WO2017159667A1 - 固体電解質及び固体電解質の製造方法 - Google Patents

固体電解質及び固体電解質の製造方法 Download PDF

Info

Publication number
WO2017159667A1
WO2017159667A1 PCT/JP2017/010155 JP2017010155W WO2017159667A1 WO 2017159667 A1 WO2017159667 A1 WO 2017159667A1 JP 2017010155 W JP2017010155 W JP 2017010155W WO 2017159667 A1 WO2017159667 A1 WO 2017159667A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfide
solid electrolyte
based solid
solvent
lithium
Prior art date
Application number
PCT/JP2017/010155
Other languages
English (en)
French (fr)
Inventor
剛士 牧野
拓明 山田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US16/084,114 priority Critical patent/US11038198B2/en
Priority to EP17766666.6A priority patent/EP3432320B1/en
Priority to KR1020187026278A priority patent/KR102399662B1/ko
Priority to CN201780017180.6A priority patent/CN108780683B/zh
Priority to JP2018505942A priority patent/JP6761024B2/ja
Publication of WO2017159667A1 publication Critical patent/WO2017159667A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/16Halogen containing crystalline phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid electrolyte and a method for producing the solid electrolyte.
  • Patent Document 1 discloses that a glass ceramic electrolyte having high ionic conductivity can be obtained by producing a sulfide glass by reacting lithium sulfide and phosphorus sulfide and subjecting the sulfide glass to heat treatment. It has been reported (for example, see Patent Document 1). However, higher ionic conductivity is required, and a sulfide glass is produced by reacting lithium halide, lithium sulfide, and phosphorus sulfide, and heat treatment is performed on the sulfide glass, thereby providing high ionic conductivity. It has been reported that a glass ceramic electrolyte can be obtained (see, for example, Patent Document 2).
  • the lithium halide contained in these raw material compositions is manufactured as a hydrate because it is manufactured using a raw material of an aqueous solution in the synthesis process or by reacting in water (for example, (See Patent Documents 3 to 6). If the lithium halide used as the raw material for the solid electrolyte contains moisture, the ionic conductivity of the sulfide-based solid electrolyte may be lowered. Therefore, it is necessary to remove the moisture from the lithium halide.
  • Example 2 is an X-ray analysis spectrum of an amorphous sulfide-based solid electrolyte obtained in Example 1A.
  • 2 is an X-ray analysis spectrum of a crystalline sulfide-based solid electrolyte obtained in Example 1A.
  • It is a schematic diagram of the apparatus used in the Example. 6 is a DTA chart from 300 to 500 ° C. by differential thermal analysis for explaining the absolute value of the heat quantity H 380 of the endothermic peak.
  • 3 is a DTA chart of 300 to 500 ° C. by differential thermal analysis for explaining an absolute value of an endothermic peak heat quantity H 380 , and is a DTA chart of a solid electrolyte obtained in Example 2B.
  • 3 is a DTA chart of 300 to 500 ° C.
  • Example 1B is a DTA chart of 300 to 500 ° C. by differential thermal analysis of the solid electrolyte obtained in Example 3B. 4 is a DTA chart of 300 to 500 ° C. by differential thermal analysis of the solid electrolyte obtained in Example 4B. 6 is a DTA chart of 300 to 500 ° C. by differential thermal analysis of the solid electrolyte obtained in Example 5B. 4 is a DTA chart of 300 to 500 ° C. by differential thermal analysis of the solid electrolyte obtained in Example 6B. 6 is a DTA chart of 300 to 500 ° C. by differential thermal analysis of the solid electrolyte obtained in Comparative Example 1B.
  • 6 is a DTA chart of 300 to 500 ° C. by differential thermal analysis of the solid electrolyte obtained in Comparative Example 2B. 6 is a DTA chart of 300 to 500 ° C. by differential thermal analysis of the solid electrolyte obtained in Comparative Example 3B.
  • Patent Documents 3 to 6 it is not easy to remove these moisture, and as described above, various devices are required (Patent Documents 3 to 6). For example, if the drying step is performed under reduced pressure and by heating, the manufacturing process becomes complicated and large, and thus there is a problem that labor and cost are required. As described above, the solid electrolyte using lithium halide as a raw material has the advantages of high ion conductivity and excellent battery performance, while requiring a large amount of energy for water removal and a complicated and large manufacturing process. The cost is high, resulting in high cost.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a sulfide-based solid electrolyte having high ionic conductivity and a method for producing a sulfide-based solid electrolyte with a simplified manufacturing process.
  • X 2 (1) (In general formula (1), X is a halogen element.)
  • X 2 (1) (In general formula (1), X is a halogen element.)
  • the present embodiment an embodiment of the present invention (hereinafter sometimes referred to as “the present embodiment”) will be described.
  • the method for producing a sulfide-based solid electrolyte of the present embodiment is a sulfide-based method in which an alkali metal sulfide is reacted with a substance represented by the formula (1) (hereinafter sometimes referred to as “substance X 2 ”) in a solvent.
  • This is a method for producing a solid electrolyte.
  • X 2 (1) (In general formula (1), X is a halogen element.)
  • the sulfide-based solid electrolyte means a solid electrolyte containing sulfur as an essential component and maintaining a solid at 25 ° C. in a nitrogen atmosphere.
  • the sulfide-based solid electrolyte includes both an amorphous sulfide-based solid electrolyte and a crystalline sulfide-based solid electrolyte having a crystal structure. These sulfide-based solid electrolytes will be described in detail later.
  • the sulfide-based solid electrolyte preferably includes sulfur and phosphorus, more preferably includes at least one selected from lithium and sodium, sulfur and phosphorus, and further preferably includes lithium, sulfur, and phosphorus. . That is, it is preferable to have lithium ion conductivity and sodium ion conductivity.
  • the alkali metal sulfide is preferably a particle.
  • the average particle diameter (D 50 ) of the alkali metal sulfide particles is preferably 10 ⁇ m or more and 2000 ⁇ m or less, more preferably 30 ⁇ m or more and 1500 ⁇ m or less, and further preferably 50 ⁇ m or more and 1000 ⁇ m or less.
  • the average particle diameter (D 50 ) is a particle diameter at which 50% of the total particle diameter is accumulated from the smallest particle diameter when a particle diameter distribution integration curve is drawn, and the volume distribution is For example, it is an average particle size that can be measured using a laser diffraction / scattering particle size distribution measuring apparatus.
  • Examples of the alkali metal sulfide used in this embodiment include lithium sulfide (Li 2 S), sodium sulfide (Na 2 S), potassium sulfide (K 2 S), rubidium sulfide (Rb 2 S), and cesium sulfide (Cs 2 S). ) And the like can be preferably exemplified. Considering that the ionic conductivity of the obtained sulfide-based solid electrolyte tends to be improved by using an alkali metal having a lower molecular weight, lithium sulfide (Li 2 S) and sodium sulfide (Na 2 S) are more preferable. Lithium sulfide (Li 2 S) is more preferable.
  • alkali metal sulfides can be used singly or in combination of a plurality of types, and from the viewpoint of improving ionic conductivity, when combining a plurality of types, lithium sulfide (Li 2 S) and sodium sulfide (Na 2). A combination with S) is preferred.
  • Li 2 S lithium sulfide
  • Na 2 S sodium sulfide
  • sodium is an alkali metal having an atomic weight larger than that of lithium, considering that the ion conductivity of the obtained sulfide-based solid electrolyte tends to be improved by using a light alkali metal, lithium sulfide ( It is particularly preferred to use Li 2 S) alone.
  • the alkali metal sulfide preferably contains no water, and the amount of water contained as impurities is preferably 100 ppm by mass or less, more preferably 80 ppm by mass or less, still more preferably 50 ppm by mass or less, and further preferably 30 ppm by mass or less. More preferred is 20 ppm by mass or less. If it is the said water content, the performance of the sulfide type solid electrolyte obtained will not fall.
  • the alkali metal sulfide that can be used in the present embodiment is as described above, and the production method will be described using lithium sulfide as an example.
  • Lithium sulfide can be produced, for example, by the methods described in JP-A-7-330312, JP-A-9-283156, JP-A-2010-163356, and JP-A-9-278423. Specifically, lithium hydroxide and hydrogen sulfide are reacted at 70 ° C. to 300 ° C. in a hydrocarbon-based organic solvent to produce lithium hydrosulfide, and then the reaction solution is desulfurized by dehydrosulfurization.
  • Lithium can be synthesized (Japanese Patent Laid-Open No.
  • lithium sulfide and hydrogen sulfide can be reacted at 130 ° C. or higher and 445 ° C. or lower to synthesize lithium sulfide (Japanese Patent Laid-Open No. 9-278423).
  • the substance X 2 is fluorine (F 2 ), chlorine (Cl 2 ), bromine (Br 2 ), iodine (I 2 ), etc., among which chlorine (Cl 2 ), bromine (Br 2 ), iodine (I 2 ) ) Are preferable, and these may be used alone or in combination of two or more.
  • material X 2 By using those described above, because the possibility of obtaining an electrolyte having high ionic conductivity becomes high. From the same viewpoint, the substance X 2 is more preferably bromine (Br 2 ) or iodine (I 2 ).
  • the material X 2 As a raw material, it is not necessary to use an alkali metal halide as a raw material is eliminated, particularly, lithium bromide (LiBr), a step of removing moisture necessary for the production of lithium iodide (LiI) Therefore, it is possible to supply a high-performance solid electrolyte while simplifying the manufacturing process and reducing the cost.
  • an alkali metal halide particularly, lithium bromide (LiBr)
  • LiI lithium iodide
  • Material X 2 is preferably the water content is low, which is an impurity.
  • [Phosphorus compounds] it is preferable to react the sulfide alkali metal and a phosphorus compound material X 2.
  • the phosphorus compound include phosphorus sulfide such as diphosphorus trisulfide (P 2 S 3 ) and diphosphorus pentasulfide (P 2 S 5 ), sodium phosphate (Na 3 PO 4 ), and lithium phosphate (Li 3 PO).
  • Preferred examples include phosphoric acid compounds such as 4 ).
  • phosphorus sulfide is preferable, and phosphorus pentasulfide (P 2 S 5 ) is more preferable.
  • the phosphorus compound may contain phosphorus alone.
  • phosphorus compounds such as diphosphorus pentasulfide (P 2 S 5 ) can be easily obtained as long as they are industrially manufactured and sold. These phosphorus compounds can be used alone or in combination of two or more.
  • the above-mentioned and alkali sulfide metal and material X 2 preferably, if used and the substance X 2 disulfide alkali metal and a phosphorus compound as a raw material, including those other than the above as other raw materials But you can.
  • sodium halides such as sodium iodide (NaI), sodium fluoride (NaF), sodium chloride (NaCl), sodium bromide (NaBr), lithium oxide (Li 2 O), lithium carbonate (Li 2 CO 3 )
  • An alkali metal element (lithium (Li)) can be supplied using a lithium compound or the like.
  • SiS 2 Silicon sulfide
  • GeS 2 germanium sulfide
  • B 2 S 3 boron sulfide
  • Ga 2 S 3 gallium sulfide
  • tin sulfide SnS or SnS 2
  • aluminum sulfide Al 2 S 3
  • Elemental sulfur can be supplied using a metal sulfide such as zinc sulfide (ZnS).
  • phosphorus fluorides PF 3 , PF 5
  • various phosphorus chlorides PCl 3 , PCl 5 , P 2 Cl 4
  • phosphorus oxychloride POCl 3
  • various phosphorus bromides PBr 3 , PBr 5
  • phosphorus halides such as phosphorus iodide (POBr 3 ) and various phosphorus iodides (PI 3 , P 2 I 4 ), a phosphorus element and a halogen element can be supplied simultaneously.
  • thiophosphoryl fluoride PSF 3
  • thiophosphoryl chloride PSCl 3
  • thiophosphoryl bromide PSBr 3
  • thiophosphoryl iodide PSI 3
  • thiophosphoryl dichloride PSCl 2 S
  • halogenated thiophosphoryl such as thiophosphoryl bromide fluoride (PSBr 2 F)
  • a phosphorus element, a sulfur element, and a halogen element can be supplied simultaneously.
  • metal halides such as aluminum halide, silicon halide, germanium halide, arsenic halide, selenium halide, tin halide, antimony halide, tellurium halide, bismuth halide, etc. Can do.
  • lithium halides such as lithium fluoride (LiF), lithium chloride (LiCl), lithium bromide (LiBr), and lithium iodide (LiI) are used as long as the effects of the present embodiment are not impaired. Then, lithium element and halogen element may be supplied.
  • a solid electrolyte containing an alkali metal element, a phosphorus element, and a sulfur element can be used as a raw material.
  • a solid electrolyte include Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiI, Li 2 S—P 2 S 5 —LiCl, and Li 2 S—P 2 S 5 —.
  • LiBr Li 2 S—P 2 S 5 —Li 2 O, Li 2 S—P 2 S 5 —Li 2 O—LiI, Li 2 S—SiS 2 —P 2 S 5 —LiI, Li 2 SP—P 2 S 5 -Z m S n (m , n is the number of positive .Z is, Si, Ge, Zn, Ga , Sn, one of Al.), and the like.
  • a solid electrolyte containing a halogen element, an oxygen element, and other elements may be used as a raw material as long as it contains an alkali metal element, a phosphorus element, and a sulfur element.
  • iodine (I 2 ) and bromine (Br 2 ) can be supplied as a halogen simple substance.
  • I 2 iodine
  • bromine (Br 2 ) iodine
  • the solid electrolyte used as a raw material and the desired solid electrolyte it can also be used, selecting suitably from what was illustrated as said raw material.
  • Li 2 S-P 2 S 5 -Li 2 O in the above, having no solid electrolyte a halogen element as Li 2 S-P 2 S 5 -Z m S n as a starting material, Li 2 S- In the same manner as in the case of P 2 S 5 , a solid electrolyte containing a halogen element can be manufactured. Further, for example, when Li 2 S—P 2 S 5 —LiBr is used as a raw material, a solid electrolyte containing iodine element can be produced by using iodine (I 2 ) as a halogen simple substance.
  • I 2 iodine
  • the ratio of the respective raw materials in the total raw materials is not particularly limited.
  • the moles of the substance X 2 is the same as the number of moles of substance X 2 with respect to the total number of moles of lithium sulfide (Li 2 S) and diphosphorus pentasulfide (P 2 S 5 ) excluding the same number of moles of lithium sulfide (Li 2 S).
  • moles ratio of lithium sulfide excluding lithium sulfide (Li 2 S) (Li 2 S) is to be preferably in the range of 60 to 90%, in the range of 65 to 85% More preferably, it is more preferably in the range of 68 to 82%, still more preferably in the range of 72 to 78%, and particularly preferably in the range of 73 to 77%. This is because a sulfide-based solid electrolyte having a high ion conductivity can be obtained at these ratios.
  • the alkali metal sulfide, phosphorus compound, and the content of substance X 2 to the total amount of material X 2 is preferably 1 ⁇ 50 mol%, 2 -40 mol% is more preferable, 3-25 mol% is still more preferable, and 3-15 mol% is still more preferable.
  • the content of a substance X 2 against the total amount thereof ( ⁇ mol%), and the content of lithium halide ( ⁇ mol%) Preferably satisfies the following formula (2): It is more preferable to satisfy the following formula (3), it is more preferable to satisfy the following formula (4), and it is even more preferable to satisfy the following formula (5). 2 ⁇ 2 ⁇ + ⁇ ⁇ 100 (2) 4 ⁇ 2 ⁇ + ⁇ ⁇ 80 (3) 6 ⁇ 2 ⁇ + ⁇ ⁇ 50 (4) 6 ⁇ 2 ⁇ + ⁇ ⁇ 30 (5)
  • A1: A2 is preferably from 1 to 99:99 to 1, more preferably from 10:90 to 90:10, further preferably from 20:80 to 80:20, and further from 30:70 to 70:30. Is more preferable.
  • the raw material contains bromine element and iodine element as halogen elements
  • B1: B2 is 1 to 99: 99-1 is preferred
  • 15: 85-90: 10 is more preferred
  • 20: 80-80: 20 is more preferred
  • 30: 70-75: 25 is even more preferred
  • 35: 65-75. : 25 is particularly preferable.
  • the solubility of the material X 2 is preferably not less than 0.01 mass%.
  • material X 2 is locally destroyed the passivation film, local corrosion, especially since it has a property of easily allowed to proceed for crevice corrosion, the material X 2 is in direct contact with manufacturing equipment, thereby advancing the corrosion of the production apparatus There is a fear.
  • the raw material reacts more smoothly by using a solvent having a solubility of the substance X 2 of 0.01% by mass or more, and the opportunity for direct contact between the substance X 2 and the manufacturing apparatus.
  • This makes it easier to suppress corrosion of the manufacturing apparatus.
  • material X 2 is easily removed material X 2 of unreacted materials from the sulfide-based solid electrolyte by dissolving in a solvent, absent the material X 2 as impurities, or less based solid An electrolyte can be obtained.
  • the solubility of the material X 2 is preferably at least 0.03 wt%, more preferably at least 0.05 wt%, more preferably 0.1 mass% or more.
  • the solubility of 60 mass% or less, 55 mass% or less, and 10 mass% or less can be illustrated.
  • the solubility of the material X 2 is a value measured by the following measuring methods.
  • Measurement of solubility of a substance X 2 Substance X 2 (2 g) was added to 3 mL of solvent and stirred at room temperature (25 ° C.) for 20 minutes. 0.1 g of the supernatant was weighed, 1 g of an aqueous sodium thiosulfate solution (10% by mass, Na 2 S 2 O 3 ) was added to the supernatant, and the solution was shaken for about 1 minute to confirm that the color of the solution had disappeared. . The iodine concentration of the solution was quantified by ICP emission spectrometry (high-frequency inductively coupled plasma emission spectrometry) to calculate the solubility of a substance X 2.
  • ICP emission spectrometry high-frequency inductively coupled plasma emission spectrometry
  • the solvent is preferably a solvent in which sulfur is easily dissolved, for example, a solvent having a sulfur solubility of 0.01% by mass or more.
  • the solubility of sulfur in the solvent is more preferably 0.03% by mass or more, further preferably 0.05% by mass or more, and particularly preferably 0.1% by mass or more, and is particularly limited to the upper limit of the solubility of sulfur.
  • solubility of 60% by mass or less, 55% by mass or less, and 10% by mass or less can be exemplified.
  • the measurement of the solubility of sulfur is a value measured as follows. (Measurement of sulfur solubility) 50 ml of solvent was added to 10 g of sulfur, the temperature was adjusted to 25 ° C. with an oil bath, and the mixture was stirred for 2 hours. Thereafter, the supernatant was separated using a cannula (transport tube) with a glass filter. The separated supernatant was evacuated to obtain dry sulfur. The sulfur solubility (% by mass) was calculated from the mass of dry sulfur and the mass of the solvent in which the dry sulfur was dissolved.
  • the manufacturing method of the present embodiment uses the substance X 2 instead of lithium halides such as lithium iodide (LiI) and lithium bromide (LiBr) used for manufacturing a high-performance solid electrolyte.
  • lithium halides such as lithium iodide (LiI) and lithium bromide (LiBr) used for manufacturing a high-performance solid electrolyte.
  • iodine (I 2 ), bromine (Br 2 ) is used as a raw material, so that water removal in the lithium halide production stage is avoided, a high-performance solid electrolyte is simplified, and the production process is simplified. This makes it possible to supply while making it easier. Therefore, it is necessary to supply the alkali metal component supplied as lithium halide as an alkali metal sulfide, and as a result, sulfur may be generated as a by-product.
  • the raw materials can be reacted more smoothly and can be removed when excess sulfur content is generated. Therefore, production efficiency can be improved. Further, by dissolving sulfur in the solvent, unreacted sulfur can be easily removed from the sulfide-based solid electrolyte, and a sulfur-based solid electrolyte that does not contain sulfur as an impurity or has a small amount can be obtained. it can.
  • a solvent it is preferable that it is a solvent which is hard to melt
  • the solubility of the alkali metal sulfide is more preferably 0.5% by mass or less, further preferably 0.1% by mass or less, and still more preferably 0.07% by mass or less.
  • such a solvent include hydrocarbon solvents such as aliphatic hydrocarbon solvents, alicyclic hydrocarbon solvents, and aromatic hydrocarbon solvents; solvents containing carbon atoms such as solvents containing carbon atoms and heteroatoms. It is done.
  • hydrocarbon solvents such as aliphatic hydrocarbon solvents, alicyclic hydrocarbon solvents, and aromatic hydrocarbon solvents; solvents containing carbon atoms such as solvents containing carbon atoms and heteroatoms. It is done.
  • the aliphatic hydrocarbon solvent include hexane, pentane, 2-ethylhexane, heptane, octane, decane, undecane, dodecane, tridecane, and the like.
  • the alicyclic hydrocarbon solvent include cyclohexane, methylcyclohexane, and the like.
  • aromatic hydrocarbon solvent examples include benzene, toluene, xylene, mesitylene, ethylbenzene, tert-butylbenzene, chlorobenzene, trifluoromethylbenzene, nitrobenzene, and the like, and as a solvent containing carbon atoms and heteroatoms. Includes carbon disulfide, diethyl ether, dibutyl ether, tetrahydrofuran and the like.
  • hydrocarbon solvents are preferred, aromatic hydrocarbon solvents are more preferred, toluene, xylene and ethylbenzene are more preferred, and toluene is particularly preferred.
  • water it is not preferable to use water as a solvent because it reduces the performance of the solid electrolyte.
  • bromine (Br 2 ) when bromine (Br 2 ) is used as the substance X 2 , from the viewpoint of efficiently reacting bromine (Br 2 ) with other raw materials, particularly a saturated aliphatic hydrocarbon solvent, a saturated alicyclic ring.
  • aromatic hydrocarbon solvents and aromatic hydrocarbon solvents those substituted with an electron withdrawing group, for example, tert-butylbenzene, trifluoromethylbenzene, nitrobenzene and the like are preferably used.
  • the amount of solvent used is preferably such that the total amount of raw material used per liter of solvent is 0.1 to 1 kg, more preferably 0.05 to 0.8 kg, and 0.2 to 0.7 kg. A more preferred amount.
  • the amount of the solvent used is within the above range, it becomes a slurry, the raw materials can be reacted more smoothly, and can be easily removed when it is necessary to remove the solvent.
  • the mixing method there is no particular limitation on the mixing method.
  • the raw material and, if necessary, the solvent or the like may be introduced into a production apparatus capable of mixing the solvent and the raw material and mixed.
  • the production apparatus is not particularly limited as long as it can mix a raw material, a solvent, and the like.
  • a medium pulverizer can be used.
  • Medium type pulverizers are roughly classified into container-driven pulverizers and medium agitating pulverizers.
  • Examples of the container-driven pulverizer include an agitation tank, a pulverization tank, or a ball mill, a bead mill, and the like that combine these (for example, the one having the configuration shown in FIG. 3 as used in the examples). .
  • impact pulverizers such as a cutter mill, a hammer mill and a pin mill
  • tower-type pulverizers such as a tower mill
  • examples include a circulation tank type pulverizer such as a pearl mill; a flow tube type pulverizer; an annular type pulverizer such as a coball mill; a continuous dynamic type pulverizer; and various pulverizers such as a uniaxial or multiaxial kneader.
  • pulverizers can be appropriately selected according to a desired scale and the like. If the scale is relatively small, a container-driven pulverizer such as a ball mill or a bead mill can be used. In the case of conversion, it is preferable to use another type of pulverizer.
  • pulverizers raw materials, a solvent, etc., and pulverization media are charged, and the apparatus is started to perform mixing, stirring, and pulverization.
  • the raw material, the solvent, and the like are charged with the pulverizing media, but there is no limitation on the order of the charging.
  • a sulfide solid electrolyte of the present embodiment by mixing raw materials, a solvent, and the like, the raw materials are more easily brought into contact with each other, the reaction further proceeds, and a sulfide solid electrolyte is obtained. From the viewpoint of promoting contact between the raw materials and obtaining a sulfide-based solid electrolyte efficiently, it is preferable to mix the solvent and the raw material and further perform a treatment such as stirring, pulverization, or stirring and pulverization. Further, from the viewpoint of promoting the contact between the raw materials, it is preferable to perform a treatment including pulverization, that is, a pulverization, or stirring and pulverization. By performing processing including grinding, the surface of the raw material is scraped, a new surface is exposed, and the new surface and the surface of another raw material come into contact with each other. A sulfide-based solid electrolyte is often obtained.
  • these mills have a particle diameter of a medium such as a ball or a bead (usually about ⁇ 2 to 20 mm for a ball, about ⁇ 0.02 to 2 mm for a bead), a material (for example, , Stainless steel, chrome steel, tungsten carbide, etc .; ceramics such as zirconia, silicon nitride, etc .; minerals such as agate), rotation speed of rotor, time, etc., mixing, stirring, grinding, combining these
  • a material for example, , Stainless steel, chrome steel, tungsten carbide, etc .; ceramics such as zirconia, silicon nitride, etc .; minerals such as agate
  • rotation speed of rotor, time, etc. mixing, stirring, grinding, combining these
  • the treatment can be performed, and the particle size and the like of the obtained sulfide-based solid electrolyte can be adjusted.
  • these conditions are not particularly limited.
  • a ball mill especially a planetary ball mill is used, a ball made of ceramics, especially zirconia, and having a particle diameter of ⁇ 1 to 10 mm is used, and the rotational speed of the rotor is 300.
  • Stirring and pulverization can be performed at ⁇ 1000 rpm for 0.5 to 100 hours.
  • the temperature at the time of mixing, stirring and pulverization is not particularly limited, but may be set at 20 to 80 ° C., for example.
  • a raw material after mixing a raw material, a solvent, etc., a raw material may be added and mixed, and this may be repeated twice or more.
  • a raw material may be further added and mixed, mixed and stirred, and this may be repeated twice or more.
  • raw materials and solvent may be put into a ball mill or bead mill container, mixing and stirring may be started, and further raw materials may be put into the container during mixing and stirring, or after mixing and stirring (mixing And after the stirring is temporarily stopped), the raw material may be charged into the container, and the mixing and stirring may be resumed, or the raw material may be charged into the container during and after mixing and stirring.
  • the raw material and the solvent when the raw material and the solvent are mixed and pulverized, or when stirring and pulverizing, the raw material may be further added as in the case of stirring.
  • the number of treatments such as solvent removal performed as necessary can be reduced, so that a sulfide-based solid electrolyte can be obtained more efficiently.
  • a solvent when adding further raw materials, a solvent may be added as necessary, but the solvent may be removed when obtaining the sulfide-based solid electrolyte, so the amount added should be kept to the minimum necessary. Is preferred.
  • the solid electrolyte thus obtained is in a state containing a solvent. Therefore, it is preferable that the method for producing a solid electrolyte of the present embodiment further includes removing the solvent. Further, by removing the solvent, it is possible to remove sulfur as a by-product.
  • the removal of the solvent can be performed, for example, by a method in which the solid electrolyte containing the obtained solvent is transferred to a container, and after the solid electrolyte has precipitated, the supernatant solvent is removed.
  • the removal of the solvent by drying can be performed, and it can also be performed in combination with the removal of the solvent as the supernatant.
  • the precipitated solid electrolyte can be placed on a heater such as a hot plate and heated at 50 to 90 ° C. to volatilize the solvent, thereby removing the solvent.
  • drying under reduced pressure using a vacuum pump or the like may be performed at a temperature of about 90 to 110 ° C.
  • an aromatic hydrocarbon solvent such as xylene, ethylbenzene, or chlorobenzene is used as the solvent.
  • the solvent used in the present embodiment is one in which the solubility of the substance X 2 can be dissolved and 0.01% by mass or more, the material X 2. Therefore, the unreacted substance X 2 can be easily removed from the sulfide-based solid electrolyte, and there is an advantage that the substance X 2 does not exist as an impurity or a sulfide-based solid electrolyte can be obtained in a small amount. .
  • the obtained sulfide-based solid electrolyte contains at least an alkali metal element, a sulfur element, and a halogen element, and preferably contains an alkali metal element, a sulfur element, a phosphorus element, and a halogen element. It is.
  • an amorphous sulfide-based solid electrolyte is a halo pattern in which an X-ray diffraction pattern is a halo pattern in which a peak other than a material-derived peak is not substantially observed in an X-ray diffraction measurement. It means that the presence or absence of a peak derived from the electrolyte raw material does not matter.
  • the amorphous sulfide-based solid electrolyte has high ion conductivity, and can increase the output of the battery.
  • Typical examples of the amorphous sulfide-based solid electrolyte include Li 2 S—P 2 S 5 —LiI, Li 2 S—P 2 S 5 —LiCl, and Li 2 SP—P 2 S. 5 -LiBr, Li 2 S-P 2 S 5 -LiI-LiBr, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI the like.
  • the type of element constituting the amorphous sulfide-based solid electrolyte can be confirmed by, for example, an ICP emission spectroscopic analyzer.
  • the average particle diameter (D 50 ) of the particulate amorphous sulfide-based solid electrolyte can be exemplified by the range of 0.01 ⁇ m to 500 ⁇ m and 0.1 to 200 ⁇ m, for example.
  • the manufacturing method of the solid electrolyte of this embodiment can include further heating.
  • the amorphous solid electrolyte can be made into a crystalline solid electrolyte.
  • the heating temperature can be appropriately selected according to the structure of the amorphous solid electrolyte.
  • the amorphous solid electrolyte is heated at 10 ° C./min using a differential thermal analyzer (DTA apparatus).
  • the differential thermal analysis (DTA) is carried out with the peak top of the exothermic peak observed at the lowest temperature, preferably ⁇ 40 ° C., more preferably ⁇ 30 ° C., even more preferably ⁇ 20 ° C. .
  • the heating temperature is preferably 150 ° C.
  • the upper limit of the heating temperature is not particularly limited, but is preferably 300 ° C. or lower, more preferably 280 ° C. or lower, and further preferably 250 ° C. or lower.
  • the heating time is not particularly limited as long as the desired crystalline solid electrolyte can be obtained. For example, it is preferably 1 minute or longer, more preferably 10 minutes or longer, and further preferably 30 minutes or longer.
  • the upper limit of the heating time is not particularly limited, but is preferably 24 hours or less, more preferably 10 hours or less, and further preferably 5 hours or less.
  • the heating method is not particularly limited, and examples thereof include a method using a hot plate, a vacuum heating device, an argon gas atmosphere furnace, and a firing furnace.
  • a horizontal dryer having a heating means and a feeding mechanism, a horizontal vibration fluidized dryer, or the like can also be used.
  • a crystalline sulfide-based solid electrolyte can be obtained by heating an amorphous sulfide-based solid electrolyte.
  • a crystalline sulfide-based solid electrolyte is a sulfide-based solid electrolyte in which a peak derived from a sulfide-based solid electrolyte is observed in an X-ray diffraction pattern in an X-ray diffraction measurement. The presence or absence of a peak derived from the electrolyte raw material does not matter.
  • a crystalline sulfide-based solid electrolyte includes a crystal structure derived from a sulfide-based solid electrolyte, and even if a part thereof is a crystal structure derived from the sulfide-based solid electrolyte, all of the sulfide-based solid electrolyte is the sulfide structure. It may be a crystal structure derived from a physical solid electrolyte. As long as the crystalline sulfide solid electrolyte has an X-ray diffraction pattern as described above, an amorphous sulfide solid electrolyte may be included in a part thereof. .
  • a crystal structure having a peak in the vicinity of ° (for example, JP 2013-16423 A) can be exemplified.
  • crystal structures having peaks at 2 ⁇ 20.2 ° ⁇ 0.3 ° and 23.6 ° ⁇ 0.3 °.
  • the average particle diameter (D 50 ) of the particulate crystalline sulfide-based solid electrolyte can be exemplified by the range of 0.01 ⁇ m to 500 ⁇ m, 0.1 to 200 ⁇ m, for example.
  • the sulfide-based solid electrolyte obtained by the production method of the present embodiment has high ionic conductivity and excellent battery performance, and is suitably used for batteries.
  • the use of lithium element as the conductive species is particularly suitable.
  • the sulfide-based solid electrolyte obtained by the production method of the present embodiment may be used for the positive electrode layer, the negative electrode layer, or the electrolyte layer. Each layer can be manufactured by a known method.
  • the battery preferably uses a current collector in addition to the positive electrode layer, the electrolyte layer, and the negative electrode layer, and a known current collector can be used.
  • a layer coated with Au or the like that reacts with the above sulfide-based solid electrolyte, such as Au, Pt, Al, Ti, or Cu, can be used.
  • the sulfide solid electrolyte of this embodiment contains an alkali metal element, a sulfur element, and a halogen element, and has an endotherm having a peak top at 380 ⁇ 15 ° C. measured by differential thermal analysis under a temperature rising condition of 10 ° C./min.
  • the absolute value of the peak heat quantity H 380 is 10 (J / g) or more.
  • the present inventors have found that a higher ionic conductivity tends to be obtained as the heat quantity of the endothermic peak that appears in a specific temperature range of 380 ⁇ 15 ° C. is larger.
  • the calorific value of the endothermic peak is a calorific value corresponding to the area of the endothermic peak measured by differential thermal analysis (DTA) under a temperature rising condition of 10 ° C./min.
  • DTA differential thermal analysis
  • FIG. 4 shows a differential thermal analysis chart (DTA chart) of 300 to 500 ° C. by differential thermal analysis under the temperature rising condition of 10 ° C./min of the sulfide-based solid electrolyte of this embodiment.
  • the DTA chart shown in (4-1) of FIG. 4 is a chart of the sulfide-based solid electrolyte of Example 2B described later.
  • the endothermic peak (P 380) having a peak top at T 380 387 ° C. )
  • an endothermic peak having a peak top at 380 ⁇ 15 ° C. corresponds to “an endothermic peak having a peak top at 380 ⁇ 15 ° C.”.
  • the starting point of the peak of the line is connected by a straight line (hereinafter sometimes referred to as “straight line 1”), and the tangent and the high temperature at the inflection point of the endothermic peak on the low temperature side of the endothermic peak (P 380 ) the amount of heat corresponding to the area surrounded by the tangent at the inflection point of the endothermic peak on the side, and heat H 380 of the endothermic peak having a peak top at 380 ⁇ 15 ° C..
  • the tangent line at the inflection point on the low temperature side of the endothermic peak, the tangent line at the inflection point on the high temperature side endotherm, the area of the endothermic peak that is not counted by the tangent line, and the outside of the endothermic peak counted by the tangent line.
  • a tangent that reduces the difference from the area is adopted. For example, in (4-1) of FIG. 4, the area surrounded by the endothermic peak (P 380 ), the straight line 1 and the tangent line on the low temperature side, and the endothermic peak (P 380 ), surrounded by the straight line 1 and the tangent line on the high temperature side.
  • the total area that falls within the “endothermic peak area that will not be counted” is the total area that is surrounded by the low temperature side tangent, the high temperature side tangent line, and the endothermic peak (P 380 ). Corresponds to “outside area”.
  • the DTA chart shown in (4-2) of FIG. 4 is a chart of the sulfide-based solid electrolyte of Example 4B described later.
  • the apex (shoulder portion) between the endothermic peak (P 380 ) and the endothermic peak (P 413 ) having a peak top at 413 ° C., and the starting point of the low temperature side peak of the endothermic peak (P 380 ) The amount of heat corresponding to the area enclosed by the straight line and the tangent line at the inflection point of the endothermic peak on the low temperature side of the endothermic peak (P 380 ) and the tangent line at the inflection point of the endothermic peak on the high temperature side
  • the heat quantity H 380 of the endothermic peak having a peak top at 380 ⁇ 15 ° C. may be used.
  • the absolute value of the heat quantity H 380 of the endothermic peak having a peak top at 380 ⁇ 15 ° C. needs to be 10 (J / g) or more.
  • the absolute value of the heat quantity H 380 is less than 10 (J / g), high lithium ion conductivity cannot be obtained.
  • the absolute value of the heat quantity H 380 is preferably 12 (J / g) or more, more preferably 15 (J / g) or more, and further 20 (J / g) or more. preferable.
  • the ratio (H 380 / H 350-450 ) of the absolute value of the calorific value H 380 of the endothermic peak to the total H 350-450 of the absolute value of the calorific value of the endothermic peak having a peak top at 350 to 450 ° C. is It is preferable that it is 50% or more.
  • the ratio (H 380 / H 350-450 ) is 50% or more, higher lithium ion conductivity can be obtained.
  • the ratio (H 380 / H 350-450 ) is preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more.
  • the upper limit of the ratio (H 380 / H 350-450 ) is preferably as high as possible, and is particularly preferably 100% from the viewpoint of obtaining higher lithium ion conductivity.
  • the absolute value of the heat quantity H 380 of the endothermic peak in the ratio (H 380 / H 350-450 ) is a value obtained by the above method.
  • the total absolute value H 350-450 of the endothermic peak having a peak top at 350 to 450 ° C. is determined as follows.
  • An endothermic peak at ⁇ 450 ° C. is clearly specified.
  • FIG. 5 shows two endothermic peaks, an endothermic peak (P 404 ) having a peak top at 404 ° C.
  • the total H 350-450 of the absolute value of the endothermic peak having a peak top at 350 to 450 ° C. is the endotherm having a peak top at 380 ⁇ 15 ° C.
  • the absolute value of the heat quantity H 380 of the endothermic peak (P 380 ) having a peak top at 380 ⁇ 15 ° C. is 26.12 (J / g), the peak top at 404 ° C.
  • the absolute value of the heat quantity H 404 of the endothermic peak (P 404 ) having a peak value of 6.83 (J / g) and the heat quantity H 422 of the endothermic peak (P 422 ) having a peak top at 422 ° C. is 0.22 ( J / g), and the total H 350-450 of these heat amounts is 33.17 (J / g), so the ratio (H 380 / H 350-450 ) is calculated as 78.7%.
  • the absolute value and the ratio (H 380 / H 350-450 ) of the heat quantity H 380 of the endothermic peak are, for example, the halogen element in the alkali metal element, sulfur element and halogen element constituting the sulfide-based solid electrolyte. It can be adjusted according to the conditions such as the kind of the above, other elements such as phosphorus element, the mixing ratio of these elements, the raw materials used in the production, the mixing ratio thereof, and the solvent used.
  • the alkali metal element includes lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and the like, and by using an alkali metal having a smaller molecular weight, Considering that the ionic conductivity of the resulting sulfide-based solid electrolyte tends to improve, lithium (Li) and sodium (Na) are preferable, and lithium (Li) is more preferable.
  • These alkali metal elements can be used alone or in combination of a plurality of types. From the viewpoint of improving the ionic conductivity, a combination of lithium (Li) and sodium (Na) is used when combining a plurality of types. preferable. In view of the fact that the use of a light alkali metal tends to improve the ionic conductivity of the resulting sulfide-based solid electrolyte, it is particularly preferable to use lithium (Li) alone.
  • the halogen element is fluorine (F), chlorine (Cl), bromine (Br), iodine (I), etc., among which chlorine (Cl), bromine (Br), iodine (I) is preferable. Bromine (Br) and iodine (I) are more preferable, and these can be used alone or in combination of two or more.
  • the absolute value of the heat quantity H 380 of the endothermic peak can be easily increased to 10 (J / g) or more, and the ratio (H 380 / H 350-450 ) can be easily increased to 50% or more.
  • a sulfide-based solid electrolyte having higher ionic conductivity can be obtained.
  • bromine (Br) and iodine (I) are preferably used in combination.
  • the sulfide type solid electrolyte of this embodiment contains a phosphorus element further in addition to an alkali metal element, a sulfur element, and a halogen element from a viewpoint of obtaining higher ionic conductivity.
  • the compounding ratio (molar ratio) of these elements is 1.0 to 1.8: 1.0 to 2.0: 0. 1 to 0.8: 0.01 to 0.6 is preferable, and 1.1 to 1.7: 1.2 to 1.8: 0.2 to 0.6: 0.05 to 0.5 is more preferable.
  • the blending ratio (molar ratio) of alkali metal element, sulfur element, phosphorus element, bromine and iodine is 1.0 to 1.8: 1.0 to 2 0.0: 0.1-0.8: 0.01-0.3: 0.01-0.3 is preferred, 1.1-1.7: 1.2-1.8: 0.2-0 .6: 0.05-0.25: 0.05-0.25 is more preferable, 1.2-1.6: 1.3-1.7: 0.25-0.5: 0.07- 0.2: 0.07 to 0.2 is more preferable, 1.35 to 1.45: 1.4 to 1.7: 0.3 to 0.45: 0.08 to 0.18: 0.08 Is more preferably 0.18.
  • the absolute value of the heat quantity H 380 of the endothermic peak can be easily increased to 10 (J / g) or more, and the ratio (H 380 / H 350-450 ) can be easily increased to 50% or more, and a solid electrolyte having higher lithium ion conductivity can be obtained.
  • the sulfide solid electrolyte of the present embodiment includes an alkali metal element, phosphorus element and halogen element, preferably further sulfur element, and has a specific endothermic peak by differential thermal analysis under a temperature rising condition of 10 ° C./min. As long as it is amorphous, it may be amorphous or crystalline.
  • the amorphous sulfide-based solid electrolyte has high ion conductivity, and can increase the output of the battery.
  • the amorphous sulfide-based solid electrolyte of the present embodiment contains an alkali metal element, a sulfur element, a phosphorus element, and a halogen element. Typical examples include Li 2 SP—P 2 S 5 —.
  • a sulfide-based solid electrolyte such as 2 S 5 -LiI is preferably used.
  • the type of element constituting the amorphous sulfide-based solid electrolyte can be confirmed by, for example, an ICP emission spectroscopic analyzer.
  • the molar ratio of Li 2 S to P 2 S 5 is from the viewpoint of obtaining higher ionic conductivity. 65 to 85:15 to 35, preferably 70 to 80:20 to 30, and more preferably 72 to 78:22 to 28.
  • the sulfide-based solid electrolyte of the present embodiment is, for example, Li 2 S—P 2 S 5 —LiI—LiBr
  • the content of lithium sulfide (Li 2 S) and diphosphorus pentasulfide (P 2 S 5 ) 60 to 100 mol% is preferable, 65 to 90 mol% is more preferable, and 70 to 85 mol% is still more preferable.
  • the ratio of lithium bromide (LiBr) to the total of lithium bromide (LiBr) and lithium iodide (LiI) is preferably 1 to 99 mol%, more preferably 20 to 90 mol%, and more preferably 40 to 80 mol%. % Is more preferable, and 50 to 70 mol% is particularly preferable.
  • the shape of the amorphous sulfide-based solid electrolyte is not particularly limited, and examples thereof include particles.
  • the average particle diameter (D 50 ) of the particulate amorphous sulfide-based solid electrolyte can be exemplified by the range of 0.01 ⁇ m to 500 ⁇ m and 0.1 to 200 ⁇ m, for example.
  • the crystalline structure of the crystalline sulfide-based solid electrolyte is more specifically a Li 3 PS 4 crystal structure, a Li 4 P 2 S 6 crystal structure, a Li 7 PS 6 crystal structure, or a Li 7 P 3 S 11 crystal structure.
  • a crystal structure similar to Li 4-x Ge 1-x P x S 4 type thio-LISICON Region II type see Solid State Ionics, 177 (2006), 2721-2725), and the like. It is done.
  • an aldilodite-type crystal structure is also exemplified.
  • the Arujirodaito type crystal structure for example, Li 7 PS 6 crystal structure; having a structure skeleton of Li 7 PS 6, the composition formula is obtained by replacing a part of P in Si Li 7-x P 1- y Si y Crystal structure represented by S 6 and Li 7 + x P 1-y Si y S 6 (x is ⁇ 0.6 to 0.6, y is 0.1 to 0.6); Li 7-x-2y PS 6 ⁇ x-y Cl x (0.8 ⁇ x ⁇ 1.7,0 ⁇ y ⁇ -0.25x + 0.5) crystal structure represented by; Li 7-x PS 6- x Ha x (Ha is Cl or Br, and a crystal structure in which x is preferably 0.2 to 1.8).
  • compositional formulas Li 7-x P 1-y Si y S 6 and Li 7 + x P 1-y Si y S 6 (which have the above Li 7 PS 6 structural skeleton and in which a part of P is substituted with Si (
  • the crystal structure represented by the above composition formula Li 7-x PS 6-x Ha x (Ha is Cl or Br, x is preferably 0.2 to 1.8) is preferably cubic and CuK ⁇ ray.
  • the average particle diameter (D 50 ) of the particulate crystalline sulfide-based solid electrolyte can be exemplified by the range of 0.01 ⁇ m to 500 ⁇ m, 0.1 to 200 ⁇ m, for example.
  • the obtained solid electrolyte contains lithium element, sulfur element, phosphorus element and halogen element, and has a specific endothermic peak by differential thermal analysis under a temperature rising condition of 10 ° C./min.
  • a specific endothermic peak by differential thermal analysis under a temperature rising condition of 10 ° C./min.
  • it can be produced by a known method or the like.
  • the above-described embodiment can be used.
  • a method for producing a sulfide solid electrolyte that is, an alkali metal sulfide and a substance represented by formula (1) are reacted in a solvent, or an alkali metal sulfide and a substance represented by formula (1) and a phosphorus compound are reacted in a solvent. It is preferable to manufacture by the manufacturing method of the sulfide type solid electrolyte made to react.
  • X 2 (1) In general formula (1), X is a halogen element.
  • the absolute value and the ratio (H 380 / H 350-450 ) of the heat quantity H 380 of the endothermic peak are the raw materials used, the blending ratio thereof, and It can adjust with conditions, such as a solvent to be used.
  • the raw materials to be used and the blending ratio thereof are the same as the raw materials and blending ratios described in the method for producing the sulfide-based solid electrolyte of the present embodiment.
  • the solvent to be used the solvent described in the method for producing a sulfide-based solid electrolyte of the present embodiment can be used, and it is easy to obtain a specific endothermic peak, and in consideration of obtaining higher ionic conductivity.
  • an aromatic hydrocarbon solvent and a solvent having an electron withdrawing group are preferable.
  • the aromatic hydrocarbon solvent is preferably toluene, xylene, ethylbenzene, or chlorobenzene, more preferably toluene or chlorobenzene, and particularly preferably chlorobenzene.
  • a solvent having an electron withdrawing group is preferable because bromine (Br 2 ) can be efficiently reacted with other raw materials when bromine (Br 2 ) is used as the substance X 2 .
  • Preferred examples of the solvent having an electron withdrawing group include chlorobenzene, tert-butylbenzene, trifluoromethylbenzene, nitrobenzene and the like, and among them, chlorobenzene is preferred.
  • the sulfide-based solid electrolyte of the present embodiment has high ionic conductivity, has excellent battery performance, and is suitably used for batteries.
  • the use of lithium element as the conductive species is particularly suitable.
  • the sulfide-based solid electrolyte of this embodiment may be used for the positive electrode layer, the negative electrode layer, or the electrolyte layer. Each layer can be manufactured by a known method.
  • the battery preferably uses a current collector in addition to the positive electrode layer, the electrolyte layer, and the negative electrode layer, and a known current collector can be used.
  • a layer coated with Au or the like that reacts with the above sulfide-based solid electrolyte, such as Au, Pt, Al, Ti, or Cu, can be used.
  • Example 1A A planetary ball mill (trade name: Classic Line P-7, manufactured by Fritsch) was installed. 0.598 g of lithium sulfide, 0.867 g of diphosphorus pentasulfide, 0.271 g of lithium bromide, and 0.264 g of iodine are weighed and put into a container for a planetary ball mill (45 cc, manufactured by zirconia), and further dehydrated toluene. (Moisture content: 10 ppm or less) 4 g was charged, and the container was completely sealed.
  • a planetary ball mill (trade name: Classic Line P-7, manufactured by Fritsch) was installed. 0.598 g of lithium sulfide, 0.867 g of diphosphorus pentasulfide, 0.271 g of lithium bromide, and 0.264 g of iodine are weighed and put into a container for a planetary ball mill (45 cc, manufactured by zirconia), and further dehydrated to
  • This vessel was attached to the above planetary ball mill and mixed, stirred, and pulverized simultaneously at a base plate rotation speed of 500 rpm for 40 hours to produce a sulfide-based solid electrolyte.
  • 5 ml of dehydrated toluene was added to the resulting slurry-like product containing the amorphous sulfide-based solid electrolyte and the solvent in a glove box, and recovered in a metal vat to precipitate a powder (solid electrolyte). After that, the supernatant solvent was removed. Next, the precipitated powder was placed on a hot plate and dried at 80 ° C. to obtain a powdery amorphous sulfide-based solid electrolyte.
  • the obtained powdery amorphous sulfide solid electrolyte was subjected to powder X-ray analysis (XRD) measurement using an X-ray diffraction (XRD) apparatus (SmartLab apparatus, manufactured by Rigaku Corporation). It was found that there was no peak other than the peak derived from the raw material.
  • XRD powder X-ray analysis
  • the obtained powdery amorphous sulfide-based solid electrolyte was heated at 203 ° C. for 3 hours using a hot plate installed in a glove box.
  • the powder after heating was subjected to powder X-ray analysis (XRD) measurement using an X-ray diffraction (XRD) apparatus (SmartLab apparatus, manufactured by Rigaku Corporation).
  • XRD powder X-ray analysis
  • the conductivity ⁇ (S / cm) was calculated.
  • the ionic conductivity of the crystalline sulfide-based solid electrolyte was 4.84 ⁇ 10 ⁇ 3 (S / cm), and it was confirmed that the ionic conductivity was high.
  • the conditions and ionic conductivity of Example 1A are shown in Table 1.
  • Example 2A A sulfide-based solid electrolyte was produced using the apparatus shown in FIG.
  • the apparatus shown in FIG. 3 will be described.
  • the apparatus shown in FIG. 3 includes a bead mill 10 and a reaction vessel 20 that are reacted by mixing, stirring, pulverizing raw materials, or a combination thereof.
  • the reaction tank 20 includes a container 22 and a stirring blade 24, and the stirring blade 24 is driven by a motor (M).
  • the bead mill 10 is provided with a heater 30 through which hot water (HW) can be passed around the mill 10.
  • the hot water (HW) is supplied with heat by the heater 30 and is discharged from the outlet of the heater 30.
  • (RHW) is heated and then externally circulated in the heater 30 as hot water (HW).
  • the reaction tank 20 is in an oil bath 40.
  • the oil bath 40 heats the raw material and solvent in the container 22 to a predetermined temperature.
  • the reaction tank 20 is provided with a cooling pipe 26 that cools the vaporized solvent and liquefies it. Cooling water (CW) cools the solvent in the cooling pipe 26 and is discharged from the outlet of the cooling pipe 26 ( RCW) is cooled and then externally circulated in the cooling pipe 26 as cooling water (CW).
  • the bead mill 10 and the reaction tank 20 are connected by a first connecting pipe 50 and a second connecting pipe 52.
  • the first connecting pipe 50 moves the raw material and the solvent in the bead mill 10 to the reaction tank 20, and the second connecting part 52 moves the raw material and the solvent in the reaction tank 20 into the bead mill 10.
  • a pump 54 (for example, a diaphragm pump) is provided in the second connection pipe 52 in order to circulate the raw materials and the like through the connection pipes 50 and 52.
  • a thermometer (Th) is provided at the discharge of the reaction tank 20 and the pump 54 so that the temperature can be constantly controlled.
  • “Bead Mill LMZ015” manufactured by Ashizawa Finetech Co., Ltd.
  • the reactor made from 2.0 liter glass with a stirrer was used as a reaction tank.
  • the peripheral speed of the bead mill 10 was set to 12 m / s, warm water (HW) was passed by external circulation, and the reaction was performed so that the discharge temperature of the pump 54 was maintained at 70 ° C. After removing the supernatant of the obtained slurry, it was placed on a hot plate and dried at 80 ° C. to obtain a powdery amorphous sulfide-based solid electrolyte. The obtained sulfide-based solid electrolyte was subjected to powder X-ray analysis (XRD) measurement in the same manner as in Example 1A. As a result, it was found that there was no peak other than the peak derived from the raw material.
  • XRD powder X-ray analysis
  • the obtained powdery amorphous sulfide-based solid electrolyte was heated at 195 ° C. for 3 hours using a hot plate installed in a glove box to obtain a crystalline sulfide-based solid electrolyte.
  • XRD powder X-ray analysis
  • Example 3A An amorphous sulfide-based solid electrolyte was obtained in the same manner as in Example 2A, except that in Example 2A, 35.64 g of lithium sulfide, 49.25 g of diphosphorus pentasulfide, 14.06 g of iodine, and 8.85 g of bromine were used. Got. The obtained sulfide-based solid electrolyte was subjected to powder X-ray analysis (XRD) measurement in the same manner as in Example 1A. As a result, it was found that there was no peak other than the peak derived from the raw material. The obtained amorphous sulfide-based solid electrolyte was heated at 203 ° C.
  • XRD powder X-ray analysis
  • Example 4A In Example 1A, 0.645 g of lithium sulfide, 0.851 g of diphosphorus pentasulfide, 0.245 g of bromine and 0.259 g of iodine were used, and the solvent was changed from dehydrated toluene to dehydrated ethylbenzene (water content: 10 ppm or less). A sulfide-based solid electrolyte was obtained in the same manner as 1A. 20 ml of dehydrated toluene was added to the resulting slurry-like product containing the sulfide-based solid electrolyte and the solvent and recovered in a 50 ml Schlenk bottle.
  • the supernatant solvent was removed. This was repeated two more times, followed by drying under reduced pressure using a vacuum pump while heating to 100 ° C. in an oil bath to obtain an amorphous sulfide-based solid electrolyte.
  • the obtained sulfide-based solid electrolyte was subjected to powder X-ray analysis (XRD) measurement in the same manner as in Example 1A. As a result, it was found that there was no peak other than the peak derived from the raw material.
  • the obtained amorphous sulfide-based solid electrolyte was heated at 180 ° C. for 3 hours to obtain a crystalline sulfide-based solid electrolyte.
  • Example 5A An amorphous sulfide-based solid electrolyte was obtained in the same manner as in Example 4A, except that the solvent was changed from dehydrated ethylbenzene to dehydrated xylene (water content: 10 ppm or less). The obtained sulfide-based solid electrolyte was subjected to powder X-ray analysis (XRD) measurement in the same manner as in Example 1A. As a result, it was found that there was no peak other than the peak derived from the raw material. The obtained amorphous sulfide-based solid electrolyte was heated at 188 ° C. for 3 hours to obtain a crystalline sulfide-based solid electrolyte.
  • XRD powder X-ray analysis
  • Example 2A lithium (29.66 g) lithium disulfide (47.83 g) was dissolved in 200 ml of toluene instead of 13.97 g of iodine (Wako Pure Chemicals) and 13.19 g of bromine (Wako Pure Chemicals).
  • An amorphous sulfide-based solid electrolyte was obtained in the same manner as in Example 2A, except that 14.95 g of lithium bromide, 15.36 g of lithium iodide, and 1200 ml of dehydrated toluene were added to the reaction vessel 20. .
  • the obtained sulfide-based solid electrolyte was subjected to powder X-ray analysis (XRD) measurement in the same manner as in Example 1A. As a result, there was no peak other than the peak derived from the raw material, and it was an amorphous sulfide-based solid electrolyte. It was confirmed.
  • the obtained amorphous sulfide-based solid electrolyte was heated at 203 ° C. for 3 hours to obtain a crystalline sulfide-based solid electrolyte.
  • Example 2A In Example 2A, instead of 31.58 g of lithium sulfide and 50.93 g of diphosphorus pentasulfide dissolved in 200 ml of toluene, 13.97 g of iodine (special grade of Wako Pure Chemical) and 13.19 g of bromine (special grade of Wako Pure Chemical) were used. An amorphous sulfide-based solid electrolyte was obtained in the same manner as in Example 2A, except that 9.95 g of lithium bromide, 15.33 g of lithium iodide, and 1200 ml of dehydrated toluene were added to the reaction vessel 20. .
  • the obtained sulfide-based solid electrolyte was subjected to powder X-ray analysis (XRD) measurement in the same manner as in Example 1A. As a result, there was no peak other than the peak derived from the raw material, and it was an amorphous sulfide-based solid electrolyte. It was confirmed.
  • the obtained amorphous sulfide-based solid electrolyte was heated at 203 ° C. for 3 hours to obtain a crystalline sulfide-based solid electrolyte.
  • Example 1A to 5A it was confirmed that according to the method for producing a solid electrolyte of the present embodiment, a sulfide-based solid electrolyte having high ion conductivity and excellent battery performance can be easily obtained. More specifically, the comparison between Example 2A and Comparative Example 1A and the comparison between Example 3A and Comparative Example 2A were obtained by the manufacturing method of the present embodiment even when the same element was used. It was also confirmed that the sulfide-based solid electrolyte has higher ionic conductivity.
  • Example 1B In Example 1A, an amorphous sulfide was used in the same manner as in Example 1A, except that 0.661 g of lithium sulfide, 0.914 g of diphosphorus pentasulfide, 0.164 g of bromine and 0.261 g of iodine were used.
  • -Based solid electrolyte (80 (0.75Li 2 S / 0.25P 2 S 5 ) / 10LiBr / 10LiI, Li: S: P: Br: I (molar ratio) 1.400: 1.600: 0.400: 0.100: 0.100).
  • the obtained powdery amorphous sulfide-based solid electrolyte was heated at 203 ° C. for 3 hours using a hot plate installed in a glove box to obtain a crystalline sulfide-based solid electrolyte.
  • XRD powder X-ray analysis
  • the ionic conductivity was measured according to the above (measurement of ionic conductivity) and found to be 5.20 ⁇ 10 ⁇ 3 (S / cm), and a high ionic conductivity was obtained. It was confirmed that
  • the obtained amorphous sulfide-based solid electrolyte was subjected to a differential thermal analyzer (DTA device) (thermogravimetric measuring device “TGA / DSC1 (model number)”, STAR e software, both manufactured by METLER TOLEDO).
  • DTA device thermogravimetric measuring device “TGA / DSC1 (model number)”, STAR e software, both manufactured by METLER TOLEDO.
  • the sample was subjected to differential thermal analysis (DTA) under a temperature increase condition of 10 ° C./min from room temperature to 500 ° C. in a nitrogen gas atmosphere.
  • the differential thermal analysis chart (DTA chart) is shown in FIG. According to FIG. 6, an endothermic peak having a peak top at 380 ⁇ 15 ° C. at 384 ° C. (P 380 ), an endothermic peak having a peak top at 406 ° C.
  • the obtained powdery amorphous sulfide-based solid electrolyte was heated at 188 ° C. for 3 hours using a hot plate installed in a glove box to obtain a crystalline sulfide-based solid electrolyte.
  • XRD powder X-ray analysis
  • the obtained amorphous sulfide-based solid electrolyte was subjected to differential thermal analysis (DTA) in the same manner as in Example 1B under a nitrogen gas atmosphere from room temperature to 500 ° C. under a temperature rising condition of 10 ° C./min. It was.
  • the differential thermal analysis chart (DTA chart) is shown in FIG. According to FIG. 5, at 387 ° C., an endothermic peak (P 380 ) having a peak top at 380 ⁇ 15 ° C., an endothermic peak (P 406 ) having a peak top at 404 ° C., and an endothermic peak having a peak top at 422 ° C.
  • Example 3B A sulfide-based solid electrolyte was obtained in the same manner as in Example 1B, except that the solvent was changed from dehydrated toluene to dehydrated chlorobenzene (water content: 10 ppm or less). 20 ml of dehydrated chlorobenzene was added to the resulting slurry-like product containing the sulfide-based solid electrolyte and the solvent and recovered in a 50 ml Schlenk bottle. After the powder precipitated, the supernatant solvent was removed. Then, drying under reduced pressure using a vacuum pump while heating to 100 ° C.
  • the obtained powdery amorphous sulfide-based solid electrolyte was heated at 188 ° C. for 3 hours using a hot plate installed in a glove box to obtain a crystalline sulfide-based solid electrolyte.
  • XRD powder X-ray analysis
  • the obtained amorphous sulfide-based solid electrolyte was subjected to differential thermal analysis (DTA) in the same manner as in Example 1B under a nitrogen gas atmosphere from room temperature to 500 ° C. under a temperature rising condition of 10 ° C./min. It was.
  • the differential thermal analysis chart (DTA chart) is shown in FIG. According to FIG. 7, there is an endothermic peak (P 380 ) having a peak top at 380 ⁇ 15 ° C. and an endothermic peak (P 431 ) having a peak top at 431 ° C.
  • Example 3B shows the conditions of Example 3B, the heat quantity of the endothermic peak, the ionic conductivity, and the like.
  • the obtained powdery amorphous sulfide-based solid electrolyte was heated at 188 ° C. for 3 hours using a hot plate installed in a glove box to obtain a crystalline sulfide-based solid electrolyte.
  • XRD powder X-ray analysis
  • the obtained amorphous sulfide-based solid electrolyte was subjected to differential thermal analysis (DTA) in the same manner as in Example 1B under a nitrogen gas atmosphere from room temperature to 500 ° C. under a temperature rising condition of 10 ° C./min. It was.
  • the differential thermal analysis chart (DTA chart) is shown in FIG. According to FIG. 8, there is an endothermic peak (P 380 ) having a peak top at 380 ⁇ 15 ° C. and an endothermic peak (P 413 ) having a peak top at 413 ° C.
  • H 380 were 48.35 (J / g)
  • H 413 was 0.13 (J / g)
  • the ratio (H 380 / H 350-450 ) was 99.7%.
  • Table 2 shows the conditions of Example 4B, the amount of heat of the endothermic peak, ionic conductivity, and the like.
  • the obtained powdery amorphous sulfide-based solid electrolyte was heated at 195 ° C. for 3 hours using a hot plate installed in a glove box to obtain a crystalline sulfide-based solid electrolyte.
  • XRD powder X-ray analysis
  • the obtained amorphous sulfide-based solid electrolyte was subjected to differential thermal analysis (DTA) in the same manner as in Example 1B under a nitrogen gas atmosphere from room temperature to 500 ° C. under a temperature rising condition of 10 ° C./min. It was.
  • the differential thermal analysis chart (DTA chart) is shown in FIG. According to FIG. 9, at 386 ° C., an endothermic peak (P 380 ) having a peak top at 380 ⁇ 15 ° C., an endothermic peak having a peak top at 404 ° C. (P 404 ), and an endothermic peak having a peak top at 434 ° C.
  • Example 6B A sulfide-based solid electrolyte was obtained in the same manner as in Example 5B, except that the solvent was changed from dehydrated toluene to dehydrated chlorobenzene (water content: 10 ppm or less). 50 ml of the slurry-like product containing the obtained sulfide-based solid electrolyte and solvent was collected in a 100 ml Schlenk bottle, and after the powder precipitated, the supernatant solvent was removed. Thereafter, while heating to 100 ° C.
  • the obtained powdery amorphous sulfide-based solid electrolyte was heated at 195 ° C. for 3 hours using a hot plate installed in a glove box to obtain a crystalline sulfide-based solid electrolyte.
  • XRD powder X-ray analysis
  • the obtained amorphous sulfide-based solid electrolyte was subjected to differential thermal analysis (DTA) in the same manner as in Example 1B under a nitrogen gas atmosphere from room temperature to 500 ° C. under a temperature rising condition of 10 ° C./min. It was.
  • the differential thermal analysis chart (DTA chart) is shown in FIG. According to FIG. 10, there is an endothermic peak (P 380 ) having a peak top at 380 ⁇ 15 ° C. and an endothermic peak (P 400 ) having a peak top at 400 ° C. at 385 ° C., and the absolute value of the heat quantity of each endothermic peak.
  • H 380 was 29.80 (J / g)
  • H 400 was 3.08 (J / g)
  • the ratio (H 380 / H 350-450 ) was 90.6%.
  • Table 2 shows the conditions of Example 6B, the heat quantity of the endothermic peak, the ionic conductivity, and the like.
  • Example 1B was the same as Example 1B except that 0.550 g of lithium sulfide, 0.887 g of diphosphorus pentasulfide, 0.277 g of lithium bromide instead of bromine and iodine, and 0.285 g of lithium iodide were used.
  • the obtained amorphous sulfide-based solid electrolyte was heated at 210 ° C. for 3 hours to obtain a crystalline sulfide-based solid electrolyte.
  • XRD powder X-ray analysis
  • the obtained amorphous sulfide-based solid electrolyte was subjected to differential thermal analysis (DTA) in the same manner as in Example 1B under a nitrogen gas atmosphere from room temperature to 500 ° C. under a temperature rising condition of 10 ° C./min. It was.
  • the differential thermal analysis chart (DTA chart) is shown in FIG. According to FIG. 11, an endothermic peak having a peak top at 358 ° C. (P 358 ), an endothermic peak having a peak top at 380 ⁇ 15 ° C. at 377 ° C. (P 380 ), and an endothermic peak having a peak top at 402 ° C. (P 402 ), endothermic peak with peak top at 410 ° C.
  • H 410 is 0.55 (J / g)
  • H 418 is 0.025 (J / g)
  • H 428 is 0.99 (J / g)
  • H 446 0.7 (J / g) is and the absolute value of heat H 380 of the endothermic peak (P 380) having a peak top at 380 ⁇ 15 ° C. is less than 10 (J / g), the ratio (H 380 / H 350-450) Was 17.5%.
  • Table 2 shows the conditions of Comparative Example 1B, the heat quantity of the endothermic peak, the ionic conductivity, and the like.
  • the obtained sulfide-based solid electrolyte was subjected to powder X-ray analysis (XRD) measurement in the same manner as in Example 1A. As a result, there was no peak other than the peak derived from the raw material, and it was an amorphous sulfide-based solid electrolyte. It was confirmed.
  • XRD powder X-ray analysis
  • the obtained amorphous sulfide-based solid electrolyte was heated at 203 ° C. for 3 hours to obtain a crystalline sulfide-based solid electrolyte.
  • XRD powder X-ray analysis
  • the obtained amorphous sulfide-based solid electrolyte was subjected to differential thermal analysis (DTA) in the same manner as in Example 1B under a nitrogen gas atmosphere from room temperature to 500 ° C. under a temperature rising condition of 10 ° C./min. It was.
  • the differential thermal analysis chart (DTA chart) is shown in FIG. According to FIG. 12, an endothermic peak having a peak top at 380 ⁇ 15 ° C. at 384 ° C. (P 380 ), an endothermic peak having a peak top at 405 ° C. (P 405 ), and an endothermic peak having a peak top at 423 ° C.
  • the obtained sulfide-based solid electrolyte was subjected to powder X-ray analysis (XRD) measurement in the same manner as in Example 1A. As a result, it was found that there was no peak other than the peak derived from the raw material.
  • XRD powder X-ray analysis
  • the obtained powdery amorphous sulfide-based solid electrolyte was heated at 198 ° C. for 3 hours using a hot plate installed in a glove box to obtain a crystalline sulfide-based solid electrolyte.
  • XRD powder X-ray analysis
  • the obtained amorphous sulfide-based solid electrolyte was subjected to differential thermal analysis (DTA) in the same manner as in Example 1B under a nitrogen gas atmosphere from room temperature to 500 ° C. under a temperature rising condition of 10 ° C./min. It was.
  • the differential thermal analysis chart (DTA chart) is shown in FIG. According to FIG. 13, an endothermic peak having a peak top at 363 ° C. (P 363 ), an endothermic peak having a peak top at 380 ⁇ 15 ° C. at 378 ° C. (P 380 ), and an endothermic peak having a peak top at 406 ° C.
  • the production process of the solid electrolyte having high ion conductivity and excellent battery performance can be simplified without going through a process of removing moisture such as a drying process, and the cost can be reduced. And can be manufactured.
  • the solid electrolyte of this embodiment has high ion conductivity, and is excellent in battery performance.
  • This solid electrolyte is suitably used for a battery, particularly for a battery used in information-related equipment such as personal computers, video cameras, and mobile phones, and communication equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Glass Compositions (AREA)

Abstract

イオン伝導性が高く、電池性能に優れる固体電解質を、例えば乾燥工程等の水分を除去する工程を経ずに、製造プロセスを簡略化し、低コスト化を図りながら、提供する。具体的には、溶媒中で硫化アルカリ金属と所定の物質とを反応させる硫化物系固体電解質の製造方法を提供する。

Description

固体電解質及び固体電解質の製造方法
 本発明は、固体電解質及び固体電解質の製造方法に関する。
 全固体電池の分野において、従来から、硫化物系固体電解質材料が知られている。例えば、特許文献1には、硫化リチウムと硫化リンとを反応させて硫化物ガラスを製造し、この硫化物ガラスに熱処理を施すことで、高いイオン伝導度を有するガラスセラミクス電解質が得られることが報告されている(例えば、特許文献1参照)。しかしながら、より高いイオン伝導度が求められており、ハロゲン化リチウムと硫化リチウムと硫化リンを反応させて硫化物ガラスを製造し、この硫化物ガラスに熱処理を施すことで、高いイオン伝導度を有するガラスセラミクス電解質が得られることが報告されている(例えば、特許文献2参照)。
 そして、これらの原料組成物に含まれるハロゲン化リチウムは、合成過程で水溶液の原料を用いて製造したり、水中で反応させて製造したりしているため水和物として製造される(例えば、特許文献3~6参照)。固体電解質の原料に用いるハロゲン化リチウムは、水分を含んでいると硫化物系固体電解質のイオン伝導度が低くなるおそれがあるため、ハロゲン化リチウムから水分を除去する必要がある。
特開2005-228570号公報 特開2013-201110号公報 特開2013-103851号公報 特開2013-256416号公報 特開2014-65637号公報 特開2014-65638号公報
実施例1Aで得られた非晶質の硫化物系固体電解質のX線解析スペクトルである。 実施例1Aで得られた結晶質の硫化物系固体電解質のX線解析スペクトルである。 実施例で用いた装置の模式図である。 吸熱ピークの熱量H380の絶対値を説明するための、示差熱分析による300~500℃までのDTAチャートである。 吸熱ピークの熱量H380の絶対値を説明するための、示差熱分析による300~500℃までのDTAチャートであり、実施例2Bで得られた固体電解質のDTAチャートである。 実施例1Bで得られた固体電解質の示差熱分析による300~500℃までのDTAチャートである。 実施例3Bで得られた固体電解質の示差熱分析による300~500℃までのDTAチャートである。 実施例4Bで得られた固体電解質の示差熱分析による300~500℃までのDTAチャートである。 実施例5Bで得られた固体電解質の示差熱分析による300~500℃までのDTAチャートである。 実施例6Bで得られた固体電解質の示差熱分析による300~500℃までのDTAチャートである。 比較例1Bで得られた固体電解質の示差熱分析による300~500℃までのDTAチャートである。 比較例2Bで得られた固体電解質の示差熱分析による300~500℃までのDTAチャートである。 比較例3Bで得られた固体電解質の示差熱分析による300~500℃までのDTAチャートである。
 ところで、固体電解質の原料中に水分が存在すると、イオン伝導性が著しく低下し、優れた固体電解質が得られないという問題がある。一方、原料となるハロゲン化リチウムは、従来、特許文献3~6に記載されるように、水を媒体として用いて製造されていることから、いずれの場合も水分を除去する工程が必要となっている。水分の除去は、具体的には、不活性ガス雰囲気下又は真空下で、300~440℃で焼成する(特許文献3)、有機溶媒と共沸、乾燥する(特許文献4)、減圧下で加温する(特許文献5及び6)等の手法により行われている。
 しかし、これらの水分の除去は容易ではなく、上記の通り、種々の工夫が必要になる(特許文献3~6)。例えば乾燥工程を減圧下で、かつ加熱で行うとなると、製造プロセスが煩雑、かつ大型となるため、手間、費用がかかってしまうという問題がある。このように、ハロゲン化リチウムを原料とする固体電解質は、イオン伝導性が高く、電池性能に優れるという利点を有する一方、水分除去に要するエネルギーが大きく、またその製造プロセスが煩雑かつ大型となるため、かかるコストが高くなり、結果として高コストなものとなっている。
 また特に近年、上記の情報関連機器、通信機器等の急速な普及と、高性能化に伴い、より安価で、かつより高いリチウムイオン伝導度が求められるようになっている。このような要望に対応するため、製造プロセスの面からの検討をはじめとし、様々な角度からの検討が行われている。
 本発明は、このような状況に鑑みてなされたものであり、高いイオン伝導度を有する硫化物系固体電解質、及び製造プロセスを簡略化した硫化物系固体電解質の製造方法を提供することを目的とする。
 本発明者は、上記の課題を解決するべく鋭意検討した結果、下記の発明により当該課題を解決できることを見出した。
[1]溶媒中で硫化アルカリ金属と式(1)に示す物質とを反応させる硫化物系固体電解質の製造方法。
     X…(1)
(一般式(1)中、Xは、ハロゲン元素である。)
[2]溶媒中で硫化アルカリ金属と式(1)に示す物質とリン化合物とを反応させる硫化物系固体電解質の製造方法。
     X…(1)
(一般式(1)中、Xは、ハロゲン元素である。)
[3]アルカリ金属元素、硫黄元素及びハロゲン元素を含み、10℃/分の昇温条件の示差熱分析により測定される、380±15℃にピークトップを有する吸熱ピークの熱量H380の絶対値が、10(J/g)以上である硫化物系固体電解質。
 本発明によれば、高いイオン伝導度を有する硫化物系固体電解質、及び製造プロセスを簡略化した硫化物系固体電解質の製造方法を提供することができる。
 以下、本発明の実施形態(以下、「本実施形態」と称することがある。)について説明する。
[硫化物系固体電解質の製造方法]
 本実施形態の硫化物系固体電解質の製造方法は、溶媒中で硫化アルカリ金属と式(1)に示す物質(以下、「物質X」と称することがある。)とを反応させる硫化物系固体電解質の製造方法である。
     X…(1)
(一般式(1)中、Xは、ハロゲン元素である。)
 硫化物系固体電解質とは、硫黄を必須成分とする固体電解質であって、窒素雰囲気下25℃で固体を維持する電解質を意味する。
 硫化物系固体電解質には、非晶質の硫化物系固体電解質と、結晶構造を有する結晶性の硫化物系固体電解質と、の両方が含まれる。これらの硫化物系固体電解質については、後で詳述する。
 硫化物系固体電解質は、硫黄とリンとを含むことが好ましく、リチウム及びナトリウムから選ばれる少なくとも1種と硫黄とリンとを含むことがより好ましく、リチウムと硫黄とリンとを含むことが更に好ましい。すなわち、リチウムイオン伝導性、ナトリウムイオン伝導性を有することが好ましい。
[硫化アルカリ金属]
 硫化アルカリ金属は、粒子であることが好ましい。
 ここで、硫化アルカリ金属粒子の平均粒径(D50)は、10μm以上2000μm以下であることが好ましく、30μm以上1500μm以下であることがより好ましく、50μm以上1000μm以下であることがさらに好ましい。本明細書において、平均粒径(D50)は、粒子径分布積算曲線を描いた時に粒子径の最も小さい粒子から順次積算して全体の50%に達するところの粒子径であり、体積分布は、例えば、レーザー回折/散乱式粒子径分布測定装置を用いて測定することができる平均粒径のことである。
 本実施形態で用いられる硫化アルカリ金属としては、硫化リチウム(LiS)、硫化ナトリウム(NaS)、硫化カリウム(KS)、硫化ルビジウム(RbS)、硫化セシウム(CsS)などを好ましく例示することができる。分子量がより小さいアルカリ金属を用いることで、得られる硫化物系固体電解質のイオン伝導度が向上する傾向があることを考慮すると、硫化リチウム(LiS)、硫化ナトリウム(NaS)がより好ましく、さらに硫化リチウム(LiS)が好ましい。
 これらの硫化アルカリ金属は、単独で、又は複数種を組み合わせて用いることができ、イオン伝導度を向上させる観点から、複数種を組み合わせる場合は、硫化リチウム(LiS)と硫化ナトリウム(NaS)との組み合わせが好ましい。なお、ナトリウムはリチウムよりも原子量が大きいアルカリ金属であることから、軽いアルカリ金属を用いることで、得られる硫化物系固体電解質のイオン伝導度が向上する傾向があることを考慮すると、硫化リチウム(LiS)を単独で用いることが特に好ましい。
 硫化アルカリ金属は、水を含まないことが好ましく、不純物として含まれる水分量は、100質量ppm以下が好ましく、80質量ppm以下がより好ましく、50質量ppm以下が更に好ましく、30質量ppm以下が更により好ましく、20質量ppm以下が特に好ましい。上記水分量であれば、得られる硫化物系固体電解質の性能が低下することがない。
 本実施形態で用い得る硫化アルカリ金属は上記の通りであるが、硫化リチウムを例に製造方法を説明する。
 硫化リチウムは、例えば、特開平7-330312号公報、特開平9-283156号公報、特開2010-163356号公報、特開平9-278423号公報に記載の方法により製造することができる。
 具体的には、炭化水素系有機溶媒中で水酸化リチウムと硫化水素とを70℃~300℃で反応させて、水硫化リチウムを生成し、次いでこの反応液を脱硫化水素化することにより硫化リチウムを合成できる(特開2010-163356号公報)。また、水酸化リチウムと硫化水素を130°C以上445°C以下で反応させて硫化リチウムを合成することもできる(特開平9-278423号公報)。
[物質X
 物質Xは、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)等であり、中でも、塩素(Cl)、臭素(Br)、ヨウ素(I)が好ましく、これらを単独で、又は複数種を組み合わせて用いることができる。物質Xとして上記のものを用いることで、高いイオン伝導度を有する電解質を得ることができる可能性が高くなるためである。これと同様の観点から、物質Xは、臭素(Br)、ヨウ素(I)がより好ましい。
 原料として物質Xを用いることで、ハロゲン化アルカリ金属を原料として用いる必要がなくなるため、特に、臭化リチウム(LIBr)、ヨウ化リチウム(LiI)を製造する際に必要な水分の除去工程を省くことができ、高性能な固体電解質を、製造プロセスを簡略化し、低コスト化を図りながら、供給することが可能となる。
 物質Xは、不純物である水分量が少ないことが好ましい。
[リン化合物]
 本実施形態において、硫化アルカリ金属とリン化合物と物質Xとを反応させることが好ましい。
 リン化合物としては、例えば、三硫化二リン(P)、五硫化二リン(P)等の硫化リン、リン酸ナトリウム(NaPO)、リン酸リチウム(LiPO)等のリン酸化合物などが好ましく挙げられる。中でも、硫化リンが好ましく、五硫化二リン(P)がより好ましい。また、リン化合物は、リン単体を含んでいてもよい。また、五硫化二リン(P)等のリン化合物は、工業的に製造され、販売されているものであれば、容易に手に入れることができる。これらのリン化合物は、単独で、又は複数種を組み合わせて用いることができる。
[他の原料]
 本実施形態においては、上記の硫化アルカリ金属と物質Xとを、好ましくは、硫化アルカリ金属とリン化合物と物質Xとを原料として用いていれば、上記以外のものを他の原料として含んでもよい。
 例えば、ヨウ化ナトリウム(NaI)、フッ化ナトリウム(NaF)、塩化ナトリウム(NaCl)、臭化ナトリウム(NaBr)等のハロゲン化ナトリウム、酸化リチウム(LiO)、炭酸リチウム(LiCO)等のリチウム化合物等を用いて、アルカリ金属元素(リチウム(Li))を供給することができる。
 硫化ケイ素(SiS)、硫化ゲルマニウム(GeS)、硫化ホウ素(B)、硫化ガリウム(Ga)、硫化スズ(SnS又はSnS)、硫化アルミニウム(Al)、硫化亜鉛(ZnS)等の硫化金属を用いて、硫黄元素を供給することができる。
 各種フッ化リン(PF、PF)、各種塩化リン(PCl、PCl、PCl)、オキシ塩化リン(POCl)、各種臭化リン(PBr、PBr)、オキシ臭化リン(POBr)、各種ヨウ化リン(PI、P)等のハロゲン化リンを用いて、リン元素とハロゲン元素とを同時に供給することができる。また、フッ化チオホスホリル(PSF)、塩化チオホスホリル(PSCl)、臭化チオホスホリル(PSBr)、ヨウ化チオホスホリル(PSI)、二塩化フッ化チオホスホリル(PSClS)、二臭化フッ化チオホスホリル(PSBrF)等のハロゲン化チオホスホリルを用いて、リン元素と硫黄元素とハロゲン元素とを同時に供給することができる。
 ハロゲン化アルミニウム、ハロゲン化ケイ素、ハロゲン化ゲルマニウム、ハロゲン化ヒ素、ハロゲン化セレン、ハロゲン化スズ、ハロゲン化アンチモン、ハロゲン化テルル、ハロゲン化ビスマス等のハロゲン化金属を用いて、ハロゲン元素を供給することができる。
 また、例えば、本実施形態の効果を阻害しない範囲であれば、フッ化リチウム(LiF)、塩化リチウム(LiCl)、臭化リチウム(LiBr)、ヨウ化リチウム(LiI)等のハロゲン化リチウムを用いて、リチウム元素とハロゲン元素とを供給してもよい。
 本実施形態の製造方法では、原料として、アルカリ金属元素、リン元素、及び硫黄元素を含む固体電解質を用いることができる。このような固体電解質としては、例えば、LiS-P、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P-LiO、LiS-P-LiO-LiI、LiS-SiS-P-LiI、LiS-P-Z(m、nは正の数。Zは、Si、Ge、Zn、Ga、Sn、Alのいずれか。)等が挙げられる。これらの例示から分かるように、アルカリ金属元素、リン元素、及び硫黄元素を含んでいれば、ハロゲン元素、酸素元素、その他の元素が含まれた固体電解質を原料としてもよい。
 例えば、LiS-Pを原料として用いる場合、ハロゲン単体としてヨウ素(I)、臭素(Br)の少なくともいずれか一方を供給することができる。この場合、ハロゲン単体としてヨウ素(I)のみを供給し、臭素元素の供給源として、臭化リチウム(LiBr)を用いることもできるし、他のハロゲン元素を含む原料を用いてもよいし、また、原料として用いる固体電解質、所望の固体電解質に応じて、上記の原料として例示したものから適宜選択して用いることもできる。
 上記の中でもLiS-P-LiO、LiS-P-Zのようにハロゲン元素を有しない固体電解質を原料として用いる場合も、LiS-Pの場合と同じようにすれば、ハロゲン元素を含む固体電解質を製造することができる。
 また、例えば、原料として、LiS-P-LiBrを用いる場合、ハロゲン単体としてヨウ素(I)を用いることで、ヨウ素元素を含む固体電解質を製造することができる。
[原料の配合割合]
 上記各原料の全原料中の割合は特に制限されるものではないが、例えば、原料として硫化リチウム(LiS)及び五硫化二リン(P)を用いる場合、物質Xのモル数と同モル数の硫化リチウム(LiS)を除いた硫化リチウム(LiS)及び五硫化二リン(P)の合計モル数に対する、物質Xのモル数と同モル数の硫化リチウム(LiS)とを除いた硫化リチウム(LiS)のモル数の割合は、60~90%の範囲内であることが好ましく、65~85%の範囲内であることがより好ましく、68~82%の範囲内であることが更に好ましく、72~78%の範囲内であることが更により好ましく、73~77%の範囲内であることが特に好ましい。これらの割合であれば、イオン伝導度が高い硫化物系固体電解質を得られるからである。
 また、原料として硫化アルカリ金属とリン化合物と物質Xとを用いる場合、硫化アルカリ金属、リン化合物、及び物質Xの合計量に対する物質Xの含有量は、1~50mol%が好ましく、2~40mol%がより好ましく、3~25mol%が更に好ましく、3~15mol%が更により好ましい。
 原料として硫化アルカリ金属とリン化合物と物質Xとハロゲン化リチウムとを用いる場合には、これらの合計量に対する物質Xの含有量(αmol%)、及びハロゲン化リチウムの含有量(βmol%)は、下記式(2)を満たすことが好ましく、
下記式(3)を満たすことがより好ましく、下記式(4)を満たすことが更に好ましく、下記式(5)を満たすことが更により好ましい。
   2≦2α+β≦100…(2)
   4≦2α+β≦80 …(3)
   6≦2α+β≦50 …(4)
   6≦2α+β≦30 …(5)
 また、原料中に、ハロゲン元素として二種類の元素が含まれている場合には、一方のハロゲン元素の原料中のモル数をA1とし、もう一方のハロゲン元素の原料中のモル数をA2とすると、A1:A2が1~99:99~1が好ましく、10:90~90:10であることがより好ましく、20:80~80:20が更に好ましく、30:70~70:30が更により好ましい。
 原料中に、ハロゲン元素として臭素元素とヨウ素元素が含まれる場合には、臭素元素の原料中のモル数をB1とし、ヨウ素元素の原料中のモル数をB2とすると、B1:B2が1~99:99~1が好ましく、15:85~90:10であることがより好ましく、20:80~80:20が更に好ましく、30:70~75:25が更により好ましく、35:65~75:25が特に好ましい。
[溶媒]
 本実施形態で用いられる溶媒は、物質Xの溶解度が0.01質量%以上のものが好ましい。
 本実施形態の製造方法は、上述の通り、高性能の固体電解質を製造するために用いていたヨウ化リチウム(LiI)等のハロゲン化リチウムの代わりに、物質Xを原料として用いることで、ハロゲン化リチウムの製造段階における水分除去を回避し、高性能な固体電解質を、製造プロセスを簡略化し、低コスト化を図りながら、供給することを可能とするものである。一方、物質Xは、不動態皮膜を局部的に破壊し、局部腐食、特に隙間腐食を進行させやすい性質を有するため、物質Xが製造装置と直接接触すると、製造装置の腐食を進行させるおそれがある。
 本実施形態の製造方法では、物質Xの溶解度が0.01質量%以上の溶媒を用いることで、原料をより円滑に反応させ、また物質Xと製造装置との直接的な接触の機会を低減させて、製造装置の腐食を抑制することがより容易に可能となる。また、物質Xが溶媒に溶解することにより硫化物系固体電解質から未反応物の物質Xを容易に除去することができ、物質Xを不純物として存在しないか、又は少ない硫化物系固体電解質を得ることができる。
 これと同様の観点から、物質Xの溶解度は0.03質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。また、上限についての制限はないが、例えば、60質量%以下、55質量%以下、10質量%以下の溶解度を例示することができる。
 ここで、物質Xの溶解度は、以下の測定方法により測定された値である。
(物質Xの溶解度の測定)
 物質X(2g)を溶媒3mLに加えて、室温(25℃)で20分撹拌した。上澄み液0.1gを秤量し、その上澄み液にチオ硫酸ナトリウム水溶液(10質量%、Na)1gを加え、1分程度振とうして溶液の着色が消えたのを確認した。上記溶液のヨウ素濃度をICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)で定量し、物質Xの溶解度を算出した。
 溶媒としては、硫黄が溶解しやすい溶媒、例えば、硫黄の溶解度が0.01質量%以上の溶媒であることが好ましい。また、溶媒の硫黄の溶解度としては、より好ましくは0.03質量%以上、更に好ましくは0.05質量%以上、特に好ましくは0.1質量%以上であり、硫黄の溶解度の上限に特に制限はないが、例えば、60質量%以下、55質量%以下、10質量%以下の溶解度を例示することができる。
 ここで、硫黄の溶解度の測定は、以下のようにして測定した値である。
(硫黄の溶解度の測定)
 硫黄10gに対して溶媒50mlを加え、オイルバスで25℃に調温し、二時間撹拌した。その後、ガラスフィルターを付けたキャヌラー(輸送管)を用いて上澄み液を分離した。分離した上澄み液を真空引きして、乾燥硫黄を得た。乾燥硫黄の質量と、該乾燥硫黄が溶解していた溶媒の質量とから、硫黄の溶解度(質量%)を算出した。
 本実施形態の製造方法は、上述の通り、高性能の固体電解質を製造するために用いていたヨウ化リチウム(LiI)、臭化リチウム(LiBr)等のハロゲン化リチウムの代わりに、物質X(例えば、ヨウ素(I)、臭素(Br))を原料として用いることで、ハロゲン化リチウムの製造段階における水分除去を回避し、高性能な固体電解質を、製造プロセスを簡略化し、低コスト化を図りながら、供給することを可能とするものである。そのため、ハロゲン化リチウムとして供給していたアルカリ金属分を、硫化アルカリ金属として供給する必要があり、結果として硫黄が副生成物として生成する場合がある。
 本実施形態の製造方法では、好ましくは硫黄の溶解度が0.01質量%以上の溶媒を用いることで、原料をより円滑に反応させ、かつ余剰硫黄分が発生した場合に除去することが可能となるので、生産効率を向上させることができる。また、硫黄が溶媒に溶解することにより、硫化物系固体電解質から未反応物の硫黄を容易に除去することができ、硫黄を不純物として存在しないか、又は少ない硫化物系固体電解質を得ることができる。
 また、溶媒としては、硫化アルカリ金属を溶解しにくい溶媒、例えば、硫化アルカリ金属の溶解度が1質量%以下の溶媒であることが好ましい。このような溶媒を用いることにより、硫化アルカリ金属の溶媒への溶解量が低減されるため、より効率的に物質X等との反応に消費することができる。硫化アルカリ金属の溶解度は、より好ましくは0.5質量%以下、更に好ましくは0.1質量%以下、より更に好ましくは0.07質量%以下である。また、硫化アルカリ金属の溶解度の下限についての制限はない。
 
 このような溶媒としては、脂肪族炭化水素溶媒、脂環族炭化水素溶媒、芳香族炭化水素溶媒等の炭化水素溶媒;炭素原子とヘテロ原子を含む溶媒、等の炭素原子を含む溶媒が好ましく挙げられる。
 脂肪族炭化水素溶媒としては、例えば、ヘキサン、ペンタン、2-エチルヘキサン、ヘプタン、オクタン、デカン、ウンデカン、ドデカン、トリデカン等が挙げられ、脂環族炭化水素溶媒としては、シクロヘキサン、メチルシクロヘキサン等が挙げられ、芳香族炭化水素溶媒としては、ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、tert-ブチルベンゼン、クロロベンゼン、トリフルオロメチルベンゼン、ニトロベンゼン等が挙げられ、また、炭素原子とヘテロ原子を含む溶媒としては、二硫化炭素、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン等が挙げられる。
 これらの中でも、炭化水素溶媒が好ましく、芳香族炭化水素溶媒がより好ましく、トルエン、キシレン、エチルベンゼンが更に好ましく、特にトルエンが好ましい。なお、溶媒として水を用いることは、固体電解質の性能を低下させるため、好ましくない。
 また、例えば物質Xとして臭素(Br)を用いる場合は、臭素(Br)と他の原料との反応を効率的に行う観点から、特に飽和の脂肪族炭化水素溶媒、飽和の脂環族炭化水素溶媒、芳香族炭化水素溶媒の中でも、電子求引基の置換したもの、例えば、tert-ブチルベンゼン、トリフルオロメチルベンゼン、ニトロベンゼン等が好ましく用いられる。
 溶媒の使用量は、溶媒1リットルに対する原料全量の使用量が0.1~1kgとなる量が好ましく、0.05~0.8kgとなる量がより好ましく、0.2~0.7kgとなる量が更に好ましい。溶媒の使用量が上記範囲内であると、スラリー状となり、原料をより円滑に反応させることができ、また、溶媒を除去する必要が生じた場合に容易に除去することができる。
[混合、撹拌、及び粉砕]
 本実施形態の硫化物系固体電解質の製造方法では、硫化アルカリ金属と物質X等の原料を反応させる際、反応速度を向上させて、効率的に硫化物系固体電解質を得るため、例えば、これらの原料を混合、撹拌、粉砕又はこれらを組み合わせた処理により行うことができる。
 混合の方法には特に制限はなく、例えば、溶媒と原料とを混合できる製造装置に、原料、必要に応じて溶媒等を投入して混合すればよい。製造装置としては、原料、溶媒等とを混合できるものであれば特に制限はなく、例えば、媒体式粉砕機を用いることができる。
 媒体式粉砕機には、容器駆動式粉砕機、媒体撹拌式粉砕機に大別される。容器駆動式粉砕機としては、撹拌槽、粉砕槽、あるいはこれらを組み合わせたボールミル、ビーズミル等が挙げられる(例えば、実施例で用いるような、図3に示される構成を有するものが挙げられる。)。また、媒体撹拌式粉砕機としては、カッターミル、ハンマーミル、ピンミル等の衝撃式粉砕機;タワーミルなどの塔型粉砕機;アトライター、アクアマイザー、サンドグラインダー等の撹拌槽型粉砕機;ビスコミル、パールミル等の流通槽型粉砕機;流通管型粉砕機;コボールミル等のアニュラー型粉砕機;連続式のダイナミック型粉砕機;一軸又は多軸混練機などの各種粉砕機が挙げられる。
 これらの粉砕機は、所望の規模等に応じて適宜選択することができ、比較的小規模であれば、ボールミル、ビーズミル等の容器駆動式粉砕機を用いることができ、また大規模、又は量産化の場合には、他の形式の粉砕機を用いることが好ましい。
 これらの粉砕機を用いる場合、原料と溶媒等、また粉砕メディアとを投入し、装置を起動させて、混合、撹拌、粉砕を行えばよい。ここで、原料、溶媒等を、粉砕メディアを投入することになるが、投入する順序に制限はない。
 本実施形態の硫化物系固体電解質の製造方法では、原料、溶媒等とを混合することにより、原料同士がより接触しやすくなり、反応がより進行し、硫化物系固体電解質が得られる。原料同士の接触を促進させ、効率よく硫化物系固体電解質を得る観点から、溶媒と原料とを混合し、更に、撹拌、粉砕、あるいは撹拌及び粉砕等の処理を行うことが好ましい。また、原料同士の接触を促進させる観点から、特に粉砕を含む処理、すなわち、粉砕、又は撹拌及び粉砕の処理を行うことが好ましい。粉砕を含む処理を行うことで、原料の表面が削られて、新たな表面が露出し、該新たな表面と他の原料の表面とが接触するため、原料同士の反応がより進行し、効率よく硫化物系固体電解質が得られる。
 例えば、ボールミル、ビーズミル等の装置を例に説明すると、これらのミルは、ボール、ビーズ等のメディアの粒径(ボールは通常φ2~20mm程度、ビーズはφ0.02~2mm程度)、材質(例えば、ステンレス、クローム鋼、タングステンカーバイド等の金属;ジルコニア、窒化ケイ素等のセラミックス;メノウ等の鉱物)、ロータの回転数、及び時間等を選定することにより、混合、撹拌、粉砕、これらを組み合わせた処理を行うことができ、また得られる硫化物系固体電解質の粒径等の調整を行うことができる。
 本実施形態において、これらの条件に特に制限はないが、例えば、ボールミル、中でも遊星型ボールミルを用い、セラミックス製、中でもジルコニア製で、粒径がφ1~10mmのボールを用い、ロータ回転数として300~1000rpmで、0.5~100時間、撹拌及び粉砕を行うことができる。
 また、混合、撹拌、粉砕の際の温度は、特に制限はないが、例えば、20~80℃としておけばよい。
 本実施形態において、原料と溶媒等とを混合した後、更に原料を加えて混合してもよく、これを2回以上繰り返してもよい。
 原料と溶媒等とを混合し、撹拌する場合は、混合及び撹拌中並びに/若しくはその後に、更に原料を加えて混合し、混合及び撹拌してもよく、これを2回以上繰り返してもよい。例えば、原料と溶媒等とをボールミル、又はビーズミルの容器に投入して、混合及び撹拌を開始し、混合及び撹拌中に更に原料を該容器に投入してもよいし、混合及び撹拌後(混合及び撹拌を一旦停止した後)に原料を該容器に投入し、混合及び撹拌を再開してもよいし、また、混合及び撹拌中、並びにその後に原料を該容器に投入してもよい。
 また、原料と溶媒等とを混合し、粉砕する場合、また撹拌及び粉砕する場合も、上記の撹拌する場合と同様に、更に原料を加えてもよい。
 このように、原料を更に加えることで、必要に応じて行う溶媒の除去等の処理の回数を少なくすることができるので、より効率的に硫化物系固体電解質を得ることができる。
 なお、更に原料を加える場合、必要に応じて溶媒も加えてもよいが、硫化物系固体電解質を得る際に溶媒を除去する場合もあるので、その添加量は必要最小限に留めておくことが好ましい。
[溶媒の除去]
 このようにして得られた固体電解質は、溶媒を含んだ状態となっている。そこで、本実施形態の固体電解質の製造方法は、更に溶媒を除去することを含むことが好ましい。また、溶媒を除去することで、副生成物である硫黄の除去も可能となる。
 溶媒の除去は、例えば、得られた溶媒を含んだ固体電解質を容器に移し、固体電解質が沈殿した後に、上澄みとなる溶媒を除去するといった方法により行うことができる。
 乾燥による溶媒の除去を行うことができ、上記の上澄みとなる溶媒を除去することと組み合わせて行うこともできる。この場合、例えば沈殿した固体電解質をホットプレート等の加熱器にのせて、50~90℃で加熱し、溶媒を揮発させて、溶媒を除去することができる。
 また、溶媒によっては、90~110℃程度の温度で、真空ポンプ等を用いて減圧乾燥を行ってもよい。例えば、溶媒としてキシレン、エチルベンゼン、クロロベンゼン等の芳香族炭化水素溶媒を用いる場合に有効である。
 本実施形態において用いられる溶媒は、物質Xの溶解度が0.01質量%以上と、物質Xを溶解させることができるものである。よって、硫化物系固体電解質から未反応物の物質Xを容易に除去することができ、物質Xを不純物として存在しないか、又は少ない硫化物系固体電解質を得ることができるという利点がある。
[非晶質の硫化物系固体電解質]
 得られた硫化物系固体電解質は、アルカリ金属元素、硫黄元素、ハロゲン元素を少なくとも含み、好ましくは、アルカリ金属元素、硫黄元素、リン元素、ハロゲン元素を含む、非晶質の硫化物系固体電解質である。本明細書において、非晶質の硫化物系固体電解質とは、X線回折測定においてX線回折パターンが実質的に材料由来のピーク以外のピークが観測されないハローパターンであるもののことであり、固体電解質の原料由来のピークの有無は問わないものであることを意味する。
 非晶質の硫化物系固体電解質は、イオン伝導性が高く、電池の高出力化を図ることができる。
 非晶質の硫化物系固体電解質としては、例えば、代表的なものとしては、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P-LiI-LiBr、LiS-P-LiO-LiI、LiS-SiS-P-LiI等が挙げられる。非晶質の硫化物系固体電解質を構成する元素の種類は、例えば、ICP発光分光分析装置により確認することができる。
 非晶質の硫化物系固体電解質の形状としては、特に制限はないが、例えば、粒子状を挙げることができる。粒子状の非晶質の硫化物系固体電解質の平均粒径(D50)は、例えば、0.01μm~500μm、0.1~200μmの範囲内を例示できる。
[加熱]
 本実施形態の固体電解質の製造方法は、更に加熱をすることを含むことができる。更に加熱することにより、非晶質固体電解質を結晶性固体電解質とすることができる。
 加熱温度は、非晶質固体電解質の構造に応じて適宜選択することができ、例えば、非晶質固体電解質を、示差熱分析装置(DTA装置)を用いて、10℃/分の昇温条件で示差熱分析(DTA)を行い、最も低温側で観測される発熱ピークのピークトップを起点に好ましくは±40℃、より好ましくは±30℃、さらに好ましくは±20℃の範囲とすればよい。
 より具体的には、加熱温度としては、150℃以上が好ましく、170℃以上がより好ましく、190℃以上が更に好ましい。一方、加熱温度の上限値は特に制限されるものではないが、300℃以下が好ましく、280℃以下がより好ましく、250℃以下が更に好ましい。
 加熱時間は、所望の結晶性固体電解質が得られる時間であれば特に制限されるものではないが、例えば、1分間以上が好ましく、10分以上がより好ましく、30分以上が更に好ましい。また、加熱時間の上限は特に制限されるものではないが、24時間以下が好ましく、10時間以下がより好ましく、5時間以下が更に好ましい。
 また、加熱は、不活性ガス雰囲気(例えば、窒素雰囲気、アルゴン雰囲気)、または減圧雰囲気(特に真空中)で行なうことが好ましい。結晶性固体電解質の劣化(例えば、酸化)を防止できるからである。加熱の方法は、特に制限されるものではないが、例えば、ホットプレート、真空加熱装置、アルゴンガス雰囲気炉、焼成炉を用いる方法等を挙げることができる。また、工業的には、加熱手段と送り機構を有する横型乾燥機、横型振動流動乾燥機等を用いることもできる。
[結晶性の硫化物系固体電解質]
 上記のように、非晶質の硫化物系固体電解質を加熱することで、結晶性の硫化物系固体電解質が得られる。結晶性の硫化物系固体電解質とは、X線回折測定においてX線回折パターンに、硫化物系固体電解質由来のピークが観測される硫化物系固体電解質であって、これらにおいての硫化物系固体電解質の原料由来のピークの有無は問わない材料である。すなわち、結晶性の硫化物系固体電解質は、硫化物系固体電解質に由来する結晶構造を含み、その一部が該硫化物系固体電解質に由来する結晶構造であっても、その全部が該硫化物系固体電解質に由来する結晶構造であってもよい、ものである。そして、結晶性の硫化物系固体電解質は、上記のようなX線回折パターンを有していれば、その一部に非晶質の硫化物系固体電解質が含まれていてもよいものである。
 結晶性固体電解質の結晶構造としては、より具体的には、LiPS結晶構造、Li結晶構造、LiPS結晶構造、2θ=20.2°近傍及び23.6°近傍にピークを有する結晶構造(例えば、特開2013-16423号公報)を例示することができる。
 ここで、2θ=20.2°近傍及び23.6°近傍にピークを有する結晶構造が好ましい。例えば、2θ=20.2°±0.3°及び23.6°±0.3°にピークを有する結晶構造である。
 結晶性の硫化物系固体電解質の形状としては、特に制限はないが、例えば、粒子状を挙げることができる。粒子状の結晶性の硫化物系固体電解質の平均粒径(D50)は、例えば、0.01μm~500μm、0.1~200μmの範囲内を例示できる。
 本実施形態の製造方法で得られる硫化物系固体電解質は、イオン伝導度が高く、優れた電池性能を有しており、電池に好適に用いられる。伝導種としてリチウム元素を採用した場合、特に好適である。本実施形態の製造方法で得られた硫化物系固体電解質は、正極層に用いてもよく、負極層に用いてもよく、電解質層に用いてもよい。なお、各層は、公知の方法により製造することができる。
 また、上記電池は、正極層、電解質層及び負極層の他に集電体を使用することが好ましく、集電体は公知のものを用いることができる。例えば、Au、Pt、Al、Ti、又は、Cu等のように、上記の硫化物系固体電解質と反応するものをAu等で被覆した層が使用できる。
[硫化物系固体電解質]
 本実施形態の硫化物系固体電解質は、アルカリ金属元素、硫黄元素及びハロゲン元素を含み、10℃/分の昇温条件の示差熱分析により測定される、380±15℃にピークトップを有する吸熱ピークの熱量H380の絶対値が、10(J/g)以上である、というものである。本発明者らは、380±15℃という特定の温度範囲に発現する吸熱ピークの熱量が大きいほど、より高いイオン伝導度が得られる傾向にあることを見出した。そして、そのような特性を有する固体電解質が、例えば、上記の本実施形態の製造方法により、より容易に得られることも見出した。
 本実施形態において、吸熱ピークの熱量は、10℃/分の昇温条件の示差熱分析(DTA)により測定される吸熱ピークの面積に対応する熱量である。以下、吸熱ピークの熱量の決定方法について、より具体的に説明する。
 図4は、本実施形態の硫化物系固体電解質の10℃/分の昇温条件の示差熱分析による300~500℃までの示差熱分析チャート(DTAチャート)を示すものである。図4の(4-1)に示されるDTAチャートは、後述する実施例2Bの硫化物系固体電解質のチャートであり、このチャートでは、T380=387℃にピークトップを有する吸熱ピーク(P380)が、「380±15℃にピークトップを有する吸熱ピーク」に該当する。本実施形態においては、この吸熱ピーク(P380)について、吸熱ピーク(P380)及びピークトップを404℃に有する吸熱ピーク(P404)の間の頂点と、吸熱ピーク(P380)の低温側のピークの開始点とを直線(以下、「直線1」と称することがある。)でむすび、該直線と、該吸熱ピーク(P380)の低温側の吸熱ピークの変曲点における接線と高温側の吸熱ピークの変曲点における接線とで囲まれた面積に対応する熱量を、380±15℃にピークトップを有する吸熱ピークの熱量H380とする。ここで、吸熱ピークの低温側の変曲点における接線、高温側の吸熱ピークの変曲点における接線は、該接線により計上されなくなる吸熱ピークの面積と、該接線により計上される吸熱ピーク外の面積との差がより小さくなるような接線を採用することとする。例えば、図4の(4-1)において、吸熱ピーク(P380)と直線1と低温側の接線とに囲まれる面積、及び吸熱ピーク(P380)と直線1と高温側の接線とに囲まれる面積の合計が、「計上されなくなる吸熱ピークの面積」に該当し、低温側の接線と高温側の接線と吸熱ピーク(P380)とに囲まれる面積の合計が、「計上される吸熱ピーク外の面積」に該当する。
 図4の(4-2)に示されるDTAチャートは、後述する実施例4Bの硫化物系固体電解質のチャートであり、このチャートでは、T380=386℃にピークトップを有する吸熱ピーク(P380)が、「380±15℃にピークトップを有する吸熱ピーク」(P380)に該当する。図4の(4-2)の場合は、ピークトップを413℃に有する吸熱ピーク(P413)が存在するが、このピークが小さいために、吸熱ピーク(P380)に隠れてしまいピーク間に谷間がないショルダーが発現している。この場合は、吸熱ピーク(P380)及びピークトップを413℃に有する吸熱ピーク(P413)の間の頂点(ショルダー部)と、該吸熱ピーク(P380)の低温側のピークの開始点とを直線でむすび、該直線と、該吸熱ピーク(P380)の低温側の吸熱ピークの変曲点における接線と高温側の吸熱ピークの変曲点における接線とで囲まれた面積に対応する熱量を、380±15℃にピークトップを有する吸熱ピークの熱量H380とすればよい。また、吸熱ピーク(P380)の低温側及び高温側に他の吸熱ピークがない場合は、吸熱ピーク(P380)の開始点と終点とを直線でむすび、該直線と、該吸熱ピーク(P380)の低温側の吸熱ピークの変曲点における接線と高温側の吸熱ピークの変曲点における接線とに囲まれた面積に対応する熱量を、380±15℃にピークトップを有する吸熱ピークの熱量H380とすればよい。
 本実施形態において、380±15℃にピークトップを有する吸熱ピークの熱量H380の絶対値は、10(J/g)以上であることを要する。熱量H380の絶対値が10(J/g)未満であると、高いリチウムイオン伝導度は得られない。より高いリチウムイオン伝導度を得る観点から、熱量H380の絶対値としては、12(J/g)以上が好ましく、15(J/g)以上がより好ましく、20(J/g)以上が更に好ましい。また、熱量H380の絶対値の上限値としては特に制限はないが、通常60(J/g)以下、55(J/g)以下、又は50(J/g)以下である。
 本実施形態において、吸熱ピークの熱量H380の絶対値の、350~450℃にピークトップを有する吸熱ピークの熱量の絶対値の合計H350-450に対する割合(H380/H350-450)は50%以上であることが好ましい。該割合(H380/H350-450)が50%以上であると、より高いリチウムイオン伝導度が得られる。これと同様の観点から、割合(H380/H350-450)は、60%以上が好ましく、70%以上がより好ましく、80%以上が更に好ましい。また、割合(H380/H350-450)の上限値は、高ければ高いほど好ましく、より高いリチウムイオン伝導度を得る観点から、100%であることが特に好ましい。
 割合(H380/H350-450)における吸熱ピークの熱量H380の絶対値は、上記方法により求められる値である。350~450℃にピークトップを有する吸熱ピークの熱量の絶対値の合計H350-450は、以下のようにして決定する。図5は、図4の(4-1)において、「380±15℃にピークトップを有する吸熱ピーク」に該当するT380=387℃にピークトップを有する吸熱ピーク(P380)以外の、350~450℃における吸熱ピークを明記したものである。
 図5には、吸熱ピーク(P380)以外の吸熱ピークとして、404℃にピークトップを有する吸熱ピーク(P404)、及び422℃にピークトップを有する吸熱ピーク(P422)の二つの吸熱ピークを有している。これらの吸熱ピークの熱量H404及びH422は、上記の吸熱ピーク(P380)の決定方法と同じである。
 図5において、割合(H380/H350-450)における、350~450℃にピークトップを有する吸熱ピークの熱量の絶対値の合計H350-450は、380±15℃にピークトップを有する吸熱ピーク(P380)の熱量H380の絶対値と、404℃にピークトップを有する吸熱ピーク(P404)の熱量H404の絶対値と、422℃にピークトップを有する吸熱ピーク(P422)の熱量H422の絶対値と、の合計となる。
 より具体的には、後述する実施例2Bより、380±15℃にピークトップを有する吸熱ピーク(P380)の熱量H380の絶対値は26.12(J/g)、404℃にピークトップを有する吸熱ピーク(P404)の熱量H404の絶対値は6.83(J/g)、422℃にピークトップを有する吸熱ピーク(P422)の熱量H422の絶対値は0.22(J/g)であり、これらの熱量の合計H350-450は33.17(J/g)となるので、割合(H380/H350-450)は、78.7%と算出される。
 本実施形態において、吸熱ピークの熱量H380の絶対値、割合(H380/H350-450)は、例えば、硫化物系固体電解質を構成するアルカリ金属元素、硫黄元素及びハロゲン元素において、ハロゲン元素の種類、リン元素等の他の元素を用いる、これらの元素の配合比、製造にあたって使用する原料、その配合割合、及び使用する溶媒等の条件により調整することができる。
 本実施形態において、アルカリ金属元素としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)等があり、分子量がより小さいアルカリ金属を用いることで、得られる硫化物系固体電解質のイオン伝導度が向上する傾向があることを考慮すると、リチウム(Li)、ナトリウム(Na)が好ましく、リチウム(Li)がより好ましい。
 これらのアルカリ金属元素は、単独で、又は複数種を組み合わせて用いることができ、イオン伝導度を向上させる観点から、複数種を組み合わせる場合は、リチウム(Li)とナトリウム(Na)との組み合わせが好ましい。なお、軽いアルカリ金属を用いることで、得られる硫化物系固体電解質のイオン伝導度が向上する傾向があることを考慮すると、リチウム(Li)を単独で用いることが特に好ましい。
 本実施形態において、ハロゲン元素は、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)等であり、中でも、塩素(Cl)、臭素(Br)、ヨウ素(I)が好ましく、臭素(Br)、ヨウ素(I)がより好ましく、これらを単独で、又は複数種を組み合わせて用いることができる。ハロゲン元素として上記のものを用いることにより、吸熱ピークの熱量H380の絶対値を10(J/g)以上にし易くなり、また割合(H380/H350-450)についても50%以上にし易くなり、より高いイオン伝導度を有する硫化物系固体電解質を得ることができる。これと同様の観点から、臭素(Br)及びヨウ素(I)を併用することが好ましい。
 また、本実施形態の硫化物系固体電解質は、より高いイオン伝導度を得る観点から、アルカリ金属元素、硫黄元素及びハロゲン元素に加えて、更にリン元素を含むことが好ましい。
 本実施形態において、アルカリ金属元素、硫黄元素、リン元素及びハロゲン元素を含む場合、これらの元素の配合比(モル比)は、1.0~1.8:1.0~2.0:0.1~0.8:0.01~0.6が好ましく、1.1~1.7:1.2~1.8:0.2~0.6:0.05~0.5がより好ましく、1.2~1.6:1.3~1.7:0.25~0.5:0.08~0.4が更に好ましい。また、ハロゲン元素として、臭素及びヨウ素を併用する場合、アルカリ金属元素、硫黄元素、リン元素、臭素、及びヨウ素の配合比(モル比)は、1.0~1.8:1.0~2.0:0.1~0.8:0.01~0.3:0.01~0.3が好ましく、1.1~1.7:1.2~1.8:0.2~0.6:0.05~0.25:0.05~0.25がより好ましく、1.2~1.6:1.3~1.7:0.25~0.5:0.07~0.2:0.07~0.2がより好ましく、1.35~1.45:1.4~1.7:0.3~0.45:0.08~0.18:0.08~0.18が更に好ましい。リチウム元素、硫黄元素、リン元素及びハロゲン元素の配合比(モル比)を上記範囲内とすることにより、吸熱ピークの熱量H380の絶対値を10(J/g)以上にし易くなり、また割合(H380/H350-450)についても50%以上にし易くなり、より高いリチウムイオン伝導度を有する固体電解質を得ることができる。
 本実施形態の硫化物系固体電解質は、アルカリ金属元素、リン元素及びハロゲン元素、好ましくは更に硫黄元素を含み、かつ10℃/分の昇温条件の示差熱分析による特定の吸熱ピークを有するものであれば、非晶質であってもよいし、結晶性のものであってもよい。
 非晶質の硫化物系固体電解質は、イオン伝導性が高く、電池の高出力化を図ることができる。
 本実施形態の非晶質の硫化物系固体電解質は、アルカリ金属元素、硫黄元素、リン元素及びハロゲン元素を含んでおり、代表的なものとしては、例えば、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P-LiI-LiBr等の、硫化リチウムと硫化リンとアルカリ金属のハロゲン化物とから構成される硫化物系固体電解質;更に酸素元素、珪素元素等の他の元素を含む、例えば、LiS-P-LiO-LiI、LiS-SiS-P-LiI等の硫化物系固体電解質が好ましく挙げられる。より高いイオン伝導度を得る観点から、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P-LiI-LiBr等の、硫化リチウムと硫化リンとアルカリ金属のハロゲン化物とから構成される硫化物系固体電解質が好ましい。
 非晶質の硫化物系固体電解質を構成する元素の種類は、例えば、ICP発光分光分析装置により確認することができる。
 本実施形態の硫化物系固体電解質が、少なくともLiS-Pを有するものである場合、LiSとPとのモル比は、より高いイオン伝導度を得る観点から、65~85:15~35が好ましく、70~80:20~30がより好ましく、72~78:22~28が更に好ましい。
 本実施形態の硫化物系固体電解質が、例えば、LiS-P-LiI-LiBrである場合、硫化リチウム(LiS)及び五硫化二リン(P)の含有量の合計は、60~100モル%が好ましく、65~90モル%がより好ましく、70~85モル%が更に好ましい。また、臭化リチウム(LiBr)とヨウ化リチウム(LiI)との合計に対する臭化リチウム(LiBr)の割合は、1~99モル%が好ましく、20~90モル%がより好ましく、40~80モル%が更に好ましく、50~70モル%が特に好ましい。
 また、非晶質の硫化物系固体電解質の形状としては、特に制限はないが、例えば、粒子状を挙げることができる。粒子状の非晶質の硫化物系固体電解質の平均粒径(D50)は、例えば、0.01μm~500μm、0.1~200μmの範囲内を例示できる。
 結晶性硫化物系固体電解質の結晶構造としては、より具体的には、LiPS結晶構造、Li結晶構造、LiPS結晶構造、Li11結晶構造、2θ=20.2°近傍及び23.6°近傍にピークを有する結晶構造(例えば、特開2013-16423号公報)等が挙げられる。
 また、Li4-xGe1-x系チオリシコンリージョンII(thio-LISICON Region II)型結晶構造(Kannoら、Journal of The Electrochemical Society,148(7)A742-746(2001)参照)、Li4-xGe1-x系チオリシコンリージョンII(thio-LISICON Region II)型と類似の結晶構造(Solid State Ionics,177(2006),2721-2725参照)等も挙げられる。
 CuKα線を用いたX線回折測定において、LiPS結晶構造の回折ピークは、例えば2θ=17.5°、18.3°、26.1°、27.3°、30.0°付近に現れ、Li結晶構造の回折ピークは、例えば2θ=16.9°、27.1°、32.5°付近に現れ、LiPS結晶構造の回折ピークは、例えば2θ=15.3°、25.2°、29.6°、31.0°付近に現れ、Li11結晶構造の回折ピークは、例えば2θ=17.8°、18.5°、19.7°、21.8°、23.7°、25.9°、29.6°、30.0°付近に現れ、Li4-xGe1-x系チオリシコンリージョンII(thio-LISICON Region II)型結晶構造の回折ピークは、例えば2θ=20.1°、23.9°、29.5°付近に現れ、Li4-xGe1-x系チオリシコンリージョンII(thio-LISICON Region II)型と類似の結晶構造の回折ピークは、例えば2θ=20.2、23.6°付近に現れる。なお、これらのピーク位置については、±0.5°の範囲内で前後していてもよい。
 また、結晶性の硫化物系固体電解質の結晶構造としては、アルジロダイト型結晶構造も挙げられる。アルジロダイト型結晶構造としては、例えば、LiPS結晶構造;LiPSの構造骨格を有し、Pの一部をSiで置換してなる組成式Li7-x1-ySi及びLi7+x1-ySi(xは-0.6~0.6、yは0.1~0.6)で示される結晶構造;Li7-x-2yPS6-x-yCl(0.8≦x≦1.7、0<y≦-0.25x+0.5)で示される結晶構造;Li7-xPS6-xHa(HaはClもしくはBr、xが好ましくは0.2~1.8)で示される結晶構造、が挙げられる。
 上記のLiPSの構造骨格を有し、Pの一部をSiで置換してなる組成式Li7-x1-ySi及びLi7+x1-ySi(xは-0.6~0.6、yは0.1~0.6)で示される結晶構造は、立方晶又は斜方晶、好ましくは立方晶で、CuKα線を用いたX線回折測定において、主に2θ=15.5°、18.0°、25.0°、30.0°、31.4°、45.3°、47.0°、及び52.0°の位置に現れるピークを有する。上記の組成式Li7-x-2yPS6-x-yCl(0.8≦x≦1.7、0<y≦-0.25x+0.5)で示される結晶構造は、好ましくは立方晶で、CuKα線を用いたX線回折測定において、主に2θ=15.5°、18.0°、25.0°、30.0°、31.4°、45.3°、47.0°、及び52.0°の位置に現れるピークを有する。また、上記の組成式Li7-xPS6-xHa(HaはClもしくはBr、xが好ましくは0.2~1.8)で示される結晶構造は、好ましくは立方晶で、CuKα線を用いたX線回折測定において、主に2θ=15.5°、18.0°、25.0°、30.0°、31.4°、45.3°、47.0°、及び52.0°の位置に現れるピークを有する。
 なお、これらのピーク位置については、±0.5°の範囲内で前後していてもよい。
 結晶性の硫化物系固体電解質の形状としては、特に制限はないが、例えば、粒子状を挙げることができる。粒子状の結晶性の硫化物系固体電解質の平均粒径(D50)は、例えば、0.01μm~500μm、0.1~200μmの範囲内を例示できる。
[製造方法]
 本実施形態の硫化物系固体電解質は、得られる固体電解質が、リチウム元素、硫黄元素、リン元素及びハロゲン元素を含み、かつ10℃/分の昇温条件の示差熱分析による特定の吸熱ピークを有するものであれば、特に制限はなく、公知の方法等により製造することができるが、特定の吸熱ピークが得られやすく、より高いイオン伝導度を得ることを考慮すると、上記の本実施形態の硫化物固体電解質の製造方法、すなわち、溶媒中で硫化アルカリ金属と式(1)に示す物質とを反応させる、又は、溶媒中で硫化アルカリ金属と式(1)に示す物質とリン化合物とを反応させる硫化物系固体電解質の製造方法により製造することが好ましい。
     X…(1)
(一般式(1)中、Xは、ハロゲン元素である。)
 本実施形態の硫化物系固体電解質を製造する場合、吸熱ピークの熱量H380の絶対値、割合(H380/H350-450)は、上記のように、使用する原料、その配合割合、及び使用する溶媒等の条件により調整することができる。
 使用する原料及びその配合割合は、上記の本実施形態の硫化物系固体電解質の製造方法で説明した原料、配合割合と同じである。
 使用する溶媒としては、上記の本実施形態の硫化物系固体電解質の製造方法で説明した溶媒を用いることができ、特定の吸熱ピークが得られやすく、より高いイオン伝導度を得ることを考慮すると、芳香族炭化水素溶媒、電子求引基を有する溶媒が好ましい。これと同様の観点から、芳香族炭化水素溶媒としては、トルエン、キシレン、エチルベンゼン、クロロベンゼンが好ましく、トルエン、クロロベンゼンがより好ましく、クロロベンゼンが更に特に好ましい。また、電子求引基を有する溶媒は、物質Xとして臭素(Br)を用いる場合に、臭素(Br)と他の原料との反応を効率的に行うことができることからも、好ましい。電子求引基を有する溶媒としては、クロロベンゼン、tert-ブチルベンゼン、トリフルオロメチルベンゼン、ニトロベンゼン等が好ましく挙げられ、中でもクロロベンゼンが好ましい。
 本実施形態の硫化物系固体電解質は、イオン伝導度が高く、優れた電池性能を有しており、電池に好適に用いられる。伝導種としてリチウム元素を採用した場合、特に好適である。本実施形態の硫化物系固体電解質は、正極層に用いてもよく、負極層に用いてもよく、電解質層に用いてもよい。なお、各層は、公知の方法により製造することができる。
 また、上記電池は、正極層、電解質層及び負極層の他に集電体を使用することが好ましく、集電体は公知のものを用いることができる。例えば、Au、Pt、Al、Ti、又は、Cu等のように、上記の硫化物系固体電解質と反応するものをAu等で被覆した層が使用できる。
 次に実施例により、本発明を具体的に説明するが、本発明は、これらの例によってなんら制限されるものではない。
(実施例1A)
 遊星型ボールミル機(商品名:クラシックラインP-7、フリッチュ社製)を設置した。硫化リチウム0.598g、五硫化二リン0.867g、臭化リチウム0.271g、及びヨウ素0.264gを秤量し、遊星型ボールミル機用の容器(45cc、ジルコニア製)に投入し、更に脱水トルエン(水分量:10ppm以下)4gを投入し、容器を完全に密閉した。この容器を、上記の遊星型ボールミル機に取り付けで、台盤回転数500rpmで、40時間、混合、撹拌、粉砕を同時に行い、硫化物系固体電解質を作製した。
 得られた、非晶質の硫化物系固体電解質と溶媒とを含むスラリー状の生成物に、グローブボックス内で脱水トルエン5ml加えて、金属製バットに回収し、粉末(固体電解質)が沈殿した後、上澄みの溶媒を除去した。次いで、沈殿した粉末を、ホットプレートにのせて、80℃で乾燥させて、粉末状の非晶質の硫化物系固体電解質を得た。得られた粉末状の非晶質の硫化物系固体電解質について、X線回折(XRD)装置(SmartLab装置、(株)リガク製)を用いて粉末X線解析(XRD)測定を行った。原料由来のピーク以外ピークがないことがわかった。X線解析スペクトルを図1に示す。
 得られた粉末状の非晶質の硫化物系固体電解質を、グローブボックス内に設置したホットプレートを用いて、203℃で3時間加熱した。
 加熱後の粉末について、X線回折(XRD)装置(SmartLab装置、(株)リガク製)を用いて粉末X線解析(XRD)測定を行った。X線解析スペクトルを図2に示す。図2に示されるように、2θ=19.9°、23.6°に結晶化ピークが検出され、結晶性の硫化物系固体電解質が得られたことが確認された。
(物質Xの溶解度の測定)
 ヨウ素(2g)を溶媒3mLに加えて、室温(25℃)で20分撹拌した。固体ヨウ素が残存していることを目視で確認した。上澄み液0.1gを秤量し、その上澄み液にチオ硫酸ナトリウム水溶液(10質量%、Na)1gを加え、1分程度振とうして溶液の着色が消えたのを確認した。上記溶液のヨウ素濃度をICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)で定量し、ヨウ素の溶解度を算出したところ、15.0質量%であることが確認された。
(イオン伝導度の測定)
 得られた結晶性の硫化物物系固体電解質から、直径10mm(断面積S:0.785cm)、高さ(L)0.1~0.3cmの円形ペレットを成形して試料とした。その試料の上下から電極端子を取り、25℃において交流インピーダンス法により測定し(周波数範囲:5MHz~0.5Hz、振幅:10mV)、Cole-Coleプロットを得た。高周波側領域に観測される円弧の右端付近で、-Z’’(Ω)が最小となる点での実数部Z’(Ω)を電解質のバルク抵抗R(Ω)とし、以下式に従い、イオン伝導度σ(S/cm)を計算した。
     R=ρ(L/S)
     σ=1/ρ
 測定の結果、結晶性の硫化物系固体電解質のイオン伝導度は、4.84×10-3(S/cm)であり、高いイオン伝導度を有していることが確認された。実施例1Aの条件及びイオン伝導度を表1に示す。
(実施例2A)
 図3に示される装置を用いて硫化物系固体電解質を製造した。図3に示される装置について説明する。図3に示される装置は、原料を混合、撹拌、粉砕又はこれらを組み合わせた処理により反応させるビーズミル10と反応槽20とを備える。反応槽20は容器22と撹拌翼24を備え、撹拌翼24はモータ(M)により駆動される。
 ビーズミル10には、ミル10の周りに温水(HW)を通すことのできるヒータ30が設けられており、該温水(HW)はヒーター30で熱を供給し、ヒーター30の出口から排出された温水(RHW)は加熱した後、ヒーター30に温水(HW)として外部循環される。反応槽20は、オイルバス40に入っている。オイルバス40は容器22内の原料と溶媒を所定温度に加熱する。反応槽20には気化した溶媒を冷却して液化する冷却管26が設けられており、冷却水(CW)は冷却管26で溶媒を冷却し、冷却管26の出口から排出された冷却水(RCW)は冷却した後、冷却管26に冷却水(CW)として外部循環される。
 ビーズミル10と反応槽20とは、第1の連結管50と第2の連結管52とで連結されている。第1の連結管50は、ビーズミル10内の原料と溶媒を反応槽20に移動させ、第2の連結部52は、反応槽20内の原料及び溶媒をビーズミル10内に移動させる。原料等を連結管50,52を通して循環させるために、ポンプ54(例えば、ダイアフラムポンプ)が、第2の連結管52に設けられている。また、反応槽20及びポンプ54の吐出には温度計(Th)が設けられており、常時温度管理を行うことができるようになっている。
 本実施例においては、ビーズミルとして「ビーズミルLMZ015」(アシザワ・ファインテック(株)製)を用い、直径0.5mmのジルコニアボール485gを仕込んだ。また、反応槽として、撹拌機付き2.0リットルガラス製反応器を使用した。
 硫化リチウム34.77g、及び五硫化二リン45.87gを反応槽20投入し、更に脱水トルエン1000mlを追加してスラリーとした。反応槽20に投入したスラリーを、ポンプ54を用いて600ml/分の流量で循環させ、周速10m/sでビーズミル10の運転を開始した後、200mlの脱水トルエンに溶解させたヨウ素(和光純薬 特級)13.97g、臭素(和光純薬 特級)13.19gを反応槽20に投入した。
 ヨウ素及び臭素の投入終了後、ビーズミル10の周速を12m/sとし、外部循環により温水(HW)を通水し、ポンプ54の吐出の温度が70℃に保持されるように反応させた。得られたスラリーの上澄み液を除去した後、ホットプレートにのせて、80℃で乾燥させて、粉末状の非晶質の硫化物系固体電解質を得た。得られた硫化物系固体電解質について、実施例1Aと同様にして粉末X線解析(XRD)測定を行ったところ、原料由来のピーク以外ピークがないことがわかった。
 得られた粉末状の非晶質の硫化物系固体電解質を、グローブボックス内に設置したホットプレートを用いて、195℃で3時間加熱し、結晶性の硫化物系固体電解質を得た。粉末X線解析(XRD)測定を行ったところ、実施例1と同様に、2θ=19.9°、23.6°に結晶化ピークが検出され、結晶性の硫化物系固体電解質が得られたことが確認された。得られた結晶性の硫化物系固体電解質について、上記(イオン伝導度の測定)に従い、イオン伝導度を測定したところ、5.55×10-3(S/cm)であり、高いイオン伝導度を有していることが確認された。実施例2Aの条件及びイオン伝導度を表1に示す。
(実施例3A)
 実施例2Aにおいて、硫化リチウム35.64g、五硫化二リン49.25gとし、ヨウ素14.06g、臭素8.85gとした以外は、実施例2Aと同様にして非晶質の硫化物系固体電解質を得た。得られた硫化物系固体電解質について、実施例1Aと同様にして粉末X線解析(XRD)測定を行ったところ、原料由来のピーク以外ピークがないことがわかった。
 得られた非晶質の硫化物系固体電解質を、203℃で3時間加熱して、結晶性の硫化物系固体電解質を得た。粉末X線解析(XRD)測定を行ったところ、実施例1と同様に、2θ=19.9°、23.6°に結晶化ピークが検出され、結晶性の硫化物系固体電解質が得られたことが確認された。得られた結晶性の硫化物系固体電解質のイオン伝導度を測定したところ、5.01×10-3(S/cm)であり、高いイオン伝導度を有していることが確認された。実施例3Aの条件及びイオン伝導度を表1に示す。
(実施例4A)
 実施例1Aにおいて、硫化リチウム0.645g、五硫化二リン0.851g、臭素0.245g、及びヨウ素0.259gとし、溶媒を脱水トルエンから脱水エチルベンゼン(水分量:10ppm以下)にかえ、実施例1Aと同様にして硫化物系固体電解質を得た。得られた硫化物系固体電解質と溶媒を含むスラリー状の生成物に、脱水トルエン20mlを加えて、50mlシュレンク瓶に回収し、粉末が沈殿した後、上澄みの溶媒を除去した。これをさらに2回繰り返した後、オイルバスで100℃に加温しながら、真空ポンプを用いて減圧乾燥を行い、非晶質の硫化物系固体電解質を得た。得られた硫化物系固体電解質について、実施例1Aと同様にして粉末X線解析(XRD)測定を行ったところ、原料由来のピーク以外ピークがないことがわかった。
 得られた非晶質の硫化物系固体電解質を、180℃で3時間加熱して、結晶性の硫化物系固体電解質を得た。粉末X線解析(XRD)測定を行ったところ、実施例1と同様に、2θ=19.9°、23.6°に結晶化ピークが検出され、結晶性の硫化物系固体電解質が得られたことが確認された。得られた結晶性の硫化物系固体電解質のイオン伝導度を測定したところ、5.27×10-3(S/cm)であり、高いイオン伝導度を有していることが確認された。実施例4Aの条件及びイオン伝導度を表1に示す。
(実施例5A)
 実施例4Aにおいて、溶媒を脱水エチルベンゼンから脱水キシレン(水分量:10ppm以下)とした以外は、実施例4Aと同様にして非晶質の硫化物系固体電解質を得た。得られた硫化物系固体電解質について、実施例1Aと同様にして粉末X線解析(XRD)測定を行ったところ、原料由来のピーク以外ピークがないことがわかった。
 得られた非晶質の硫化物系固体電解質を、188℃で3時間加熱して、結晶性の硫化物系固体電解質を得た。粉末X線解析(XRD)測定を行ったところ、実施例1と同様に、2θ=19.9°、23.6°に結晶化ピークが検出され、結晶性の硫化物系固体電解質が得られたことが確認された。得られた結晶性の硫化物系固体電解質のイオン伝導度を測定したところ、5.29×10-3(S/cm)であり、高いイオン伝導度を有していることが確認された。実施例5Aの条件及びイオン伝導度を表1に示す。
(比較例1A)
 実施例2Aにおいて、硫化リチウム29.66g、五硫化二リン47.83gとし、200mlのトルエンに溶解させたヨウ素(和光純薬 特級)13.97g、臭素(和光純薬 特級)13.19gのかわりに、臭化リチウム14.95g、ヨウ化リチウム15.36g、及び脱水トルエン1200mlを反応槽20に投入した以外は、実施例2Aと同様にして、非晶質の硫化物系固体電解質を得た。得られた硫化物系固体電解質について、実施例1Aと同様にして粉末X線解析(XRD)測定を行ったところ、原料由来のピーク以外ピークがなく、非晶質の硫化物系固体電解質であることが確認された。
 得られた非晶質の硫化物系固体電解質を、203℃で3時間加熱して、結晶性の硫化物系固体電解質を得た。粉末X線解析(XRD)測定を行ったところ、実施例1と同様に、2θ=19.9°、23.6°に結晶化ピークが検出され、結晶性の硫化物系固体電解質が得られたことが確認された。得られた結晶性の硫化物系固体電解質のイオン伝導度を測定したところ、4.76×10-3(S/cm)となり、実施例1A~5Aの結晶性の硫化物系固体電解質ほどのイオン伝導度を有さないものであることが確認された。比較例1Aの条件及びイオン伝導度を表1に示す。
(比較例2A)
 実施例2Aにおいて、硫化リチウム31.58g、五硫化二リン50.93gとし、200mlのトルエンに溶解させたヨウ素(和光純薬 特級)13.97g、臭素(和光純薬 特級)13.19gのかわりに、臭化リチウム9.95g、ヨウ化リチウム15.33g、及び脱水トルエン1200mlを反応槽20に投入した以外は、実施例2Aと同様にして、非晶質の硫化物系固体電解質を得た。得られた硫化物系固体電解質について、実施例1Aと同様にして粉末X線解析(XRD)測定を行ったところ、原料由来のピーク以外ピークがなく、非晶質の硫化物系固体電解質であることが確認された。
 得られた非晶質の硫化物系固体電解質を、203℃で3時間加熱して、結晶性の硫化物系固体電解質を得た。粉末X線解析(XRD)測定を行ったところ、実施例1と同様に、2θ=19.9°、23.6°に結晶化ピークが検出され、結晶性の硫化物系固体電解質が得られたことが確認された。得られた結晶性の硫化物系固体電解質のイオン伝導度を測定したところ、4.36×10-3(S/cm)となり、実施例1A~5Aの結晶性の硫化物系固体電解質ほどのイオン伝導度を有さないものであることが確認された。比較例2Aの条件及びイオン伝導度を表1に示す。
Figure JPOXMLDOC01-appb-T000001

*1,硫化リチウムと五硫化二リンとハロゲン化合物1とハロゲン化合物2との原料の配合比(モル比)である。
*2,物質Xのモル数と同モル数の硫化リチウム(LiS)を除いた硫化リチウム(LiS)及び五硫化二リン(P)の合計モル数に対する、物質Xのモル数と同モル数の硫化リチウム(LiS)とを除いた硫化リチウム(LiS)のモル数の割合である。
*3,硫化アルカリ金属、リン化合物、及び物質Xの合計量に対する物質Xの含有量(モル%)である。
 実施例1A~5Aにより、本実施形態の固体電解質の製造方法によれば、イオン伝導度が高い、電池性能に優れる硫化物系固体電解質を、容易に得られることが確認された。より具体的には、実施例2Aと比較例1Aとの対比、実施例3Aと比較例2Aとの対比から、同じ元素を用いた場合であっても、本実施形態の製造方法により得られた硫化物系固体電解質は、より高いイオン伝導度を有することも確認された。
(実施例1B)
 実施例1Aにおいて,硫化リチウム0.661g、五硫化二リン0.914g、臭化リチウムを臭素0.164g、ヨウ素0.261gとした以外は、実施例1Aと同様にして非晶質の硫化物系固体電解質(80(0.75LiS/0.25P)/10LiBr/10LiI、Li:S:P:Br:I(モル比)=1.400:1.600:0.400:0.100:0.100)を得た。得られた硫化物系固体電解質について、実施例1Aと同様にして粉末X線解析(XRD)測定を行ったところ、原料由来のピーク以外ピークがないことがわかった。また、ICP発光分光分析装置により組成を分析したところ、Li:S:P:Br:I(モル比)=1.391:1.603:0.404:0.100:0.105であった。
 得られた粉末状の非晶質の硫化物系固体電解質を、グローブボックス内に設置したホットプレートを用いて、203℃で3時間加熱し、結晶性の硫化物系固体電解質を得た。粉末X線解析(XRD)測定を行ったところ、実施例1Aと同様に、2θ=19.9°、23.6°に結晶化ピークが検出され、結晶性の硫化物系固体電解質が得られたことが確認された。得られた結晶性の硫化物系固体電解質について、上記(イオン伝導度の測定)に従い、イオン伝導度を測定したところ、5.20×10-3(S/cm)であり、高いイオン伝導度を有していることが確認された。
 得られた非晶質の硫化物系固体電解質を、示差熱分析装置(DTA装置)(熱重量測定装置「TGA/DSC1(型番)」、STARソフトウェア、いずれもMETTLER TOLEDO(株)製)を用いて、窒素ガス雰囲気下で、室温から500℃まで、10℃/分の昇温条件で示差熱分析(DTA)を行った。その示差熱分析チャート(DTAチャート)を図6に示す。図6によれば、384℃において380±15℃にピークトップを有する吸熱ピーク(P380)、406℃にピークトップを有する吸熱ピーク(P406)、427℃にピークトップを有する吸熱ピーク(P427)、及び441℃にピークトップを有する吸熱ピーク(P441)が存在し、各吸熱ピークの熱量の絶対値は、H380が15.18(J/g)、H406が5.72(J/g)、H427が0.63(J/g)、H441が1.37(J/g)であり、割合(H380/H350-450)は66.3%であった。実施例1Bの条件、吸熱ピークの熱量、イオン伝導度等を表2に示す。
(実施例2B)
 実施例1Bにおいて、硫化リチウム0.645g、五硫化二リン0.851g、臭素0.245g、ヨウ素0.259gとした以外は、実施例1Bと同様にして非晶質の硫化物系固体電解質(75(0.75LiS/0.25P)/15LiBr/10LiI、Li:S:P:Br:I(モル比)=1.375:1.500:0.375:0.150:0.100)を得た。得られた硫化物系固体電解質について、実施例1Aと同様にして粉末X線解析(XRD)測定を行ったところ、原料由来のピーク以外ピークがないことがわかった。また、ICP発光分光分析装置により組成を分析したところ、Li:S:P:Br:I(モル比)=1.358:1.503:0.382:0.157:0.105であった。
 得られた粉末状の非晶質の硫化物系固体電解質を、グローブボックス内に設置したホットプレートを用いて、188℃で3時間加熱し、結晶性の硫化物系固体電解質を得た。粉末X線解析(XRD)測定を行ったところ、実施例1Aと同様に、2θ=19.9°、23.6°に結晶化ピークが検出され、結晶性の硫化物系固体電解質が得られたことが確認された。得られた結晶性の硫化物系固体電解質について、上記(イオン伝導度の測定)に従い、イオン伝導度を測定したところ、5.41×10-3(S/cm)であり、高いイオン伝導度を有していることが確認された。
 得られた非晶質の硫化物系固体電解質を、実施例1Bと同様に、窒素ガス雰囲気下で、室温から500℃まで、10℃/分の昇温条件で示差熱分析(DTA)を行った。その示差熱分析チャート(DTAチャート)を図5に示す。図5によれば、387℃において380±15℃にピークトップを有する吸熱ピーク(P380)、404℃にピークトップを有する吸熱ピーク(P406)、及び422℃にピークトップを有する吸熱ピーク(P422)が存在し、各吸熱ピークの熱量の絶対値は、H380が26.12(J/g)、H404が6.83(J/g)、H422が0.22(J/g)であり、割合(H380/H350-450)は78.7%であった。実施例2Bの条件、吸熱ピークの熱量、イオン伝導度等を表2に示す。
(実施例3B)
 実施例1Bにおいて、溶媒を脱水トルエンから脱水クロロベンゼン(水分量:10ppm以下)とした以外は、実施例1Bと同様にして、硫化物系固体電解質を得た。得られた硫化物系固体電解質と溶媒を含むスラリー状の生成物に、脱水クロロベンゼン20mlを加えて、50mlシュレンク瓶に回収し、粉末が沈殿した後、上澄みの溶媒を除去した。その後、オイルバスで100℃に加温しながら、真空ポンプを用いて減圧乾燥を行い、非晶質の硫化物系固体電解質(80(0.75LiS/0.25P)/10LiBr/10LiI、Li:S:P:Br:I(モル比)=1.400:1.600:0.400:0.100:0.100)を得た。得られた硫化物系固体電解質について、実施例1Aと同様にして粉末X線解析(XRD)測定を行ったところ、原料由来のピーク以外ピークがないことがわかった。また、ICP発光分光分析装置により組成を分析したところ、Li:S:P:Br:I(モル比)=1.390:1.590:0.400:0.109:0.101であった。
 得られた粉末状の非晶質の硫化物系固体電解質を、グローブボックス内に設置したホットプレートを用いて、188℃で3時間加熱し、結晶性の硫化物系固体電解質を得た。粉末X線解析(XRD)測定を行ったところ、実施例1と同様に、2θ=19.9°、23.6°に結晶化ピークが検出され、結晶性の硫化物系固体電解質が得られたことが確認された。得られた結晶性の硫化物系固体電解質について、上記(イオン伝導度の測定)に従い、イオン伝導度を測定したところ、5.74×10-3(S/cm)であり、高いイオン伝導度を有していることが確認された。
 得られた非晶質の硫化物系固体電解質を、実施例1Bと同様に、窒素ガス雰囲気下で、室温から500℃まで、10℃/分の昇温条件で示差熱分析(DTA)を行った。その示差熱分析チャート(DTAチャート)を図7に示す。図7によれば、378℃において380±15℃にピークトップを有する吸熱ピーク(P380)、及び431℃にピークトップを有する吸熱ピーク(P431)が存在し、各吸熱ピークの熱量の絶対値は、H380が34.03(J/g)、H431が4.82(J/g)であり、割合(H380/H350-450)は87.6%であった。実施例3Bの条件、吸熱ピークの熱量、イオン伝導度等を表2に示す。
(実施例4B)
 実施例3Bにおいて、硫化リチウム0.645g、五硫化二リン0.851g、臭素0.245g、ヨウ素0.259gとした以外は、実施例3Bと同様にして、非晶質の硫化物系固体電解質(75(0.75LiS/0.25P)/15LiBr/10LiI、Li:S:P:Br:I(モル比)=1.375:1.500:0.375:0.150:0.100)を得た。得られた硫化物系固体電解質について、実施例1Aと同様にして粉末X線解析(XRD)測定を行ったところ、原料由来のピーク以外ピークがないことがわかった。また、ICP発光分光分析装置により組成を分析したところ、Li:S:P:Br:I(モル比)=1.358:1.480:0.374:0.166:0.102であった。
 得られた粉末状の非晶質の硫化物系固体電解質を、グローブボックス内に設置したホットプレートを用いて、188℃で3時間加熱し、結晶性の硫化物系固体電解質を得た。粉末X線解析(XRD)測定を行ったところ、実施例1と同様に、2θ=19.9°、23.6°に結晶化ピークが検出され、結晶性の硫化物系固体電解質が得られたことが確認された。得られた結晶性の硫化物系固体電解質について、上記(イオン伝導度の測定)に従い、イオン伝導度を測定したところ、6.09×10-3(S/cm)であり、高いイオン伝導度を有していることが確認された。
 得られた非晶質の硫化物系固体電解質を、実施例1Bと同様に、窒素ガス雰囲気下で、室温から500℃まで、10℃/分の昇温条件で示差熱分析(DTA)を行った。その示差熱分析チャート(DTAチャート)を図8に示す。図8によれば、386℃において380±15℃にピークトップを有する吸熱ピーク(P380)、及び413℃にピークトップを有する吸熱ピーク(P413)が存在し、各吸熱ピークの熱量の絶対値は、H380が48.35(J/g)、H413が0.13(J/g)であり、割合(H380/H350-450)は99.7%であった。実施例4Bの条件、吸熱ピークの熱量、イオン伝導度等を表2に示す。
(実施例5B)
 実施例2Aと同様にして、非晶質の硫化物系固体電解質(75(0.75LiS/0.25P)/15LiBr/10LiI、Li:S:P:Br:I(モル比)=1.375:1.500:0.375:0.150:0.100)を得た。得られた硫化物系固体電解質について、実施例1Aと同様にして粉末X線解析(XRD)測定を行ったところ、原料由来のピーク以外ピークがないことがわかった。また、ICP発光分光分析装置により組成を分析したところ、Li:S:P:Br:I(モル比)=1.364:1.499:0.378:0.153:0.103であった。
 得られた粉末状の非晶質の硫化物系固体電解質を、グローブボックス内に設置したホットプレートを用いて、195℃で3時間加熱し、結晶性の硫化物系固体電解質を得た。粉末X線解析(XRD)測定を行ったところ、実施例1と同様に、2θ=19.9°、23.6°に結晶化ピークが検出され、結晶性の硫化物系固体電解質が得られたことが確認された。得られた結晶性の硫化物系固体電解質について、上記(イオン伝導度の測定)に従い、イオン伝導度を測定したところ、5.55×10-3(S/cm)であり、高いイオン伝導度を有していることが確認された。
 得られた非晶質の硫化物系固体電解質を、実施例1Bと同様に、窒素ガス雰囲気下で、室温から500℃まで、10℃/分の昇温条件で示差熱分析(DTA)を行った。その示差熱分析チャート(DTAチャート)を図9に示す。図9によれば、386℃において380±15℃にピークトップを有する吸熱ピーク(P380)、404℃にピークトップを有する吸熱ピーク(P404)、及び434℃にピークトップを有する吸熱ピーク(P434)が存在し、各吸熱ピークの熱量の絶対値は、H380が33.72(J/g)、H404が5.42(J/g)、及びH434が0.60(J/g)であり、割合(H380/H350-450)は84.9%であった。実施例5Bの条件、吸熱ピークの熱量、イオン伝導度等を表2に示す。
(実施例6B)
 実施例5Bにおいて、溶媒を脱水トルエンから脱水クロロベンゼン(水分量:10ppm以下)とした以外は、実施例5Bと同様にして、硫化物系固体電解質を得た。得られた硫化物系固体電解質と溶媒を含むスラリー状の生成物50mlを、100mlシュレンク瓶に回収し、粉末が沈殿した後、上澄みの溶媒を除去した。その後、オイルバスで100℃に加温しながら、真空ポンプを用いて減圧乾燥を行い、非晶質の硫化物系固体電解質(75(0.75LiS/0.25P)/15LiBr/10LiI、Li:S:P:Br:I(モル比)=1.375:1.500:0.375:0.150:0.100)を得た。得られた硫化物系固体電解質について、実施例1Aと同様にして粉末X線解析(XRD)測定を行ったところ、原料由来のピーク以外ピークがないことがわかった。
 得られた粉末状の非晶質の硫化物系固体電解質を、グローブボックス内に設置したホットプレートを用いて、195℃で3時間加熱し、結晶性の硫化物系固体電解質を得た。粉末X線解析(XRD)測定を行ったところ、実施例1と同様に、2θ=19.9°、23.6°に結晶化ピークが検出され、結晶性の硫化物系固体電解質が得られたことが確認された。得られた結晶性の硫化物系固体電解質について、上記(イオン伝導度の測定)に従い、イオン伝導度を測定したところ、5.57×10-3(S/cm)であり、高いイオン伝導度を有していることが確認された。
 得られた非晶質の硫化物系固体電解質を、実施例1Bと同様に、窒素ガス雰囲気下で、室温から500℃まで、10℃/分の昇温条件で示差熱分析(DTA)を行った。その示差熱分析チャート(DTAチャート)を図10に示す。図10によれば、385℃において380±15℃にピークトップを有する吸熱ピーク(P380)、400℃にピークトップを有する吸熱ピーク(P400)が存在し、各吸熱ピークの熱量の絶対値は、H380が29.80(J/g)、H400が3.08(J/g)であり、割合(H380/H350-450)は90.6%であった。実施例6Bの条件、吸熱ピークの熱量、イオン伝導度等を表2に示す。
(比較例1B)
 実施例1Bにおいて、硫化リチウム0.550g、五硫化二リン0.887g、臭素及びヨウ素の代わりに臭化リチウム0.277g、ヨウ化リチウム0.285gとした以外は、実施例1Bと同様にして、非晶質の硫化物系固体電解質(75(0.75LiS/0.25P)/15LiBr/10LiI、Li:S:P:Br:I(モル比)=1.375:1.500:0.375:0.150:0.100)を得た。得られた硫化物系固体電解質について、実施例1Aと同様にして粉末X線解析(XRD)測定を行ったところ、原料由来のピーク以外ピークがなく、非晶質の硫化物系固体電解質であることが確認された。また、ICP発光分光分析装置により組成を分析したところ、Li:S:P:Br:I(モル比)=1.367:1.482:0.372:0.160:0.103であった。
 得られた非晶質の硫化物系固体電解質を、210℃で3時間加熱して、結晶性の硫化物系固体電解質を得た。粉末X線解析(XRD)測定を行ったところ、実施例1と同様に、2θ=19.9°、23.6°に結晶化ピークが検出され、結晶性の硫化物系固体電解質が得られたことが確認された。得られた結晶性の硫化物系固体電解質のイオン伝導度を測定したところ、5.04×10-3(S/cm)となり、実施例1B~6Bの結晶性の硫化物系固体電解質ほどのイオン伝導度を有さないものであることが確認された。比較例1Bの条件及びイオン伝導度を表2に示す。
 得られた非晶質の硫化物系固体電解質を、実施例1Bと同様に、窒素ガス雰囲気下で、室温から500℃まで、10℃/分の昇温条件で示差熱分析(DTA)を行った。その示差熱分析チャート(DTAチャート)を図11に示す。図11によれば、358℃にピークトップを有する吸熱ピーク(P358)、377℃において380±15℃にピークトップを有する吸熱ピーク(P380)、402℃にピークトップを有する吸熱ピーク(P402)、410℃にピークトップを有する吸熱ピーク(P410)、418℃にピークトップを有する吸熱ピーク(P418)、428℃にピークトップを有する吸熱ピーク(P428)、446℃にピークトップを有する吸熱ピーク(P446)が存在し、各吸熱ピークの熱量の絶対値は、H358が0.22(J/g)、H380が1.07(J/g)、H402が2.54(J/g)、H410が0.55(J/g)、H418が0.025(J/g)、H428が0.99(J/g)、H446が0.72(J/g)であり、380±15℃にピークトップを有する吸熱ピーク(P380)の熱量H380の絶対値は10(J/g)より小さく、割合(H380/H350-450)は17.5%であった。比較例1Bの条件、吸熱ピークの熱量、イオン伝導度等を表2に示す。
(比較例2B)
 比較例1Aと同様にして、非晶質の硫化物系固体電解質(75(0.75LiS/0.25P)/15LiBr/10LiI、Li:S:P:Br:I(モル比)=1.375:1.500:0.375:0.150:0.100)を得た。得られた硫化物系固体電解質について、実施例1Aと同様にして粉末X線解析(XRD)測定を行ったところ、原料由来のピーク以外ピークがなく、非晶質の硫化物系固体電解質であることが確認された。
 得られた非晶質の硫化物系固体電解質を、203℃で3時間加熱して、結晶性の硫化物系固体電解質を得た。粉末X線解析(XRD)測定を行ったところ、実施例1と同様に、2θ=19.9°、23.6°に結晶化ピークが検出され、結晶性の硫化物系固体電解質が得られたことが確認された。得られた結晶性の硫化物系固体電解質のイオン伝導度を測定したところ、4.76×10-3(S/cm)となり、実施例1B~6Bの結晶性の硫化物系固体電解質ほどのイオン伝導度を有さないものであることが確認された。比較例2Bの条件及びイオン伝導度を表1に示す。
 得られた非晶質の硫化物系固体電解質を、実施例1Bと同様に、窒素ガス雰囲気下で、室温から500℃まで、10℃/分の昇温条件で示差熱分析(DTA)を行った。その示差熱分析チャート(DTAチャート)を図12に示す。図12によれば、384℃において380±15℃にピークトップを有する吸熱ピーク(P380)、405℃にピークトップを有する吸熱ピーク(P405)、423℃にピークトップを有する吸熱ピーク(P423)、435℃にピークトップを有する吸熱ピーク(P435)が存在し、各吸熱ピークの熱量の絶対値は、H380が7.64(J/g)、H405が10.14(J/g)、H423が0.27(J/g)、H435が0.93(J/g)であり、380±15℃にピークトップを有する吸熱ピーク(P380)の熱量H380の絶対値は10(J/g)より小さく、割合(H380/H350-450)は40.3%であった。比較例2Bの条件、吸熱ピークの熱量、イオン伝導度等を表2に示す。
(比較例3B)
 比較例1Bにおいて、溶媒を脱水トルエンから脱水ヘプタン(水分量:10ppm以下)とした以外は、比較例1Bと同様にして、非晶質の硫化物系固体電解質(75(0.75LiS/0.25P)/15LiBr/10LiI、Li:S:P:Br:I(モル比)=1.375:1.500:0.375:0.150:0.100)を得た。得られた硫化物系固体電解質について、実施例1Aと同様にして粉末X線解析(XRD)測定を行ったところ、原料由来のピーク以外ピークがないことがわかった。
 得られた粉末状の非晶質の硫化物系固体電解質を、グローブボックス内に設置したホットプレートを用いて、198℃で3時間加熱し、結晶性の硫化物系固体電解質を得た。粉末X線解析(XRD)測定を行ったところ、実施例1と同様に、2θ=19.9°、23.6°に結晶化ピークが検出され、結晶性の硫化物系固体電解質が得られたことが確認された。得られた結晶性の硫化物系固体電解質について、上記(イオン伝導度の測定)に従い、イオン伝導度を測定したところ、5.16×10-3(S/cm)となり、実施例1B~6Bの結晶性の硫化物系固体電解質ほどのイオン伝導度を有さないものであることが確認された。比較例3Bの条件及びイオン伝導度を表2に示す。
 得られた非晶質の硫化物系固体電解質を、実施例1Bと同様に、窒素ガス雰囲気下で、室温から500℃まで、10℃/分の昇温条件で示差熱分析(DTA)を行った。その示差熱分析チャート(DTAチャート)を図13に示す。図13によれば、363℃にピークトップを有する吸熱ピーク(P363)、378℃において380±15℃にピークトップを有する吸熱ピーク(P380)、406℃にピークトップを有する吸熱ピーク(P406)、431℃にピークトップを有する吸熱ピーク(P431)、及び449℃にピークトップを有する吸熱ピーク(P449)が存在し、各吸熱ピークの熱量の絶対値は、H363が0.11(J/g)、H380が1.80(J/g)、H406が34.95(J/g)、H431が0.14(J/g)、H449が0.98(J/g)であり、380±15℃にピークトップを有する吸熱ピーク(P380)の熱量H380の絶対値は10(J/g)より小さく、割合(H380/H350-450)は4.7%であった。比較例3Bの条件、吸熱ピークの熱量、イオン伝導度等を表2に示す。
Figure JPOXMLDOC01-appb-T000002

*1,Tol:トルエン、CB:クロロベンゼン、Hep:ヘプタン
 本実施形態の固体電解質の製造方法によれば、イオン伝導性が高く、電池性能に優れる固体電解質を、例えば乾燥工程等の水分を除去する工程を経ずに、製造プロセスを簡略化し、低コスト化を図り、製造することができる。また、本実施形態の固体電解質はイオン伝導性が高く、電池性能に優れるものである。この固体電解質は、電池に、とりわけ、パソコン、ビデオカメラ、及び携帯電話等の情報関連機器や通信機器等に用いられる電池に好適に用いられる。

Claims (19)

  1.  溶媒中で硫化アルカリ金属と式(1)に示す物質とを反応させる硫化物系固体電解質の製造方法。
         X…(1)
    (一般式(1)中、Xは、ハロゲン元素である。)
  2.  溶媒中で硫化アルカリ金属と式(1)に示す物質とリン化合物とを反応させる硫化物系固体電解質の製造方法。
         X…(1)
    (一般式(1)中、Xは、ハロゲン元素である。)
  3.  前記リン化合物が、硫化リンである請求項2に記載の硫化物系固体電解質の製造方法。
  4.  前記硫化アルカリ金属が、硫化リチウム及び硫化ナトリウムから選ばれる少なくとも1種である請求項1~3のいずれか1項に記載の硫化物系固体電解質の製造方法。
  5.  前記物質が、ヨウ素及び臭素から選ばれる少なくとも1種である請求項1~4のいずれか1項に記載の硫化物系固体電解質の製造方法。
  6.  前記硫化アルカリ金属、リン化合物及び物質Xの合計量に対する物質Xの含有量が、1~50mol%である請求項2~5のいずれか1項に記載の硫化物系固体電解質の製造方法。
  7.  前記硫化アルカリ金属が硫化リチウムであり、前記リン化合物が五硫化二リンであって、物質Xのモル数と同モル数の硫化リチウムを除いた硫化リチウム及び五硫化二リンの合計モル数に対する、物質Xのモル数と同モル数の硫化リチウムとを除いた硫化リチウムのモル数の割合が、60~90%である請求項2~6のいずれか1項に記載の硫化物系固体電解質の製造方法。
  8.  前記溶媒が、有機溶媒である請求項1~7のいずれか1項に記載の硫化物系固体電解質の製造方法。
  9.  前記溶媒が、炭化水素溶媒である請求項1~8のいずれか1項に記載の硫化物系固体電解質の製造方法。
  10.  前記溶媒が、前記式(1)に示す物質の溶解度が0.01質量%以上のものである請求項1~9のいずれか1項に記載の硫化物系固体電解質の製造方法。
  11.  粉砕機を用いて反応させる請求項1~10のいずれか1項に記載の硫化物系固体電解質の製造方法。
  12.  アルカリ金属元素、硫黄元素及びハロゲン元素を含み、10℃/分の昇温条件の示差熱分析により測定される、380±15℃にピークトップを有する吸熱ピークの熱量H380の絶対値が、10(J/g)以上である硫化物系固体電解質。
  13.  更に、リン原子を含む請求項12に記載の硫化物系固体電解質。
  14.  前記吸熱ピークの熱量H380の絶対値の、350~450℃にピークトップを有する吸熱ピークの熱量の絶対値の合計H350-450に対する割合(H380/H350-450)が、50%以上である請求項12又は13に記載の硫化物系固体電解質。
  15.  前記アルカリ金属元素が、リチウム元素及びナトリウム元素から選ばれる少なくとも一種である請求項12~14のいずれか1項に記載の硫化物系固体電解質。
  16.  前記ハロゲン元素が、臭素及びヨウ素から選ばれる少なくとも一種である請求項12~15のいずれか1項に記載の硫化物系固体電解質。
  17.  アルカリ金属元素、硫黄元素、リン元素及びハロゲン元素のモル比が、1.0~1.8:1.0~2.0:0.1~0.8:0.01~0.6である請求項13~16のいずれか1項に記載の硫化物系固体電解質。
  18.  前記ハロゲン元素が、臭素及びヨウ素を含み、アルカリ金属元素、硫黄元素、リン元素、臭素及びヨウ素のモル比が、1.0~1.8:1.0~2.0:0.1~0.8:0.01~0.3:0.01~0.3である請求項13~17のいずれか1項に記載の硫化物系固体電解質。
  19.  2θ=20.2°±0.5°及び23.6°±0.5°にピークを有する結晶構造を有する請求項12~18のいずれか1項に記載の硫化物系固体電解質。
PCT/JP2017/010155 2016-03-14 2017-03-14 固体電解質及び固体電解質の製造方法 WO2017159667A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/084,114 US11038198B2 (en) 2016-03-14 2017-03-14 Solid electrolyte and method for producing solid electrolyte
EP17766666.6A EP3432320B1 (en) 2016-03-14 2017-03-14 Solid electrolyte and method for producing solid electrolyte
KR1020187026278A KR102399662B1 (ko) 2016-03-14 2017-03-14 고체 전해질 및 고체 전해질의 제조 방법
CN201780017180.6A CN108780683B (zh) 2016-03-14 2017-03-14 固体电解质和固体电解质的制造方法
JP2018505942A JP6761024B2 (ja) 2016-03-14 2017-03-14 固体電解質及び固体電解質の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-049548 2016-03-14
JP2016049548 2016-03-14

Publications (1)

Publication Number Publication Date
WO2017159667A1 true WO2017159667A1 (ja) 2017-09-21

Family

ID=59851011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010155 WO2017159667A1 (ja) 2016-03-14 2017-03-14 固体電解質及び固体電解質の製造方法

Country Status (6)

Country Link
US (1) US11038198B2 (ja)
EP (1) EP3432320B1 (ja)
JP (1) JP6761024B2 (ja)
KR (1) KR102399662B1 (ja)
CN (1) CN108780683B (ja)
WO (1) WO2017159667A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110647A1 (ja) * 2016-12-14 2018-06-21 出光興産株式会社 硫化物固体電解質の製造方法
KR20190054924A (ko) * 2017-11-14 2019-05-22 삼성전자주식회사 전고체 이차전지용 고체전해질, 전고체이차전지 및 고체전해질의 제조방법
JP2019102263A (ja) * 2017-12-01 2019-06-24 トヨタ自動車株式会社 硫化物固体電解質
WO2020017500A1 (ja) * 2018-07-17 2020-01-23 出光興産株式会社 固体電解質の製造方法
WO2020105737A1 (ja) 2018-11-22 2020-05-28 出光興産株式会社 固体電解質の製造方法及び電解質前駆体
KR20220065755A (ko) 2019-09-17 2022-05-20 이데미쓰 고산 가부시키가이샤 고체 전해질의 제조 방법 및 전해질 전구체
KR20220068217A (ko) 2019-09-20 2022-05-25 이데미쓰 고산 가부시키가이샤 고체 전해질의 제조 방법
KR20230010639A (ko) 2020-05-13 2023-01-19 이데미쓰 고산 가부시키가이샤 고체 전해질의 제조 방법
WO2024010079A1 (ja) * 2022-07-07 2024-01-11 出光興産株式会社 硫化物固体電解質の製造方法
WO2024010078A1 (ja) * 2022-07-07 2024-01-11 出光興産株式会社 硫化物固体電解質の製造方法
US11973185B2 (en) 2020-05-07 2024-04-30 Idemitsu Kosan Co., Ltd. Method for producing sulfide solid electrolyte
US11978848B2 (en) 2020-05-27 2024-05-07 Idemitsu Kosan Co., Ltd. Method for producing solid electrolyte
KR20240136977A (ko) 2022-01-18 2024-09-19 이데미쓰 고산 가부시키가이샤 황화물 고체 전해질의 제조 방법

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6719038B1 (ja) 2018-11-22 2020-07-08 出光興産株式会社 硫化物固体電解質及びその処理方法
KR102673003B1 (ko) * 2018-11-30 2024-06-05 현대자동차주식회사 용해석출법에 의한 고이온전도성 황화물계 고체전해질의 제조방법 및 이에 사용되는 황화물계 고체전해질 제조용 조성물
JP7319900B2 (ja) * 2018-12-05 2023-08-02 出光興産株式会社 アルジロダイト型結晶構造を有する固体電解質の製造方法
CN111916820B (zh) * 2019-05-08 2023-05-05 国联汽车动力电池研究院有限责任公司 二次电池固态电解质材料及其制备方法与应用
KR102358150B1 (ko) * 2019-11-25 2022-02-04 울산대학교 산학협력단 Li2S-MaXb-P2S5 타입 고체 전해질 및 이를 포함하는 리튬 이온 배터리
CN114746958A (zh) * 2019-12-12 2022-07-12 松下知识产权经营株式会社 固体电解质组合物及固体电解质部件的制造方法
EP4084180A4 (en) * 2019-12-27 2024-06-26 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE COMPOSITION AND SOLID ELECTROLYTE PARTICLES
EP4303183A4 (en) * 2021-03-05 2024-10-02 Mitsui Mining & Smelting Co Ltd METHOD FOR PRODUCING A SULFIDE SOLID ELECTROLYTE
CN116868283A (zh) * 2021-03-05 2023-10-10 三井金属矿业株式会社 固体电解质以及包含其的电极合剂和电池
CN113410515B (zh) * 2021-06-25 2022-08-12 高能时代(珠海)新能源科技有限公司 一种硫化物固态电解质及制备方法和应用
CN113745650B (zh) * 2021-08-20 2022-07-15 高能时代(珠海)新能源科技有限公司 一种对锂负极稳定的硫化物固态电解质及其制备方法与锂离子电池
CN114678586B (zh) * 2022-04-11 2023-04-11 哈尔滨工业大学 一种高水氧稳定性的溴掺杂硫代磷酸锂固态电解质及其制备方法和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330312A (ja) 1994-06-03 1995-12-19 Idemitsu Petrochem Co Ltd 硫化リチウムの製造方法
JPH09278423A (ja) 1996-04-16 1997-10-28 Furukawa Co Ltd 硫化リチウムの製造方法
JPH09283156A (ja) 1996-04-16 1997-10-31 Matsushita Electric Ind Co Ltd リチウムイオン伝導性固体電解質およびその製造方法
JP2005228570A (ja) 2004-02-12 2005-08-25 Idemitsu Kosan Co Ltd リチウムイオン伝導性硫化物系結晶化ガラス及びその製造方法
JP2010163356A (ja) 2008-12-15 2010-07-29 Idemitsu Kosan Co Ltd 硫化リチウムの製造方法
JP2013016423A (ja) 2011-07-06 2013-01-24 Toyota Motor Corp 硫化物固体電解質材料、リチウム固体電池、および、硫化物固体電解質材料の製造方法
JP2013103851A (ja) 2011-11-11 2013-05-30 Nippon Chem Ind Co Ltd ヨウ化リチウム無水塩、ヨウ化リチウム無水塩の製造方法、固体電解質、及びリチウムイオン電池
JP2013201110A (ja) 2011-11-07 2013-10-03 Idemitsu Kosan Co Ltd 固体電解質
JP2013256416A (ja) 2012-06-13 2013-12-26 Godo Shigen Sangyo Kk ヨウ化リチウム無水物の製造方法
JP2014065637A (ja) 2012-09-26 2014-04-17 Nippo Kagaku Kk ヨウ化リチウム水溶液の製造方法及びその利用
JP2014065638A (ja) 2012-09-26 2014-04-17 Nippo Kagaku Kk ヨウ化リチウム水溶液の製造方法及びその利用
WO2014192309A1 (ja) * 2013-05-31 2014-12-04 出光興産株式会社 固体電解質の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10228201B4 (de) * 2002-06-24 2006-12-21 Chemetall Gmbh Verfahren zur Herstellung von Lithiumiodidlösungen
CN100524927C (zh) 2007-02-13 2009-08-05 中国科学院上海硅酸盐研究所 用于全固态锂电池固体电解质材料体系及制备方法
DE102007048289A1 (de) * 2007-10-08 2009-04-09 Universität Siegen Lithium-Argyrodite
JP5349427B2 (ja) 2010-08-26 2013-11-20 トヨタ自動車株式会社 硫化物固体電解質材料、正極体およびリチウム固体電池
JP5838954B2 (ja) 2012-11-20 2016-01-06 トヨタ自動車株式会社 硫化物固体電解質の製造方法
JP2014132299A (ja) * 2013-01-07 2014-07-17 Japan Display Inc 表示装置
JP5692266B2 (ja) 2013-03-15 2015-04-01 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法
JP6259617B2 (ja) * 2013-04-24 2018-01-10 出光興産株式会社 固体電解質の製造方法
WO2014186634A2 (en) * 2013-05-15 2014-11-20 Quantumscape Corporation Solid state catholyte or electrolyte for battery using liampbsc (m = si, ge, and/or sn)
CN105186014B (zh) * 2015-08-10 2019-01-04 惠州亿纬锂能股份有限公司 一种一步法制备用于锂-二硫化亚铁电池的电解液的方法
US10050284B2 (en) 2015-08-10 2018-08-14 Eve Energy Co., Ltd. Process for one-step preparing electrolyte used for lithium-iron(II) disulfide batteries
WO2017096088A1 (en) * 2015-12-04 2017-06-08 Quantumscape Corporation Lithium, phosphorus, sulfur, and iodine including electrolyte and catholyte compositions, electrolyte membranes for electrochemical devices, and annealing methods of making these electrolytes and catholytes
JP6750836B2 (ja) * 2016-03-14 2020-09-02 出光興産株式会社 ハロゲン化アルカリ金属の製造方法、及び硫化物系固体電解質の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330312A (ja) 1994-06-03 1995-12-19 Idemitsu Petrochem Co Ltd 硫化リチウムの製造方法
JPH09278423A (ja) 1996-04-16 1997-10-28 Furukawa Co Ltd 硫化リチウムの製造方法
JPH09283156A (ja) 1996-04-16 1997-10-31 Matsushita Electric Ind Co Ltd リチウムイオン伝導性固体電解質およびその製造方法
JP2005228570A (ja) 2004-02-12 2005-08-25 Idemitsu Kosan Co Ltd リチウムイオン伝導性硫化物系結晶化ガラス及びその製造方法
JP2010163356A (ja) 2008-12-15 2010-07-29 Idemitsu Kosan Co Ltd 硫化リチウムの製造方法
JP2013016423A (ja) 2011-07-06 2013-01-24 Toyota Motor Corp 硫化物固体電解質材料、リチウム固体電池、および、硫化物固体電解質材料の製造方法
JP2013201110A (ja) 2011-11-07 2013-10-03 Idemitsu Kosan Co Ltd 固体電解質
JP2013103851A (ja) 2011-11-11 2013-05-30 Nippon Chem Ind Co Ltd ヨウ化リチウム無水塩、ヨウ化リチウム無水塩の製造方法、固体電解質、及びリチウムイオン電池
JP2013256416A (ja) 2012-06-13 2013-12-26 Godo Shigen Sangyo Kk ヨウ化リチウム無水物の製造方法
JP2014065637A (ja) 2012-09-26 2014-04-17 Nippo Kagaku Kk ヨウ化リチウム水溶液の製造方法及びその利用
JP2014065638A (ja) 2012-09-26 2014-04-17 Nippo Kagaku Kk ヨウ化リチウム水溶液の製造方法及びその利用
WO2014192309A1 (ja) * 2013-05-31 2014-12-04 出光興産株式会社 固体電解質の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KANNO ET AL., JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 148, no. 7, 2001, pages A742 - 746
See also references of EP3432320A4
SOLID STATE IONICS, vol. 177, 2006, pages 2721 - 2725

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502331B2 (en) 2016-12-14 2022-11-15 Idemitsu Kosan Co., Ltd. Method for producing sulfide solid electrolyte
WO2018110647A1 (ja) * 2016-12-14 2018-06-21 出光興産株式会社 硫化物固体電解質の製造方法
KR102703717B1 (ko) * 2017-11-14 2024-09-05 삼성전자주식회사 전고체 이차전지용 고체전해질, 전고체이차전지 및 고체전해질의 제조방법
KR20190054924A (ko) * 2017-11-14 2019-05-22 삼성전자주식회사 전고체 이차전지용 고체전해질, 전고체이차전지 및 고체전해질의 제조방법
JP2019102263A (ja) * 2017-12-01 2019-06-24 トヨタ自動車株式会社 硫化物固体電解質
WO2020017500A1 (ja) * 2018-07-17 2020-01-23 出光興産株式会社 固体電解質の製造方法
JPWO2020017500A1 (ja) * 2018-07-17 2021-06-24 出光興産株式会社 固体電解質の製造方法
US11664530B2 (en) 2018-07-17 2023-05-30 Idemitsu Kosan Co., Ltd. Production method for solid electrolyte
KR20210091047A (ko) 2018-11-22 2021-07-21 이데미쓰 고산 가부시키가이샤 고체 전해질의 제조 방법 및 전해질 전구체
US11139505B2 (en) 2018-11-22 2021-10-05 Idemitsu Kosan Co., Ltd. Method for producing solid electrolyte, and electrolyte precursor
KR20240142618A (ko) 2018-11-22 2024-09-30 이데미쓰 고산 가부시키가이샤 고체 전해질의 제조 방법 및 전해질 전구체
WO2020105737A1 (ja) 2018-11-22 2020-05-28 出光興産株式会社 固体電解質の製造方法及び電解質前駆体
EP3886122A4 (en) * 2018-11-22 2022-08-10 Idemitsu Kosan Co.,Ltd. PROCESS FOR PREPARING A SOLID ELECTROLYTE AND ELECTROLYTE PRECURSOR
DE112020004437T5 (de) 2019-09-17 2022-06-23 Idemitsu Kosan Co., Ltd. Verfahren zur herstellung für festelektrolyten und elektrolyt-vorläufer
KR20220065755A (ko) 2019-09-17 2022-05-20 이데미쓰 고산 가부시키가이샤 고체 전해질의 제조 방법 및 전해질 전구체
KR20220068217A (ko) 2019-09-20 2022-05-25 이데미쓰 고산 가부시키가이샤 고체 전해질의 제조 방법
US11973185B2 (en) 2020-05-07 2024-04-30 Idemitsu Kosan Co., Ltd. Method for producing sulfide solid electrolyte
KR20230010639A (ko) 2020-05-13 2023-01-19 이데미쓰 고산 가부시키가이샤 고체 전해질의 제조 방법
US12119442B2 (en) 2020-05-13 2024-10-15 Idemitsu Kosan Co., Ltd. Method for producing sulfide solid electrolyte
US11978848B2 (en) 2020-05-27 2024-05-07 Idemitsu Kosan Co., Ltd. Method for producing solid electrolyte
KR20240136977A (ko) 2022-01-18 2024-09-19 이데미쓰 고산 가부시키가이샤 황화물 고체 전해질의 제조 방법
WO2024010079A1 (ja) * 2022-07-07 2024-01-11 出光興産株式会社 硫化物固体電解質の製造方法
WO2024010078A1 (ja) * 2022-07-07 2024-01-11 出光興産株式会社 硫化物固体電解質の製造方法

Also Published As

Publication number Publication date
EP3432320A4 (en) 2019-10-16
CN108780683A (zh) 2018-11-09
JP6761024B2 (ja) 2020-09-23
KR20180122348A (ko) 2018-11-12
EP3432320A1 (en) 2019-01-23
CN108780683B (zh) 2021-02-12
EP3432320B1 (en) 2023-05-31
JPWO2017159667A1 (ja) 2019-02-21
US20190074542A1 (en) 2019-03-07
US11038198B2 (en) 2021-06-15
KR102399662B1 (ko) 2022-05-18

Similar Documents

Publication Publication Date Title
WO2017159667A1 (ja) 固体電解質及び固体電解質の製造方法
WO2017159666A1 (ja) 固体電解質の製造方法
CN111344812B (zh) 含金属元素的硫化物类固体电解质及其制造方法
JP6763808B2 (ja) 固体電解質の製造方法
WO2016204253A1 (ja) 固体電解質の製造方法
JP6750836B2 (ja) ハロゲン化アルカリ金属の製造方法、及び硫化物系固体電解質の製造方法
JP2022188180A (ja) 固体電解質の製造方法及び製造設備
CN114730651A (zh) 硫化物固体电解质的制造方法
CN114245945A (zh) 固体电解质的制造方法
JP6877648B2 (ja) 固体電解質の製造方法
WO2024154710A1 (ja) 硫化物固体電解質の製造方法
US20240083748A1 (en) Method for producing solid electrolyte
JP6875050B2 (ja) 固体電解質の製造設備及び製造方法
JP2023177280A (ja) 硫化物固体電解質の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505942

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187026278

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017766666

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766666

Country of ref document: EP

Effective date: 20181015

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766666

Country of ref document: EP

Kind code of ref document: A1