WO2023033010A1 - 積層造形用純銅又は銅合金粉末 - Google Patents
積層造形用純銅又は銅合金粉末 Download PDFInfo
- Publication number
- WO2023033010A1 WO2023033010A1 PCT/JP2022/032685 JP2022032685W WO2023033010A1 WO 2023033010 A1 WO2023033010 A1 WO 2023033010A1 JP 2022032685 W JP2022032685 W JP 2022032685W WO 2023033010 A1 WO2023033010 A1 WO 2023033010A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- alloy powder
- pure copper
- copper alloy
- carbon
- Prior art date
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 96
- 239000000843 powder Substances 0.000 title claims abstract description 74
- 239000010949 copper Substances 0.000 title claims abstract description 67
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 66
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 56
- 230000008021 deposition Effects 0.000 title abstract 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 60
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 59
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 59
- 239000001301 oxygen Substances 0.000 claims abstract description 59
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 15
- 238000001069 Raman spectroscopy Methods 0.000 claims description 11
- 238000000465 moulding Methods 0.000 claims description 11
- 238000001228 spectrum Methods 0.000 claims description 3
- 238000003475 lamination Methods 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 abstract description 4
- 238000000576 coating method Methods 0.000 abstract description 4
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 239000005751 Copper oxide Substances 0.000 description 4
- 229910000431 copper oxide Inorganic materials 0.000 description 4
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(i) oxide Chemical compound [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011280 coal tar Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000007500 overflow downdraw method Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- CVBWTNHDKVVFMI-LBPRGKRZSA-N (2s)-1-[4-[2-[6-amino-8-[(6-bromo-1,3-benzodioxol-5-yl)sulfanyl]purin-9-yl]ethyl]piperidin-1-yl]-2-hydroxypropan-1-one Chemical compound C1CN(C(=O)[C@@H](O)C)CCC1CCN1C2=NC=NC(N)=C2N=C1SC(C(=C1)Br)=CC2=C1OCO2 CVBWTNHDKVVFMI-LBPRGKRZSA-N 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/10—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/40—Carbon, graphite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/10—Micron size particles, i.e. above 1 micrometer up to 500 micrometer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to pure copper or copper alloy powder for additive manufacturing.
- a metal 3D printer is also called an additive manufacturing (AM) method, and one of the methods is to spread metal powder thinly on a substrate to form a metal powder layer, and then selectively form a metal powder layer on the basis of two-dimensional data.
- a laser beam or electron beam is scanned to melt and solidify, and new powder is spread thinly on top of it, and a laser beam or electron beam is similarly scanned to melt and solidify, and this is repeated.
- pure copper and copper alloys which have excellent electrical and thermal conductivity, as laminate-molded objects (simply called molded objects).
- pure copper or copper alloy powder is irradiated with a laser beam for additive manufacturing, but pure copper and copper alloy have a low laser absorption rate (laser absorption rate of pure copper alone is 10 to 20%), and thermal conductivity Due to the high heat dissipation, the powder cannot be sufficiently melted with a normal laser output, making lamination molding difficult.
- long-time irradiation using a high-power laser may be considered, but in this case, there is a problem that the load of the laser is large and the productivity is poor.
- Patent Document 1 and Patent Document 2 disclose a technique for providing an oxide film by heating atomized copper powder in an oxidizing atmosphere in order to increase the laser absorption rate.
- Patent document 1 and patent document 2 are excellent techniques that the oxide film can increase the laser absorptivity.
- slag copper oxide
- voids pores
- Patent Documents 3 and 4 describe coating metal powder with an organic compound in order to increase the laser absorptivity.
- Patent document 3 and patent document 4 are excellent techniques in which a coating of an organic compound can increase the laser absorptance.
- the film will deteriorate due to heat conduction during molding, and there is a possibility that the powder cannot be used repeatedly.
- Patent Document 5 by using a copper alloy powder in which a predetermined amount of chromium (Cr) is added to copper (Cu) as a molding powder, the thermal conductivity is lower than that of pure copper, and molding is facilitated. technology is described.
- the present invention provides a pure copper or copper alloy powder used for additive manufacturing by a laser beam method, which can increase the laser absorptance and reduce the oxygen concentration in a model.
- the challenge is to
- One aspect of the present invention is a pure copper or copper alloy powder on which an oxide film is formed, wherein the oxide film contains carbon, and the ratio of oxygen concentration to carbon concentration (oxygen concentration/carbon concentration) is 5 or less.
- a pure copper or copper alloy powder characterized by:
- the present invention in layered manufacturing using a laser beam method, it is possible to improve the laser absorptance of the pure copper or copper alloy powder used in the layered manufacturing while reducing the oxygen concentration in the modeled object. As a result, it can be expected that deterioration of characteristics such as mechanical strength and electrical conductivity of the model can be suppressed. In addition, even with a low-power laser beam, the pure copper or copper alloy powder can be sufficiently melted, and a reduction in the load on the laser can be expected.
- Patent Documents 1 and 2 When modeling pure copper or copper alloy objects by layered manufacturing using the laser beam method, there was a problem that the powder could not be completely melted due to the low laser absorption rate of copper, which prevented sufficient heat input. Moreover, since copper has a high thermal conductivity, there is a problem that the molding range cannot be completely melted. For this reason, efforts have been made to improve the laser absorptance by subjecting copper to oxidation treatment (Patent Documents 1 and 2).
- the inventors of the present invention formed an oxide film on pure copper or copper alloy powder and made the oxide film contain an appropriate amount of carbon. , carbon monoxide or carbon dioxide to remove oxygen, thereby increasing the laser absorptivity and reducing the oxygen concentration in the model.
- an embodiment of the present invention provides a pure copper or copper alloy powder having an oxide film formed thereon, wherein the oxide film contains carbon, and the ratio of oxygen concentration to carbon concentration (oxygen concentration/carbon concentration) is 5 or less, pure copper or copper alloy powder.
- the carbon concentration and the oxygen concentration are weight concentrations.
- the oxygen concentration/carbon concentration exceeds 5, there is a high possibility that oxygen (such as oxides) will remain in the model, and there is a concern that it will have adverse effects such as a decrease in the strength and conductivity of the model.
- the oxygen concentration/carbon concentration is 1 or less.
- the carbon concentration ratio is preferably 0.01 or more.
- the oxygen concentration of the pure copper or copper alloy powder is 5000 wtppm or less, preferably 3000 wtppm or less, more preferably 1500 wtppm or less.
- the oxygen concentration is preferably 50 wtppm or more, more preferably 100 wtppm or more. If an oxide film is formed on the surface of the pure copper or copper alloy powder, the laser absorptivity can be improved, but the oxygen concentration increases during molding, which may cause deterioration of various properties. Therefore, limiting the oxygen concentration in the pure copper or copper alloy powder to a certain amount is effective both in terms of improving the laser absorptivity and suppressing deterioration of the characteristics of the modeled product.
- the carbon concentration can be adjusted in consideration of the oxygen concentration, but the carbon concentration is preferably 100 wtppm or more, more preferably 150 wtppm or more, and particularly preferably 200 wtppm or more. If the concentration of carbon is insufficient with respect to the concentration of oxygen that exists mainly as an oxide, oxygen may not be sufficiently removed during modeling, and the oxygen concentration in the finally obtained shaped article may not be sufficiently reduced. . On the other hand, if the carbon concentration is too high with respect to oxygen, carbon will remain in the shaped article, leading to a decrease in relative density. Therefore, the carbon concentration is preferably 5000 wtppm or less, more preferably 3000 wtppm or less, and particularly preferably 1000 wtppm or less.
- the pure copper or copper alloy powder on which the oxide film is formed preferably contains heat-resistant carbon that is difficult to decompose even at high temperatures.
- Heat-resistant carbon includes, for example, amorphous carbon and graphite. It is thought that the presence of heat-resistant carbon can increase the laser absorptance even during the temperature rise until the powder melts, and improve the formability. Moreover, the thermal conductivity of the powder can be lowered, and thermal diffusion can be suppressed. Organic substances with no heat resistance tend to disappear during molding, making it difficult to suppress heat dissipation.
- Raman spectroscopy is a technique for analyzing the bonding state (structure) of carbon. Raman spectroscopy can confirm the bonding state of atoms on the surface, and in particular allows detailed analysis of carbon bonding.
- the maximum scattering intensity value at Raman shift 1000 to 2000 cm -1 is confirmed . It is possible.
- Raman shift When the maximum scattering intensity appears in the range of 1300 to 1700 cm ⁇ 1 , it can be judged to have a graphite structure.
- the maximum peak intensity exists at a binding energy of 569 to 571 eV.
- the maximum peak intensity appears at a binding energy of 568 eV or less
- copper (I) oxide and copper (II) oxide the maximum peak intensity appears at a binding energy of 569 to 571 eV.
- copper oxide copper has a better laser absorptivity and may improve moldability, so the copper on the powder surface is in the form of copper (I) oxide or copper (II) oxide. is preferably present at
- the thickness of the oxide film formed on the surface of the pure copper or copper alloy powder is preferably 5 nm or more and 500 nm or less. If the film thickness of the oxide film is too thick, it leads to a decrease in the relative density of the finally obtained laminate-molded product during lamination-molding with a laser beam. On the other hand, if the film thickness of the oxide film is too thin, the improvement in laser absorptance is not sufficient, and the pure copper or copper alloy powder may not be completely melted. By adjusting the film thickness of the oxide film formed on the surface of the pure copper or copper alloy powder, it is possible to obtain a high-density laminate-molded article.
- the pure copper or copper alloy powder preferably has an average particle diameter D 50 (median diameter) of 10 ⁇ m or more and 150 ⁇ m or less.
- D 50 median diameter
- the average particle diameter D50 means the average particle size at 50% integrated value in the particle size distribution measured by image analysis.
- the pure copper powder according to the present embodiment it is preferable to use pure copper with a purity of 3N (99.9 wt%) or higher as the pure copper powder according to the present embodiment.
- the copper alloy powder according to the present embodiment it is preferable to use a copper alloy powder containing 80 wt% or more, 85 wt% or more, 90 wt% or more, 95 wt% or more, or 99 wt% or more.
- a laminate-molded article produced using the pure copper or copper alloy powder according to the present embodiment can be expected to have excellent physical properties such as high electrical conductivity.
- the oxygen concentration of the layered product exceeds 200 wtppm, it is possible that it will remain as an oxide in the layered product, the conductivity will be low, and the properties as a modeled product will be inferior.
- the oxygen concentration in the shaped article can be lowered to 200 wtppm or less, and high conductivity can be expected.
- a method for producing pure copper or copper alloy powder according to this embodiment will be described.
- a required amount of pure copper or copper alloy powder is prepared. It is preferable to use pure copper or copper alloy powder having an average particle diameter D 50 (median diameter) of 10 to 150 ⁇ m. A target average particle size can be obtained by sieving. Pure copper or copper alloy powder can be produced using an atomizing method, but the pure copper or copper alloy powder according to the present embodiment may be produced by another method, and the powder produced by this method may be Not limited.
- the pure copper or copper alloy powder it can be heated in the atmosphere.
- the oxygen concentration and film thickness can be adjusted by the heating temperature and the heating time.
- the heating temperature can be 70° C. to 200° C. and the heating time can be 2 to 48 hours.
- the oxide film can be intentionally formed by heating, but it is also possible to use an oxide film that is naturally formed by air or the like.
- the pure copper or copper alloy powder on which the oxide film is formed is made to contain carbon.
- carbon black and pure copper powder can be mixed using a ball mill or mortar.
- the pure copper powder can be loaded with carbon by heating a liquid organic compound in an inert atmosphere.
- a graphite film can be formed on pure copper powder by CVD (chemical vapor deposition).
- Carbon-based materials suitable for containing carbon include carbon black, coal tar, pitch, coke, organic compounds, and the like. At this time, it is necessary to adjust the carbon concentration (content) according to the oxygen concentration. As described above, a pure copper or copper alloy powder having desired oxygen concentration and carbon concentration can be obtained.
- the thickness of the oxide film was calculated from the sputtering rate and the time it took for oxygen to stop being detected by detecting Auger electrons by Auger electron spectroscopy (AES) while digging the powder surface at a constant sputtering rate. value. Two detection points are randomly selected from one particle, and the values in the examples are the average values.
- Manufacturer JEOL Ltd.
- Oxygen concentration and relative density in modeled object After heating the pure copper or copper alloy powder to the melting point and melting it, it is cooled to prepare a pseudo shaped article, and the oxygen concentration in the shaped article is measured.
- the oxygen concentration can be measured using the same technique as the above powder oxygen concentration measurement method.
- the relative density is calculated by measuring the Archimedes density of the pseudo modeled object and dividing the measured Archimedes density by the theoretical density of pure copper or copper alloy.
- Example 1 As the metal powder, pure copper powder having an average particle size (D 50 ) of 35.0 ⁇ m produced by atomization is prepared, and this pure copper powder is heated in the air at 150° C. for 24 hours to form an oxide film on its surface. formed. Next, the pure copper powder with the oxide film formed thereon was placed in a mortar, and carbon black was further added and mixed so that the oxygen concentration/carbon concentration was about 0.40. The oxygen concentration, carbon concentration, and laser absorptance of the pure copper powder thus produced were measured. Next, the produced pure copper powder was heated to the melting point and melted, and then cooled to produce a pseudo shaped object. The oxygen concentration, carbon concentration, and relative density of the obtained pseudo-molded article were measured. Table 1 shows the above results. As shown in Table 1, the pure copper powder of Example 1 was confirmed to have a high laser absorptance. Moreover, it was confirmed that the pseudo-molded article produced using the pure copper powder of Example 1 had a low oxygen concentration and a high relative density.
- D 50 average particle size
- Example 2 As the metal powder, pure copper powder having an average particle size (D 50 ) of 35.0 ⁇ m produced by atomization is prepared, and this pure copper powder is heated in the air at 150° C. for 24 hours to form an oxide film on its surface. formed. Next, the pure copper powder with the oxide film formed thereon was placed in a mortar, and carbon black was further added and mixed so that the oxygen concentration/carbon concentration was about 0.80. The oxygen concentration, carbon concentration, and laser absorptance of the pure copper powder thus produced were measured. Next, the produced pure copper powder was heated to the melting point and melted, and then cooled to produce a pseudo shaped object. The oxygen concentration, carbon concentration, and relative density of the obtained pseudo-molded article were measured. Table 1 shows the above results. As shown in Table 1, the pure copper powder of Example 2 was confirmed to have a high laser absorptance. Moreover, it was confirmed that the pseudo-molded article produced using the pure copper powder of Example 2 had a low oxygen concentration and a high relative density.
- D 50 average particle size
- Example 3 Pure copper powder having an average particle size (D 50 ) of 35.0 ⁇ m produced by an atomizing method was prepared as the metal powder. Next, the pure copper powder was immersed in a solution diluted with toluene so as to contain 5 wt % of coal tar, and after the immersion, the pure copper powder taken out of the solution was heated in an inert atmosphere. The oxygen concentration, carbon concentration, and laser absorptance of the pure copper powder thus obtained were measured. Table 1 shows the results. As shown in Table 1, the pure copper powder of Example 3 was confirmed to have a high laser absorptance (the laser absorptance of pure copper alone is 10 to 20%).
- Example 3 a pseudo-molded object was not produced, but as in Examples 1 and 2, the pure copper powder had a high laser absorptance and a low oxygen concentration. It can be inferred that the pseudo-molded object has the same effect as in the first and second embodiments.
- Comparative example 1 As the metal powder, pure copper powder having an average particle size (D 50 ) of 35.0 ⁇ m produced by atomization is prepared, and this pure copper powder is heated in the air at 150° C. for 24 hours to form an oxide film on its surface. formed.
- carbon such as carbon black was not mixed.
- the oxygen concentration, carbon concentration, and laser absorptance of the pure copper powder thus produced were measured.
- the pure copper powder thus prepared was heated to its melting point and melted, then cooled to prepare a pseudo-molded article, and the oxygen concentration, carbon concentration, and relative density of the obtained pseudo-molded article were measured. Table 1 shows the above results. As shown in Table 1, it was confirmed that the pseudo shaped article produced using the pure copper powder of Comparative Example 1, which did not contain carbon intentionally, had a high oxygen concentration.
- the present invention it is possible to improve the laser absorptivity and reduce the oxygen concentration in the modeled object in layered manufacturing by the laser beam method. As a result, it can be expected that deterioration of characteristics such as mechanical strength and electrical conductivity of the laminate-molded article can be suppressed. Also, a reduction in the load on the laser device can be expected.
- the pure copper or copper alloy powder according to this embodiment is particularly useful as a pure copper or copper alloy powder for additive manufacturing.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
特許文献5には、造形用粉末として、銅(Cu)に、所定量のクロム(Cr)を添加した銅合金粉末を用いることにより、純銅よりも熱伝導率が低下させて、造形を容易にする技術が記載されている。
炭素濃度と酸素濃度を上記比率の範囲とすることにより、造形時に炭素が酸素と結びつき、一酸化炭素あるいは二酸化炭素として、効果的に酸素及び炭素を除去することができ、造形物内に酸化物が残存することによる造形物への影響を低減できる。なお、本願における酸化被膜は、純銅又は銅合金粉末を加熱するなどにより意図的に形成された酸化被膜に限定されず、大気などにより自然に形成された酸化被膜であってもよいものである。
まず、必要量の純銅又は銅合金粉末を準備する。純銅又は銅合金粉末は、平均粒子径D50(メジアン径)が10~150μmのものを用いることが好ましい。平均粒子径は、篩別することで目標とする粒度のものを得ることができる。純銅又は銅合金粉末は、アトマイズ法を用いて作製することができるが、本実施形態に係る純銅又は銅合金粉末は、他の方法で作製されたものでもよく、この方法で作製されたものに限定されない。
(平均粒子径D50について)
メーカー:マイクロトラックベル
装置名:MT3300EXII
測定方法:レーザー回折方式(体積基準)
溶媒:純水
屈折率:1.33
メーカー:LECO社製
装置名:TCH600
分析法:不活性ガス融解法
測定サンプル量:1g
測定回数:2回として、その平均値を濃度とする。
メーカー:LECO社製
装置名:TCH600
分析法:不活性ガス融解法
測定サンプル量:1g
測定回数:2回として、その平均値を濃度とする。
酸化被膜の膜厚は、一定のスパッタレートで粉体表面を掘り進めながら、オージェ電子分光法(AES)によりオージェ電子を検出し、酸素が検出しなくなるまでにかかった時間とスパッタレートから算出した値とする。検出する場所は、1つの粒子からランダムに2点選び、実施例の値はその平均値を示す。
メーカー:日本電子株式会社
装置名:AES(JAMP-7800F)
フィラメント電流:2.22A
プローブ電圧:10kV
プローブ電流:1.0×10-8A
プローブ径:約500nm
スパッタリングレート:7.2nm/min(SiO2換算)
酸化銅の存在は、XPSにより確認することができる。XPSにより銅のLMMスペクトルを確認し、569~570eVにピークが存在した場合には酸化銅が存在すると判断することができる。
メーカー: アルバック株式会社
装置名:5600MC
グラファイト構造の存在は、ラマン分光法により確認することができる。ラマン分光測定によりラマンシフト:1300~1700cm‐1に最大散乱強度値が存在した場合グラファイト構造が存在すると判断することができる。
メーカー:Ranishow
装置名:invia
一般的なレーザー方式の造形は波長:1060nm程度のファイバーレーザーを使用することから、波長:1060nmの反射率を測定し、レーザー吸収率を算出する。
メーカー:島津製作所株式会社
装置名:分光光度計(MPC-3100、粉末ホルダー使用)
測定波長:300mm~1500mm
スリット幅:20nm
リファレンス:BaSO4
測定物性値:反射率
吸収率(%)=1-(反射率(%))
純銅又は銅合金粉末を融点まで加熱し溶解させた後、冷却して疑似的な造形物を作製し、その造形物中の酸素濃度を測定する。酸素濃度の測定方法は上記粉末の酸素濃度の測定方法と同じ手法を用いることができる。また、疑似的な造形物のアルキメデス密度を測定し、測定したアルキメデス密度を純銅又は銅合金の理論密度で除することで、相対密度を算出する。
金属粉として、アトマイズ法で作製した平均粒子径(D50)が35.0μmの純銅粉末を用意し、この純銅粉末を大気中、150℃で、24時間加熱して、その表面に酸化被膜を形成した。次に、酸化被膜を形成した純銅粉末を乳鉢に入れ、さらに、酸素濃度/炭素濃度が0.40程度になるようにカーボンブラックを入れて混合した。このようにして作製した純銅粉末について、酸素濃度、炭素濃度、及びレーザー吸収率を測定した。次に、作製した純銅粉を融点まで加熱し溶解させた後、冷却して、疑似的な造形物を作製した。得られた疑似造形物の酸素濃度、炭素濃度、さらに相対密度を測定した。以上の結果を表1に示す。表1に示す通り、実施例1の純銅粉末は、高いレーザー吸収率を有することを確認した。また、実施例1の純銅粉末を用いて作製した疑似造形物は、酸素濃度が低く、相対密度が高いことを確認した。
金属粉として、アトマイズ法で作製した平均粒子径(D50)が35.0μmの純銅粉末を用意し、この純銅粉末を大気中、150℃で、24時間加熱して、その表面に酸化被膜を形成した。次に、酸化被膜を形成した純銅粉末を乳鉢に入れ、さらに、酸素濃度/炭素濃度が0.80程度になるようにカーボンブラックを入れて混合した。このようにして作製した純銅粉について、酸素濃度、炭素濃度、及びレーザー吸収率を測定した。次に、作製した純銅粉を融点まで加熱し溶解させた後、冷却して、疑似的な造形物を作製した。得られた疑似造形物の酸素濃度、炭素濃度、さらに相対密度を測定した。以上の結果を表1に示す。表1に示す通り、実施例2の純銅粉末は、高いレーザー吸収率を有することを確認した。また、実施例2の純銅粉末を用いて作製した疑似造形物は、酸素濃度が低く、相対密度が高いことを確認した。
金属粉として、アトマイズ法で作製した平均粒子径(D50)が35.0μmの純銅粉末を用意した。次に、コールタールを5wt%含むようにトルエンで希釈した溶液に純銅粉末を浸漬し、浸漬後、溶液から取り出した純銅粉末を不活性雰囲気中で加熱した。これによって得られた純銅粉末について、酸素濃度、炭素濃度、及び、レーザー吸収率を測定した。その結果を表1に示す。表1に示す通り、実施例3の純銅粉末は、高いレーザー吸収率を有することを確認した(純銅単体のレーザー吸収率は10~20%である)。なお、実施例3においては、疑似造形物を作製していないが、実施例1、2と同様に、純銅粉末のレーザー吸収率が高く、純銅粉末の酸素濃度が低いことから、酸化物の形成が少ないと推測でき、疑似造形物についても、実施例1、2と同様の効果が得られると推測できる。
金属粉として、アトマイズ法で作製した平均粒子径(D50)が35.0μmの純銅粉末を用意し、この純銅粉末を大気中、150℃で、24時間加熱して、その表面に酸化被膜を形成した。なお、比較例1では、カーボンブラックなどの炭素を混合しなかった。このようにして作製した純銅粉末について、酸素濃度、炭素濃度、及びレーザー吸収率を測定した。また、作製した純銅粉を融点まで加熱し溶解させた後、冷却して、疑似的な造形物を作製し、得られた疑似造形物の酸素濃度、炭素濃度、さらに相対密度を測定した。以上の結果を表1に示す。表1に示す通り、炭素を意図的に含有させなかった比較例1の純銅粉末を用いて作製した疑似造形物は、酸素濃度が高いことを確認した。
Claims (10)
- 酸化被膜が形成された純銅又は銅合金粉末であって、前記酸化被膜に炭素を含有し、炭素濃度に対する酸素濃度の比率(酸素濃度/炭素濃度)が5以下である、純銅又は銅合金粉末。
- 前記酸素濃度が5000wtppm以下である、請求項1に記載の純銅又は銅合金粉末。
- 前記炭素濃度が100wtppm以上である、請求項1又は2に記載の純銅及び銅合金粉末。
- 前記炭素がグラファイト構造を有する、請求項1~3のいずれか一項に記載の純銅又は銅合金粉末。
- ラマン分光法で測定した際、ラマンシフト:1000~2000cm-1における最大散乱強度値が、ラマンシフト:1300~1700cm-1の範囲内に存在する、請求項1~4のいずれか一項に記載の純銅又は銅合金粉末。
- XPSでCuLMMスペクトルを解析した際、結合エネルギー:569~571eVに最大ピーク強度が存在する、請求項1~5のいずれか一項に記載の純銅又は銅合金粉末。
- 前記酸化被膜の膜厚が5nm以上500nm以下である、請求項1~6のいずれか一項に記載の純銅又は銅合金粉末。
- 平均粒子径D50(メジアン径)を10μm以上150μm以下である、請求項1~7のいずれか一項に記載の純銅又は銅合金粉末。
- 純銅又は銅を80wt%以上含む銅合金である、請求項1~8のいずれか一項に記載の純銅又は銅合金粉末。
- レーザービームによる積層造形用として使用する請求項1~9のいずれか一項に記載の純銅又は銅合金粉末。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3227541A CA3227541A1 (en) | 2021-09-01 | 2022-08-30 | Pure copper or copper alloy powder for additive manufacturing |
JP2023545621A JP7522937B2 (ja) | 2021-09-01 | 2022-08-30 | 積層造形用純銅又は銅合金粉末 |
US18/580,000 US20240335874A1 (en) | 2021-09-01 | 2022-08-30 | Pure copper or copper alloy powder for additive manufacturing |
CN202280055171.7A CN117858776A (zh) | 2021-09-01 | 2022-08-30 | 增材制造用纯铜或铜合金粉末 |
EP22864592.5A EP4360776A1 (en) | 2021-09-01 | 2022-08-30 | Pure copper or copper alloy powder for deposition modeling |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021142629 | 2021-09-01 | ||
JP2021-142629 | 2021-09-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023033010A1 true WO2023033010A1 (ja) | 2023-03-09 |
Family
ID=85411299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/032685 WO2023033010A1 (ja) | 2021-09-01 | 2022-08-30 | 積層造形用純銅又は銅合金粉末 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240335874A1 (ja) |
EP (1) | EP4360776A1 (ja) |
JP (1) | JP7522937B2 (ja) |
CN (1) | CN117858776A (ja) |
CA (1) | CA3227541A1 (ja) |
TW (1) | TW202322937A (ja) |
WO (1) | WO2023033010A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017141505A (ja) * | 2016-02-09 | 2017-08-17 | 株式会社ジェイテクト | 造形物の製造装置、及び製造方法 |
JP2018022598A (ja) * | 2016-08-03 | 2018-02-08 | Nissha株式会社 | 導電性ペースト |
WO2018193671A1 (ja) * | 2017-04-21 | 2018-10-25 | Jx金属株式会社 | 銅粉末及びその製造方法並びに立体造形物の製造方法 |
JP2018199662A (ja) | 2017-05-29 | 2018-12-20 | 株式会社ピカソ美化学研究所 | 化粧品 |
JP2018199862A (ja) * | 2017-05-29 | 2018-12-20 | 三菱瓦斯化学株式会社 | 炭素被覆金属紛体、それを含む付加製造用の粉末材料、及び、付加製造物の製造方法 |
JP2019044260A (ja) | 2017-09-04 | 2019-03-22 | 株式会社Nttデータエンジニアリングシステムズ | 銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法および銅合金造形物 |
JP2019214748A (ja) * | 2018-06-11 | 2019-12-19 | 古河電気工業株式会社 | 表面被覆金属微粒子及びその分散溶液 |
JP2020186429A (ja) | 2019-05-13 | 2020-11-19 | 三菱マテリアル株式会社 | レーザー光の吸収率に優れた銅粉末 |
JP2020190008A (ja) | 2019-05-21 | 2020-11-26 | 古河電気工業株式会社 | 有機被覆銅系粉末、有機被覆銅系粉末を用いて形成された銅系材料からなる積層造形物および積層造形物の製造方法ならびに各種金属部品 |
-
2022
- 2022-08-30 EP EP22864592.5A patent/EP4360776A1/en active Pending
- 2022-08-30 WO PCT/JP2022/032685 patent/WO2023033010A1/ja active Application Filing
- 2022-08-30 US US18/580,000 patent/US20240335874A1/en active Pending
- 2022-08-30 CA CA3227541A patent/CA3227541A1/en active Pending
- 2022-08-30 JP JP2023545621A patent/JP7522937B2/ja active Active
- 2022-08-30 CN CN202280055171.7A patent/CN117858776A/zh active Pending
- 2022-09-01 TW TW111133097A patent/TW202322937A/zh unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017141505A (ja) * | 2016-02-09 | 2017-08-17 | 株式会社ジェイテクト | 造形物の製造装置、及び製造方法 |
JP2018022598A (ja) * | 2016-08-03 | 2018-02-08 | Nissha株式会社 | 導電性ペースト |
WO2018193671A1 (ja) * | 2017-04-21 | 2018-10-25 | Jx金属株式会社 | 銅粉末及びその製造方法並びに立体造形物の製造方法 |
JP2018178239A (ja) | 2017-04-21 | 2018-11-15 | Jx金属株式会社 | 銅粉末及びその製造方法並びに立体造形物の製造方法 |
JP2018199662A (ja) | 2017-05-29 | 2018-12-20 | 株式会社ピカソ美化学研究所 | 化粧品 |
JP2018199862A (ja) * | 2017-05-29 | 2018-12-20 | 三菱瓦斯化学株式会社 | 炭素被覆金属紛体、それを含む付加製造用の粉末材料、及び、付加製造物の製造方法 |
JP2019044260A (ja) | 2017-09-04 | 2019-03-22 | 株式会社Nttデータエンジニアリングシステムズ | 銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法および銅合金造形物 |
JP2019214748A (ja) * | 2018-06-11 | 2019-12-19 | 古河電気工業株式会社 | 表面被覆金属微粒子及びその分散溶液 |
JP2020186429A (ja) | 2019-05-13 | 2020-11-19 | 三菱マテリアル株式会社 | レーザー光の吸収率に優れた銅粉末 |
JP2020190008A (ja) | 2019-05-21 | 2020-11-26 | 古河電気工業株式会社 | 有機被覆銅系粉末、有機被覆銅系粉末を用いて形成された銅系材料からなる積層造形物および積層造形物の製造方法ならびに各種金属部品 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023033010A1 (ja) | 2023-03-09 |
CN117858776A (zh) | 2024-04-09 |
US20240335874A1 (en) | 2024-10-10 |
EP4360776A1 (en) | 2024-05-01 |
TW202322937A (zh) | 2023-06-16 |
CA3227541A1 (en) | 2023-03-09 |
JP7522937B2 (ja) | 2024-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2022172242A (ja) | 銅粉、それを用いた光造形物の製造方法、および銅による光造形物 | |
WO2022080319A1 (ja) | 付加製造用金属粉末、これを用いた付加製造物の製造方法及び付加製造物 | |
JP7377337B2 (ja) | Si被膜を有する銅合金粉及びその製造方法 | |
FR3080786A1 (fr) | Poudre d'alliage ods et son procede de fabrication par traitement plasma | |
JP2021143384A (ja) | Cu基合金粉末 | |
JP7522937B2 (ja) | 積層造形用純銅又は銅合金粉末 | |
JP6094848B2 (ja) | 垂直磁気記録媒体用Fe−Co系合金軟磁性膜の製造方法 | |
WO2019225589A1 (ja) | 銅系粉末、表面被覆銅系粉末およびこれらの混合粉末ならびに積層造形物およびその製造方法ならびに各種金属部品 | |
WO2022138233A1 (ja) | 積層造形用銅合金粉末とその評価方法、銅合金積層造形体の製造方法および銅合金積層造形体 | |
JP2020190008A (ja) | 有機被覆銅系粉末、有機被覆銅系粉末を用いて形成された銅系材料からなる積層造形物および積層造形物の製造方法ならびに各種金属部品 | |
JP2014077187A (ja) | 薄膜形成用スパッタリングターゲット及びその製造方法 | |
JP2024138622A (ja) | 積層造形用金属粉末 | |
JP2024138621A (ja) | 積層造形用金属粉末 | |
Matsubara et al. | Fabrication of Nanocomposite Thermoelectric Materials by a Pulsed Laser Deposition Method | |
WO2024090448A1 (ja) | 金属am用銅合金粉末および積層造形物の製造方法 | |
EP4190463A1 (en) | Additive manufacturing powder material and method for manufacturing additive manufacturing powder material | |
WO2024202310A1 (ja) | 積層造形用金属粉末及び、積層造形用金属粉末の製造方法 | |
JP2023057593A (ja) | 造形性および導電性に優れた三次元積層造形用の銅合金粉末 | |
WO2024090450A1 (ja) | 金属am用銅合金粉末および積層造形物の製造方法 | |
TW202435994A (zh) | 金屬am用銅合金粉末及層合造形物之製造方法 | |
US20130209310A1 (en) | Thermal diffusion control film for use in magnetic recording medium, for heat-assisted magnetic recording, magnetic recording medium, and sputtering target | |
JP2021134423A (ja) | 積層造形用銅合金粉末及びその製造方法 | |
JP2023024164A (ja) | 電気伝導性に優れた銅合金造形物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22864592 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2023545621 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18580000 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022864592 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3227541 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280055171.7 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2022864592 Country of ref document: EP Effective date: 20240123 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |