WO2016132829A1 - ポリアミド樹脂組成物、ポリアミド樹脂組成物の製造方法、及び成形品 - Google Patents

ポリアミド樹脂組成物、ポリアミド樹脂組成物の製造方法、及び成形品 Download PDF

Info

Publication number
WO2016132829A1
WO2016132829A1 PCT/JP2016/052197 JP2016052197W WO2016132829A1 WO 2016132829 A1 WO2016132829 A1 WO 2016132829A1 JP 2016052197 W JP2016052197 W JP 2016052197W WO 2016132829 A1 WO2016132829 A1 WO 2016132829A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
component
resin composition
acid
mass
Prior art date
Application number
PCT/JP2016/052197
Other languages
English (en)
French (fr)
Inventor
知世 河村
真士 岡本
鹿野 泰和
克史 渡邊
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to US15/551,716 priority Critical patent/US10927232B2/en
Priority to EP16752218.4A priority patent/EP3260500B1/en
Priority to CN201680010812.1A priority patent/CN107250274B/zh
Priority to JP2017500571A priority patent/JP6457062B2/ja
Publication of WO2016132829A1 publication Critical patent/WO2016132829A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/105Compounds containing metals of Groups 1 to 3 or Groups 11 to 13 of the Periodic system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/132Phenols containing keto groups, e.g. benzophenones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a polyamide resin composition, a method for producing a polyamide resin composition, and a molded article.
  • Polyamide resins are excellent in strength, heat resistance, and chemical resistance, and have a high specific gravity, that is, a specific gravity smaller than that of metals, so that they have been conventionally used as metal substitute materials in automobile mechanical parts and the like.
  • various polyamide resin compositions having excellent heat aging resistance have been proposed (see, for example, Patent Documents 1 and 2).
  • heat aging resistance refers to a mechanically sufficient mechanical property when left in an air atmosphere for a long time under a high temperature condition below the melting point while maintaining the shape of the molded product. It refers to resistance to so-called thermal oxidation, which can maintain the characteristics and has little change in color tone.
  • a technique for improving the heat aging resistance of a polyamide resin a technique of adding a copper compound (copper oxide or salt) to the polyamide resin is known.
  • a technique for improving the heat aging resistance a technique in which a copper compound and iron oxide are blended into two types of polyamide resins having different melting points (for example, see Patent Document 3), and a fine elemental iron is blended in the polyamide resin.
  • Technology for example, see Patent Document 4
  • technology for blending a finely dispersed metal powder into a polyamide resin for example, see Patent Document 5 are disclosed.
  • the technique regarding the polyamide resin composition which added sodium aluminate, and its manufacturing method is disclosed (for example, refer patent documents 6 thru
  • a metal aluminate is added to a polyamide resin mainly for the purpose of suppressing an increase in yellowness or suppressing thermal decomposition.
  • Patent Document 3 a technique for adding a resin having a lower melting point and a heat stabilizer to a polyamide resin has been disclosed (for example, see Patent Document 3).
  • parts in an automobile engine room may be exposed to splashes of liquids containing moisture such as water vapor in the air and LLC (Long Life Coolant). Therefore, the material of such parts is required to have a high level of heat aging resistance.
  • an object of the present invention is to provide a polyamide resin composition having excellent heat aging resistance and a molded product thereof.
  • the present inventors have found that a polyamide resin, a predetermined amount of an alkali metal compound and / or an alkaline earth metal compound (however, a metal aluminate, an alkali metal halide) , Except for alkaline earth metal halides), and found that a polyamide resin composition containing a predetermined compound has a high level of heat aging resistance, that is, can effectively suppress oxidative deterioration below the melting point.
  • the present invention has been completed. That is, the present invention is as follows.
  • (C1) Component 0.001 to 0.05 parts by mass as metal element
  • (C2) Component: 0.8 to 20 parts by mass
  • Component Component: 1 to 50 parts by mass
  • [4] The polyamide resin composition according to any one of [1] to [3], wherein the (A) polyamide resin is at least one selected from the following group (A-1).
  • Mn number average molecular weight
  • the inorganic filler excluding the alkali metal compound and / or alkaline earth metal compound is a glass fiber, and the carboxylic acid anhydride-containing unsaturated vinyl monomer and the carboxylic acid anhydride-containing unsaturated vinyl monomer
  • the component (C3) is The polyamide according to any one of [1] to [24], wherein the ratio (C / N) of the number of carbon atoms to the number of nitrogen atoms contained in the component (C3) is 7 or more and 20 or less. Resin composition. [27] The polyamide resin composition according to any one of [1] to [26], wherein the component (C) contains at least the component (C4).
  • the (B) alkali metal compound and / or alkaline earth metal compound (provided that the metal salt of aluminate, alkali metal halide, alkaline earth is contained in 100 parts by mass of the component (A) and the component (C3))
  • the alkali value of (except for the halide of a similar metal) and the acid value of the (C4) acid satisfy the following condition (Formula 1): [1] to [26] Polyamide resin composition.
  • the weight average molecular weight / number average molecular weight (Mw / Mn) is 2.0 or more, Mw / Mn after heat aging at 120 ° C. for 1000 hours is 3.0 or more, The polyamide resin composition according to any one of [1] to [32].
  • the (C4) acid is the polyamide resin composition according to any one of [1] to [36], which is added to the (A) polyamide resin by melt kneading.
  • a method for producing a polyamide resin composition [40] The method for producing a polyamide resin composition according to [39], including a step of adding the (C4) acid in a master batch. [41] The (B) alkali metal compound and / or alkaline earth metal compound (excluding metal aluminates, alkali metal halides and alkaline earth metal halides) is used for the (A) polyamide resin.
  • a molded article comprising the polyamide resin composition according to any one of [1] to [38] and [41].
  • a polyamide resin composition excellent in heat aging resistance and a molded product thereof can be provided.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with appropriate modifications within the scope of the gist.
  • the polyamide resin composition of this embodiment is (A) a polyamide resin; (B) an alkali metal compound and / or an alkaline earth metal compound (excluding an aluminate metal salt, an alkali metal halide, an alkaline earth metal halide); (C) at least one compound selected from the group consisting of the following (C1) to (C4); Containing, (C1) a salt of one or more metal elements selected from the group consisting of Group 3, Group 4, Group 11, Group 13, Group 14 of the periodic table (C2) hindered phenol compound, hindered amine compound, And at least one organic heat stabilizer selected from the group consisting of organic phosphorus compounds (C3) a crystalline thermoplastic resin having a melting point lower than the melting point of component (A) and / or the Vicat softening point of component (A) Amorphous thermoplastic resin having a low Vicat softening point (C4) acid For a total of 100 parts by mass of the component (A) and the component (C)
  • the polyamide resin composition of the present embodiment exhibits excellent heat aging resistance due to the above composition.
  • the polyamide resin composition of the present embodiment contains (A) a polyamide resin (hereinafter sometimes referred to as “component (A)”).
  • component (A) is a polymer having an amide bond (—NHCO—) in the main chain.
  • examples of the polyamide resin include, but are not limited to, a polyamide resin obtained by condensation polymerization of a diamine and a dicarboxylic acid, a polyamide resin obtained by ring-opening polymerization of a lactam, and a self-condensation of an aminocarboxylic acid.
  • polyamide resins examples thereof include polyamide resins and copolymers obtained by copolymerization of two or more monomers constituting these polyamide resins.
  • A As a polyamide resin, only 1 type of the said polyamide resin may be used independently, and 2 or more types may be used together.
  • diamine examples include, but are not limited to, aliphatic diamines, alicyclic diamines, and aromatic diamines.
  • aliphatic diamine examples include, but are not limited to, ethylenediamine, propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylene.
  • C2-C20 linear saturated aliphatic diamines such as diamine, undecamethylenediamine, dodecamethylenediamine, tridecamethylenediamine; 2-methylpentamethylenediamine (also referred to as 2-methyl-1,5-diaminopentane) 2), 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 2-methyloctamethylenediamine, 2,4-dimethyloctamethylenediamine, etc.
  • Saturated aliphatic diamine and the like.
  • Examples of the branched saturated aliphatic diamine include diamines having substituents branched from the main chain.
  • the alicyclic diamine (also referred to as alicyclic diamine) is not limited to the following, and examples thereof include 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, and 1,3-cyclohexane. Pentanediamine and the like can be mentioned.
  • aromatic diamine examples include, but are not limited to, metaxylylenediamine, paraxylylenediamine, metaphenylenediamine, orthophenylenediamine, paraphenylenediamine, and the like.
  • dicarboxylic acid examples include, but are not limited to, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, and aromatic dicarboxylic acids.
  • aliphatic dicarboxylic acid examples include, but are not limited to, malonic acid, dimethyl malonic acid, succinic acid, 2,2-dimethyl succinic acid, 2,3-dimethyl glutaric acid, 2,2- Diethylsuccinic acid, 2,3-diethylglutaric acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecane
  • straight-chain or branched saturated aliphatic dicarboxylic acids having 3 to 20 carbon atoms such as acid, tetradecanedioic acid, hexadecanedioic acid, octadecanedioic acid, eicosanedioic acid, and diglycolic acid.
  • alicyclic dicarboxylic acid examples include, but are not limited to, alicyclic such as 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, and the like.
  • Carboxylic acid is mentioned.
  • the number of carbon atoms in the alicyclic structure of the alicyclic carboxylic acid is not particularly limited, but is preferably 3 to 10, more preferably 5 to 10 from the viewpoint of the balance between water absorption and crystallinity of the obtained polyamide resin. It is.
  • the alicyclic dicarboxylic acid may be unsubstituted or may have a substituent.
  • substituent include, but are not limited to, for example, 1 to 4 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, and tert-butyl group. And the like.
  • aromatic dicarboxylic acid examples include, but are not limited to, aromatic dicarboxylic acids having 8 to 20 carbon atoms that are unsubstituted or substituted with a substituent.
  • substituent examples include, but are not limited to, for example, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an arylalkyl group having 7 to 20 carbon atoms, a chloro group, and a bromo group.
  • halogen groups such as C 3-10 alkylsilyl groups, sulfonic acid groups, and groups that are salts thereof such as sodium salts.
  • aromatic dicarboxylic acid examples include, but are not limited to, for example, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5- Examples thereof include sodium sulfoisophthalic acid.
  • the dicarboxylic acid may further contain a trivalent or higher polyvalent carboxylic acid such as trimellitic acid, trimesic acid, pyromellitic acid and the like within a range not impairing the object of the present embodiment.
  • a trivalent or higher polyvalent carboxylic acid such as trimellitic acid, trimesic acid, pyromellitic acid and the like within a range not impairing the object of the present embodiment.
  • the diamine and dicarboxylic acid described above may be used alone or in combination of two or more.
  • lactam examples include, but are not limited to, butyrolactam, pivalolactam, ⁇ -caprolactam, caprilactam, enantolactam, undecanolactam, laurolactam (dodecanolactam), and the like.
  • ⁇ -caprolactam, laurolactam and the like are preferable, and ⁇ -caprolactam is more preferable.
  • aminocarboxylic acid examples include, but are not limited to, compounds including the above-described lactam ring-opened compounds ( ⁇ -aminocarboxylic acid, ⁇ , ⁇ -aminocarboxylic acid, and the like).
  • the aminocarboxylic acid is preferably a linear or branched saturated aliphatic carboxylic acid having 4 to 14 carbon atoms substituted with an amino group at the ⁇ position from the viewpoint of increasing the crystallinity. Examples thereof include, but are not limited to, 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, and the like.
  • aminocarboxylic acid examples include aromatic aminocarboxylic acids such as paraaminomethylbenzoic acid.
  • polyamide resin is not limited to the following.
  • polyamide 4 poly ⁇ -pyrrolidone
  • polyamide 6 polycaproamide
  • polyamide 11 polyundecanamide
  • polyamide 12 Polydodecanamide
  • polyamide 46 polytetramethylene adipamide
  • polyamide 56 polypentamethylene adipamide
  • polyamide 66 polyhexamethylene adipamide
  • polyamide 610 polyhexamethylene sebacamide
  • polyamide 612 polyhexamethylene dodecamide
  • polyamide 116 polyundecamethylene adipamide
  • polyamide TMHT trimethylhexamethylene terephthalamide
  • polyamide 6T polyhexamethylene terephthalamide
  • polyamide 2Me-5T polyamide
  • polyamide 9T polynonamethylene terephthalamide
  • 2Me-8T poly-2-methyloctam
  • the polyamide resin (A) in the polyamide resin composition of the present embodiment includes polyamide 46 (polytetramethylene adipamide), polyamide 66 (polyhexamethylene adipamide), polyamide from the viewpoint of heat aging resistance and mechanical properties. 610, polyamide 612, polyamide 6T (polyhexamethylene terephthalamide), polyamide 9T (polynonanemethylene terephthalamide), polyamide 6I (polyhexamethylene isophthalamide), and copolymer polyamides containing these as constituents are preferred.
  • the amount of MXD is preferably less than 70 mol% from the viewpoint of heat aging resistance, and 50 mol Is more preferably less than 30%, and even more preferably less than 30 mol%.
  • the polyamide resin is preferably polyamide 66 from the viewpoint of improving the heat aging resistance of the polyamide resin composition of the present embodiment.
  • the melting point of the (A) polyamide resin used in the polyamide resin composition of the present embodiment is not particularly limited, but is preferably 200 ° C. or higher, more preferably 210 ° C. or higher, and further preferably 240 ° C. or higher.
  • (A) By making melting
  • the melting point of the (A) polyamide resin is not particularly limited, but is preferably 340 ° C. or lower.
  • the melting point of the polyamide resin can be measured according to JIS-K7121.
  • the measuring device for example, Diamond DSC manufactured by PERKIN-ELMER can be used. Specifically, it can measure by the method described in the Example mentioned later.
  • the melting point of the polyamide resin can be controlled by adjusting the monomers constituting the polyamide.
  • the content of the (A) polyamide resin used in the polyamide resin composition of the present embodiment is preferably 33% by mass or more and 95% by mass or less, and 50% by mass or more and 75% by mass or less in the polyamide resin composition. It is more preferable.
  • the polyamide resin composition of this embodiment tends to be excellent in strength, heat resistance, chemical resistance, specific gravity and the like by containing the (A) polyamide resin in the above range.
  • the sulfuric acid relative viscosity of the polyamide resin (A) used in the polyamide resin composition of the present embodiment is preferably 1.8 or more and 3.0 or less, and more preferably 2.2 or more and 2.8 or less.
  • the sulfuric acid relative viscosity can be controlled by adjusting the pressure during polymerization of the (A) polyamide resin.
  • the sulfuric acid relative viscosity can be measured by a method according to JIS K 6920. Specifically, it can measure by the method described in the Example mentioned later.
  • an end-capping agent can be further added for molecular weight adjustment.
  • the end capping agent is not particularly limited, and a known one can be used.
  • Examples of the end-capping agent include, but are not limited to, acid anhydrides such as monocarboxylic acid, monoamine, and phthalic anhydride; monoisocyanates, monoacid halides, monoesters, and monoalcohols. Etc. Among these, from the viewpoint of thermal stability of the (A) polyamide resin, monocarboxylic acid and monoamine are preferable. These may be used alone or in combination of two or more.
  • the monocarboxylic acid that can be used as the end-capping agent is not limited to the following as long as it has reactivity with an amino group.
  • the monoamine that can be used as the end-capping agent is not limited to the following as long as it has reactivity with a carboxyl group.
  • methylamine, ethylamine, propylamine, butylamine, hexylamine Aliphatic monoamines such as octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylami; Alicyclic monoamines such as cyclohexylamine, dicyclohexylamine; Aromatic monoamines such as aniline, toluidine, diphenylamine, naphthylamine; etc. Is mentioned. These may be used alone or in combination of two or more.
  • acid anhydride examples include, but are not limited to, phthalic anhydride, maleic anhydride, benzoic anhydride, acetic anhydride, hexahydrophthalic anhydride, and the like. These may be used alone or in combination of two or more.
  • Examples of the monoisocyanate that can be used as the end-capping agent include, but are not limited to, phenyl isocyanate, tolyl isocyanate, dimethylphenyl isocyanate, cyclohexyl isocyanate, butyl isocyanate, and naphthyl isocyanate. These may be used alone or in combination of two or more.
  • monoacid halides that can be used as end-capping agents include, but are not limited to, benzoic acid, diphenylmethane carboxylic acid, diphenyl sulfone carboxylic acid, diphenyl sulfoxide carboxylic acid, diphenyl sulfide carboxylic acid, diphenyl ether carboxylic acid.
  • halogen-substituted monocarboxylic acids such as monocarboxylic acids such as acid, benzophenone carboxylic acid, biphenyl carboxylic acid, ⁇ -naphthalene carboxylic acid, ⁇ -naphthalene carboxylic acid and anthracene carboxylic acid. These may be used alone or in combination of two or more.
  • monoesters that can be used as end-capping agents include, but are not limited to, glycerin monopalmitate, glycerin monostearate, glycerin monobehenate, glycerin monomontanate, pentaerythritol monopalmitate.
  • monoalcohols that can be used as end-capping agents include, but are not limited to, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, and the like.
  • (B) Alkali metal and / or alkaline earth metal compound In the polyamide resin composition of the present embodiment, (B) an alkali metal compound and / or an alkaline earth metal compound (excluding an aluminate metal salt, an alkali metal halide, and an alkaline earth metal halide). (Hereinafter may be referred to as “component (B)”).
  • component (B) Alkali metal compounds and / or alkaline earth metal compounds are not limited to the following, but include, for example, alkali metal and / or alkaline earth metal carbonates, alkali metal hydrogen carbonates, and alkalis. Examples include metal and / or alkaline earth metal hydroxides.
  • alkali metal and / or alkaline earth metal carbonate examples include, but are not limited to, sodium carbonate, potassium carbonate, magnesium carbonate, and calcium carbonate.
  • Alkali metal and / or alkaline earth metal carbonates may be used alone or in combination of two or more.
  • alkali metal hydrogen carbonate examples include, but are not limited to, sodium hydrogen carbonate and potassium hydrogen carbonate.
  • alkali metal hydrogen carbonate only one kind may be used alone, or two or more kinds may be used in combination.
  • alkali metal and / or alkaline earth metal hydroxide examples include, but are not limited to, sodium hydroxide, magnesium hydroxide, potassium hydroxide, and calcium hydroxide.
  • Alkali metal and / or alkaline earth metal hydroxides may be used alone or in combination of two or more.
  • the component (B) is preferably an alkali metal compound. Further, from the viewpoint of heat aging resistance, the component (B) is preferably an alkali metal carbonate or hydrogen carbonate.
  • the polyamide resin composition of the present embodiment is 0 for a total of 100 parts by mass of the component (A) and the component (C3) which are thermoplastic resin components. 0.03 parts by mass or more and 20 parts by mass or less of (B) an alkali metal compound and / or an alkaline earth metal compound (excluding an aluminate metal salt, an alkali metal halide, and an alkaline earth metal halide). Including.
  • the content of the component (B) is preferably 0.1 part by mass or more and 20 parts by mass or less, and 0.6 part by mass or more and 20 parts by mass with respect to a total of 100 parts by mass of the component (A) and the component (C3). Is more preferably 0.6 parts by mass or more and 5 parts by mass or less, and still more preferably 0.8 parts by mass or more and 5 parts by mass or less.
  • the content of the component (B) in the component (B) is preferably 20% by mass or less in the component (B) having a particle diameter of 1 ⁇ m or more, More preferably, it is 15 mass% or less, More preferably, it is 10 mass% or less, More preferably, it is 5 mass% or less.
  • the particle diameter of (B) component is a particle diameter of (B) component which exists in the polyamide resin composition of this embodiment.
  • the particle diameter of the component (B) in the polyamide resin composition can be measured, for example, by dissolving the polyamide resin composition in formic acid and using a laser diffraction particle size distribution apparatus.
  • the component (B) it is effective to mix the component (A).
  • the method of melt-kneading (B) component with (A) component using an extruder is mentioned.
  • the component (B) when the component (B) is contained in a moisture-rich state, for example, in the condensation polymerization step of the component (A), the component (B) may increase in diameter.
  • the component (A) polymerization step is completed, the component (A) is taken out, and the component (A) and the component (B) are mixed at the stage of melt kneading, which is a production process of the polyamide resin composition. .
  • the polyamide resin composition of the present embodiment contains at least one compound selected from the group consisting of the following (C1) to (C4) as the component (C).
  • (C1) a salt of one or more metal elements selected from the group consisting of Group 3, Group 4, Group 11, Group 13, Group 14 of the Periodic Table
  • C2 A hindered phenol compound, a hindered amine compound, And at least one organic heat stabilizer selected from the group consisting of organic phosphorus compounds
  • C3 a crystalline thermoplastic resin having a melting point lower than the melting point of component (A) and / or the Vicat softening point of component (A)
  • component (C) only one of the above (C1), (C2), (C3), and (C4) may be used alone, or two or more may be used in combination. Is preferably used from the viewpoint of improving the heat aging resistance of the polyamide resin composition of the present embodiment, and more preferably three or more are used in combination.
  • the polyamide resin composition of the present embodiment comprises (C1) a salt of one or more metal elements selected from the group consisting of Group 3, Group 4, Group 11, Group 13, Group 14 of the Periodic Table ( Hereinafter, it is preferable to contain (C1) component and (C1) may be described.).
  • the salt of one or more metal elements selected from the group consisting of Group 3, Group 4, Group 11, Group 13, Group 14 of the Periodic Table may be a salt of a metal element belonging to these groups.
  • the heat aging resistance is further improved.
  • a copper salt is preferable.
  • the copper salt include, but are not limited to, copper halides (copper iodide, cuprous bromide, cupric bromide, cuprous chloride, etc.), copper acetate, propionic acid. Copper, copper benzoate, copper adipate, copper terephthalate, copper isophthalate, copper salicylate, copper nicotinate and copper stearate, and copper complex salts in which copper is coordinated to chelating agents such as ethylenediamine and ethylenediaminetetraacetic acid . These may be used alone or in combination of two or more.
  • the copper salts listed above preferably one or more selected from the group consisting of copper iodide, cuprous bromide, cupric bromide, cuprous chloride and copper acetate, more preferably Copper iodide and / or copper acetate.
  • the polyamide resin is excellent in heat aging resistance and can effectively suppress metal corrosion (hereinafter also simply referred to as “metal corrosion”) of a screw or a cylinder during extrusion. A composition is obtained.
  • the content of the component (C1) in the polyamide resin composition of the present embodiment is such that the component (A) and the component (C3) that are thermoplastic resins when the component (C1) is selected as a component. It is assumed that the content in terms of metal element in the (C1) is 0.001 to 0.05 parts by mass with respect to 100 parts by mass in total. The content in terms of the metal element is preferably 0.003 to 0.05 parts by mass, more preferably 0.005 to 0.03 parts by mass with respect to 100 parts by mass in total of the components (A) and (C3). preferable.
  • the content of the copper salt in the polyamide resin composition of the present embodiment as a metal element is the thermoplastic component (A) component and the component (C3).
  • the heat aging resistance can be further improved, and copper precipitation and metal corrosion can be effectively suppressed.
  • one or more metal elements selected from the group consisting of Group 3, Group 4, Group 11, Group 13, Group 14 of the (C1) periodic table are used.
  • the content of the component (B) with respect to 1 part by mass of the component (C1) is more preferably 5 parts by mass or more and 500 parts by mass or less, and 15 parts by mass or more and 500 parts by mass.
  • the following is more preferable, 25 parts by mass or more and 500 parts by mass or less are more preferable, 35 parts by mass or more and 500 parts by mass or less are further more preferable, and 45 parts by mass or more and 500 parts by mass or less are particularly preferable.
  • the polyamide resin composition of the present embodiment comprises (C1-2) an alkali metal halide and / or an alkaline earth metal halide (hereinafter referred to as (C1-2) component, ( It may be described as C1-2).
  • the alkali metal halide and / or alkaline earth metal halide include, but are not limited to, potassium iodide, potassium bromide, potassium chloride, sodium iodide and sodium chloride, and these. Of the mixture. Among these, potassium iodide and / or potassium bromide is preferable from the viewpoint of improving heat aging resistance and suppressing metal corrosion, and more preferably potassium iodide.
  • the content of the component (C1-2) in the polyamide resin composition of the present embodiment is preferably 0.05 with respect to a total of 100 parts by mass of the component (A) and the component (C3) that are thermoplastic resins. -5 parts by mass, more preferably 0.2-2 parts by mass.
  • the content of the component (C1-2) is within the above range, the heat aging resistance can be further improved, and copper precipitation and metal corrosion can be effectively suppressed.
  • the component (C1) and the component (C1-2) only one type may be used alone, or two or more types may be used in combination. Among these, from the viewpoint of further improving the heat aging resistance, a copper salt is used as the component (C1), and an alkali metal halide and / or an alkaline earth metal halide is combined as the component (C1-2). It is preferable to use a mixture of The component (C1-2) is a component used in combination with the component (C1) and is a component different from the component (C1).
  • the molar ratio (halogen element / metal element) of the metal element (C1) to the halogen element (C1-2) is preferably 2 to 50, more preferably 2 to 40, and 5 to 30. Further preferred. In the above range, the heat aging resistance can be further improved.
  • the polyamide resin composition of the present embodiment comprises (C2) at least one organic heat stabilizer selected from the group consisting of a hindered phenol compound, a hindered amine compound, and an organic phosphorus compound (hereinafter referred to as (C2) component, (C2) and May be described).
  • the hindered phenol compound as the component (C2) is not limited to the following.
  • 1 6-Hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5 -Di-t-butylanilino) -1,3,5-triazine, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxypheny ) Propionate], 2,
  • the hindered amine compound as the component (C2) is not limited to the following.
  • the organic phosphorus compound as the component (C2) is not limited to the following, but examples thereof include tetrakis (2,4-di-t-butylphenyl) -4,4′-biphenylene phosphonite, bis (2 , 6-di-t-butyl-4-methylphenyl) pentaerythritol di-phosphite, 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite, triphenyl phosphite, tris ( 2,4-di-t-butylphenyl) phosphite, diphenylisodecylphosphite, phenyldiisodecylphosphite, 4,4-butylidene-bis (3-methyl-6-t-butylphenyl-di-tridecyl) phosphite , Cyclic
  • Component (C2) listed above Among organic heat stabilizers, hindered phenol compounds are preferred, and N, N′-hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) Propanamide] is more preferred. When the said hindered phenol compound is used, the polyamide resin composition which is more excellent in heat aging property is obtained.
  • thermoplastic resin (component (A) and component (C3) is used.
  • component (C2) 0.8 to 20 parts by mass of at least one organic heat stabilizer selected from the group consisting of a hindered phenol compound, a hindered amine compound, and an organic phosphorus compound.
  • the content of (C2) is preferably 1 part by mass or more and 10 parts by mass or less, and more preferably 1.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass in total of the components (A) and (C3). 2.5 parts by mass or more and 10 parts by mass or less is more preferable, 4 parts by mass or more and 10 parts by mass or less are more preferable, and 6 parts by mass or more and 10 parts by mass or less are more preferable.
  • the polyamide resin composition of the present embodiment comprises (C3) a crystalline thermoplastic resin having a melting point lower than the melting point of the (A) polyamide resin and / or a Vicat lower than the Vicat softening point of the (A) polyamide resin. It is preferable to contain an amorphous thermoplastic resin having a softening point (hereinafter sometimes referred to as “(C3) component”).
  • plastic resins and thermoplastic elastomers examples include plastic resins and thermoplastic elastomers.
  • the component (C3) include, but are not limited to, polyolefin resins such as polyethylene and polypropylene, polyphenylene ether, thermoplastic polyester resins, polyamide resins, polylactic acid resins, polystyrene, polyvinyl chloride, Examples thereof include fluorine resins such as acrylic resin, polycarbonate resin, and polyacetal resin polytetrafluoroethylene.
  • the component (C3) is preferably a crystalline thermoplastic resin having a melting point lower than the melting point of the component (A) from the viewpoint of the initial strength of the polyamide resin composition of the present embodiment.
  • a polyamide resin or a thermoplastic polyester resin is preferably used, and a polyamide resin is more preferable.
  • the component (C3) only one type of the above-described thermoplastic resins may be used, or two or more types may be used in combination.
  • the content of the component (C3) in the polyamide resin composition is a total of 100 masses of the component (A) and the component (C3) that are thermoplastic resins when the component (C3) is selected as a component. 1 to 50 parts by mass with respect to parts.
  • content of the said (C3) component in a polyamide resin composition is 5 mass with respect to a total of 100 mass parts of the said (A) component and the said (C3) component from a viewpoint of the balance of high temperature rigidity and aging property. It is preferably no less than 50 parts by mass and more preferably no less than 10 parts by mass and no greater than 40 parts by mass, and even more preferably no less than 15 parts by mass and no greater than 35 parts by mass.
  • a polyamide resin having a melting point of less than 240 ° C. more preferably a polyamide resin having a melting point of less than 230 ° C., as the component (C3).
  • polyamide 6 and / or a polyamide resin having a ratio of carbon atoms to the number of nitrogen atoms contained (C / N) is 7 or more and 20 or less. More preferably, it is used.
  • the polyamide resin having a ratio of carbon atoms to the number of nitrogen atoms contained (C / N) of 7 or more and 20 or less is not limited to the following, and examples thereof include PA610 and PA612.
  • the Vicat softening point of the component (C3) is preferably 235 ° C. or lower, more preferably 230 ° C. or lower, and further preferably 220 ° C. or lower.
  • thermoplastic polyester resin that can be used as the component (C3) is not limited to the following, and examples thereof include polyethylene terephthalate resin and polybutylene terephthalate resin.
  • the component (C3) is a polyamide resin in which the ratio (C / N) of the number of carbon atoms to the number of nitrogen atoms contained in the component (C3) is 7 or more and 20 or less from the viewpoint of improving heat aging resistance. It is preferable that The ratio of carbon atoms to the number of nitrogen atoms (C / N) is preferably 7 or more and 18 or less, and more preferably 8 or more and 16 or less. The ratio (C / N) of the number of carbon atoms to the number of nitrogen atoms contained in the component (C3) can be controlled within the above numerical range by adjusting the monomer constituting the polyamide resin.
  • the melting point of the thermoplastic resin (C3) can be measured according to JIS-K7121.
  • the measuring device for example, Diamond DSC manufactured by PERKIN-ELMER can be used.
  • the Vicat softening point of the thermoplastic resin (C3) can be measured according to JIS-K7206.
  • thermoplastic resin component (total of the components (A) and (C3)) is 100 kg.
  • the content of the component (C3) is 20 kg.
  • the polyamide resin composition of the present embodiment preferably contains (C4) acid.
  • the acid as the component (C4) may be an organic acid or an inorganic acid. From the viewpoint of the appearance of the molded product, it is preferable to use an organic acid as the (C4) acid.
  • the organic acid include, but are not limited to, compounds having a carboxyl group, a sulfo group, a hydroxy group, a thiol group, and an enol group.
  • An acid may be used individually by 1 type, and may use 2 or more types together.
  • the compound having a carboxyl group as an acid is not limited to the following, but for example, acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decane Acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, benzoic acid, oxalic acid, cyclohexanedicarboxylic acid, isophthalic acid, terephthalic acid, 1,3,5-tetrabenzenetetracarboxylic acid, adipic acid, dodecanedi Examples include acid, citric acid, tartaric acid, ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid-2 sodium salt, and glu
  • cyclohexanedicarboxylic acid isophthalic acid, terephthalic acid, trimellitic acid, trimellitic anhydride, 1,3,5-tetrabenzenetetracarboxylic acid, 1,2,4-
  • compounds having a plurality of carboxyl groups in one molecule such as cyclohexanetricarboxylic acid, adipic acid, dodecanedioic acid, citric acid, tartaric acid, ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid-2sodium salt.
  • a polyamide resin composition having more excellent physical properties at the time of water absorption can be obtained.
  • the present inventors have found that when sodium acetate is added, the effect of improving physical properties at the time of water absorption is not seen as compared with the case where other carboxylic acids including the carboxylic acids listed above are added. It is thought that when sodium acetate that has already become a sodium salt is added, the effect as a carboxylic acid is not exhibited.
  • the compound having a sulfo group as an acid is not limited to the following, and examples thereof include methanesulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, fluorosulfonic acid, and derivatives thereof. . These may be used alone or in combination of two or more.
  • the compound having a hydroxy group as an acid is not limited to the following, but for example, cyclohexanol, decanol, decanediol, dodecanol, dodecanediol, pentaerythritol, dipentaerythritol, tripentaerythritol, di -Trimethylolpropane, D-mannitol, D-sorbitol, xylitol, phenol, and derivatives thereof. These may be used alone or in combination of two or more.
  • the (C4) acid is preferably a compound having a carboxyl group from the viewpoint of physical properties and productivity during water absorption.
  • the (C4) acid is preferably an aromatic carboxylic acid compound from the viewpoint of productivity.
  • aromatic carboxylic acid compounds include, but are not limited to, isophthalic acid, terephthalic acid, trimellitic acid, 1,3,5-tetrabenzenetetracarboxylic acid, and the like.
  • the molecular weight (Mn) of the (C4) acid is preferably 50 ⁇ Mn ⁇ 1000 from the viewpoint of physical properties and productivity during water absorption. More preferably, 100 ⁇ Mn ⁇ 700, and more preferably 100 ⁇ Mn ⁇ 500.
  • the acid contains a carboxylic acid anhydride-containing unsaturated vinyl monomer as a component constituting the main chain from the viewpoint of physical properties at high temperatures of the polyamide resin composition of the present embodiment, and has a glass transition temperature. It is preferable that Tg exceeds 0 degreeC. Moreover, when (C) component contains a carboxylic acid anhydride containing unsaturated vinyl monomer as a component which comprises a principal chain, it is preferable that it is 60 degreeC ⁇ Tg. When the component (C) is 60 ° C. ⁇ Tg, in the polyamide resin composition of the present embodiment, the effect of improving the physical properties at high temperatures can be obtained more greatly. From the same viewpoint, it is more preferable that 60 ° C. ⁇ Tg ⁇ 200 ° C.
  • the Tg of the component (C) can be measured at a rate of temperature increase of 20 ° C./min using Diamond-DSC manufactured by PERKIN-ELMER in accordance with JIS-K7121.
  • the glass transition temperature Tg should be higher than 0 ° C.
  • the (C4) acid is particularly It is preferably a copolymer of olefin and maleic anhydride.
  • Examples of (C4) acid include, but are not limited to, ethylene-maleic anhydride copolymer, propylene-maleic anhydride copolymer, butadiene-maleic anhydride copolymer, styrene-maleic anhydride, for example.
  • Examples include acid copolymers, acrylonitrile-maleic anhydride copolymers, and the like.
  • an ethylene-maleic anhydride copolymer is preferable from the viewpoint of improving the high temperature physical properties of the polyamide resin composition of the present embodiment.
  • the weight average molecular weight of the (C4) acid is preferably 600,000 or less, more preferably 10,000 or more and 600,000 or less. It is preferably 10,000 or more and 400,000 or less.
  • the thermal stability of the acid is improved, When the polyamide resin composition of this embodiment is subjected to an extrusion process, decomposition and the like can be suppressed.
  • the weight average molecular weight in this specification can be calculated
  • the acid value of the (C4) acid is preferably 0.1 or more, and more preferably 0.2 or more.
  • an acid value is 0.5 or less.
  • the acid value of (C4) acid is 0.1 or more and 0.5 or less, the polyamide resin composition of the present embodiment tends to obtain a more excellent vibration fatigue resistance improvement effect.
  • the acid value of (C4) acid in this specification is based on JIS K0070, (C4) The number of mg of potassium hydroxide required to neutralize the acid present in 1 g of acid is measured. It can ask for.
  • the (C4) acid contained in 100 parts by mass of the thermoplastic resin (total of the (A) component and the (C3) component).
  • the alkali number (X) of the metal halide and the alkaline earth metal halide satisfy the following (formula 1).
  • the polyamide resin composition of the present embodiment is more preferably 0 ⁇ X ⁇ 3, more preferably 0 ⁇ X ⁇ 2, and 0 ⁇ X ⁇ 1. Even more preferred.
  • the acid value of the (C4) acid contained in 100 parts by mass of the thermoplastic resin (total of the components (A) and (C3)) is defined based on JISK0070. That is, acid value: mg number of potassium hydroxide required to neutralize free fatty acid, resin acid and the like contained in 1 g of a sample.
  • the alkali value of the alkaline earth metal is excluded based on JISK0070.
  • thermoplastic resin the total of (A) component and (C3) component
  • the above (Formula 1) is calculated in consideration of the content of the component) and the content of the component (C).
  • thermoplastic resin contained in 100 parts by mass of the thermoplastic resin (the sum of the components (A) and (C3)).
  • alkaline earth metal compound excluding aluminate metal salts, alkali metal halides, alkaline earth metal halides: (Y) satisfies the following (Formula 2) Is preferred.
  • the polyamide resin composition of the present embodiment is more preferably 0 ⁇ Y ⁇ 2, more preferably 0 ⁇ X ⁇ 1.5, and 0 ⁇ Y ⁇ 1.2. Even more preferably.
  • thermoplastic resin (the total of (A) component and (C3) component) is contained in 100 parts by mass” means that the thermoplastic resin ((A) component in the polyamide resin composition of the present embodiment and (B) when the amount of the thermoplastic resin (the sum of the component (A) and the component (C3)) is 100 parts by mass in common.
  • the above (formula 2) is calculated in consideration of the alkali value of the component), the acid value of the acid (C4), and the acid value of the carboxyl group terminal of the polyamide resin (A).
  • (C4) acid It supplements about the relationship between (C4) acid and the carboxylic acid or terminal blocker in (A) component.
  • (A) The carboxylic acid used as a raw material monomer or end-capping agent for polyamide resin is incorporated into the polymer for that purpose. Specifically, it is covalently bonded in the polymer chain.
  • the organic acid component which has the carboxylic acid functional group which is not covalently bonded with the polymer for the purpose is referred to as (C4) acid.
  • an organic acid molecule having 4 or more carboxylic acid functional groups in one molecule exhibits the effects of the present invention even if some of the carboxylic acid functional groups are covalently bonded to the polyamide resin. That is, an organic acid having 1 to 3 carboxylic acid functional groups in one molecule cannot fully exhibit the effects of the present invention when some of the carboxylic acid functional groups are covalently bonded to the polyamide resin.
  • the organic acid having 4 or more groups in one molecule exhibits the effects of the present invention even if a part of the carboxylic acid functional group is covalently bonded to the polyamide resin.
  • the present inventors have four or more carboxylic acid functional groups in one molecule, so that even if some of them are covalently bonded to the polyamide, the remaining carboxylic acid functional groups that are not covalently bonded are present. This is presumed to contribute to the effects of the present invention.
  • Confirmation of the covalent bond between the organic acid and the polymer of the (A) polyamide resin described above is not limited to the following, but can be performed using a technique such as nuclear magnetic resonance (NMR) or IR.
  • NMR nuclear magnetic resonance
  • IR IR
  • the (C4) acid may be added to the (A) polyamide resin at any timing of addition during polymerization and addition during melt kneading. From the viewpoint of improving the productivity of the polyamide resin composition of the present embodiment and improving the physical properties at the time of water absorption, the (C4) acid is preferably added during melt kneading.
  • (D) Inorganic filler excluding alkali metal compounds and / or alkaline earth metal compounds In the polyamide resin composition of the present embodiment, (D) an inorganic filler excluding an alkali metal compound and / or an alkaline earth metal compound (hereinafter sometimes referred to as (D) inorganic filler, (D) component). It is preferable to contain.
  • the content of the component (D) is preferably 10 parts by mass or more and 250 parts by mass or less, with respect to 100 parts by mass of the thermoplastic resin component (total of the components (A) and (C3)). It is more preferable to set it as 150 mass parts or less, and it is still more preferable to set it as 15 mass parts or more and 100 mass parts or less. By setting it within the above range, both the fluidity and appearance characteristics of the polyamide resin composition of the present embodiment tend to be more excellent.
  • the inorganic filler excluding the alkali metal compound and / or alkaline earth metal compound is not limited to the following, but examples thereof include glass fiber, carbon fiber, calcium silicate fiber, potassium titanate fiber, and boron.
  • glass fibers having a circular and non-circular cross section flaky glass, talc (magnesium silicate), mica, kaolin, wollastonite, Titanium oxide, calcium phosphate, calcium carbonate, and calcium fluoride are preferred. More preferred are glass fiber, wollastonite, talc, mica and kaolin, and still more preferred is glass fiber.
  • component (D) described above only one type may be used alone, or two or more types may be used in combination.
  • the number average fiber diameter is 3 to 30 ⁇ m and the weight average fiber length is 100 to 750 ⁇ m from the viewpoint that excellent mechanical properties can be imparted to the polyamide resin composition. More preferably, the aspect ratio of the weight average fiber length to the number average fiber diameter (value obtained by dividing the weight average fiber length by the number average fiber diameter) is 10 to 100.
  • the wollastonite has a number average fiber diameter of 3 to 30 ⁇ m and a weight average fiber length of 10 to 10 from the viewpoint that excellent mechanical properties can be imparted to the polyamide resin composition of the present embodiment. It is preferable that the thickness is 500 ⁇ m and the aspect ratio is 3 to 100. Further, as the talc, mica, and kaolin, those having a number average fiber diameter of 0.1 to 3 ⁇ m are preferable from the viewpoint that excellent mechanical properties can be imparted to the polyamide resin composition of the present embodiment.
  • the number average fiber diameter and the weight average fiber length in the present specification can be determined as follows. That is, the polyamide resin composition is put into an electric furnace, the contained organic matter is incinerated, and, for example, 100 or more (D) inorganic fillers are arbitrarily selected from the residue, and these fiber diameters are observed by SEM. The number average fiber diameter can be obtained by measuring the above and calculating the average value.
  • the inorganic filler (D) may be surface-treated with a silane coupling agent or the like.
  • the silane coupling agent include, but are not limited to, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyl.
  • Examples include aminosilanes such as dimethoxysilane; mercaptosilanes such as ⁇ -mercaptopropyltrimethoxysilane and ⁇ -mercaptopropyltriethoxysilane; epoxysilanes; vinylsilanes.
  • a silane coupling agent may be used individually by 1 type, and may use 2 or more types together. Among the silane coupling agents, aminosilanes are more preferable from the viewpoint of affinity with the resin.
  • the said glass fiber contains the sizing agent further.
  • a sizing agent is a component applied to the surface of glass fiber.
  • the sizing agent a copolymer containing a carboxylic acid anhydride-containing unsaturated vinyl monomer and an unsaturated vinyl monomer excluding the carboxylic acid anhydride-containing unsaturated vinyl monomer as a structural unit, an epoxy compound, Examples thereof include polycarbodiimide compounds, polyurethane resins, homopolymers of acrylic acid, copolymers of acrylic acid and other copolymerizable monomers, and salts thereof with primary, secondary, and tertiary amines.
  • the unsaturated vinyl monomer excluding the carboxylic acid anhydride-containing unsaturated vinyl monomer and the carboxylic acid anhydride-containing unsaturated vinyl monomer.
  • the unsaturated vinyl monomer excluding the carboxylic acid anhydride-containing unsaturated vinyl monomer and the carboxylic acid anhydride-containing unsaturated vinyl monomer.
  • the unsaturated vinyl monomer excluding the carboxylic acid anhydride-containing unsaturated vinyl monomer and the carboxylic acid anhydride-containing unsaturated vinyl monomer.
  • a copolymer containing an unsaturated vinyl monomer excluding the body as a constituent unit is more preferable.
  • the carboxylic anhydride Among the copolymers containing the carboxylic anhydride-containing unsaturated vinyl monomer and the unsaturated vinyl monomer excluding the carboxylic anhydride-containing unsaturated vinyl monomer as constituent units, the carboxylic anhydride
  • the contained unsaturated vinyl monomer is not limited to the following, and examples thereof include maleic anhydride, itaconic anhydride and citraconic anhydride, and maleic anhydride is preferable.
  • the unsaturated vinyl monomer excluding the carboxylic anhydride-containing unsaturated vinyl monomer means an unsaturated vinyl monomer different from the carboxylic anhydride-containing unsaturated vinyl monomer.
  • Examples of the unsaturated vinyl monomer excluding the carboxylic anhydride-containing unsaturated vinyl monomer include, but are not limited to, styrene, ⁇ -methylstyrene, ethylene, propylene, butadiene, isoprene, Examples include chloroprene, 2,3-dichlorobutadiene, 1,3-pentadiene, cyclooctadiene, methyl methacrylate, methyl acrylate, ethyl acrylate, and ethyl methacrylate. Of these, styrene and butadiene are preferred.
  • a copolymer of maleic anhydride and butadiene selected from the group consisting of a copolymer of maleic anhydride and butadiene, a copolymer of maleic anhydride and ethylene, a copolymer of maleic anhydride and styrene, and a mixture thereof. It is more preferable that it is 1 type or more.
  • the copolymer containing the carboxylic acid anhydride-containing unsaturated vinyl monomer and the unsaturated vinyl monomer excluding the carboxylic acid anhydride-containing unsaturated vinyl monomer as constituent units is the polyamide of this embodiment.
  • the weight average molecular weight is preferably 2,000 or more. More preferably, it is 2,000 to 1,000,000.
  • the weight average molecular weight in this specification can be measured by GPC (gel permeation chromatography).
  • epoxy compound examples include, but are not limited to, ethylene oxide, propylene oxide, butene oxide, pentene oxide, hexene oxide, heptene oxide, octene oxide, nonene oxide, decene oxide, undecenoxide, Aliphatic epoxy compounds such as dodecene oxide, pentadecene oxide, eicosene oxide; glycidol, epoxypentanol, 1-chloro-3,4-epoxybutane, 1-chloro-2-methyl-3,4-epoxybutane, 1,4-dichloro-2,3-epoxybutane, cyclopentene oxide, cyclohexene oxide, cycloheptene oxide, cyclooctene oxide, methylcyclohexene oxide, vinyl Alicyclic epoxy compounds such as hexene oxide and epoxidized cyclohexene methyl alcohol; Terpene epoxy compounds such as pinene oxide; Aromatic epoxy
  • the polycarbodiimide compound is a compound containing one or more carbodiimide groups (—N ⁇ C ⁇ N—), that is, a compound obtained by condensing a carbodiimide compound.
  • the polycarbodiimide compound preferably has a degree of condensation of 1 to 20, and more preferably 1 to 10. When the degree of condensation is in the range of 1 to 20, a good aqueous solution or aqueous dispersion can be obtained. Further, when the degree of condensation is in the range of 1 to 10, a better aqueous solution or aqueous dispersion can be obtained.
  • the said polycarbodiimide compound is a polycarbodiimide compound which has a polyol segment partially. By having a polyol segment partially, the polycarbodiimide compound is easily water-soluble and can be more suitably used as a sizing agent for glass fibers and carbon fibers.
  • the carbodiimide compound that is, the compound containing various carbodiimide groups (—N ⁇ C ⁇ N—) is obtained by converting a diisocyanate compound into a known carbodiimidization catalyst such as 3-methyl-1-phenyl-3-phospholene-1-oxide. It can be obtained by decarboxylation in the presence.
  • diisocyanate compound aromatic diisocyanates, aliphatic diisocyanates and alicyclic diisocyanates, and mixtures thereof can be used.
  • diisocyanate compound include, but are not limited to, for example, 1,5-naphthalene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-diphenyldimethylmethane diisocyanate, 1,3-phenylene diisocyanate, , 4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, hexamethylene diisocyanate, cyclohexane-1,4 -Diisocyanate, xylylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'
  • carbodiimide compound which has two isocyanate groups at the terminal is obtained by carbodiimidizing these diisocyanate compounds.
  • dicyclohexylmethane carbodiimide can be suitably used from the viewpoint of improving reactivity.
  • a polycarbodiimide compound having one isocyanate group at the terminal can be obtained by a method in which a monoisocyanate compound is converted into carbodiimide or a method in which an equimolar amount is reacted with a polyalkylene glycol monoalkyl ether to form a urethane bond. It is done.
  • the monoisocyanate compound include, but are not limited to, hexyl isocyanate, phenyl isocyanate, and cyclohexyl isocyanate.
  • the polyalkylene glycol monoalkyl ether described above include, but are not limited to, polyethylene glycol monomethyl ether, polyethylene glycol monoethyl ether, and the like.
  • the polyurethane resin is not limited to the following as long as it is generally used as a sizing agent.
  • m-xylylene diisocyanate XDI
  • HMDI 4,4′-methylenebis (cyclohexyl isocyanate) Nart)
  • IPDI isophorone diisocyanate
  • the acrylic acid homopolymer (polyacrylic acid) preferably has a weight average molecular weight of 1,000 to 90,000, more preferably 1,000 to 25,000, from the viewpoint of affinity with the resin. is there.
  • the “other copolymerizable monomer” that forms a copolymer of the acrylic acid and another copolymerizable monomer is not limited to the following, but, for example, a monomer having a hydroxyl group and / or a carboxyl group Among them, one or more selected from the group consisting of acrylic acid, maleic acid, methacrylic acid, vinyl acetic acid, crotonic acid, isocrotonic acid, fumaric acid, itaconic acid, citraconic acid and mesaconic acid are mentioned (provided that acrylic acid is used) Except for only). In addition, it is preferable to have 1 or more types of ester monomers among the monomers described above.
  • the aforementioned acrylic acid polymers may be in the form of salts.
  • the polymer salt of acrylic acid includes, but is not limited to, primary, secondary or tertiary amines. Specific examples include triethylamine, triethanolamine, and glycine.
  • the degree of neutralization is preferably 20 to 90%, and preferably 40 to 60% from the viewpoint of improving the stability of the mixed solution with other concomitant drugs (such as a silane coupling agent) and reducing the amine odor. Is more preferable.
  • the weight average molecular weight of the acrylic acid polymer forming the salt is not particularly limited, but is preferably in the range of 3,000 to 50,000. 3,000 or more are preferable from the viewpoint of improving the converging property of glass fiber or carbon fiber, and 50,000 or less are preferable from the viewpoint of improving the mechanical properties in the polyamide resin composition of the present embodiment.
  • the above-described sizing agent can be prepared by using a known method such as a roller-type applicator in a known glass fiber or carbon fiber manufacturing process.
  • the method of making it react to a fiber or carbon fiber and making it react continuously by drying the manufactured fiber strand is mentioned.
  • the fiber strand may be used as a roving as it is, or may be used as a chopped glass strand by further obtaining a cutting step.
  • the sizing agent is preferably imparted (added) in an amount corresponding to 0.2 to 3% by mass, more preferably 0.3 to 2% by mass (added) with respect to 100% by mass of glass fiber or carbon fiber.
  • the addition amount of the bundling agent is preferably 0.2% by mass or more as a solid content with respect to 100% by mass of the glass fiber or carbon fiber. On the other hand, it is preferable that it is 3 mass% or less from a viewpoint of the thermal stability improvement of the polyamide resin composition of this embodiment.
  • the strand may be dried after the cutting step, or after the strand is dried, the cutting step may be performed.
  • the polyamide resin composition of the present embodiment may further contain other components as necessary within a range not impairing the effects of the present invention.
  • the other components include, but are not limited to, ultraviolet absorbers, photodegradation inhibitors, plasticizers, lubricants, mold release agents, nucleating agents, flame retardants, colorants, dyes, and pigments. , And other thermoplastic resins.
  • the above-mentioned other components are greatly different in properties, there are various suitable contents for each component that hardly impair the effects of the present embodiment. A person skilled in the art can easily set a suitable content for each of the other components described above.
  • the number average molecular weight (Mn) of the polyamide resin composition of the present embodiment is preferably 10,000 or more from the viewpoint of mechanical properties and heat aging resistance.
  • the number average molecular weight of the polyamide resin composition is more preferably 12000 or more, and further preferably 15000 or more.
  • the number average molecular weight in this specification can be determined using gel permeation chromatography (GPC), using the measurement sample as a polyamide resin composition, and using hexafluoroisopropanol (HFIP) as a solvent.
  • an alkali metal compound is obtained by (A) a polyamide resin being melted by a single-screw or multi-screw extruder. And / or a method of kneading an alkaline earth metal compound (excluding an aluminate metal salt, an alkali metal halide, and an alkaline earth metal halide) is preferably applied.
  • Mw / Mn Molecular weight distribution of polyamide resin composition (Mw / Mn)
  • Mw / Mn is 2.0 or more
  • Mw / Mn after heat aging at 120 ° C. for 1000 hours is preferably 3.0 or more.
  • the Mw / Mn before the heat aging is more preferably 2.2 or more, and further preferably 2.4 or more.
  • Mw / Mn after heat aging at 120 ° C. for 1000 hours is more preferably 3.2 or more, and still more preferably 3.4 or more.
  • the acid in order to set Mw / Mn to 2.0 or more, (C4) the acid is the above-mentioned “carboxylic acid anhydride-containing unsaturated vinyl unit as the component constituting the main chain”. It is effective to add an “organic acid containing a monomer and having a glass transition temperature Tg exceeding 0 ° C.”. Moreover, adding the above-mentioned “organic acid containing a carboxylic acid anhydride-containing unsaturated vinyl monomer as a component constituting the main chain and having a glass transition temperature Tg exceeding 0 ° C.” at 120 ° C. This is a suitable method for setting Mw / Mn after thermal aging for 1000 hours to 3.0 or more.
  • the polyamide resin composition of the present embodiment includes a molecule having a molecular weight of 100,000 or more having a branched structure of one or more points as analyzed by GPC-MALS-VISCO method, and the molecule having a molecular weight of 100,000 or more is a carboxylic anhydride functional group. It is preferable that it contains.
  • the number of branched structures of molecules having a molecular weight of 100,000 or more can be determined by performing analysis by the GPC-MALS-VISCO method described later.
  • the number of branch points is calculated based on the trifunctional random branch theory. I do.
  • the polyamide resin composition of this embodiment by including the molecule
  • numerator with a molecular weight of 100,000 or more contained in the polyamide resin composition of this embodiment has a branched structure of 2 points or more, and it is more preferable to have a branched structure of 3 points or more.
  • ⁇ GPC-MALS-VISCO measuring device> Apparatus: Gel permeation chromatograph-Multi-angle light scattering photometer Configuration pump: Agilent MODEL 1100 Detector: Differential refractometer Optilab rEX manufactured by Wyatt Technology Multi-angle light scattering detector: DAWN HELEOS made by Wyatt Technology Viscosity detector: VISCOSTAR manufactured by Wyatt Technology Column: shodex HFIP-806M (2 pieces) Temperature: Column 40 ° C Solvent: hexafluoroisopropanol (HFIP: 5 mM sodium trifluoroacetate added) Flow rate: 0.5 mL / min Injection volume: 0.200 mL Data processing: Wyatt Technology (ASTRA) data processing system
  • Whether the molecule having a molecular weight of 100,000 or more contains a carboxylic anhydride functional group can be confirmed by a detection method described later.
  • ⁇ Method for detecting carboxylic anhydride functional group of molecule having molecular weight of 100,000 or more in polyamide resin composition First, using a gel permeation chromatograph (solvent: hexafluoroisopropanol (HFIP)), molecules having a molecular weight of 100,000 or more are fractionated. Next, after the separated solution is dried by a rotary evaporator, 1H-NMR and IR are used to confirm a carboxylic anhydride functional group, for example, a maleic anhydride functional group.
  • HFIP hexafluoroisopropanol
  • a molecule having a molecular weight of 100,000 or more has a branched structure of one or more points, and a molecule having a molecular weight of 100,000 or more has a carboxylic anhydride functional group.
  • the (C4) acid the above-mentioned “organic acid containing a carboxylic acid anhydride-containing unsaturated vinyl monomer as a component constituting the main chain and having a glass transition temperature Tg of greater than 0 ° C. It is effective to add “
  • the polyamide resin composition of the present embodiment preferably has a mass loss of 10% or less when left at 300 ° C. for 1 hour using a thermogravimetric analysis (TGA) apparatus in an inert gas atmosphere. It is more preferably 9% or less, and further preferably 8% or less.
  • TGA thermogravimetric analysis
  • the thermogravimetric analysis (TGA) is not particularly limited, and can be performed using, for example, TGA-50 manufactured by Shimadzu Corporation.
  • C4 in order to make the mass reduction amount 10% or less when left at 300 ° C. for 1 hour using a thermogravimetric analysis (TGA) apparatus in an inert gas atmosphere, C4) It is effective to use an acid having high thermal stability.
  • (C4) acid has high thermal stability means that (C4) acid used in the polyamide resin composition of the present embodiment is measured using a thermogravimetric analysis (TGA) apparatus in an inert gas atmosphere. This means that the temperature at which the mass reduction is 5% is high.
  • the temperature at which the 5% mass is reduced is preferably 260 ° C or higher, more preferably 270 ° C or higher, and further preferably 280 ° C or higher.
  • the content of the reducing phosphorus compound is preferably 200 ppm or less in terms of the phosphorus element content. Since the denaturation of the component (B) is suppressed when the content of the reducing phosphorus compound is 200 ppm or less in terms of the content of phosphorus element, a polyamide resin composition having more excellent heat aging resistance is obtained. Obtainable. From the same viewpoint, the content of the reducible phosphorus compound is more preferably 100 ppm or less in terms of the content of the phosphorus element, and the content of the reducible phosphorus compound in terms of the content of the phosphorus element. More preferably, it is 60 ppm or less. The content of the reducing phosphorus compound in terms of phosphorus element can be determined by the method described in Examples described later.
  • the polyamide resin composition of the present embodiment includes (A) a polyamide resin, (B) an alkali metal compound and / or an alkaline earth metal compound (provided that the metal salt of aluminate, the halide of the alkali metal, the halogen of the alkaline earth metal) And (C) at least one compound selected from the group consisting of the following (C1) to (C4); (C1) a salt of one or more metal elements selected from the group consisting of Group 3, Group 4, Group 11, Group 13, Group 14 of the Periodic Table (C2) A hindered phenol compound, a hindered amine compound, And at least one organic heat stabilizer selected from the group consisting of organic phosphorus compounds (C3) a crystalline thermoplastic resin having a melting point lower than the melting point of component (A) and / or the Vicat softening point of component (A) Amorphous thermoplastic resin having a low Vicat softening point (C4) Acid and, if necessary, (C1-2
  • an aqueous solution of (B) an alkali metal compound and / or an alkaline earth metal compound (excluding an aluminate metal salt, an alkali metal halide, an alkaline earth metal halide) and (A) a polyamide resin pellet The polyamide resin pellets and the component (C), which are prepared by thoroughly stirring and mixing, and then drying the water, are supplied from the supply port of the extruder and melt-kneaded.
  • (B) From the viewpoint of dispersibility of alkali metal compounds and / or alkaline earth metal compounds (excluding aluminate metal salts, alkali metal halides, alkaline earth metal halides), (B) alkali metal
  • the addition of the compound and / or alkaline earth metal compound is carried out by adding (B) the alkali metal compound and / or alkaline earth metal compound in a state where (A) the polyamide resin is melted by a single-screw or multi-screw extruder.
  • a method of kneading is preferred. That is, the component (B) is preferably added to the (A) polyamide resin by melt kneading.
  • (C4) acid is preferably kneaded with (C4) acid in a state where (A) polyamide resin is melted by a single-screw or multi-screw extruder. That is, it is preferable to add the (C4) acid to the (A) polyamide resin by melt kneading.
  • an alkali metal compound and / or an alkaline earth metal compound (however, a metal salt of an aluminate, a halide of an alkali metal, a halogen of an alkaline earth metal) It is preferable to have a step of adding in a master batch.
  • (C4) acid having a higher concentration than (C4) acid added to the final polyamide resin composition is melt-kneaded with (A) polyamide resin to form pellets, and then melted with other components. It is more preferable from the viewpoint of productivity to produce the final polyamide resin composition by kneading.
  • (B) alkali metal compound and / or alkaline earth metal compound (provided that the final addition to the target polyamide resin composition (however, metal aluminate, alkali metal halide, alkaline earth metal halogen) And (C4) higher concentrations of (B) alkali metal compounds and / or alkaline earth metal compounds (however, metal aluminates, halides of alkali metals, halogens of alkaline earth metals) And (C4) acid is melt-kneaded into (A) polyamide resin and pelletized, and then melt-kneaded with other components to finally produce the desired polyamide resin composition. From the viewpoint of improving water absorption properties, it is more preferable.
  • the molded product of this embodiment includes the polyamide resin composition according to the above embodiment.
  • the molded article of this embodiment is not specifically limited, For example, it is obtained by injection-molding a polyamide resin composition.
  • the molded product in the present embodiment is not limited to the following, but for example, various types such as for automobiles, machine industry, electrical / electronic, industrial materials, industrial materials, daily / household products, etc. It can be suitably used as a material part for applications. In particular, it is suitably used as an automotive material part.
  • the molded product of this embodiment has excellent heat aging resistance.
  • polyamide resin composition (A) a polyamide resin, (B) an alkali metal compound and / or an alkaline earth metal compound (excluding an aluminate metal salt, an alkali metal halide, an alkaline earth metal halide), and (C4 )
  • a polyamide resin composition containing an acid By using a polyamide resin composition containing an acid, a molded product having excellent heat aging resistance and excellent mechanical properties upon water absorption can be produced.
  • (B) an alkali metal compound and / or an alkaline earth metal compound (however, an aluminate metal salt, an alkali metal halide, or an alkaline earth metal halide is excluded from (A) a polyamide resin.
  • the heat aging resistance and water absorption properties of the polyamide resin composition can be suitably used for automotive material parts.
  • carbonic acid is used as (B) an alkali metal compound and / or an alkaline earth metal compound (excluding an aluminate metal salt, an alkali metal halide, and an alkaline earth metal halide).
  • the inventors of the present invention exclude (B) an alkali metal compound and / or an alkaline earth metal compound (however, an aluminate metal salt, an alkali metal halide, and an alkaline earth metal halide) from the polyamide resin composition. It was discovered that the heat aging resistance of the polyamide resin composition is improved to such an extent that it can be suitably used for automobile material parts. That is, in this embodiment, an alkali metal compound and / or an alkaline earth metal compound (however, excluding an aluminate metal salt, an alkali metal halide, and an alkaline earth metal halide) has heat aging resistance.
  • a polyamide resin composition, a molded article, and an automotive material part used as an additive for improving, and a method for producing a polyamide composition are provided.
  • the measuring methods for evaluating the samples according to Examples and Comparative Examples are as follows. ⁇ Measuring method ⁇ (98% sulfuric acid relative viscosity ( ⁇ r)) The 98% sulfuric acid relative viscosity ( ⁇ r) of the (A) polyamide resin in Examples and Comparative Examples (hereinafter also simply referred to as “examples”) to be described later was measured according to JISK6920.
  • melting point In Examples and Comparative Examples described later, the melting points of the resins were measured in accordance with JIS-K7121, using a Damn-DSC manufactured by PERKIN-ELMER as follows. The measurement was performed under a nitrogen atmosphere. About 10 mg of the sample was heated from 50 ° C. to 300 ° C. at a temperature increase rate of 20 ° C./min. The endothermic peak temperature appearing at this time was defined as the melting point.
  • Terminal group concentration The end group concentration (amino end group concentration, carboxyl end group concentration) of (A) polyamide resin in Examples and Comparative Examples described later was determined by 1H-NMR measurement at 60 ° C. using a bisulfate solvent. As the measuring device, ECA500 manufactured by JEOL Ltd. was used, and (A) the terminal group concentration was calculated from the integrated value of the corresponding peak of the amino terminal group and carboxyl terminal group of the polyamide resin, and (amino terminal group concentration / carboxyl) (End group concentration) was obtained.
  • a tensile test was performed at a tensile speed of 5 mm / min in accordance with ISO 527, and an initial tensile strength (MPa) and an initial tensile elongation (%) were measured.
  • the multipurpose test piece (A type) in the above (Initial Tensile Strength) was heated at 230 ° C. or 180 ° C. in a hot air circulation oven to be thermally aged. After being taken out of the oven after a predetermined time and cooled at 23 ° C. for 24 hours or more, a tensile test is performed by the same method as described above at a tensile speed of 5 mm / min in accordance with ISO 527, and each tensile strength (MPa ) was measured.
  • the heating time (h: hour) at which the tensile strength is reduced by half was determined as “strength half-life at aging at 230 ° C.” and “strength half-life at aging at 180 ° C.”.
  • the molded piece was molded. At that time, the injection and pressure holding time was set to 25 seconds and the cooling time was set to 15 seconds. Moreover, the mold temperature and the cylinder temperature were set to the temperatures described in the later-described (A) polyamide resin production example.
  • the multi-purpose test piece (A type) molded as described above was completely immersed in distilled water and allowed to absorb water at 80 ° C. for 48 hours.
  • the multipurpose test piece (A type) in the above (Initial tensile strength) was heat-aged for 100 hours under a temperature condition of 150 ° C. in a hot air circulating oven. Then, after taking out from the hot air circulation oven and cooling at 23 ° C. for 24 hours or more, the b value of the multi-purpose test piece (A type) corresponding to each example was measured using a color difference meter ZE-2000 manufactured by Nippon Denshoku Co., Ltd. It was measured by the reflection method.
  • the particle size was determined by measuring the particle size distribution in terms of volume using software attached to the apparatus.
  • the content (% by mass) of particles having a particle diameter of 1 ⁇ m or more in the alkali metal and / or alkaline earth metal compound (B) is [integrated value (%) of relative particle amount of particles having a particle diameter of 1 ⁇ m or more ⁇ 100. / Integrated value of relative particle amount of entire system (%)].
  • the multipurpose test piece (A type) in the above is immersed in warm water at 80 ° C. for 60 minutes, then immersed in water at 23 ° C. for 15 minutes, and then 30 ° C. in an atmosphere of 23 ° C. and 50% RH. A sample left for a minute was used as a sample. This sample was mounted on a stainless steel round bar having a diameter of 7 mm with the center as a fulcrum, and 500 g of lead was suspended at both ends.
  • a gauze having a width of 3 cm was placed on the fulcrum, and 2 mL of a 30% calcium chloride aqueous solution was soaked therein, and left in an oven maintained at 100 ° C. for 2 hours. During this time, 2 mL of 30% calcium chloride aqueous solution was replenished every 30 minutes. Next, the load was removed, the substrate was washed with water, dried, and observed for occurrence of cracks with a microscope, and evaluated according to the following criteria. ⁇ : There were no cracks or two or less small cracks. ⁇ : 5 to 9 cracks were observed.
  • Mn and Mw after aging at 120 ° C. for 1000 hours are obtained by heating the multipurpose test piece (A type) in the above (initial tensile strength) at 120 ° C. in a hot air circulation oven, After 1000 hours, the sample was taken out from the oven, cooled at 23 ° C. for 24 hours or more, and then measured by the above method using the test piece.
  • the multipurpose test piece (A type) was allowed to stand for 72 hours in a high-temperature and high-humidity tank set at a temperature of 70 ° C. and a humidity of 95%. Then, visually, the case where there was no bleed or a very slight bleed was evaluated as ⁇ , and the case where the bleed was conspicuous or the case where there was much bleed was evaluated as x.
  • TGA Thermal mass analysis
  • TGA Thermal mass spectrometry
  • alkali value of alkali metal compound and / or alkaline earth metal compound / acid value of acid
  • the (B) alkali metal compound and / or alkaline earth metal compound (provided that the metal salt of aluminate, alkali metal halide, alkaline earth) is contained in a total of 100 parts by mass of the component (A) and the component (C3)
  • the alkali number of metal halides is defined based on JISK0070. That is, alkali number: the number of mg of potassium hydroxide required to neutralize acetic acid bonded to a hydroxyl group when 1 g of a sample is acetylated.
  • the acid value of the (C4) acid contained in a total of 100 parts by mass of the component (A) and the component (C3) is defined based on JISK0070. That is, acid value: the number of mg of potassium hydroxide required to neutralize free fatty acids, resin acids and the like contained in 1 g of a sample. These ratios were calculated as ((alkali value of alkali metal compound and / or alkaline earth metal compound) / acid value of acid).
  • the acid value of the carboxyl group terminal of the polyamide resin is defined based on JIS K0070. That is, acid value: the number of mg of potassium hydroxide required to neutralize free fatty acids, resin acids and the like contained in 1 g of a sample.
  • the acid value of the acid + the acid value of the carboxyl group terminal is the sum of the acid value of the organic acid and the acid value of the carboxyl group terminal, and the ratio of these to the alkali value of the alkali metal compound and / or alkaline earth metal compound is ((Alkali value of alkali metal compound and / or alkaline earth metal compound) / (acid value of acid + acid value of carboxyl group terminal of polyamide resin)).
  • ⁇ GPC-MALS-VISCO measuring device> Apparatus: Gel permeation chromatograph-Multi-angle light scattering photometer Configuration pump: Agilent MODEL 1100 Detector: Differential refractometer Optilab rEX manufactured by Wyatt Technology Multi-angle light scattering detector: DAWN HELEOS made by Wyatt Technology Viscosity detector: VISCOSTAR manufactured by Wyatt Technology Column: shodex HFIP-806M (2 pieces) Temperature: Column 40 ° C Solvent: hexafluoroisopropanol (HFIP: 5 mM sodium trifluoroacetate added) Flow rate: 0.5 mL / min Injection volume: 0.200 mL Data processing: Wyatt Technology (ASTRA) data processing system
  • concentration of the reducible phosphorus compound with respect to a polyamide resin can be specifically measured by the method according to the procedure described in following (1) and (2).
  • concentration of the reducible phosphorus compound with respect to a polyamide resin can be specifically measured by the method according to the procedure described in following (1) and (2).
  • sodium hypophosphite is a compound containing one phosphorus element
  • the phosphorus element molar concentration of the sodium hypophosphite can be regarded as the phosphorus element molar concentration of the reducing phosphorus compound.
  • Concentration of phosphorus element> The sample (polyamide resin composition) was weighed so that the content of the (A) polyamide resin was 0.5 g, 20 mL of concentrated sulfuric acid was added, and wet decomposition was performed on the heater.
  • the concentration ratio was calculated by measuring a hypophosphite ion standard solution, a phosphite ion standard solution, and a phosphate ion standard solution with known concentrations in the same manner to create a calibration curve.
  • the phosphorus element concentration X of the reducing phosphorus compound was determined by converting to the phosphorus element concentration (mol) with respect to the polyamide resin (A) content of 10 6 g in the polyamide resin composition using the following formula.
  • Concentration X CP ⁇ (CP1 + CP2) / (CP1 + CP2 + CP3) in terms of phosphorus element of the reducing phosphorus compound
  • CP Concentration (mol) of phosphorus element with respect to 10 6 g of (A) polyamide resin content in the polyamide resin composition determined in (1)
  • CP1 Concentration (molar) ratio of hypophosphite ion obtained in (2)
  • CP2 Concentration (molar) ratio of phosphite ion obtained in (2)
  • CP3 Concentration of phosphate ion obtained in (2) (Mole) Ratio
  • Table 15 and Table 19 the molar concentration [mmol / kg] of phosphorus element with respect to 10 6 g of (A) polyamide resin content in the polyamide resin composition produced in the examples described later.
  • sodium hypophosphite is a compound containing one phosphorus element
  • the phosphorus element molar concentration of the sodium hypophosphite can be equated with the molar concentration of the reducing phosphorus compound.
  • the raw materials used in the examples and comparative examples are as follows.
  • An aqueous solution of the raw material of the polyamide 66 (hereinafter sometimes simply referred to as an aqueous solution of the raw material) was charged into a 70 L autoclave having a stirring device and having a discharge nozzle at the bottom. Thereafter, the mixture was sufficiently stirred at a temperature of 50 ° C. Next, the atmosphere was replaced with nitrogen, and then the temperature was raised from 50 ° C.
  • the amino end group concentration / carboxyl end group concentration was 0.64.
  • fusing point was 264 degreeC and Vicat softening point was 238 degreeC.
  • the mold temperature was set to 80 ° C.
  • the cylinder temperature was set to 290 ° C.
  • ⁇ Polyamide resin A-II (PA66)> An additional 900 g of adipic acid was added to the aqueous raw material solution. With respect to other conditions, ⁇ polyamide resin A-II> was produced by the same production method as in ⁇ polyamide resin AI>. ⁇ Polyamide resin A-II> had a 98% sulfuric acid relative viscosity of 2.2. The amino end group concentration was 33 ⁇ mol / g, and the carboxyl end group concentration was 107 ⁇ mol / g. That is, the amino end group concentration / carboxyl end group concentration was 0.3. Moreover, melting
  • ⁇ Polyamide resin A-III (PA66)> An additional 900 g of hexamethylenediamine was added to the aqueous solution of the raw material. With respect to other conditions, ⁇ polyamide resin A-III> was produced by the same production method as in ⁇ polyamide resin AI>. ⁇ Polyamide resin A-III> had a 98% sulfuric acid relative viscosity of 2.4. The amino end group concentration was 78 ⁇ mol / g, and the carboxyl end group concentration was 52 ⁇ mol / g. That is, the amino end group concentration / carboxyl end group concentration was 1.5. Moreover, melting
  • ⁇ Polyamide resin A-IV (PA66 / 6T)> was produced according to the production example of JP-T-2013-501094.
  • ⁇ Polyamide resin A-IV> had a 98% sulfuric acid relative viscosity of 2.9.
  • the amino end group concentration was 42 ⁇ mol / g, and the carboxyl end group concentration was 65 ⁇ mol / g. That is, the amino end group concentration / carboxyl end group concentration was 0.6.
  • the mold temperature was set to 80 ° C. and the cylinder temperature was set to 290 ° C.
  • ⁇ Polyamide resin AV (PA9T)> ⁇ Polyamide resin AV (PA9T)> was produced according to the production example of JP2013-40346A.
  • ⁇ Polyamide resin AV> had a 98% sulfuric acid relative viscosity of 2.9 and a melting point of 304 ° C.
  • the amino end group concentration was 42 ⁇ mol / g, and the carboxyl end group concentration was 52 ⁇ mol / g. That is, the amino end group concentration / carboxyl end group concentration was 0.8.
  • the mold temperature was set to 120 ° C.
  • the cylinder temperature was set to 330 ° C.
  • PA46 Polyamide resin A-VI
  • KS200 Styl (registered trademark)
  • the mold temperature was set to 120 ° C.
  • the cylinder temperature was set to 300 ° C.
  • ((C1) component) ⁇ C1-I copper iodide> A reagent manufactured by Wako Pure Chemical Industries, Ltd. was used.
  • ⁇ C1-II copper acetate> A reagent manufactured by Wako Pure Chemical Industries, Ltd. was used.
  • ((C2) component) ⁇ C2-I hindered phenol compound> IRGANOX 1098 manufactured by Ciba Japan Co., Ltd. was used.
  • ⁇ C2-II hindered amine compound> NYLOSTAB S-EED manufactured by Clariant was used.
  • ⁇ C2-III organophosphorus compound> IRGAFOS168 manufactured by Ciba Japan Co., Ltd. was used.
  • ⁇ Thermoplastic resin C3-III> had a 98% sulfuric acid relative viscosity of 2.3 and a melting point of 215 ° C.
  • the amino end group concentration was 58 ⁇ mol / g, and the carboxyl end group concentration was 79 ⁇ mol / g. That is, the amino end group concentration / carboxyl end group concentration was 0.7.
  • the melting point was 224 ° C.
  • ⁇ Thermoplastic resin C3-V (PC)> “Panlite” L-1225Y manufactured by Teijin Limited was used.
  • the Vicat softening point was 148 ° C.
  • ((C4) component) ⁇ C4-I> Citric acid manufactured by Tokyo Chemical Industry Co., Ltd. was used. Note that the temperature at which the mass decreased by 5% was 191 ° C. by measurement using a thermogravimetric analysis (TGA) apparatus in an inert gas atmosphere.
  • TGA thermogravimetric analysis
  • ⁇ C4-II> Ethylenediaminetetraacetic acid manufactured by Tokyo Chemical Industry Co., Ltd. was used.
  • ⁇ C4-III> Adipic acid manufactured by Tokyo Chemical Industry Co., Ltd. was used.
  • ⁇ C4-IV> Dipentaerythritol manufactured by ALFA AESAR was used.
  • ⁇ C4-V> Isophthalic acid manufactured by Tokyo Chemical Industry Co., Ltd. was used.
  • thermogravimetric analysis (TGA) apparatus in an inert gas atmosphere.
  • TGA thermogravimetric analysis
  • Terephthalic acid manufactured by Tokyo Chemical Industry Co., Ltd. was used.
  • the temperature at which the mass decreased by 5% was 293 ° C. by measurement using a thermogravimetric analysis (TGA) apparatus in an inert gas atmosphere.
  • TGA thermogravimetric analysis
  • Acetic acid manufactured by Tokyo Chemical Industry Co., Ltd. was used.
  • ⁇ C4-VIII> 1,3,5-benzenetetracarboxylic acid manufactured by Tokyo Chemical Industry Co., Ltd. was used.
  • ⁇ C4-X> Sebacic acid manufactured by Tokyo Chemical Industry Co., Ltd. was used. Note that the temperature at which the mass decreased by 5% was 227 ° C. by measurement using a thermogravimetric analysis (TGA) apparatus in an inert gas atmosphere.
  • TGA thermogravimetric analysis
  • An ethylene-maleic anhydride copolymer having a weight average molecular weight of 60,000, Tg of 150 ° C., and acid value of 0.28 was used.
  • ⁇ C4-XII> An ethylene-maleic anhydride copolymer having a weight average molecular weight of 400,000, Tg of 150 ° C., and acid value of 0.28 was used.
  • ⁇ C4-XIII> A styrene-maleic anhydride copolymer having a weight average molecular weight of 60,000, Tg of 250 ° C., and acid value of 0.1 was used.
  • ⁇ C4-XIV> A maleic anhydride grafted polypropylene having a weight average molecular weight of 100,000, Tg of 100 ° C., and acid value of 0.01 was used.
  • the water solubility is 7.7 g / 100 mL. ⁇ C4-XVII> Potassium dihydrogen phosphate manufactured by Wako Pure Chemical Industries, Ltd. was used. The water solubility is 5.5 g / 100 mL. ⁇ C4-XVIII> Boric acid manufactured by Tokyo Chemical Industry Co., Ltd. was used. The water solubility is 5.7 g / 100 mL. ⁇ C4-XIX> Polyacrylic acid (Mn5,000) manufactured by ALFA AESAR was used. The water solubility is 3.7 g / 100 mL. ⁇ C4-XX> Sodium acetate manufactured by Tokyo Chemical Industry Co., Ltd. was used.
  • polyurethane resin trade name: Bondic (registered trademark) 1050, manufactured by Dainippon Ink Co., Ltd.
  • ethylene-maleic anhydride copolymer manufactured by Wako Pure Chemical Industries, Ltd.
  • lubricant trade name: carnauba wax
  • the product was diluted with water so that the total mass was adjusted to 100% by mass to obtain a glass fiber sizing agent.
  • the glass fiber sizing agent was attached to a melt-proofed glass fiber having a number average fiber diameter of 10 ⁇ m. That is, the glass fiber sizing agent was applied to the glass fiber being wound around the rotating drum by using an applicator installed at a predetermined position. Next, this was dried to obtain a roving (glass roving) of a glass fiber bundle surface-treated with the glass fiber sizing agent. At that time, the glass fiber was made to be a bundle of 1,000 pieces. The adhesion amount of the glass fiber sizing agent was 0.6% by mass. This was cut into a length of 3 mm to obtain a glass chopped strand. This chopped strand was used as ⁇ Glass Fiber DI>.
  • Glass fiber D-II No ethylene-maleic anhydride copolymer was used.
  • glass fiber produced by the same method as the glass fiber (DI) was used as the glass fiber (D-II).
  • L / D length of the cylinder of the extruder / cylinder diameter of the extruder
  • the temperature from the upstream supply port to the die was set to the cylinder temperature described in the above item ((A) polyamide resin). Further, the screw rotation speed was set to 300 rpm, and the discharge amount was set to 25 kg / hour.
  • the component (A), the component (B), and the component (C) are supplied from the upstream supply port so as to have the ratio described in the upper part of Table 1 below, and the downstream supply (D) component was supplied from the opening
  • the obtained polyamide resin composition was molded, and the molded piece was used to evaluate heat aging resistance, initial tensile strength, and notched Charpy impact strength. These evaluation results are shown in Table 1 below.
  • Examples 2 to 35, 39 to 87, Comparative Examples 1 to 16 According to the compositions described in Tables 1 to 10, a polyamide resin composition was produced and molded in the same manner as in Example 1 under the other conditions, and various measurements were performed using the molded pieces. The measurement results are shown in Tables 1 to 10 below.
  • Example 36 The screw speed was 150 rpm.
  • the other conditions were the same as in Example 1 except that the polyamide resin composition was produced and molded, and the molded piece was used for heat aging resistance, initial tensile elongation, b value after molding, 150 ° C. 100
  • the b value after time aging, the notched Charpy impact strength, and the content of alkali metal compound and / or alkaline earth metal compound particles having a particle diameter of 1 ⁇ m or more in the alkali metal compound and / or alkaline earth metal compound were measured. . These measurement results are shown in Table 5 below.
  • Example 37 30 kg of an aqueous solution of an equimolar salt of 50% by mass of hexamethylenediamine and adipic acid was prepared and sufficiently stirred.
  • the aqueous solution of the raw material of the polyamide 66 was charged into a 70 L autoclave having a stirrer and an extraction nozzle at the bottom.
  • sodium aluminate was added to 0.5 parts by mass with respect to 100 parts by mass of the polyamide resin. Thereafter, the mixture was sufficiently stirred at a temperature of 50 ° C. Next, the atmosphere was replaced with nitrogen, and then the temperature was raised from 50 ° C. to about 270 ° C. with stirring.
  • Example 38 30 kg of an aqueous solution of an equimolar salt of 50% by mass of hexamethylenediamine and adipic acid was prepared and sufficiently stirred.
  • the aqueous solution of the raw material of the polyamide 66 was charged into a 70 L autoclave having a stirrer and an extraction nozzle at the bottom.
  • sodium carbonate was added to 1 part by mass with respect to 100 parts by mass of the polyamide resin.
  • the mixture was sufficiently stirred at a temperature of 50 ° C.
  • the atmosphere was replaced with nitrogen, and then the temperature was raised from 50 ° C. to about 270 ° C. with stirring.
  • L / D length of the cylinder of the extruder / cylinder diameter of the extruder
  • the temperature from the upstream supply port to the die was set to the cylinder temperature described in the above item ((A) polyamide resin). Further, the screw rotation speed was set to 300 rpm, and the discharge amount was set to 25 kg / hour.
  • the component (A), the component (B), and the component (C) are supplied from the upstream supply port so as to have the ratio described in the upper part of Table 11 below, and the downstream supply (D) component was supplied from the opening
  • the obtained polyamide resin composition was molded, and various evaluations were performed using the molded pieces. These evaluation results are shown in Table 11 below.
  • Example 99 Example 99, Example 100, Examples 102 to 145, Comparative Examples 103 to 106
  • Example 101 A polyamide resin composition was produced, molded, and various measurements were performed using the molded pieces. Hypophosphorous acid was supplied from the upstream supply port. The measurement results and the like are shown in Tables 11 to 19 below.
  • Example 146 Components (B) and (C) were added as a master batch. The specific method is described below.
  • a twin screw extruder ZSK-26MC: manufactured by Coperion (Germany) was used. This twin-screw extruder has an upstream supply port in the first barrel from the upstream side, and a downstream supply port in the ninth barrel.
  • L / D length of the cylinder of the extruder / cylinder diameter of the extruder
  • 48 number of barrels: 12).
  • the temperature from the upstream supply port to the die was set to the cylinder temperature described in the item ((AI) polyamide resin).
  • the screw rotation speed was set to 300 rpm, and the discharge amount was set to 25 kg / hour.
  • 100 parts by mass of (AI) polyamide 66, 5 parts by mass of (BI) sodium carbonate, and 5 parts by mass of (C4-V) isophthalic acid are supplied from the upstream supply port.
  • pellets of the polyamide resin composition manufactured as MB
  • the composition shown in Table 20 was melt-kneaded with (AI) polyamide 66 and (DI) glass fiber in the same manner as in Example 101, and polyamide resin was obtained.
  • a composition was prepared. Then, it shape
  • the measurement results are shown in Table 20 below.
  • Example 147, 148 Using the same method as in Example 146, the component (B) and the component (C) were added as a master batch, and pellets of a polyamide resin composition were produced so as to have the composition shown in Table 20. Then, it shape
  • Example 149 30 kg of an aqueous solution of an equimolar salt of 50% by mass of hexamethylenediamine and adipic acid was prepared and sufficiently stirred.
  • the aqueous solution of the raw material of the polyamide 66 was charged into a 70 L autoclave having a stirrer and an extraction nozzle at the bottom.
  • (B) component and (C) component were added so that it might become a composition of Table 20.
  • (BI) sodium aluminate is added to 1.0 part by mass with respect to 100 parts by mass of the polyamide resin
  • (C4-V) isophthalic acid is added to 100 parts by mass of the polyamide resin.
  • the amino end group concentration was 46 ⁇ mol / g, and the carboxyl end group concentration was 72 ⁇ mol / g. That is, the amino end group concentration / carboxyl end group concentration was 0.64.
  • the polyamide resin is supplied from the upstream supply port, the (DI) glass fiber is supplied from the downstream supply port so as to be 50 parts by mass with respect to the component (A), and the polyamide resin is melt-kneaded. A pellet of the composition was produced.
  • the obtained polyamide resin composition was molded, and various evaluations were performed using the molded pieces. The measurement results are shown in Table 20 below.
  • Example 150 and 151 Using the same method as in Example 149, component (B) and component (C) were added to produce polyamide resin composition pellets having the composition shown in Table 20. Then, it shape
  • Example 152 30 kg of an aqueous solution of an equimolar salt of 50% by mass of hexamethylenediamine and adipic acid was prepared and sufficiently stirred.
  • the aqueous solution of the raw material of the polyamide 66 was charged into a 70 L autoclave having a stirrer and an extraction nozzle at the bottom.
  • (B) component was added so that it might become a composition of Table 20.
  • (BI) sodium aluminate was added to 1.0 part by mass with respect to 100 parts by mass of the polyamide resin. Thereafter, the mixture was sufficiently stirred at a temperature of 50 ° C. Next, the atmosphere was replaced with nitrogen, and then the temperature was raised from 50 ° C. to about 270 ° C. with stirring.
  • the above polyamide resin and (C4-V) isophthalic acid are supplied in an amount of 1 part by mass with respect to the component (A), and (DI) glass fibers are supplied from the downstream supply port (
  • the pellets of the polyamide resin composition were produced by supplying 50 parts by mass with respect to the component A) and melt-kneading.
  • the obtained polyamide resin composition was molded, and various evaluations were performed using the molded pieces. The measurement results are shown in Table 20 below.
  • Example 153, 154 Using the same method as in Example 152, the component (B) and the component (C) were added, and pellets of a polyamide resin composition were produced so as to have the composition shown in Table 20. Then, it shape
  • Example 155 30 kg of an aqueous solution of an equimolar salt of 50% by mass of hexamethylenediamine and adipic acid was prepared and sufficiently stirred.
  • the aqueous solution of the raw material of the polyamide 66 was charged into a 70 L autoclave having a stirrer and an extraction nozzle at the bottom.
  • (C) component was added so that it might become a composition of Table 20.
  • (C4-V) isophthalic acid was added to 1.0 part by mass with respect to 100 parts by mass of the polyamide resin. Thereafter, the mixture was sufficiently stirred at a temperature of 50 ° C. Next, the atmosphere was replaced with nitrogen, and then the temperature was raised from 50 ° C. to about 270 ° C.
  • the polymer was discharged in a strand form from the lower nozzle, and water cooling and cutting were performed to obtain pellets.
  • the resin had a 98% sulfuric acid relative viscosity of 2.8.
  • the amino end group concentration was 46 ⁇ mol / g, and the carboxyl end group concentration was 72 ⁇ mol / g. That is, the amino end group concentration / carboxyl end group concentration was 0.64.
  • the above polyamide resin and (BI) sodium aluminate are supplied in an amount of 1.0 part by mass with respect to the component (A), and (DI) glass is supplied from the downstream supply port.
  • the fiber was supplied so as to be 50 parts by mass with respect to the component (A), and melt-kneaded to produce polyamide resin composition pellets.
  • the obtained polyamide resin composition was molded, and various evaluations were performed using the molded pieces. The measurement results are shown in Table 20 below.
  • Example 156, 157 Using the same method as in Example 155, the component (B) and the component (C) were added, and pellets of a polyamide resin composition were produced so as to have the composition shown in Table 20. Then, it shape
  • Example 158 to 182, Example 184, Comparative Example 107 According to the compositions described in Table 21 to Table 26, the other conditions were the same as in Example 146. A polyamide resin composition was produced, molded, and various measurements were performed using the molded pieces. The measurement results and the like are shown in Tables 21 to 26 below.
  • Example 183 According to the composition described in Table 26, the other conditions were the same as in Example 101. A polyamide resin composition was produced, molded, and various measurements were performed using the molded pieces. The measurement results are shown in Table 26 below.
  • Example 185 to 192 According to the compositions described in Table 27 and Table 28, the other conditions were the same as in Example 146. A polyamide resin composition was produced, molded, and various measurements were performed using the molded pieces. The measurement results and the like are shown in Tables 27 and 28 below.
  • Example 193 and 194, Comparative Example 108 According to the composition described in Table 29, the other conditions were the same as in Example 146. A polyamide resin composition was produced, molded, and various measurements were performed using the molded pieces. Sodium aluminate was added in the same manner as component (B). These measurement results are shown in Table 29 below.
  • the polyamide resin composition of the present invention has industrial applicability as a material for various parts such as those for automobiles, machinery industries, electric / electronics, industrial materials, industrial materials, daily use / household goods, etc. is there.

Abstract

(A)ポリアミド樹脂と、 (B)アルカリ金属化合物及び/又はアルカリ土類金属化合物と、 (C)下記(C1)~(C4)から選ばれる1つ以上の化合物と、 を含有し、 (C1)周期律表の第3族、第4族、第11族、第13族、第14族からなる群より選ばれる一種以上の金属元素の塩 (C2)ヒンダードフェノール化合物、ヒンダードアミン化合物、及び有機リン化合物からなる群より選ばれる少なくとも一の有機熱安定剤 (C3)(A)成分の融点よりも低い融点を有する結晶性の熱可塑性樹脂及び/又は(A)成分のビカット軟化点よりも低いビカット軟化点を有する非晶性の熱可塑性樹脂 (C4)酸 (A)と(C3)の合計100質量部に対して、 (B)が0.03~20質量部、 (C1)~(C3)を選択する場合には下記であるポリアミド樹脂組成物。 (C1):金属元素としての量が0.001~0.05質量部 (C2):0.8~20質量部 (C3):1~50質量部

Description

ポリアミド樹脂組成物、ポリアミド樹脂組成物の製造方法、及び成形品
 本発明は、ポリアミド樹脂組成物、ポリアミド樹脂組成物の製造方法、及び成形品に関する。
 ポリアミド樹脂は、強度、耐熱性、耐薬品性に優れ、比重に優れている、すなわち金属よりも比重が小さいことから、従来から金属代替材料として、自動車の機構部品等に使用されている。
 特に、エンジン周辺の部材には、高温環境下での耐久性が要求されることから、種々の耐熱エージング性に優れるポリアミド樹脂組成物が提案されている(例えば、特許文献1、2参照。)。
 なお、本明細書中において、前記「耐熱エージング性」とは、成形品の形状を維持したまま融点以下での高温条件下で、大気雰囲気下に長時間放置した際、実用上十分な機械的特性を保持でき、また色調の変化の少ない、いわゆる熱酸化に対する耐性のことをいう。
 近年、燃費向上のための手段の一つとして、自動車のダウンサイジングが行われている。これにより自動車エンジンルームの部品は高密度化し、エンジンルーム内の環境温度が高くなる傾向にある。
 また、その他にも、燃費向上のため、過給機によるエンジンの高出力化が行われており、これに伴い、エンジンルーム内の環境温度は増々高くなる傾向にある。
 従って、従来よりも高温度条件下での、長期に亘る耐熱エージング性がポリアミド樹脂に求められている。具体的には、150℃~230℃の高温条件下で長時間使用した際にも、実用上十分な機械的特性を保持でき、また色調の変化の少ない耐久材の要求が高まっている。
 ポリアミド樹脂の耐熱エージング性を向上させる技術として、ポリアミド樹脂に銅化合物(銅の酸化物又は塩)を添加する技術が知られている。
 また、同様に、耐熱エージング性を向上させる技術として、融点の異なる2種類のポリアミド樹脂に銅化合物及び酸化鉄を配合する技術(例えば、特許文献3参照。)、ポリアミド樹脂に微粒元素鉄を配合する技術(例えば、特許文献4参照。)、及びポリアミド樹脂に微細分散化金属粉末を配合する技術(例えば、特許文献5参照。)が開示されている。
 一方で、アルミン酸ナトリウムを添加したポリアミド樹脂組成物及びその製造方法に関する技術が開示されている(例えば、特許文献6乃至15参照。)。前記アルミン酸ナトリウムを添加したポリアミド樹脂組成物が熱滞留安定性に優れることは従来から知られている。
 なお、「熱滞留安定性」とは、ポリアミド樹脂組成物を融点以上の温度に保持し、溶融状態とした際に、樹脂の分解及び変質の程度が低く、その結果、融点以上の温度に保持する行為によるポリアミド樹脂組成物の機械物性の低下や色調の変化が抑制される特性をいう。
 アルミン酸金属塩は、従来から、主に黄色度の増加の抑制、熱分解の抑制などを目的に、ポリアミド樹脂に添加されるものであることが知られている。
 また、ポリアミド樹脂に、より低融点の樹脂及び熱安定剤を添加する技術についての開示もなされている(例えば、特許文献3参照。)。
特表2013-501095号公報 特表2013-521393号公報 特表2008-527129号公報 特表2006-528260号公報 特表2008-527127号公報 特開2005-206662号公報 特開2004-91778号公報 特開昭49-116151号公報 特開2008-7563号公報 特開2006-316244号公報 特開2005-281616号公報 特開2007-246580号公報 特開2007-246581号公報 特開2007-246583号公報 特開2006-225593号公報
 しかしながら、特許文献1~15に記載の技術においては、未だ、高水準の耐熱エージング性を有するポリアミド樹脂組成物が得られておらず、上述したような、高温条件下での長期に亘る耐熱エージング性の要求を満足するポリアミド樹脂組成物が求められている。
 さらに、例えば自動車エンジンルーム内の部品は、空気中の水蒸気や、LLC(ロングライフクーラント)などの水分を含む液体の飛散にさらされる可能性がある。そのため、かかる部品の材料は、高水準の耐熱エージング性を有していることが求められる。
 そこで本発明においては、上述した従来技術の問題点に鑑み、耐熱エージング性に優れる、ポリアミド樹脂組成物及びその成形品を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、ポリアミド樹脂、所定量のアルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物は除く。)、所定の化合物を含有するポリアミド樹脂組成物が、高水準の耐熱エージング性を有し、すなわち融点以下での酸化劣化を効果的に抑制できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
〔1〕
(A)ポリアミド樹脂と、
(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)と、
(C)下記(C1)~(C4)からなる群より選ばれる少なくとも1つ以上の化合物と、
を、含有し、
 (C1)周期律表の第3族、第4族、第11族、第13族、第14族からなる群より選ばれる一種以上の金属元素の塩
 (C2)ヒンダードフェノール化合物、ヒンダードアミン化合物、及び有機リン化合物からなる群より選ばれる少なくとも一の有機熱安定剤
 (C3)(A)成分の融点よりも低い融点を有する結晶性の熱可塑性樹脂及び/又は(A)成分のビカット軟化点よりも低いビカット軟化点を有する非晶性の熱可塑性樹脂
 (C4)酸
 前記(A)成分と前記(C3)成分の合計100質量部に対して、
前記(B)成分が0.03~20質量部であり、
前記(C1)~(C3)成分を、含有成分として選択する場合には、それぞれ下記の含有量である、ポリアミド樹脂組成物。
 (C1)成分:金属元素としての量が0.001~0.05質量部
 (C2)成分:0.8~20質量部
 (C3)成分:1~50質量部
〔2〕
 前記(C)の化合物が、前記(C1)~(C4)からなる群より選ばれる少なくとも2つ以上の組み合わせである、前記〔1〕に記載のポリアミド樹脂組成物。
〔3〕
 前記(C)の化合物が、前記(C1)~(C4)からなる群より選ばれる少なくとも3つ以上の組み合わせである、前記〔1〕に記載のポリアミド樹脂組成物。
〔4〕
 前記(A)ポリアミド樹脂が、下記の群(A-1)から選ばれる少なくとも一種である、前記〔1〕乃至〔3〕のいずれか一に記載のポリアミド樹脂組成物。
(A-1)ポリアミド46、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド6T、ポリアミド9T、ポリアミド6I、及びこれらを構成成分として含む共重合ポリアミド。
〔5〕
 数平均分子量(Mn)が1万以上である、前記〔1〕乃至〔4〕のいずれか一に記載のポリアミド樹脂組成物。
〔6〕
 前記(A)ポリアミド樹脂が、融点240℃以上のポリアミド樹脂である、前記〔1〕乃至〔5〕のいずれか一に記載のポリアミド樹脂組成物。
〔7〕
 前記(A)ポリアミド樹脂が、ポリアミド66である、前記〔1〕乃至〔6〕のいずれか一に記載のポリアミド樹脂組成物。
〔8〕
 前記(B)成分が、アルカリ金属化合物である、前記〔1〕乃至〔7〕のいずれか一に記載のポリアミド樹脂組成物。
〔9〕
 前記(B)成分が、アルカリ金属の炭酸塩もしくは炭酸水素塩である、前記〔1〕乃至〔8〕のいずれか一に記載のポリアミド樹脂組成物。
〔10〕
 (D)アルカリ金属化合物及び/又はアルカリ土類金属化合物を除く無機フィラーを、さらに含有する、前記〔1〕乃至〔9〕のいずれか一に記載のポリアミド樹脂組成物。
〔11〕
 前記(A)成分と前記(C3)成分の合計100質量部に対して、
 前記(D)成分の含有量が、10~250質量部である、前記〔10〕に記載のポリアミド樹脂組成物。
〔12〕
 前記(D)アルカリ金属化合物及び/又はアルカリ土類金属化合物を除く無機フィラーがガラス繊維であり、カルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体を構成単位として含む共重合体を、前記ガラス繊維の表面に塗布する成分の一部として含む、前記〔10〕又は〔11〕に記載のポリアミド樹脂組成物。
〔13〕
 前記(C)成分が、少なくとも(C1)成分を含有する、前記〔1〕乃至〔12〕のいずれか一に記載のポリアミド樹脂組成物。
〔14〕
 前記(C1)成分が銅塩である、前記〔1〕乃至〔13〕のいずれか一に記載のポリアミド樹脂組成物。
〔15〕
 前記(A)成分と前記(C3)成分の合計100質量部に対して、
 前記(C1)の金属元素としての量が、0.003~0.05質量部である、前記〔1〕乃至〔14〕のいずれか一に記載のポリアミド樹脂組成物。
〔16〕
 前記(B)成分と前記(C1)成分との質量比(B)/(C1)が、1以上である、前記〔1〕乃至〔15〕のいずれか一に記載のポリアミド樹脂組成物。
〔17〕
 (C1-2)アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物を、さらに含有する、前記〔13〕乃至〔16〕のいずれか一に記載のポリアミド樹脂組成物。
〔18〕
 前記(C1)成分の金属元素と、前記(C1-2)成分のハロゲン元素とのモル比(ハロゲン元素/金属元素)が2~50である、前記〔17〕に記載のポリアミド樹脂組成物。
〔19〕
 前記(C)成分が、少なくとも(C2)成分を含有する、前記〔1〕乃至〔18〕のいずれか一に記載のポリアミド樹脂組成物。
〔20〕
 前記(C2)が、ヒンダードフェノール化合物である、前記〔1〕乃至〔19〕のいずれか一に記載のポリアミド樹脂組成物。
〔21〕
 前記(A)成分と前記(C3)成分の合計100質量部に対して、
 前記(C2)成分の含有量が1~10質量部である、前記〔19〕又は〔20〕に記載のポリアミド樹脂組成物。
〔22〕
 前記(C)成分が、少なくとも前記(C3)成分を含有する、前記〔1〕乃至〔21〕のいずれか一に記載のポリアミド樹脂組成物。
〔23〕
 前記(A)成分と前記(C3)成分の合計100質量部に対して、前記(C3)成分の含有量が5~50質量部である、前記〔1〕乃至〔22〕のいずれか一に記載のポリアミド樹脂組成物。
〔24〕
 前記(C3)成分が、融点240℃未満のポリアミド樹脂である、前記〔1〕乃至〔23〕のいずれか一に記載のポリアミド樹脂組成物。
〔25〕
 前記(C3)成分が、ポリアミド6である、前記〔1〕乃至〔24〕のいずれか一に記載のポリアミド樹脂組成物。
〔26〕
 前記(C3)成分が、
 当該(C3)成分が含有する窒素原子数に対する炭素原子数の比(C/N)が7以上20以下であるポリアミド樹脂である、前記〔1〕乃至〔24〕のいずれか一に記載のポリアミド樹脂組成物。
〔27〕
 前記(C)成分が、少なくとも前記(C4)成分を含有する、前記〔1〕乃至〔26〕のいずれか一に記載のポリアミド樹脂組成物。
〔28〕
 前記(A)成分と(C3)成分の合計100質量部に含まれる、前記(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)のアルカリ価と、前記(C4)酸の酸価とが、下記(式1)の条件を満たす、前記〔1〕乃至〔26〕のいずれか一に記載のポリアミド樹脂組成物。
 0<X≦5  ・・・(式1)
(X=((A)成分と(C3)成分の合計100質量部に含まれる(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)のアルカリ価)/((A)成分と(C3)成分の合計100質量部に含まれる(C4)酸の酸価))
〔29〕
 (A)成分と(C3)成分の合計100質量部に含まれる、前記(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)のアルカリ価と、前記(C4)酸の酸価と(A)ポリアミド樹脂のカルボキシル基末端の酸価との和とが、下記(式2)の条件を満たす、前記〔1〕乃至〔28〕のいずれか一に記載のポリアミド樹脂組成物。
 0<Y≦3  ・・・(式2)
(Y=((A)成分と(C3)成分の合計100質量部に含まれる(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)のアルカリ価)/((A)成分と(C3)成分の合計100質量部に含まれる(C4)酸の酸価+(A)ポリアミド樹脂のカルボキシル基末端の酸価))
〔30〕
 前記(C4)成分が、有機酸である、前記〔1〕乃至〔29〕のいずれか一に記載のポリアミド樹脂組成物。
〔31〕
 前記(C4)酸の分子量(Mn)が、50≦Mn≦1000である、前記〔1〕乃至〔30〕のいずれか一に記載のポリアミド樹脂組成物。
〔32〕
 前記(C4)酸が、カルボキシル基を有する化合物である、前記〔1〕乃至〔31〕のいずれか一に記載のポリアミド樹脂組成物。
〔33〕
 質量平均分子量/数平均分子量(Mw/Mn)が2.0以上であり、
 120℃で1000時間熱エージングした後のMw/Mnが3.0以上である、
前記〔1〕乃至〔32〕のいずれか一に記載のポリアミド樹脂組成物。
〔34〕
 GPC-MALS-VISCO法による解析で、
分子量10万以上の分子が1点以上の分岐構造を有し、かつ当該分子量10万以上の分子が無水カルボン酸官能基を含む、前記〔1〕乃至〔33〕のいずれか一に記載のポリアミド樹脂組成物。
〔35〕
 前記(C4)酸は、主鎖を構成する成分として、カルボン酸無水物含有不飽和ビニル単量体を含み、かつ、
 前記(C4)酸は、0℃<Tgである、
前記〔1〕乃至〔34〕のいずれか一に記載のポリアミド樹脂組成物。
〔36〕
 前記(C4)酸が、オレフィンと無水マレイン酸の共重合体である、前記〔35〕に記載のポリアミド樹脂組成物。
〔37〕
 前記(C4)酸は、前記(A)ポリアミド樹脂に対して溶融混練により添加されたものである、前記〔1〕乃至〔36〕のいずれか一に記載のポリアミド樹脂組成物。
〔38〕
 不活性ガス雰囲気下にて、300℃で1時間放置した際の質量減少量が10%以下である、前記〔1〕乃至〔37〕のいずれか一に記載のポリアミド樹脂組成物。
〔39〕
 前記〔1〕乃至〔38〕のいずれか一に記載のポリアミド樹脂組成物の製造方法であって、
 前記(C4)酸を、前記(A)ポリアミド樹脂に対して溶融混練により添加する工程を有する、
ポリアミド樹脂組成物の製造方法。
〔40〕
 前記(C4)酸をマスターバッチ化して添加する工程を有する、前記〔39〕に記載のポリアミド樹脂組成物の製造方法。
〔41〕
 前記(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)は、前記(A)ポリアミド樹脂に対して溶融混練により添加されたものである、前記〔1〕乃至〔38〕のいずれか一に記載のポリアミド樹脂組成物。
〔42〕
 前記〔1〕乃至〔38〕、〔41〕のいずれか一に記載のポリアミド樹脂組成物を含む、成形品。
〔43〕
 前記〔1〕乃至〔38〕、〔41〕のいずれか一に記載のポリアミド樹脂組成物の製造方法であって、
 (B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)を、(A)ポリアミド樹脂に対して溶融混練により添加する工程を有する、
 ポリアミド樹脂組成物の製造方法。
〔44〕
 (B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)をマスターバッチ化して添加する工程を有する、前記〔39〕、〔40〕、及び〔43〕のいずれか一に記載のポリアミド樹脂組成物の製造方法。
〔45〕
 前記(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)と、
 前記(C4)酸と、
を、同一のマスターバッチ化して添加する工程を有する、
前記〔39〕、〔40〕、〔43〕、及び〔44〕のいずれか一に記載のポリアミド樹脂組成物の製造方法。
〔46〕
 (A)ポリアミド樹脂と、
 (B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)と、
 (C4)酸と、
を、含有するポリアミド樹脂組成物の、
耐熱エージング性及び吸水物性に優れる成形品を製造するための使用。
 本発明によれば、耐熱エージング性に優れるポリアミド樹脂組成物及びその成形品を提供することができる。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。
 以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜変形して実施することができる。
〔ポリアミド樹脂組成物〕
 本実施形態のポリアミド樹脂組成物は、
(A)ポリアミド樹脂と、
(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)と、
(C)下記(C1)~(C4)からなる群より選ばれる少なくとも1つ以上の化合物と、
を、含有し、
 (C1)周期律表の第3族、第4族、第11族、第13族、第14族からなる群より選ばれる一種以上の金属元素の塩
 (C2)ヒンダードフェノール化合物、ヒンダードアミン化合物、及び有機リン化合物からなる群より選ばれる少なくとも一の有機熱安定剤
 (C3)(A)成分の融点よりも低い融点を有する結晶性の熱可塑性樹脂及び/又は(A)成分のビカット軟化点よりも低いビカット軟化点を有する非晶性の熱可塑性樹脂
 (C4)酸
 前記(A)成分と前記(C3)成分の合計100質量部に対して、
前記(B)成分が0.03~20質量部であり、
前記(C1)~(C3)成分を、含有成分として選択する場合には、それぞれ下記の含有量である、ポリアミド樹脂組成物である。
 (C1)成分:金属元素としての量が0.001~0.05質量部
 (C2)成分:0.8~20質量部
 (C3)成分:1~50質量部
 本実施形態のポリアミド樹脂組成物は、上記組成であることにより、優れた耐熱エージング性を発揮する。
 以下、本実施形態に係るポリアミド樹脂の各構成要素について詳細に説明する。
((A)ポリアミド樹脂)
 本実施形態のポリアミド樹脂組成物は、(A)ポリアミド樹脂(以下、「(A)成分」と記載する場合もある。)を含有する。「ポリアミド樹脂」とは、主鎖中にアミド結合(-NHCO-)を有する重合体である。
 ポリアミド樹脂としては、以下に限定されるものではないが、例えば、ジアミン及びジカルボン酸の縮合重合で得られるポリアミド樹脂、ラクタムの開環重合で得られるポリアミド樹脂、アミノカルボン酸の自己縮合で得られるポリアミド樹脂、及びこれらのポリアミド樹脂を構成する2種類以上の単量体の共重合で得られる共重合物が挙げられる。
 (A)ポリアミド樹脂としては、前記ポリアミド樹脂の1種のみを単独で用いてもよく、2種以上を併用してもよい。
 以下、ポリアミド樹脂の原料について説明する。
<ジアミン>
 前記ジアミンとしては、以下に限定されるものではないが、例えば、脂肪族ジアミン、脂環族ジアミン、芳香族ジアミン等が挙げられる。
 前記脂肪族ジアミンとしては、以下に限定されるものではないが、例えば、エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、トリデカメチレンジアミン等の炭素数2~20の直鎖飽和脂肪族ジアミン;2-メチルペンタメチレンジアミン(2-メチル-1,5-ジアミノペンタンとも記される。)、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、2-メチルオクタメチレンジアミン、2,4-ジメチルオクタメチレンジアミン等の炭素数3~20の分岐状飽和脂肪族ジアミン;等が挙げられる。当該分岐状飽和脂肪族ジアミンとしては、例えば、主鎖から分岐した置換基を持つジアミンが挙げられる。
 前記脂環族ジアミン(脂環式ジアミンとも記される。)としては、以下に限定されるものではないが、例えば、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,3-シクロペンタンジアミン等が挙げられる。
 前記芳香族ジアミンとしては、以下に限定されるものではないが、例えば、メタキシリレンジアミン、パラキシリレンジアミン、メタフェニレンジアミン、オルトフェニレンジアミン、パラフェニレンジアミン等が挙げられる。
<ジカルボン酸>
 前記ジカルボン酸としては、以下に限定されるものではないが、例えば、脂肪族ジカルボン酸、脂環族ジカルボン酸、芳香族ジカルボン酸等が挙げられる。
 前記脂肪族ジカルボン酸としては、以下に限定されるものではないが、例えば、マロン酸、ジメチルマロン酸、コハク酸、2,2-ジメチルコハク酸、2,3-ジメチルグルタル酸、2,2-ジエチルコハク酸、2,3-ジエチルグルタル酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸、ジグリコール酸等の、炭素数3~20の直鎖又は分岐状飽和脂肪族ジカルボン酸等が挙げられる。
 前記脂環族ジカルボン酸としては、以下に限定されるものではないが、例えば、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,3-シクロペンタンジカルボン酸等の脂環族カルボン酸が挙げられる。
 脂環族カルボン酸の脂環構造の炭素数は、特に限定されないが、得られるポリアミド樹脂の吸水性と結晶化度のバランスの観点から、好ましくは3~10であり、より好ましくは5~10である。
 前記脂環族ジカルボン酸は、無置換でもよいし、置換基を有していてもよい。
 置換基としては、以下に限定されるものではないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の炭素数1~4のアルキル基等が挙げられる。
 前記芳香族ジカルボン酸としては、以下に限定されるものではないが、例えば、無置換又は置換基で置換された炭素数8~20の芳香族ジカルボン酸等が挙げられる。
 置換基としては、以下に限定されるものではないが、例えば、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数7~20のアリールアルキル基、クロロ基及びブロモ基等のハロゲン基、炭素数3~10のアルキルシリル基、スルホン酸基、及びナトリウム塩等のその塩である基等が挙げられる。
 前記芳香族ジカルボン酸としては、以下に限定されるものではないが、例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸等が挙げられる。
 前記ジカルボン酸中には、本実施形態の目的を損なわない範囲で、トリメリット酸、トリメシン酸、ピロメリット酸等の3価以上の多価カルボン酸をさらに含んでもよい。
 上述したジアミン及びジカルボン酸は、それぞれ1種のみを単独で用いてもよいし、2種以上を併用してもよい。
<ラクタム>
 前記ラクタムとしては、以下に限定されるものではないが、例えば、ブチロラクタム、ピバロラクタム、ε-カプロラクタム、カプリロラクタム、エナントラクタム、ウンデカノラクタム、及びラウロラクタム(ドデカノラクタム)等が挙げられる。
 これらの中でも、靭性の観点から、ε-カプロラクタム、ラウロラクタム等が好ましく、ε-カプロラクタムがより好ましい。
<アミノカルボン酸>
 前記アミノカルボン酸としては、以下に限定されるものではないが、例えば、上述したラクタムが開環した化合物(ω-アミノカルボン酸、α,ω-アミノカルボン酸等)等が挙げられる。
 前記アミノカルボン酸としては、結晶化度を高める観点から、ω位がアミノ基で置換された、炭素数4~14の直鎖又は分岐状の飽和脂肪族カルボン酸であることが好ましい。以下に限定されるものではないが、例えば、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸等が挙げられる。
 前記アミノカルボン酸としては、パラアミノメチル安息香酸等の芳香族アミノカルボン酸も挙げられる。
 上述した(A)ポリアミド樹脂としては、以下に限定されるものではないが、例えば、ポリアミド4(ポリα-ピロリドン)、ポリアミド6(ポリカプロアミド)、ポリアミド11(ポリウンデカンアミド)、ポリアミド12(ポリドデカンアミド)、ポリアミド46(ポリテトラメチレンアジパミド)、ポリアミド56(ポリペンタメチレンアジパミド)、ポリアミド66(ポリヘキサメチレンアジパミド)、ポリアミド610(ポリヘキサメチレンセバカミド)、ポリアミド612(ポリヘキサメチレンドデカミド)、ポリアミド116(ポリウンデカメチレンアジパミド)、ポリアミドTMHT(トリメチルヘキサメチレンテレフタルアミド)、ポリアミド6T(ポリヘキサメチレンテレフタルアミド)、ポリアミド2Me-5T(ポリ2-メチルペンタメチレンテレフタルアミド)、ポリアミド9T(ポリノナメチレンテレフタルアミド)、2Me-8T(ポリ2-メチルオクタメチレンテレフタルアミド)、ポリアミド6I(ポリヘキサメチレンイソフタルアミド)、ポリアミド6C(ポリヘキサメチレンシクロヘキサンジカルボキサミド)、ポリアミド2Me-5C(ポリ2-メチルペンタメチレンシクロヘキサンジカルボキサミド)、ポリアミド9C(ポリノナメチレンシクロヘキサンジカルボキサミド)、2Me-8C(ポリ2-メチルオクタメチレンシクロヘキサンジカルボキサミド)、ポリアミドPACM12(ポリビス(4-アミノシクロヘキシル)メタンドデカミド)、ポリアミドジメチルPACM12(ポリビス(3-メチル-アミノシクロヘキシル)メタンドデカミド、ポリアミドMXD6(ポリメタキシリレンアジパミド)、ポリアミド10T(ポリデカメチレンテレフタルアミド)、ポリアミド11T(ポリウンデカメチレンテレフタルアミド)、ポリアミド12T(ポリドデカメチレンテレフタルアミド)、ポリアミド10C(ポリデカメチレンシクロヘキサンジカルボキサミド)、ポリアミド11C(ポリウンデカメチレンシクロヘキサンジカルボキサミド)、ポリアミド12C(ポリドデカメチレンシクロヘキサンジカルボキサミド)等のポリアミド樹脂が挙げられる。
 なお、前記「Me」は、メチル基を示す。
 本実施形態のポリアミド樹脂組成物における(A)ポリアミド樹脂としては、耐熱エージング性と機械物性の観点から、ポリアミド46(ポリテトラメチレンアジパミド)、ポリアミド66(ポリヘキサメチレンアジパミド)、ポリアミド610、ポリアミド612、ポリアミド6T(ポリヘキサメチレンテレフタルアミド)、ポリアミド9T(ポリノナンメチレンテレフタルアミド)、及びポリアミド6I(ポリヘキサメチレンイソフタルアミド)、並びにこれらを構成成分として含む共重合ポリアミドが好ましい。
 本実施形態のポリアミド樹脂組成物における(A)ポリアミド樹脂としては、耐熱エージング性の観点から、モノマーのジアミンは、MXD(m-xylylenediamine)の量が70モル%よりも少ないことが好ましく、50モル%よりも少ないことがより好ましく、30モル%よりも少ないことがさらに好ましい。
 特に、(A)ポリアミド樹脂がポリアミド66であることが、本実施形態のポリアミド樹脂組成物の耐熱エージング性向上の観点から好ましい。
 本実施形態のポリアミド樹脂組成物に用いる(A)ポリアミド樹脂の融点は、特に限定されないが、好ましくは200℃以上であり、より好ましくは210℃以上であり、さらに好ましくは240℃以上である。
 (A)ポリアミド樹脂の融点を、上記した下限値以上とすることにより、本実施形態のポリアミド樹脂組成物の耐熱性が向上する傾向にある。
 また、本実施形態において、(A)ポリアミド樹脂の融点は、特に限定されないが、好ましくは340℃以下である。(A)ポリアミド樹脂の融点を上記した上限値以下とすることにより、本実施形態のポリアミド樹脂組成物の溶融加工中の熱分解や劣化をより効果的に抑制できる傾向にある。
 (A)ポリアミド樹脂の融点は、JIS-K7121に準じて測定することができる。測定装置としては、例えば、PERKIN-ELMER社製、Diamond DSC等を用いることができる。具体的には、後述する実施例に記載する方法により測定することができる。
 (A)ポリアミド樹脂の融点は、ポリアミドを構成するモノマーを調整することにより制御することができる。
 本実施形態のポリアミド樹脂組成物に用いる(A)ポリアミド樹脂の含有量は、ポリアミド樹脂組成物中、33質量%以上95質量%以下であることが好ましく、50質量%以上75質量%以下であることがより好ましい。
 本実施形態のポリアミド樹脂組成物は、上記範囲で(A)ポリアミド樹脂を含有することにより、強度、耐熱性、耐薬品性、比重等に優れる傾向がある。
 本実施形態のポリアミド樹脂組成物に用いる(A)ポリアミド樹脂の硫酸相対粘度は、1.8以上3.0以下であることが好ましく、2.2以上2.8以下であることがより好ましい。
 上記硫酸相対粘度が1.8以上であることで、より機械物性に優れたポリアミド樹脂組成物が得られる傾向にある。また、上記硫酸相対粘度が3.0以下であることで、より流動性及び外観に優れたポリアミド樹脂組成物が得られる傾向にある。
 上記硫酸相対粘度は、(A)ポリアミド樹脂の重合時の圧力を調整することにより制御することができる。
 なお、前記硫酸相対粘度は、JIS K 6920に従う方法により測定することができる。具体的には、後述する実施例に記載する方法により測定することができる。
 本実施形態において、(A)ポリアミド樹脂のモノマーを重合させる際に、分子量調節のために末端封止剤をさらに添加することができる。この末端封止剤としては、特に限定されず、公知のものを用いることができる。
 前記末端封止剤としては、以下に限定されるものではないが、例えば、モノカルボン酸、モノアミン、無水フタル酸等の酸無水物;モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類等が挙げられる。
 これらの中でも、(A)ポリアミド樹脂の熱安定性の観点から、モノカルボン酸及びモノアミンが好ましい。
 これらは1種のみを単独で用いてもよいし、2種以上を併用してもよい。
 末端封止剤として使用できるモノカルボン酸としては、アミノ基との反応性を有するものであればよく、以下に限定されるものではないが、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチル酸、パルミチン酸、ステアリン酸、ピバリン酸、イソブチル酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸等の脂環族モノカルボン酸;安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、及びフェニル酢酸等の芳香族モノカルボン酸;等が挙げられる。
 これらは1種のみを単独で用いてもよいし、2種以上を併用してもよい。
 末端封止剤として使用できるモノアミンとしては、カルボキシル基との反応性を有するものであればよく、以下に限定されるものではないが、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミ等の脂肪族モノアミン;シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環族モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン;等が挙げられる。
 これらは1種のみを単独で用いてもよいし、2種以上を併用してもよい。
 末端封止剤として使用できる酸無水物としては、以下に限定されるものではないが、例えば、無水フタル酸、無水マレイン酸、無水安息香酸、無水酢酸、ヘキサヒドロ無水フタル酸等が挙げられる。
 これらは、1種のみを単独で用いてもよいし、2種以上を併用してもよい。
 末端封止剤として使用できるモノイソシアネートとしては、以下に限定されるものではないが、例えば、フェニルイソシアネート、トリルイソシアネート、ジメチルフェニルイソシアネート、シクロヘキシルイソシアネート、ブチルイソシアネート、ナフチルイソシアネート等が挙げられる。
 これらは1種のみを単独で用いてもよいし、2種以上を併用してもよい。
 末端封止剤として使用できるモノ酸ハロゲン化物としては、以下に限定されるものではないが、例えば、安息香酸、ジフェニルメタンカルボン酸、ジフェニルスルホンカルボン酸、ジフェニルスルホキシドカルボン酸、ジフェニルスルフィドカルボン酸、ジフェニルエーテルカルボン酸、ベンゾフェノンカルボン酸、ビフェニルカルボン酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、アントラセンカルボン酸等のモノカルボン酸等のハロゲン置換モノカルボン酸が挙げられる。
 これらは1種のみを単独で用いてもよいし、2種以上を併用してもよい。
 末端封止剤として使用できるモノエステル類としては、以下に限定されるものではないが、例えば、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンモノベヘネート、グリセリンモノモンタネート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールモノベヘネート、ペンタエリスリトールモノモンタネート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノベヘネート、ソルビタンモノモンタネート、ソルビタンジモンタネート、ソルビタントリモンタネート、ソルビトールモノパルミテート、ソルビトールモノステアレート、ソルビトールモノベヘネート、ソルビトールトリベヘネート、ソルビトールモノモンタネート、ソルビトールジモンタネート等が挙げられる。
 これらは1種のみを単独で用いてもよいし、2種以上を併用してもよい。
 末端封止剤として使用できるモノアルコール類としては、以下に限定されるものではないが、例えば、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ヘキサデカノール、ヘプタデカノール、オクタデカノール、ノナデカノール、エイコサノール、ドコサノール、トリコサノール、テトラコサノール、ヘキサコサノール、ヘプタコサノール、オクタコサノール、トリアコンタノール(以上、直鎖状、分岐状)、オレイルアルコール、ベヘニルアルコール、フェノール、クレゾール(o-、m-、p-体)、ビフェノール(o-、m-、p-体)、1-ナフトール、2-ナフトール等が挙げられる。
 これらは1種のみを単独で用いてもよいし、2種以上を併用してもよい。
((B)アルカリ金属及び/又はアルカリ土類金属化合物)
 本実施形態のポリアミド樹脂組成物においては、(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)(以下、「(B)成分」と記載する場合がある。)を含有する。
 (B)アルカリ金属化合物及び/又はアルカリ土類金属化合物としては、以下に限定されるものではないが、例えば、アルカリ金属及び/又はアルカリ土類金属の炭酸塩、アルカリ金属の炭酸水素塩、アルカリ金属及び/又はアルカリ土類金属の水酸化物等が挙げられる。
 アルカリ金属及び/又はアルカリ土類金属の炭酸塩としては、以下に限定されるものではないが、例えば、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム等が挙げられる。アルカリ金属及び/又はアルカリ土類金属の炭酸塩は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 アルカリ金属の炭酸水素塩としては、以下に限定されるものではないが、例えば、炭酸水素ナトリウム、炭酸水素カリウム等が挙げられる。アルカリ金属の炭酸水素塩は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 アルカリ金属及び/又はアルカリ土類金属の水酸化物としては、以下に限定されるものではないが、例えば、水酸化ナトリウム、水酸化マグネシウム、水酸化カリウム、水酸化カルシウム等が挙げられる。アルカリ金属及び/又はアルカリ土類金属の水酸化物は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 本実施形態のポリアミド樹脂組成物においては、耐熱エージング性の観点から、(B)成分としては、アルカリ金属化合物であることが好ましい。
 また、耐熱エージング性の観点から、(B)成分としては、アルカリ金属の炭酸塩もしくは炭酸水素塩であることが好ましい。
 本実施形態のポリアミド樹脂組成物は、良好な耐熱エージング性、初期強度を得る観点から、熱可塑性樹脂成分である前記(A)成分と前記(C3)成分の合計100質量部に対して、0.03質量部以上20質量部以下の(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)を含む。
 (B)成分の含有量は、前記(A)成分と前記(C3)成分の合計100質量部に対して、0.1質量部以上20質量部以下が好ましく、0.6質量部以上20質量部以下がより好ましく、0.6質量部以上5質量部以下がさらに好ましく、0.8質量部以上5質量部以下がさらにより好ましい。
 本実施形態のポリアミド樹脂組成物において、(B)成分は、当該(B)成分中、粒子径が1μm以上である(B)成分の粒子の含有量が20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、5質量%以下であることがさらにより好ましい。
 粒子径が1μm以上の(B)成分の含有量が、(B)成分全体中、20質量%以下であることにより、本実施形態のポリアミド樹脂組成物において優れた耐熱エージング性が得られる。
 ここで、(B)成分の粒子径とは、本実施形態のポリアミド樹脂組成物中に存在する(B)成分の粒子径である。
 ポリアミド樹脂組成物中での(B)成分の粒子径は、例えば、ポリアミド樹脂組成物をギ酸に溶解させ、レーザー回折式粒度分布装置を用いることにより測定することができる。
 上記のように、(B)成分全体中、粒子径が1μm以上である(B)成分の粒子の含有量を20質量%以下に抑制するためには、水分の少ない状態で(B)成分と(A)成分とを混合することが有効である。
 例えば、押出機を用いて(B)成分を(A)成分に溶融混練する方法が挙げられる。
 一方、水分の多い状態、例えば、(A)成分の縮合重合工程で(B)成分を含有させると、(B)成分が大径化するおそれがある。すなわち、(A)成分の重合工程が完了し、(A)成分を取り出し、ポリアミド樹脂組成物の製造工程である溶融混練の段階で(A)成分と(B)成分とを混合することが好ましい。
((C)下記(C1)、(C2)、(C3)、(C4)からなる群より選ばれる少なくとも1つの化合物)
 本実施形態のポリアミド樹脂組成物は、(C)成分として、下記(C1)~(C4)からなる群より選ばれる少なくとも1つ以上の化合物を含有する。
 (C1)周期律表の第3族、第4族、第11族、第13族、第14族からなる群より選ばれる一種以上の金属元素の塩
 (C2)ヒンダードフェノール化合物、ヒンダードアミン化合物、及び有機リン化合物からなる群より選ばれる少なくとも一の有機熱安定剤
 (C3)(A)成分の融点よりも低い融点を有する結晶性の熱可塑性樹脂及び/又は(A)成分のビカット軟化点よりも低いビカット軟化点を有する非晶性の熱可塑性樹脂
 (C4)酸
 (C)成分としては、上記(C1)、(C2)、(C3)、(C4)の中の1つのみを単独で用いてもよく、2つ以上併用してもよいが、2つ以上を併用することが、本実施形態のポリアミド樹脂組成物の耐熱エージング性向上の観点から好ましく、3つ以上を併用することがより好ましい。
<(C1)周期律表の第3族、第4族、第11族、第13族、第14族からなる群より選ばれる一種以上の金属元素の塩>
 本実施形態のポリアミド樹脂組成物は、(C1)周期律表の第3族、第4族、第11族、第13族、第14族からなる群より選ばれる一種以上の金属元素の塩(以下、(C1)成分、(C1)と記載する場合がある。)を含有することが好ましい。
 周期律表の第3族、第4族、第11族、第13族、第14族からなる群より選ばれる一種以上の金属元素の塩としては、これらの族に属する金属元素の塩であれば、特に限定されるものではない。
 前記(C1)周期律表の第3族、第4族、第11族、第13族、第14族からなる群より選ばれる一種以上の金属元素の塩としては、耐熱エージング性を一層向上させる観点から、銅塩が好ましい。
 当該銅塩としては、以下に限定されるものではないが、例えば、ハロゲン化銅(ヨウ化銅、臭化第一銅、臭化第二銅、塩化第一銅等)、酢酸銅、プロピオン酸銅、安息香酸銅、アジピン酸銅、テレフタル酸銅、イソフタル酸銅、サリチル酸銅、ニコチン酸銅及びステアリン酸銅、並びにエチレンジアミン及びエチレンジアミン四酢酸等のキレート剤に銅の配位した銅錯塩が挙げられる。
 これらは、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記で列挙した銅塩の中でも、好ましくはヨウ化銅、臭化第一銅、臭化第二銅、塩化第一銅及び酢酸銅からなる群より選択される1種以上であり、より好ましくはヨウ化銅及び/又は酢酸銅である。
 前記(C1)成分として銅塩を用いた場合、耐熱エージング性に優れ、かつ押出時のスクリューやシリンダー部の金属腐食(以下、単に「金属腐食」ともいう。)を効果的に抑制できるポリアミド樹脂組成物が得られる。
 本実施形態のポリアミド樹脂組成物中における(C1)成分の含有量は、当該(C1)が含有成分として選択される場合には、熱可塑性樹脂である前記(A)成分と前記(C3)成分の合計100質量部に対して、前記(C1)のうちの金属元素換算の含有量が、0.001~0.05質量部であるものとする。
 前記金属元素換算の含有量は、(A)成分と(C3)成分の合計100質量部に対して、0.003~0.05質量部が好ましく、0.005~0.03質量部がより好ましい。
 前記(C1)成分として特に銅塩を用いる場合、本実施形態のポリアミド樹脂組成物中における銅塩の金属元素としての含有量は、熱可塑性樹脂である前記(A)成分と前記(C3)成分の合計100質量部に対して、0.001~0.05質量部が好ましく、より好ましくは0.003~0.05質量部であり、さらに好ましくは0.005~0.03質量部である。上記範囲内の場合、耐熱エージング性を一層向上させるとともに、銅の析出や金属腐食を効果的に抑制することができる。
 本実施形態のポリアミド樹脂組成物においては、前記(C1)周期律表の第3族、第4族、第11族、第13族、第14族からなる群より選ばれる一種以上の金属元素の塩1質量部に対し、前記(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)が1質量部以上含まれること、すなわち前記(C1)成分に対する(B)成分の質量比((B)/(C1))が1以上であることが耐熱エージング性向上の観点から好ましい。
 より優れた耐熱エージング性と生産性の観点から、前記(C1)成分1質量部に対する前記(B)成分の含有量は5質量部以上500質量部以下がより好ましく、15質量部以上500質量部以下がさらに好ましく、25質量部以上500質量部以下がさらにより好ましく、35質量部以上500質量部以下がよりさらに好ましく、45質量部以上500質量部以下が特に好ましい。
<(C1-2)アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物>
 本実施形態のポリアミド樹脂組成物は、耐熱エージング性の向上の観点から、(C1-2)アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物(以下、(C1-2)成分、(C1-2)と記載する場合がある。)を含有することが好ましい。
 アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物としては、以下に限定されるものではないが、例えば、ヨウ化カリウム、臭化カリウム、塩化カリウム、ヨウ化ナトリウム及び塩化ナトリウム、並びにこれらの混合物が挙げられる。
 中でも、耐熱エージング性の向上及び金属腐食の抑制という観点から、好ましくはヨウ化カリウム及び/又は臭化カリウムであり、より好ましくはヨウ化カリウムである。
 本実施形態のポリアミド樹脂組成物における(C1-2)成分の含有量は、熱可塑性樹脂である前記(A)成分と前記(C3)成分の合計100質量部に対して、好ましくは0.05~5質量部であり、より好ましくは0.2~2質量部である。
 (C1-2)成分の含有量が上記の範囲内の場合、耐熱エージング性が一層向上するとともに、銅の析出や金属腐食を効果的に抑制することができる。
 前記(C1)成分と前記(C1-2)成分は、それぞれにおいて、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 中でも、耐熱エージング性を一層向上させる観点から、前記(C1)成分として銅塩を用い、前記(C1-2)成分としてアルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物を組み合わせ、これらの混合物を用いることが好適である。
 なお、(C1-2)成分は、(C1)成分と併用する成分であり、(C1)成分とは異なる成分である。
 前記(C1)成分の金属元素と前記(C1-2)成分のハロゲン元素のとのモル比(ハロゲン元素/金属元素)は、2~50が好ましく、2~40がより好ましく、5~30がさらに好ましい。
 上記した範囲内の場合、耐熱エージング性を一層向上させることができる。
<(C2)ヒンダードフェノール化合物、ヒンダードアミン化合物、及び有機リン化合物からなる群より選ばれる少なくとも一の有機熱安定剤>
 本実施形態のポリアミド樹脂組成物は、(C2)ヒンダードフェノール化合物、ヒンダードアミン化合物、及び有機リン化合物からなる群より選ばれる少なくとも一の有機熱安定剤(以下、(C2)成分、(C2)と記載する場合がある。)を含有することが好ましい。
[ヒンダードフェノール化合物]
 (C2)成分としてのヒンダードフェノール化合物は、以下に限定されるものではないが、例えば、N,N’-ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロパンアミド]、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,6-ヘキサンジオール-ビス[3-(3, 5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2-チオビス(4-メチル-6-1-ブチルフェノール)、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロキシンナマミド)、3,5-ジ-t-ブチル-4-ヒドロキシ-ベンジルフォスファスフォネート-ジエチルエステル、1,3,5-トリメチル-2,4、6-トリス(3,5-ジ-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルスルホン酸エチルカルシウム、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、2,6-ジ-t-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-4-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス-(4-メチル-6-t-ブチルフェノール)、2,2’-メチレン-ビス-(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス-(3-メチル-6-t-ブチルフェノール)、オクチル化ジフェニルアミン、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール、3,9-ビス[1,1-ジメチル-2-[β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス[3,3’-ビス-(4’-ヒドロキシ-3’-T-ブチルフェニル)ブチリックアシッド]グリコールエステル、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-sec-トリアジン-2,4,6-(1H,3H,5H)トリオン、d-α-トコフェロール等が挙げられる。
 これらは一種のみを単独で用いてもよく、二種以上を併用してもよい。
[ヒンダードアミン化合物]
 (C2)成分としてのヒンダードアミン化合物は、以下に限定されるものではないが、例えば、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ[{6-(1,1,3,3,-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6,-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6,-テトラメチル-4-ピペリジル)イミノ}]、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、ビス-2,2,6,6-テトラメチル-4-ピペリジル-セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、メチル(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、1-[2-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-t-ブチル-ヒドロキシフェニル)プロピオニルオキシ]2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン等が挙げられる。
 これらは一種のみを単独で用いてもよく、二種以上を併用してもよい。
[有機リン化合物]
 (C2)成分としての有機リン化合物は、以下に限定されるものではないが、例えば、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンホスフォナイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、トリフェニルホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジフェニルイソデシルフォスファイト、フェニルジイソデシルフォスファイト、4,4-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、サイクリックネオペンタンテトライルビス(2,6-ジ-t-ブチル-4-メチルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールジフォスファイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン等が挙げられる。
 上述したヒンダードフェノール化合物、ヒンダードアミン化合物、及び有機リン化合物からなる群より選ばれる少なくとも一の有機熱安定剤は、一種のみを単独で用いてもよく、二種以上を併用してもよい。
 上記で列挙した(C2)成分:有機熱安定剤の中でも、ヒンダードフェノール化合物が好ましく、N,N’-ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロパンアミド]がより好ましい。
 上記ヒンダードフェノール化合物を用いた場合、より耐熱エージング性に優れるポリアミド樹脂組成物が得られる。
 本実施形態のポリアミド樹脂組成物においては、耐熱エージング性及び生産性の観点から、前記(C2)成分が含有成分として選択される場合には、熱可塑性樹脂((A)成分と(C3)成分の合計)100質量部に対し、前記(C2)ヒンダードフェノール化合物、ヒンダードアミン化合物、及び有機リン化合物からなる群より選ばれる少なくとも一の有機熱安定剤が0.8~20質量部含まれるものとする。
 前記(C2)の含有量は、(A)成分と(C3)成分の合計100質量部に対し、1質量部以上10質量部以下が好ましく、1.5質量部以上10質量部以下がより好ましく、2.5質量部以上10質量部以下がさらに好ましく、4質量部以上10質量部以下がさらにより好ましく、6質量部以上10質量部以下がよりさらに好ましい。
((C3)前記(A)ポリアミド樹脂の融点よりも低い融点を有する結晶性の熱可塑性樹脂及び/又は前記(A)ポリアミド樹脂のビカット軟化点よりも低いビカット軟化点を有する非晶性の熱可塑性樹脂)
 本実施形態のポリアミド樹脂組成物は、(C3)前記(A)ポリアミド樹脂の融点よりも低い融点を有する結晶性の熱可塑性樹脂及び/又は前記(A)ポリアミド樹脂のビカット軟化点よりも低いビカット軟化点を有する非晶性の熱可塑性樹脂(以下、「(C3)成分」と記載する場合がある。)を含有することが好ましい。
 前記(C3)成分としては、後述する(A)成分の融点よりも低い融点を有する結晶性の熱可塑性樹脂、(A)成分のビカット軟化点よりも低いビカット軟化点を有する非晶性の熱可塑性樹脂並びに熱可塑性エラストマーが挙げられる。
 当該(C3)成分としては、以下に限定されるものではないが、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリフェニレンエーテル、熱可塑性ポリエステル樹脂、ポリアミド樹脂、ポリ乳酸系樹脂、ポリスチレン、ポリ塩化ビニル、アクリル樹脂、ポリカーボネート樹脂、ポリアセタール樹脂ポリテトラフルオロエチレン等のフッ素系樹脂等が挙げられる。
 (C3)成分としては、本実施形態のポリアミド樹脂組成物の初期強度の観点から、(A)成分の融点よりも低い融点を有する結晶性の熱可塑性樹脂であることが好ましい。例えば、ポリアミド樹脂、熱可塑性ポリエステル樹脂が好ましく用いられ、ポリアミド樹脂がさらに好ましい。
 (C3)成分としては、上述した熱可塑性樹脂のうち1種類のみを用いてもよいし、2種類以上を併用してもよい。
 ポリアミド樹脂組成物における(C3)成分の含有量は、当該(C3)成分が含有成分として選択される場合には、熱可塑性樹脂である前記(A)成分と前記(C3)成分の合計100質量部に対し、1~50質量部であるものとする。上記範囲内とすることで、高温条件下での剛性を保持しつつ高い耐熱エージング性を発揮できる。
 また、ポリアミド樹脂組成物における前記(C3)成分の含有量は、高温剛性とエージング性のバランスの観点から、前記(A)成分と前記(C3)成分との合計100質量部に対し、5質量部以上50質量部以下であることが好ましく、10質量部以上40質量部以下であることがより好ましく、15質量部以上35質量部以下であることがさらに好ましい。
 耐熱エージング性向上の観点から、前記(C3)成分として、融点240℃未満のポリアミド樹脂を用いることが好ましく、融点230℃未満のポリアミド樹脂を用いることがより好ましい。
 同様に、耐熱エージング性向上の観点から、前記(C3)成分としては、ポリアミド6及び/又は含有する窒素原子数に対する炭素原子数の比(C/N)が7以上20以下であるポリアミド樹脂を用いることがより好ましい。含有する窒素原子数に対する炭素原子数の比(C/N)が7以上20以下であるポリアミド樹脂としては、以下に限定されるものではないが、例えば、PA610、PA612等が挙げられる。
 前記(C3)成分として使用する熱可塑性樹脂は、非晶性の場合は、耐熱エージング性向上の観点から、ビカット軟化点が上述した(A)ポリアミド樹脂のビカット軟化点よりも低いものとする。前記(C3)成分のビカット軟化点は、好ましくは235℃以下であり、より好ましくは230℃以下であり、さらに好ましくは220℃以下である。
 前記(C3)成分として使用し得る熱可塑性ポリエステル樹脂としては、以下に限定されるものではないが、例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂等が挙げられる。
 前記(C3)成分は、上述したように、耐熱エージング性向上の観点から、当該(C3)成分が含有する窒素原子数に対する炭素原子数の比(C/N)が7以上20以下のポリアミド樹脂であることが好ましい。
 前記窒素原子数に対する炭素原子数の比(C/N)は、7以上18以下が好ましく、8以上16以下がより好ましい。
 (C3)成分が含有する窒素原子数に対する炭素原子数の比(C/N)は、ポリアミド樹脂を構成するモノマーを調整することにより、上記数値範囲に制御することができる。
 上記熱可塑性樹脂(C3)の融点は、JIS-K7121に準じて測定することができる。
 測定装置としては、例えば、PERKIN-ELMER社製、Diamond DSC等を用いることができる。
 上記熱可塑性樹脂(C3)のビカット軟化点は、JIS-K7206に準じて測定することができる。
 (C3)成分の含有量の計算方法について説明する。
 例えば、ポリアミド樹脂組成物中における(A)成分の含有量が80kg、(C3)成分の含有量が20kgである場合、熱可塑性樹脂成分((A)成分と(C3)成分の合計)100kgに対して(C3)成分の含有量は20kgである。これは、本明細書中においては、熱可塑性樹脂成分((A)成分と(C3)成分の合計)100質量部に対して、(C3)成分が20質量部含まれていると表す。
((C4)酸)
 本実施形態のポリアミド樹脂組成物は、(C4)酸を含有することが好ましい。
 (C4)成分としての酸は、有機酸でも無機酸でもよい。成形品の外観の観点から、(C4)酸としては、有機酸を用いることが好ましい。
 有機酸は、以下に限定されるものではないが、例えば、カルボキシル基、スルホ基、ヒドロキシ基、チオール基、エノール基を有する化合物等が挙げられる。
 (C4)酸は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
<カルボキシル基を有する化合物>
 (C4)酸としての前記カルボキシル基を有する化合物は、以下に限定されるものではないが、例えば、酢酸、プロパン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸、テトラデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、安息香酸、シュウ酸、シクロヘキサンジカルボン酸、イソフタル酸、テレフタル酸、1,3,5-テトラベンゼンテトラカルボン酸、アジピン酸、ドデカン二酸、クエン酸、酒石酸、エチレンジアミン四酢酸、エチレンジアミン四酢酸-2ナトリウム塩、グルコン酸等が挙げられる。
 これらは1種のみを単独で用いてもよく、2種以上を併用してもよい。
 上記で列挙したカルボキシル基を有する化合物の中でも、シクロヘキサンジカルボン酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメリット酸無水物、1、3、5-テトラベンゼンテトラカルボン酸、1,2,4-シクロヘキサントリカルボン酸、アジピン酸、ドデカン二酸、クエン酸、酒石酸、エチレンジアミン四酢酸、エチレンジアミン四酢酸-2ナトリウム塩等、一分子の中に複数のカルボキシル基を有する化合物が好ましい。
 上記カルボキシル基を有する化合物を用いた場合、より吸水時の物性に優れるポリアミド樹脂組成物が得られる。
 一方、本発明者らは、酢酸ナトリウムを添加した場合、上記に列挙したカルボン酸を含むその他のカルボン酸を添加した場合と比較し、吸水時の物性の改善効果は見られないこと発見した。すでにナトリウム塩となった酢酸ナトリウムを添加した場合、カルボン酸としての効果を発揮しないためと考えている。
<スルホ基を有する化合物>
 (C4)酸としてのスルホ基を有する化合物は、以下に限定されるものではないが、例えば、メタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、フルオロスルホン酸、及びそれらの誘導体等が挙げられる。
 これらは1種のみを単独で用いてもよく、2種以上を併用してもよい。
<ヒドロキシ基を有する化合物>
 (C4)酸としてのヒドロキシ基を有する化合物は、以下に限定されるものではないが、例えば、シクロヘキサノール、デカノール、デカンジオール、ドデカノール、ドデカンジオール、ペンタエリトリトール、ジペンタエリトリトール、トリペンタエリトリトール、ジ-トリメチロールプロパン、D-マンニトール、D-ソルビトール、キシリトール、フェノール、及びこれらの誘導体等が挙げられる。
 これらは1種のみを単独で用いてもよく、2種以上を併用してもよい。
 本実施形態のポリアミド樹脂組成物においては、吸水時の物性と生産性の観点から、前記(C4)酸がカルボキシル基を有する化合物であることが好ましい。
 本実施形態のポリアミド樹脂組成物においては、生産性の観点から、前記(C4)酸が芳香族カルボン酸化合物であることが好ましい。
 以下に限定されるものではないが、例えば、イソフタル酸、テレフタル酸、トリメリット酸、1,3,5-テトラベンゼンテトラカルボン酸等が挙げられる。
 本実施形態のポリアミド樹脂組成物においては、吸水時の物性と生産性の観点から、前記(C4)酸の分子量(Mn)は、50≦Mn≦1000であることが好ましい。
 100≦Mn≦700であることがより好ましく、100≦Mn≦500であることがさらに好ましい。
 (C4)酸は、本実施形態のポリアミド樹脂組成物の高温時の物性の観点から、主鎖を構成する成分として、カルボン酸無水物含有不飽和ビニル単量体を含み、かつ、ガラス転移温度Tgが0℃を超えることが好ましい。
 また、(C)成分が主鎖を構成する成分としてカルボン酸無水物含有不飽和ビニル単量体を含む場合、60℃<Tgであることが好ましい。
 (C)成分が60℃<Tgであると、本実施形態のポリアミド樹脂組成物において、高温時の物性の向上の効果がより大きく得られる。また、同様の観点から、60℃<Tg<200℃であることがより好ましい。
 上記(C)成分のTgは、JIS-K7121に準拠し、PERKIN-ELMER社製Diamond-DSCを用いて、昇温速度20℃/minで測定することができる。
 (C4)酸が、主鎖を構成する成分としてカルボン酸無水物含有不飽和ビニル単量体を含む場合、ガラス転移温度Tgが0℃を超えるものであればよく、(C4)酸は、特に、オレフィンと無水マレイン酸との共重合体であることが好ましい。
 (C4)酸としては、以下に限定されるものではないが、例えば、エチレン-無水マレイン酸共重合体、プロピレン-無水マレイン酸共重合体、ブタジエン-無水マレイン酸共重合体、スチレン-無水マレイン酸共重合体、アクリロニトリル-無水マレイン酸共重合体等が挙げられる。
 これらの中でも、本実施形態のポリアミド樹脂組成物の高温物性の向上の観点から、エチレン-無水マレイン酸共重合体が好ましい。
 (C4)酸が主鎖を構成する成分としてカルボン酸無水物含有不飽和ビニル単量体を含む場合、(C4)酸の重量平均分子量は60万以下が好ましく、1万以上60万以下がより好ましく、1万以上40万以下がさらに好ましい。
 (C4)酸が主鎖を構成する成分としてカルボン酸無水物含有不飽和ビニル単量体を含む場合、重量平均分子量が1万以上であると、(C4)酸の熱安定性が向上し、本実施形態のポリアミド樹脂組成物を押出工程する際に、分解等を抑制できる。
 また、重量平均分子量が60万以下であると、ポリアミド樹脂組成物中での(C4)酸の良好な分散性が得られ、ポリアミド樹脂組成物の耐振動疲労特性が向上する傾向にある。
 また、(C4)酸の重量平均分子量が40万以下であると、さらに耐振動疲労特性に優れるポリアミド樹脂組成物を得ることができる傾向にある。
 なお、本明細書における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により求めることができる。
 (C4)酸が主鎖を構成する成分としてカルボン酸無水物含有不飽和ビニル単量体を含む場合、(C4)酸の酸価は0.1以上が好ましく、0.2以上がより好ましい。
 また、(C4)酸が主鎖を構成する成分としてカルボン酸無水物含有不飽和ビニル単量体を含む場合、酸価は0.5以下であることが好ましい。
 (C4)酸の酸価が0.1以上0.5以下であると、本実施形態のポリアミド樹脂組成物において、より優れた耐振動疲労特性向上効果が得られる傾向にある。
 なお、本明細書における(C4)酸の酸価は、JIS K0070に準拠し、(C4)酸1g中に存在する、酸を中和するのに必要な水酸化カリウムのmg数を測定することにより求めることができる。
 本実施形態のポリアミド樹脂組成物においては、吸水時の物性と生産性の観点から、熱可塑性樹脂((A)成分と(C3)成分の合計)100質量部に含まれる前記(C4)酸の酸価に対する、熱可塑性樹脂((A)成分と(C3)成分の合計)100質量部に含まれる前記(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)のアルカリ価:(X)が、下記(式1)を満たすことが好ましい。
 0<X≦5   ・・・(式1)
(X=(熱可塑性樹脂((A)成分と(C3)成分の合計)100質量部に含まれる(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)のアルカリ価)/(熱可塑性樹脂((A)成分と(C3)成分の合計)100質量部中に含まれる(C4)酸の酸価))
 本実施形態のポリアミド樹脂組成物は、上記(式1)において、0<X≦3であることがより好ましく、0<X≦2であることがさらに好ましく、0<X≦1であることがよりさらに好ましい。
 熱可塑性樹脂((A)成分と(C3)成分の合計)100質量部に含まれる前記(C4)酸の酸価は、JISK0070に基づき定義される。
 すなわち、酸価:試料1g中に含有する遊離脂肪酸、樹脂酸等を中和するのに必要とする水酸化カリウムのmg数である。
 熱可塑性樹脂((A)成分と(C3)成分の合計)100質量部に含まれる前記(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)のアルカリ価は、JISK0070に基づき定義される。
 すなわち、アルカリ価:試料1gをアセチル化させたとき、水酸基と結合した酢酸を中和するのに必要とする水酸化カリウムのmg数である。
 また、上記において「熱可塑性樹脂((A)成分と(C3)成分の合計)100質量部に含まれる」とは、本実施形態のポリアミド樹脂組成物中の熱可塑性樹脂((A)成分と(C3)成分の合計)を100質量部としたとき、の意味であり、熱可塑性樹脂((A)成分と(C3)成分の合計)の量を共通の100質量部とした場合の(B)成分の含有量と(C)成分の含有量を考慮して、上記(式1)を算出する。
 さらに、本実施形態のポリアミド樹脂組成物においては、吸水時の物性と生産性の観点から、熱可塑性樹脂((A)成分と(C3)成分の合計)100質量部に含まれる前記(C4)酸の酸価と(A)ポリアミド樹脂のカルボキシル基末端の酸価の和に対する、熱可塑性樹脂((A)成分と(C3)成分の合計)100質量部に含まれる前記(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)のアルカリ価:(Y)が、下記(式2)を満たすことが好ましい。
 0<Y≦3   ・・・(式2)
(Y=(熱可塑性樹脂((A)成分と(C3)成分の合計)100質量部に含まれる(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)のアルカリ価)/(熱可塑性樹脂((A)成分と(C3)成分の合計)100質量部に含まれる(C4)酸の酸価+(A)ポリアミド樹脂のカルボキシル基末端の酸価))
 本実施形態のポリアミド樹脂組成物は、上記(式2)において、0<Y≦2であることがより好ましく、0<X≦1.5であることがさらに好ましく、0<Y≦1.2であることがよりさらに好ましい。
 また、上記において「熱可塑性樹脂((A)成分と(C3)成分の合計)100質量部に含まれる」とは、本実施形態のポリアミド樹脂組成物中の熱可塑性樹脂((A)成分と(C3)成分の合計)を100質量部としたとき、の意味であり、熱可塑性樹脂((A)成分と(C3)成分の合計)の量を共通の100質量部とした場合の(B)成分のアルカリ価と(C4)酸の酸価、(A)ポリアミド樹脂のカルボキシル基末端の酸価を考慮して、上記(式2)を算出する。
 (C4)酸と、(A)成分中のカルボン酸もしくは末端封止剤との関連について補足する。
 (A)ポリアミド樹脂の原料モノマーもしくは末端封止剤として用いられるカルボン酸は、その目的からポリマー中に取り込まれている。具体的には、ポリマー鎖中で共有結合している。
 一方で、本明細書中では、その目的からポリマーと共有結合していないカルボン酸官能基を有する有機酸成分を、(C4)酸とする。
 (A)ポリアミド樹脂の原料モノマーもしくは末端封止剤として用いられるカルボン酸と、(C4)酸として用いられるカルボン酸とが同一成分である場合、(A)ポリアミド樹脂の原料モノマーもしくは末端封止剤として用いられるカルボン酸は、ポリマー鎖中で共有結合しているカルボン酸を指し、(C4)酸として用いられたカルボン酸はポリマーと共有結合していないカルボン酸を指す。
 (A)ポリアミド樹脂の原料モノマーもしくは末端封止剤としてカルボン酸を用いた場合、そのカルボン酸がポリマー鎖中で共有結合しているというのは当業者の一般認識である。
 カルボン酸をポリマー鎖中で共有結合していない状態で、不純物としての微量含有量以上にポリアミド樹脂中に含有させることは意図的な操作であり、その目的をもって組成、製法を工夫する必要があることは、当業者の一般認識である。
 すなわち、通常のポリアミド樹脂組成物において、原料としてカルボン酸を使用していても、本願発明が意図している(C4)酸としてのカルボン酸が意図せず含有されている、ということはないと言える。
 上記の記載は、(A)成分中のカルボン酸もしくは末端封止剤として使用されうる有機酸、具体的にはカルボン酸官能基を一分子中に1~3有する有機酸に関する。
 一方、カルボン酸官能基を一分子中に4以上有する有機酸分子は、その一部のカルボン酸官能基がポリアミド樹脂と共有結合していても、本発明の効果を奏する。
 すなわち、カルボン酸官能基を一分子中に1~3有する有機酸は、その一部のカルボン酸官能基がポリアミド樹脂と共有結合すると本発明の効果を十分に奏することができないが、カルボン酸官能基を一分子中に4以上有する有機酸は、その一部のカルボン酸官能基がポリアミド樹脂と共有結合しても、本発明の効果を奏する。
 上記の理由として、本発明者らは、カルボン酸官能基を一分子中に4以上有することにより、その一部がポリアミドと共有結合しても、残りの共有結合していないカルボン酸官能基が本発明の効果に寄与するためと推測している。
 上述した有機酸と(A)ポリアミド樹脂のポリマーとの共有結合の確認は、以下に限定するものではないが、例えば、核磁気共鳴(NMR)、IR等の手法を用いて行うことができる。
 (C4)酸は、(A)ポリアミド樹脂に対して、重合時添加、溶融混練時の添加のいずれのタイミングで添加してもよい。
 本実施形態のポリアミド樹脂組成物の生産性と吸水時物性の向上の観点から、(C4)酸は、溶融混練時に添加することが好ましい。
((D)アルカリ金属化合物及び/又はアルカリ土類金属化合物を除く無機フィラー)
 本実施形態のポリアミド樹脂組成物は、(D)アルカリ金属化合物及び/又はアルカリ土類金属化合物を除く無機フィラー(以下、(D)無機フィラー、(D)成分と記載する場合がある。)を含有することが好ましい。
 (D)成分の含有量は、熱可塑性樹脂成分((A)成分と(C3)成分の合計)100質量部に対し、10質量部以上250質量部以下とすることが好ましく、10質量部以上150質量部以下とすることがより好ましく、15質量部以上100質量部以下とすることがさらに好ましい。
 上記範囲内とすることにより、本実施形態のポリアミド樹脂組成物の流動性及び外観特性が共に一層優れたものとなる傾向にある。
 (D)アルカリ金属化合物及び/又はアルカリ土類金属化合物を除く無機フィラーとしては、以下に限定されるものではないが、例えば、ガラス繊維、炭素繊維、ケイ酸カルシウム繊維、チタン酸カリウム繊維、ホウ酸アルミニウム繊維、フレーク状ガラス、タルク、カオリン、マイカ、ハイドロタルサイト、炭酸カルシウム、炭酸亜鉛、酸化亜鉛、リン酸一水素カルシウム、ワラストナイト、シリカ、ゼオライト、アルミナ、ベーマイト、水酸化アルミニウム、酸化チタン、酸化ケイ素、酸化マグネシウム、ケイ酸カルシウム、アルミノケイ酸ナトリウム、ケイ酸マグネシウム、ケッチェンブラック、アセチレンブラック、ファーネスブラック、カーボンナノチューブ、グラファイト、黄銅、銅、銀、アルミニウム、ニッケル、鉄、フッ化カルシウム、雲母、モンモリロナイト、膨潤性フッ素雲母、及びアパタイト等が挙げられる。
 これらの中でも、本実施形態のポリアミド樹脂組成物の強度及び剛性を増大させる観点から、円形及び非円形断面を有するガラス繊維、フレーク状ガラス、タルク(珪酸マグネシウム)、マイカ、カオリン、ワラストナイト、酸化チタン、リン酸カルシウム、炭酸カルシウム、フッ化カルシウムが好ましい。
 また、より好ましくは、ガラス繊維、ワラストナイト、タルク、マイカ、カオリンであり、さらに好ましくは、ガラス繊維である。
 上述した(D)成分は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記ガラス繊維や炭素繊維のうち、優れた機械的特性をポリアミド樹脂組成物に付与できるという観点から、数平均繊維径が3~30μmであって、かつ重量平均繊維長が100~750μmであり、重量平均繊維長と数平均繊維径とのアスペクト比(重量平均繊維長を数平均繊維径で除した値)が10~100であるものがさらに好ましい。
 また、前記ワラストナイトとしては、優れた機械的特性を本実施形態のポリアミド樹脂組成物に付与できるという観点から、数平均繊維径が3~30μmであって、かつ重量平均繊維長が10~500μmであり、前記アスペクト比が3~100であるものが好ましい。
 さらに、前記タルク、マイカ、カオリンとしては、優れた機械的特性を本実施形態のポリアミド樹脂組成物に付与できるという観点から、数平均繊維径が0.1~3μmであるものが好ましい。
 ここで、本明細書における数平均繊維径及び重量平均繊維長は、以下のようにして求めることができる。
 すなわち、ポリアミド樹脂組成物を電気炉に入れて、含まれる有機物を焼却処理し、残渣分から、例えば100本以上の(D)無機フィラーを任意に選択し、SEMで観察して、これらの繊維径を測定し、平均値を算出することにより数平均繊維径を求めることができる。
 また、倍率1000倍のSEM写真を用いて繊維長を計測し、所定の計算式(n本の繊維長を測定した場合、重量平均繊維長=Σ(I=1→n)(n番目の繊維の繊維長)/Σ(I=1→n)(n番目の繊維の繊維長))により重量平均繊維長を求めることができる。
 前記(D)無機フィラーは、シランカップリング剤等により表面処理を行ってもよい。
 前記シランカップリング剤としては、以下に限定されるものではないが、例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン等のアミノシラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン等のメルカプトシラン類;エポキシシラン類;ビニルシラン類が挙げられる。
 シランカップリング剤は、1種のみを単独で用いてもよく、2種以上を併用してもよい。前記シランカップリング剤の中でも、樹脂との親和性の観点から、アミノシラン類がより好ましい。
 また、前記(D)無機フィラーとしてガラス繊維を用いた場合、当該ガラス繊維は、さらに集束剤を含んでいることが好ましい。
 集束剤とは、ガラス繊維の表面に塗布する成分である。
 集束剤としては、カルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体、エポキシ化合物、ポリカルボジイミド化合物、ポリウレタン樹脂、アクリル酸のホモポリマー、アクリル酸とその他の共重合性モノマーとのコポリマー、並びにこれらの第1級、第2級及び第3級アミンとの塩等が挙げられる。
 これらの集束剤は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 中でも、本実施形態のポリアミド樹脂組成物の機械的強度の観点から、カルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体、エポキシ化合物、ポリカルボジイミド化合物及びポリウレタン樹脂、並びにこれらの組み合わせが好ましく、カルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体がより好ましい。
 前記カルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体のうち、前記カルボン酸無水物含有不飽和ビニル単量体としては、以下に限定されるものではないが、例えば、無水マレイン酸、無水イタコン酸や無水シトラコン酸が挙げられ、中でも無水マレイン酸が好ましい。
 一方、前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とは、カルボン酸無水物含有不飽和ビニル単量体とは異なる不飽和ビニル単量体をいう。
 前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体としては、以下に限定されるものではないが、例えば、スチレン、α-メチルスチレン、エチレン、プロピレン、ブタジエン、イソプレン、クロロプレン、2,3-ジクロロブタジエン、1,3-ペンタジエン、シクロオクタジエン、メチルメタクリレート、メチルアクリレート、エチルアクリレート、エチルメタクリレートが挙げられる。中でもスチレンやブタジエンが好ましい。
 これらの組み合わせの中でも、無水マレイン酸とブタジエンとの共重合体、無水マレイン酸とエチレンとの共重合体、及び無水マレイン酸とスチレンとの共重合体、並びにこれらの混合物よりなる群から選択される1種以上であることがより好ましい。
 また、カルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体は、本実施形態のポリアミド樹脂組成物の流動性向上の観点から、重量平均分子量が2,000以上であることが好ましい。より好ましくは2,000~1,000,000である。なお、本明細書における重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)により測定することができる。
 前記エポキシ化合物としては、以下に限定されるものではないが、例えば、エチレンオキサイド、プロピレンオキサイド、ブテンオキサイド、ペンテンオキサイド、ヘキセンオキサイド、ヘプテンオキサイド、オクテンオキサイド、ノネンオキサイド、デセンオキサイド、ウンデセンオキサイド、ドデセンオキサイド、ペンタデセンオキサイド、エイコセンオキサイド等の脂肪族エポキシ化合物;グリシドール、エポキシペンタノール、1-クロロ-3,4-エポキシブタン、1-クロロ-2-メチル-3,4-エポキシブタン、1,4-ジクロロ-2,3-エポキシブタン、シクロペンテンオキサイド、シクロヘキセンオキサイド、シクロヘプテンオキサイド、シクロオクテンオキサイド、メチルシクロヘキセンオキサイド、ビニルシクロヘキセンオキサイド、エポキシ化シクロヘキセンメチルアルコール等の脂環族エポキシ化合物;ピネンオキサイド等のテルペン系エポキシ化合物;スチレンオキサイド、p-クロロスチレンオキサイド、m-クロロスチレンオキサイド等の芳香族エポキシ化合物;エポキシ化大豆油;及びエポキシ化亜麻仁油が挙げられる。
 前記ポリカルボジイミド化合物とは、一以上のカルボジイミド基(-N=C=N-)を含有する化合物、すなわちカルボジイミド化合物を縮合することにより得られる化合物である。
 前記ポリカルボジイミド化合物は、縮合度が1~20であることが好ましく、1~10であることがより好ましい。縮合度が1~20の範囲内にある場合、良好な水溶液または水分散液が得られる。さらに、縮合度が1~10の範囲内にある場合、一層良好な水溶液または水分散液が得られる。
 また、前記ポリカルボジイミド化合物は、部分的にポリオールセグメントを持つポリカルボジイミド化合物であることが好ましい。部分的にポリオールセグメントを持つことにより、ポリカルボジイミド化合物は水溶化し易くなり、ガラス繊維や炭素繊維の集束剤として一層好適に使用可能となる。
 前記カルボジイミド化合物、すなわち上記各種カルボジイミド基(-N=C=N-)を含有する化合物は、ジイソシアネート化合物を3-メチル-1-フェニル-3-ホスホレン-1-オキシド等の公知のカルボジイミド化触媒の存在下で脱炭酸反応させることによって得られる。
 前記ジイソシアネート化合物としては、芳香族ジイソシアネート、脂肪族ジイソシアネート及び脂環式ジイソシアネート、並びにそれらの混合物を用いることが可能である。
 ジイソシアネート化合物としては、以下に限定されるものではないが、例えば、1,5-ナフタレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、4,4'-ジフェニルジメチルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートとの混合物、ヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4'-ジイソシアネート、メチルシクロヘキサンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,6-ジイソプロピルフェニルジイソシアネート及び1,3,5-トリイソプロピルベンゼン-2,4-ジイソシアネート等が挙げられる。
 そして、これらのジイソシアネート化合物をカルボジイミド化することによって、末端に2つのイソシアネート基を有するカルボジイミド化合物が得られる。これらのうち、反応性向上の観点からジシクロヘキシルメタンカルボジイミドが好適に使用可能である。
 また、モノイソシアネート化合物を等モル量カルボジイミド化させる方法、またはポリアルキレングリコールモノアルキルエーテルと等モル量反応させてウレタン結合を生成する方法等によって、末端にイソシアネート基を1つ有するポリカルボジイミド化合物が得られる。
 モノイソシアネート化合物としては、以下に限定されるものではないが、例えば、ヘキシルイソシアネート、フェニルイソシアネート、シクロヘキシルイソシアネート等が挙げられる。
 上記したポリアルキレングリコールモノアルキルエーテルとしては、以下に限定されるものではないが、例えば、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノエチルエーテル等が挙げられる。
 前記ポリウレタン樹脂は、集束剤として一般的に用いられるものであればよく、以下に限定されるものではないが、例えば、m-キシリレンジイソシアナート(XDI)、4,4’-メチレンビス(シクロヘキシルイソシアナート)(HMDI)やイソホロンジイソシアナート(IPDI)等のイソシアネートと、ポリエステル系やポリエーテル系のジオールとから合成されるものが挙げられる。
 前記アクリル酸のホモポリマー(ポリアクリル酸)としては、樹脂との親和性の観点から重量平均分子量は1,000~90,000であることが好ましく、より好ましくは1,000~25,000である。
 前記アクリル酸とその他の共重合性モノマーとのコポリマーを形成する、前記「その他の共重合性モノマー」としては、以下に限定されるものではないが、例えば、水酸基及び/又はカルボキシル基を有するモノマーのうち、アクリル酸、マレイン酸、メタクリル酸、ビニル酢酸、クロトン酸、イソクロトン酸、フマル酸、イタコン酸、シトラコン酸及びメサコン酸よりなる群から選択される1種以上が挙げられる(但し、アクリル酸のみの場合を除く)。
 なお、上記したモノマーのうちエステル系モノマーを1種以上有することが好ましい。
 上述したアクリル酸のポリマー(ホモポリマー及びコポリマーを共に含む)は塩の形態であってもよい。
 アクリル酸のポリマーの塩としては、以下に限定されるものではないが、第一級、第二級又は第三級のアミンが挙げられる。
 具体的には、トリエチルアミン、トリエタノールアミンやグリシンが挙げられる。
 中和度は、他の併用薬剤(シランカップリング剤等)との混合溶液の安定性向上や、アミン臭低減の観点から、20~90%とすることが好ましく、40~60%とすることがより好ましい。
 塩を形成するアクリル酸のポリマーの重量平均分子量は、特に限定されるものではないが、3,000~50,000の範囲であることが好ましい。ガラス繊維や炭素繊維の集束性向上の観点から、3,000以上が好ましく、本実施形態のポリアミド樹脂組成物における機械的特性向上の観点から、50,000以下が好ましい。
 上述した各種集束剤により、ガラス繊維や炭素繊維を処理する方法としては、上述した集束剤を、公知のガラス繊維や炭素繊維の製造工程において、ローラー型アプリケーター等の公知の方法を用いて、ガラス繊維や炭素繊維に付与し、製造した繊維ストランドを乾燥することによって連続的に反応させる方法が挙げられる。
 前記繊維ストランドをロービングとしてそのまま使用してもよく、さらに切断工程を得て、チョップドガラスストランドとして使用してもよい。
 集束剤は、ガラス繊維又は炭素繊維100質量%に対し、固形分率として0.2~3質量%相当を付与(添加)することが好ましく、より好ましくは0.3~2質量%付与(添加)する。ガラス繊維や炭素繊維の集束を維持する観点から、集束剤の添加量が、ガラス繊維又は炭素繊維100質量%に対し、固形分率として0.2質量%以上であることが好ましい。一方、本実施形態のポリアミド樹脂組成物の熱安定性向上の観点から、3質量%以下であることが好ましい。
 また、前記ストランドの乾燥は、切断工程後に行ってもよく、またはストランドを乾燥した後に切断工程を実施してもよい。
(ポリアミド樹脂組成物に含まれうる他の成分)
 本実施形態のポリアミド樹脂組成物は、上述した(A)成分~(D)成分の他、本発明の効果を損なわない範囲で、必要に応じて、さらにその他の成分を含有してもよい。
 当該その他の成分としては、以下に限定されるものではないが、例えば、紫外線吸収剤、光劣化防止剤、可塑剤、滑剤、離型剤、核剤、難燃剤、着色剤、染色剤や顔料、及び他の熱可塑性樹脂が挙げられる。
 ここで、上記したその他の成分は、それぞれ性質が大きく異なるため、各成分についての、本実施形態の効果をほとんど損なわない好適な含有率は様々である。そして、当業者であれば、上記した他の成分ごとの好適な含有率は容易に設定可能である。
〔ポリアミド樹脂組成物の特性〕
(ポリアミド樹脂組成物の数平均分子量(Mn))
 本実施形態のポリアミド樹脂組成物の数平均分子量(Mn)は、機械物性、耐熱エージング性の観点から、10000以上であることが好ましい。ポリアミド樹脂組成物の数平均分子量は12000以上であることがより好ましく、15000以上であることがさらに好ましい。
 なお、本明細書における数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用い、測定サンプルをポリアミド樹脂組成物として、溶媒にヘキサフルオロイソプロパノール(HFIP)を用いて求めることができ、実質的には、ポリアミド樹脂組成物中の(A)ポリアミド樹脂、又は(A)ポリアミド樹脂に共有結合している成分を含めた(A)ポリアミド樹脂の数平均分子量に相当する。
 本実施形態のポリアミド樹脂組成物の数平均分子量(Mn)を上記範囲とするためには、(A)ポリアミド樹脂を溶融させた状態で、単軸又は多軸の押出機によって、(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)を混練する方法を適用することが好ましい。
 また、本実施形態のポリアミド樹脂組成物の数平均分子量(Mn)を上記範囲とするためには、(A)ポリアミド樹脂を溶融させた状態で、単軸又は多軸の押出機によって、(C4)酸を混練する方法を適用することが好ましい。
 さらに、本実施形態のポリアミド樹脂組成物の数平均分子量(Mn)を上記範囲とするためには、(A)ポリアミド樹脂を溶融させた状態で、単軸又は多軸の押出機によって、(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)と(C4)酸を混練する方法を適用することがより好ましい。
(ポリアミド樹脂組成物の分子量分布(Mw/Mn))
 本実施形態のポリアミド樹脂組成物は、Mw/Mnが2.0以上であり、120℃で1000時間熱エージングした後のMw/Mnが3.0以上であることが好ましい。
 上記熱エージング前のMw/Mnは、2.2以上であることがより好ましく、2.4以上であることがさらに好ましい。
 また、120℃で1000時間熱エージングした後のMw/Mnは、3.2以上であることがより好ましく、3.4以上であることがさらに好ましい。
 熱エージング前及び熱エージング後のMw/Mnを、それぞれ上記範囲とすることにより、耐熱エージング性に優れたポリアミド樹脂組成物が得られる。
 ポリアミド樹脂組成物のMw及びMnは、GPCにより測定することができ、具体的には後述する実施例に記載する方法により測定することができる。
 本実施形態のポリアミド樹脂組成物において、Mw/Mnを2.0以上にするためには、(C4)酸として、上述した「主鎖を構成する成分として、カルボン酸無水物含有不飽和ビニル単量体を含み、かつ、ガラス転移温度Tgが0℃を超える有機酸」を添加することが有効である。
 また、上述した「主鎖を構成する成分として、カルボン酸無水物含有不飽和ビニル単量体を含み、かつ、ガラス転移温度Tgが0℃を超える有機酸」を添加することは、120℃で1000時間熱エージングした後のMw/Mnを3.0以上とするために好適な方法である。
(GPC-MALS-VISCO法による、ポリアミド樹脂組成物の分岐度の測定)
 本実施形態のポリアミド樹脂組成物は、GPC-MALS-VISCO法による解析で、1点以上の分岐構造を有する分子量10万以上の分子を含み、当該分子量10万以上の分子が無水カルボン酸官能基を含むものであることが好ましい。
 分子量10万以上の分子の分岐構造の点数は、後述するGPC-MALS-VISCO法による解析を行うことにより求められる。
 GPC-MALS-VISCO法による解析においては、具体的には、下記条件に設定したGPC-MALS-VISCO測定使用装置を用いて測定を行った後、3官能ランダム分岐理論に基づいて分岐点数の算出を行う。
 本実施形態のポリアミド樹脂組成物において、上記構造の分子を含むことにより、耐熱エージング性に優れ、なおかつ、吸水時の機械物性にも優れるという効果が得られる。
 なお、本実施形態のポリアミド樹脂組成物に含まれる前記分子量10万以上の分子は、2点以上の分岐構造を有することが好ましく、3点以上の分岐構造を有することがより好ましい。
<GPC-MALS-VISCO測定用装置>
装置:ゲル浸透クロマトグラフ-多角度光散乱光度計
構成
ポンプ:Agilent製MODEL 1100
検出器:示差屈折率計Wyatt Technology製Optilab rEX
多角度光散乱検出器:Wyatt Technology製DAWN HELEOS
粘度検出器:Wyatt Technology製VISCOSTAR
カラム:shodex HFIP-806M(2本)
温度:カラム 40℃
溶媒:ヘキサフルオロイソプロパノール(HFIP:5mM トリフルオロ酢酸ナトリウム添加)
流速:0.5mL/min
注入量:0.200mL
データ処理:Wyatt Technology製(ASTRA)データ処理システム
<3官能ランダム分岐理論に基づく分岐点数の算出法>
 VISCO曲線のシグナル強度DP(ΔP)とインレットプレッシャーPiから、下記(1)式によって比粘度ηspiを算出する。
(1)式:
ηspi=4ΔP/(Pi-2ΔP) 
 次いで、各溶出時間における極限粘度[η]iを、下記(2)式より求める。
(2)式:
[η]i=(2(0.5)/Ci)(ηspi-Ln(ηspi+1))(0.5)
(Ci:溶出時間tiの時の濃度)
 次に、3官能ランダム分岐理論に基づく下記(3)式及び下記(4)式により、1分子あたりの分岐点数(λM)を算出する。
(3)式:
g=((1+λM/7)(1/2)+4λM/9)(-1/2)
(4)式:
g(3/2)=(ポリアミド樹脂組成物の[η])/((A)ポリアミド樹脂の[η])
 前記分子量10万以上の分子が、無水カルボン酸官能基を含むことについては、後述する検出方法により確認することができる。
<ポリアミド樹脂組成物中の、分子量10万以上の分子の無水カルボン酸官能基の検出方法>
 先ず、ゲル浸透クロマトグラフ装置(溶媒:ヘキサフルオロイソプロパノール(HFIP))を用いて、分子量10万以上の分子を分取する。
 次に、ロータリーエバポレーターによって分取液を乾固したのち、1H-NMR、IRを用いて、無水カルボン酸官能基、例えば、無水マレイン酸官能基を確認する。
 本実施形態のポリアミド樹脂組成物において、GPC-MALS-VISCO法による解析で、分子量10万以上の分子が1点以上の分岐構造を有し、分子量10万以上の分子が無水カルボン酸官能基を含むものとするためには、(C4)酸として、上述した「主鎖を構成する成分として、カルボン酸無水物含有不飽和ビニル単量体を含み、かつ、ガラス転移温度Tgが0℃を超える有機酸」を添加することが有効である。
(300℃で1時間放置した際の質量減少量)
 本実施形態のポリアミド樹脂組成物は、不活性ガス雰囲気下にて、熱重量分析(TGA)装置を用いて300℃で1時間放置した際の質量減少量が10%以下であることが好ましく、9%以下であることがより好ましく、8%以下であることがさらに好ましい。
 熱重量分析(TGA)は、特に限定されるものではないが、例えば、島津製作所製TGA-50を用いて行うことができる。
 本実施形態のポリアミド樹脂組成物において不活性ガス雰囲気下にて、熱重量分析(TGA)装置を用いて300℃で1時間放置した際の質量減少量が10%以下にするためには、(C4)酸として熱安定性が高いものを用いること有効である。
 なお、(C4)酸の熱安定性が高いとは、本実施形態のポリアミド樹脂組成物に用いる(C4)酸において、不活性ガス雰囲気下にて、熱重量分析(TGA)装置を用いた測定により、5%質量減少となる温度が高いことを意味する。当該5%質量減少となる温度は、260℃以上が好ましく、270℃以上がより好ましく、280℃以上がさらに好ましい。
(還元性リン化合物の含有量)
 本実施形態のポリアミド樹脂組成物は、還元性リン化合物の含有量が、リン元素の含有量に換算して200ppm以下であることが好ましい。還元性リン化合物の含有量が、リン元素の含有量に換算して200ppm以下であることにより、(B)成分の変性が抑制されるため、より優れた耐熱エージング性を有するポリアミド樹脂組成物を得ることができる。
 同様の観点から、還元性リン化合物の含有量が、リン元素の含有量に換算して100ppm以下であることがより好ましく、還元性リン化合物の含有量が、リン元素の含有量に換算して60ppm以下であることがさらに好ましい。
 還元性リン化合物のリン元素に換算した含有量は、後述する実施例に記載の方法により求めることができる。
〔ポリアミド樹脂組成物の製造方法〕
 本実施形態のポリアミド樹脂組成物は、(A)ポリアミド樹脂、(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く)、(C)下記(C1)~(C4)からなる群より選ばれる少なくとも1つ以上の化合物;
  (C1)周期律表の第3族、第4族、第11族、第13族、第14族からなる群より選ばれる一種以上の金属元素の塩
  (C2)ヒンダードフェノール化合物、ヒンダードアミン化合物、及び有機リン化合物からなる群より選ばれる少なくとも一の有機熱安定剤
  (C3)(A)成分の融点よりも低い融点を有する結晶性の熱可塑性樹脂及び/又は(A)成分のビカット軟化点よりも低いビカット軟化点を有する非晶性の熱可塑性樹脂
  (C4)酸
と、必要に応じて前記(C1-2)アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物、前記(D)アルカリ金属化合物及び/又はアルカリ土類金属化合物を除く無機フィラー、その他の成分を混合することにより製造できる。
 本実施形態のポリアミド樹脂組成物の製造においては、単軸又は多軸の押出機によって(A)ポリアミド樹脂を溶融させた状態で、(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く)、及び(C)成分を混練する方法を好ましく用いることができる。
 また、あらかじめ(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く)の水溶液と(A)ポリアミド樹脂ペレットをよく撹拌して混合し、その後に水分を乾燥させる手法で調整したポリアミド樹脂ペレットと(C)成分を、押出機の供給口から供給して溶融混練する方法を用いることができる。
 (B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く)の分散性の観点から、(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物の添加は、単軸又は多軸の押出機によって、(A)ポリアミド樹脂を溶融させた状態で、(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物を混練する方法が好ましい。すなわち、(B)成分を、前記(A)ポリアミド樹脂に対して溶融混練により添加することが好ましい。
 また、生産性の観点から、(C4)酸は、単軸又は多軸の押出機によって、(A)ポリアミド樹脂を溶融させた状態で、(C4)酸を混練する方法が好ましい。すなわち、(C4)酸を、前記(A)ポリアミド樹脂に対して溶融混練により添加することが好ましい。
 さらに、本実施形態のポリアミド樹脂組成物の製造方法においては、(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)をマスターバッチ化して添加する工程を有することが好ましい。
 すなわち、最終的に目的とするポリアミド樹脂組成物中に添加する(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)よりも高濃度の(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)を(A)ポリアミド樹脂に溶融混練してペレット化した後に、その他の成分と溶融混練して最終的に目的とするポリアミド樹脂組成物を製造することが、耐熱エージング性の観点からより好ましい。
 また、本実施形態のポリアミド樹脂組成物の製造方法においては、(C4)酸をマスターバッチ化して添加する工程を有することが好ましい。
 すなわち、最終的に目的とするポリアミド樹脂組成物中に添加する(C4)酸よりも高濃度の(C4)酸を(A)ポリアミド樹脂に溶融混練してペレット化した後に、その他の成分と溶融混練して最終的に目的とするポリアミド樹脂組成物を製造することが、生産性の観点からより好ましい。
 本実施形態のポリアミド樹脂組成物の製造方法においては、(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)と(C4)酸をマスターバッチ化して添加する工程を有することが好ましい。
 すなわち、最終的に目的とするポリアミド樹脂組成物中に添加する(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)と(C4)酸よりも、高濃度の(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)と(C4)酸を、(A)ポリアミド樹脂に溶融混練してペレット化した後に、その他の成分と溶融混練して最終的に目的とするポリアミド樹脂組成物を製造することが、吸水物性改善の観点からより好ましい。
〔ポリアミド樹脂組成物を用いた成形品〕
 本実施形態の成形品は、上記の実施形態に係るポリアミド樹脂組成物を含む。
 本実施形態の成形品は、特に限定されるものではないが、例えば、ポリアミド樹脂組成物を射出成形することにより得られる。
 本実施形態における上記成形品は、以下に限定されるものではないが、例えば、自動車用、機械工業用、電気・電子用、産業資材用、工業材料用、日用・家庭品用等の各種用途の材料部品として好適に用いることができる。特に、自動車用材料部品として好適に用いられる。
 本実施形態の成形品は、優れた耐熱エージング性を有する。
〔ポリアミド樹脂組成物の使用〕
 (A)ポリアミド樹脂と、(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)と、(C4)酸とを含有するポリアミド樹脂組成物を用いることにより、耐熱エージング性に優れ、なおかつ吸水時の機械物性にも優れている成形品を製造できる。
 具体的には、(A)ポリアミド樹脂に、(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)、特に、炭酸ナトリウム、炭酸水素ナトリウムを添加し、かつ(C4)酸を含有させることで、ポリアミド樹脂組成物の耐熱エージング性と吸水物性とを自動車用材料部品に好適に使用できる程度にまで向上させることができる。
 すなわち、本実施形態においては、(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)として、炭酸ナトリウム、炭酸水素ナトリウムを、耐熱エージング性を向上させる添加剤として使用し、かつ(C4)酸を含有させたポリアミド樹脂組成物、成形品、及び自動車用材料部品を好適なものとして提供することができる。
 本願発明者らは、ポリアミド樹脂組成物に、(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)を添加することで、ポリアミド樹脂組成物の耐熱エージング性が自動車用材料部品に好適に使用できる程度にまで向上することを発見した。
 すなわち、本実施形態においては、アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)を、耐熱エージング性を向上させる添加剤として使用したポリアミド樹脂組成物、成形品、及び自動車用材料部品、及びポリアミド組成物の製造方法を提供する。
 以下、具体的な実施例及び比較例を挙げて本発明について詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 実施例及び比較例に係る試料を評価するための測定方法は以下のとおりである。
〔測定方法〕
(98%硫酸相対粘度(ηr))
 後述する実施例及び比較例(以下、単に「各例」ともいう)における、(A)ポリアミド樹脂の98%硫酸相対粘度(ηr)は、JISK6920に従って測定した。
(融点)
 後述する実施例及び比較例における、樹脂の融点を、JIS-K7121に準じて、PERKIN-ELMER社製Damond-DSCを用いて以下の通り測定した。
 当該測定は、窒素雰囲気下で行った。
 試料約10mgを昇温速度20℃/minで50℃から300℃まで昇温した。このときに現れる吸熱ピーク温度を融点とした。
(ビカット軟化温度)
 ISO 306 B50に準拠し、4mm厚の試験片を用いて測定を行い、ビカット軟化温度(℃)を求めた。
(末端基濃度)
 後述する実施例及び比較例における、(A)ポリアミド樹脂の末端基濃度(アミノ末端基濃度、カルボキシル末端基濃度)を、重硫酸溶媒を用いて、60℃での1H-NMR測定により求めた。
 測定装置としては、日本電子(株)製のECA500を用い、(A)ポリアミド樹脂のアミノ末端基、カルボキシル末端基の対応ピークの積分値から末端基濃度を算出し、(アミノ末端基濃度/カルボキシル末端基濃度)を得た。
(初期引張強度と初期引張伸度)
 実施例及び比較例で製造したポリアミド樹脂組成物のペレットを用い、射出成形機(PS-40E:日精樹脂株式会社製)により、ISO 3167に準拠しつつ、多目的試験片(A型)の成形片を成形した。
 その際、射出及び保圧の時間25秒、冷却時間15秒に設定した。
 また、金型温度とシリンダー温度は、後述する(A)ポリアミド樹脂の製造例に記載した温度に設定した。
 得られた多目的試験片(A型)を用いて、ISO 527に準拠しつつ引張速度5mm/分で引張試験を行い、初期引張強度(MPa)と初期引張伸度(%)を測定した。
(耐熱エージング性)
 上記の(初期引張強度)における多目的試験片(A型)を、熱風循環式オーブン内で、230℃もしくは180℃で加熱し、熱老化させた。
 所定の時間ののちにオーブンから取り出し、23℃で24時間以上冷却した後、ISO 527に準拠しつつ引張速度5mm/分で上述した方法と同様の方法により引張試験を行い、各引張強度(MPa)を測定した。
 この手法により、引張強度が半減する加熱時間(h:hour)を、「230℃エージングでの強度半減期」、「180℃エージングでの強度半減期」として求めた。
(吸水後の引張強度保持率)
 後述する実施例及び比較例で製造したポリアミド樹脂組成物のペレットにより、射出成形機(PS-40E:日精樹脂株式会社製)を用いて、ISO 3167に準拠しつつ、多目的試験片(A型)の成形片を成形した。
 その際、射出及び保圧の時間25秒、冷却時間15秒に設定した。
 また、金型温度とシリンダー温度は、後述する(A)ポリアミド樹脂の製造例に記載した温度に設定した。
 上記により成形した多目的試験片(A型)を、蒸留水に完全に浸し、80℃にて48時間吸水させた。その後、23℃で24時間以上冷却した後、試験片を蒸留水から取り出し、ISO 527に準拠しつつ引張速度5mm/分で引張試験を行い、各引張強度(MPa)を測定した。この手法により、吸水後の引張強度を求めた。
 吸水後の引張強度保持率は、下記式により算出した。
 吸水後の引張強度保持率=(吸水後の引張強度/初期引張強度)×100[%]
(120℃引張強度)
 上記の(初期引張強度)における多目的試験片(A型)を用いて、120℃にて、ISO 527に準拠しつつ引張速度5mm/分で引張試験を行い、120℃引張強度(MPa)を測定した。
(ノッチ付きシャルピー衝撃強度)
 上記の(初期引張強度)における多目的試験片(A型)を切削して、長さ80mm×幅10mm×厚さ4mmの試験片を得た。
 当該試験片を用いて、ISO 179に準拠しつつ、ノッチ付きシャルピー衝撃強度(kJ/m)を測定した。
(押出性)
 ポリアミド樹脂組成物の製造において押出機を用いた際の加工安定性を評価した。
 具体的には、樹脂温度の振れ幅が少ないこと、トルク数値の振れ幅が少ないこと、押し出した樹脂ストランドが切れにくいことを評価し、良い順に◎>○と評価した。
 押出が不可能であったものには「押出不可」と記載した。
(銅析出)
 ポリアミド樹脂組成物の製造において押出機を用いた際の、銅の析出の有無を評価した。
 具体的には、製造に用いた後の押出機の部品への銅析出の有無を、析出していない場合は○、析出している場合は×と評価した。
 押出が不可能であったものには「押出不可」と記載した。
(成形後の色調の評価(成形後のb値))
 上記の(初期引張強度)における多目的試験片(A型)のb値を、日本電色社製色差計ZE-2000を用いて反射法により測定した。
(150℃、100時間(h)エージング後の色調の評価(b値))
 上記の(初期引張強度)における多目的試験片(A型)を、熱風循環式オーブン内で、150℃の温度条件下で100時間、熱老化させた。
 その後、前記熱風循環式オーブンから取り出し、23℃で24時間以上冷却した後、各例に対応する多目的試験片(A型)のb値を、日本電色社製色差計ZE-2000を用いて反射法により測定した。
(Δb値)
 上記の(150℃、100時間エージング後の色調の評価のb値と、上記の(成形後の色調の評価)のb値との差をΔb値とした。
((B)アルカリ金属及び/又はアルカリ土類金属化合物の粒子径の測定、及び(B)成分中の粒子径1μm以上の粒子の含有量(質量%))
 ポリアミド樹脂組成物10gを、10mLのギ酸(和光純薬製)に溶解させた。
 その溶液を用いて、アルカリ金属及び/又はアルカリ土類金属化合物の粒子径、及び(B)成分中の粒子径1μm以上の粒子の含有量を、島津製作所(株)製レーザー回折式粒度分布測定装置(SALD-7000)を用いて測定した。
 屈折率は金属化合物に最適な値を選択した。
 炭酸ナトリウムの場合、1.60-1.00iとした。
 炭酸水素ナトリウムの場合、1.60-1.00iとした。
 粒子径は、装置に付帯したソフトを用いて、粒子径分布を体積換算で測定して求めた。
 アルカリ金属及び/又はアルカリ土類金属化合物(B)中の、粒子径1μm以上の粒子の含有量(質量%)は、[粒子径1μm以上の粒子の相対粒子量の積算値(%)×100/系全体の相対粒子量の積算値(%)]のようにして算出した。
(耐塩化カルシウム性)
 上記の(初期引張強度)における多目的試験片(A型)を、80℃の温水中に60分間浸漬した後、23℃の水中に15分間浸漬し、次いで23℃、50%RH雰囲気下に30分間放置したものを試料とした。
 この試料を、直径7mmのステンレス鋼製丸棒に中央を支点として載架し、両端に500gの鉛を懸吊した。
 次いでこの支点部分に幅3cmのガーゼを載せ、これに30%塩化カルシウム水溶液2mLを浸み込ませ、100℃に保ったオーブン中に2時間放置した。
 この間30分ごとに30%塩化カルシウム水溶液2mLを補給した。
 次に荷重を除き、水洗後、乾燥してクラックの発生の有無を顕微鏡で観察し、下記の基準により評価した。
 ○・・・クラックが全くないか、又は小さなクラックが2本以下であった。
 ×・・・クラックが5~9本を認めた。 
(数平均分子量(Mn)と質量平均分子量(Mw)の測定、Mw/Mnの算出)
 GPC(ゲルパーミエーション・クロマトグラフィー)により、Mn及びMwを測定し、Mw/Mnを算出した。
 溶媒はヘキサフルオロイソプロパノールを用い、PMMA(ポリメチルメタクリレート)を標準物質として検量線を作成し、PMMA換算の値を求めた。
 また、120℃で1000時間エージングした後のMn、Mwは、上記の(初期引張強度)における多目的試験片(A型)を、熱風循環式オーブン内で、120℃で加熱し、熱老化させ、1000時間ののちにオーブンから取り出し、23℃で24時間以上冷却した後、当該試験片を用いて、上記手法により測定した。
(ブリード試験)
 上記多目的試験片(A型)を、温度70℃、湿度95%に設定した高温高湿槽に72時間静置した。
 その後、目視にて、ブリードがない、もしくはごくわずかなものを○、ブリードが目立つもの、もしくはブリードが多いものを×と評価した。
(ポリアミド樹脂組成物の熱質量分析(TGA))
 ポリアミド樹脂組成物の熱質量分析(TGA)を、島津製作所製TGA-50を用いて行った。
 実施例における測定条件としては、不活性ガス雰囲気にて、300℃で1時間放置とし、その際の質量減少量を測定した。
 具体的には、放置前の質量と、上記条件での放置後の質量の差を、放置前の質量で除して質量減少量(%)を算出した。
((アルカリ金属化合物及び/又はアルカリ土類金属化合物のアルカリ価)/酸の酸価)
 (A)成分と(C3)成分の合計100質量部に含まれる、前記(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)のアルカリ価は、JISK0070に基づき定義される。
 すなわち、アルカリ価:試料1gをアセチル化させたとき,水酸基と結合した酢酸を中和するのに必要とする水酸化カリウムのmg数である。
 (A)成分と(C3)成分の合計100質量部に含まれる前記(C4)酸の酸価は、JISK0070に基づき定義される。
 すなわち、酸価:試料1g中に含有する遊離脂肪酸、樹脂酸などを中和するのに必要とする水酸化カリウムのmg数である。
 これらの比を、((アルカリ金属化合物及び/又はアルカリ土類金属化合物のアルカリ価)/酸の酸価)として算出した。
((アルカリ金属化合物及び/又はアルカリ土類金属化合物のアルカリ価)/(酸の酸価+ポリアミド樹脂のカルボキシル基末端の酸価))
 ポリアミド樹脂のカルボキシル基末端の酸価は、JIS K0070に基づき定義される。すなわち、酸価:試料1g中に含有する遊離脂肪酸、樹脂酸などを中和するのに必要とする水酸化カリウムのmg数である。
 酸の酸価+カルボキシル基末端の酸価は、有機酸の酸価とカルボキシル基末端の酸価の和であり、これらとアルカリ金属化合物及び/又はアルカリ土類金属化合物のアルカリ価の比を、((アルカリ金属化合物及び/又はアルカリ土類金属化合物のアルカリ価)/(酸の酸価+ポリアミド樹脂のカルボキシル基末端の酸価))とする。
(分子量10万以上の分子の1点以上の分岐構造の有無)
 分子量10万以上の分子の1点以上の分岐構造の有無は、ポリアミド樹脂組成物を、下記装置を用いて、下記の条件で測定して確認した。
<GPC-MALS-VISCO測定用装置>
装置:ゲル浸透クロマトグラフ-多角度光散乱光度計
構成
ポンプ:Agilent製MODEL 1100
検出器:示差屈折率計Wyatt Technology製Optilab rEX
多角度光散乱検出器:Wyatt Technology製DAWN HELEOS
粘度検出器:Wyatt Technology製VISCOSTAR
カラム:shodex HFIP-806M(2本)
温度:カラム 40℃
溶媒:ヘキサフルオロイソプロパノール(HFIP:5mM トリフルオロ酢酸ナトリウム添加)
流速:0.5mL/min
注入量:0.200mL
データ処理:Wyatt Technology製(ASTRA)データ処理システム
<3官能ランダム分岐理論に基づく分岐点数の算出法>
 VISCO曲線のシグナル強度DP(ΔP)とインレットプレッシャーPiから、下記(1)式によって比粘度ηspiを算出した。
(1)式:
ηspi=4ΔP/(Pi-2ΔP) 
 次いで、各溶出時間における極限粘度[η]iを、下記(2)式より求めた。
(2)式:
[η]i=(2(0.5)/Ci)(ηspi-Ln(ηspi+1))(0.5)
(Ci:溶出時間tiの時の濃度)
 次に、3官能ランダム分岐理論に基づく下記(3)式及び下記(4)式により、1分子あたりの分岐点数(λM)を算出した。
(3)式:
g=((1+λM/7)(1/2)+4λM/9)(-1/2)
(4)式:
g(3/2)=(ポリアミド樹脂組成物の[η])/((A)ポリアミド樹脂の[η])
(分子量10万以上の分子の無水カルボン酸官能基の有無)
 前記分子量10万以上の分子が、無水カルボン酸官能基を含むか、含まないかについては、後述する検出方法により確認した。
<ポリアミド樹脂組成物中の、無水カルボン酸官能基の検出方法>
 先ず、ゲル浸透クロマトグラフ装置(溶媒:ヘキサフルオロイソプロパノール(HFIP))を用いて、分子量10万以上の分子を分取した。
 次に、ロータリーエバポレーターによって分取液を乾固したのち、1H-NMR、IRを用いて、無水マレイン酸官能基を確認した。
(次亜リン酸ナトリウムのリン元素換算濃度)
 (A)ポリアミド樹脂に対する還元性リン化合物のリン元素濃度は、具体的に、下記の(1)、(2)に記載する手順に従った方法により測定することができる。なお、次亜リン酸ナトリウムはリン元素を一つ含む化合物であるため、当該次亜リン酸ナトリウムのリン元素モル濃度は、還元性リン化合物のリン元素モル濃度と同視できるものとした。
<(1)リン元素の濃度>
 試料(ポリアミド樹脂組成物)を、(A)ポリアミド樹脂含有分が0.5gとなるように秤量し、濃硫酸を20mL加え、ヒーター上で湿式分解した。
 冷却後、過酸化水素5mLを加え、ヒーター上で加熱し、全量が2~3mLになるまで濃縮した。
 再び冷却し、純水で500mLとした。
 装置はThermo Jarrell Ash製IRIS/IPを用いて、高周波誘導結合プラズマ(ICP)発光分析により、波長213.618(Nm)にて定量する。
 リン元素の濃度は、この定量値を用いて、ポリアミド樹脂10gに対するリン元素の濃度CP(モル)で表した。
<(2)還元性リン化合物(次亜リン酸イオン、亜リン酸イオン、リン酸イオン)の濃度>
 試料(ポリアミド樹脂組成物)を、ポリアミド樹脂(A)含有分が50gとなるように秤量し、そこに100mLの水を加え、室温で15分間の超音波処理後ろ別し、ろ液を得た後、ヒューレットパッカード社製キャピラリー電気泳動装置(HP3D)を用いて、次亜リン酸イオン、亜リン酸イオン及びリン酸イオンの濃度(モル)比率を測定した。
 濃度比率の算出は、濃度が既知の次亜リン酸イオン標準液、亜リン酸イオン標準液、リン酸イオン標準液を同様に測定してキャリブレーションカーブを作成して行った。
 還元性リン化合物のリン元素の濃度Xは、以下の式を用いて、ポリアミド樹脂組成物中のポリアミド樹脂(A)含有分10gに対するリン元素の濃度(モル)に換算して求めた。
 還元性リン化合物のリン元素に換算した濃度X=CP×(CP1+CP2)/(CP1+CP2+CP3)
CP:(1)で求めたポリアミド樹脂組成物中の(A)ポリアミド樹脂含有分10gに対するリン元素の濃度(モル)
CP1:(2)で求めた次亜リン酸イオンの濃度(モル)比率
CP2:(2)で求めた亜リン酸イオンの濃度(モル)比率
CP3:(2)で求めたリン酸イオンの濃度(モル)比率
 なお、下記表15、表19中に、後述する実施例で製造したポリアミド樹脂組成物中の(A)ポリアミド樹脂含有分10gに対するリン元素のモル濃度[mmol/kg]を示した。
 なお、次亜リン酸ナトリウムはリン元素を一つ含む化合物であるため、当該次亜リン酸ナトリウムのリン元素モル濃度は、還元性リン化合物のモル濃度と同視できるものとした。
〔原料〕
 実施例及び比較例に用いた原料は以下の通りである。
((A)ポリアミド樹脂)
<ポリアミド樹脂A-I(PA66)>
 50質量%のヘキサメチレンジアミンとアジピン酸との等モル塩の水溶液を30kg調製し、十分撹拌した。
 当該ポリアミド66の原料の水溶液(以下、単に、原料の水溶液と記載する場合がある。)を、撹拌装置を有し、かつ、下部に抜出しノズルを有する70Lのオートクレーブ中に仕込んだ。
 その後、50℃の温度下で十分攪拌した。
 次いで、窒素で雰囲気置換した後、撹拌しながら温度を50℃から約270℃まで昇温した。この際、オートクレーブ内の圧力を、約1.77MPaに保持するよう、水を系外に除去しながら加熱を約1時間続けた。
 その後、約1時間をかけ、圧力を大気圧まで降圧し、さらに約270℃、大気圧で約1時間保持した後、撹拌を停止した。
 下部ノズルからストランド状にポリマーを排出し、水冷及びカッティングを行い、ペレットを得た。
 <ポリアミド樹脂A-I>の98%硫酸相対粘度は2.8であった。
 また、アミノ末端基濃度は46μmol/gであり、カルボキシル末端基濃度は72μmol/gであった。
 すなわち、アミノ末端基濃度/カルボキシル末端基濃度は0.64であった。
 また、融点は264℃であり、ビカット軟化点は238℃であった。
 なお、<ポリアミド樹脂A-I>を用いたポリアミド樹脂組成物の成形においては、金型温度を80℃、シリンダー温度を290℃に設定した。
<ポリアミド樹脂A-II(PA66)>
 前記原料の水溶液にアジピン酸を900g追加で添加した。
 その他の条件は、前記<ポリアミド樹脂A-I>と同様の製造方法により<ポリアミド樹脂A-II>を製造した。
 <ポリアミド樹脂A-II>の98%硫酸相対粘度は2.2であった。
 また、アミノ末端基濃度は33μmol/gであり、カルボキシル末端基濃度は107μmol/gであった。
 すなわち、アミノ末端基濃度/カルボキシル末端基濃度は0.3であった。
 また、融点は264℃であり、ビカット軟化点は238℃であった。
 なお、<ポリアミド樹脂A-II>を用いたポリアミド樹脂組成物の成形においては、金型温度を80℃、シリンダー温度を290℃に設定した。
<ポリアミド樹脂A-III(PA66)>
 前記原料の水溶液にヘキサメチレンジアミンを900g追加で添加した。
 その他の条件は、前記<ポリアミド樹脂A-I>と同様の製造方法により<ポリアミド樹脂A-III>を製造した。
 <ポリアミド樹脂A-III>の98%硫酸相対粘度は2.4であった。また、アミノ末端基濃度は78μmol/gであり、カルボキシル末端基濃度は52μmol/gであった。すなわち、アミノ末端基濃度/カルボキシル末端基濃度は1.5であった。
 また、融点は264℃であり、ビカット軟化点は238℃であった。
 なお、<ポリアミド樹脂A-III>を用いたポリアミド樹脂組成物の成形においては、金型温度を80℃、シリンダー温度を290℃に設定した。
<ポリアミド樹脂A-IV(PA66/6T)>
 特表2013-501094号公報の製造例に従い、<ポリアミド樹脂A-IV(PA66/6T)>を製造した。
 <ポリアミド樹脂A-IV>の98%硫酸相対粘度は2.9であった。
 また、アミノ末端基濃度は42μmol/gであり、カルボキシル末端基濃度は65μmol/gであった。すなわち、アミノ末端基濃度/カルボキシル末端基濃度は0.6であった。
 なお、<ポリアミド樹脂A-IV>を用いたポリアミド樹脂組成物の成形においては、金型温度を80℃、シリンダー温度を290℃に設定した。
<ポリアミド樹脂A-V(PA9T)>
 特開2013-40346号公報の製造例に従い、<ポリアミド樹脂A-V(PA9T)>を製造した。
 <ポリアミド樹脂A-V>の98%硫酸相対粘度は2.9であり、融点は304℃であった。
 また、アミノ末端基濃度は42μmol/gであり、カルボキシル末端基濃度は52μmol/gであった。すなわち、アミノ末端基濃度/カルボキシル末端基濃度は0.8であった。
 なお、<ポリアミド樹脂A-V>を用いたポリアミド樹脂組成物の成形においては、金型温度を120℃、シリンダー温度を330℃に設定した。
<ポリアミド樹脂A-VI(PA46)>
 ポリアミド46(以下、「PA46」と略記する)として、商品名:Stanyl(登録商標)KS200(DSM社製、融点290℃)を用いた。
 なお、<ポリアミド樹脂A-VI>を用いたポリアミド樹脂組成物の成形においては、金型温度を120℃、シリンダー温度を300℃に設定した。
<ポリアミド樹脂A-VII(PAMXD6)>
 ポリアミドMXD6樹脂(レニー6002:三菱ガス化学(株)社製)を使用した。
((B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)
<B-I 炭酸ナトリウム>
 東京化成工業株式会社製の炭酸ナトリウムを使用した。
<B-II 炭酸水素ナトリウム>
 東京化成工業株式会社製の炭酸水素ナトリウムを使用した。
<B-III 炭酸カリウム>
 東京化成工業株式会社製の炭酸カリウムを使用した。
<B-IV 水酸化ナトリウム>
 東京化成工業株式会社製の水酸化ナトリウムを使用した。
((C1)成分)
<C1-I ヨウ化銅>
 和光純薬工業社製の試薬を使用した。
<C1-II 酢酸銅>
 和光純薬工業社製の試薬を使用した。
((C1-2)成分)
<C1-2-I ヨウ化カリウム>
 和光純薬工業社製の試薬を使用した。
<C1-2-II 臭化カリウム>
 和光純薬工業社製の試薬を使用した。
((C2)成分)
<C2-I ヒンダードフェノール化合物>
 チバ・ジャパン株式会社製のIRGANOX1098を使用した。
<C2-II ヒンダードアミン化合物>
 クラリアント社製のNYLOSTAB S-EEDを使用した。
<C2-III 有機リン化合物>
 チバ・ジャパン株式会社製のIRGAFOS168を使用した。
((C3)(A)ポリアミド樹脂の融点よりも低い融点を有する結晶性の熱可塑性樹脂及び/又は(A)ポリアミド樹脂のビカット軟化点よりも低いビカット軟化点を有する非晶性の熱可塑性樹脂)
<熱可塑性樹脂C3-I(PA66)>
 上記<ポリアミド樹脂A-I(PA66)>と同じものを使用した。
 融点は264℃であり、ビカット軟化点は238℃であった。
<熱可塑性樹脂C3-II(PA6)>
 宇部興産(株)製SF1013Aを使用した。融点は224℃であった。
<熱可塑性樹脂C3-III(PA610)>
 特開2011-148997号公報の製造例に従い、<熱可塑性樹脂C3-III(PA610)>を製造した。
 <熱可塑性樹脂C3-III>の98%硫酸相対粘度は2.3であり、融点は215℃であった。
 また、アミノ末端基濃度は58μmol/gであり、カルボキシル末端基濃度は79μmol/gであった。すなわち、アミノ末端基濃度/カルボキシル末端基濃度は0.7であった。
<熱可塑性樹脂C3-IV(PBT)>
 東レ(株)製“トレコン”1401 X06を使用した。融点は224℃であった。
<熱可塑性樹脂C3-V(PC)>
 帝人(株)製“パンライト”L-1225Yを使用した。ビカット軟化点は148℃であった。
((C4)成分)
<C4-I>
 東京化成工業株式会社製の、クエン酸を使用した。
 なお、不活性ガス雰囲気下にて、熱重量分析(TGA)装置を用いた測定により、5%質量減少となる温度は、191℃であった。
<C4-II>
 東京化成工業株式会社製の、エチレンジアミン四酢酸を使用した。
<C4-III>
 東京化成工業株式会社製の、アジピン酸を使用した。
<C4-IV>
 ALFA AESAR社製の、ジペンタエリスリトールを使用した。
<C4-V>
 東京化成工業株式会社製の、イソフタル酸を使用した。
 なお、不活性ガス雰囲気下にて、熱重量分析(TGA)装置を用いた測定により、5%質量減少となる温度は、281℃であった。
<C4-VI>
 東京化成工業株式会社製の、テレフタル酸を使用した。
 なお、不活性ガス雰囲気下にて、熱重量分析(TGA)装置を用いた測定により、5%質量減少となる温度は、293℃であった。
<C4-VII>
 東京化成工業株式会社製の、酢酸を使用した。
<C4-VIII>
 東京化成工業株式会社製の、1,3,5-ベンゼンテトラカルボン酸を使用した。
<C4-IX>
 東京化成工業株式会社製の、安息香酸を使用した。
<C4-X>
 東京化成工業株式会社製の、セバシン酸を使用した。
 なお、不活性ガス雰囲気下にて、熱重量分析(TGA)装置を用いた測定により、5%質量減少となる温度は、227℃であった。
<C4-XI>
 重量平均分子量が6万、Tgが150℃、酸価が0.28のエチレン-無水マレイン酸共重合体を用いた。
<C4-XII>
 重量平均分子量が40万、Tgが150℃、酸価が0.28のエチレン-無水マレイン酸共重合体を用いた。
<C4-XIII>
 重量平均分子量が6万、Tgが250℃、酸価が0.1のスチレン-無水マレイン酸共重合体を用いた。
<C4-XIV>
 重量平均分子量が10万、Tgが100℃、酸価が0.01の無水マレイン酸グラフトポリプロピレンを用いた。
<C4-XV>
 東京化成工業株式会社製の、トリメリット酸を使用した。水溶性は2.1g/100mLである。
<C4-XVI>
 和光純薬工業株式会社製の、リン酸二水素ナトリウムを使用した。水溶性は7.7g/100mLである。
<C4-XVII>
 和光純薬工業株式会社製の、リン酸二水素カリウムを使用した。水溶性は5.5g/100mLである。
<C4-XVIII>
 東京化成工業株式会社製の、ホウ酸を使用した。水溶性は5.7g/100mLである。
<C4-XIX>
 ALFA AESAR社製の、ポリアクリル酸(Mn5,000)を使用した。水溶性は3.7g/100mLである。
<C4-XX>
 東京化成工業株式会社製の、酢酸ナトリウムを使用した。
((D)アルカリ金属化合物及び/又はアルカリ土類金属化合物を除く無機フィラー)
<ガラス繊維D-I>
 固形分換算で、ポリウレタン樹脂を2質量%(商品名:ボンディック(登録商標)1050、大日本インキ株式会社製))、エチレン-無水マレイン酸共重合体(和光純薬工業株式会社製)を8質量%、γ-アミノプロピルトリエトキシシランを0.6質量%(商品名:KBE-903、(信越化学工業株式会社製))、潤滑剤0.1質量%(商品名:カルナウバワックス(株式会社加藤洋行製))となるように水で希釈し、全質量を100質量%に調整し、ガラス繊維集束剤を得た。
 上記のガラス繊維集束剤を、溶融防糸された数平均繊維径10μmのガラス繊維に対して付着させた。
 すなわち、回転ドラムに巻き取られる途中のガラス繊維に対し、所定位置に設置されたアプリケーターを用いて、上記ガラス繊維集束剤を塗布した。次いで、これを乾燥し、上記ガラス繊維集束剤で表面処理されたガラス繊維束のロービング(ガラスロービング)を得た。その際、ガラス繊維は1,000本の束となるようにした。
 ガラス繊維集束剤の付着量は、0.6質量%であった。これを3mmの長さに切断して、ガラスチョップドストランドを得た。このチョップドストランドを、<ガラス繊維D-I>として使用した。
<ガラス繊維D-II>
 エチレン-無水マレイン酸共重合体を使用しなかった。その他の条件は、前記ガラス繊維(D-I)と同様の手法で作製したガラス繊維を、ガラス繊維(D-II)として使用した。
(還元性リン化合物)
 太平化学産業株式会社製の次亜リン酸を使用した。
(その他成分)
<アルミン酸ナトリウム>
 和光純薬工業(株)社製のアルミン酸ナトリウムを使用した。
〔実施例1〕
 押出機として、二軸押出機(ZSK-26MC:コペリオン社製(ドイツ))を用いた。
 この二軸押出機は、上流側から1番目のバレルに上流側供給口を有し、かつ、9番目のバレルに下流側供給口を有するものである。そして、L/D(押出機のシリンダーの長さ/押出機のシリンダー径)=48(バレル数:12)となっている。
 この二軸押出機において、上流側供給口からダイまでの温度を、上述の((A)ポリアミド樹脂)の項目に記載したシリンダー温度にそれぞれ設定した。
 また、スクリュー回転数を300rpmに、吐出量を25kg/時間に、それぞれ設定した。
 かかる条件下で、下記表1の上部に記載された割合となるように、上流側供給口より(A)成分と、(B)成分と、(C)成分と、を供給し、下流側供給口より(D)成分を供給し、溶融混練することでポリアミド樹脂組成物のペレットを製造した。
 得られたポリアミド樹脂組成物を成形し、その成形片を用いて、耐熱エージング性、初期引張強度、及びノッチ付きシャルピー衝撃強度を評価した。
 これらの評価結果等を下記表1に示す。
〔実施例2~35、39~87、比較例1~16〕
 表1~表10に記載の組成に従い、その他の条件は実施例1と同様の方法で、ポリアミド樹脂組成物を製造し、成形し、その成形片を用いて、各種測定を実施した。
 これらの測定結果等を下記表1~表10に示す。
〔実施例36〕
 スクリュー回転数を150rpmにした。
 その他の条件は、実施例1と同様の方法で、ポリアミド樹脂組成物を製造し、成形し、その成形片を用いて、耐熱エージング性、初期引張伸度、成形後のb値、150℃100時間エージング後のb値、ノッチ付きシャルピー衝撃強度、及びアルカリ金属化合物及び/又はアルカリ土類金属化合物中の粒子径1μm以上のアルカリ金属化合物及び/又はアルカリ土類金属化合物粒子の含有量を測定した。
 これらの測定結果を下記表5に示す。
〔実施例37〕
 50質量%のヘキサメチレンジアミンとアジピン酸との等モル塩の水溶液を30kg調製し、十分撹拌した。
 当該ポリアミド66の原料の水溶液を、撹拌装置を有し、かつ、下部に抜出しノズルを有する70Lのオートクレーブ中に仕込んだ。
 続いて、アルミン酸ナトリウムを、ポリアミド樹脂100質量部に対して0.5質量部になるよう添加した。
 その後、50℃の温度下で十分攪拌した。
 次いで、窒素で雰囲気置換した後、撹拌しながら温度を50℃から約270℃まで昇温した。この際、オートクレーブ内の圧力を、約1.77MPaに保持するよう、水を系外に除去しながら加熱を約1時間続けた。
 その後、約1時間をかけ、圧力を大気圧まで降圧し、さらに約270℃、大気圧で約1時間保持した後、撹拌を停止した。
 下部ノズルからストランド状にポリマーを排出し、水冷及びカッティングを行い、ペレットを得た。
 当該樹脂の98%硫酸相対粘度は2.8であった。また、アミノ末端基濃度は46μmol/gであり、カルボキシル末端基濃度は72μmol/gであった。すなわち、アミノ末端基濃度/カルボキシル末端基濃度は0.64であった。
 上流側供給口より、上記のポリアミド樹脂100質量部と、(B-I)炭酸ナトリウム0.5質量部と、(C2-I)IRGNOX1098を2質量部と、を供給し、下流側供給口より(D-I)ガラス繊維50質量部を供給し、溶融混練することでポリアミド樹脂組成物のペレットを製造した。
 得られたポリアミド樹脂組成物を成形し、その成形片を用いて、耐熱エージング性、初期引張伸度、ノッチ付きシャルピー衝撃強度、及びアルカリ金属化合物及び/又はアルカリ土類金属化合物中の粒子径1μm以上のアルカリ金属化合物及び/又はアルカリ土類金属化合物粒子の含有量を測定した。
 これらの測定結果を下記表5に示す。
〔実施例38〕
 50質量%のヘキサメチレンジアミンとアジピン酸との等モル塩の水溶液を30kg調製し、十分撹拌した。
 当該ポリアミド66の原料の水溶液を、撹拌装置を有し、かつ、下部に抜出しノズルを有する70Lのオートクレーブ中に仕込んだ。
 続いて、炭酸ナトリウムを、ポリアミド樹脂100質量部に対して1質量部になるよう添加した。
 その後、50℃の温度下で十分攪拌した。
 次いで、窒素で雰囲気置換した後、撹拌しながら温度を50℃から約270℃まで昇温した。この際、オートクレーブ内の圧力を、約1.77MPaに保持するよう、水を系外に除去しながら加熱を約1時間続けた。
 その後、約1時間をかけ、圧力を大気圧まで降圧し、さらに約270℃、大気圧で約1時間保持した後、撹拌を停止した。
 下部ノズルからストランド状にポリマーを排出し、水冷及びカッティングを行い、ペレットを得た。
 当該樹脂の98%硫酸相対粘度は2.8であった。また、アミノ末端基濃度は46μmol/gであり、カルボキシル末端基濃度は72μmol/gであった。すなわち、アミノ末端基濃度/カルボキシル末端基濃度は0.64であった。
 上流側供給口より、上記のポリアミド樹脂100質量部と、(C2-I)IRGNOX1098を2質量部と、を供給し、下流側供給口より(D-I)ガラス繊維50質量部を供給し、溶融混練することでポリアミド樹脂組成物のペレットを製造した。
 得られたポリアミド樹脂組成物を成形し、その成形片を用いて、耐熱エージング性、初期引張伸度、ノッチ付きシャルピー衝撃強度、及びアルカリ金属化合物及び/又はアルカリ土類金属化合物中の粒子径1μm以上のアルカリ金属化合物及び/又はアルカリ土類金属化合物粒子の含有量を測定した。
 これらの測定結果を下記表5に示す。
〔実施例101〕
 押出機として、二軸押出機(ZSK-26MC:コペリオン社製(ドイツ))を用いた。
 この二軸押出機は、上流側から1番目のバレルに上流側供給口を有し、かつ、9番目のバレルに下流側供給口を有するものである。そして、L/D(押出機のシリンダーの長さ/押出機のシリンダー径)=48(バレル数:12)となっている。
 この二軸押出機において、上流側供給口からダイまでの温度を、上述の((A)ポリアミド樹脂)の項目に記載したシリンダー温度にそれぞれ設定した。
 また、スクリュー回転数を300rpmに、吐出量を25kg/時間に、それぞれ設定した。
 かかる条件下で、下記表11の上部に記載された割合となるように、上流側供給口より(A)成分と、(B)成分と、(C)成分と、を供給し、下流側供給口より(D)成分を供給し、溶融混練することでポリアミド樹脂組成物のペレットを製造した。
 得られたポリアミド樹脂組成物を成形し、その成形片を用いて、各種評価を実施した。
 これらの評価結果等を下記表11に示す。
〔実施例99、実施例100、実施例102~145、比較例103~106〕
 表11~表19に記載の組成に従い、その他の条件は実施例101と同様の方法で、ポリアミド樹脂組成物を製造し、成形し、その成形片を用いて、各種測定を実施した。
 なお、次亜リン酸は上流側供給口より供給した。
 これらの測定結果等を下記表11~表19に示す。
〔実施例146〕
 (B)成分と(C)成分をマスターバッチ化して添加した。具体的な手法を下記に記す。
 押出機として、二軸押出機(ZSK-26MC:コペリオン社製(ドイツ))を用いた。
 この二軸押出機は、上流側から1番目のバレルに上流側供給口を有し、かつ、9番目のバレルに下流側供給口を有するものである。そして、L/D(押出機のシリンダーの長さ/押出機のシリンダー径)=48(バレル数:12)となっている。
 この二軸押出機において、上流側供給口からダイまでの温度を、上述の((A-I)ポリアミド樹脂)の項目に記載したシリンダー温度に設定した。
 また、スクリュー回転数を300rpmに、吐出量を25kg/時間に、それぞれ設定した。
 かかる条件下で、(A-I)ポリアミド66を100質量部、(B-I)炭酸ナトリウムを5質量部、(C4-V)イソフタル酸を5質量部、を上流側供給口より供給し、溶融混練することで、マスターバッチとして(MB化)ポリアミド樹脂組成物のペレットを製造した。
 得られたマスターバッチを用いて、表20に記載の組成となるよう、実施例101と同様の方法で、(A-I)ポリアミド66、(D-I)ガラス繊維と溶融混練し、ポリアミド樹脂組成物を製造した。その後、成形し、その成形片を用いて、各種評価を実施した。
 測定結果を下記表20に示す。
〔実施例147、148〕
 実施例146と同様の手法を用いて、(B)成分と(C)成分をマスターバッチ化して添加し、表20に記載の組成となるようポリアミド樹脂組成物のペレットを製造した。その後、成形し、その成形片を用いて、各種評価を実施した。
 これらの測定結果を下記表20に示す。
〔実施例149〕
 50質量%のヘキサメチレンジアミンとアジピン酸との等モル塩の水溶液を30kg調製し、十分撹拌した。
 当該ポリアミド66の原料の水溶液を、撹拌装置を有し、かつ、下部に抜出しノズルを有する70Lのオートクレーブ中に仕込んだ。
 続いて、表20に記載の組成となるよう、(B)成分と(C)成分を添加した。(具体的には、(B-I)アルミン酸ナトリウムを、ポリアミド樹脂100質量部に対して1.0質量部になるよう添加し、また、(C4-V)イソフタル酸を、ポリアミド樹脂100質量部に対して1.0質量部になるよう添加した。)
 その後、50℃の温度下で十分攪拌した。
 次いで、窒素で雰囲気置換した後、撹拌しながら温度を50℃から約270℃まで昇温した。この際、オートクレーブ内の圧力を、約1.77MPaに保持するよう、水を系外に除去しながら加熱を約1時間続けた。
 その後、約1時間をかけ、圧力を大気圧まで降圧し、さらに約270℃、大気圧で約1時間保持した後、撹拌を停止した。
 下部ノズルからストランド状にポリマーを排出し、水冷・カッティングを行い、ペレットを得た。
 当該樹脂の98%硫酸相対粘度は2.8であった。また、アミノ末端基濃度は46μmol/gであり、カルボキシル末端基濃度は72μmol/gであった。すなわち、アミノ末端基濃度/カルボキシル末端基濃度は0.64であった。
 上流側供給口より、上記のポリアミド樹脂を供給し、下流側供給口より(D-I)ガラス繊維を(A)成分に対して50質量部となるよう供給し、溶融混練することでポリアミド樹脂組成物のペレットを製造した。
 得られたポリアミド樹脂組成物を成形し、その成形片を用いて、各種評価を実施した。
 測定結果を下記表20に示す。
〔実施例150、151〕
 実施例149と同様の手法を用いて、(B)成分と(C)成分を添加し、表20に記載の組成となるようポリアミド樹脂組成物のペレットを製造した。その後、成形し、その成形片を用いて、各種評価を実施した。
 これらの測定結果を下記表20に示す。
〔実施例152〕
 50質量%のヘキサメチレンジアミンとアジピン酸との等モル塩の水溶液を30kg調製し、十分撹拌した。
 当該ポリアミド66の原料の水溶液を、撹拌装置を有し、かつ、下部に抜出しノズルを有する70Lのオートクレーブ中に仕込んだ。
 続いて、表20に記載の組成となるよう、(B)成分を添加した。
 具体的には、(B-I)アルミン酸ナトリウムを、ポリアミド樹脂100質量部に対して1.0質量部になるよう添加した。
 その後、50℃の温度下で十分攪拌した。
 次いで、窒素で雰囲気置換した後、撹拌しながら温度を50℃から約270℃まで昇温した。この際、オートクレーブ内の圧力を、約1.77MPaに保持するよう、水を系外に除去しながら加熱を約1時間続けた。
 その後、約1時間をかけ、圧力を大気圧まで降圧し、さらに約270℃、大気圧で約1時間保持した後、撹拌を停止した。
 下部ノズルからストランド状にポリマーを排出し、水冷及びカッティングを行い、ペレットを得た。
 当該樹脂の98%硫酸相対粘度は2.8であった。また、アミノ末端基濃度は46μmol/gであり、カルボキシル末端基濃度は72μmol/gであった。すなわち、アミノ末端基濃度/カルボキシル末端基濃度は0.64であった。
 上流側供給口より、上記のポリアミド樹脂と、(C4-V)イソフタル酸を(A)成分に対して1質量部となるよう供給し、下流側供給口より(D-I)ガラス繊維を(A)成分に対して50質量部となるよう供給し、溶融混練することでポリアミド樹脂組成物のペレットを製造した。
 得られたポリアミド樹脂組成物を成形し、その成形片を用いて、各種評価を実施した。
 測定結果を下記表20に示す。
〔実施例153、154〕
 実施例152と同様の手法を用いて、(B)成分と(C)成分を添加し、表20に記載の組成となるようポリアミド樹脂組成物のペレットを製造した。その後、成形し、その成形片を用いて、各種評価を実施した。
 これらの測定結果を下記表20に示す。
〔実施例155〕
 50質量%のヘキサメチレンジアミンとアジピン酸との等モル塩の水溶液を30kg調製し、十分撹拌した。
 当該ポリアミド66の原料の水溶液を、撹拌装置を有し、かつ、下部に抜出しノズルを有する70Lのオートクレーブ中に仕込んだ。
 続いて、表20に記載の組成となるよう、(C)成分を添加した。具体的には、(C4-V)イソフタル酸を、ポリアミド樹脂100質量部に対して1.0質量部になるよう添加した。
 その後、50℃の温度下で十分攪拌した。
 次いで、窒素で雰囲気置換した後、撹拌しながら温度を50℃から約270℃まで昇温した。この際、オートクレーブ内の圧力を、約1.77MPaに保持するよう、水を系外に除去しながら加熱を約1時間続けた。
 その後、約1時間をかけ、圧力を大気圧まで降圧し、さらに約270℃、大気圧で約1時間保持した後、撹拌を停止した。
 下部ノズルからストランド状にポリマーを排出し、水冷・カッティングを行い、ペレットを得た。
 当該樹脂の98%硫酸相対粘度は2.8であった。また、アミノ末端基濃度は46μmol/gであり、カルボキシル末端基濃度は72μmol/gであった。すなわち、アミノ末端基濃度/カルボキシル末端基濃度は0.64であった。
上流側供給口より、上記のポリアミド樹脂と、(B-I)アルミン酸ナトリウムを(A)成分に対して1.0質量部となるよう供給し、下流側供給口より(D-I)ガラス繊維を(A)成分に対して50質量部となるよう供給し、溶融混練することでポリアミド樹脂組成物のペレットを製造した。
 得られたポリアミド樹脂組成物を成形し、その成形片を用いて、各種評価を実施した。
 測定結果を下記表20に示す。
〔実施例156、157〕
 実施例155と同様の手法を用いて、(B)成分と(C)成分を添加し、表20に記載の組成となるようポリアミド樹脂組成物のペレットを製造した。その後、成形し、その成形片を用いて、各種評価を実施した。
 これらの測定結果を下記表20に示す。
〔実施例158~182、実施例184、比較例107〕
 表21~表26に記載の組成に従い、その他の条件は実施例146と同様の方法で、ポリアミド樹脂組成物を製造し、成形し、その成形片を用いて、各種測定を実施した。
 これらの測定結果等を下記表21~表26に示す。
〔実施例183〕
 表26に記載の組成に従い、その他の条件は実施例101と同様の方法で、ポリアミド樹脂組成物を製造し、成形し、その成形片を用いて、各種測定を実施した。
 測定結果等を下記表26に示す。
〔実施例185~192〕
 表27、表28に記載の組成に従い、その他の条件は実施例146と同様の方法で、ポリアミド樹脂組成物を製造し、成形し、その成形片を用いて、各種測定を実施した。
 これらの測定結果等を下記表27、28に示す。
〔実施例193、194、比較例108〕
 表29に記載の組成に従い、その他の条件は実施例146と同様の方法で、ポリアミド樹脂組成物を製造し、成形し、その成形片を用いて、各種測定を実施した。
 アルミン酸ナトリウムは(B)成分と同様の手法で添加した。
 これらの測定結果等を下記表29に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000016
 
Figure JPOXMLDOC01-appb-T000017
 
Figure JPOXMLDOC01-appb-T000018
 
Figure JPOXMLDOC01-appb-T000019
 
Figure JPOXMLDOC01-appb-T000020
 
Figure JPOXMLDOC01-appb-T000021
 
Figure JPOXMLDOC01-appb-T000022
 
Figure JPOXMLDOC01-appb-T000023
 
Figure JPOXMLDOC01-appb-T000024
 
Figure JPOXMLDOC01-appb-T000025
 
Figure JPOXMLDOC01-appb-T000026
 
Figure JPOXMLDOC01-appb-T000027
 
Figure JPOXMLDOC01-appb-T000028
 
Figure JPOXMLDOC01-appb-T000029
 
 表1~表29中、「-」は、測定を行わなかったこと、又は成分として含めなかったことを意味する。
 表1~表10より、実施例1~87のポリアミド樹脂組成物は、優れた耐熱エージング性を示すことがわかった。
 一方、比較例1~16は、実施例と比較して耐熱エージング性に劣る結果となった。
 表11~表29より、実施例99~194のポリアミド樹脂組成物は、優れた耐熱エージング性と吸水物性を示すことがわかった。
 一方、比較例103~108は、実施例と比較して耐熱エージング性や吸水物性に劣る結果となった。
 本出願は、2015年2月20日に日本国特許庁に出願された日本特許出願(2015-032126)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のポリアミド樹脂組成物は、自動車用、機械工業用、電気・電子用、産業資材用、工業材料用、日用・家庭品用等の各種部品の材料として、産業上の利用可能性がある。

Claims (46)

  1. (A)ポリアミド樹脂と、
    (B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)と、
    (C)下記(C1)~(C4)からなる群より選ばれる少なくとも1つ以上の化合物と、
    を、含有し、
     (C1)周期律表の第3族、第4族、第11族、第13族、第14族からなる群より選ばれる一種以上の金属元素の塩
     (C2)ヒンダードフェノール化合物、ヒンダードアミン化合物、及び有機リン化合物からなる群より選ばれる少なくとも一の有機熱安定剤
     (C3)(A)成分の融点よりも低い融点を有する結晶性の熱可塑性樹脂及び/又は(A)成分のビカット軟化点よりも低いビカット軟化点を有する非晶性の熱可塑性樹脂
     (C4)酸
     前記(A)成分と前記(C3)成分の合計100質量部に対して、
    前記(B)成分が0.03~20質量部であり、
    前記(C1)~(C3)成分を、含有成分として選択する場合には、それぞれ下記の含有量である、ポリアミド樹脂組成物。
     (C1)成分:金属元素としての量が0.001~0.05質量部
     (C2)成分:0.8~20質量部
     (C3)成分:1~50質量部 
  2.  前記(C)の化合物が、前記(C1)~(C4)からなる群より選ばれる少なくとも2つ以上の組み合わせである、請求項1に記載のポリアミド樹脂組成物。
  3.  前記(C)の化合物が、前記(C1)~(C4)からなる群より選ばれる少なくとも3つ以上の組み合わせである、請求項1に記載のポリアミド樹脂組成物。
  4.  前記(A)ポリアミド樹脂が、下記の群(A-1)から選ばれる少なくとも一種である、請求項1乃至3のいずれか一項に記載のポリアミド樹脂組成物。
    (A-1)ポリアミド46、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド6T、ポリアミド9T、ポリアミド6I、及びこれらを構成成分として含む共重合ポリアミド。
  5.  数平均分子量(Mn)が1万以上である、請求項1乃至4のいずれか一項に記載のポリアミド樹脂組成物。
  6.  前記(A)ポリアミド樹脂が、融点240℃以上のポリアミド樹脂である、請求項1乃至5のいずれか一項に記載のポリアミド樹脂組成物。
  7.  前記(A)ポリアミド樹脂が、ポリアミド66である、請求項1乃至6のいずれか一項に記載のポリアミド樹脂組成物。
  8.  前記(B)成分が、アルカリ金属化合物である、請求項1乃至7のいずれか一項に記載のポリアミド樹脂組成物。
  9.  前記(B)成分が、アルカリ金属の炭酸塩もしくは炭酸水素塩である、請求項1乃至8のいずれか一項に記載のポリアミド樹脂組成物。
  10.  (D)アルカリ金属化合物及び/又はアルカリ土類金属化合物を除く無機フィラーを、さらに含有する、請求項1乃至9のいずれか一項に記載のポリアミド樹脂組成物。
  11.  前記(A)成分と前記(C3)成分の合計100質量部に対して、
     前記(D)成分の含有量が、10~250質量部である、請求項10に記載のポリアミド樹脂組成物。
  12.  前記(D)アルカリ金属化合物及び/又はアルカリ土類金属化合物を除く無機フィラーがガラス繊維であり、カルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体を構成単位として含む共重合体を、前記ガラス繊維の表面に塗布する成分の一部として含む、請求項10又は11に記載のポリアミド樹脂組成物。
  13.  前記(C)成分が、少なくとも(C1)成分を含有する、請求項1乃至12のいずれか一項に記載のポリアミド樹脂組成物。
  14.  前記(C1)成分が銅塩である、請求項1乃至13のいずれか一項に記載のポリアミド樹脂組成物。
  15.  前記(A)成分と前記(C3)成分の合計100質量部に対して、
     前記(C1)の金属元素としての量が、0.003~0.05質量部である、請求項1乃至14のいずれか一項に記載のポリアミド樹脂組成物。
  16.  前記(B)成分と前記(C1)成分との質量比(B)/(C1)が、1以上である、請求項1乃至15のいずれか一項に記載のポリアミド樹脂組成物。
  17.  (C1-2)アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物を、さらに含有する、請求項13乃至16のいずれか一項に記載のポリアミド樹脂組成物。
  18.  前記(C1)成分の金属元素と、前記(C1-2)成分のハロゲン元素とのモル比(ハロゲン元素/金属元素)が2~50である、請求項17に記載のポリアミド樹脂組成物。
  19.  前記(C)成分が、少なくとも(C2)成分を含有する、請求項1乃至18のいずれか一項に記載のポリアミド樹脂組成物。
  20.  前記(C2)が、ヒンダードフェノール化合物である、請求項1乃至19のいずれか一項に記載のポリアミド樹脂組成物。
  21.  前記(A)成分と前記(C3)成分の合計100質量部に対して、
     前記(C2)成分の含有量が1~10質量部である、請求項19又は20に記載のポリアミド樹脂組成物。
  22.  前記(C)成分が、少なくとも前記(C3)成分を含有する、請求項1乃至21のいずれか一項に記載のポリアミド樹脂組成物。
  23.  前記(A)成分と前記(C3)成分の合計100質量部に対して、前記(C3)成分の含有量が5~50質量部である、請求項1乃至22のいずれか一項に記載のポリアミド樹脂組成物。
  24.  前記(C3)成分が、融点240℃未満のポリアミド樹脂である、請求項1乃至23のいずれか一項に記載のポリアミド樹脂組成物。
  25.  前記(C3)成分が、ポリアミド6である、請求項1乃至24のいずれか一項に記載のポリアミド樹脂組成物。
  26.  前記(C3)成分が、
     当該(C3)成分が含有する窒素原子数に対する炭素原子数の比(C/N)が7以上20以下であるポリアミド樹脂である、請求項1乃至24のいずれか一項に記載のポリアミド樹脂組成物。
  27.  前記(C)成分が、少なくとも前記(C4)成分を含有する、請求項1乃至26のいずれか一項に記載のポリアミド樹脂組成物。
  28.  前記(A)成分と(C3)成分の合計100質量部に含まれる、前記(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)のアルカリ価と、前記(C4)酸の酸価とが、下記(式1)の条件を満たす、請求項1乃至26のいずれか一項に記載のポリアミド樹脂組成物。
     0<X≦5  ・・・(式1)
    (X=((A)成分と(C3)成分の合計100質量部に含まれる(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)のアルカリ価)/((A)成分と(C3)成分の合計100質量部に含まれる(C4)酸の酸価))
  29.  (A)成分と(C3)成分の合計100質量部に含まれる、前記(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)のアルカリ価と、前記(C4)酸の酸価と(A)ポリアミド樹脂のカルボキシル基末端の酸価との和とが、下記(式2)の条件を満たす、請求項1乃至28のいずれか一項に記載のポリアミド樹脂組成物。
     0<Y≦3  ・・・(式2)
    (Y=((A)成分と(C3)成分の合計100質量部に含まれる(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)のアルカリ価)/((A)成分と(C3)成分の合計100質量部に含まれる(C4)酸の酸価+(A)ポリアミド樹脂のカルボキシル基末端の酸価))
  30.  前記(C4)成分が、有機酸である、請求項1乃至29のいずれか一項に記載のポリアミド樹脂組成物。
  31.  前記(C4)酸の分子量(Mn)が、50≦Mn≦1000である、請求項1乃至30のいずれか一項に記載のポリアミド樹脂組成物。
  32.  前記(C4)酸が、カルボキシル基を有する化合物である、請求項1乃至31のいずれか一項に記載のポリアミド樹脂組成物。
  33.  質量平均分子量/数平均分子量(Mw/Mn)が2.0以上であり、
     120℃で1000時間熱エージングした後のMw/Mnが3.0以上である、
    請求項1乃至32のいずれか一項に記載のポリアミド樹脂組成物。
  34.  GPC-MALS-VISCO法による解析で、
    分子量10万以上の分子が1点以上の分岐構造を有し、かつ当該分子量10万以上の分子が無水カルボン酸官能基を含む、請求項1乃至33のいずれか一項に記載のポリアミド樹脂組成物。
  35.  前記(C4)酸は、主鎖を構成する成分として、カルボン酸無水物含有不飽和ビニル単量体を含み、かつ、
     前記(C4)酸は、0℃<Tgである、
    請求項1乃至34のいずれか一項に記載のポリアミド樹脂組成物。
  36.  前記(C4)酸が、オレフィンと無水マレイン酸の共重合体である、請求項35に記載のポリアミド樹脂組成物。
  37.  前記(C4)酸は、前記(A)ポリアミド樹脂に対して溶融混練により添加されたものである、請求項1乃至36のいずれか一項に記載のポリアミド樹脂組成物。
  38.  不活性ガス雰囲気下にて、300℃で1時間放置した際の質量減少量が10%以下である、請求項1乃至37のいずれか一項に記載のポリアミド樹脂組成物。
  39.  請求項1乃至38のいずれか一項に記載のポリアミド樹脂組成物の製造方法であって、
     前記(C4)酸を、前記(A)ポリアミド樹脂に対して溶融混練により添加する工程を有する、
    ポリアミド樹脂組成物の製造方法。
  40.  前記(C4)酸をマスターバッチ化して添加する工程を有する、請求項39に記載のポリアミド樹脂組成物の製造方法。
  41.  前記(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)は、前記(A)ポリアミド樹脂に対して溶融混練により添加されたものである、請求項1乃至38のいずれか一項に記載のポリアミド樹脂組成物。
  42.  請求項1乃至38、41のいずれか一項に記載のポリアミド樹脂組成物を含む、成形品。
  43.  請求項1乃至38、41のいずれか一項に記載のポリアミド樹脂組成物の製造方法であって、
     (B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)を、(A)ポリアミド樹脂に対して溶融混練により添加する工程を有する、
     ポリアミド樹脂組成物の製造方法。
  44.  (B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)をマスターバッチ化して添加する工程を有する、請求項39、40、及び43のいずれか一項に記載のポリアミド樹脂組成物の製造方法。
  45.  前記(B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)と、
     前記(C4)酸と、
    を、同一のマスターバッチ化して添加する工程を有する、
    請求項39、40、43、及び44のいずれか一項に記載のポリアミド樹脂組成物の製造方法。
  46.  (A)ポリアミド樹脂と、
     (B)アルカリ金属化合物及び/又はアルカリ土類金属化合物(但し、アルミン酸金属塩、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物を除く。)と、
     (C4)酸と、
    を、含有するポリアミド樹脂組成物の、
    耐熱エージング性及び吸水物性に優れる成形品を製造するための使用。
PCT/JP2016/052197 2015-02-20 2016-01-26 ポリアミド樹脂組成物、ポリアミド樹脂組成物の製造方法、及び成形品 WO2016132829A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/551,716 US10927232B2 (en) 2015-02-20 2016-01-26 Polyamide resin composition, method for producing polyamide resin composition, and molded article
EP16752218.4A EP3260500B1 (en) 2015-02-20 2016-01-26 Polyamide resin composition, method for producing polyamide resin composition, and molded article
CN201680010812.1A CN107250274B (zh) 2015-02-20 2016-01-26 聚酰胺树脂组合物、聚酰胺树脂组合物的制造方法和成型品
JP2017500571A JP6457062B2 (ja) 2015-02-20 2016-01-26 ポリアミド樹脂組成物、ポリアミド樹脂組成物の製造方法、及び成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-032126 2015-02-20
JP2015032126 2015-02-20

Publications (1)

Publication Number Publication Date
WO2016132829A1 true WO2016132829A1 (ja) 2016-08-25

Family

ID=56688798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052197 WO2016132829A1 (ja) 2015-02-20 2016-01-26 ポリアミド樹脂組成物、ポリアミド樹脂組成物の製造方法、及び成形品

Country Status (5)

Country Link
US (1) US10927232B2 (ja)
EP (1) EP3260500B1 (ja)
JP (2) JP6457062B2 (ja)
CN (1) CN107250274B (ja)
WO (1) WO2016132829A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053089A (ja) * 2016-09-28 2018-04-05 富士ゼロックス株式会社 樹脂組成物、及び樹脂成形体
JP2018053090A (ja) * 2016-09-28 2018-04-05 富士ゼロックス株式会社 樹脂組成物、及び樹脂成形体
WO2018101163A1 (ja) * 2016-12-01 2018-06-07 東洋紡株式会社 ポリアミド樹脂組成物
JP2020002193A (ja) * 2018-06-26 2020-01-09 旭化成株式会社 ポリアミド樹脂組成物の製造方法及び熱安定剤マスターバッチ
JP2020503408A (ja) * 2016-12-30 2020-01-30 ロッテ アドバンスト マテリアルズ カンパニー リミテッド ポリアミド樹脂組成物およびこれから製造された成形品
JP2020176259A (ja) * 2019-04-15 2020-10-29 旭化成株式会社 ポリアミド組成物及び成形品
US11505649B2 (en) 2017-09-28 2022-11-22 Dupont Polymers, Inc. Polymerization process
WO2023026827A1 (ja) * 2021-08-24 2023-03-02 バンドー化学株式会社 樹脂組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143227A (zh) * 2019-06-27 2020-12-29 住友化学株式会社 光学膜、柔性显示装置及光学膜的制造方法
WO2023114134A1 (en) * 2021-12-13 2023-06-22 Celanese International Corporation Heat-stabilized, flame retardant polymer composition

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152162A (ja) * 1989-11-09 1991-06-28 Calp Corp 熱可塑性複合樹脂組成物
JPH0428762A (ja) * 1990-05-23 1992-01-31 Asahi Chem Ind Co Ltd 新規な組成物
JPH07145315A (ja) * 1993-11-24 1995-06-06 Asahi Denka Kogyo Kk 安定化されたポリアミド樹脂組成物
JPH07179753A (ja) * 1993-12-24 1995-07-18 Calp Corp 複合樹脂組成物
JPH08311332A (ja) * 1995-05-22 1996-11-26 Mitsubishi Eng Plast Kk ブロー用ナイロン樹脂組成物の製造方法
JP2002138194A (ja) * 2000-11-02 2002-05-14 Toyobo Co Ltd ポリアミド組成物
WO2009107394A1 (ja) * 2008-02-28 2009-09-03 テクノポリマー株式会社 印刷用フィルム及び面材
JP2011505463A (ja) * 2007-11-30 2011-02-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 金属めっき物品用の部分芳香族ポリアミド組成物
WO2012115147A1 (ja) * 2011-02-22 2012-08-30 株式会社ブリヂストン ポリアミド樹脂組成物及びその製造方法並びに冷媒輸送用ホース
JP2013521393A (ja) * 2010-03-09 2013-06-10 ビーエーエスエフ ソシエタス・ヨーロピア 耐熱老化性ポリアミド
JP2013119571A (ja) * 2011-12-06 2013-06-17 Asahi Kasei Chemicals Corp ポリアミド樹脂組成物及び成形品
JP2013534549A (ja) * 2010-06-15 2013-09-05 ビーエーエスエフ ソシエタス・ヨーロピア 耐熱老化性ポリアミド
JP2014012773A (ja) * 2012-07-04 2014-01-23 Asahi Kasei Chemicals Corp ポリアミド組成物及び成形品
JP2015034222A (ja) * 2013-08-08 2015-02-19 旭化成ケミカルズ株式会社 ポリアミド樹脂組成物及び成形品

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116151A (ja) 1973-03-13 1974-11-06
JPS5943065A (ja) 1982-09-03 1984-03-09 Oji Yuka Gouseishi Kk 塗布剤およびそれを塗布した熱可塑性樹脂フイルム
DE4100912A1 (de) * 1991-01-15 1992-07-16 Bayer Ag Verfahren zur herstellung hochmolekularer polyamide
DE69400136D1 (de) 1993-02-18 1996-05-15 Du Pont Polyamide mit verbessertem farbverhalten und verbesserter verarbeitbarkeit und verfahren zu ihrer herstellung
EP0745106B2 (en) 1994-02-16 2004-12-29 E.I. Du Pont De Nemours And Company Process for preparation of polyamides having improved color and processibility
JP3152162B2 (ja) * 1997-03-04 2001-04-03 住友金属工業株式会社 溶融Zn系めっき浴浸漬部材およびその製造法
JP3478126B2 (ja) * 1998-06-16 2003-12-15 住友金属鉱山株式会社 樹脂結合型金属組成物および金属成形体
JP4201527B2 (ja) 2002-05-22 2008-12-24 オイレス工業株式会社 摺動部材用樹脂組成物および摺動部材
JP4112459B2 (ja) 2002-08-12 2008-07-02 旭化成ケミカルズ株式会社 ポリアミド樹脂組成物およびその製造方法
EP1498445A1 (en) 2003-07-18 2005-01-19 DSM IP Assets B.V. Heat stabilized moulding composition
DE10334496A1 (de) 2003-07-29 2005-02-24 Degussa Ag Laser-Sinter-Pulver mit einem Metallsalz und einem Fettsäurederivat, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Laser-Sinterpulver
JP4624688B2 (ja) 2004-01-21 2011-02-02 旭化成ケミカルズ株式会社 有機熱安定剤マスターバッチを含有するポリアミド66樹脂混合ペレット
JP2005281616A (ja) 2004-03-30 2005-10-13 Asahi Kasei Chemicals Corp ポリアミド/ポリフェニレンエーテル樹脂組成物
EP1683830A1 (en) 2005-01-12 2006-07-26 DSM IP Assets B.V. Heat stabilized moulding composition
EP1681313A1 (en) 2005-01-17 2006-07-19 DSM IP Assets B.V. Heat stabilized moulding composition
JP4693435B2 (ja) * 2005-02-21 2011-06-01 旭化成ケミカルズ株式会社 ポリアミド樹脂組成物およびその製造方法
EP1870436B1 (en) 2005-04-13 2014-03-12 Asahi Kasei Chemicals Corporation Polyamide-polyphenylene ether resin composition
JP4236006B2 (ja) 2005-04-13 2009-03-11 旭化成ケミカルズ株式会社 ポリアミド−ポリフェニレンエーテル樹脂組成物
JP5183030B2 (ja) 2006-03-14 2013-04-17 旭化成ケミカルズ株式会社 ポリアミド樹脂組成物およびその製造方法
JP4953422B2 (ja) 2006-03-14 2012-06-13 旭化成ケミカルズ株式会社 ポリアミド樹脂組成物およびその製造方法
JP4953667B2 (ja) 2006-03-14 2012-06-13 旭化成ケミカルズ株式会社 ポリアミド樹脂組成物およびその製造方法
KR100733700B1 (ko) * 2006-05-29 2007-06-28 한국원자력연구원 사용후핵연료집합체에서 방출되는 감마선을 이용한 재료시험용 조사장치
JP5042541B2 (ja) 2006-06-27 2012-10-03 旭化成ケミカルズ株式会社 ポリアミド樹脂組成物の製造方法、及びポリアミド樹脂組成物
JP5182180B2 (ja) * 2008-03-21 2013-04-10 テクノポリマー株式会社 面材
CN102112551B (zh) 2008-07-30 2013-11-06 纳幕尔杜邦公司 包含多羟基聚合物的热塑性制品
US20110028628A1 (en) 2009-07-30 2011-02-03 E.I. Du Pont De Nemours And Company Heat resistant polyamide compositions having high amine ends
JP5640472B2 (ja) * 2009-12-11 2014-12-17 三菱瓦斯化学株式会社 ポリアミド樹脂組成物
TWI529212B (zh) 2010-08-18 2016-04-11 Vertellus Specialties Inc 由混練聚醯胺與烯烴-順丁烯二酐聚合物所形成之組合物、方法及製品
KR101282706B1 (ko) * 2010-09-28 2013-07-05 제일모직주식회사 표면 반사율 및 내열성이 우수한 폴리아미드 조성물
BR112015000246B1 (pt) * 2012-07-06 2021-06-01 Vertellus Holdings Llc Composição de mistura mestre para uso na preparação de uma formulação de poliamida de uma poliamida, processo para preparar a composição de mistura mestre, formulação de poliamida e processo para preparar uma formulação de poliamida
JP6113017B2 (ja) * 2012-08-20 2017-04-12 ユニチカ株式会社 発泡剤組成物ペレットおよびその製造方法
CN103073879B (zh) * 2012-09-26 2015-04-22 天津金发新材料有限公司 聚酰胺组合物、制备方法及其应用
US9783677B2 (en) 2013-06-20 2017-10-10 Asahi Kasei Chemicals Corporation Polyamide resin composition and molded body
KR101738805B1 (ko) * 2013-09-27 2017-05-22 아사히 가세이 케미칼즈 가부시키가이샤 폴리아미드 수지 조성물 및 성형품

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152162A (ja) * 1989-11-09 1991-06-28 Calp Corp 熱可塑性複合樹脂組成物
JPH0428762A (ja) * 1990-05-23 1992-01-31 Asahi Chem Ind Co Ltd 新規な組成物
JPH07145315A (ja) * 1993-11-24 1995-06-06 Asahi Denka Kogyo Kk 安定化されたポリアミド樹脂組成物
JPH07179753A (ja) * 1993-12-24 1995-07-18 Calp Corp 複合樹脂組成物
JPH08311332A (ja) * 1995-05-22 1996-11-26 Mitsubishi Eng Plast Kk ブロー用ナイロン樹脂組成物の製造方法
JP2002138194A (ja) * 2000-11-02 2002-05-14 Toyobo Co Ltd ポリアミド組成物
JP2011505463A (ja) * 2007-11-30 2011-02-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 金属めっき物品用の部分芳香族ポリアミド組成物
WO2009107394A1 (ja) * 2008-02-28 2009-09-03 テクノポリマー株式会社 印刷用フィルム及び面材
JP2013521393A (ja) * 2010-03-09 2013-06-10 ビーエーエスエフ ソシエタス・ヨーロピア 耐熱老化性ポリアミド
JP2013534549A (ja) * 2010-06-15 2013-09-05 ビーエーエスエフ ソシエタス・ヨーロピア 耐熱老化性ポリアミド
WO2012115147A1 (ja) * 2011-02-22 2012-08-30 株式会社ブリヂストン ポリアミド樹脂組成物及びその製造方法並びに冷媒輸送用ホース
JP2013119571A (ja) * 2011-12-06 2013-06-17 Asahi Kasei Chemicals Corp ポリアミド樹脂組成物及び成形品
JP2014012773A (ja) * 2012-07-04 2014-01-23 Asahi Kasei Chemicals Corp ポリアミド組成物及び成形品
JP2015034222A (ja) * 2013-08-08 2015-02-19 旭化成ケミカルズ株式会社 ポリアミド樹脂組成物及び成形品

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053089A (ja) * 2016-09-28 2018-04-05 富士ゼロックス株式会社 樹脂組成物、及び樹脂成形体
JP2018053090A (ja) * 2016-09-28 2018-04-05 富士ゼロックス株式会社 樹脂組成物、及び樹脂成形体
US10676616B2 (en) 2016-12-01 2020-06-09 Toyobo Co., Ltd. Polyamide resin composition
JPWO2018101163A1 (ja) * 2016-12-01 2019-10-24 東洋紡株式会社 ポリアミド樹脂組成物
WO2018101163A1 (ja) * 2016-12-01 2018-06-07 東洋紡株式会社 ポリアミド樹脂組成物
JP7092026B2 (ja) 2016-12-01 2022-06-28 東洋紡株式会社 ポリアミド樹脂組成物
JP2020503408A (ja) * 2016-12-30 2020-01-30 ロッテ アドバンスト マテリアルズ カンパニー リミテッド ポリアミド樹脂組成物およびこれから製造された成形品
JP7121010B2 (ja) 2016-12-30 2022-08-17 ロッテ ケミカル コーポレイション ポリアミド樹脂組成物およびこれから製造された成形品
US11505649B2 (en) 2017-09-28 2022-11-22 Dupont Polymers, Inc. Polymerization process
JP2020002193A (ja) * 2018-06-26 2020-01-09 旭化成株式会社 ポリアミド樹脂組成物の製造方法及び熱安定剤マスターバッチ
JP7157569B2 (ja) 2018-06-26 2022-10-20 旭化成株式会社 ポリアミド樹脂組成物の製造方法及び熱安定剤マスターバッチ
JP2020176259A (ja) * 2019-04-15 2020-10-29 旭化成株式会社 ポリアミド組成物及び成形品
JP7356382B2 (ja) 2019-04-15 2023-10-04 旭化成株式会社 ポリアミド組成物及び成形品
WO2023026827A1 (ja) * 2021-08-24 2023-03-02 バンドー化学株式会社 樹脂組成物
JPWO2023026827A1 (ja) * 2021-08-24 2023-03-02

Also Published As

Publication number Publication date
EP3260500B1 (en) 2023-11-08
US10927232B2 (en) 2021-02-23
JP6762999B2 (ja) 2020-09-30
US20180030236A1 (en) 2018-02-01
CN107250274B (zh) 2021-02-02
JP6457062B2 (ja) 2019-01-23
JPWO2016132829A1 (ja) 2017-09-07
JP2019002025A (ja) 2019-01-10
EP3260500A4 (en) 2018-01-31
CN107250274A (zh) 2017-10-13
EP3260500A1 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP6457062B2 (ja) ポリアミド樹脂組成物、ポリアミド樹脂組成物の製造方法、及び成形品
JP5497921B2 (ja) 共重合ポリアミド
JP6174707B2 (ja) ポリアミド樹脂組成物及び成形品
JP5964964B2 (ja) ポリアミド、ポリアミド組成物及び成形品
JP6174783B2 (ja) ポリアミド樹脂組成物、ポリアミド樹脂組成物の製造方法、及び成形品
JP6592253B2 (ja) ポリアミド樹脂組成物、ポリアミド樹脂組成物の製造方法、及び成形品
JP2015129243A (ja) ポリアミド組成物及び成形品
US10113054B2 (en) Molded article comprising polyamide resin composition
JP5997525B2 (ja) 共重合ポリアミド組成物及び成形品
JP2017039818A (ja) ポリアミド樹脂組成物、ポリアミド樹脂組成物の製造方法、及び成形品
JP2019026670A (ja) ポリアミド組成物および成形品
JP2017128644A (ja) ポリアミド樹脂組成物、ポリアミド樹脂組成物の製造方法、及び成形品
JP6042114B2 (ja) 共重合ポリアミド及び共重合ポリアミド組成物
JP6042110B2 (ja) 共重合ポリアミド
JP2015199874A (ja) 高分子量ポリアミド成形用材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500571

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016752218

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE