WO2018193671A1 - 銅粉末及びその製造方法並びに立体造形物の製造方法 - Google Patents
銅粉末及びその製造方法並びに立体造形物の製造方法 Download PDFInfo
- Publication number
- WO2018193671A1 WO2018193671A1 PCT/JP2018/000688 JP2018000688W WO2018193671A1 WO 2018193671 A1 WO2018193671 A1 WO 2018193671A1 JP 2018000688 W JP2018000688 W JP 2018000688W WO 2018193671 A1 WO2018193671 A1 WO 2018193671A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper powder
- manufacturing
- oxygen concentration
- powder
- light
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/34—Process control of powder characteristics, e.g. density, oxidation or flowability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/10—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/41—Radiation means characterised by the type, e.g. laser or electron beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/01—Reducing atmosphere
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/03—Oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/10—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a copper powder, a method for producing the same, and a method for producing a three-dimensional model, and more particularly, to a copper powder for 3D printer that can be melt-bonded by a low energy laser, a method for manufacturing the same, and a method for manufacturing a three-dimensional model.
- the 3D printer is also called additive manufacturing (AM), and as a method of manufacturing a metal three-dimensional shaped object, an EB or a laser lamination method is well known.
- AM additive manufacturing
- This is to form a metal powder layer on the sintering table, irradiate a predetermined portion of the powder layer with a beam and sinter, and then form a new powder layer on the powder layer, By irradiating the predetermined portion with a beam and sintering, a sintered portion integrated with the lower sintered portion is formed.
- a three-dimensional shape is formed one layer at a time from the powder, and it is possible to form a complicated shape that is difficult or impossible with conventional processing methods.
- a desired three-dimensional solid model can be directly formed on a metal material from shape data such as CAD (Non-patent Document 1).
- the power at the time of laser output is set so that the metal particles are sufficiently sintered or melt bonded.
- the amount of laser energy required to sinter or melt bond the metal powder varies depending on the metal material.
- metal materials with high laser reflectivity such as copper and aluminum, are difficult to absorb the energy of the laser, so in order to sinter or melt bond metal particles using these metal materials, It is necessary to irradiate a high energy laser. For this reason, there are problems such as an increase in the energy of the laser, which increases the manufacturing cost, complicates the configuration of the manufacturing apparatus, and prevents the metal particles from being combined well.
- Patent Document 1 selectively irradiates a thin layer of a powder material containing metal particles with laser light to form a shaped article layer in which the metal particles are sintered or melt bonded.
- a powder material having a BET specific surface area of 5.0 ⁇ 10 6 (m 2 / m 3 ) or more and 1.1 ⁇ 10 8 (m 2 / m 3 ) or less is disclosed. According to this invention, it is expected that the metal particles contained in the powder material can be easily sintered or melt-bonded with a low energy laser regardless of the material of the powder material.
- the present invention has been made in view of the above problems, and has a high absorption rate at the time of laser irradiation and enables copper to be melt-bonded with a low-energy laser by enabling efficient heat input. And it aims at providing the manufacturing method.
- the present inventors conducted extensive research and found that the absorption rate for laser can be improved by providing a specific oxide film on the surface of copper powder by oxidation treatment.
- the present invention has been completed with further consideration and consideration.
- the present invention provides the following inventions.
- Copper powder. (2) The copper powder as described in (1) whose oxygen concentration is 2000 wtppm or less. (3) Copper powder as described in (1) or (2) whose angle of repose is 20 degrees or more and 32 degrees or less. (4) The copper powder according to any one of (1) to (3), wherein the average particle diameter D50 is 10 to 100 ⁇ m. (5) The copper powder according to any one of (1) to (4), which is for a 3D printer.
- a method for producing a copper powder comprising a step of heating a copper atomized powder produced by a disk atomizing method in an oxidizing atmosphere and then pulverizing and sieving the obtained temporary sintered body.
- a thin layer of copper powder produced by the production method according to (6) or (7) is irradiated with laser light to form a shaped article layer formed by sintering or melt bonding the copper powder.
- the absorption rate at the time of laser irradiation is high, and it is possible to melt and bond with a low energy laser by enabling efficient heat input.
- Copper powder As the copper powder, copper powder produced by a known method can be used. If the particle size is a size of several ⁇ m or more, it is common to use copper powder produced by a dry method typified by an atomizing method that is industrially excellent in production cost, but a wet method such as a reduction method It is also possible to use copper powder produced by The purity is preferably 99.9% (3N) or more, more preferably 99.99% (4N) or more, excluding oxygen, carbon, nitrogen, hydrogen, sulfur, and chlorine gas components. Moreover, it is preferable that the oxygen concentration in raw material copper powder is 500 wtppm or less, and it is more preferable that it is 300 wtppm or less.
- the surface oxide layer proposed in this embodiment tends to float on the surface of the model when it is melted by a laser, or is easily detached from the model by the impact of the laser, while oxygen exists in the copper powder. This is because there is a high possibility that the object will be a modeled object with oxygen contained therein, which may adversely affect the physical properties of the modeled object. In order to realize this oxygen concentration, it is preferable to use a disk atomizing method. In the gas atomization method, there is a high possibility that oxygen contained in the gas used for spraying is included, and the oxygen concentration often exceeds 500 wtppm.
- the index indicated by the absorption rate / oxygen concentration defined by the following formula is 3.0 or more.
- the angle of repose of the copper powder is 20 ° or more and 32 ° or less. Since the angle of repose is less than 20 ° due to the nature of copper powder, the case where it exceeds 32 ° will be described. When it exceeds 32 °, there arises a problem that uniform lamination cannot be performed during copper powder lamination during modeling. In general, when copper powder is heated in a stacked or filled state, the particles cause necking. If necking occurs, the fluidity will deteriorate. Therefore, in this embodiment, an annealing condition for suppressing the degree of necking is set low, and after pulverizing the temporary sintered body, a sieving process is performed, and an angle of repose is 20 ° to 32 °. Within the range, it maintains fluidity.
- the average particle diameter D50 of the copper powder is preferably 10 to 100 ⁇ m.
- the average particle diameter D50 is preferably 10 to 100 ⁇ m.
- Inevitable impurities may be included in the copper powder, but impurities can be included as long as the properties required for the copper powder are not affected.
- the concentration of inevitable impurities excluding gas components is preferably 0.01% by mass or less from the viewpoint of efficiently melting and bonding the copper powder.
- the copper powder and oxygen react to form an oxide film on the surface of the powder.
- the atmosphere temperature is adjusted to 120 ° C. to 200 ° C., and the heating time is adjusted according to the temperature conditions. When the temperature is 150 ° C. or higher and lower than 200 ° C., the heating can be performed for 2 to 8 hours.
- the heating temperature is lower than 120 ° C., it is not preferable because the formation of the oxide film is too slow.
- the heating temperature exceeds 200 ° C., it is difficult to control the degree of oxidation, which is not preferable.
- the heating time is less than 2 hours, the oxide film is insufficient, and if it exceeds 74 hours, the necking between the copper powders proceeds excessively, which is not preferable.
- oxidation is performed in the atmosphere in order to reduce costs. However, when the amount of oxygen increases, adjustments such as adjusting the temperature and time may be performed.
- the obtained temporary sintered body is pulverized and sieved to obtain copper powder required for various 3D printers.
- a three-dimensional molded item can be manufactured by laminating
- Comparative Examples 9 to 11 are the results when using gas atomized powder.
- a copper powder having a high absorption rate at the time of laser irradiation and enabling efficient heat input to be melt-bonded with a low energy laser and also highly convenient to handle, and its production A method can be provided. Therefore, when used for a 3D printer, it is also possible to reduce the manufacturing cost of a molded article.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
(1)波長λ=1060nmである光に対する吸収率が18.9%~65.0%であり、波長λ=1060nmである光に対する吸収率/酸素濃度で示される指数が3.0以上である銅粉末。
(2)酸素濃度が2000wtppm以下である(1)に記載の銅粉末。
(3)安息角が20°以上32°以下である(1)又は(2)に記載の銅粉末。
(4)平均粒子径D50が10~100μmである(1)~(3)のいずれかに記載の銅粉末。
(5)3Dプリンター用である(1)~(4)のいずれかに記載の銅粉末。
(6)ディスクアトマイズ法で作製された銅のアトマイズ粉を酸化雰囲気中で加熱したのち、得られた仮焼結体を粉砕し、篩別する工程を含む、銅粉末の製造方法。
(7)酸化雰囲気の温度が、120℃~200℃である(6)に記載の銅粉末の製造方法。
(8)(6)又は(7)に記載の製造方法で製造される銅粉末の薄層にレーザー光を照射して、前記銅粉末が焼結又は溶融結合してなる造形物層を形成し、前記造形物層を積層することによって立体造形物を製造する方法。
銅粉末は、公知の方法によって製造された銅粉を使用することができる。粒径数μm以上のサイズであれば、工業的には製造コストに優れるアトマイズ法に代表される乾式法によって製造された銅粉を使用することが一般的ではあるが、還元法などの湿式法によって製造された銅粉を使用することも可能である。純度は、酸素、炭素、窒素、水素、硫黄、塩素のガス成分を除き、99.9%(3N)以上であることが望ましく、99.99%(4N)以上であることがより望ましい。また、原料銅粉中の酸素濃度は、500wtppm以下であることが好ましく、300wtppm以下であることがより好ましい。これは、この実施形態で提案している表面酸化層は、レーザーによる溶融時に造形物表層に浮きやすい、あるいはレーザーの衝撃で造形物から脱離しやすいのに対し、銅粉の内部に酸素が存在する場合、酸素が内包されたまま造形物となる可能性が高く、造形物の物性に悪影響を与える可能性があるためである。この酸素濃度を実現するためには、ディスクアトマイズ法の利用が好ましい。ガスアトマイズ法では、噴霧に使用するガスに含まれる酸素を内包する可能性が高く、酸素濃度が500wtppmを上回ることが多い。
吸収率/酸素濃度=(波長λ=1060nmである光に対する吸収率)/銅粉末中に含まれる酸素濃度×100
吸収率の単位は%であり、酸素濃度の単位はwtppmである。吸収率/酸素濃度で示される指数が3.0を下回ると、波長λ=1060nmである光に対する吸収率を上げるには酸素濃度を過大に上げる必要があることとなり、造形時に酸化物スラグが発生する可能性がある。
銅粉末の波長λ=1060nmである光に対する吸収率を18.9%~65.0%とし、吸収率/酸素濃度で示される指数を3.0以上とするには、ディスクアトマイズ法で作製された銅のアトマイズ粉を酸化雰囲気中で加熱することで酸化皮膜を設けることが考えられる。酸化雰囲気とは、酸素が含まれる雰囲気を意味するもので、空気雰囲気であってもよいし、人工的に酸素を供給する状態下であってもよいが、量産コストを考慮すると空気雰囲気であることが好ましい。
[銅粉末]
実施例1~7及び比較例1~11の銅粉末として、いずれもディスクアトマイズ法で作製した銅粉を用いた。
[銅粉末の処理方法]
このディスクアトマイズ法で作製した銅粉につき、空気雰囲気の中で、表1に示す温度及び時間条件で加熱処理を行った。
[波長λ=1060nmである光に対する吸収率]
波長λ=1060nmである光に対する吸収率は、HITACHIハイテクサイエンス製U-4100分光光度計で測定した。
[酸素濃度]
酸素濃度は、LECO社製のTCH600にて、不活性ガス融解法で測定した。
[安息角]
安息角は、JIS R 9301-2-2に記載の方法で測定した。
[平均粒子径D50]
平均粒子径D50(体積基準)は、以下の装置を使用して測定した。
メーカー:スペクトリス株式会社(マルバーン事業部)
装置名 :乾式粒子画像分析装置 Morphologi G3
比較例1は加熱処理を行っておらず、波長λ=1060nmである光に対する吸収率は17.5%にとどまった。
比較例2~4は加熱処理を行ったが、処理の程度が不十分であるので、波長λ=1060nmである光に対する吸収率の上昇がみられなかった。
比較例5~8は、波長λ=1060nmである光に対する吸収率が上昇したが、酸素濃度が2000wtppm以上と高く、造形時に酸化物スラグが発生する可能性がある。また、吸収率/酸素濃度で示される指数が3.0を下回っている。
比較例9~11は、ガスアトマイズ粉を使用した場合の結果である。ガスアトマイズでは、多量のガスを吹きかけてアトマイズするため、ガス中に含まれる微量酸素を巻き込む形で金属粉が生成され、酸化処理前の段階で、酸素濃度が600wtppmと高かった。すなわち、ディスクアトマイズ粉を使用して作られた実施例と比較して、同じ酸素濃度であっても、レーザー光吸収に影響する酸化膜厚みが少ないということになる。そのため、吸収率/酸素濃度で示される指数が3.0を下回っている。また、ディスクアトマイズ法の方が一般的に真球度が高くなることから、ガスアトマイズ法で作製された比較例9~11は、同様の条件で製造された比較例1、実施例5及び7より、安息角が大きくなっており、流動性が低くなってしまっている。そのため、ガスアトマイズ粉よりもディスクアトマイズ粉を使用した方が、本発明の条件を満たす銅粉末を製造することが容易となる。
Claims (8)
- 波長λ=1060nmである光に対する吸収率が18.9%~65.0%であり、波長λ=1060nmである光に対する吸収率/酸素濃度で示される指数が3.0以上である銅粉末。
- 酸素濃度が2000wtppm以下である請求項1に記載の銅粉末。
- 安息角が20°以上32°以下である請求項1又は2に記載の銅粉末。
- 平均粒子径D50が10~100μmである請求項1~3のいずれかに記載の銅粉末。
- 3Dプリンター用である請求項1~4のいずれかに記載の銅粉末。
- ディスクアトマイズ法で作製された銅のアトマイズ粉を酸化雰囲気中で加熱したのち、得られた仮焼結体を粉砕し、篩別する工程を含む、銅粉末の製造方法。
- 酸化雰囲気の温度が、120℃~200℃である請求項6に記載の銅粉末の製造方法。
- 請求項6又は7に記載の製造方法で製造される銅粉末の薄層にレーザー光を照射して、前記銅粉末が焼結又は溶融結合してなる造形物層を形成し、前記造形物層を積層することによって立体造形物を製造する方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187020491A KR102173257B1 (ko) | 2017-04-21 | 2018-01-12 | 구리분말 및 그 제조 방법, 및 입체조형물의 제조 방법 |
CA3014690A CA3014690C (en) | 2017-04-21 | 2018-01-12 | Copper powder, method for manufacturing copper powder, and method for manufacturing solid shaped object |
EP18755385.4A EP3412379A4 (en) | 2017-04-21 | 2018-01-12 | COPPER POWDER, METHOD FOR PRODUCING COPPER POWDER AND METHOD FOR PRODUCING A SOLID MOLDED OBJECT |
CN201880001220.2A CN109104860B (zh) | 2017-04-21 | 2018-01-12 | 铜粉末及其制造方法、以及立体造形物的制造方法 |
US16/080,887 US20210178465A1 (en) | 2017-04-21 | 2018-01-12 | Copper powder, method for manufacturing copper powder, and method for manufacturing solid shaped object |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-084829 | 2017-04-21 | ||
JP2017084829A JP6532497B2 (ja) | 2017-04-21 | 2017-04-21 | 銅粉末及びその製造方法並びに立体造形物の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018193671A1 true WO2018193671A1 (ja) | 2018-10-25 |
Family
ID=63855713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/000688 WO2018193671A1 (ja) | 2017-04-21 | 2018-01-12 | 銅粉末及びその製造方法並びに立体造形物の製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20210178465A1 (ja) |
EP (1) | EP3412379A4 (ja) |
JP (1) | JP6532497B2 (ja) |
KR (1) | KR102173257B1 (ja) |
CN (1) | CN109104860B (ja) |
CA (1) | CA3014690C (ja) |
TW (1) | TWI711709B (ja) |
WO (1) | WO2018193671A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3892400A4 (en) * | 2018-12-04 | 2022-11-09 | Mec Company., Ltd. | COPPER POWDER FOR 3D PRINTING, PROCESS FOR PRODUCTION OF COPPER POWDER FOR 3D PRINTING, PROCESS FOR PRODUCTION OF A THREE-DIMENSIONAL PRINTED PRODUCT AND THREE-DIMENSIONAL PRINTED PRODUCT |
WO2023033010A1 (ja) * | 2021-09-01 | 2023-03-09 | Jx金属株式会社 | 積層造形用純銅又は銅合金粉末 |
WO2023063018A1 (ja) * | 2021-10-12 | 2023-04-20 | 山陽特殊製鋼株式会社 | 造形性および導電性に優れた三次元積層造形用の銅合金粉末 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7119380B2 (ja) * | 2018-01-18 | 2022-08-17 | 三菱マテリアル株式会社 | 銅粉末及びその製造方法 |
JP2021529885A (ja) * | 2018-07-19 | 2021-11-04 | ヘレウス アディティブ マニュファクチュアリング ゲーエムベーハー | 高反射性金属の粉末の付加製造への使用 |
JP6496072B1 (ja) * | 2018-10-05 | 2019-04-03 | 株式会社Nttデータエンジニアリングシステムズ | 積層造形用の金属粉末、および銅合金造形物の製造方法 |
US20240300014A1 (en) * | 2018-11-15 | 2024-09-12 | Katholieke Universiteit Leuven | Copper, gold, or silver powder for powder bed additive manufacturing and method of manufacturing such powder |
US20210387255A1 (en) * | 2018-12-04 | 2021-12-16 | Mec Company., Ltd. | Copper powder for 3d printing, method for producing copper powder for 3d printing, method for producing 3d printed article, and 3d printed article |
KR102330100B1 (ko) | 2018-12-27 | 2021-12-01 | 제이엑스금속주식회사 | Si의 피막을 갖는 순동분을 사용한 적층 조형물의 제조 방법 |
JP6722838B1 (ja) * | 2018-12-27 | 2020-07-15 | Jx金属株式会社 | Siの被膜を有する純銅粉及びその製造方法並びに該純銅粉を用いた積層造形物 |
JP6866408B2 (ja) * | 2019-01-11 | 2021-04-28 | Jx金属株式会社 | 表面処理された金属粉及び導電性組成物 |
JP2020186429A (ja) * | 2019-05-13 | 2020-11-19 | 三菱マテリアル株式会社 | レーザー光の吸収率に優れた銅粉末 |
CA3158633C (en) | 2020-06-26 | 2023-12-19 | Jx Nippon Mining & Metals Corporation | Copper alloy powder having si coating film and method for producing same |
WO2024090447A1 (ja) * | 2022-10-24 | 2024-05-02 | 三菱マテリアル株式会社 | 金属am用銅合金粉末の製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080038555A1 (en) * | 2006-08-09 | 2008-02-14 | Napra Co., Ltd. | Spherical particles having nanometer size, crystalline structure, and good sphericity and method for producing |
JP2014156634A (ja) * | 2013-02-15 | 2014-08-28 | Toyota Motor Corp | コールドスプレー用粉末、その製造方法、およびこれを用いた銅系被膜の成膜方法 |
JP2015183255A (ja) * | 2014-03-25 | 2015-10-22 | 住友金属鉱山株式会社 | 銅微粒子、導電ペースト組成物及びこれらの製造方法 |
WO2016185966A1 (ja) | 2015-05-15 | 2016-11-24 | コニカミノルタ株式会社 | 粉末材料、立体造形物の製造方法および立体造形装置 |
JP2017036508A (ja) * | 2016-09-23 | 2017-02-16 | 株式会社ダイヘン | 金属粉末、積層造形物の製造方法および積層造形物 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1358593A (zh) * | 2000-12-09 | 2002-07-17 | 甘肃雷诺换热设备有限公司 | 一种降低雾化铜粉松装密度的方法 |
KR100819517B1 (ko) * | 2007-03-21 | 2008-04-08 | 박병선 | 아산화구리 분말의 제조방법 |
TW201339279A (zh) * | 2011-11-24 | 2013-10-01 | Showa Denko Kk | 導電圖型形成方法及藉由光照射或微波加熱的導電圖型形成用組成物 |
CN103801704B (zh) * | 2014-02-28 | 2016-08-17 | 昆山德泰新材料科技有限公司 | 一种适用于3d打印的成型铜粉、制备方法及其用途 |
CN104226980B (zh) * | 2014-07-29 | 2016-06-15 | 中国科学院重庆绿色智能技术研究院 | 增强金属粉体材料激光能量吸收效率的方法 |
CN204018727U (zh) * | 2014-08-20 | 2014-12-17 | 浙江南欧金属粉有限公司 | 铜水雾化装置 |
CN104325136A (zh) * | 2014-11-26 | 2015-02-04 | 康凯 | 一种金属粉末及其制备方法和应用 |
CN104874806B (zh) * | 2014-12-22 | 2017-05-03 | 南京大学 | 一种超细低氧含量铜球形粉末的制造方法 |
JP6030186B1 (ja) * | 2015-05-13 | 2016-11-24 | 株式会社ダイヘン | 銅合金粉末、積層造形物の製造方法および積層造形物 |
JP6107888B2 (ja) * | 2015-06-12 | 2017-04-05 | 三菱マテリアル株式会社 | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 |
KR101777308B1 (ko) * | 2016-01-13 | 2017-09-12 | 주식회사 풍산홀딩스 | 열플라즈마를 이용한 균일한 산소 패시베이션 층을 갖는 구리 나노 금속분말의 제조방법 및 이를 제조하기 위한 장치 |
DE102017102355A1 (de) * | 2016-02-09 | 2017-08-10 | Jtekt Corporation | Herstellungsvorrichtung und herstellungsverfahren für geformten gegenstand |
CN105880594A (zh) * | 2016-06-21 | 2016-08-24 | 广东电网有限责任公司电力科学研究院 | 一种铜合金粉末3d打印方法 |
CN106623953A (zh) * | 2016-12-28 | 2017-05-10 | 东莞市精研粉体科技有限公司 | 一种用于3d打印的低反射率球形铜粉的制备方法 |
CN110325303B (zh) * | 2017-03-31 | 2022-01-11 | 三井金属矿业株式会社 | 铜颗粒以及其制造方法 |
WO2018199110A1 (ja) * | 2017-04-28 | 2018-11-01 | 古河電気工業株式会社 | 銅合金粒子、表面被覆銅系粒子および混合粒子 |
US20210387255A1 (en) * | 2018-12-04 | 2021-12-16 | Mec Company., Ltd. | Copper powder for 3d printing, method for producing copper powder for 3d printing, method for producing 3d printed article, and 3d printed article |
-
2017
- 2017-04-21 JP JP2017084829A patent/JP6532497B2/ja active Active
-
2018
- 2018-01-12 CN CN201880001220.2A patent/CN109104860B/zh active Active
- 2018-01-12 WO PCT/JP2018/000688 patent/WO2018193671A1/ja active Application Filing
- 2018-01-12 US US16/080,887 patent/US20210178465A1/en active Pending
- 2018-01-12 CA CA3014690A patent/CA3014690C/en active Active
- 2018-01-12 TW TW107101255A patent/TWI711709B/zh active
- 2018-01-12 EP EP18755385.4A patent/EP3412379A4/en active Pending
- 2018-01-12 KR KR1020187020491A patent/KR102173257B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080038555A1 (en) * | 2006-08-09 | 2008-02-14 | Napra Co., Ltd. | Spherical particles having nanometer size, crystalline structure, and good sphericity and method for producing |
JP2014156634A (ja) * | 2013-02-15 | 2014-08-28 | Toyota Motor Corp | コールドスプレー用粉末、その製造方法、およびこれを用いた銅系被膜の成膜方法 |
JP2015183255A (ja) * | 2014-03-25 | 2015-10-22 | 住友金属鉱山株式会社 | 銅微粒子、導電ペースト組成物及びこれらの製造方法 |
WO2016185966A1 (ja) | 2015-05-15 | 2016-11-24 | コニカミノルタ株式会社 | 粉末材料、立体造形物の製造方法および立体造形装置 |
JP2017036508A (ja) * | 2016-09-23 | 2017-02-16 | 株式会社ダイヘン | 金属粉末、積層造形物の製造方法および積層造形物 |
Non-Patent Citations (2)
Title |
---|
"Diversification of molding materials such as resins, paper and metals", 1 August 2013, NIKKEI BP PUBLICATIONS, INC., article "Feature 2 - 3D Printer I Attracted! report of Design and Manufacturing Solutions Exhibition", pages: 64 - 68 |
