WO2023033010A1 - 積層造形用純銅又は銅合金粉末 - Google Patents

積層造形用純銅又は銅合金粉末 Download PDF

Info

Publication number
WO2023033010A1
WO2023033010A1 PCT/JP2022/032685 JP2022032685W WO2023033010A1 WO 2023033010 A1 WO2023033010 A1 WO 2023033010A1 JP 2022032685 W JP2022032685 W JP 2022032685W WO 2023033010 A1 WO2023033010 A1 WO 2023033010A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
alloy powder
pure copper
copper alloy
carbon
Prior art date
Application number
PCT/JP2022/032685
Other languages
English (en)
French (fr)
Inventor
裕文 渡邊
義孝 澁谷
正志 熊谷
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to CA3227541A priority Critical patent/CA3227541A1/en
Priority to JP2023545621A priority patent/JP7522937B2/ja
Priority to US18/580,000 priority patent/US20240335874A1/en
Priority to CN202280055171.7A priority patent/CN117858776A/zh
Priority to EP22864592.5A priority patent/EP4360776A1/en
Publication of WO2023033010A1 publication Critical patent/WO2023033010A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to pure copper or copper alloy powder for additive manufacturing.
  • a metal 3D printer is also called an additive manufacturing (AM) method, and one of the methods is to spread metal powder thinly on a substrate to form a metal powder layer, and then selectively form a metal powder layer on the basis of two-dimensional data.
  • a laser beam or electron beam is scanned to melt and solidify, and new powder is spread thinly on top of it, and a laser beam or electron beam is similarly scanned to melt and solidify, and this is repeated.
  • pure copper and copper alloys which have excellent electrical and thermal conductivity, as laminate-molded objects (simply called molded objects).
  • pure copper or copper alloy powder is irradiated with a laser beam for additive manufacturing, but pure copper and copper alloy have a low laser absorption rate (laser absorption rate of pure copper alone is 10 to 20%), and thermal conductivity Due to the high heat dissipation, the powder cannot be sufficiently melted with a normal laser output, making lamination molding difficult.
  • long-time irradiation using a high-power laser may be considered, but in this case, there is a problem that the load of the laser is large and the productivity is poor.
  • Patent Document 1 and Patent Document 2 disclose a technique for providing an oxide film by heating atomized copper powder in an oxidizing atmosphere in order to increase the laser absorption rate.
  • Patent document 1 and patent document 2 are excellent techniques that the oxide film can increase the laser absorptivity.
  • slag copper oxide
  • voids pores
  • Patent Documents 3 and 4 describe coating metal powder with an organic compound in order to increase the laser absorptivity.
  • Patent document 3 and patent document 4 are excellent techniques in which a coating of an organic compound can increase the laser absorptance.
  • the film will deteriorate due to heat conduction during molding, and there is a possibility that the powder cannot be used repeatedly.
  • Patent Document 5 by using a copper alloy powder in which a predetermined amount of chromium (Cr) is added to copper (Cu) as a molding powder, the thermal conductivity is lower than that of pure copper, and molding is facilitated. technology is described.
  • the present invention provides a pure copper or copper alloy powder used for additive manufacturing by a laser beam method, which can increase the laser absorptance and reduce the oxygen concentration in a model.
  • the challenge is to
  • One aspect of the present invention is a pure copper or copper alloy powder on which an oxide film is formed, wherein the oxide film contains carbon, and the ratio of oxygen concentration to carbon concentration (oxygen concentration/carbon concentration) is 5 or less.
  • a pure copper or copper alloy powder characterized by:
  • the present invention in layered manufacturing using a laser beam method, it is possible to improve the laser absorptance of the pure copper or copper alloy powder used in the layered manufacturing while reducing the oxygen concentration in the modeled object. As a result, it can be expected that deterioration of characteristics such as mechanical strength and electrical conductivity of the model can be suppressed. In addition, even with a low-power laser beam, the pure copper or copper alloy powder can be sufficiently melted, and a reduction in the load on the laser can be expected.
  • Patent Documents 1 and 2 When modeling pure copper or copper alloy objects by layered manufacturing using the laser beam method, there was a problem that the powder could not be completely melted due to the low laser absorption rate of copper, which prevented sufficient heat input. Moreover, since copper has a high thermal conductivity, there is a problem that the molding range cannot be completely melted. For this reason, efforts have been made to improve the laser absorptance by subjecting copper to oxidation treatment (Patent Documents 1 and 2).
  • the inventors of the present invention formed an oxide film on pure copper or copper alloy powder and made the oxide film contain an appropriate amount of carbon. , carbon monoxide or carbon dioxide to remove oxygen, thereby increasing the laser absorptivity and reducing the oxygen concentration in the model.
  • an embodiment of the present invention provides a pure copper or copper alloy powder having an oxide film formed thereon, wherein the oxide film contains carbon, and the ratio of oxygen concentration to carbon concentration (oxygen concentration/carbon concentration) is 5 or less, pure copper or copper alloy powder.
  • the carbon concentration and the oxygen concentration are weight concentrations.
  • the oxygen concentration/carbon concentration exceeds 5, there is a high possibility that oxygen (such as oxides) will remain in the model, and there is a concern that it will have adverse effects such as a decrease in the strength and conductivity of the model.
  • the oxygen concentration/carbon concentration is 1 or less.
  • the carbon concentration ratio is preferably 0.01 or more.
  • the oxygen concentration of the pure copper or copper alloy powder is 5000 wtppm or less, preferably 3000 wtppm or less, more preferably 1500 wtppm or less.
  • the oxygen concentration is preferably 50 wtppm or more, more preferably 100 wtppm or more. If an oxide film is formed on the surface of the pure copper or copper alloy powder, the laser absorptivity can be improved, but the oxygen concentration increases during molding, which may cause deterioration of various properties. Therefore, limiting the oxygen concentration in the pure copper or copper alloy powder to a certain amount is effective both in terms of improving the laser absorptivity and suppressing deterioration of the characteristics of the modeled product.
  • the carbon concentration can be adjusted in consideration of the oxygen concentration, but the carbon concentration is preferably 100 wtppm or more, more preferably 150 wtppm or more, and particularly preferably 200 wtppm or more. If the concentration of carbon is insufficient with respect to the concentration of oxygen that exists mainly as an oxide, oxygen may not be sufficiently removed during modeling, and the oxygen concentration in the finally obtained shaped article may not be sufficiently reduced. . On the other hand, if the carbon concentration is too high with respect to oxygen, carbon will remain in the shaped article, leading to a decrease in relative density. Therefore, the carbon concentration is preferably 5000 wtppm or less, more preferably 3000 wtppm or less, and particularly preferably 1000 wtppm or less.
  • the pure copper or copper alloy powder on which the oxide film is formed preferably contains heat-resistant carbon that is difficult to decompose even at high temperatures.
  • Heat-resistant carbon includes, for example, amorphous carbon and graphite. It is thought that the presence of heat-resistant carbon can increase the laser absorptance even during the temperature rise until the powder melts, and improve the formability. Moreover, the thermal conductivity of the powder can be lowered, and thermal diffusion can be suppressed. Organic substances with no heat resistance tend to disappear during molding, making it difficult to suppress heat dissipation.
  • Raman spectroscopy is a technique for analyzing the bonding state (structure) of carbon. Raman spectroscopy can confirm the bonding state of atoms on the surface, and in particular allows detailed analysis of carbon bonding.
  • the maximum scattering intensity value at Raman shift 1000 to 2000 cm -1 is confirmed . It is possible.
  • Raman shift When the maximum scattering intensity appears in the range of 1300 to 1700 cm ⁇ 1 , it can be judged to have a graphite structure.
  • the maximum peak intensity exists at a binding energy of 569 to 571 eV.
  • the maximum peak intensity appears at a binding energy of 568 eV or less
  • copper (I) oxide and copper (II) oxide the maximum peak intensity appears at a binding energy of 569 to 571 eV.
  • copper oxide copper has a better laser absorptivity and may improve moldability, so the copper on the powder surface is in the form of copper (I) oxide or copper (II) oxide. is preferably present at
  • the thickness of the oxide film formed on the surface of the pure copper or copper alloy powder is preferably 5 nm or more and 500 nm or less. If the film thickness of the oxide film is too thick, it leads to a decrease in the relative density of the finally obtained laminate-molded product during lamination-molding with a laser beam. On the other hand, if the film thickness of the oxide film is too thin, the improvement in laser absorptance is not sufficient, and the pure copper or copper alloy powder may not be completely melted. By adjusting the film thickness of the oxide film formed on the surface of the pure copper or copper alloy powder, it is possible to obtain a high-density laminate-molded article.
  • the pure copper or copper alloy powder preferably has an average particle diameter D 50 (median diameter) of 10 ⁇ m or more and 150 ⁇ m or less.
  • D 50 median diameter
  • the average particle diameter D50 means the average particle size at 50% integrated value in the particle size distribution measured by image analysis.
  • the pure copper powder according to the present embodiment it is preferable to use pure copper with a purity of 3N (99.9 wt%) or higher as the pure copper powder according to the present embodiment.
  • the copper alloy powder according to the present embodiment it is preferable to use a copper alloy powder containing 80 wt% or more, 85 wt% or more, 90 wt% or more, 95 wt% or more, or 99 wt% or more.
  • a laminate-molded article produced using the pure copper or copper alloy powder according to the present embodiment can be expected to have excellent physical properties such as high electrical conductivity.
  • the oxygen concentration of the layered product exceeds 200 wtppm, it is possible that it will remain as an oxide in the layered product, the conductivity will be low, and the properties as a modeled product will be inferior.
  • the oxygen concentration in the shaped article can be lowered to 200 wtppm or less, and high conductivity can be expected.
  • a method for producing pure copper or copper alloy powder according to this embodiment will be described.
  • a required amount of pure copper or copper alloy powder is prepared. It is preferable to use pure copper or copper alloy powder having an average particle diameter D 50 (median diameter) of 10 to 150 ⁇ m. A target average particle size can be obtained by sieving. Pure copper or copper alloy powder can be produced using an atomizing method, but the pure copper or copper alloy powder according to the present embodiment may be produced by another method, and the powder produced by this method may be Not limited.
  • the pure copper or copper alloy powder it can be heated in the atmosphere.
  • the oxygen concentration and film thickness can be adjusted by the heating temperature and the heating time.
  • the heating temperature can be 70° C. to 200° C. and the heating time can be 2 to 48 hours.
  • the oxide film can be intentionally formed by heating, but it is also possible to use an oxide film that is naturally formed by air or the like.
  • the pure copper or copper alloy powder on which the oxide film is formed is made to contain carbon.
  • carbon black and pure copper powder can be mixed using a ball mill or mortar.
  • the pure copper powder can be loaded with carbon by heating a liquid organic compound in an inert atmosphere.
  • a graphite film can be formed on pure copper powder by CVD (chemical vapor deposition).
  • Carbon-based materials suitable for containing carbon include carbon black, coal tar, pitch, coke, organic compounds, and the like. At this time, it is necessary to adjust the carbon concentration (content) according to the oxygen concentration. As described above, a pure copper or copper alloy powder having desired oxygen concentration and carbon concentration can be obtained.
  • the thickness of the oxide film was calculated from the sputtering rate and the time it took for oxygen to stop being detected by detecting Auger electrons by Auger electron spectroscopy (AES) while digging the powder surface at a constant sputtering rate. value. Two detection points are randomly selected from one particle, and the values in the examples are the average values.
  • Manufacturer JEOL Ltd.
  • Oxygen concentration and relative density in modeled object After heating the pure copper or copper alloy powder to the melting point and melting it, it is cooled to prepare a pseudo shaped article, and the oxygen concentration in the shaped article is measured.
  • the oxygen concentration can be measured using the same technique as the above powder oxygen concentration measurement method.
  • the relative density is calculated by measuring the Archimedes density of the pseudo modeled object and dividing the measured Archimedes density by the theoretical density of pure copper or copper alloy.
  • Example 1 As the metal powder, pure copper powder having an average particle size (D 50 ) of 35.0 ⁇ m produced by atomization is prepared, and this pure copper powder is heated in the air at 150° C. for 24 hours to form an oxide film on its surface. formed. Next, the pure copper powder with the oxide film formed thereon was placed in a mortar, and carbon black was further added and mixed so that the oxygen concentration/carbon concentration was about 0.40. The oxygen concentration, carbon concentration, and laser absorptance of the pure copper powder thus produced were measured. Next, the produced pure copper powder was heated to the melting point and melted, and then cooled to produce a pseudo shaped object. The oxygen concentration, carbon concentration, and relative density of the obtained pseudo-molded article were measured. Table 1 shows the above results. As shown in Table 1, the pure copper powder of Example 1 was confirmed to have a high laser absorptance. Moreover, it was confirmed that the pseudo-molded article produced using the pure copper powder of Example 1 had a low oxygen concentration and a high relative density.
  • D 50 average particle size
  • Example 2 As the metal powder, pure copper powder having an average particle size (D 50 ) of 35.0 ⁇ m produced by atomization is prepared, and this pure copper powder is heated in the air at 150° C. for 24 hours to form an oxide film on its surface. formed. Next, the pure copper powder with the oxide film formed thereon was placed in a mortar, and carbon black was further added and mixed so that the oxygen concentration/carbon concentration was about 0.80. The oxygen concentration, carbon concentration, and laser absorptance of the pure copper powder thus produced were measured. Next, the produced pure copper powder was heated to the melting point and melted, and then cooled to produce a pseudo shaped object. The oxygen concentration, carbon concentration, and relative density of the obtained pseudo-molded article were measured. Table 1 shows the above results. As shown in Table 1, the pure copper powder of Example 2 was confirmed to have a high laser absorptance. Moreover, it was confirmed that the pseudo-molded article produced using the pure copper powder of Example 2 had a low oxygen concentration and a high relative density.
  • D 50 average particle size
  • Example 3 Pure copper powder having an average particle size (D 50 ) of 35.0 ⁇ m produced by an atomizing method was prepared as the metal powder. Next, the pure copper powder was immersed in a solution diluted with toluene so as to contain 5 wt % of coal tar, and after the immersion, the pure copper powder taken out of the solution was heated in an inert atmosphere. The oxygen concentration, carbon concentration, and laser absorptance of the pure copper powder thus obtained were measured. Table 1 shows the results. As shown in Table 1, the pure copper powder of Example 3 was confirmed to have a high laser absorptance (the laser absorptance of pure copper alone is 10 to 20%).
  • Example 3 a pseudo-molded object was not produced, but as in Examples 1 and 2, the pure copper powder had a high laser absorptance and a low oxygen concentration. It can be inferred that the pseudo-molded object has the same effect as in the first and second embodiments.
  • Comparative example 1 As the metal powder, pure copper powder having an average particle size (D 50 ) of 35.0 ⁇ m produced by atomization is prepared, and this pure copper powder is heated in the air at 150° C. for 24 hours to form an oxide film on its surface. formed.
  • carbon such as carbon black was not mixed.
  • the oxygen concentration, carbon concentration, and laser absorptance of the pure copper powder thus produced were measured.
  • the pure copper powder thus prepared was heated to its melting point and melted, then cooled to prepare a pseudo-molded article, and the oxygen concentration, carbon concentration, and relative density of the obtained pseudo-molded article were measured. Table 1 shows the above results. As shown in Table 1, it was confirmed that the pseudo shaped article produced using the pure copper powder of Comparative Example 1, which did not contain carbon intentionally, had a high oxygen concentration.
  • the present invention it is possible to improve the laser absorptivity and reduce the oxygen concentration in the modeled object in layered manufacturing by the laser beam method. As a result, it can be expected that deterioration of characteristics such as mechanical strength and electrical conductivity of the laminate-molded article can be suppressed. Also, a reduction in the load on the laser device can be expected.
  • the pure copper or copper alloy powder according to this embodiment is particularly useful as a pure copper or copper alloy powder for additive manufacturing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

本発明は、レーザービーム方式による積層造形に用いる純銅又は銅合金粉末であって、レーザー吸収率を高くできると共に、造形物内の酸素濃度を低減することができる、純銅又は銅合金粉末を提供することを課題とする。酸化被膜が形成された純銅又は銅合金粉末であって、前記酸化被膜に炭素を含有し、炭素濃度に対する酸素濃度の比率(酸素濃度/炭素濃度)が5以下である、純銅又は銅合金粉末。

Description

積層造形用純銅又は銅合金粉末
 本発明は、積層造形用純銅又は銅合金粉末に関する。
 近年、金属3Dプリンタ技術を用いて、複雑形状で造形が難しいとされる立体構造の金属部品を作製する試みが行われている。金属3Dプリンタは積層造形(AM)法とも呼ばれ、その方法の1つとして、基板上に金属粉末を薄く敷き詰めて金属粉末層を形成し、この金属粉末層に2次元データを基に選択的にレーザービーム又は電子ビームを走査して、溶融、凝固させ、さらにその上に、新たな粉末を薄く敷き詰め、同様にレーザービーム又は電子ビームを走査して、溶融、凝固させ、これを繰り返し行うことで複雑形状の金属造形物を作製する方法がある。
 積層造形物(単に造形物ともいう。)として、導電率や熱伝導率に優れた純銅や銅合金を用いる取り組みが行われている。この場合、純銅や銅合金粉末にレーザービームを照射して積層造形するが、純銅や銅合金は、レーザー吸収率が低く(純銅単体のレーザー吸収率は10~20%)、また、熱伝導率が高く、熱の逃げが大きいため、通常のレーザー出力では粉末を十分に溶融できず、積層造形が困難という問題があった。また、純銅や銅合金粉末を溶融させるために、ハイパワーレーザーを用いて長時間照射することも考えられるが、その場合、レーザーの負荷が大きく、生産性が悪いという問題があった。 
 特許文献1や特許文献2には、レーザーの吸収率を高めるために、銅のアトマイズ粉を酸化雰囲気で加熱することで酸化被膜を設ける技術が開示されている。特許文献1や特許文献2は、酸化被膜によりレーザー吸収率を高めることができるという優れた技術である。しかし、造形中にスラグ(酸化銅)を形成し、溶融せずに残存して、最終的に積層造形物内に空隙(ポア)を生じさせて、相対密度を低下させることがあった。
 特許文献3や特許文献4には、レーザー吸収率を高めるために有機化合物によって金属粉末を被覆することが記載されている。特許文献3や特許文献4は、有機化合物の被膜によりレーザー吸収率を高めることができるという優れた技術である。しかし、造形時の熱伝導で被膜が変質する可能性があり、繰り返し粉末を使用できない可能性がある。
 特許文献5には、造形用粉末として、銅(Cu)に、所定量のクロム(Cr)を添加した銅合金粉末を用いることにより、純銅よりも熱伝導率が低下させて、造形を容易にする技術が記載されている。
特開2018-178239号公報 特開2020-186429号公報 特開2018-199662号公報 特開2020-190008号公報 特開2019-44260号公報
 本発明は、レーザービーム方式による積層造形に用いる純銅又は銅合金粉末であって、レーザー吸収率を高くできると共に、造形物内の酸素濃度を低くすることができる、純銅又は銅合金粉末を提供することを課題とする。
 本発明の一態様は、酸化被膜が形成された純銅又は銅合金粉末であって、前記酸化被膜は炭素を含有し、炭素濃度に対する酸素濃度の比率(酸素濃度/炭素濃度)が、5以下であることを特徴とする、純銅又は銅合金粉末である。
 本発明によれば、レーザービーム方式による積層造形において、該積層造形に用いる純銅又は銅合金粉末のレーザー吸収率を向上しつつ、造形物内の酸素濃度を低くすることができる。これにより、造形物の機械的強度や導電率などの特性低下を抑制できることが期待できる。また、低出力のレーザービームによっても、純銅又は銅合金粉末を十分に溶融できることとなり、レーザーへの負荷の軽減も期待できる。
 レーザービーム方式による積層造形によって純銅又は銅合金の造形物を造形する場合、銅はレーザー吸収率が低いため十分な入熱ができず、粉末が溶融しきれない問題があった。また、銅は熱伝導率が高いために、造形範囲が溶融しきれないという問題があった。このようなことから、銅に酸化処理を施すことで、レーザーの吸収率を向上させる取り組み(特許文献1~2)などが行われている。
 上記取り組みは、レーザー吸収率が大きく向上するものの、酸素濃度が高い場合には、造形物中に酸化物として残存し易く、造形物の機械的強度や導電率などの特性が低下するといった問題がある。本発明者は、このような問題について鋭意研究したところ、純銅又は銅合金粉末に酸化被膜を形成すると共に、当該酸化被膜に適切な量の炭素を含有させることで、造形時に酸素と炭素が結びつき、一酸化炭素あるいは二酸化炭素として酸素を除去して、これにより、レーザー吸収率を高めつつ、造形物中の酸素濃度を低減できるとの知見を得られた。
 上記知見に基づき、本発明の実施形態は、酸化被膜が形成された純銅又は銅合金粉末であって、前記酸化被膜は炭素を含有し、炭素濃度に対する酸素濃度の比率(酸素濃度/炭素濃度)が5以下であることを特徴とする純銅又は銅合金粉末である。ここで、前記炭素濃度及び酸素濃度は、それぞれ重量濃度である。
 炭素濃度と酸素濃度を上記比率の範囲とすることにより、造形時に炭素が酸素と結びつき、一酸化炭素あるいは二酸化炭素として、効果的に酸素及び炭素を除去することができ、造形物内に酸化物が残存することによる造形物への影響を低減できる。なお、本願における酸化被膜は、純銅又は銅合金粉末を加熱するなどにより意図的に形成された酸化被膜に限定されず、大気などにより自然に形成された酸化被膜であってもよいものである。
 酸素濃度/炭素濃度が5を超えると、酸素(酸化物など)が造形物内に残存する可能性が高まり、造形物の強度低下や導電率低下といった悪影響を及ぼす懸念がある。好ましくは、酸素濃度/炭素濃度が1以下である。一方、炭素濃度の比率が高すぎると、炭素が不純物として残留することから、好ましくは、酸素濃度/炭素濃度が、0.01以上である。酸素濃度/炭素濃度の比率を、上記の数値範囲内に収めることにより、一酸化炭素や二酸化炭素として、造形時に酸素及び炭素を効果的に除去することが可能となる。
 本実施形態において、純銅又は銅合金粉末の酸素濃度は、5000wtppm以下、好ましくは3000wtppm以下、より好ましくは1500wtppm以下である。一方、酸素濃度は、好ましくは50wtppm以上、より好ましくは100wtppm以上である。純銅又は銅合金粉末の表面に酸化被膜が形成されていると、レーザーの吸収率を向上できる一方、造形時に酸素濃度が高くなり、各種の特性低下を引き起こす可能性がある。したがって、純銅又は銅合金粉末中の酸素濃度を一定量に制限することは、レーザー吸収率の向上と造形物の特性低下を抑制することの両面から有効である。
 炭素濃度は、酸素濃度を考慮して調整することができるが、炭素濃度は、好ましくは100wtppm以上、より好ましくは150wtppm以上、特に好ましくは200wtppm以上である。主として酸化物として存在する酸素の濃度に対して炭素濃度が不十分であると、造形時に酸素の除去が十分になされず、最終的に得られる造形物の酸素濃度を十分に低減できないことがある。一方、酸素に対して炭素濃度が多すぎると、造形物に炭素が残存して、相対密度を低下させることにつながる。したがって、炭素濃度は、好ましくは5000wtppm以下、より好ましくは3000wt以下、特に好ましくは1000wtppm以下である。
 本実施形態において、酸化被膜が形成された純銅又は銅合金粉末には、高温でも分解しにくい耐熱性の炭素を存在させることが好ましい。耐熱性の炭素としては、例えば、無定形炭素やグラファイトが挙げられる。耐熱性のある炭素が存在することで粉末が溶融するまでの昇温中もレーザー吸収率を高めることができ、造形性を向上させることができると考えられる。また、粉末の熱伝導率を下げることができ、熱拡散を抑制できる。耐熱性のない有機物などは造形中に消失しやすく放熱を抑制しにくいという側面があるが、炭素が耐熱性のある構造を有することで、造形中も放熱抑制をすることができる。
 炭素の結合状態(構造)を分析する手法としてラマン分光法が挙げられる。ラマン分光法は、表面の原子の結合状態を確認でき、特に炭素の結合に関して詳細な分析が可能である。本実施形態に係る純銅又は銅合金粉末をラマン分光法で測定した際、ラマンシフト:1000~2000cm-1における最大散乱強度値が、ラマンシフト:1300~1700cm-1の範囲に最大散乱強度を確認できることである。ラマンシフト:1300~1700cm-1の範囲に最大散乱強度が現れることで、グラファイト構造を有すると判断することができる。
 本実施形態に係る純銅又は銅合金粉末をXPS(X線光電子分光法)でCuLMMスペクトルを解析したとき、結合エネルギー:569~571eVに最大ピーク強度が存在することが好ましい。銅の単体の場合は、結合エネルギー:568eV以下に最大ピーク強度が現れるのに対し、酸化銅(I)及び酸化銅(II)は、結合エネルギー:569~571eVに最大ピーク強度が出現する。銅は、酸化銅としての形態をとることで、レーザー吸収率が良くなり、造形性を向上させる可能性があるため、粉末表面の銅は、酸化銅(I)あるいは酸化銅(II)の形態で存在することが好ましい。
 本実施形態では、純銅又は銅合金粉末の表面に形成された酸化被膜の膜厚が5nm以上500nm以下とすることが好ましい。酸化被膜の膜厚が厚すぎる場合、レーザービームによる積層造形時に、最終的に得られる積層造形物の相対密度を低下させることにつながる。一方、酸化被膜の膜厚が薄すぎる場合、レーザー吸収率の向上が十分でなく、純銅又は銅合金粉末が溶融しきれない可能性がある。純銅又は銅合金粉末の表面に形成された酸化被膜の膜厚を調整することにより、高密度の積層造形物を得ることが可能となる。
 本実施形態は、前記純銅又は銅合金粉末において、その平均粒子径D50(メジアン径)を10μm以上150μm以下とすることが好ましい。平均粒子径D50を10μm以上とすることにより、造形時に、粉末が舞い難くなり、粉末の取り扱いが容易になる。一方、平均粒子径D50を150μm以下とすることにより、高精細な積層造形物の製造が容易となる。本明細書中、平均粒子径D50とは画像分析測定された粒度分布において、積算値50%での平均粒子径を意味する。
 本実施形態に係る純銅粉末として、純度3N(99.9wt%)以上の純銅を用いることが好ましい。また、本実施形態に係る銅合金粉末としては、80wt%以上、85wt%以上、90wt%以上、95wt%以上、99wt%以上の銅を含む銅合金粉末を用いることが好ましい。また、合金元素としては、Al、Cr、Fe、Ni、Nb、P、Si、Zn、Zr、のうち1種類以上を用いることが好ましい。
 本実施形態に係る純銅又は銅合金粉末を用いて作製した積層造形物は、高導電率等の優れた物性を有することが期待できる。一般に積層造形物の酸素濃度が200wtppm超の場合、積層造形物内に酸化物として残存することが考えられ、導電率が低くなり、造形物としての特性が劣るものとなるが、本実施形態に係る純銅又は銅合金を用いた場合には、造形物中の酸素濃度を200wtppm以下まで下げることができ、高導電性を期待できる。
 次に、本実施形態に係る純銅又は銅合金粉末の製造方法について、説明する。
 まず、必要量の純銅又は銅合金粉末を準備する。純銅又は銅合金粉末は、平均粒子径D50(メジアン径)が10~150μmのものを用いることが好ましい。平均粒子径は、篩別することで目標とする粒度のものを得ることができる。純銅又は銅合金粉末は、アトマイズ法を用いて作製することができるが、本実施形態に係る純銅又は銅合金粉末は、他の方法で作製されたものでもよく、この方法で作製されたものに限定されない。
 次に、純銅又は銅合金粉末の表面に酸化被膜を形成するために、大気中で加熱することができる。酸素濃度や膜厚は、加熱温度及び加熱時間で調整することができ、例えば、加熱温度は70℃~200℃、加熱時間は2~48時間とすることができる。また、酸化被膜は加熱によって意図的に形成することもできるが、大気などによって自然に形成される酸化被膜を利用することもできる。
 その後、酸化被膜が形成された純銅又は銅合金粉末に炭素を含有させる。炭素を含有させる方法に特に制限はなく、例えば、カーボンブラックと純銅粉末とをボールミルや乳鉢を用いて混合することができる。または、液体の有機化合物を不活性雰囲気中で加熱して純銅粉末に炭素が含有させることができる。あるいは、CVD(化学的気相成長法)によって純銅粉末にグラファイト膜を形成することができる。炭素を含有させるのに適した炭素系材料として、カーボンブラック、コールタール、ピッチ、コークス、有機化合物などを挙げることができる。このとき、酸素濃度に応じて炭素濃度(含有量)を調整する必要がある。以上により、所望する酸素濃度及び炭素濃度を有する純銅又は銅合金粉末を得ることができる。
 本開示における評価方法について、記述する。
(平均粒子径D50について)
  メーカー:マイクロトラックベル
  装置名:MT3300EXII
  測定方法:レーザー回折方式(体積基準)
  溶媒:純水
  屈折率:1.33
(粉末に含まれる酸素濃度について)
  メーカー:LECO社製
  装置名:TCH600
  分析法:不活性ガス融解法
  測定サンプル量:1g
  測定回数:2回として、その平均値を濃度とする。
(粉末に含まれる炭素濃度について)
  メーカー:LECO社製
  装置名:TCH600
  分析法:不活性ガス融解法
  測定サンプル量:1g
  測定回数:2回として、その平均値を濃度とする。
(酸化被膜の膜厚)
 酸化被膜の膜厚は、一定のスパッタレートで粉体表面を掘り進めながら、オージェ電子分光法(AES)によりオージェ電子を検出し、酸素が検出しなくなるまでにかかった時間とスパッタレートから算出した値とする。検出する場所は、1つの粒子からランダムに2点選び、実施例の値はその平均値を示す。
  メーカー:日本電子株式会社
  装置名:AES(JAMP-7800F)
  フィラメント電流:2.22A
  プローブ電圧:10kV
  プローブ電流:1.0×10-8
  プローブ径:約500nm
  スパッタリングレート:7.2nm/min(SiO換算)
(XPSについて)
 酸化銅の存在は、XPSにより確認することができる。XPSにより銅のLMMスペクトルを確認し、569~570eVにピークが存在した場合には酸化銅が存在すると判断することができる。
  メーカー: アルバック株式会社
  装置名:5600MC
(炭素の結合について)
 グラファイト構造の存在は、ラマン分光法により確認することができる。ラマン分光測定によりラマンシフト:1300~1700cm‐1に最大散乱強度値が存在した場合グラファイト構造が存在すると判断することができる。
  メーカー:Ranishow
  装置名:invia
(レーザー吸収率について)
 一般的なレーザー方式の造形は波長:1060nm程度のファイバーレーザーを使用することから、波長:1060nmの反射率を測定し、レーザー吸収率を算出する。
  メーカー:島津製作所株式会社
  装置名:分光光度計(MPC-3100、粉末ホルダー使用)
  測定波長:300mm~1500mm
  スリット幅:20nm
  リファレンス:BaSO
  測定物性値:反射率
  吸収率(%)=1-(反射率(%))
(造形物中の酸素濃度及び相対密度)
 純銅又は銅合金粉末を融点まで加熱し溶解させた後、冷却して疑似的な造形物を作製し、その造形物中の酸素濃度を測定する。酸素濃度の測定方法は上記粉末の酸素濃度の測定方法と同じ手法を用いることができる。また、疑似的な造形物のアルキメデス密度を測定し、測定したアルキメデス密度を純銅又は銅合金の理論密度で除することで、相対密度を算出する。
(実施例1)
 金属粉として、アトマイズ法で作製した平均粒子径(D50)が35.0μmの純銅粉末を用意し、この純銅粉末を大気中、150℃で、24時間加熱して、その表面に酸化被膜を形成した。次に、酸化被膜を形成した純銅粉末を乳鉢に入れ、さらに、酸素濃度/炭素濃度が0.40程度になるようにカーボンブラックを入れて混合した。このようにして作製した純銅粉末について、酸素濃度、炭素濃度、及びレーザー吸収率を測定した。次に、作製した純銅粉を融点まで加熱し溶解させた後、冷却して、疑似的な造形物を作製した。得られた疑似造形物の酸素濃度、炭素濃度、さらに相対密度を測定した。以上の結果を表1に示す。表1に示す通り、実施例1の純銅粉末は、高いレーザー吸収率を有することを確認した。また、実施例1の純銅粉末を用いて作製した疑似造形物は、酸素濃度が低く、相対密度が高いことを確認した。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 金属粉として、アトマイズ法で作製した平均粒子径(D50)が35.0μmの純銅粉末を用意し、この純銅粉末を大気中、150℃で、24時間加熱して、その表面に酸化被膜を形成した。次に、酸化被膜を形成した純銅粉末を乳鉢に入れ、さらに、酸素濃度/炭素濃度が0.80程度になるようにカーボンブラックを入れて混合した。このようにして作製した純銅粉について、酸素濃度、炭素濃度、及びレーザー吸収率を測定した。次に、作製した純銅粉を融点まで加熱し溶解させた後、冷却して、疑似的な造形物を作製した。得られた疑似造形物の酸素濃度、炭素濃度、さらに相対密度を測定した。以上の結果を表1に示す。表1に示す通り、実施例2の純銅粉末は、高いレーザー吸収率を有することを確認した。また、実施例2の純銅粉末を用いて作製した疑似造形物は、酸素濃度が低く、相対密度が高いことを確認した。
(実施例3)
 金属粉として、アトマイズ法で作製した平均粒子径(D50)が35.0μmの純銅粉末を用意した。次に、コールタールを5wt%含むようにトルエンで希釈した溶液に純銅粉末を浸漬し、浸漬後、溶液から取り出した純銅粉末を不活性雰囲気中で加熱した。これによって得られた純銅粉末について、酸素濃度、炭素濃度、及び、レーザー吸収率を測定した。その結果を表1に示す。表1に示す通り、実施例3の純銅粉末は、高いレーザー吸収率を有することを確認した(純銅単体のレーザー吸収率は10~20%である)。なお、実施例3においては、疑似造形物を作製していないが、実施例1、2と同様に、純銅粉末のレーザー吸収率が高く、純銅粉末の酸素濃度が低いことから、酸化物の形成が少ないと推測でき、疑似造形物についても、実施例1、2と同様の効果が得られると推測できる。
(比較例1)
 金属粉として、アトマイズ法で作製した平均粒子径(D50)が35.0μmの純銅粉末を用意し、この純銅粉末を大気中、150℃で、24時間加熱して、その表面に酸化被膜を形成した。なお、比較例1では、カーボンブラックなどの炭素を混合しなかった。このようにして作製した純銅粉末について、酸素濃度、炭素濃度、及びレーザー吸収率を測定した。また、作製した純銅粉を融点まで加熱し溶解させた後、冷却して、疑似的な造形物を作製し、得られた疑似造形物の酸素濃度、炭素濃度、さらに相対密度を測定した。以上の結果を表1に示す。表1に示す通り、炭素を意図的に含有させなかった比較例1の純銅粉末を用いて作製した疑似造形物は、酸素濃度が高いことを確認した。
 本発明によれば、レーザービーム方式による積層造形において、レーザーの吸収率の向上が可能となり、また、造形物中の酸素濃度の低減が可能となる。これにより、積層造形物の機械的強度や導電率などの特性低下を抑制できることが期待できる。また、レーザー装置の負荷の低減を期待できる。本実施形態に係る純銅又は銅合金粉末は、積層造形用の純銅又は銅合金粉末として特に有用である。

Claims (10)

  1.  酸化被膜が形成された純銅又は銅合金粉末であって、前記酸化被膜に炭素を含有し、炭素濃度に対する酸素濃度の比率(酸素濃度/炭素濃度)が5以下である、純銅又は銅合金粉末。
  2.  前記酸素濃度が5000wtppm以下である、請求項1に記載の純銅又は銅合金粉末。
  3.  前記炭素濃度が100wtppm以上である、請求項1又は2に記載の純銅及び銅合金粉末。
  4.  前記炭素がグラファイト構造を有する、請求項1~3のいずれか一項に記載の純銅又は銅合金粉末。
  5.  ラマン分光法で測定した際、ラマンシフト:1000~2000cm-1における最大散乱強度値が、ラマンシフト:1300~1700cm-1の範囲内に存在する、請求項1~4のいずれか一項に記載の純銅又は銅合金粉末。
  6.  XPSでCuLMMスペクトルを解析した際、結合エネルギー:569~571eVに最大ピーク強度が存在する、請求項1~5のいずれか一項に記載の純銅又は銅合金粉末。
  7.  前記酸化被膜の膜厚が5nm以上500nm以下である、請求項1~6のいずれか一項に記載の純銅又は銅合金粉末。
  8. 平均粒子径D50(メジアン径)を10μm以上150μm以下である、請求項1~7のいずれか一項に記載の純銅又は銅合金粉末。
  9.  純銅又は銅を80wt%以上含む銅合金である、請求項1~8のいずれか一項に記載の純銅又は銅合金粉末。
  10.  レーザービームによる積層造形用として使用する請求項1~9のいずれか一項に記載の純銅又は銅合金粉末。
PCT/JP2022/032685 2021-09-01 2022-08-30 積層造形用純銅又は銅合金粉末 WO2023033010A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3227541A CA3227541A1 (en) 2021-09-01 2022-08-30 Pure copper or copper alloy powder for additive manufacturing
JP2023545621A JP7522937B2 (ja) 2021-09-01 2022-08-30 積層造形用純銅又は銅合金粉末
US18/580,000 US20240335874A1 (en) 2021-09-01 2022-08-30 Pure copper or copper alloy powder for additive manufacturing
CN202280055171.7A CN117858776A (zh) 2021-09-01 2022-08-30 增材制造用纯铜或铜合金粉末
EP22864592.5A EP4360776A1 (en) 2021-09-01 2022-08-30 Pure copper or copper alloy powder for deposition modeling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021142629 2021-09-01
JP2021-142629 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023033010A1 true WO2023033010A1 (ja) 2023-03-09

Family

ID=85411299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032685 WO2023033010A1 (ja) 2021-09-01 2022-08-30 積層造形用純銅又は銅合金粉末

Country Status (7)

Country Link
US (1) US20240335874A1 (ja)
EP (1) EP4360776A1 (ja)
JP (1) JP7522937B2 (ja)
CN (1) CN117858776A (ja)
CA (1) CA3227541A1 (ja)
TW (1) TW202322937A (ja)
WO (1) WO2023033010A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141505A (ja) * 2016-02-09 2017-08-17 株式会社ジェイテクト 造形物の製造装置、及び製造方法
JP2018022598A (ja) * 2016-08-03 2018-02-08 Nissha株式会社 導電性ペースト
WO2018193671A1 (ja) * 2017-04-21 2018-10-25 Jx金属株式会社 銅粉末及びその製造方法並びに立体造形物の製造方法
JP2018199662A (ja) 2017-05-29 2018-12-20 株式会社ピカソ美化学研究所 化粧品
JP2018199862A (ja) * 2017-05-29 2018-12-20 三菱瓦斯化学株式会社 炭素被覆金属紛体、それを含む付加製造用の粉末材料、及び、付加製造物の製造方法
JP2019044260A (ja) 2017-09-04 2019-03-22 株式会社Nttデータエンジニアリングシステムズ 銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法および銅合金造形物
JP2019214748A (ja) * 2018-06-11 2019-12-19 古河電気工業株式会社 表面被覆金属微粒子及びその分散溶液
JP2020186429A (ja) 2019-05-13 2020-11-19 三菱マテリアル株式会社 レーザー光の吸収率に優れた銅粉末
JP2020190008A (ja) 2019-05-21 2020-11-26 古河電気工業株式会社 有機被覆銅系粉末、有機被覆銅系粉末を用いて形成された銅系材料からなる積層造形物および積層造形物の製造方法ならびに各種金属部品

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141505A (ja) * 2016-02-09 2017-08-17 株式会社ジェイテクト 造形物の製造装置、及び製造方法
JP2018022598A (ja) * 2016-08-03 2018-02-08 Nissha株式会社 導電性ペースト
WO2018193671A1 (ja) * 2017-04-21 2018-10-25 Jx金属株式会社 銅粉末及びその製造方法並びに立体造形物の製造方法
JP2018178239A (ja) 2017-04-21 2018-11-15 Jx金属株式会社 銅粉末及びその製造方法並びに立体造形物の製造方法
JP2018199662A (ja) 2017-05-29 2018-12-20 株式会社ピカソ美化学研究所 化粧品
JP2018199862A (ja) * 2017-05-29 2018-12-20 三菱瓦斯化学株式会社 炭素被覆金属紛体、それを含む付加製造用の粉末材料、及び、付加製造物の製造方法
JP2019044260A (ja) 2017-09-04 2019-03-22 株式会社Nttデータエンジニアリングシステムズ 銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法および銅合金造形物
JP2019214748A (ja) * 2018-06-11 2019-12-19 古河電気工業株式会社 表面被覆金属微粒子及びその分散溶液
JP2020186429A (ja) 2019-05-13 2020-11-19 三菱マテリアル株式会社 レーザー光の吸収率に優れた銅粉末
JP2020190008A (ja) 2019-05-21 2020-11-26 古河電気工業株式会社 有機被覆銅系粉末、有機被覆銅系粉末を用いて形成された銅系材料からなる積層造形物および積層造形物の製造方法ならびに各種金属部品

Also Published As

Publication number Publication date
JPWO2023033010A1 (ja) 2023-03-09
CN117858776A (zh) 2024-04-09
US20240335874A1 (en) 2024-10-10
EP4360776A1 (en) 2024-05-01
TW202322937A (zh) 2023-06-16
CA3227541A1 (en) 2023-03-09
JP7522937B2 (ja) 2024-07-25

Similar Documents

Publication Publication Date Title
JP2022172242A (ja) 銅粉、それを用いた光造形物の製造方法、および銅による光造形物
WO2022080319A1 (ja) 付加製造用金属粉末、これを用いた付加製造物の製造方法及び付加製造物
JP7377337B2 (ja) Si被膜を有する銅合金粉及びその製造方法
FR3080786A1 (fr) Poudre d'alliage ods et son procede de fabrication par traitement plasma
JP2021143384A (ja) Cu基合金粉末
JP7522937B2 (ja) 積層造形用純銅又は銅合金粉末
JP6094848B2 (ja) 垂直磁気記録媒体用Fe−Co系合金軟磁性膜の製造方法
WO2019225589A1 (ja) 銅系粉末、表面被覆銅系粉末およびこれらの混合粉末ならびに積層造形物およびその製造方法ならびに各種金属部品
WO2022138233A1 (ja) 積層造形用銅合金粉末とその評価方法、銅合金積層造形体の製造方法および銅合金積層造形体
JP2020190008A (ja) 有機被覆銅系粉末、有機被覆銅系粉末を用いて形成された銅系材料からなる積層造形物および積層造形物の製造方法ならびに各種金属部品
JP2014077187A (ja) 薄膜形成用スパッタリングターゲット及びその製造方法
JP2024138622A (ja) 積層造形用金属粉末
JP2024138621A (ja) 積層造形用金属粉末
Matsubara et al. Fabrication of Nanocomposite Thermoelectric Materials by a Pulsed Laser Deposition Method
WO2024090448A1 (ja) 金属am用銅合金粉末および積層造形物の製造方法
EP4190463A1 (en) Additive manufacturing powder material and method for manufacturing additive manufacturing powder material
WO2024202310A1 (ja) 積層造形用金属粉末及び、積層造形用金属粉末の製造方法
JP2023057593A (ja) 造形性および導電性に優れた三次元積層造形用の銅合金粉末
WO2024090450A1 (ja) 金属am用銅合金粉末および積層造形物の製造方法
TW202435994A (zh) 金屬am用銅合金粉末及層合造形物之製造方法
US20130209310A1 (en) Thermal diffusion control film for use in magnetic recording medium, for heat-assisted magnetic recording, magnetic recording medium, and sputtering target
JP2021134423A (ja) 積層造形用銅合金粉末及びその製造方法
JP2023024164A (ja) 電気伝導性に優れた銅合金造形物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864592

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2023545621

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18580000

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022864592

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3227541

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202280055171.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022864592

Country of ref document: EP

Effective date: 20240123

NENP Non-entry into the national phase

Ref country code: DE