WO2018049820A1 - 负载季鏻盐和金属氯化物的催化剂在乙炔氢氯化中的用途 - Google Patents

负载季鏻盐和金属氯化物的催化剂在乙炔氢氯化中的用途 Download PDF

Info

Publication number
WO2018049820A1
WO2018049820A1 PCT/CN2017/082324 CN2017082324W WO2018049820A1 WO 2018049820 A1 WO2018049820 A1 WO 2018049820A1 CN 2017082324 W CN2017082324 W CN 2017082324W WO 2018049820 A1 WO2018049820 A1 WO 2018049820A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloride
quaternary phosphonium
phosphonium salt
acetylene
catalyst
Prior art date
Application number
PCT/CN2017/082324
Other languages
English (en)
French (fr)
Inventor
张金利
赵伟
李韡
尚姗姗
韩优
董延召
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2018049820A1 publication Critical patent/WO2018049820A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/04Chloro-alkenes
    • C07C21/06Vinyl chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • B01J31/30Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/07Preparation of halogenated hydrocarbons by addition of hydrogen halides
    • C07C17/08Preparation of halogenated hydrocarbons by addition of hydrogen halides to unsaturated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds

Definitions

  • This invention relates to the use of a catalyst loaded with a quaternary phosphonium salt and a metal chloride in acetylene hydrochlorination.
  • PVC polyvinyl chloride
  • the preparation methods of the monomeric vinyl chloride mainly include petroleum-based ethylene method and coal-based acetylene method.
  • the acetylene method is in line with China's rich domestic coal resources, but the method currently uses a large amount of mercury chloride catalyst to catalyze the acetylene hydrochlorination reaction to prepare vinyl chloride monomer, which has serious mercury pollution problems. Therefore, the development of mercury-free catalysts to replace mercury chloride catalysts is of great significance.
  • Tsinghua University in the Chinese invention patent number CN201010272612.8, proposes various catalysts for the preparation of vinyl chloride by acetylation of acetylene, such as Au-Pd, Au-Cu and Pt-Bi catalysts.
  • Shihezi University proposed a Ru-Bi catalyst for acetylene hydrochlorination to vinyl chloride.
  • Yang Yongrong of Zhejiang University, etc. in the Chinese invention patent with the publication number CN104549522A, proposed a non-mercury catalyst for the acetylation of acetylene to vinyl chloride and its application method.
  • the active components of the catalyst are Pd, Pt, Au, etc.
  • the noble metal, the auxiliary agent is S 2- , S 2 O 3 2- , F - , Cl - , PO 4 3- plasma or ligand.
  • the addition of a second auxiliary agent to the precious metal catalyst can successfully increase the catalytic activity of the catalyst and reduce the amount of precious metal, thereby reducing the cost.
  • the stability of the catalyst obtained by adding a metal auxiliary agent to the noble metal catalyst or the addition of an ion-matching system is not good, and there is a serious deactivation problem, and the bottleneck problem of industrial production of vinyl chloride cannot be solved.
  • a catalyst for loading quaternary phosphonium salts and metal chlorides is prepared by the following method:
  • the carrier loaded with the quaternary phosphonium salt obtained in the step (1) is immersed in a metal chloride aqueous solution having a mass concentration of 0.01% to 5% by an equal volume impregnation method, and the water is evaporated in a water bath at 50-90 ° C, 100- Dry at 150 °C.
  • Catalysts loaded with quaternary phosphonium salts and metal chlorides can also be prepared by the following methods:
  • the quaternary phosphonium salt is preferably tetramethylolphosphonium chloride, tetramethylphosphonium chloride, tetrabutylphosphonium chloride, tetraphenylphosphonium chloride, methyltriphenylphosphonium chloride or ethyltriphenylphosphonium chloride. , (tributyl) n-tetradecylphosphonium chloride, tetrabutylphosphonium bromide, tetraphenylphosphonium bromide, tetraphenyltetrafluoroborate or ruthenium (trihexyl) n-tetradecyl hexafluorophosphate .
  • the solvent is preferably water, methanol, ethanol, acetone, toluene, dichloroethane or chloroform.
  • the catalyst support is preferably activated carbon, carbon molecular sieve, silicon carbide, alumina, silica gel or 5A molecular sieve.
  • the metal chloride is preferably copper chloride, chloroauric acid, palladium chloride or ruthenium trichloride.
  • reaction temperature is 120-200 ° C, 0.1 MPa, molar ratio of hydrogen chloride to acetylene feed flow is 0.95 to 1.15, and acetylene space velocity is 30- 360h -1 .
  • the catalyst for loading quaternary phosphonium salt and metal chloride of the invention is used for acetylene hydrochlorination reaction, and has the characteristics of high catalytic activity and good stability.
  • the conversion of acetylene is 62.0-99.9%, and the selectivity to vinyl chloride is 99.5-99.9%. There was no significant change in the conversion of acetylene for 50 h.
  • a catalyst for loading quaternary phosphonium salts and metal chlorides is prepared by the following method:
  • the tetramethylphosphonium chloride-loaded alumina was immersed in an aqueous solution of copper chloride having a mass concentration of 5% by an equal volume impregnation method, and the water was evaporated to dryness in a water bath at 60 ° C, and then dried in an oven at 100 ° C.
  • the catalyst of the present embodiment is in the acetylene hydrochlorination reaction, the reaction conditions are 200 ° C, 0.1 MPa, the molar ratio of hydrogen chloride to acetylene feed flow is 1.15, and the acetylene space velocity is 30 h -1 , the conversion of acetylene is 86.3. %, the selectivity to vinyl chloride was 99.5%, and the conversion of acetylene for 50h did not change significantly.
  • a catalyst for loading quaternary phosphonium salts and metal chlorides is prepared by the following method:
  • the activated carbon loaded with tetramethylolphosphonium chloride was immersed in an aqueous solution of cerium trichloride having a mass concentration of 0.1% by an equal volume impregnation method, and the water was evaporated in a water bath at 50 ° C, and then dried in an oven at 150 ° C. catalyst.
  • the catalyst of the present embodiment is in the acetylene hydrochlorination reaction, the reaction conditions are the reaction temperature of 180 ° C, 0.1 MPa, the molar ratio of hydrogen chloride to acetylene feed flow is 0.95, and the acetylene space velocity is 180 h -1 , the conversion of acetylene is 97.5. %, the selectivity to vinyl chloride was 99.8%, and there was no significant change in the conversion of acetylene for 50 h.
  • a catalyst for loading quaternary phosphonium salts and metal chlorides is prepared by the following method:
  • tetrabutylphosphonium chloride 0.1 g was dissolved in 40 g of ethanol to form a tetrabutylphosphonium chloride solution, and 20 g of silica gel was impregnated into a tetrabutylphosphonium chloride solution, and immersed in a water bath at 70 ° C for 5 h, 80 ° C. Evaporating the solvent and recovering the solvent to obtain silica gel loaded with tetrabutylphosphonium chloride;
  • the silica gel loaded with tetrabutylphosphonium chloride was immersed in an aqueous solution of chloroauric acid having a concentration of 0.01% by an equal volume impregnation method, and the water was evaporated in a water bath at 90 ° C, and then dried in an oven at 120 ° C to obtain a desired catalyst.
  • the catalyst of this example is in the acetylene hydrochlorination reaction, the reaction conditions are reaction temperature 150 ° C, 0.1 MPa, the molar ratio of hydrogen chloride to acetylene feed flow is 1.05, and the acetylene space velocity is 90 h -1 , the conversion of acetylene is 80.3. %, the selectivity to vinyl chloride was 99.5%, and the conversion of acetylene for 50h did not change significantly.
  • a catalyst for loading quaternary phosphonium salts and metal chlorides is prepared by the following method:
  • methyltriphenylphosphonium chloride 4 g was dissolved in 40 g of acetone to form a methyltriphenylphosphonium chloride solution, and then 20 g of silicon carbide was impregnated into a methyltriphenylphosphonium chloride solution at 80 ° C in a water bath. Immersion at constant temperature for 10 h, evaporation of the solvent at 80 ° C and recovery of the solvent to obtain silicon carbide loaded with methyltriphenylphosphonium chloride;
  • the silicon carbide loaded with methyltriphenylphosphonium chloride was immersed in an aqueous solution of antimony trichloride having a mass concentration of 0.5% by an equal volume impregnation method, and the water was evaporated in a water bath at 60 ° C, and then dried in an oven at 120 ° C.
  • the required catalyst was immersed in an aqueous solution of antimony trichloride having a mass concentration of 0.5% by an equal volume impregnation method, and the water was evaporated in a water bath at 60 ° C, and then dried in an oven at 120 ° C. The required catalyst.
  • the catalyst of the present embodiment is in the acetylene hydrochlorination reaction, the reaction conditions are the reaction temperature of 180 ° C, 0.1 MPa, the molar ratio of hydrogen chloride to acetylene feed flow is 1.10, and the acetylene space velocity is 270 h -1 , the conversion of acetylene is 98.3. %, the selectivity to vinyl chloride was 99.8%, and there was no significant change in the conversion of acetylene for 50 h.
  • a catalyst for loading quaternary phosphonium salts and metal chlorides is prepared by the following method:
  • the 5A molecular sieve loaded with (tributyl) n-tetradecylphosphonium chloride was immersed in a 0.1% aqueous solution of chloroauric acid by an equal volume impregnation method, and the water was evaporated in a water bath at 60 ° C, and then dried at 130 ° C.
  • the desired catalyst is dried in the middle.
  • the reaction conditions are a reaction temperature of 120 ° C, 0.1 MPa, a molar ratio of hydrogen chloride to acetylene feed flow of 1.15, and an acetylene space velocity of 360 h -1 , and the acetylene conversion rate is 98.6. %, the selectivity to vinyl chloride was 99.6%, and the conversion of acetylene for 50h did not change significantly.
  • a catalyst for loading quaternary phosphonium salts and metal chlorides is prepared by the following method:
  • the activated carbon loaded with tetrabutylphosphonium bromide was immersed in an aqueous solution of copper chloride having a concentration of 3% by an equal volume impregnation method, and the water was evaporated in a water bath at 60 ° C, and then dried in an oven at 150 ° C to obtain a desired catalyst.
  • the catalyst of the present embodiment is in the acetylene hydrochlorination reaction, the reaction conditions are the reaction temperature of 180 ° C, 0.1 MPa, the molar ratio of hydrogen chloride to acetylene feed flow is 1.10, and the acetylene space velocity is 60 h -1 , the conversion of acetylene is 69.9. %, the selectivity to vinyl chloride was 99.9%, and there was no significant change in the conversion of acetylene for 50 h.
  • a catalyst for loading quaternary phosphonium salts and metal chlorides is prepared by the following method:
  • the activated carbon loaded with ethyltriphenylphosphonium chloride was immersed in an aqueous solution of chloroauric acid having a mass concentration of 0.2% by an equal volume impregnation method, and the water was evaporated in a water bath at 60 ° C, and then dried in an oven at 130 ° C. catalyst.
  • the catalyst of the present embodiment is in the acetylene hydrochlorination reaction, the reaction conditions are the reaction temperature of 140 ° C, 0.1 MPa, the molar ratio of hydrogen chloride to acetylene feed flow is 1.12, and the acetylene space velocity is 360 h -1 , the conversion of acetylene is 99.8. %, the selectivity to vinyl chloride was 99.5%, and the conversion of acetylene for 50h did not change significantly.
  • a catalyst for loading quaternary phosphonium salts and metal chlorides is prepared by the following method:
  • tetraphenyltetrafluoroborate 2 g is dissolved in 40 g of chloroform to form a tetraphenyltetrafluoroborate solution, and then 20 g of silicon carbide is impregnated into a tetraphenyltetrafluoroborate solution and heated at 50 ° C in a water bath. After immersing for 7 h, evaporating the solvent at 90 ° C and recovering the solvent to obtain silicon carbide loaded with tetraphenyltetrafluoroborate;
  • the silicon carbide loaded with tetraphenyltetrafluoroborate was immersed in a 0.2% by weight aqueous solution of chloroauric acid by an equal volume impregnation method, and the water was evaporated in a water bath at 60 ° C, and then dried in an oven at 120 ° C. catalyst.
  • the catalyst of this example is in the acetylene hydrochlorination reaction, the reaction conditions are reaction temperature 150 ° C, 0.1 MPa, the molar ratio of hydrogen chloride to acetylene feed flow is 1.12, and the acetylene space velocity is 360 h -1 , the conversion of acetylene is 99.9. %, the selectivity to vinyl chloride was 99.8%, and there was no significant change in the conversion of acetylene for 50 h.
  • the experiment proves that the tetraphenylphosphonium tetrafluoroborate of the present embodiment is replaced by tetraphenylphosphonium chloride, tetraphenylphosphonium bromide or (trihexyl) n-tetradecylphosphonium hexafluorophosphate, respectively.
  • the catalytic effect of the prepared catalyst supporting the quaternary phosphonium salt and the metal chloride is similar to that of the present embodiment.
  • a catalyst for loading quaternary phosphonium salts and metal chlorides is prepared by the following method:
  • tetraphenylphosphonium chloride 0.1 g was dissolved in 40 g of ethanol to prepare a tetraphenylphosphonium chloride solution, and 0.003 g of palladium chloride (palladium mass of 0.002 g) was mixed with a tetraphenylphosphonium chloride solution to obtain chlorine. a mixture of palladium tetraphenylphosphonium chloride;
  • the catalyst of the present embodiment is in the acetylene hydrochlorination reaction, the reaction conditions are the reaction temperature of 180 ° C, 0.1 MPa, the molar ratio of hydrogen chloride to acetylene feed flow is 1.10, and the acetylene space velocity is 60 h -1 , the conversion of acetylene is 62.0. %, the selectivity to vinyl chloride was 99.7%, and there was no significant change in the conversion of acetylene in the reaction for 50 hours.
  • a catalyst for loading quaternary phosphonium salts and metal chlorides is prepared by the following method:
  • activated carbon 20 g was impregnated into a mixture of antimony trichloride tetraphenylphosphonium bromide, and immersed in a water bath at 30 ° C for 12 h, and the solvent was evaporated to dryness in a water bath at 50 ° C, and dried at 100 ° C.
  • the catalyst of the present embodiment is in the acetylene hydrochlorination reaction, the reaction conditions are the reaction temperature of 170 ° C, 0.1 MPa, the molar ratio of hydrogen chloride to acetylene feed flow is 1.05, and the acetylene space velocity is 120 h-1, the conversion of acetylene is 97.8. %, the selectivity to vinyl chloride was 99.8%, and there was no significant change in the conversion of acetylene for 50 h.
  • a catalyst for loading quaternary phosphonium salts and metal chlorides is prepared by the following method:
  • the catalyst of this example is in the acetylene hydrochlorination reaction, the reaction conditions are reaction temperature 150 ° C, 0.1 MPa, the molar ratio of hydrogen chloride to acetylene feed flow is 1.12, and the acetylene space velocity is 360 h -1 , the conversion of acetylene is 99.9. %, the selectivity to vinyl chloride was 99.7%, and there was no significant change in the conversion of acetylene in the reaction for 50 hours.
  • the experiment proves that the activated carbon of the present embodiment is replaced by silicon carbide, alumina, silica gel or 5A molecular sieve, and the catalytic effects of the catalysts loaded with the quaternary phosphonium salt and the metal chloride prepared in the same embodiment are similar to those of the present embodiment.
  • the experiment proves that the catalyst of the present embodiment is replaced by water, methanol, acetone, toluene, dichloroethane or chloroform, respectively, and the catalytic effect of the catalyst prepared by loading the quaternary phosphonium salt and the metal chloride prepared in the same embodiment.
  • the effects of the examples are similar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种负载季鏻盐和金属氯化物的催化剂在乙炔氢氯化反应中的用途,在反应温度为120-200℃、0.1MPa、氯化氢与乙炔进料流量摩尔比为0.95~1.15,乙炔空速为30-360h -1条件下,乙炔转化率为62.0-99.9%,生成氯乙烯的选择性为99.5-99.9%。反应50h乙炔转化率无明显变化。催化活性明显高于单纯金属氯化物催化剂的活性。

Description

负载季鏻盐和金属氯化物的催化剂在乙炔氢氯化中的用途 技术领域
本发明涉及负载季鏻盐和金属氯化物的催化剂在乙炔氢氯化中的用途。
背景技术
PVC(聚氯乙烯)是五大工程塑料之一,需求量非常大,其单体氯乙烯的制备方法主要有以石油为原料的乙烯法和以煤炭为原料的乙炔法。其中乙炔法符合我国煤炭资源丰富的国情,但是该方法目前大量使用氯化汞催化剂来催化乙炔氢氯化反应制备氯乙烯单体,存在严重的汞污染问题。因此开发无汞催化剂替代氯化汞催化剂具有十分重要的意义。
近些年研究表明,将单纯的金属氯化物通过浸渍法负载于催化剂及载体上,但得到的单金属催化剂用于催化乙炔氢氯化反应效果一般,且使用寿命短。为了提高催化剂的性能,很多研究工作者作了相应的研究,这些研究工作主要集中在对载体掺杂改性再负载金属氯化物,添加第二、第三种金属进行复配,以及添加助剂等方法。这些研究工作不同程度地提高了金属氯化物催化剂的活性。
清华大学在公开号为CN201010272612.8的中国发明专利中,提出的多种用于乙炔氢氯化制备氯乙烯的催化剂,如Au-Pd、Au-Cu以及Pt-Bi催化剂。石河子大学在公开号为CN103894195A的中国发明专利中,提出了一种用于乙炔氢氯化制氯乙烯的Ru-Bi催化剂。浙江大学的阳永荣等在公开号为CN104549522A的中国发明专利中,提出了用于乙炔氢氯化制氯乙烯的非汞催化剂及其应用方法,该催化剂活性组分为Pd、Pt、Au等贵金属,助剂为S2-,S2O3 2-,F-,Cl-,PO4 3-等离子或配体。对贵金属催化剂添加第二种助剂,可成功提高催化剂的催化活性,减少贵金属的用量,从而降低了成本。但是,通过向贵金属催化剂中添加金属助剂或添加离子配体制得的催化剂稳定性不好,存在严重失活问题,无法解决工业生产氯乙烯的瓶颈问题。
发明内容
本发明的目的是克服现有技术的不足,提供一种负载季鏻盐和金属氯化物的催化剂在乙炔氢氯化中的用途。
本发明的技术方案概述如下:
负载季鏻盐和金属氯化物的催化剂在乙炔氢氯化中的用途。
负载季鏻盐和金属氯化物的催化剂用下述方法制成:
(1)将季鏻盐溶于溶剂中配成季鏻盐溶液,再将催化剂载体浸渍在季鏻盐溶液中,所述季鏻盐与催化剂载体的质量比为0.5-40:100;在30-90℃水浴下恒温浸渍2-12h,在50-90℃下蒸干溶剂得到负载了季鏻盐的载体;
(2)采用等体积浸渍法将步骤(1)获得的负载了季鏻盐的载体浸于质量浓度为0.01%-5%的金属氯化物水溶液中,50-90℃水浴蒸干水分,100-150℃烘干。
负载季鏻盐和金属氯化物的催化剂还可以用下述方法制成:
(1)将季鏻盐溶于溶剂中配成季鏻盐溶液,将金属氯化物与季鏻盐溶液混合,得到金属氯化物季鏻盐混合液;
(2)将催化剂载体浸渍到金属氯化物季鏻盐混合液中,金属为催化剂载体质量的0.01%-5%,季鏻盐为催化剂载体质量的0.5%-40%,在30-90℃水浴下恒温浸渍2-12h,在50-90℃水浴蒸干溶剂,100-150℃烘干。
季鏻盐优选四羟甲基氯化磷、四甲基氯化鏻、四丁基氯化鏻、四苯基氯化鏻、甲基三苯基氯化鏻、乙基三苯基氯化鏻、(三丁基)正十四烷基氯化鏻、四丁基溴化鏻、四苯基溴化鏻、四苯基四氟硼酸鏻或(三己基)正十四烷基六氟磷酸鏻。
溶剂优选水、甲醇、乙醇、丙酮、甲苯、二氯乙烷或三氯甲烷。
催化剂载体优选活性炭、碳分子筛、碳化硅、氧化铝、硅胶或5A分子筛。
金属氯化物优选氯化铜、氯金酸、氯化钯或三氯化钌。
负载季鏻盐和金属氯化物的催化剂在乙炔氢氯化反应的条件为:反应温度为120-200℃、0.1MPa、氯化氢与乙炔进料流量摩尔比为0.95~1.15,乙炔空速为30-360h-1
本发明的优点:
本发明负载季鏻盐和金属氯化物的催化剂,用于乙炔氢氯化反应,具有催化活性高和稳定性好的特点。乙炔转化率为62.0-99.9%,生成氯乙烯的选择性为99.5-99.9%。反应50h乙炔转化率无明显变化。
具体实施方式
下面通过实施例对本发明进行具体的描述,以便使本领域的技术人员可以更好的理解本发明。但所举实施例并不作为对本发明的作任何限定。
实施例1
负载季鏻盐和金属氯化物的催化剂用下述方法制成:
将8g四甲基氯化鏻溶于40g水中配成四甲基氯化鏻溶液,再将20g氧化铝浸渍到四甲基氯化鏻溶液中,在90℃水浴下恒温浸渍2h,50℃蒸干溶剂并回收溶剂,得负载了四甲基氯化鏻的氧化铝;
采用等体积浸渍法将负载了四甲基氯化鏻的氧化铝浸于质量浓度为5%的氯化铜水溶液中,60℃水浴蒸干水分,再在100℃烘箱中烘干。
本实施例的催化剂在乙炔氢氯化反应中,反应条件为反应温度200℃、0.1MPa、氯化氢与乙炔进料流量摩尔比为1.15,乙炔空速为30h-1条件下,乙炔转化率为86.3%,生成氯乙烯的选择性为99.5%,反应50h乙炔转化率无明显变化。
对比:5%的氯化铜负载型催化剂(乙炔转化率为80.5%,生成氯乙烯的选择性为99.1%,反应50h后乙炔转化率降为71.7%)。
实施例2
负载季鏻盐和金属氯化物的催化剂用下述方法制成:
将4g四羟甲基氯化磷溶于40g甲醇中配成四羟甲基氯化磷溶液,再将20g活性炭浸渍到四羟甲基氯化磷溶液中,在30℃水浴下恒温浸渍12h,90℃蒸干溶剂并回收溶剂,得负载了四羟甲基氯化磷的活性炭;
采用等体积浸渍法将负载了四羟甲基氯化磷的活性炭浸于质量浓度为0.1%的三氯化钌水溶液中,50℃水浴蒸干水分,再在150℃烘箱中烘干得所需催化剂。
本实施例的催化剂在乙炔氢氯化反应中,反应条件为反应温度180℃、0.1MPa、氯化氢与乙炔进料流量摩尔比为0.95,乙炔空速为180h-1条件下,乙炔转化率为97.5%,生成氯乙烯的选择性为99.8%,反应50h乙炔转化率无明显变化。
对比:0.1%的三氯化钌负载型催化剂(乙炔转化率为90.2%,生成氯乙烯的选择性为99.7%,反应50h后乙炔转化率降为83.1%)。
实施例3
负载季鏻盐和金属氯化物的催化剂用下述方法制成:
将0.1g四丁基氯化鏻溶于40g乙醇中配成四丁基氯化鏻溶液,再将20g硅胶浸渍到四丁基氯化鏻溶液中,在70℃水浴下恒温浸渍5h,80℃蒸干溶剂并回收溶剂,得到负载了四丁基氯化鏻的硅胶;
采用等体积浸渍法将负载了四丁基氯化鏻的硅胶浸于质量浓度为0.01%的氯金酸水溶液中,90℃水浴蒸干水分,再在120℃烘箱中烘干得所需催化剂。
本实施例的催化剂在乙炔氢氯化反应中,反应条件为反应温度150℃、0.1MPa、氯化氢与乙炔进料流量摩尔比为1.05,乙炔空速为90h-1条件下,乙炔转化率为80.3%,生成氯乙烯的选择性为99.5%,反应50h乙炔转化率无明显变化。
对比:0.01%的氯金酸负载型催化剂(乙炔转化率为72.4%,生成氯乙烯的选择性为99.4%,反应50h后乙炔转化率降为57.6%)。
实施例4
负载季鏻盐和金属氯化物的催化剂用下述方法制成:
将4g甲基三苯基氯化鏻溶于40g丙酮中配成甲基三苯基氯化鏻溶液,再将20g碳化硅浸渍到甲基三苯基氯化鏻溶液中,在80℃水浴下恒温浸渍10h,80℃蒸干溶剂并回收溶剂,得负载了甲基三苯基氯化鏻的碳化硅;
采用等体积浸渍法将负载了甲基三苯基氯化鏻的碳化硅浸于质量浓度为0.5%的三氯化钌水溶液中,60℃水浴蒸干水分,再在120℃烘箱中烘干得所需催化剂。
本实施例的催化剂在乙炔氢氯化反应中,反应条件为反应温度180℃、0.1MPa、氯化氢与乙炔进料流量摩尔比为1.10,乙炔空速为270h-1条件下,乙炔转化率为98.3%,生成氯乙烯的选择性为99.8%,反应50h乙炔转化率无明显变化。
对比:0.5%的三氯化钌负载型催化剂(乙炔转化率为93.9%,生成氯乙烯的选择性为99.7%,反应50h后乙炔转化率降为85.7%)。
实施例5
负载季鏻盐和金属氯化物的催化剂用下述方法制成:
将4g(三丁基)正十四烷基氯化鏻溶于40g甲苯中配成(三丁基)正十四烷基氯化鏻溶液,再将20g5A分子筛浸渍到(三丁基)正十四烷基氯化鏻溶液中,在80℃水浴下恒温浸渍12h,90℃蒸干溶剂并回收溶剂,得负载了(三丁基)正十四烷基氯化鏻的5A分子筛;
采用等体积浸渍法将负载了(三丁基)正十四烷基氯化鏻的5A分子筛浸于质量浓度为0.1%的氯金酸水溶液中,60℃水浴蒸干水分,再在130℃烘箱中烘干得所需催化剂。
本实施例的催化剂在乙炔氢氯化反应中,反应条件为反应温度120℃、0.1MPa、氯化氢 与乙炔进料流量摩尔比为1.15,乙炔空速为360h-1条件下,乙炔转化率为98.6%,生成氯乙烯的选择性为99.6%,反应50h乙炔转化率无明显变化。
对比:0.1%的氯金酸负载型催化剂(乙炔转化率为89.8%,生成氯乙烯的选择性为99.4%,反应50h后乙炔转化率降为83.5%)。
实施例6
负载季鏻盐和金属氯化物的催化剂用下述方法制成:
将4g四丁基溴化鏻溶于40g二氯乙烷中配成四丁基溴化鏻溶液,再将20g活性炭浸渍到四丁基溴化鏻溶液中,在40℃水浴下恒温浸渍9h,90℃蒸干溶剂并回收溶剂,得负载了四丁基溴化鏻的活性炭;
采用等体积浸渍法将负载了四丁基溴化鏻的活性炭浸于质量浓度为3%的氯化铜水溶液中,60℃水浴蒸干水分,再在150℃烘箱中烘干得所需催化剂。
本实施例的催化剂在乙炔氢氯化反应中,反应条件为反应温度180℃、0.1MPa、氯化氢与乙炔进料流量摩尔比为1.10,乙炔空速为60h-1条件下,乙炔转化率为69.9%,生成氯乙烯的选择性为99.9%,反应50h乙炔转化率无明显变化。
对比:3%的氯化铜负载型催化剂(乙炔转化率为62.6%,生成氯乙烯的选择性为99.1%,反应50h后乙炔转化率降为53.8%)。
实施例7
负载季鏻盐和金属氯化物的催化剂用下述方法制成:
将2g乙基三苯基氯化鏻溶于40g三氯甲烷中配成乙基三苯基氯化鏻溶液,再将20g活性炭浸渍到乙基三苯基氯化鏻溶液中,在90℃水浴下恒温浸渍7h,70℃蒸干溶剂并回收溶剂,得负载了乙基三苯基氯化鏻的活性炭;
采用等体积浸渍法将负载了乙基三苯基氯化鏻的活性炭浸于质量浓度为0.2%的氯金酸水溶液中,60℃水浴蒸干水分,再在130℃烘箱中烘干得所需催化剂。
本实施例的催化剂在乙炔氢氯化反应中,反应条件为反应温度140℃、0.1MPa、氯化氢与乙炔进料流量摩尔比为1.12,乙炔空速为360h-1条件下,乙炔转化率为99.8%,生成氯乙烯的选择性为99.5%,反应50h乙炔转化率无明显变化。
对比:0.2%的氯金酸负载型催化剂(乙炔转化率为90.9%,生成氯乙烯的选择性为99.4%,反应50h后乙炔转化率降为84.7%)。
实施例8
负载季鏻盐和金属氯化物的催化剂用下述方法制成:
将2g四苯基四氟硼酸鏻溶于40g三氯甲烷中配成四苯基四氟硼酸鏻溶液,再将20g碳化硅浸渍到四苯基四氟硼酸鏻溶液中,在50℃水浴下恒温浸渍7h,90℃蒸干溶剂并回收溶剂,得负载了四苯基四氟硼酸鏻的碳化硅;
采用等体积浸渍法将负载了四苯基四氟硼酸鏻的碳化硅浸于质量浓度为0.2%的氯金酸水溶液中,60℃水浴蒸干水分,再在120℃烘箱中烘干得所需催化剂。
本实施例的催化剂在乙炔氢氯化反应中,反应条件为反应温度150℃、0.1MPa、氯化氢与乙炔进料流量摩尔比为1.12,乙炔空速为360h-1条件下,乙炔转化率为99.9%,生成氯乙 烯的选择性为99.8%,反应50h乙炔转化率无明显变化。
对比:0.2%的氯金酸负载型催化剂(乙炔转化率为90.9%,生成氯乙烯的选择性为99.4%,反应50h后乙炔转化率降为84.7%)。
实验证明:分别用四苯基氯化鏻、四苯基溴化鏻或(三己基)正十四烷基六氟磷酸鏻替代本实施例的四苯基四氟硼酸鏻,其它同本实施例,制备的负载季鏻盐和金属氯化物的催化剂的催化效果与本实施例的效果相似。
实验证明:用碳分子筛替代本实施例的碳化硅,其它同本实施例,制备的负载季鏻盐和金属氯化物的催化剂的催化效果与本实施例的效果相似。
实验证明:用氯化钯替代本实施例的氯金酸,其它同本实施例,制备的负载季鏻盐和金属氯化物的催化剂的催化效果与本实施例的效果相似。
实施例9
负载季鏻盐和金属氯化物的催化剂用下述方法制成:
将0.1g四苯基氯化鏻溶于40g乙醇中配成四苯基氯化鏻溶液,将0.003g的氯化钯(钯质量为0.002g)与四苯基氯化鏻溶液混合,得到氯化钯四苯基氯化鏻的混合物液;
将20g碳分子筛浸渍到氯化钯四苯基氯化鏻的混合物液中,在60℃水浴下恒温浸渍8h,80℃蒸干溶剂并回收溶剂,120℃烘箱中烘干得所需催化剂。
本实施例的催化剂在乙炔氢氯化反应中,反应条件为反应温度180℃、0.1MPa、氯化氢与乙炔进料流量摩尔比为1.10,乙炔空速为60h-1条件下,乙炔转化率为62.0%,生成氯乙烯的选择性为99.7%,反应50h乙炔转化率无明显变化。
对比:0.01%的氯化钯负载型催化剂,(乙炔转化率为53.3%,生成氯乙烯的选择性为99.1%,反应50h后乙炔转化率降为44.4%)。
实施例10
负载季鏻盐和金属氯化物的催化剂用下述方法制成:
将2g四苯基溴化鏻溶于40g乙醇中配成四苯基溴化鏻溶液,将0.082g三氯化钌(钌质量为0.04g)与四苯基溴化鏻溶液混合,得到三氯化钌四苯基溴化鏻的混合液;
将20g活性炭浸渍到三氯化钌四苯基溴化鏻的混合液,在30℃水浴下恒温浸渍12h,在50℃水浴蒸干溶剂,100℃烘干。
本实施例的催化剂在乙炔氢氯化反应中,反应条件为反应温度170℃、0.1MPa、氯化氢与乙炔进料流量摩尔比为1.05,乙炔空速为120h-1条件下,乙炔转化率为97.8%,生成氯乙烯的选择性为99.8%,反应50h乙炔转化率无明显变化。
对比:0.2%的三氯化钌负载型催化剂(乙炔转化率为95.2%,生成氯乙烯的选择性为99.7%,反应50h后乙炔转化率降为87.8%)。
实施例11
负载季鏻盐和金属氯化物的催化剂用下述方法制成:
将8g(三己基)正十四烷基六氟磷酸鏻溶于40g乙醇中配成(三己基)正十四烷基六氟磷酸鏻溶液,将1.72g的氯金酸(金质量为1g)与(三己基)正十四烷基六氟磷酸鏻溶液混合,得到氯金酸(三己基)正十四烷基六氟磷酸鏻的混合液;
将20g活性炭浸渍到氯金酸(三己基)正十四烷基六氟磷酸鏻的混合液中,在90℃水浴下恒温浸渍2h,90℃水浴蒸干溶剂并回收溶剂,再在150℃烘箱中烘干得所需催化剂。
本实施例的催化剂在乙炔氢氯化反应中,反应条件为反应温度150℃、0.1MPa、氯化氢与乙炔进料流量摩尔比为1.12,乙炔空速为360h-1条件下,乙炔转化率为99.9%,生成氯乙烯的选择性为99.7%,反应50h乙炔转化率无明显变化。
对比:5%的氯金酸负载型催化剂(乙炔转化率为97.9%,生成氯乙烯的选择性为99.4%,反应50h后乙炔转化率降为94.7%)。
实验证明:分别用四羟甲基氯化磷、四甲基氯化鏻、四丁基氯化鏻、甲基三苯基氯化鏻、乙基三苯基氯化鏻、(三丁基)正十四烷基氯化鏻、四丁基溴化鏻、四苯基四氟硼酸鏻替代本实施例的(三己基)正十四烷基六氟磷酸鏻,其它同本实施例,制备的负载季鏻盐和金属氯化物的催化剂的催化效果与本实施例的效果相似。
实验证明:用碳化硅、氧化铝、硅胶或5A分子筛替代本实施例的活性炭,其它同本实施例,制备的负载季鏻盐和金属氯化物的催化剂的催化效果与本实施例的效果相似。
实验证明:用氯化铜替代本实施例的氯金酸,其它同本实施例,制备的负载季鏻盐和金属氯化物的催化剂的催化效果与本实施例的效果相似。
实验证明:分别用水、甲醇、丙酮、甲苯、二氯乙烷或三氯甲烷替代本实施例的乙醇,其它同本实施例,制备的负载季鏻盐和金属氯化物的催化剂的催化效果与本实施例的效果相似。

Claims (7)

  1. 负载季鏻盐和金属氯化物的催化剂在乙炔氢氯化中的用途。
  2. 根据权利要求1所述的用途,其特征是所述负载季鏻盐和金属氯化物的催化剂用下述方法制成:
    (1)将季鏻盐溶于溶剂中配成季鏻盐溶液,再将催化剂载体浸渍在季鏻盐溶液中,所述季鏻盐与催化剂载体的质量比为0.5-40:100;在30-90℃水浴下恒温浸渍2-12h,在50-90℃下蒸干溶剂得到负载了季鏻盐的载体;
    (2)采用等体积浸渍法将步骤(1)获得的负载了季鏻盐的载体浸于质量浓度为0.01%-5%的金属氯化物水溶液中,50-90℃水浴蒸干水分,100-150℃烘干。
  3. 根据权利要求1所述的用途,其特征是所述负载季鏻盐和金属氯化物的催化剂用下述方法制成:
    (1)将季鏻盐溶于溶剂中配成季鏻盐溶液,将金属氯化物与季鏻盐溶液混合,得到金属氯化物季鏻盐混合液;
    (2)将催化剂载体浸渍到金属氯化物季鏻盐混合液中,金属为催化剂载体质量的0.01%-5%,季鏻盐为催化剂载体质量的0.5%-40%,在30-90℃水浴下恒温浸渍2-12h,在50-90℃水浴蒸干溶剂,100-150℃烘干。
  4. 根据权利要求2或3所述的用途,其特征是所述季鏻盐为四羟甲基氯化磷、四甲基氯化鏻、四丁基氯化鏻、四苯基氯化鏻、甲基三苯基氯化鏻、乙基三苯基氯化鏻、(三丁基)正十四烷基氯化鏻、四丁基溴化鏻、四苯基溴化鏻、四苯基四氟硼酸鏻或(三己基)正十四烷基六氟磷酸鏻。
  5. 根据权利要求2或3所述的用途,其特征是所述溶剂为水、甲醇、乙醇、丙酮、甲苯、二氯乙烷或三氯甲烷。
  6. 根据权利要求2或3所述的用途,其特征是所述催化剂载体为活性炭、碳分子筛、碳化硅、氧化铝、硅胶或5A分子筛。
  7. 根据权利要求2或3所述的用途,其特征是所述金属氯化物为氯化铜、氯金酸、氯化钯或三氯化钌。
PCT/CN2017/082324 2016-09-18 2017-04-28 负载季鏻盐和金属氯化物的催化剂在乙炔氢氯化中的用途 WO2018049820A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610829148.5 2016-09-18
CN201610829148.5A CN107837824A (zh) 2016-09-18 2016-09-18 负载季鏻盐和金属氯化物的催化剂在乙炔氢氯化中的用途

Publications (1)

Publication Number Publication Date
WO2018049820A1 true WO2018049820A1 (zh) 2018-03-22

Family

ID=61619028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082324 WO2018049820A1 (zh) 2016-09-18 2017-04-28 负载季鏻盐和金属氯化物的催化剂在乙炔氢氯化中的用途

Country Status (2)

Country Link
CN (1) CN107837824A (zh)
WO (1) WO2018049820A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020016555A1 (en) * 2018-07-16 2020-01-23 University College Cardiff Consultants Ltd Catalyst
CN111203278A (zh) * 2020-03-05 2020-05-29 石河子大学 一种用于催化乙炔氢氯化反应的金属配合物催化剂及其制备方法和应用
CN111375429A (zh) * 2018-12-28 2020-07-07 中国石油化工股份有限公司 一种硫化型加氢催化剂制备方法
CN111921347A (zh) * 2020-08-11 2020-11-13 中国成达工程有限公司 乙炔法氯乙烯原料气干燥系统及方法
CN113145175A (zh) * 2021-04-29 2021-07-23 沈阳化工大学 一种以吡啶氯化铜为活性组分催化剂制备方法及其应用
CN113209971A (zh) * 2021-03-31 2021-08-06 浙江工业大学 一种用于乙炔氢氯化反应的负载高熵合金活性炭催化剂及其制备方法和应用
CN113559924A (zh) * 2021-07-28 2021-10-29 绍兴七轩新材料科技有限公司 一种离子液体催化剂及其制备方法和应用
CN113578390A (zh) * 2021-08-06 2021-11-02 河北美邦工程科技股份有限公司 一种用于乙炔氢氯化反应的低贵金属催化剂的制备方法
CN113617393A (zh) * 2021-07-28 2021-11-09 新疆至臻化工工程研究中心有限公司 一种乙炔氢氯化金属有机骨架材料催化剂
CN113797942A (zh) * 2021-08-20 2021-12-17 内蒙古鄂尔多斯电力冶金集团股份有限公司 一种用于乙炔氢氯化反应的磷改性铜基催化剂及其制备方法、应用
CN115400791A (zh) * 2021-05-26 2022-11-29 天津大学 一种季鏻盐功能化纤维及其制备方法、应用
CN115430425A (zh) * 2022-09-21 2022-12-06 清华大学 一种用于催化乙炔氢氯化反应高稳定性铜基催化剂、其制备及应用
CN115555037A (zh) * 2022-10-26 2023-01-03 西安凯立新材料股份有限公司 乙炔氢氯化反应用催化剂和金基催化剂及制备和评价方法
CN115739134A (zh) * 2022-11-24 2023-03-07 贵州大学 一种利用三氯化钌废弃物制备氯乙烯合成用复合催化剂的方法
CN115920967A (zh) * 2022-11-24 2023-04-07 贵州大学 一种用含钌电镀废液制备氯乙烯合成催化剂的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107008465B (zh) * 2017-03-31 2020-04-07 清华大学 一种具有高活性稳定性的乙炔氢氯化反应铜基催化剂
CN110961112A (zh) * 2018-09-28 2020-04-07 中国石油化工股份有限公司 一种用于乙炔氢氯化反应的催化剂及其制备方法和应用
CN110479330A (zh) * 2019-09-06 2019-11-22 内蒙古大学 一种草酸铵和磷酸改性乙炔氢氯化反应催化剂制备方法
CN110698319B (zh) * 2019-09-30 2022-03-29 河北美邦工程科技股份有限公司 气液相氯乙烯生产工艺及装置
CN110605130B (zh) * 2019-10-12 2020-07-17 内蒙古中谷矿业有限责任公司 一种用于乙炔氢氯化反应的复合金属盐催化剂

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441407A (zh) * 2011-10-26 2012-05-09 上海中科高等研究院 一种用于制备氯乙烯的催化剂及其制备方法及其用途
WO2012084642A1 (en) * 2010-12-22 2012-06-28 Solvay Sa Manufacture of vinyl chloride by hydrochlorination of acetylene in the presence of a catalytic system consisting of at least one ionic liquid
CN103269796A (zh) * 2010-12-22 2013-08-28 索维公司 催化系统及其用于通过乙炔的氢氯化反应制造氯乙烯的用途
CN103391911A (zh) * 2011-02-24 2013-11-13 索维公司 用于氢卤化炔烃并且用于通过炔烃的氢氯化反应来制造氯化烯的方法
CN104109076A (zh) * 2014-06-30 2014-10-22 浙江大学 一种以季鏻长链阴离子离子液体为介质的乙炔氢氯化制氯乙烯的方法
CN104549522A (zh) * 2013-10-16 2015-04-29 阳永荣 一种用于乙炔氢氯化制氯乙烯的非汞催化剂及使用方法
CN106397108A (zh) * 2015-07-31 2017-02-15 天津大学 制备氯乙烯的催化剂在催化二氯乙烷和乙炔一步法制备氯乙烯的用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103272619A (zh) * 2013-06-07 2013-09-04 天津大学 用于乙炔氢氯化反应的阴离子改性无汞催化剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084642A1 (en) * 2010-12-22 2012-06-28 Solvay Sa Manufacture of vinyl chloride by hydrochlorination of acetylene in the presence of a catalytic system consisting of at least one ionic liquid
CN103269796A (zh) * 2010-12-22 2013-08-28 索维公司 催化系统及其用于通过乙炔的氢氯化反应制造氯乙烯的用途
CN103391911A (zh) * 2011-02-24 2013-11-13 索维公司 用于氢卤化炔烃并且用于通过炔烃的氢氯化反应来制造氯化烯的方法
CN102441407A (zh) * 2011-10-26 2012-05-09 上海中科高等研究院 一种用于制备氯乙烯的催化剂及其制备方法及其用途
CN104549522A (zh) * 2013-10-16 2015-04-29 阳永荣 一种用于乙炔氢氯化制氯乙烯的非汞催化剂及使用方法
CN104109076A (zh) * 2014-06-30 2014-10-22 浙江大学 一种以季鏻长链阴离子离子液体为介质的乙炔氢氯化制氯乙烯的方法
CN106397108A (zh) * 2015-07-31 2017-02-15 天津大学 制备氯乙烯的催化剂在催化二氯乙烷和乙炔一步法制备氯乙烯的用途

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424150A (zh) * 2018-07-16 2021-02-26 卡迪夫大学学院顾问有限公司 催化剂
CN112424150B (zh) * 2018-07-16 2024-04-12 卡迪夫大学学院顾问有限公司 催化剂
WO2020016555A1 (en) * 2018-07-16 2020-01-23 University College Cardiff Consultants Ltd Catalyst
CN111375429B (zh) * 2018-12-28 2022-10-11 中国石油化工股份有限公司 一种硫化型加氢催化剂制备方法
CN111375429A (zh) * 2018-12-28 2020-07-07 中国石油化工股份有限公司 一种硫化型加氢催化剂制备方法
CN111203278A (zh) * 2020-03-05 2020-05-29 石河子大学 一种用于催化乙炔氢氯化反应的金属配合物催化剂及其制备方法和应用
CN111203278B (zh) * 2020-03-05 2023-04-28 石河子大学 一种用于催化乙炔氢氯化反应的金属配合物催化剂及其制备方法和应用
CN111921347A (zh) * 2020-08-11 2020-11-13 中国成达工程有限公司 乙炔法氯乙烯原料气干燥系统及方法
CN113209971A (zh) * 2021-03-31 2021-08-06 浙江工业大学 一种用于乙炔氢氯化反应的负载高熵合金活性炭催化剂及其制备方法和应用
CN113145175A (zh) * 2021-04-29 2021-07-23 沈阳化工大学 一种以吡啶氯化铜为活性组分催化剂制备方法及其应用
CN113145175B (zh) * 2021-04-29 2023-09-05 沈阳化工大学 一种以吡啶氯化铜为活性组分催化剂制备方法及其应用
CN115400791A (zh) * 2021-05-26 2022-11-29 天津大学 一种季鏻盐功能化纤维及其制备方法、应用
CN115400791B (zh) * 2021-05-26 2023-08-11 天津大学 一种季鏻盐功能化纤维及其制备方法、应用
CN113559924A (zh) * 2021-07-28 2021-10-29 绍兴七轩新材料科技有限公司 一种离子液体催化剂及其制备方法和应用
CN113559924B (zh) * 2021-07-28 2023-10-03 绍兴七轩新材料科技有限公司 一种离子液体催化剂及其制备方法和应用
CN113617393A (zh) * 2021-07-28 2021-11-09 新疆至臻化工工程研究中心有限公司 一种乙炔氢氯化金属有机骨架材料催化剂
CN113578390A (zh) * 2021-08-06 2021-11-02 河北美邦工程科技股份有限公司 一种用于乙炔氢氯化反应的低贵金属催化剂的制备方法
CN113578390B (zh) * 2021-08-06 2023-05-30 河北美邦工程科技股份有限公司 一种用于乙炔氢氯化反应的低贵金属催化剂的制备方法
CN113797942B (zh) * 2021-08-20 2024-01-09 内蒙古鄂尔多斯电力冶金集团股份有限公司 一种用于乙炔氢氯化反应的磷改性铜基催化剂及其制备方法、应用
CN113797942A (zh) * 2021-08-20 2021-12-17 内蒙古鄂尔多斯电力冶金集团股份有限公司 一种用于乙炔氢氯化反应的磷改性铜基催化剂及其制备方法、应用
CN115430425B (zh) * 2022-09-21 2023-09-19 清华大学 一种用于催化乙炔氢氯化反应高稳定性铜基催化剂、其制备及应用
CN115430425A (zh) * 2022-09-21 2022-12-06 清华大学 一种用于催化乙炔氢氯化反应高稳定性铜基催化剂、其制备及应用
CN115555037A (zh) * 2022-10-26 2023-01-03 西安凯立新材料股份有限公司 乙炔氢氯化反应用催化剂和金基催化剂及制备和评价方法
CN115920967A (zh) * 2022-11-24 2023-04-07 贵州大学 一种用含钌电镀废液制备氯乙烯合成催化剂的方法
CN115739134A (zh) * 2022-11-24 2023-03-07 贵州大学 一种利用三氯化钌废弃物制备氯乙烯合成用复合催化剂的方法

Also Published As

Publication number Publication date
CN107837824A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
WO2018049820A1 (zh) 负载季鏻盐和金属氯化物的催化剂在乙炔氢氯化中的用途
CN105148989B (zh) 一种多孔固体材料负载型离子液体-金催化剂及其制备和应用
Zhang et al. Deactivation mechanism of AuCl 3 catalyst in acetylene hydrochlorination reaction: a DFT study
CN101982236B (zh) 加氢催化剂及1,4-环己烷二甲醇的制备方法
CN103212411B (zh) 低碳烷烃脱氢制取烯烃的高效催化剂及其制备方法
US20140213437A1 (en) Gold-based catalysts for acetylene hydrochlorination
CN107715915B (zh) 一种硫化离子液体络合的钯催化剂及其制备方法与应用
CN108993595B (zh) 一种用于乙炔氢氯化合成氯乙烯的铜基催化剂及其制备方法和应用
CN107442171A (zh) 一种负载型季铵盐和金属氯化物催化剂及其制备方法
CN101905157A (zh) 一种乙炔氢氯化制备氯乙烯的无汞催化剂的制备方法
CN105126833A (zh) 一种钌炭催化剂及其在乙炔氢氯化反应制备氯乙烯中的应用
CN107744836A (zh) 一种负载型离子液体催化剂的制备方法及其应用
CN114890864B (zh) 一种利用超低含量金基催化剂用于固定床乙炔氢氯化制氯乙烯反应中的方法
CN113634265B (zh) 一种Cu-Ru乙炔氢氯化合成氯乙烯催化剂及其制备方法
CN113713841B (zh) 一种乙炔氢氯化铜基催化剂及其制备方法和应用
CN110614093A (zh) 一种乙炔氢氯化反应低含量金钌双金属催化剂制备方法
CN106975500A (zh) 用于乙炔法生产氯乙烯的无汞催化剂及其制备方法
CN103170354B (zh) 一种结构化非汞催化剂及其制备方法和应用
CN107715914B (zh) 一种负载型硫化离子液体促进的钌催化剂及其在不饱和烃氢化卤化中的应用
CN113620810A (zh) 一种季铵盐制备方法及用季铵盐制备季铵碱的方法
CN107983375B (zh) 一种三组分乙炔氢氯化无汞催化剂及其制备方法
CN104437564A (zh) 一种绿色催化生产氯乙烯的催化剂及其生产氯乙烯的方法
CN104086351B (zh) 一种以氮杂环质子酸离子液体为介质的乙炔氢氯化制氯乙烯的方法
CN106669792A (zh) 一种脱氢催化剂及其制备方法
CN102336631B (zh) 延长含金催化剂使用寿命的乙炔法制备氯乙烯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850026

Country of ref document: EP

Kind code of ref document: A1