 吸着量が飽和するまでNH3 を供給することができ、飽和点に達した時点又は飽和点に達する前に供給を停止することでNH3 の排出を防止することができる。 NH 3 is supplied intermittently. That is, when the supply of NH 3, can be adsorbed NH 3 amount of NH 3 adsorbed the NO x reduction catalyst to supply the NH 3 to saturation, to stop the supply prior to reaching the point, or saturation point reached saturation point Can prevent NH 3 emissions.

上記した本発明の排ガス浄化方法を行うことができる本発明の排ガス浄化装置は、希薄燃焼方式内燃機関の排ガス流路に配置されたNH3 及びNH3 前駆体の少なくとも一方を排ガス中に断続的に供給するNH3 供給手段と、NH3 供給手段の下流側に配置されたNH3 を一旦吸着し排ガス中のNOx を吸着したNH3 で還元するNH3 吸着NOx 還元触媒と、を含んでなることを特徴としている。 The exhaust gas purification apparatus of the present invention capable of performing the above-described exhaust gas purification method of the present invention is such that at least one of NH 3 and NH 3 precursor disposed in the exhaust gas flow path of a lean combustion internal combustion engine is intermittently contained in the exhaust gas. includes a NH 3 supply means for supplying, and NH 3 adsorbing the NO x reduction catalyst for reducing with NH 3 and NH 3, which is disposed downstream of the supply means once adsorbed NH 3 adsorbed the NO x in the exhaust gas, to It is characterized by

NH3 供給手段は、NH3 及びNH3 前駆体の少なくとも一方が気体、液体あるいは固体のそれぞれによって異なるが、圧縮ガス噴出装置、液体噴霧装置、粉末供給装置など、公知の手段を用いることができる。 As for the NH 3 supply means, at least one of NH 3 and the NH 3 precursor varies depending on each of gas, liquid, and solid, but known means such as a compressed gas ejection device, a liquid spray device, and a powder supply device can be used. .

また空燃比を燃料リッチに調整するとともにNH3 生成触媒を併用することで、NH3 及びNH3 前駆体の少なくとも一方を用いることなく、NH3 供給手段を不要として、排ガス中にNH3 を供給することができる。すなわちNH3 吸着NOx 還元触媒の上流側にNH3 生成触媒を配置し、空気に対して僅かに燃料リッチ条件で所定時間運転する。するとNH3 生成触媒では、CO、HC、H2などの不完全燃焼の生成物及び水蒸気とNOx との反応によりNH3 が生成し、NH3 吸着NOx 還元触媒に供給される。そしてNH3 吸着NOx 還元触媒に吸着されたNH3 が排ガス中のNOx と反応し、NOx を還元除去するとともにNH3 自身も消費されて消滅する。 Further, by a combination of NH 3 synthesizing catalyst with adjusting the air-fuel ratio to the fuel rich supply without using at least one of NH 3 and NH 3 precursors, as unnecessary NH 3 supply means, the NH 3 in the exhaust gas can do. That is, an NH 3 production catalyst is disposed upstream of the NH 3 adsorption NO x reduction catalyst, and the fuel cell is operated for a predetermined time under a slightly fuel rich condition with respect to air. Then, in the NH 3 production catalyst, NH 3 is produced by the reaction between incomplete combustion products such as CO, HC, H 2 and water vapor and NO x, and is supplied to the NH 3 adsorption NO x reduction catalyst. The NH 3 adsorption the NO x reduction catalyst NH 3 adsorbed in reacts with NO x in the exhaust gas, even NH 3 itself as well as reduce and remove NO x disappears is consumed.

このNH3 生成触媒としては、公知の触媒を用いることができるが、Pt及びPdの少なくとも一方を金属酸化物担体に担持してなる触媒が好ましい。金属酸化物担体としては、アルミナ、チタニア、ジルコニア、セリアなどが例示される。また貴金属の担持量は、金属酸化物担体に対して0.05〜10重量%の範囲が望ましい。0.05重量%未満であると活性の発現が困難となり、10重量%を超えて担持しても活性が飽和するとともにコストアップとなり高温時に貴金属に粒成長が生じるようになる。 As this NH 3 production catalyst, a known catalyst can be used, but a catalyst in which at least one of Pt and Pd is supported on a metal oxide carrier is preferable. Examples of the metal oxide support include alumina, titania, zirconia, and ceria. The amount of noble metal supported is preferably in the range of 0.05 to 10% by weight with respect to the metal oxide support. If the amount is less than 0.05% by weight, it becomes difficult to express the activity. Even if the amount exceeds 10% by weight, the activity is saturated and the cost is increased, so that noble metal grows at a high temperature.

このようなNH3 生成触媒は、高効率でNOx をNH3 に転換できるとともに、希薄燃焼剰時に排出された未燃HCあるいはCOなどの有害成分を酸化除去できること、及びNH3 吸着NOx 還元触媒より上流側に配置されるため比較的高温に曝されるものの耐熱性に優れていること、などの点で好適である。 Such NH 3 generation catalyst can convert NO x to NH 3 with high efficiency, and can oxidize and remove harmful components such as unburned HC or CO discharged during lean combustion surplus, and NH 3 adsorption NO x reduction Since it is disposed upstream of the catalyst, it is suitable in that it is exposed to a relatively high temperature but has excellent heat resistance.

NH3 生成触媒を用いる場合、空燃比を断続的に燃料リッチに調整する制御を行う必要がある。しかし空燃比を燃料リッチに調整すると、燃費が悪化するという問題が生じる。以下にこの問題を検証する。 When using an NH 3 generation catalyst, it is necessary to perform control to intermittently adjust the air-fuel ratio to be rich in fuel. However, when the air-fuel ratio is adjusted to be rich in fuel, there arises a problem that fuel efficiency is deteriorated. This problem is verified below.

S=(エンジンに供給される実際の空気量/燃料の完全燃焼に必要な空気量)と定義すると、Sが 1.5以上の通常の希薄燃焼によって排出されるNOx 量は、Sが 1.0付近のNOx 排出量に対して、一般に1/5〜1/10程度である。またSが 0.8未満でも排出されるNOx 量は低下する。したがってNH3 生成触媒によってNH3 を効率よく生成するためには、Sが 0.8〜 1.0の範囲が好ましい。 S = (Actual amount of air supplied to the engine / Amount of air required for complete combustion of fuel) If defined as S, the amount of NO x emitted by normal lean combustion with S of 1.5 or more is approximately 1.0. against NO x emissions, it is generally about 1 / 5-1 / 10. Even if S is less than 0.8, the amount of exhausted NO x decreases. Therefore, in order to efficiently produce NH 3 with the NH 3 production catalyst, S is preferably in the range of 0.8 to 1.0.

そしてSが 0.8〜 1.0の範囲の燃料リッチ条件となる時間を全運転時間の10〜20%とすれば、排出されるNOx の大部分がNH3 に転換され、かつ希薄燃焼中に排出されるNOx 量の全てを還元除去するに足りる量のNH3 が生成する。したがって全運転時間の80〜90%は酸素過剰の希薄燃焼とすることができ、時間平均で酸素過剰の燃焼となるので、燃費の悪化はほとんど生じない。なおNH3 生成触媒によってNH3 をさらに効率よく生成するためには、Sが 1.0未満で 1.0に近いほど好ましく、Sが 1.0未満で 1.0に近いほど、燃費の悪化をさらに抑制できる。 If the fuel rich condition in which S is in the range of 0.8 to 1.0 is 10 to 20% of the total operation time, most of the exhausted NO x is converted to NH 3 and exhausted during lean combustion. A sufficient amount of NH 3 is produced to reduce and remove all of the NO x amount. Therefore, 80 to 90% of the total operation time can be made lean combustion with excess oxygen, and since it becomes combustion with excess oxygen on a time average, fuel consumption hardly deteriorates. In order to produce NH 3 more efficiently with the NH 3 production catalyst, S is preferably less than 1.0 and closer to 1.0, and as S is less than 1.0 and closer to 1.0, deterioration of fuel consumption can be further suppressed.

そこで本発明のもう一つの排ガス浄化方法では、複数の気筒をもつ希薄燃焼方式内燃機関の少なくとも一つの気筒である制御気筒を断続的に燃料過剰のリッチ空燃比で運転し、残りの気筒を常時空気過剰のリーン空燃比で運転し、制御気筒からの排ガス流路に排ガスからNH3 を生成するNH3 生成触媒を配置し、NH3 生成触媒より下流側で全気筒からの排ガスが合流して流れる合流排ガス流路にNH3 吸着NOx 還元触媒を配置し、NH3 生成触媒で生成したNH3 をNH3 吸着NOx 還元触媒でNOx の還元に使用している。 Therefore, in another exhaust gas purification method of the present invention, a control cylinder, which is at least one cylinder of a lean combustion internal combustion engine having a plurality of cylinders, is intermittently operated at a rich air-fuel ratio with excess fuel, and the remaining cylinders are always operated. An NH 3 generation catalyst that generates NH 3 from exhaust gas is placed in the exhaust gas flow path from the control cylinder, and the exhaust gas from all cylinders joins downstream from the NH 3 generation catalyst. the NH 3 adsorption the NO x reduction catalyst is disposed in the confluence exhaust gas flow path to flow, it is used for the reduction of the NO x and NH 3 generated by the NH 3 synthesizing catalyst by NH 3 adsorbing the NO x reduction catalyst.

このようにすることで、NH3 生成触媒によって十分な量のNH3 を生成することができ、全気筒で生成するNOx を十分に浄化することができる。そして制御気筒のみが断続的にリッチ雰囲気とされるだけなので、燃費の悪化を抑制することができる。 By doing so, a sufficient amount of NH 3 can be generated by the NH 3 generation catalyst, and NO x generated in all cylinders can be sufficiently purified. Since only the control cylinder is intermittently made rich, the deterioration of fuel consumption can be suppressed.

この排ガス浄化方法を行う本発明の排ガス浄化装置は、複数の気筒をもつ希薄燃焼方式内燃機関の少なくとも一つの気筒である制御気筒からの排ガス流路に排ガスからNH3 を生成するNH3 生成触媒を配置し、全気筒からの排ガスが合流して流れる合流排ガス流路にNH3 を一旦吸着し排ガス中のNOx を吸着したNH3 で還元するNH3 吸着NOx 還元触媒を配置したものである。 An exhaust gas purification apparatus of the present invention that performs this exhaust gas purification method is an NH 3 generation catalyst that generates NH 3 from exhaust gas in an exhaust gas flow path from a control cylinder that is at least one cylinder of a lean combustion internal combustion engine having a plurality of cylinders. was placed, which was arranged adsorbed NH 3 the NO x reduction catalyst the exhaust gas temporarily adsorbs NH 3 in the confluent exhaust gas passage flows merge is reduced with NH 3 adsorbed the NO x in the exhaust gas from all the cylinders is there.

制御気筒の数は制限されないが、燃費の面からは少ない方が望ましく、一つの気筒のみで十分である。この制御気筒は断続的に燃料過剰のリッチ空燃比で運転され、残りの気筒は常時空気過剰のリーン空燃比で運転されることが望ましい。   The number of control cylinders is not limited, but a smaller one is desirable from the viewpoint of fuel consumption, and only one cylinder is sufficient. It is desirable that this control cylinder is intermittently operated with a rich air-fuel ratio with excess fuel, and the remaining cylinders are always operated with a lean air-fuel ratio with excessive air.

例えば多気筒エンジンの少なくとも一つの気筒のSを 0.8〜 1.0となるように断続的に制御し、他の気筒はSが 1.5以上となるように制御する。Sを 0.8〜 1.0となるように制御された制御気筒では燃料リッチの酸素不足燃焼となり、NH3 生成触媒によってNOx からNH3 が生成する。生成したNH3 はNH3 吸着NOx 還元触媒に流入して吸着され、制御気筒のSが 1.5以上となるように制御されたときに、吸着されているNH3 によって排ガス中のNOx をN2に還元除去する。制御気筒の数及び/又はその時間によって、生成・吸着するNH3 量を調整することができる。 For example, S of at least one cylinder of a multi-cylinder engine is intermittently controlled so as to be 0.8 to 1.0, and other cylinders are controlled so that S is 1.5 or more. In the control cylinder where S is controlled to be 0.8 to 1.0, fuel-rich oxygen-deficient combustion occurs, and NH 3 is produced from NO x by the NH 3 production catalyst. NH 3 The generated adsorbed flows into the NH 3 adsorbing the NO x reduction catalyst, when the S of the control cylinder is controlled to be 1.5 or more, the NO x in the exhaust gas by NH 3 that is adsorbed N Reduce to 2 and remove. The amount of NH 3 produced and adsorbed can be adjusted by the number of control cylinders and / or the time thereof.

以下、実施例及び比較例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(実施例1)
図1に本実施例の排ガス浄化装置を模式的に示す。この排ガス浄化装置は、エンジン1の排気系に配置されたNH3 供給装置2と、NH3 供給装置2の下流側0.8mの位置に配置されたNH3 吸着NOx 還元触媒3と、から構成されている。
(Example 1)
FIG. 1 schematically shows an exhaust gas purifying apparatus according to this embodiment. This exhaust gas purification device is composed of an NH 3 supply device 2 arranged in the exhaust system of the engine 1 and an NH 3 adsorption NO x reduction catalyst 3 arranged at a position 0.8 m downstream of the NH 3 supply device 2. Has been.

エンジン1は、 2.2L、4気筒の過給器付きディーゼルエンジンである。   The engine 1 is a 2.2L, 4-cylinder turbocharged diesel engine.

NH3 供給装置2は、尿素の30重量%水溶液が投入されたタンク20と、圧縮空気導入装置21とからなり、圧縮空気導入装置21から導入される圧縮空気によってタンク20内の尿素水を排ガス中に噴霧可能とされている。 The NH 3 supply device 2 includes a tank 20 into which a 30% by weight aqueous solution of urea is charged and a compressed air introduction device 21. The compressed water introduced from the compressed air introduction device 21 exhausts urea water in the tank 20 into exhaust gas. It can be sprayed inside.

以下、NH3 吸着NOx 還元触媒3の製造方法を説明し、構成の詳細な説明に代える。 Hereinafter, a method for producing the NH 3 adsorption NO x reduction catalyst 3 will be described, and a detailed description of the configuration will be given.

SiO2/Al2O3比が40のβ型ゼオライト粉末を用意し、所定濃度の硝酸鉄(III )9水和物水溶液の所定量を含浸させ、 120℃で乾燥後、大気中にて 300℃で3時間焼成して触媒粉末を調製した。触媒粉末におけるFeの担持量は、β型ゼオライト 100gに対してFeとして0.04モルである。 A β-type zeolite powder having a SiO 2 / Al 2 O 3 ratio of 40 is prepared, impregnated with a predetermined amount of an iron (III) nitrate nonahydrate aqueous solution having a predetermined concentration, dried at 120 ° C., and then in the atmosphere 300 A catalyst powder was prepared by calcining at 3 ° C. for 3 hours. The supported amount of Fe in the catalyst powder is 0.04 mol of Fe with respect to 100 g of β-type zeolite.

得られた触媒粉末に所定量のイオン交換水とシリカゾルバインダを添加し、ボールミルを用いて所定粒度まで粉砕しスラリーを調製した。このスラリーを、コージェライト製の円筒形ハニカム基材(2L、 400セル/in2 )にウォッシュコートし、大気中にて 300℃で3時間焼成して、NH3 吸着NOx 還元触媒3を得た。コート量はハニカム基材1リットルあたり 200gである。 A predetermined amount of ion-exchanged water and a silica sol binder were added to the obtained catalyst powder, and the mixture was pulverized to a predetermined particle size using a ball mill to prepare a slurry. This slurry was wash coated on a cordierite cylindrical honeycomb substrate (2 L, 400 cells / in 2 ) and calcined in the atmosphere at 300 ° C. for 3 hours to obtain NH 3 adsorption NO x reduction catalyst 3. It was. The coating amount is 200 g per liter of honeycomb substrate.

この排ガス浄化装置を用い、エンジン1を 1700rpm、68Nmで運転した状態で、NH3 供給装置2から30秒毎に 0.5秒間、各1.2 mlの尿素水を排ガス中に断続的に噴霧した。NH3 吸着NOx 還元触媒3の触媒床温度は 270℃であった。 Using this exhaust gas purification device, 1.2 ml of urea water was intermittently sprayed into the exhaust gas for 0.5 seconds every 30 seconds from the NH 3 supply device 2 while the engine 1 was operated at 1700 rpm and 68 Nm. The catalyst bed temperature of the NH 3 adsorption NO x reduction catalyst 3 was 270 ° C.

この状態で運転しながら、NH3 吸着NOx 還元触媒3からの出ガス中のNOx 及びNH3 の平均濃度を測定し、NOx 浄化率を算出した。結果を表1に示す。なお、エンジン1からの排ガス中のNOx 平均濃度は150ppmである。 While operating in this state, the average concentrations of NO x and NH 3 in the output gas from the NH 3 adsorption NO x reduction catalyst 3 were measured, and the NO x purification rate was calculated. The results are shown in Table 1. Incidentally, NO x average concentration in the exhaust gas from the engine 1 is 150 ppm.

(実施例2)
図2に本実施例の排ガス浄化装置を模式的に示す。この排ガス浄化装置は、エンジン4の一つの制御気筒10の排ガス流路にエンジン4の出口から50cm下流側に配置されたNH3 生成触媒5と、NH3 生成触媒5より下流側で、全気筒からの排ガスが合流して流れる合流排ガス流路にエンジン4の出口から 130cm下流側に配置されたNH3 吸着NOx 還元触媒6と、から構成されている。NH3 吸着NOx 還元触媒6は、実施例1のNH3 吸着NOx 還元触媒3と同一である。
(Example 2)
FIG. 2 schematically shows the exhaust gas purifying apparatus of this embodiment. This exhaust gas purifying apparatus includes an NH 3 generation catalyst 5 disposed 50 cm downstream from the outlet of the engine 4 in an exhaust gas flow path of one control cylinder 10 of the engine 4, and all cylinders downstream of the NH 3 generation catalyst 5. And an NH 3 adsorption NO x reduction catalyst 6 disposed 130 cm downstream from the outlet of the engine 4 in a combined exhaust gas flow path where exhaust gas from the exhaust gas flows. The NH 3 adsorption NO x reduction catalyst 6 is the same as the NH 3 adsorption NO x reduction catalyst 3 of Example 1.

エンジン4は、電子燃料噴射弁を装備した総排気量 2.0L、4気筒の直噴ガソリンエンジンである。   The engine 4 is a 2.0-liter, 4-cylinder direct-injection gasoline engine equipped with an electronic fuel injection valve.

以下、NH3 生成触媒5の製造方法を説明し、構成の詳細な説明に代える。 Hereinafter, a method for producing the NH 3 production catalyst 5 will be described, and a detailed description of the configuration will be used.

γ−アルミナ粉末に所定量のイオン交換水とシリカゾルバインダを添加し、ボールミルを用いて所定粒度まで粉砕しスラリーを調製した。このスラリーを、コージェライト製の円筒形ハニカム基材( 0.5L、 400セル/in2 )にウォッシュコートし、大気中にて 500℃で3時間焼成した。コート量はハニカム基材1リットルあたり 200gである。その後、所定濃度のジニトロジアンミン白金水溶液の所定量をコート層に含浸させ、120℃で乾燥後、大気中にて 300℃で3時間焼成して、NH3 生成触媒5を調製した。 A predetermined amount of ion-exchanged water and a silica sol binder were added to the γ-alumina powder, and the slurry was pulverized to a predetermined particle size using a ball mill. The slurry cylindrical honeycomb substrate made of cordierite (0.5 L, 400 cells / in 2) and washcoat and calcined 3 hours at 500 ° C. in air. The coating amount is 200 g per liter of honeycomb substrate. Thereafter, a predetermined amount of a dinitrodiammine platinum aqueous solution having a predetermined concentration was impregnated into the coat layer, dried at 120 ° C., and then calcined in the atmosphere at 300 ° C. for 3 hours to prepare NH 3 production catalyst 5.

この排ガス浄化装置を用い、制御気筒10のみを空燃比14で5秒間と空燃比22で10秒間とが交互に繰り返される条件で運転し、他の3気筒は常時空燃比22となる条件で運転したときの、NH3 吸着NOx 還元触媒6からの出ガス中のNOx 及びNH3 の平均濃度を測定し、NOx 浄化率を算出した。結果を表1に示す。なお、エンジン4からの排ガス中のNOx 平均濃度は370ppmであり、NH3 生成触媒5の触媒床温度及びNH3 吸着NOx 還元触媒6の触媒床温度はそれぞれ約 300℃であった。 Using this exhaust gas purification device, only the control cylinder 10 is operated under the condition that the air-fuel ratio 14 is alternately repeated for 5 seconds and the air-fuel ratio 22 is repeated for 10 seconds, and the other three cylinders are operated under the condition that the air-fuel ratio is always 22. The average concentration of NO x and NH 3 in the gas emitted from the NH 3 adsorption NO x reduction catalyst 6 was measured, and the NO x purification rate was calculated. The results are shown in Table 1. The NO x average concentration in the exhaust gas from the engine 4 was 370 ppm, and the catalyst bed temperature of the NH 3 production catalyst 5 and the catalyst bed temperature of the NH 3 adsorption NO x reduction catalyst 6 were about 300 ° C., respectively.

(実施例3)
SiO2/Al2O3比が40のβ型ゼオライト粉末に代えてSiO2/Al2O3比が40のZSM-5型ゼオライト粉末を用いたこと以外は実施例1と同様にしてNH3 吸着NOx 還元触媒3を調製し、実施例1と同様の排ガス浄化装置を用い同様にしてNH3 吸着NOx 還元触媒3の出ガス中のNOx 及びNH3 の平均濃度を測定し、NOx 浄化率を算出した。結果を表1に示す。
Example 3
NH except that SiO 2 / Al 2 O 3 ratio of SiO 2 / Al 2 O 3 ratio instead of the β-type zeolite powder of 40 was used ZSM-5 type zeolite powder of 40 in the same manner as in Example 1 3 An adsorption NO x reduction catalyst 3 was prepared, and the NO x and NH 3 average concentrations in the output gas of the NH 3 adsorption NO x reduction catalyst 3 were measured in the same manner using the same exhaust gas purifying apparatus as in Example 1. x The purification rate was calculated. The results are shown in Table 1.

(実施例4)
SiO2/Al2O3比が40のβ型ゼオライト粉末に代えてSiO2/Al2O3比が40のZSM-5型ゼオライト粉末を用いたこと以外は実施例1と同様にしてNH3 吸着NOx 還元触媒6を調製し、実施例2と同様の排ガス浄化装置を用い同様にしてNH3 吸着NOx 還元触媒6の出ガス中のNOx 及びNH3 の平均濃度を測定し、NOx 浄化率を算出した。結果を表1に示す。
(Example 4)
Adsorption of NH 3 in the same manner as in Example 1 except that ZSM-5 type zeolite powder with SiO2 / Al 2 O 3 ratio of 40 was used instead of β type zeolite powder with SiO 2 / Al 2 O 3 ratio of 40 The NO x reduction catalyst 6 was prepared, and the NO x and NH 3 average concentrations in the output gas of the NH 3 adsorption NO x reduction catalyst 6 were measured in the same manner using the same exhaust gas purification device as in Example 2, and the NO x The purification rate was calculated. The results are shown in Table 1.

(比較例1)
市販のV−W−Ti系酸化物の粉末に、所定量のイオン交換水とシリカゾルバインダを添加し、ボールミルを用いて所定粒度まで粉砕しスラリーを調製した。このスラリーを、コージェライト製の円筒形ハニカム基材(2L、 400セル/in2 )にウォッシュコートし、大気中にて 500℃で3時間焼成してV−W−Ti系触媒を調製した。コート量はハニカム基材1リットルあたり 200gである。
(Comparative Example 1)
A predetermined amount of ion-exchanged water and a silica sol binder were added to a commercially available powder of VW-Ti oxide, and the mixture was pulverized to a predetermined particle size using a ball mill to prepare a slurry. This slurry was wash-coated on a cordierite cylindrical honeycomb substrate (2 L, 400 cells / in 2 ), and calcined in the atmosphere at 500 ° C. for 3 hours to prepare a VW-Ti catalyst. The coating amount is 200 g per liter of honeycomb substrate.

NH3 吸着NOx 還元触媒3に代えて上記で調製されたV−W−Ti系触媒を配置したこと以外は実施例1と同様にして排ガス浄化装置を調製し、実施例1と同様にして断続的に尿素水を噴霧しながら、V−W−Ti系触媒からの出ガス中のNOx 及びNH3 の平均濃度を測定し、NOx 浄化率を算出した。結果を表1に示す。 An exhaust gas purification apparatus was prepared in the same manner as in Example 1 except that the VW-Ti catalyst prepared above was arranged instead of the NH 3 adsorption NO x reduction catalyst 3, and in the same manner as in Example 1. While intermittently spraying urea water, the average concentrations of NO x and NH 3 in the gas emitted from the VW-Ti catalyst were measured, and the NO x purification rate was calculated. The results are shown in Table 1.

(比較例2)
NH3 吸着NOx 還元触媒6に代えて比較例1で調製されたV−W−Ti系触媒を配置したこと以外は実施例2と同様にして排ガス浄化装置を調製し、実施例2と同様にしてV−W−Ti系触媒からの出ガス中のNOx 及びNH3 の平均濃度を測定し、NOx 浄化率を算出した。結果を表1に示す。
(Comparative Example 2)
An exhaust gas purification apparatus was prepared in the same manner as in Example 2 except that the VW-Ti catalyst prepared in Comparative Example 1 was used in place of the NH 3 adsorption NO x reduction catalyst 6. Then, the average concentrations of NO x and NH 3 in the gas discharged from the VW-Ti catalyst were measured, and the NO x purification rate was calculated. The results are shown in Table 1.

(比較例3)
NH3 吸着NOx 還元触媒6に代えて比較例1で調製されたV−W−Ti系触媒を配置したこと以外は実施例2と同様の排ガス浄化装置を用い、制御気筒10のみを常時空燃比14となる条件で運転し、他の3気筒は常時空燃比22となる条件で運転したときの、V−W−Ti系触媒7からの出ガス中のNOx 及びNH3 の平均濃度を測定し、NOx 浄化率を算出した。結果を表1に示す。なお、エンジン4からの排ガス中のNOx 平均濃度は700ppmであった。
(Comparative Example 3)
Except that the VW-Ti catalyst prepared in Comparative Example 1 was used in place of the NH 3 adsorption NO x reduction catalyst 6, the same exhaust gas purification device as in Example 2 was used, and only the control cylinder 10 was always empty. The average concentrations of NO x and NH 3 in the output gas from the VW-Ti catalyst 7 when operating at a fuel ratio of 14 and the other three cylinders operating at a constant air-fuel ratio of 22 are shown. Measured and calculated NO x purification rate. The results are shown in Table 1. The average NO x concentration in the exhaust gas from the engine 4 was 700 ppm.

(比較例4)
γ−アルミナ粉末とTiO2−ZrO2固溶体粉末との混合粉末に所定量のイオン交換水とアルミナゾルバインダを添加し、ボールミルを用いて所定粒度まで粉砕しスラリーを調製した。このスラリーを、コージェライト製の円筒形ハニカム基材(2L、 400セル/in2 )にウォッシュコートし、大気中にて 500℃で3時間焼成した。コート量はハニカム基材1リットルあたり 200gである。
(Comparative Example 4)
A predetermined amount of ion-exchanged water and an alumina sol binder were added to a mixed powder of γ-alumina powder and TiO 2 —ZrO 2 solid solution powder, and a slurry was prepared by pulverizing to a predetermined particle size using a ball mill. This slurry was wash-coated on a cordierite cylindrical honeycomb substrate (2 L, 400 cells / in 2 ) and fired at 500 ° C. for 3 hours in the air. The coating amount is 200 g per liter of honeycomb substrate.

その後、所定濃度のジニトロジアンミン白金水溶液の所定量をコート層に含浸させ、 120℃で乾燥後、大気中にて 300℃で3時間焼成してPtを担持した。次いで酢酸バリウム、酢酸カリウム及び酢酸リチウムの混合水溶液の所定量を含浸させ、 120℃で乾燥後、大気中にて 300℃で3時間焼成してBa、K及びLiを担持して、NOx 吸蔵還元型触媒を調製した。担持量は、ハニカム基材の体積1LあたりPtが2g、Baが 0.2モル、Kが 0.1モル、Liが 0.1モルである。 Thereafter, a predetermined amount of a dinitrodiammine platinum aqueous solution having a predetermined concentration was impregnated into the coating layer, dried at 120 ° C., and then fired in the atmosphere at 300 ° C. for 3 hours to carry Pt. Next, impregnated with a predetermined amount of a mixed aqueous solution of barium acetate, potassium acetate and lithium acetate, dried at 120 ° C., calcined in the atmosphere at 300 ° C. for 3 hours to carry Ba, K and Li, and occluded NO x A reduced catalyst was prepared. The supported amounts are 2 g of Pt, 0.2 mol of Ba, 0.1 mol of K, and 0.1 mol of Li per liter of honeycomb substrate volume.

NH3 吸着NOx 還元触媒3に代えて上記で調製されたNOx 吸蔵還元型触媒を配置したこと以外は実施例1と同様にして排ガス浄化装置を調製し、実施例1と同様にしてNOx 吸蔵還元型触媒からの出ガス中のNOx 及びNH3 の平均濃度を測定し、NOx 浄化率を算出した。結果を表1に示す。 An exhaust gas purification apparatus was prepared in the same manner as in Example 1 except that the NO x storage reduction catalyst prepared above was arranged in place of the NH 3 adsorption NO x reduction catalyst 3, and NO in the same manner as in Example 1. The average concentration of NO x and NH 3 in the gas emitted from the x storage reduction catalyst was measured, and the NO x purification rate was calculated. The results are shown in Table 1.

(比較例5)
NH3 吸着NOx 還元触媒6に代えて比較例4と同様のNOx 吸蔵還元型触媒を配置したこと以外は実施例2と同様にして排ガス浄化装置を調製し、実施例2と同様にしてNOx 吸蔵還元型触媒からの出ガス中のNOx 及びNH3 の平均濃度を測定し、NOx 浄化率を算出した。結果を表1に示す。
(Comparative Example 5)
An exhaust gas purification apparatus was prepared in the same manner as in Example 2 except that the same NO x storage reduction catalyst as in Comparative Example 4 was disposed instead of the NH 3 adsorption NO x reduction catalyst 6, and the same procedure as in Example 2 was performed. The average concentration of NO x and NH 3 in the output gas from the NO x storage reduction catalyst was measured, and the NO x purification rate was calculated. The results are shown in Table 1.

(比較例6)
NH3 吸着NOx 還元触媒6に代えて比較例4と同様のNOx 吸蔵還元型触媒を配置したこと以外は実施例2と同様にして排ガス浄化装置を調製し、全気筒を空燃比12で5秒間と空燃比22で55秒間とが交互に繰り返される条件で運転したときの、NOx 吸蔵還元型触媒からの出ガス中のNOx 及びNH3 の平均濃度を測定し、NOx 浄化率を算出した。結果を表1に示す。なお、エンジン4からの排ガス中のNOx 平均濃度は370ppmであった。
(Comparative Example 6)
An exhaust gas purification apparatus was prepared in the same manner as in Example 2 except that the same NO x storage reduction type catalyst as in Comparative Example 4 was disposed instead of the NH 3 adsorption NO x reduction catalyst 6, and all cylinders were set at an air-fuel ratio of 12. The NO x purification rate is measured by measuring the average concentration of NO x and NH 3 in the gas emitted from the NO x storage reduction catalyst when operated under conditions where the air-fuel ratio is 22 and 55 seconds alternately. Was calculated. The results are shown in Table 1. The average NO x concentration in the exhaust gas from the engine 4 was 370 ppm.

<評価>
NH3 生成触媒を用いている実施例2,4と、比較例2,3,5,6の排ガス浄化方法における燃費を算出し、用いたエンジン4の全気筒を空燃比が常時22となる条件で運転したときの燃費を基準として、燃費悪化率をそれぞれ算出した。結果を表1に併せて示す。
<Evaluation>
The fuel consumption in the exhaust gas purification methods of Examples 2 and 4 using NH 3 generation catalyst and Comparative Examples 2, 3, 5 and 6 is calculated, and the condition that the air-fuel ratio is always 22 for all the cylinders of engine 4 used The fuel consumption deterioration rate was calculated on the basis of the fuel consumption when driving with the vehicle. The results are also shown in Table 1.

Figure 2005023895
尿素水を噴霧する条件で行ったものどうしの比較から、実施例1,3の方法は比較例1,4に比べてNOx 浄化率が高く、比較例1よりNH3 排出量も著しく少ないことがわかる。比較例1では、NH3 脱硝触媒であるV−W−Ti系触媒がNH3 を吸着あるいは貯蔵する能力が低い。そのため尿素水を添加していない間はNH3 が存在しないためNOx を還元することが困難でNOx が放出され、尿素水を添加している間はNOx に対して過剰なNH3 が供給されるため過剰分のNH3 が放出されたと考えられる。また、空燃比が制御されない常時希薄燃焼条件では、NOx 吸蔵還元型触媒に吸蔵されたNOx を還元することが困難であるので、比較例4ではNOx 浄化率が低くなっている。
Figure 2005023895
From the comparison between those performed under the conditions of spraying urea water, the methods of Examples 1 and 3 have a higher NO x purification rate than Comparative Examples 1 and 4, and the NH 3 emission amount is significantly smaller than Comparative Example 1. I understand. In Comparative Example 1, the VW-Ti catalyst that is an NH 3 denitration catalyst has a low ability to adsorb or store NH 3 . Therefore while not adding urea water is NO x release is difficult to reduce the NO x because the NH 3 does not exist, excessive NH 3 relative to NO x is during the addition of the urea water It is thought that excess NH 3 was released because of the supply. In addition, under constant lean combustion conditions in which the air-fuel ratio is not controlled, it is difficult to reduce NO x stored in the NO x storage-reduction catalyst. Therefore, in Comparative Example 4, the NO x purification rate is low.

しかし実施例1,3では、NOx 浄化率が高くNH3 の排出も抑制され、これはNH3 吸着NOx 還元触媒を配置した効果であることが明らかである。 However, in Examples 1 and 3, the NO x purification rate is high and NH 3 emission is also suppressed, which is clearly an effect of arranging an NH 3 adsorption NO x reduction catalyst.

空燃比を制御する条件で行ったものどうしを比較すると、実施例2,4では比較例2,5と比べてNOx 浄化率が高く、また比較例3,6と比べて燃費の悪化が少なく、NOx 浄化性能と燃費性能が両立していることがわかる。比較例2,5でNOx 浄化性能が低いのは、NH3 脱硝触媒であるV−W−Ti系触媒及びNOx 吸蔵還元型触媒はNH3 を吸着あるいは貯蔵する能力が低い。そのため空燃比が22の間はNH3 が存在しないためNOx を還元することが困難でNOx が放出され、空燃比が14の間はNOx に対して過剰なNH3 が供給されるため過剰分のNH3 が放出されたと考えられる。 Comparing those performed under the conditions for controlling the air-fuel ratio, Examples 2 and 4 have higher NO x purification rates than Comparative Examples 2 and 5, and less deterioration in fuel consumption than Comparative Examples 3 and 6. It can be seen that NO x purification performance and fuel efficiency performance are compatible. In Comparative Examples 2 and 5, the NO x purification performance is low. The VW-Ti catalyst and the NO x storage reduction catalyst which are NH 3 denitration catalysts have low ability to adsorb or store NH 3 . Therefore, it is difficult to reduce NO x while NH 3 does not exist while the air-fuel ratio is 22, and NO x is released, while excess NH 3 is supplied to NO x while the air-fuel ratio is 14. It is thought that excess NH 3 was released.

また比較例3では、制御気筒を常時リッチ空燃比で運転することでNH3 を多く生成させているため、比較例2に比べてNOx 浄化率は向上している。しかしそれと引き替えに、NH3 排出量が著しく増大している。そして比較例6では、全気筒で断続的にリッチ空燃比で運転しているために比較例5に比べてNOx 浄化率は向上しているものの、燃費が悪化している。 In Comparative Example 3, the control cylinder is always operated at a rich air-fuel ratio to generate a large amount of NH 3 , so that the NO x purification rate is improved as compared with Comparative Example 2. In exchange for that, however, NH 3 emissions have increased significantly. Then, in Comparative Example 6, although the NO x purification rate compared to Comparative Example 5 for operating at intermittent rich air-fuel ratio in all cylinders is improved, fuel efficiency is deteriorated.

本発明の一実施例の排ガス浄化装置を示す説明図である。It is explanatory drawing which shows the exhaust gas purification apparatus of one Example of this invention. 本発明の第2の実施例の排ガス浄化装置を示す説明図である。It is explanatory drawing which shows the exhaust gas purification apparatus of the 2nd Example of this invention.

符号の説明Explanation of symbols

1:エンジン 2:NH3 供給手段 3:NH3 吸着NOx 還元触媒
20:尿素水溶液タンク 21:圧縮空気導入装置
1: Engine 2: NH 3 supply means 3: NH 3 adsorption NO x reduction catalyst
20: Urea aqueous solution tank 21: Compressed air introduction device

Claims (8)

NH3 を一旦吸着し排ガス中のNOx を吸着したNH3 で還元するNH3 吸着NOx 還元触媒を希薄燃焼方式内燃機関の排ガス流路に配置し、該NH3 吸着NOx 還元触媒の上流側にNH3 及びNH3 前駆体の少なくとも一方を断続的に供給することを特徴とする希薄燃焼方式内燃機関の排ガス浄化方法。 Temporarily adsorbs NH 3 is arranged in the exhaust gas line of the NH 3 adsorbing the NO x reduction catalyst to lean burn internal combustion engine reduction with NH 3 adsorbed the NO x in the exhaust gas, upstream of the NH 3 adsorbing the NO x reduction catalyst An exhaust gas purification method for a lean combustion internal combustion engine, wherein at least one of NH 3 and NH 3 precursor is intermittently supplied to the side. 前記NH3 前駆体は尿素又は尿素水溶液である請求項1に記載の希薄燃焼方式内燃機関の排ガス浄化方法。 The exhaust gas purification method for a lean combustion internal combustion engine according to claim 1, wherein the NH 3 precursor is urea or an aqueous urea solution. 複数の気筒をもつ前記希薄燃焼方式内燃機関の少なくとも一つの気筒である制御気筒を断続的に燃料過剰のリッチ空燃比で運転し、残りの気筒を常時空気過剰のリーン空燃比で運転し、該制御気筒からの排ガス流路に排ガスからNH3 を生成するNH3 生成触媒を配置し、該NH3 生成触媒より下流側で全気筒からの排ガスが合流して流れる合流排ガス流路に前記NH3 吸着NOx 還元触媒を配置し、該NH3 生成触媒で生成したNH3 を前記NH3 吸着NOx 還元触媒でNOx の還元に使用する請求項1に記載の希薄燃焼方式内燃機関の排ガス浄化方法。 A control cylinder, which is at least one cylinder of the lean combustion internal combustion engine having a plurality of cylinders, is intermittently operated with a rich air-fuel ratio with excess fuel, and the remaining cylinders are always operated with a lean air-fuel ratio with excess air, the NH 3 synthesizing catalyst to produce a NH 3 from the exhaust gas in the exhaust gas line from the control cylinder is arranged, the NH 3 to the junction exhaust passage exhaust gas flows merges from all the cylinders from the NH 3 synthesizing catalyst downstream adsorption the NO x reduction catalyst disposed, purification of exhaust gas lean burn internal combustion engine according to claim 1 that uses the NH 3 generated by the NH 3 synthesizing catalyst for the reduction of the NO x in the NH 3 adsorbing the NO x reduction catalyst Method. 前記NH3 吸着NOx 還元触媒は、β型ゼオライト及びZSM-5型ゼオライトの少なくとも一方に鉄(Fe)を担持してなる請求項1〜3のいずれかに記載の希薄燃焼方式内燃機関の排ガス浄化方法。 The exhaust gas of a lean combustion type internal combustion engine according to any one of claims 1 to 3, wherein the NH 3 adsorption NO x reduction catalyst comprises iron (Fe) supported on at least one of β-type zeolite and ZSM-5-type zeolite. Purification method. 希薄燃焼方式内燃機関の排ガス流路に配置されたNH3 及びNH3 前駆体の少なくとも一方を排ガス中に断続的に供給するNH3 供給手段と、該NH3 供給手段の下流側に配置されたNH3 を一旦吸着し排ガス中のNOx を吸着したNH3 で還元するNH3 吸着NOx 還元触媒と、を含んでなることを特徴とする排ガス浄化装置。 NH 3 supply means for intermittently supplying at least one of NH 3 and NH 3 precursor arranged in the exhaust gas flow path of the lean combustion internal combustion engine into the exhaust gas, and arranged downstream of the NH 3 supply means exhaust gas purifying device comprising the NH 3 adsorbing the NO x reduction catalyst for reducing with NH 3 which temporarily adsorbs NH 3 adsorbed the NO x in the exhaust gas, to comprise the. 複数の気筒をもつ希薄燃焼方式内燃機関の少なくとも一つの気筒である制御気筒からの排ガス流路に排ガスからNH3 を生成するNH3 生成触媒を配置し、該NH3 生成触媒より下流側で全気筒からの排ガスが合流して流れる合流排ガス流路にNH3 を一旦吸着し排ガス中のNOx を吸着したNH3 で還元するNH3 吸着NOx 還元触媒を配置したことを特徴とする希薄燃焼方式内燃機関の排ガス浄化装置。 An NH 3 generation catalyst that generates NH 3 from exhaust gas is disposed in an exhaust gas flow path from a control cylinder, which is at least one cylinder of a lean combustion internal combustion engine having a plurality of cylinders, and all the downstream side of the NH 3 generation catalyst is disposed downstream of the NH 3 generation catalyst. Lean combustion, characterized in that an NH 3 adsorption NO x reduction catalyst that once adsorbs NH 3 and reduces NO x in the exhaust gas with NH 3 adsorbed in the combined exhaust gas flow path where the exhaust gas from the cylinders merges flows Exhaust gas purification device for internal combustion engine. 前記制御気筒は断続的に燃料過剰のリッチ空燃比で運転され、残りの気筒は常時空気過剰のリーン空燃比で運転される請求項6に記載の希薄燃焼方式内燃機関の排ガス浄化装置。   The exhaust gas purification apparatus of a lean combustion type internal combustion engine according to claim 6, wherein the control cylinder is intermittently operated with a rich air-fuel ratio with excess fuel, and the remaining cylinders are always operated with a lean air-fuel ratio with excess air. 前記NH3 吸着NOx 還元触媒は、β型ゼオライト及びZSM-5型ゼオライトの少なくとも一方に鉄(Fe)を担持してなる請求項5〜7のいずれかに記載の希薄燃焼方式内燃機関の排ガス浄化装置。 The exhaust gas of a lean combustion internal combustion engine according to any one of claims 5 to 7, wherein the NH 3 adsorption NO x reduction catalyst comprises iron (Fe) supported on at least one of β-type zeolite and ZSM-5-type zeolite. Purification equipment.
JP2003270080A 2003-07-01 2003-07-01 Method and device for exhaust-emission control for lean-burn-system internal combustion engine Pending JP2005023895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270080A JP2005023895A (en) 2003-07-01 2003-07-01 Method and device for exhaust-emission control for lean-burn-system internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270080A JP2005023895A (en) 2003-07-01 2003-07-01 Method and device for exhaust-emission control for lean-burn-system internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005023895A true JP2005023895A (en) 2005-01-27

Family

ID=34190145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270080A Pending JP2005023895A (en) 2003-07-01 2003-07-01 Method and device for exhaust-emission control for lean-burn-system internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005023895A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076990A (en) * 2005-09-16 2007-03-29 Tosoh Corp beta-ZEOLITE AND METHOD OF REMOVING NITROGEN OXIDES BY USING THE SAME
JP2014105644A (en) * 2012-11-28 2014-06-09 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP5569653B2 (en) * 2011-08-30 2014-08-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
KR101438885B1 (en) 2012-05-09 2014-09-05 현대자동차주식회사 Catalyst for conversion nitrogen oxides into ammonia and manufacturing method for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076990A (en) * 2005-09-16 2007-03-29 Tosoh Corp beta-ZEOLITE AND METHOD OF REMOVING NITROGEN OXIDES BY USING THE SAME
JP5569653B2 (en) * 2011-08-30 2014-08-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
KR101438885B1 (en) 2012-05-09 2014-09-05 현대자동차주식회사 Catalyst for conversion nitrogen oxides into ammonia and manufacturing method for the same
JP2014105644A (en) * 2012-11-28 2014-06-09 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine

Similar Documents

Publication Publication Date Title
JP5826285B2 (en) NOx absorption catalyst
JP5373255B2 (en) NOx reduction catalyst, NOx reduction catalyst system, and NOx reduction method
JP4733110B2 (en) Method for removing harmful substances from exhaust gas of combustion engine and catalyst for carrying out the method
US9011809B2 (en) Ammonia oxidation catalyst, exhaust gas purification device using same, and exhaust gas purification method
US20120042631A1 (en) Catalyst materials for ammonia oxidation in lean-burn engine exhaust
WO2005044426A1 (en) Method for catalytically reducing nitrogen oxide and catalyst therefor
US20110120093A1 (en) Process and apparatus for purifying exhaust gases from an internal combustion engine
JP2013537846A (en) Catalyst for removing nitrogen oxides from diesel engine exhaust
US20010012502A1 (en) Catalyst for purifying exhaust gas and a process for purifying exhaust gas
US20130230441A1 (en) Selective reduction catalyst, and exhaust gas purification device and exhaust gas purification method using same
US20160051931A1 (en) Urea hydrolysis catalyst, selective reduction catalyst containing urea hydrolysis material, and exhaust gas cleaning apparatus
WO2006013998A1 (en) Process for catalytic reduction of nitrogen oxides
JP2020528348A (en) N2O removal from vehicle exhaust for lean / rich systems
EP1332278A4 (en) Reduction of nitrogen oxides in diesel exhaust gases and fuel injection system
JP2006289211A (en) Ammonia oxidation catalyst
JP5030343B2 (en) Exhaust gas purification apparatus and exhaust gas treatment method
JP2011038405A (en) Exhaust emission control device of internal combustion engine
JP2003236343A (en) Method for decontaminating exhaust gas and apparatus for denitration at low temperature
JPH11221466A (en) Catalyst for purifying exhaust gas and purification of exhaust gas
JP2005111436A (en) Method for catalytically eliminating nitrogen oxide and device therefor
JP2005023895A (en) Method and device for exhaust-emission control for lean-burn-system internal combustion engine
JP2003290629A (en) Cleaning system for exhaust gas
JP2002168117A (en) Exhaust emission control system
JP3560147B2 (en) Exhaust gas purification system
JP4501166B2 (en) Exhaust gas purification system