See also references of EP3412379A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3892400A4 (en) * | 2018-12-04 | 2022-11-09 | Mec Company., Ltd. | COPPER POWDER FOR 3D PRINTING, PROCESS FOR PRODUCTION OF COPPER POWDER FOR 3D PRINTING, PROCESS FOR PRODUCTION OF A THREE-DIMENSIONAL PRINTED PRODUCT AND THREE-DIMENSIONAL PRINTED PRODUCT |
WO2023033010A1 (ja) * | 2021-09-01 | 2023-03-09 | Jx金属株式会社 | 積層造形用純銅又は銅合金粉末 |
JP7522937B2 (ja) | 2021-09-01 | 2024-07-25 | Jx金属株式会社 | 積層造形用純銅又は銅合金粉末 |
WO2023063018A1 (ja) * | 2021-10-12 | 2023-04-20 | 山陽特殊製鋼株式会社 | 造形性および導電性に優れた三次元積層造形用の銅合金粉末 |
JP2023057593A (ja) * | 2021-10-12 | 2023-04-24 | 山陽特殊製鋼株式会社 | 造形性および導電性に優れた三次元積層造形用の銅合金粉末 |
Also Published As
Publication number | Publication date |
---|---|
JP2018178239A (ja) | 2018-11-15 |
CN109104860B (zh) | 2021-04-13 |
KR20180126450A (ko) | 2018-11-27 |
JP6532497B2 (ja) | 2019-06-19 |
CA3014690C (en) | 2020-10-13 |
US20210178465A1 (en) | 2021-06-17 |
EP3412379A1 (en) | 2018-12-12 |
EP3412379A4 (en) | 2019-10-30 |
TWI711709B (zh) | 2020-12-01 |
KR102173257B1 (ko) | 2020-11-03 |
CN109104860A (zh) | 2018-12-28 |
TW201839146A (zh) | 2018-11-01 |
CA3014690A1 (en) | 2018-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018193671A1 (ja) | 銅粉末及びその製造方法並びに立体造形物の製造方法 | |
JP6662381B2 (ja) | 立体造形物の製造方法 | |
CN107812941B (zh) | 一种激光増材制造铝合金的原位制备方法及其产品 | |
CN110049836A (zh) | 通过增材制造制造金属部件和用于其的钨重金属合金粉末 | |
JP6706608B2 (ja) | 部品の製造方法 | |
KR20180097540A (ko) | 금속 물체의 적층 가공 | |
JP7419227B2 (ja) | 積層造形用銅合金粉末、積層造形物の製造方法及び積層造形物 | |
JP2014028996A (ja) | 粉末積層造形装置及び粉末積層造形方法 | |
JP2015038237A (ja) | 積層造形物、粉末積層造形装置及び粉末積層造形方法 | |
JP2011521867A5 (ja) | ||
JP2017164971A (ja) | 三次元造形方法 | |
WO2017119218A1 (ja) | 粉末材料、立体造形物の製造方法および立体造形装置 | |
CN111699061B (zh) | 激光吸收率优异的铜合金粉末 | |
JP7294141B2 (ja) | 球状Ti系粉末およびその製造方法 | |
JP2020190008A (ja) | 有機被覆銅系粉末、有機被覆銅系粉末を用いて形成された銅系材料からなる積層造形物および積層造形物の製造方法ならびに各種金属部品 | |
JP2024027858A (ja) | WMo合金粉末 | |
JP2023012810A (ja) | 銅基粉、その製造方法、および銅基粉を用いた光造形物の製造方法 | |
WO2024190248A1 (ja) | W粉末および積層造形物 | |
WO2022210134A1 (ja) | 積層造形用粉末材料および該粉末材料を用いた造形物の製造方法 | |
WO2024202310A1 (ja) | 積層造形用金属粉末及び、積層造形用金属粉末の製造方法 | |
JPWO2018083821A1 (ja) | 複合粉末およびその製造方法、ならびに、耐熱材料およびその製造方法 | |
CN117120229A (zh) | 在增材制备方法中使用的粉末和使用其制备陶瓷制品的方法 | |
JP2019035134A (ja) | 積層造形用銅合金粉末、積層造形物の製造方法及び積層造形物 | |
CN105268982A (zh) | 一种3d打印用超细球形粉末制造装置 | |
JP2017002214A (ja) | 蓄熱材の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20187020491 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018755385 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018755385 Country of ref document: EP Effective date: 20180907 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18755385 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |