WO2017045598A1 - 一种将半导体衬底主体与其上功能层进行分离的方法 - Google Patents
一种将半导体衬底主体与其上功能层进行分离的方法 Download PDFInfo
- Publication number
- WO2017045598A1 WO2017045598A1 PCT/CN2016/098943 CN2016098943W WO2017045598A1 WO 2017045598 A1 WO2017045598 A1 WO 2017045598A1 CN 2016098943 W CN2016098943 W CN 2016098943W WO 2017045598 A1 WO2017045598 A1 WO 2017045598A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- semiconductor substrate
- semiconductor
- functional layer
- separating
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 160
- 239000004065 semiconductor Substances 0.000 title claims abstract description 157
- 239000002346 layers by function Substances 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 46
- 239000010410 layer Substances 0.000 claims abstract description 197
- 150000002500 ions Chemical class 0.000 claims abstract description 37
- 238000005468 ion implantation Methods 0.000 claims description 31
- 229910052710 silicon Inorganic materials 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 238000005229 chemical vapour deposition Methods 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000007769 metal material Substances 0.000 claims description 8
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 claims description 6
- 229910052732 germanium Inorganic materials 0.000 claims description 5
- 229910004613 CdTe Inorganic materials 0.000 claims description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 238000004943 liquid phase epitaxy Methods 0.000 claims description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052789 astatine Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 239000002861 polymer material Substances 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 230000001939 inductive effect Effects 0.000 claims 2
- 230000035772 mutation Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 15
- 230000008569 process Effects 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 4
- 238000002347 injection Methods 0.000 abstract 3
- 239000007924 injection Substances 0.000 abstract 3
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 34
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 22
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 22
- 239000010703 silicon Substances 0.000 description 21
- 229910010271 silicon carbide Inorganic materials 0.000 description 21
- 229910002601 GaN Inorganic materials 0.000 description 16
- 238000000926 separation method Methods 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 238000000137 annealing Methods 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- -1 hydrogen ions Chemical class 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005441 electronic device fabrication Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B43/00—Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
- B32B43/006—Delaminating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/7806—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/45—Ohmic electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/47—Schottky barrier electrodes
Definitions
- the present invention relates to the field of manufacturing electronic devices, and in particular to a method of separating a semiconductor substrate body from its upper functional layer.
- Semiconductor materials are widely used in the manufacture of electronic devices, and the application of semiconductor materials is closely related to people's daily life and cutting-edge technology.
- Semiconductor materials have evolved from the first generation represented by silicon and germanium in the last century to the third generation represented by silicon carbide and gallium nitride.
- the semiconductor substrate is indispensable, and the cost of the semiconductor substrate is directly related to the cost of the electronic device fabricated on the substrate.
- the first and second generation semiconductor substrates are mostly grown by solution method, and the third generation semiconductor substrates are mainly prepared by vapor phase growth such as chemical vapor deposition (CVD), metal chemical vapor deposition (MOCVD), and physical vapor transmission (PVT).
- CVD chemical vapor deposition
- MOCVD metal chemical vapor deposition
- PVT physical vapor transmission
- the production cost of the third generation semiconductor substrate is significantly higher than the production cost of the first generation and second generation semiconductor substrates. Therefore, reducing the cost of the semiconductor substrate, particularly reducing the cost of the third generation semiconductor substrate, can bring great benefits to the popularization and application of the third generation semiconductor electronic device.
- Ion-cut thin film transfer technology was used to fabricate SOI (silicon on insulator) substrates.
- Ion-cut film transfer technology is a technique for separating substrate and substrate film layers based on ion implantation.
- the SOI fabrication process is to first fabricate a layer of silicon dioxide on the surface of the donor silicon substrate, and then accelerate the hydrogen ions to the surface of the silicon substrate on which the oxide layer has been formed. The hydrogen ions are accelerated at high voltage.
- the ion damage layer Under the action, passing through the silicon dioxide layer to the underlying silicon substrate and staying in the silicon substrate, causing ion damage, the ion damage layer is under the surface of the silicon substrate The depth depends on the level of the ion acceleration voltage; the higher the voltage, the deeper the ion damage layer is below the surface of the silicon substrate.
- the ion damage layer is located under the silicon substrate at a distance of 1 micrometer to 20 micrometers from the silicon dioxide layer, and the donor silicon substrate after ion implantation is bonded to the acceptor silicon substrate on the surface of the silicon dioxide, and the bonded two
- the silicon substrate is annealed at a temperature of 200 ° C to 500 ° C.
- the annealing process hydrogen ions are polymerized in the damaged layer to form hydrogen molecules, so that the original micro damage is laterally extended along the damaged layer, causing the donor silicon substrate to be in the damaged layer.
- the donor silicon substrate can be reused, and the separated acceptor silicon substrate is heat treated, and the surface silicon atoms are redistributed to eliminate the damage caused by ion implantation, and a silicon single crystal film having a thickness of micrometer is formed on the silicon oxide oxide layer.
- the fabrication of the electronic device is performed on a silicon single crystal film, and the acceptor substrate only serves as a support, which is an SOI substrate.
- the ion-cut film transfer technique is also used for the preparation of other semiconductor thin film substrates, such as transfering thin films of GaN, SiC, etc. onto a silicon or oxide substrate to reduce the substrate price, which is different from the SOI substrate.
- GaN and SiC are usually transferred to an insulator, and it is not necessary to form an oxide layer on the GaN or SiC donor substrate.
- ion implantation depth, ion implantation dose per unit area, surface bonding of the acceptor and donor substrate, and annealing after bonding are the main components of ion-cut film transfer technology.
- the surface bonding of the acceptor and donor substrate is a key step in the success of ion-cut film transfer technology. If the surface of the acceptor and the donor substrate are not well bonded, the acceptor and the donor substrate may be separated during the annealing process, and the film on the damaged layer may not be effectively supported, and the film transfer fails or the film is damaged. In order to ensure the bonding of the donor and the acceptor substrate, the processing requirements of the substrate on the bonding surface are very high, which is a great challenge for the processing of a high hardness semiconductor substrate such as SiC. In addition, the surface of the successfully separated film due to surface flatness and ion bombardment damage also requires heat treatment or surface reworking.
- Tear stripping method needs to be controlled by precise control
- the stress of the force introduction layer controls the thickness of the separation of the substrate film, which causes difficulty for mass production.
- the peeling peeling method has not been reported to successfully separate a hard substrate such as SiC.
- the present invention can control the thickness of the separated film by controlling the ion implantation depth, and the stress in the stress introduction layer does not need to be precisely controlled in the tear stripping technique, which facilitates mass production.
- it is not necessary to bond the tape on the stress-introducing layer, and a thick stress-introducing layer can be produced as a support for the separation film, a conductive layer, and the like.
- the present invention can also separate a hard semiconductor substrate such as silicon carbide (SiC).
- SiC silicon carbide
- the technical problem to be solved by the present invention is that the existing ion-cut film transfer technology is complicated in process, and is greatly affected by the ion implantation depth, the ion implantation dose per unit area, and the bonding strength of the acceptor substrate and the donor substrate; especially the third generation.
- semiconductors such as SiC
- the bonding of the donor to the acceptor substrate is not well resolved.
- the present invention is more suitable for mass production, can separate a hard semiconductor substrate such as SiC, and produces less separation defects, and has less influence on the device.
- a method for separating a semiconductor substrate body from an upper functional layer thereof comprising the following steps:
- Step 2) preparing a functional layer on the upper surface of the semiconductor substrate after the step 1);
- Step 3 Separating the semiconductor substrate and the functional layer thereon at the ion damage layer.
- the invention has the beneficial effects that the method of the invention first performs the preparation of the functional layer or the semiconductor electronic device on the substrate after the ion implantation, and then separates in the ion damage layer, and the invention directly functions on the original surface of the semiconductor substrate.
- the fabrication of layers or semiconductor electronic devices avoids the drawbacks of conventional ion-cut film transfer techniques on the separation surface.
- the depth of the ion is determined by the depth of the semiconductor substrate
- the thickness of the film, the semiconductor substrate of the invention has the same effect as the SOI film, and does not require a bonding process, which reduces the production process and reduces the production cost;
- the existing ion-cut film transfer substrate needs heat treatment or polishing
- the present invention performs the preparation of a functional layer or a semiconductor electronic device on the surface of the original substrate, and has the same effect;
- the ion implantation dose of the existing ion-cut film transfer substrate in the preparation process needs to be reached or Exceeding the dose capable of generating bubbles on the surface of the substrate, the ion implantation dose of the present invention only needs to ensure that no bubble damage is generated on the surface of the substrate.
- the present invention can also be improved as follows.
- the semiconductor substrate comprises: a semiconductor single wafer, or a semiconductor single wafer and a semiconductor epitaxial layer epitaxially grown on the semiconductor single wafer, or a semiconductor epitaxial layer epitaxially grown on the oxide single wafer.
- the material of the semiconductor substrate is Si, Ge, Si x Ge 1-x , SiC, GaAs, lnP, ln x Ga 1-x P, ln x Ga 1-x As, CdTe, AN, GaN, InN Or any one of Al x ln y Ga 1-xy N, wherein x and y satisfy the condition that 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 , and 0 ⁇ x + y ⁇ 1.
- the functional layer comprises: a semiconductor electronic device prepared directly on the upper surface of the semiconductor substrate, or a semiconductor epitaxial layer epitaxially grown on the surface of the semiconductor substrate, or a semiconductor epitaxial layer epitaxially grown on the surface of the semiconductor substrate And semiconductor electronic devices fabricated on a semiconductor epitaxial layer.
- the semiconductor epitaxial layer contains Si, Ge, Si x Ge 1-x , SiC, GaAs, lnP, ln x Ga 1-x P, ln x Ga 1-x As, CdTe, AN, GaN, At least one of InN and Al x ln y Ga 1-xy N, wherein x and y satisfy the condition that 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 , and 0 ⁇ x + y ⁇ 1.
- the semiconductor epitaxial layer includes Al x ln y Ga 1-xy N
- x and y may be graded or abrupt in the epitaxial layer.
- the epitaxial method of the semiconductor epitaxial layer includes chemical vapor deposition, plasma enhanced chemical vapor deposition, metal organic chemical vapor deposition, molecular beam epitaxy, hydride vapor phase epitaxy, Physical vapor transport and liquid phase epitaxy.
- ions implanted on the surface of the semiconductor substrate include ions formed of at least one element of H, He, Ar, and Ne or ions generated by a gas formed of the element.
- the step 2) further includes: forming a stress introduction layer on the functional layer, wherein a tensile stress exists in the stress introduction layer, and the stress introduction layer generates a compressive stress in the functional layer.
- the stress introduction layer is made of a metal material, and the metal material is Ni, Au, Cu, Pd, Ag, Al, Sn, Cr, Ti, Mn, Co, Zn, Mo, W, Zr, V, Ir, At least one of Pt and Fe.
- the stress introduction layer may be a non-metal polymer material.
- the stress-introducing layer is a metal material
- the stress-introducing layer is used as an ohmic contact layer or a Schottky contact layer of an electronic device on a functional layer.
- a rigid or flexible support layer is formed on the stress-introducing layer.
- a rigid or flexible support layer is formed on the functional layer.
- FIG. 1 is a front elevational view showing the structure of a semiconductor substrate of the present invention
- FIG. 2 is a schematic view showing the implantation of ions of the present invention into a semiconductor substrate via the upper surface of the semiconductor substrate;
- FIG. 3 is a schematic structural view of an ion-damaged layer of a semiconductor substrate after ion implantation according to the present invention
- FIG. 4 is a schematic structural view showing an epitaxial layer formed on the surface of the semiconductor substrate of FIG. 3;
- FIG. 6 is a schematic structural view of preparing a stress introduction layer on the epitaxial layer of FIG. 4;
- FIG. 7 is a schematic structural view of preparing an operation layer on the stress introduction layer of FIG. 6;
- Figure 8 is a schematic view showing the structure in which a rigid substrate is directly bonded to the epitaxial layer of Figure 4 and separated.
- FIG. 3 is an ion-implanted semiconductor substrate layer 1.
- the semiconductor substrate layer is divided into a semiconductor substrate body layer 2, an ion damage layer 3, and an ion damage layer 3.
- the semiconductor substrate may be a semiconductor single wafer, a semiconductor single wafer may be used, and a semiconductor epitaxial layer may be epitaxially grown on the semiconductor single wafer, or a semiconductor epitaxial layer may be epitaxially grown on the non-semiconductor and the oxide single wafer.
- the surface of the substrate layer is implanted.
- the ions implanted on the surface of the semiconductor substrate layer include ions formed of at least one element of H, He, Ar, and Ne or ions generated by a gas formed of the element.
- Embodiment 1 ion implantation is performed on the upper surface of the semiconductor substrate layer 1 with an ion implantation depth of 0.1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, and 20 ⁇ m; after the ion implantation, an ion damage layer 3 is formed under the surface of the semiconductor substrate layer 1
- the functional layer can then be directly prepared on the substrate film layer 4.
- the functional layer of this embodiment is a semiconductor electronic device such as a MOS, MOSFET device or the like.
- the rigid substrate 8 can be directly bonded to the semiconductor electronic device.
- the rigid substrate can be a semiconductor, an oxide crystal, a metal, a glass or a ceramic material, and the semiconductor substrate body layer and the substrate film layer are ionized by an outward pulling force.
- the damage layer is separated, and at this time, the tensile force required for the separation is much larger than the tensile force required when the stress is introduced into the layer.
- the functional layer may be a semiconductor electronic device that is not completed on the substrate film layer 4. After the semiconductor substrate is separated at the ion damage layer, the remaining semiconductor is completed on the substrate film layer 4. The production of electronic devices.
- Embodiment 2 ion implantation is performed on the upper surface of the semiconductor substrate layer 1 with an ion implantation depth of 0.5 ⁇ m to 50 ⁇ m, preferably 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, and 20 ⁇ m; after ion implantation in the semiconductor liner An ion damage layer 3 is formed under the surface of the bottom layer 1; a functional layer is prepared on the ion implantation surface of the substrate film layer 4.
- the functional layer of this embodiment is a semiconductor epitaxial layer 5 epitaxially grown on the surface of the semiconductor substrate layer 1, also It may be a semiconductor epitaxial layer 5 epitaxially grown on the upper surface of the semiconductor substrate layer 1 and a semiconductor electronic device fabricated on the semiconductor epitaxial layer 5.
- the epitaxial method of the semiconductor epitaxial layer 5 includes chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), physics. Gas phase transport (PVT) and liquid phase epitaxy (LPE).
- CVD chemical vapor deposition
- PECVD plasma enhanced chemical vapor deposition
- MOCVD metal organic chemical vapor deposition
- MBE molecular beam epitaxy
- HVPE hydride vapor phase epitaxy
- PVPE hydride vapor phase epitaxy
- physics Gas phase transport (PVT) and liquid phase epitaxy (LPE).
- the semiconductor epitaxial layer 5 may be a single epitaxial layer structure or more than one epitaxial structure, and the epitaxial layer may change conductivity and conductivity type, such as p, n type, via doping. As shown in FIG. 5, the semiconductor epitaxial layer 5 may include a first epitaxial layer 51, a second epitaxial layer 52, a third epitaxial layer 53, and a fourth epitaxial layer 54.
- the first epitaxial layer is AlN
- the second epitaxial layer is n-type GaN
- the third epitaxial layer is a multi-layer quantum well In x Ga (1-x) N and a barrier GaN
- fourth The epitaxial layer is p-type GaN, where 0 ⁇ x ⁇ 1, and this embodiment only gives an application of the epitaxial layer, and the structure of the epitaxial layer is not limited thereto.
- the stress introduction layer 6 is formed on the semiconductor epitaxial layer 5, and the stress introduction layer itself is subjected to tensile stress.
- the stress-introducing layer 6 is formed by evaporation, sputtering, electroplating, coating, or spin coating; the stress-introducing layer may be made of a metal material, which is Ni, Au, Cu, Pd, Ag, Al, Sn, Cr, At least one of Ti, Mn, Co, Zn, Mo, W, Zr, V, Ir, Pt, and Fe; the role of the stress-introducing layer is to generate compressive stress in the functional layer to facilitate the semiconductor substrate main layer and the substrate film Peeling of the layers.
- the stress-introducing layer may also be a non-metallic polymer material, which is an epoxy resin, and the epoxy resin is dried as a stress-introducing layer at 150 ° C, and the functional layer and the stress-introducing layer are used.
- the stress separation functional layer due to the difference in thermal expansion coefficient during cooling.
- the epoxy resin is dried as a stress-introducing layer at room temperature, and the temperature is lowered to a liquid nitrogen temperature separation.
- the stress-introducing layer is a metal material, it can be used as an ohmic contact layer or a Schottky contact layer of the electronic device on the functional layer, such as a stress-introducing layer on the p-GaN of the epitaxial layer of the LED structure.
- the stress-introducing layer on the n-type epitaxial layer of the SiC diode can be used as a Schottky contact layer.
- an operation layer 7 is prepared on the stress-introducing layer 6, and the operation layer 7 is easy to handle for separation, and a tape, a polymer or the like can be used.
- the handling layer can also be a rigid operating layer such as a semiconductor, oxide, metal, glass or ceramic material.
- the operation layer is not necessary, and when the stress introduction layer is sufficiently thick, it is not necessary to make an operation layer.
- the rigid substrate 8 can be directly bonded to the functional layer and separated by an outward pulling force, and the direction of the arrow in Fig. 8 is the pulling direction.
- the semiconductor substrate material of this embodiment adopts silicon carbide, and takes a 2 ⁇ (0001) crystal to a 6H crystal silicon carbide substrate as an example, and implants hydrogen ions at a tilt angle of 7° on the surface of the silicon carbide semiconductor substrate, and hydrogen ion implantation.
- the energy is 400 keV, and the implantation dose of hydrogen ions is 5 ⁇ 10 16 cm -2 .
- an ion damage layer is formed on the lower surface of the semiconductor substrate, as shown in Fig. 3; after ion implantation is completed, an appropriate temperature annealing process can be performed.
- the damage effect of the enhanced ions in the damaged layer is different.
- the annealing temperature is different.
- the annealing temperature needs to be above 218 °C.
- the annealing temperature needs to be 650. Above °C; the annealing process can also occur in the process of making the functional layer.
- the dose of ion implantation needs to be combined with the energy of the implanted ions.
- the surface damage caused by the ion-free bubbles and the spontaneous separation of the film-free layer ensure the successful implementation of this patented technology.
- the ion-implanted silicon carbide semiconductor material substrate is epitaxially grown in an MOCVD reactor to epitaxially grow a semiconductor epitaxial layer (functional layer). As shown in FIG.
- the semiconductor epitaxial layer includes an AlN buffer layer, Si-doped n in order from bottom to top.
- a 10 ⁇ m thick Ni metal stress-introducing layer is sputtered on the epitaxial layer, and 200 ⁇ m-300 ⁇ m copper is electrolessly plated on the Ni metal stress-introducing layer as a further supporting layer and a stress-introducing layer, thereby making the semiconductor substrate main layer 2 Separation from the underlying film layer 4 and its functional layer, the separated semiconductor substrate body layer can be reused after polishing.
- the semiconductor substrate material of this embodiment adopts silicon carbide, and takes a 2 ⁇ (0001) crystal to a 6H crystal silicon carbide substrate as an example, and implants hydrogen ions at a tilt angle of 7° on the surface of the silicon carbide semiconductor substrate, and hydrogen ion implantation.
- the energy is 500 keV
- the implantation dose of hydrogen ions is 7 ⁇ 10 16 cm -2 .
- an ion damage layer is formed on the lower surface of the semiconductor substrate layer, as shown in FIG. 3 .
- the ion-implanted silicon carbide semiconductor material substrate is epitaxially grown in an MOCVD reactor to epitaxially grow a semiconductor epitaxial layer (functional layer). As shown in FIG.
- the semiconductor epitaxial layer includes an AlN buffer layer, Si-doped n in order from bottom to top.
- a GaN layer, a multilayer quantum well In x Ga (1-x) N and a barrier GaN, Mg-doped p-type GaN layer, and the entire semiconductor epitaxial layer has a thickness of 4 ⁇ m.
- the silicon substrate is directly bonded on the semiconductor epitaxial layer, and the silicon carbide substrate and the silicon substrate are respectively adsorbed on the two vacuum chucks, and the outward mechanical force is applied on the two vacuum chucks, and the functional layer and the semiconductor substrate layer are The semiconductor substrate body layer is separated at the ion damage layer.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Recrystallisation Techniques (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
- Electrodes Of Semiconductors (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Element Separation (AREA)
Abstract
Description
Claims (14)
- 一种将半导体衬底主体与其上功能层进行分离的方法,其特征在于,包括以下步骤:步骤1):在半导体衬底上表面进行离子注入,离子注入深度为0.1μm-100μm,离子注入后在半导体衬底表面下产生一层离子损伤层;步骤2):在经步骤1)处理后的半导体衬底上表面制备功能层;步骤3):将半导体衬底及其上的功能层在离子损伤层处进行分离。
- 根据权利要求1所述一种将半导体衬底主体与其上功能层进行分离的方法,其特征在于,所述半导体衬底包括:半导体单晶片,或半导体单晶片以及在半导体单晶片上外延生长出的半导体外延层,或在氧化物单晶片上外延生长出的半导体外延层。
- 根据权利要求1所述一种将半导体衬底主体与其上功能层进行分离的方法,其特征在于,所述半导体衬底的材料为Si、Ge、SixGe1-x、SiC、GaAs、lnP、lnxGa1-xP、lnxGa1-xAs、CdTe、AlN、GaN、InN或AlxlnyGa1-x-yN的任一种,其中x和y满足的条件为:0≤x≤1,0≤y≤1,0≤x+y≤1。
- 根据权利要求1所述一种将半导体衬底主体与其上功能层进行分离的方法,其特征在于,所述功能层包括:直接在半导体衬底上表面制备的半导体电子器件,或在半导体衬底上表面外延生长出的半导体外延层,或在半导体衬底上表面外延生长出的半导体外延层以及在半导体外延层上制备的半导体电子器件。
- 根据权利要求4所述一种将半导体衬底主体与其上功能层进行分离的方法,其特征在于,所述半导体外延层所含成分包括Si、Ge、SixGe1-x、SiC、GaAs、lnP、lnxGa1-xP、lnxGa1-xAs、CdTe、AlN、GaN、InN和AlxlnyGa1-x-yN的至少一种,其中x和y满足的条件为:0≤x≤1,0≤y≤1,0≤x+y≤1。
- 根据权利要求5所述一种将半导体衬底主体与其上功能层进行分离的方法,其特征在于,所述半导体外延层包括AlxlnyGa1-x-yN时,x和y可在外延层中渐变或突变。
- 根据权利要求2或4所述一种将半导体衬底主体与其上功能层进行分离的方法,其特征在于,所述半导体外延层的外延方法包括化学气相沉积、等离子体增强化学气相沉积、金属有机化学气相沉积、分子束外延、氢化物气相外延、物理气相传输和液相外延。
- 根据权利要求1所述一种将半导体衬底主体与其上功能层进行分离的方法,其特征在于,在半导体衬底表面注入的离子包括由H、He、Ar和Ne的至少一种元素形成的离子或由该元素形成的气体产生的离子。
- 根据权利要求1所述一种将半导体衬底主体与其上功能层进行分离的方法,其特征在于,所述步骤2)还包括:在所述功能层上制作应力导入层,应力导入层中存在张应力,应力导入层在功能层中产生压应力。
- 根据权利要求9所述一种将半导体衬底主体与其上功能层进行分离的方法,其特征在于,所述应力导入层采用金属材料,所述金属材料为Ni、Au、Cu、Pd、Ag、Al、Sn、Cr、Ti、Mn、Co、Zn、Mo、W、Zr、V、Ir、Pt和Fe的至少一种。
- 根据权利要求9所述一种将半导体衬底主体与其上功能层进行分离的方法,其特征在于,所述应力导入层采用非金属高分子材料。
- 根据权利要求9或10所述一种将半导体衬底主体与其上功能层进行分离的方法,其特征在于,当所述应力导入层为金属材料时,所述应力导入层作为功能层上电子器件的欧姆接触层或肖特基接触层使用。
- 根据权利要求9或10所述一种将半导体衬底主体与其上功能层进行分离的方法,其特征在于,在所述应力导入层上制作刚性或柔性的支撑层。
- 根据权利要求1所述一种将半导体衬底主体与其上功能层进行分离 的方法,其特征在于,在所述功能层上制作刚性或柔性的支撑层。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680053855.8A CN108140608B (zh) | 2015-09-18 | 2016-09-14 | 一种将半导体衬底主体与其上功能层进行分离的方法 |
CN202210457276.7A CN114743926A (zh) | 2015-09-18 | 2016-09-14 | 一种将半导体衬底主体与其上功能层进行分离的方法 |
EP16845712.5A EP3352207B1 (en) | 2015-09-18 | 2016-09-14 | Method for separating semiconductor substrate body from functional layer thereon |
EP23186634.4A EP4250337A3 (en) | 2015-09-18 | 2016-09-14 | Method for separating semiconductor substrate body from functional layer thereon |
DE112016003716.3T DE112016003716T5 (de) | 2015-09-18 | 2016-09-14 | Verfahren zur Abtrennung eines Halbleiter-Substrats von der darauf liegenden Funktionsschicht |
JP2018524527A JP6602976B2 (ja) | 2015-09-18 | 2016-09-14 | 半導体基板本体及びその上の機能層を分離する方法 |
KR1020187006299A KR102313428B1 (ko) | 2015-09-18 | 2016-09-14 | 반도체 기판 본체와 그 상부의 기능층을 분리하기 위한 방법 |
KR1020217032596A KR20210127791A (ko) | 2015-09-18 | 2016-09-14 | 반도체 기판 본체와 그 상부의 기능층을 분리하기 위한 방법 |
US15/868,300 US10734274B2 (en) | 2015-09-18 | 2018-01-11 | Method of separating the main part of a semiconductor substrate from the functional layer built on it |
US16/904,516 US20200321242A1 (en) | 2015-09-18 | 2020-06-17 | Method of separating a film from a brittle material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510599390.3A CN106548972B (zh) | 2015-09-18 | 2015-09-18 | 一种将半导体衬底主体与其上功能层进行分离的方法 |
CN201510599390.3 | 2015-09-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/868,300 Continuation US10734274B2 (en) | 2015-09-18 | 2018-01-11 | Method of separating the main part of a semiconductor substrate from the functional layer built on it |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017045598A1 true WO2017045598A1 (zh) | 2017-03-23 |
Family
ID=58288009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/098943 WO2017045598A1 (zh) | 2015-09-18 | 2016-09-14 | 一种将半导体衬底主体与其上功能层进行分离的方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10734274B2 (zh) |
EP (2) | EP3352207B1 (zh) |
JP (2) | JP6602976B2 (zh) |
KR (2) | KR20210127791A (zh) |
CN (3) | CN106548972B (zh) |
DE (1) | DE112016003716T5 (zh) |
WO (1) | WO2017045598A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110838463A (zh) * | 2018-08-17 | 2020-02-25 | 胡兵 | 一种半导体衬底、将衬底层与其上功能层分离的方法 |
DE102016114949B4 (de) * | 2016-08-11 | 2023-08-24 | Infineon Technologies Ag | Verfahren zur Herstellung eines Halbleiterbauelements |
CN108734071A (zh) * | 2017-04-24 | 2018-11-02 | 上海箩箕技术有限公司 | 图像传感器的形成方法 |
CN107706086B (zh) * | 2017-07-31 | 2020-05-01 | 朱元勋 | 一种碳化硅衬底垂直结构簿膜电子器件及其制作方法 |
KR102001791B1 (ko) | 2018-12-26 | 2019-07-18 | 한양대학교 산학협력단 | 이온 주입을 이용한 질화갈륨 기판 제조 방법 |
US11414782B2 (en) | 2019-01-13 | 2022-08-16 | Bing Hu | Method of separating a film from a main body of a crystalline object |
DE102019132158B4 (de) | 2019-11-27 | 2024-10-24 | Infineon Technologies Ag | Verfahren zum bearbeiten eines halbleitersubstrats |
CN111048407B (zh) * | 2019-12-28 | 2024-06-18 | 东莞市中科汇珠半导体有限公司 | SiC同质外延层的剥离方法 |
EP3886150A1 (en) * | 2020-03-26 | 2021-09-29 | Infineon Technologies Austria AG | Method for processing a semiconductor wafer, semiconductor wafer, clip and semiconductor device |
CN113658849A (zh) * | 2021-07-06 | 2021-11-16 | 华为技术有限公司 | 复合衬底及其制备方法、半导体器件、电子设备 |
CN114023645A (zh) * | 2021-10-31 | 2022-02-08 | 山东云海国创云计算装备产业创新中心有限公司 | 一种氮化镓器件的制备方法及氮化镓器件 |
CN116741634A (zh) * | 2023-06-20 | 2023-09-12 | 中国科学院上海微系统与信息技术研究所 | 双极型功率器件及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005060723A2 (en) * | 2003-12-02 | 2005-07-07 | California Institute Of Technology | Wafer bonded epitaxial templates for silicon heterostructures |
CN1719613A (zh) * | 2005-06-21 | 2006-01-11 | 电子科技大学 | 一种部分绝缘层上硅材料结构及制备方法 |
CN1832150A (zh) * | 2005-02-28 | 2006-09-13 | 株式会社半导体能源研究所 | 半导体器件的制造方法 |
CN1860604A (zh) * | 2003-09-30 | 2006-11-08 | S.O.I.Tec绝缘体上硅技术公司 | 键合层消失的间接键合 |
CN101106067A (zh) * | 2006-07-11 | 2008-01-16 | 上海宇体光电有限公司 | 半导体器件与硅衬底的剥离方法 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1361298A (en) * | 1920-03-17 | 1920-12-07 | Aldrich Byron Vohn | Compound for tempering iron and steel |
FR2681472B1 (fr) * | 1991-09-18 | 1993-10-29 | Commissariat Energie Atomique | Procede de fabrication de films minces de materiau semiconducteur. |
FR2748851B1 (fr) * | 1996-05-15 | 1998-08-07 | Commissariat Energie Atomique | Procede de realisation d'une couche mince de materiau semiconducteur |
US6540827B1 (en) * | 1998-02-17 | 2003-04-01 | Trustees Of Columbia University In The City Of New York | Slicing of single-crystal films using ion implantation |
FR2789518B1 (fr) * | 1999-02-10 | 2003-06-20 | Commissariat Energie Atomique | Structure multicouche a contraintes internes controlees et procede de realisation d'une telle structure |
AU2001254866A1 (en) | 2000-04-14 | 2001-10-30 | S.O.I.Tec Silicon On Insulator Technologies | Method for cutting out at least a thin layer in a substrate or ingot, in particular made of semiconductor material(s) |
JP4127463B2 (ja) * | 2001-02-14 | 2008-07-30 | 豊田合成株式会社 | Iii族窒化物系化合物半導体の結晶成長方法及びiii族窒化物系化合物半導体発光素子の製造方法 |
JP3801125B2 (ja) * | 2001-10-09 | 2006-07-26 | 住友電気工業株式会社 | 単結晶窒化ガリウム基板と単結晶窒化ガリウムの結晶成長方法および単結晶窒化ガリウム基板の製造方法 |
KR100944886B1 (ko) * | 2001-10-30 | 2010-03-03 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치의 제조 방법 |
FR2840452B1 (fr) * | 2002-05-28 | 2005-10-14 | Lumilog | Procede de realisation par epitaxie d'un film de nitrure de gallium separe de son substrat |
FR2848336B1 (fr) * | 2002-12-09 | 2005-10-28 | Commissariat Energie Atomique | Procede de realisation d'une structure contrainte destinee a etre dissociee |
FR2878535B1 (fr) * | 2004-11-29 | 2007-01-05 | Commissariat Energie Atomique | Procede de realisation d'un substrat demontable |
JP5042506B2 (ja) | 2006-02-16 | 2012-10-03 | 信越化学工業株式会社 | 半導体基板の製造方法 |
JP5128781B2 (ja) * | 2006-03-13 | 2013-01-23 | 信越化学工業株式会社 | 光電変換素子用基板の製造方法 |
EP1863100A1 (en) * | 2006-05-30 | 2007-12-05 | INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM vzw (IMEC) | Method for the production of thin substrates |
US7888197B2 (en) * | 2007-01-11 | 2011-02-15 | International Business Machines Corporation | Method of forming stressed SOI FET having doped glass box layer using sacrificial stressed layer |
US8278190B2 (en) | 2007-05-30 | 2012-10-02 | Luminus Devices, Inc. | Methods of forming light-emitting structures |
KR101233105B1 (ko) | 2008-08-27 | 2013-02-15 | 소이텍 | 선택되거나 제어된 격자 파라미터들을 갖는 반도체 물질층들을 이용하여 반도체 구조물들 또는 소자들을 제조하는 방법 |
JP5907730B2 (ja) | 2008-10-30 | 2016-04-26 | エス・オー・アイ・テック・シリコン・オン・インシュレーター・テクノロジーズ | 低減した格子ひずみを備えた半導体材料、同様に包含する半導体構造体、デバイス、および、加工された基板を製造する方法 |
US8802477B2 (en) * | 2009-06-09 | 2014-08-12 | International Business Machines Corporation | Heterojunction III-V photovoltaic cell fabrication |
JP5310604B2 (ja) * | 2010-03-05 | 2013-10-09 | 豊田合成株式会社 | 半導体発光素子の製造方法および半導体発光素子、ランプ、電子機器、機械装置 |
JP5755931B2 (ja) * | 2010-04-28 | 2015-07-29 | 株式会社半導体エネルギー研究所 | 半導体膜の作製方法、電極の作製方法、2次電池の作製方法、および太陽電池の作製方法 |
JP5781292B2 (ja) * | 2010-11-16 | 2015-09-16 | ローム株式会社 | 窒化物半導体素子および窒化物半導体パッケージ |
FR2977260B1 (fr) * | 2011-06-30 | 2013-07-19 | Soitec Silicon On Insulator | Procede de fabrication d'une couche epitaxiale epaisse de nitrure de gallium sur un substrat de silicium ou analogue et couche obtenue par ledit procede |
US8981382B2 (en) * | 2013-03-06 | 2015-03-17 | Iqe Rf, Llc | Semiconductor structure including buffer with strain compensation layers |
JP6208572B2 (ja) * | 2013-12-19 | 2017-10-04 | イビデン株式会社 | SiCウェハの製造方法、SiC半導体の製造方法及び黒鉛炭化珪素複合基板 |
US10573627B2 (en) | 2015-01-09 | 2020-02-25 | Silicon Genesis Corporation | Three dimensional integrated circuit |
-
2015
- 2015-09-18 CN CN201510599390.3A patent/CN106548972B/zh active Active
-
2016
- 2016-09-14 CN CN201680053855.8A patent/CN108140608B/zh active Active
- 2016-09-14 JP JP2018524527A patent/JP6602976B2/ja active Active
- 2016-09-14 KR KR1020217032596A patent/KR20210127791A/ko not_active Application Discontinuation
- 2016-09-14 EP EP16845712.5A patent/EP3352207B1/en active Active
- 2016-09-14 EP EP23186634.4A patent/EP4250337A3/en active Pending
- 2016-09-14 DE DE112016003716.3T patent/DE112016003716T5/de not_active Withdrawn
- 2016-09-14 WO PCT/CN2016/098943 patent/WO2017045598A1/zh active Application Filing
- 2016-09-14 KR KR1020187006299A patent/KR102313428B1/ko active IP Right Grant
- 2016-09-14 CN CN202210457276.7A patent/CN114743926A/zh active Pending
-
2018
- 2018-01-11 US US15/868,300 patent/US10734274B2/en active Active
-
2019
- 2019-10-08 JP JP2019184892A patent/JP7025773B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1860604A (zh) * | 2003-09-30 | 2006-11-08 | S.O.I.Tec绝缘体上硅技术公司 | 键合层消失的间接键合 |
WO2005060723A2 (en) * | 2003-12-02 | 2005-07-07 | California Institute Of Technology | Wafer bonded epitaxial templates for silicon heterostructures |
CN1832150A (zh) * | 2005-02-28 | 2006-09-13 | 株式会社半导体能源研究所 | 半导体器件的制造方法 |
CN1719613A (zh) * | 2005-06-21 | 2006-01-11 | 电子科技大学 | 一种部分绝缘层上硅材料结构及制备方法 |
CN101106067A (zh) * | 2006-07-11 | 2008-01-16 | 上海宇体光电有限公司 | 半导体器件与硅衬底的剥离方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2018530925A (ja) | 2018-10-18 |
CN106548972A (zh) | 2017-03-29 |
KR20210127791A (ko) | 2021-10-22 |
KR20180054591A (ko) | 2018-05-24 |
KR102313428B1 (ko) | 2021-10-15 |
JP2020074385A (ja) | 2020-05-14 |
EP3352207C0 (en) | 2023-08-30 |
US20180158720A1 (en) | 2018-06-07 |
EP4250337A3 (en) | 2023-11-15 |
EP3352207A1 (en) | 2018-07-25 |
CN108140608B (zh) | 2022-06-03 |
EP3352207A4 (en) | 2019-04-17 |
EP4250337A2 (en) | 2023-09-27 |
US10734274B2 (en) | 2020-08-04 |
DE112016003716T5 (de) | 2018-05-03 |
CN106548972B (zh) | 2019-02-26 |
EP3352207B1 (en) | 2023-08-30 |
CN114743926A (zh) | 2022-07-12 |
JP6602976B2 (ja) | 2019-11-06 |
JP7025773B2 (ja) | 2022-02-25 |
CN108140608A (zh) | 2018-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017045598A1 (zh) | 一种将半导体衬底主体与其上功能层进行分离的方法 | |
US9202741B2 (en) | Metallic carrier for layer transfer and methods for forming the same | |
US8829532B2 (en) | Semiconductor layer structure comprising a cavity layer and method for fabricating the semiconductor layer structure | |
US9761493B2 (en) | Thin epitaxial silicon carbide wafer fabrication | |
JP6028280B2 (ja) | 半導体構造又は半導体素子を製造する方法 | |
KR20180051602A (ko) | 그래핀-기반 층 전달 시스템 및 방법 | |
CN110838463A (zh) | 一种半导体衬底、将衬底层与其上功能层分离的方法 | |
TW201230181A (en) | Process for cleaving a substrate | |
JP2012513113A (ja) | 歪み処理複合半導体基板及びそれを形成する方法 | |
WO2016106231A1 (en) | Manufacture of group iiia-nitride layers on semiconductor on insulator structures | |
US8785294B2 (en) | Silicon carbide lamina | |
CN107706086B (zh) | 一种碳化硅衬底垂直结构簿膜电子器件及其制作方法 | |
JP2010192872A (ja) | 半導体基板の製造方法、半導体デバイスの製造方法、半導体基板および半導体デバイス | |
US20200321242A1 (en) | Method of separating a film from a brittle material | |
EP3823008A1 (en) | Methods of manufacturing semiconductor devices | |
KR101459365B1 (ko) | 층 수송을 위한 금속성 운반체를 포함하는 반도체 기판 및 이의 제조 방법 | |
TWI705480B (zh) | 於載體基板上製造裝置的方法及載體基板上的裝置 | |
TWI506817B (zh) | 用於層轉移之金屬載體及其形成方法 | |
JP5692279B2 (ja) | 半導体デバイスおよびその製造方法 | |
JP5568940B2 (ja) | 半導体基板、半導体デバイス、半導体基板の製造方法および半導体デバイスの製造方法 | |
JP2021082773A (ja) | 半導体装置、半導体装置の製造方法、及び、電界効果型トランジスタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16845712 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018524527 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187006299 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016003716 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016845712 Country of ref document: EP |