WO2016129427A1 - 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法 - Google Patents
固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法 Download PDFInfo
- Publication number
- WO2016129427A1 WO2016129427A1 PCT/JP2016/052820 JP2016052820W WO2016129427A1 WO 2016129427 A1 WO2016129427 A1 WO 2016129427A1 JP 2016052820 W JP2016052820 W JP 2016052820W WO 2016129427 A1 WO2016129427 A1 WO 2016129427A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- solid electrolyte
- carbon atoms
- electrolyte composition
- mass
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/10—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a solid electrolyte composition, a battery electrode sheet and an all-solid secondary battery using the same, and a battery electrode sheet and a method for producing the all-solid secondary battery.
- An electrolyte solution is used for the lithium ion battery. Attempts have been made to replace the electrolytic solution with a solid electrolyte to obtain an all-solid-state secondary battery in which the constituent materials are all solid.
- One of the advantages of the technology using an inorganic solid electrolyte is reliability.
- a flammable material such as a carbonate-based solvent is used as a medium for the electrolytic solution used in the lithium ion secondary battery.
- various safety measures have been taken, it cannot be said that there is no risk of malfunctions during overcharge, and further measures are desired.
- An all-solid-state secondary battery that can make the electrolyte incombustible is positioned as a drastic solution.
- a further advantage of the all-solid-state secondary battery is that it is suitable for increasing the energy density by stacking electrodes. Specifically, a battery having a structure in which an electrode and an electrolyte are directly arranged in series can be obtained. At this time, since the metal package for sealing the battery cell, the copper wire and the bus bar for connecting the battery cell can be omitted, the energy density of the battery is greatly increased. In addition, good compatibility with the positive electrode material capable of increasing the potential is also mentioned as an advantage.
- Non-patent Document 1 Developed as a next-generation lithium ion secondary battery due to the above-described advantages, it has been vigorously developed (Non-patent Document 1).
- the electrolyte since the electrolyte is a hard solid, there is a point that needs to be improved. For example, the interfacial resistance between the solid particles and between the solid particles and the current collector is increased.
- a binder made of a polymer compound may be used.
- Patent Document 1 discloses an example in which polyoxyethylene lauryl ether is applied as an emulsifier to an acrylic resin.
- Patent Document 2 discloses an example using polytetrafluoroethylene as a binder.
- Patent Document 3 discloses an example using a solution of ethylene propylene diene rubber (EPDM).
- EPDM ethylene propylene diene rubber
- the present invention provides a solid-state secondary battery that can suppress an increase in interfacial resistance between solid particles or between a solid particle and a current collector, and that can also realize good binding and scratch resistance. It is an object of the present invention to provide an electrolyte composition, a battery electrode sheet and an all-solid secondary battery using the same, and a method for producing the battery electrode sheet and the all-solid secondary battery. Further, if necessary, the solid electrolyte composition capable of improving the cycle characteristics of the secondary battery, the battery electrode sheet and the all solid secondary battery using the same, and the battery electrode sheet and the all solid secondary battery The purpose is to provide a manufacturing method.
- the cross-linking agent is a compound having at least one reactive group selected from a hydroxy group, an amino group and a mercapto group in the molecule.
- the solid electrolyte composition according to (6) which contains the crosslinking agent in an amount of 20 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the binder particles.
- the polymer comprises repeating units derived from a monomer selected from (meth) acrylic acid monomers, (meth) acrylic acid ester monomers, (meth) acrylic acid amides and (meth) acrylonitrile.
- the dispersion medium is selected from alcohol compound solvents, amide compound solvents, amino compound solvents, ketone compound solvents, ether compound solvents, aromatic compound solvents, aliphatic compound solvents, and nitrile compound solvents (1) to ( The solid electrolyte composition according to any one of 9).
- the crosslinking agent has at least one reactive group selected from a hydroxy group, an amino group and a mercapto group in the molecule, and the reactive group reacts with the reactive group of the polymer.
- the battery electrode sheet according to (13), which is bonded and the polymer forms a crosslinked structure.
- a method for producing an electrode sheet for a battery wherein the solid electrolyte composition according to any one of (1) to (12) is formed on a metal foil.
- a method for producing an all-solid secondary battery wherein an all-solid secondary battery is produced through the method for producing an electrode sheet for a battery according to (16) or (17).
- An all-solid secondary battery comprising the battery electrode sheet according to any one of (13) to (15).
- substituents and the like may be the same as or different from each other. Further, when a plurality of substituents and the like are close to each other, they may be bonded to each other or condensed to form a ring.
- (meth) like (meth) acryloyl group, (meth) acryl group or resin, for example, in the case of (meth) acryloyl group, is a generic name including acryloyl group and methacryloyl group, But you can do both.
- “(Poly)” like (poly) ester bond means “poly” or “mono”, and even in the case of one ester bond, a plurality of ester bonds Including the case where it exists.
- the substituent there may be a list of higher concept groups and lower concept groups, for example, alkyl groups and carboxyalkyl groups, or alkyl groups and aralkyl groups.
- the “alkyl group” does not mean an unsubstituted alkyl group, but is substituted with a substituent other than the “carboxy group”. Means good. That is, it shows that the “carboxyalkyl group” is particularly focused on among the “alkyl groups”.
- the solid electrolyte composition of the present invention suppresses an increase in interfacial resistance between the solid particles or between the solid particles and the current collector when used as a material for the solid electrolyte layer or active material layer of an all-solid secondary battery. In addition, there is an excellent effect that even better binding properties and scratch resistance can be realized. Furthermore, according to the solid electrolyte composition of the present invention, the cycle characteristics in the secondary battery can be improved if necessary. Moreover, the battery electrode sheet and the all-solid-state secondary battery of the present invention utilize the solid electrolyte composition and exhibit excellent performance. Furthermore, according to the manufacturing method of the present invention, the battery electrode sheet and the all-solid secondary battery of the present invention can be preferably manufactured.
- FIG. 1 is a cross-sectional view schematically showing an all solid lithium ion secondary battery according to a preferred embodiment of the present invention.
- FIG. 2 is a longitudinal sectional view schematically showing the test apparatus used in the examples.
- FIG. 3 is a perspective view schematically showing the form of inorganic particles to which binder particles according to a preferred embodiment of the present invention are attached.
- FIG. 4 is a side view schematically showing aspects of the binding test and the scratch resistance test.
- the solid electrolyte composition of the present invention includes an inorganic solid electrolyte, binder particles composed of a specific polymer having a reactive group (reactive polymer), and a crosslinking agent or a crosslinking accelerator.
- a particulate material is used as the binder as described on the left. Therefore, compared to non-particulate materials, it is difficult to form an excessive film on the active material or the solid electrolyte, and it is possible to keep battery resistance low without inhibiting ionic conduction.
- soft binder particles are used, the wettability to the active material and the solid electrolyte is improved, and increasing the contact area is effective for improving the binding property of the coating film. It is done.
- uncrosslinked binder particles can be applied at the time of production or at the start of use to achieve good coating properties.
- the binder particles were cross-linked to increase the elastic modulus, thereby achieving both of the above conflicting characteristics.
- preferred embodiments thereof will be described. First, an example of an all-solid secondary battery which is a preferred application mode thereof will be described.
- FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
- the all-solid-state secondary battery 10 of this embodiment includes a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in that order as viewed from the negative electrode side. Have.
- Each layer is in contact with each other and has a laminated structure. By adopting such a structure, at the time of charging, electrons (e ⁇ ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated therein.
- the solid electrolyte composition of the present invention is preferably used as a constituent material of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer. Among them, all of the solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer are used. It is preferable to use it as a constituent material.
- the thickness of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 is not particularly limited, the positive electrode active material layer and the negative electrode active material layer can be arbitrarily determined according to the intended battery application. .
- the solid electrolyte layer is as thin as possible while preventing a short circuit between the positive and negative electrodes. Specifically, it is preferably 1 to 1000 ⁇ m, more preferably 3 to 400 ⁇ m.
- a functional layer, a member, or the like is appropriately provided between or outside the negative electrode current collector 1, the negative electrode active material layer 2, the solid electrolyte layer 3, the positive electrode active material layer 4, and the positive electrode current collector 5. It may be interposed or arranged. Each layer may be composed of a single layer or a plurality of layers.
- the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of moving ions inside. From this point of view, it may be referred to as an ion conductive inorganic solid electrolyte in consideration of distinction from an electrolyte salt (supporting electrolyte) described later. Since it does not contain organic substances (carbon atoms), it is clearly distinguished from organic solid electrolytes (polymer electrolytes typified by PEO and the like, organic electrolyte salts typified by LiTFSI and the like).
- the inorganic solid electrolyte is solid in a steady state, it is not dissociated or released into cations and anions. In this respect, it is also clearly distinguished from inorganic electrolyte salts (such as LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.) in which cations and anions are dissociated or liberated in the electrolyte or polymer.
- the inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
- the inorganic solid electrolyte has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table.
- a solid electrolyte material applied to this type of product can be appropriately selected and used.
- Typical examples of inorganic solid electrolytes include (i) sulfide-based inorganic solid electrolytes and (ii) oxide-based inorganic solid electrolytes.
- Sulfide-based inorganic solid electrolyte contains sulfur (S), has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and has electronic insulation. Those having properties are preferred.
- a lithium ion conductive inorganic solid electrolyte that satisfies the composition represented by the following formula (1) can be given.
- L represents an element selected from Li, Na and K, and Li is preferred.
- M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge. Of these, B, Sn, Si, Al, and Ge are preferable, and Sn, Al, and Ge are more preferable.
- A represents I, Br, Cl or F, preferably I or Br, and particularly preferably I.
- a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 1: 1: 2 to 12: 0 to 5.
- a1 is further preferably 1 to 9, and more preferably 1.5 to 4.
- b1 is preferably 0 to 0.5.
- d1 is preferably 3 to 7, and more preferably 3.25 to 4.5.
- e1 is preferably 0 to 3, more preferably 0 to 1.
- the composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based solid electrolyte as described below.
- the sulfide-based solid electrolyte may be amorphous (glass) or crystallized (glass ceramics), or only part of it may be crystallized.
- the ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and the Li—PS system glass ceramic is a molar ratio of Li 2 S: P 2 S 5 , preferably 65:35 to 85:15, more preferably 68:32 to 75:25.
- the lithium ion conductivity can be increased.
- the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no particular upper limit, 1 ⁇ 10 ⁇ 1 S / cm or less is practical.
- the compound include those using a raw material composition containing, for example, Li 2 S and a sulfide of an element belonging to Group 13 to Group 15.
- Li 2 S—P 2 S 5 Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 SP—P 2 S 5 —SiS 2 , Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2 S—GeS 2 , Li 2 S—GeS 2 —ZnS, Li 2 S—Ga 2 S 3 , Li 2 S—GeS 2 —Ga 2 S 3 , Li 2 S—GeS 2 —GeS 2
- a crystalline and / or amorphous raw material composition comprising Li 2 S—GeS 2 —P 2 S 5 or Li 10 GeP 2 S 12 is preferred because it has high lithium ion conductivity.
- Examples of a method for synthesizing a sulfide solid electrolyte material using such a raw material composition include an amorphization method.
- Examples of the amorphization method include a mechanical milling method and a melt quenching method, and among them, the mechanical milling method is preferable. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
- the sulfide solid electrolyte is more preferably one represented by the following formula (2).
- la to na indicate the composition ratio of each element, and la: ma: na satisfies 2 to 4: 1: 3 to 10.
- Oxide-based inorganic solid electrolyte contains oxygen (O), has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is an electron What has insulation is preferable.
- ⁇ 4 was filled, zb satisfies 1 ⁇ zb ⁇ 4, mb satisfies 0 ⁇ mb ⁇ 2, nb satisfies 5 ⁇ nb ⁇ 20.) Li xc B yc M cc zc O nc (M cc is C , S, Al, Si, Ga, Ge, In, and Sn, xc satisfies 0 ⁇ xc ⁇ 5, yc satisfies 0 ⁇ yc ⁇ 1, and zc satisfies 0 ⁇ zc ⁇ 1.
- Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
- lithium phosphate Li 3 PO 4
- LiPON obtained by replacing a part of oxygen of lithium phosphate with nitrogen
- LiPOD 1 LiPOD 1
- LiA 1 ON A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.
- the ionic conductivity of the lithium ion conductive oxide-based inorganic solid electrolyte is preferably 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 1 ⁇ 10 ⁇ 5 S / cm or more, and 5 ⁇ 10 ⁇ 5 S / cm. cm or more is particularly preferable.
- the average particle size of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, 100 micrometers or less are preferable and 50 micrometers or less are more preferable.
- the measuring method of the average particle diameter of inorganic solid electrolyte particles shall follow the measuring method of the average particle diameter of the inorganic particle shown by the term of the postscript Example.
- the concentration of the inorganic solid electrolyte in the solid electrolyte composition is preferably 5% by mass or more, preferably 10% by mass or more in 100% by mass of the solid component, considering both battery performance and reduction in interface resistance and a maintenance effect. More preferred is 20% by mass or more. From the same viewpoint, the upper limit is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and particularly preferably 99% by mass or less.
- the solid component refers to a component that does not disappear by volatilization or evaporation when dried at 170 ° C. for 6 hours. Typically, it refers to components other than the dispersion medium described below.
- the said inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
- Binder particles The polymer constituting the binder particles used in a preferred embodiment of the present invention has a reactive group (this reactive group may be referred to as a reactive group (a)).
- This polymer preferably incorporates a repeating unit derived from the macromonomer (X) having a mass average molecular weight of 1,000 or more as a side chain component.
- the main chain of the polymer of this embodiment is not specifically limited, It can comprise with a normal polymer component.
- a monomer having a polymerizable unsaturated bond is preferable.
- a vinyl monomer or an acrylic monomer can be applied.
- a monomer selected from (meth) acrylic acid monomer, (meth) acrylic acid ester monomer, (meth) acrylic acid amide and (meth) acrylonitrile is used as the main chain component.
- the number of polymerizable groups is not particularly limited, but 1 to 4 is preferable.
- the (meth) acrylic acid ester monomer may have a substituent in the structure derived from the alcohol which comprises ester.
- the polymer of the present embodiment preferably has a group of the following functional group (A) as a reactive group.
- This functional group group may be contained in the main chain, may be contained in the side chain described later, or may be protected.
- the reactive group is preferably an isocyanate group, an oxetane group, an epoxy group or a dicarboxylic anhydride group, more preferably an oxetane group or an epoxy group.
- the dicarboxylic anhydride group means a group obtained from an acid anhydride of dicarboxylic acid (a group in which at least one hydrogen atom is replaced with a bond “-”).
- vinyl monomer constituting the above polymer those represented by the following formula (a-1) or (a-2) are preferable.
- R 1 represents a hydrogen atom, a hydroxy group, a cyano group, a halogen atom, a carboxy group, an alkyl group (preferably having a carbon number of 1 to 24, more preferably 1 to 12, and particularly preferably 1 to 6), an alkenyl group ( Preferably having 2 to 24 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 6 carbon atoms), an alkynyl group (preferably having 2 to 24 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 6 carbon atoms), or Represents an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms).
- a hydrogen atom or an alkyl group is preferable, and a hydrogen atom or a methyl group is more preferable.
- R 2 examples include a hydrogen atom or a substituent T.
- a hydrogen atom an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 6 carbon atoms), and an alkenyl group (preferably having 2 to 12 carbon atoms and more preferably 2 to 6 carbon atoms)
- An aryl group preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms
- an aralkyl group preferably having 7 to 23 carbon atoms, more preferably 7 to 15 carbon atoms
- an alkoxy group preferably having 1 to 12 carbon atoms, 1 to 6 are more preferable, and 1 to 3 are particularly preferable.
- An aryloxy group preferably having 6 to 22 carbon atoms, more preferably 6 to 14 and particularly preferably 6 to 10).
- Aralkyloxy group (having 7 to 7 carbon atoms). 23, more preferably 7 to 15 and particularly preferably 7 to 11), cyano group, carboxy group, hydroxy group, mercapto group, sulfonic acid group, phosphoric acid group, phosphonic acid group,
- An aliphatic Hajime Tamaki containing atom (ring members is preferably 3 to 6-membered ring, preferably 2 to 12 carbon atoms, more preferably 2 to 6), (meth) acryloyl group or an amino group, (NR N 2 : RN is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms according to the definition described later.
- methyl group, ethyl group, propyl group, butyl group, cyano group, ethenyl group, phenyl group, carboxy group, mercapto group, sulfonic acid group and the like are preferable.
- R 2 is a group capable of taking a substituent (for example, an alkyl group, an alkenyl group, an aryl group, etc.), it may further have a substituent T described later.
- a substituent for example, an alkyl group, an alkenyl group, an aryl group, etc.
- a carboxy group, a halogen atom (fluorine atom, etc.), a hydroxy group, a (meth) acryloyloxyalkyl group, an alkyl group, an alkenyl group (vinyl group, allyl group) and the like may be substituted.
- the alkyl group is a group having a substituent, examples thereof include a halogen (preferably fluorine) alkyl group and a (meth) acryloyloxyalkyl group.
- a carboxyaryl group, a hydroxyaryl group, and a halogenated (preferably brominated) aryl group are exemplified
- R 2 is an acidic group such as a carboxy group, a sulfonic acid group, a phosphoric acid group, or a phosphonic acid group, it may be a salt or an ester thereof.
- esterified moiety include an alkyl group having 1 to 6 carbon atoms and a group in which a (meth) acryloyloxy group is substituted on an alkyl group having 1 to 6 carbon atoms.
- the aliphatic heterocyclic group containing an oxygen atom is preferably an epoxy group-containing group, an oxetane group-containing group, a tetrahydrofuryl group-containing group, or the like.
- L 1 is an arbitrary linking group, and examples of the linking group L described later can be given. Specifically, among them, an alkylene group having 1 to 6 carbon atoms (preferably 1 to 3), an alkenylene group having 2 to 6 carbon atoms (preferably 2 to 3 carbon atoms), and 6 to 24 carbon atoms (preferably 6 to 6 carbon atoms).
- an arylene group an oxygen atom, a sulfur atom, an imino group (NR N ), a carbonyl group, a phosphate linking group (—O—P (OH) (O) —O—), a phosphonic acid linking group (—P ( OH) (O) —O—), (poly) alkyleneoxy group, (poly) ester bond, (poly) amide bond, or a combination of these groups.
- the (poly) ester bond may be bonded to the carbon atom to which R 1 is bonded to the carbon atom of the —C ( ⁇ O) —O— carbonyl group (C ⁇ O) of the ester bond.
- it is preferably bonded to a carbon atom of a carbonyl group (C ⁇ O).
- a (poly) amide bond may be bonded to the carbon atom to which R 1 is bonded to the carbon atom of the carbonyl group (C ⁇ O) of —C ( ⁇ O) —NR N — of the amide bond, although it may be bonded to the nitrogen atom of NR N —, in the present invention, it is preferably bonded to the carbon atom of the carbonyl group (C ⁇ O).
- RN represents a hydrogen atom or a substituent.
- the linking group may have an arbitrary substituent.
- the preferable range of the number of connecting atoms and the number of atoms constituting the connecting group is the same as described later.
- the substituent T is mentioned,
- an alkyl group or a halogen atom is mentioned.
- the number of combinations of linking groups (when CO and O are combined, the number of combinations is 2) is preferably 1 to 16, more preferably 1 to 8, still more preferably 1 to 6, and particularly preferably 1 to 3.
- the preferred range of the number of combinations of linking groups is as defined above.
- L 1 preferably contains a —CO—O— linkage, that is, the binder is preferably composed of an acrylic polymer compound.
- the copolymerization ratio of the acrylic monomer in the polymer compound is preferably 0.1 to 1, more preferably 0.3 to 1, more preferably 0.5 to 1, and particularly preferably 0.8 to 1 in terms of molar fraction
- N 0 or 1.
- ⁇ represents a non-aromatic cyclic structure, preferably a 4- to 7-membered ring, more preferably a 5- or 6-membered ring.
- ⁇ may be a non-aromatic hydrocarbon ring or a non-aromatic heterocyclic ring.
- examples of the hetero atom or a group thereof include an oxygen atom, a sulfur atom, a carbonyl group, an imino group (NR N ), and a nitrogen atom ( ⁇ N—).
- R 3 include examples of the substituent T described later. This R 3 may be bonded to the ring structure ⁇ by a double bond.
- Examples include substitution as a carbonyl structure (> C ⁇ O) or an imino structure (> C ⁇ NR N ) with carbon atoms in the ring.
- Examples of the ring structure ⁇ include a cyclohexene ring, a norbornene ring, and a maleimide ring.
- p is 0 or more and a natural number that can be substituted.
- R 1 and n are as defined in the above formula (a-1).
- R 4 has the same meaning as R 2 .
- preferable examples thereof include a hydrogen atom, an alkyl group which may have a halogen atom (fluorine atom), a carboxy group or an aryl group which may have a halogen atom, a carboxy group, a mercapto group, a phosphoric acid group, and a phosphonic acid.
- L 2 is an arbitrary linking group, and is preferably an example of L 1 , an oxygen atom, an alkylene group having 1 to 6 carbon atoms (preferably 1 to 3), or an alkylene group having 2 to 6 carbon atoms (preferably 2 to 3).
- An alkenylene group, a carbonyl group, an imino group (NR N ), a (poly) alkyleneoxy group, a (poly) ester bond, or a group obtained by combining these groups is more preferable.
- the number of combinations of linking groups is preferably 1 to 16, more preferably 1 to 8, still more preferably 1 to 6, and particularly preferably 1 to 3.
- L 3 is a linking group, and an example of L 2 is preferable, and an alkylene group having 1 to 6 (preferably 1 to 3) carbon atoms is more preferable.
- g is 0 or 1.
- L 4 has the same meaning as L 1 , and among them, an alkylene group, a phosphate linking group, a (poly) alkyleneoxy group, a (poly) ester bond, or a combination thereof is preferable.
- the number of combinations of linking groups is preferably 1 to 16, more preferably 1 to 8, still more preferably 1 to 6, and particularly preferably 1 to 3.
- R 5 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms (preferably 1 to 3), a hydroxy group-containing group having 0 to 6 carbon atoms (preferably 0 to 3), or 0 to 6 carbon atoms (preferably 0). To 3) a carboxyl group-containing group or a (meth) acryloyloxy group-containing group.
- R 5 may be a linking group of L 1 (for example, an oxygen atom), and this part may form a dimer.
- q is 0 or 1.
- m represents an integer of 1 to 200, preferably an integer of 1 to 100, more preferably an integer of 1 to 50.
- R 6 is an aryl group, an alkenyl group, a cyano group, an alkyl group, a carboxy group, or a carboxyalkyl group (which preferably has 2 to 13 carbon atoms, more preferably 2 to 7 carbon atoms), which may have a sulfonic acid group, a hydroxy group or an alkenyl group. 2 to 4 are particularly preferred).
- r is 0 or 1; When r is 1, among them, R 6 is preferably an alkyl group or an aryl group.
- R 7 has the same meaning as R 2 . Of these, a hydrogen atom, an alkyl group, and an aryl group are preferable. s is an integer of 0 to 8. When two or more R 7 are present, they may be linked to each other to form a ring structure.
- R 8 includes a hydrogen atom or a substituent T.
- An aryl group preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms
- an aralkyl group preferably having 7 to 23 carbon atoms, more preferably 7 to 15 carbon atoms
- R 9 has the same meaning as R 8 .
- any group which may take a substituent such as an alkyl group, an aryl group, an alkylene group or an arylene group may be substituted as long as the effects of the present invention are maintained. It may have a group.
- the optional substituent include a substituent T, specifically, a halogen atom, a hydroxy group, a carboxy group, a mercapto group, an acyl group, an acyloxy group, an alkoxy group, an aryloxy group, an amino group, and the like. It may have an arbitrary substituent.
- N1 in the following formula represents 1 to 1,000,000, preferably 1 to 10,000, and more preferably 1 to 500.
- Examples of the monomer containing a reactive group include the following formulas (c-1) to (c-3).
- R 1 , L 1 and n are as defined in the above formula (a-1).
- A is a reactive group or a group containing a protected group. Specific examples include a group having a group selected from the functional group group (A) or a group in which the group is protected.
- the formula (c-2) is preferably the following (c-2a).
- L 2 has the same meaning as above.
- the amount of the reactive group in the molecule can be evaluated by, for example, the chemical equivalent of the following formula.
- Reactive group equivalent (Molecular weight of one molecule of the compound having a reactive group) / (Number of reactive groups contained in one molecule of compound)
- the polymer compound used in the binder of the present invention is preferably 50 or more, more preferably 100 or more, and particularly preferably 200 or more. As an upper limit, 100,000 or less are preferable, 10,000 or less are more preferable, and 5,000 or less are especially preferable.
- the macromonomer has a mass average molecular weight of 1,000 or more, more preferably 2,000 or more, and particularly preferably 3,000 or more. As an upper limit, 500,000 or less is preferable, 100,000 or less is more preferable, and 30,000 or less is especially preferable.
- the side chain component in the binder polymer has a function of improving dispersibility in a solvent.
- a binder is suitably disperse
- an equal interval is maintained between the binder particles, and the electrical connection between the particles is not interrupted. For this reason, it is considered that an increase in interface resistance between solid particles and between current collectors can be suppressed.
- the binder polymer has side chains, not only the binder particles adhere to the solid electrolyte particles, but also an effect of tangling the side chains can be expected.
- the step of layer transfer into an organic solvent can be omitted compared to emulsion polymerization in water, and a solvent having a low boiling point can be used as a dispersion medium.
- the molecular weight of the side chain component (X) can be identified by measuring the molecular weight of the polymerizable compound (macromonomer) incorporated when synthesizing the polymer constituting the binder particles.
- the molecular weight of the polymer means a mass average molecular weight unless otherwise specified, and the mass average molecular weight in terms of standard polystyrene is measured by gel permeation chromatography (GPC).
- the measurement method is basically a value measured by the following condition 1 or condition 2 (priority) method.
- an appropriate eluent may be selected and used depending on the polymer type.
- the SP value of the macromonomer (X) is preferably 10 or less, and more preferably 9.5 or less. Although there is no lower limit, 5 or more is practical.
- the SP value is obtained by the Hoy method (HL Hoy Journal of Paining, 1970, Vol. 42, 76-118). The SP value is shown with the unit omitted, but the unit is cal 1/2 cm ⁇ 3/2 . Note that the SP value of the side chain component (X) is not substantially different from the SP value of the raw material monomer forming the side chain, and may be evaluated accordingly.
- the SP value is an index indicating the characteristic of being dispersed in an organic solvent.
- the side chain component is set to a specific molecular weight or more, preferably to the SP value or more, the binding property with the solid electrolyte is improved, thereby improving the affinity with the solvent and stably dispersing. This is preferable.
- the main chain of the side chain component of said macromonomer (X) is not specifically limited, A normal polymer component can be applied.
- the macromonomer (X) preferably has a polymerizable group at the side chain or at its end, and more preferably has a polymerizable group at one or both ends.
- the polymerizable group is preferably a group having a polymerizable unsaturated bond, and examples thereof include various vinyl groups and (meth) acryloyl groups.
- the macromonomer (X) has a (meth) acryloyl group, a styrene group, or a styrene derivative group.
- acryl or “acryloyl” broadly refers to not only an acryloyl group but also a derivative structure thereof, and includes a structure having a specific substituent at the ⁇ -position of the acryloyl group.
- the ⁇ -position is a hydrogen atom
- methacryl which means either acryl (the ⁇ -position is a hydrogen atom) or methacryl (the ⁇ -position is a methyl group), and is sometimes referred to as (meth) acryl.
- the macromonomer (X) preferably includes a repeating unit derived from a monomer selected from (meth) acrylic acid monomers, (meth) acrylic acid ester monomers, and (meth) acrylonitrile, styrene, and styrene-derived monomers.
- the macromonomer (X) includes a polymerizable double bond and a hydrocarbon structural unit S having 6 or more carbon atoms (preferably an alkylene group or alkyl group having 6 to 30 carbon atoms, more preferably 8 to 24 carbon atoms). The following alkylene groups or alkyl groups are preferably included.
- the macromonomer since the macromonomer has the hydrocarbon structural unit S, it can be expected that the affinity with the solvent is increased and the dispersion stability is improved.
- the hydrocarbon structural unit S having 6 or more carbon atoms preferably constitutes a side chain rather than a portion constituting the main chain of the macromonomer.
- the hydrocarbon structural unit S is dodecyl in a structure derived from dodecyl methacrylate.
- the macromonomer (X) preferably has a site represented by the following formula (P) as a polymerizable group or a part thereof.
- R 11 has the same meaning as R 1 . * Is a connecting part.
- the polymerizable group of the macromonomer (X) is preferably a site represented by any of the following formulas (P-1) to (P-3). Hereinafter, these sites may be referred to as “specific polymerizable sites”.
- R 12 has the same meaning as R 1 . * Is a connecting part.
- RN represents a hydrogen atom or a substituent. Examples of the substituent include the groups exemplified in the substituent T described later. Arbitrary substituent T may be substituted on the benzene ring of formula (P-3).
- the macromonomer (X) is preferably a compound represented by the following formulas (N-1) to (N-3).
- P represents a polymerizable group.
- L 11 to L 17 each independently represent a linking group.
- k1, k2, k3, k12 and k13 represent the mole fraction of each repeating unit in the polymer.
- m represents an integer of 1 to 200.
- n represents 0 or 1.
- R 13 to R 15 , R 21 and R 23 each independently represent a polymerizable group, a hydrogen atom, a hydroxy group, a cyano group, a halogen atom, a carboxy group, an alkyl group, an alkenyl group, an alkynyl group or an aryl group.
- R 16 represents a hydrogen atom or a substituent.
- q represents 0 or 1;
- R 22 represents a chain structure site having a higher molecular weight than R 21 .
- R 24 represents a hydrogen atom or a substituent.
- the polymerizable group of P is preferably the above formula (P) or (P-1) to (P-3).
- L 11 to L 17 are preferably a linking group L described later, and preferably have the same meaning as L 1 described above.
- the left end structure represented by wavy lines as described in formula (N-3) represents at least one terminal structure of the main chain.
- L 11 represents an alkylene group having 1 to 6 (preferably 1 to 3) carbon atoms, an arylene group having 6 to 24 (preferably 6 to 10) carbon atoms, an oxygen atom, a sulfur atom, an imino group (NR N ), a carbonyl A group, a (poly) alkyleneoxy group, a (poly) ester bond, a (poly) amide bond or a combination thereof is preferred.
- L 11 may have a substituent T, for example, may have a hydroxy group.
- L 12 and L 13 are each an alkylene group having 1 to 6 (preferably 1 to 3) carbon atoms, an arylene group having 6 to 24 (preferably 6 to 10) carbon atoms, an oxygen atom, a sulfur atom, an imino group (NR N ), Carbonyl group, (poly) alkyleneoxy group, (poly) ester bond, (poly) amide bond, or a combination thereof.
- L 14 represents an alkylene group having 1 to 24 (preferably 1 to 18) carbon atoms, an arylene group having 6 to 24 (preferably 6 to 10) carbon atoms, an oxygen atom, a sulfur atom, an imino group (NR N ), a carbonyl A group, a (poly) alkyleneoxy group, a (poly) ester bond, a (poly) amide bond, or a combination thereof is preferred, and a (poly) alkyleneoxy group (x is 1 to 4) is particularly preferred.
- the alkylene group preferably has 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and particularly preferably 1 to 6 carbon atoms.
- This alkylene group may have a substituent T, for example, may have a hydroxy group.
- L 17 is an alkylene group having 1 to 6 (preferably 1 to 3) carbon atoms, an arylene group having 6 to 24 (preferably 6 to 10) carbon atoms, an oxygen atom, a sulfur atom, an imino group (NR N ), carbonyl A group, a (poly) alkyleneoxy group, a (poly) ester bond, a (poly) amide bond or a combination thereof is preferred.
- L 17 may have a substituent T, for example, may have a hydroxy group.
- N is 0 or 1.
- L 11 to L 16 are particularly preferably a linking group having 1 to 60 atoms (preferably 1 to 30) composed of an oxygen atom, a carbon atom, a hydrogen atom, a sulfur atom, and a nitrogen atom.
- the number of constituent atoms of the linking group is preferably 4 to 40, more preferably 6 to 24.
- k1 is preferably 0.001 to 0.3, and more preferably 0.01 to 0.1.
- k2 is preferably 0 to 0.7, more preferably 0 to 0.5.
- k3 is preferably 0.3 to 0.99, and more preferably 0.4 to 0.9.
- m represents an integer of 1 to 200, preferably an integer of 1 to 100, more preferably an integer of 1 to 50.
- k12 is preferably 0 to 0.7, more preferably 0 to 0.6.
- k13 is preferably 0.3 to 1, and more preferably 0.4 to 1.
- R 13 , R 14 and R 15 are the same groups as R 1 or a P polymerizable group.
- a group of R 1 is preferable, and a hydrogen atom, an alkyl group (preferably having 1 to 3 carbon atoms) or a cyano group is preferable.
- R 16 has the same meaning as R 2 above.
- a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 24 carbon atoms (preferably 6 to 10), a hydroxy group, and a carboxy group are preferable.
- Q is 0 or 1.
- R 21 and R 23 are the same groups as R 1 described above or a polymerizable group of P.
- R 22 is a chain structure site having a higher molecular weight than R 21 , and is an alkyl group (preferably having 4 to 60 carbon atoms, more preferably 6 to 36), an alkenyl group (preferably having 4 to 60 carbon atoms, and having 6 to 36 carbon atoms). More preferably), an aryl group (preferably 4 to 60 carbon atoms, more preferably 6 to 36), a halogenated alkyl group (preferably 6 to 60 carbon atoms, more preferably 6 to 36.
- the halogen atom is preferably a fluorine atom) ), (Poly) oxyalkylene group-containing groups, (poly) ester bond-containing groups, (poly) amide bond-containing groups, and (poly) siloxane bond-containing groups.
- sites include hydroxy group-containing fatty acid self-condensates and amino group-containing fatty acid self-condensates.
- R 22 may have a substituent T, and may optionally have a hydroxy group, an alkoxy group, an acyl group, or the like.
- the linking group-containing group follows the definition of the linking group L described later. It is preferred that the end groups are described hereinafter R P.
- R 24 is a hydrogen atom or a substituent, and is the same group as R 2 .
- An aryl group (preferably having 6 to 22 carbon atoms and more preferably 6 to 14 carbon atoms) and an aralkyl group (preferably having 7 to 23 carbon atoms and more preferably 7 to 15 carbon atoms) are preferable.
- R 24 may have a substituent T, and may optionally have a hydroxy group, an alkoxy group, an acyl group, or the like.
- the linking group-containing group follows the definition of the linking group L described later. It is preferred that the end groups are described hereinafter R P.
- substituents include the following substituent T.
- substituent T when simply referred to as “substituent”, the substituent T is referred to.
- substituent T examples include the following.
- An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
- alkenyl group Preferably an alkenyl group having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.
- alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms, such as ethynyl, butadiynyl, phenylethynyl, etc.
- cycloalkyl group Preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohe
- an alkyl group when simply referring to an alkyl group, it usually means including a cycloalkyl group.
- An aryl group preferably having 6 to 6 carbon atoms
- 6 aryl groups such as phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl and the like
- heterocyclic groups preferably heterocyclic groups having 2 to 20 carbon atoms, preferably ring structures
- a 5- or 6-membered heterocyclic group having at least one oxygen atom, sulfur atom, or nitrogen atom as an atom is preferable.
- alkoxy group preferably an alkoxy group having 1 to 20 carbon atoms such as methoxy, ethoxy, isopropyloxy, benzyloxy, etc.
- alkenyloxy group preferably an alkenyloxy group having 2 to 20 carbon atoms such as vinyloxy, allyloxy, etc.
- alkynyloxy groups preferably alkynyloxy groups having 2 to 20 carbon atoms, such as ethynyloxy, phenylethynyloxy etc.
- cycloalkyloxy groups preferably cycloalkyl having 3 to 20 carbon atoms
- An oxy group such as cyclopropyloxy, cyclopentyloxy, cyclohexyloxy, 4-methylcyclohexyloxy, etc., an aryloxy group (preferably an aryloxy group having 6 to 26 carbon atoms such as phenoxy, 1-naphthyloxy, 3- Me Ruphenoxy, 4-methoxyphenoxy, etc.), alkoxycarbonyl groups (preferably C2-C20 alkoxycarbonyl groups such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.), aryloxycarbonyl groups (preferably C7-C7) 26 aryloxycarbonyl groups such as
- a carbamoyl group (preferably a carbamoyl group having 1 to 20 carbon atoms such as N, N-dimethylcarbamoyl, N-phenylcarbamoyl, etc.), an acylamino group (preferably an acylamino group having 1 to 20 carbon atoms such as acetylamino, acryloyl) Amino, methacryloylamino, benzoylamino, etc.), sulfonamido groups (including alkylsulfonamido groups, arylsulfonamido groups, preferably sulfoneamide groups having 1 to 20 carbon atoms, such as methanesulfonamide, benzenesulfonamide, etc.), An alkylthio group (preferably an alkylthio group having 1 to 20 carbon atoms, such as methylthio, ethylthio, isopropylthio, benzylthio, etc.),
- an alkylsulfonyl group preferably an alkylsulfonyl group having 1 to 20 carbon atoms, such as methylsulfonyl, ethylsulfonyl, etc.
- an arylsulfonyl group preferably a carbon atom
- An arylsulfonyl group having 6 to 22 atoms such as benzenesulfonyl
- an alkylsilyl group preferably an alkylsilyl group having 1 to 20 carbon atoms such as monomethylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, benzyldimethylsilyl, etc.
- An arylsilyl group preferably an arylsilyl group having 6 to 42 carbon atoms such as triphenylsilyl and dimethylphenylsilyl
- an alkoxysilyl group preferably an alkylsulfonyl group having 1 to 20 carbon
- each of the groups listed as the substituent T may be further substituted with the above-described substituent T.
- substituent T for example, an aralkyl group in which an aryl group is substituted for an alkyl group, or a halogenated alkyl group in which a halogen atom is substituted for an alkyl group.
- the salt when the said substituent is an acidic group or a basic group, the salt may be formed.
- a compound or a substituent or a linking group includes an alkyl group, an alkylene group, an alkenyl group or an alkenylene group, an alkynyl group or an alkynylene group, these may be cyclic or linear, and may be linear or branched These may be substituted as described above or may be unsubstituted.
- linking group L may be substituted through the following linking group L within the scope of the effects of the present invention, or the linking group L may be present in the structure thereof.
- an alkyl group, an alkylene group, an alkenyl group, an alkenylene group or the like may further have a linking group containing the following hetero atom in the structure.
- linking group L examples include a linking group composed of hydrocarbon [an alkylene group having 1 to 10 carbon atoms (more preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), an alkenylene group having 2 to 10 carbon atoms (more preferably Is an alkynylene group having 2 to 10 carbon atoms, more preferably 2 to 4 carbon atoms, more preferably an alkynylene group having 2 to 10 carbon atoms (more preferably 2 to 6 carbon atoms, still more preferably 2 to 4 carbon atoms), an arylene group having 6 to 22 carbon atoms ( More preferably 6 to 10 carbon atoms, or a combination thereof], a linking group containing a hetero atom [carbonyl group (—CO—), thiocarbonyl group (—CS—), ether bond (—O—), thioether bond] (—S—), imino group (—NR N — or ⁇ NR N ), ammonium linking group (—NR N 2 + —),
- the hydrocarbon linking group may be linked by appropriately forming a double bond or a triple bond.
- the ring to be formed is preferably a 5-membered ring or a 6-membered ring.
- the five-membered ring is preferably a nitrogen-containing five-membered ring, such as a pyrrole ring, imidazole ring, pyrazole ring, indazole ring, indole ring, benzimidazole ring, pyrrolidine ring, imidazolidine ring, pyrazolidine ring, indoline ring, carbazole ring. Etc.
- 6-membered ring examples include a piperidine ring, a morpholine ring, and a piperazine ring.
- an aryl ring, a hetero ring, and the like may be monocyclic or condensed, and may be similarly substituted or unsubstituted.
- said RN represents a hydrogen atom or a substituent.
- substituents include the above-described substituent T, but an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12, more preferably 1 to 6 and particularly preferably 1 to 3), an alkenyl group (C2-C24 is preferred, 2-12 is more preferred, 2-6 is more preferred, and 2-3 is particularly preferred), alkynyl group (C2-C24 is preferred, 2-12 is more preferred, 2 To 6 are more preferable, and 2 to 3 are particularly preferable), an aralkyl group (preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms), and an aryl group (preferably 6 to 22 carbon atoms are preferable). 6 to 14 are more preferable, and 6 to 10 are particularly preferable.
- RP represents a hydrogen atom, a hydroxy group or a substituent other than a hydroxy group.
- substituents include the above-described substituent T, but an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12, more preferably 1 to 6 and particularly preferably 1 to 3), an alkenyl group (C2-C24 is preferred, 2-12 is more preferred, 2-6 is more preferred, and 2-3 is particularly preferred), alkynyl group (C2-C24 is preferred, 2-12 is more preferred, 2 To 6 are more preferable, and 2 to 3 are particularly preferable), an aralkyl group (preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms), and an aryl group (preferably 6 to 22 carbon atoms are preferable).
- 6 to 14 are more preferable, and 6 to 10 are particularly preferable.
- An alkoxy group preferably having 1 to 24 carbon atoms, more preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 3.
- An alkenyloxy group preferably 2 to 24 carbon atoms, more preferably 2 to 12 carbon atoms, further preferably 2 to 6 carbon atoms, particularly preferably 2 to 3 carbon atoms
- an alkynyloxy group preferably 2 to 24 carbon atoms, preferably 2 to 12 carbon atoms).
- 2 to 6 are more preferable, and 2 to 3 are particularly preferable, and an aralkyloxy group (preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, and particularly preferably 7 to 10 carbon atoms), an aryloxy group ( 6 to 22 carbon atoms are preferable, 6 to 14 are more preferable, and 6 to 10 are particularly preferable.
- an aralkyloxy group preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, and particularly preferably 7 to 10 carbon atoms
- an aryloxy group 6 to 22 carbon atoms are preferable, 6 to 14 are more preferable, and 6 to 10 are particularly preferable.
- the number of atoms constituting the linking group L is preferably 1 to 36, more preferably 1 to 24, still more preferably 1 to 12, and particularly preferably 1 to 6.
- the number of linking atoms in the linking group is preferably 10 or less, and more preferably 8 or less.
- the lower limit is 1 or more.
- the number of atoms constituting the linking group L refers to the minimum number of atoms that are located in a path connecting between predetermined structural parts and that are involved in linking. For example, in the case of —CH 2 —C ( ⁇ O) —O—, the number of atoms constituting the linking group is 6, but the number of linking atoms is 3.
- linking groups include the following. Oxycarbonyl bond (—OCO—), carbonate bond (—OCOO—), amide bond (—CONR N —), urethane bond (—NR N COO—), urea bond (—NR N CONR N —), (poly) Alkyleneoxy bond (— (Lr—O) x—), carbonyl (poly) oxyalkylene bond (—CO— (O—Lr) x—), carbonyl (poly) alkyleneoxy bond (—CO— (Lr—O)) x-), carbonyloxy (poly) alkyleneoxy bond (—COO— (Lr—O) x—), (poly) alkyleneimino bond (— (Lr—NR N ) x), alkylene (poly) iminoalkylene bond ( -Lr- (NR N -Lr) x-) , carbonyl (poly) iminoalkylene bond (-CO- (NR N -L
- Lr is preferably an alkylene group, an alkenylene group or an alkynylene group.
- the carbon number of Lr is preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 3 (however, the lower limit of the number of carbon atoms in the alkenylene group and the alkynylene group is 2 or more).
- a plurality of Lr, R N , R P , and x may be the same as or different from each other.
- the direction of the linking group is not limited by the order described above, and may be understood as appropriate according to a predetermined chemical formula.
- the amide bond (—CONR N —) is a carbamoyl bond (—NR N CO—).
- the above reactive group may be introduced into the macromonomer (X).
- the method of introduction is the same as described for the main chain.
- the reactive group is introduce
- the copolymerization ratio of the repeating unit derived from the macromonomer (X) is not particularly limited, but is preferably 1% by mass or more, more preferably 3% by mass or more, and particularly preferably 5% by mass or more in the polymer constituting the binder particles. .
- 70 mass% or less is preferable, 50 mass% or less is more preferable, and 30 mass% or less is especially preferable.
- the polymer constituting the binder particles has a mass average molecular weight of preferably 5,000 or more, more preferably 10,000 or more, and particularly preferably 30,000 or more. As an upper limit, 1,000,000 or less is preferable and 200,000 or less is more preferable. Note that this is not the case when the binder is crosslinked and the molecular weight cannot be measured.
- the blending amount of the binder particles is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, with respect to 100 parts by mass of the solid electrolyte (including this when an active material is used). Part by mass or more is particularly preferable. As an upper limit, 20 mass parts or less are preferable, 10 mass parts or less are more preferable, and 5 mass parts or less are especially preferable.
- the content of the binder particles in the solid component is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and particularly preferably 0.5% by mass or more. As an upper limit, 30 mass% or less is preferable, 20 mass% or less is more preferable, and 10 mass% or less is especially preferable.
- the binder particles may be used alone or in combination of a plurality of types. Further, it may be used in combination with other particles.
- particles refer to particles having an average particle diameter exceeding 0.01 ⁇ m (10 nm).
- the average particle size of the binder particles is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, further preferably 1 ⁇ m or less, and particularly preferably 700 nm or less. Among these, 500 nm or less is particularly preferable, and 300 nm or less is most preferable.
- the lower limit is set to more than 10 nm, preferably 30 nm or more, more preferably 50 nm or more, and particularly preferably 100 nm or more.
- the average particle size of the binder particles depends on the conditions measured by measuring the average particle size of the binder in the Examples section below, unless otherwise specified. By setting the size of the binder particles in the above range, it is possible to achieve good adhesion and suppression of interface resistance.
- the electrode material is measured according to the method of measuring the average particle diameter of the binder described later, This can be done by eliminating the measured value of the average particle size of the particles other than the binder that was being measured.
- the binder particles may be composed only of the polymer constituting the binder particles, or may be composed in a form containing another kind of material (polymer, low molecular compound, inorganic compound, etc.). In the present invention, the binder particles are preferably composed only of the constituent polymer.
- the solid electrolyte composition of the present invention contains at least one component selected from a crosslinking agent and a crosslinking accelerator.
- FIG. 3 (a) The portion enlarged by a circle (thin line) in the figure schematically shows the structure of the polymer compound 43 constituting the binder (FIG. 3 (a)).
- the state shown in FIG. 3A is before or after the addition of at least one component selected from a crosslinking agent and a crosslinking accelerator, which indicates an unreacted state.
- a crosslinking accelerator is added to the system, and a reactive group (not shown) of the polymer compound is bonded at the crosslinking point 45 by the effect.
- a crosslinked structure is formed. At this time, it is not necessary for all the reactive groups of the polymer compound to react, and there may be those that remain unreacted.
- the cross-linking reaction rate is practically about 10 to 100% (number).
- the reactive group (not shown) of the crosslinking agent and the reactive group of the polymer compound (not shown) are interposed via the crosslinking agent 44. Shows an example in which and are bonded to form a crosslinked structure.
- the crosslinking accelerator is basically not incorporated in the crosslinked structure itself, but promotes the reaction of the reactive group of the article to be crosslinked (polymer compound). ) Are linked together to form a crosslinked structure.
- the crosslinking agent is a substance to be crosslinked (polymer compound) that is crosslinked while itself or a part thereof is incorporated into the crosslinked structure.
- the reactive group possessed by the cross-linking agent hereinafter also referred to as the cross-linking agent-side reactive group
- reacts with the reactive group possessed by the polymer compound and bonds to each other to form a cross-linked structure. is there.
- a form in which a part of the cross-linking agent is incorporated into a cross-linked chain between the high molecular compounds and the remaining part remains as a low molecular compound is also exemplified.
- a typical example of the crosslinking accelerator is a polymerization initiator. Specifically, a radical polymerization initiator or a cationic polymerization initiator may be mentioned and is preferable.
- the crosslinking accelerator may be a thermal polymerization initiator or a photopolymerization initiator.
- the reactive group of the polymer compound (polymer) that reacts with the crosslinking accelerator is preferably an oxetane group, an epoxy group, a (meth) acryloyl group, an alkenyl group, or an alkynyl group, and an oxetane group, an epoxy group, or a (meth) acryloyl group. More preferred.
- radical polymerization initiator examples include (a) aromatic ketones, (b) acylphosphine oxide compounds, (c) aromatic onium salt compounds, (d) organic peroxides, (e) thio compounds, (f ) Hexaarylbiimidazole compound, (g) ketoxime ester compound, (h) borate compound, (i) azinium compound, (j) metallocene compound, (k) active ester compound, (l) compound having carbon halogen bond, (M) ⁇ -aminoketone compounds and (n) alkylamine compounds.
- radical polymerization initiators examples include the radical polymerization initiators described in paragraph numbers 0135 to 0208 of JP-A-2006-085049.
- azo compound used as an azo-based (AIBN or the like) polymerization initiator examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2, 2'-azobis (2,4-dimethylvaleronitrile), 1,1'-azobis-1-cyclohexanecarbonitrile, dimethyl-2,2'-azobisisobutyrate, 4,4'-azobis-4-cyano Examples include valeric acid, 2,2′-azobis- (2-amidinopropane) dihydrochloride, and the like (see JP 2010-189471 A). Alternatively, dimethyl-2,2'-azobis (2-methylpropinate) (trade name: V-601, manufactured by Wako Pure Chemical Industries, Ltd.) is also preferably used.
- radical polymerization initiator in addition to the above thermal radical polymerization initiator, a radical polymerization initiator that generates an initiation radical by light, electron beam, or radiation can be used.
- radical polymerization initiators examples include benzoin ether, 2,2-dimethoxy-1,2-diphenylethane-1-one [IRGACURE651, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 1-hydroxy-cyclohexyl -Phenyl-ketone [IRGACURE 184, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 2-hydroxy-2-methyl-1-phenyl-propan-1-one [DAROCUR 1173, manufactured by Ciba Specialty Chemicals Co., Ltd., Trademarks], 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one [IRGACURE2959, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 2 -Hydroxy-1- [4- [4- (2- Droxy-2-methyl-propionyl) -benzyl] phenyl] -2-methyl-propan-1-
- radical polymerization initiators can be used singly or in combination of two or more.
- Cationic polymerization initiators include onium salt compounds such as diazonium salts, phosphonium salts, sulfonium salts and iodonium salts that decompose to generate acids, sulfonates such as imidosulfonates, oxime sulfonates, diazodisulfones, disulfones, and o-nitrobenzyl sulfonates.
- onium salt compounds are preferable, and San-Aid SI series manufactured by Sanshin Kagaku Co., Ltd., and WPI series manufactured by Wako Pure Chemical Industries, Ltd. are particularly preferable.
- the cationic polymerization initiator is preferably an onium salt compound or a sulfonate compound.
- onium salt compounds are as described above, and intermediate concepts thereof include R O1 —N * N + (* means a triple bond), SR O2 3 + , PRO3 4 + , and IR O4 2 +. Those having any of the structures are preferred.
- R O1 to R O4 represent substituents.
- a compound represented by the following formula (b1), (b2), or (b3) can be given.
- R 201 to R 203 each independently represents an organic group.
- X ⁇ represents a non-nucleophilic anion, preferably a sulfonate anion, a carboxylate anion, a bis (alkylsulfonyl) amide anion, a tris (alkylsulfonyl) methide anion, BF 4 ⁇ , PF 6 ⁇ , SbF 6 — or B (C 6 F 6 ) 4 and the like are mentioned, and PF 6 ⁇ , SbF 6 — or an organic anion having a carbon atom is preferable.
- Other organic anions can also be preferably used.
- the organic group generally has 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms.
- Two of R 201 to R 203 may be bonded to form a ring structure, and the ring may contain an oxygen atom, a sulfur atom, an ester bond, an amide bond, or a carbonyl group.
- Examples of the group formed by combining two members out of R 201 to R 203 include an alkylene group (eg, butylene group, pentylene group).
- the organic group in the below-mentioned substituent T is mentioned as an organic group.
- the compound (b1-1) is an arylsulfonium compound in which at least one of R 201 to R 203 in the formula (b1) is an aryl group, that is, a compound having arylsulfonium as a cation.
- all of R 201 to R 203 may be an aryl group, or a part of R 201 to R 203 may be an aryl group, and the rest may be an alkyl group or a cycloalkyl group.
- arylsulfonium compound examples include triarylsulfonium compounds, diarylalkylsulfonium compounds, aryldialkylsulfonium compounds, diarylcycloalkylsulfonium compounds, aryldicycloalkylsulfonium compounds, and the like.
- the aryl group of the arylsulfonium compound is preferably an aryl group such as a phenyl group or a naphthyl group, or a heteroaryl group such as an indole residue or a pyrrole residue, more preferably a phenyl group or an indole residue.
- two or more aryl groups may be the same or different.
- the arylsulfonium compound may have a substituent T as long as the effects of the present invention are achieved.
- Compound (b1-2) is a compound in the case where R 201 to R 203 in formula (b1) each independently represents an organic group not containing an aromatic ring.
- the aromatic ring includes an aromatic ring containing a hetero atom.
- the organic group containing no aromatic ring as R 201 to R 203 generally has 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms.
- R 201 to R 203 are each independently preferably an alkyl group, a cycloalkyl group, an allyl group or a vinyl group, more preferably a linear, branched or cyclic 2-oxoalkyl group, an alkoxycarbonylmethyl group, particularly A linear or branched 2-oxoalkyl group is preferred.
- the compound (b1-3) is a compound represented by the following formula (b1-3) and is a compound having a phenacylsulfonium salt structure.
- R 1c to R 5c each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group or a halogen atom.
- R 6c and R 7c each independently represents a hydrogen atom, an alkyl group or a cycloalkyl group.
- R x and R y each independently represents an alkyl group, a cycloalkyl group, an allyl group or a vinyl group. Any two or more of R 1c to R 5c , R 6c and R 7c , and R x and R y may be bonded to each other to form a ring structure.
- Zc ⁇ represents a non-nucleophilic anion, and examples thereof include the same as the non-nucleophilic anion of X ⁇ in formula (b1).
- Examples of the group formed by combining any two or more of R 1c to R 5c , R 6c and R 7c , and R x and R y with each other include a butylene group and a pentylene group. .
- This ring structure may contain an oxygen atom, a sulfur atom, an ester bond, or an amide bond.
- R x and R y are preferably an alkyl group or cycloalkyl group having 4 or more carbon atoms, more preferably 6 or more, and still more preferably 8 or more alkyl groups or cycloalkyl groups.
- R 204 to R 207 each independently represents an aryl group, an alkyl group, or a cycloalkyl group.
- X ⁇ represents a non-nucleophilic anion, and examples thereof include the same as the non-nucleophilic anion of X ⁇ in formula (b1).
- the aryl group of R 204 to R 207 is preferably a phenyl group or a naphthyl group, more preferably a phenyl group.
- the alkyl group as R 204 to R 207 may be linear or branched, and is preferably a linear or branched alkyl group having 1 to 10 carbon atoms (for example, methyl group, ethyl group, propyl group). Group, butyl group, pentyl group).
- the cycloalkyl group as R 204 to R 207 is preferably a cycloalkyl group having 3 to 10 carbon atoms (cyclopentyl group, cyclohexyl group, norbornyl group).
- Each group of R 204 to R 207 may further have a substituent T as long as the effects of the present invention are exerted.
- the content of the crosslinking accelerator in the composition is preferably 0.0001% by mass or more, more preferably 0.0005% by mass or more, and particularly preferably 0.001% by mass or more based on the total amount of the solid components of the composition. .
- 10 mass% or less is preferable, 5 mass% or less is more preferable, and 3 mass% or less is especially preferable.
- 100 parts by mass of the binder particles 0.001 part by mass or more is preferable, 0.01 part by mass or more is more preferable, and 0.1 part by mass or more is particularly preferable.
- 200 mass parts or less are preferable, 100 mass parts or less are more preferable, and 50 mass parts or less are especially preferable.
- a crosslinking agent contains two or more functional groups (reactive groups (b)) that react with the reactive groups (a) contained in the polymer compound forming the binder to form bonds. preferable. If the reactive group (a) contained in the polymer compound forming the binder is an electrophilic group, the reactive group (b) contained in the crosslinking agent is preferably a nucleophilic group. Conversely, if the reactive group (a) of the polymer compound is a nucleophilic group, the reactive group (b) of the crosslinking agent is preferably an electrophilic group. Specific examples are summarized in Table 1 below.
- the reactive group (a) of the polymer compound and the reactive group (b) of the crosslinking agent is the reactive group (I) in Table 1 above, and the reaction
- the reactive group (b) is preferably a reactive group (II).
- Combination of reactive groups No. A to D are particularly preferably underlined.
- nitrile oxide group, -CN + -O - a bond of C and N is a triple bond group.
- the combination of reactive groups No. C is a ring-opening polymerization of an epoxy group or oxetane group of the reactive group (I) with a carboxy group of the reactive group (II), that is, an acid of a carboxylic acid. Classified into groups and electrophilic groups.
- Examples of the blocked isocyanate group include the above-mentioned a-116 and a-117 as reactive group-containing monomers.
- Examples of the dicarboxylic anhydride group include those using a-101 or a-105 as the reactive group-containing monomer.
- crosslinking agent examples include pyromellitic anhydride, 4,4′-oxydiphthalic anhydride, biphthalic anhydride, low molecular weight compounds such as 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, dicarboxylic acid, and the like.
- examples thereof include a polymer compound in which two or more acid anhydride groups are introduced.
- the compound having a hydroxy group include low molecular weight compounds such as tetraethylene glycol and ethylene glycol, polymers having a hydroxy group in the side chain such as AD-1 shown in Examples, polyethylene glycol, polyhydroxystyrene. And high molecular compounds.
- Examples of the compound having an amino group include ethylenediamine and butylenediamine.
- a low molecular compound means a compound having a molecular weight of less than 1000
- a high molecular compound means a compound having a molecular weight of 1000 or more.
- the ratio of the reactive group (b) to the reactive group (a) represented by the following formula is preferably 0.01 or more, more preferably 0.1 or more, and particularly preferably 0.3 or more.
- the upper limit is preferably 10,000 or less, more preferably 100 or less, and particularly preferably 10 or less.
- the content of the crosslinking agent in the composition is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and particularly preferably 0.5% by mass or more based on the total amount of the solid components of the composition. .
- 20 mass% or less is preferable, 10 mass% or less is more preferable, and 5 mass% or less is especially preferable.
- 1 mass part or more is preferable with respect to 100 mass parts of binder particles, 10 mass parts or more is more preferable, and 20 mass parts or more is especially preferable.
- 200 mass parts or less are preferable, 100 mass parts or less are more preferable, and 70 mass parts or less are especially preferable.
- a crosslinking agent or a crosslinking accelerator may be used individually by 1 type, or may be used in combination of 2 or more type.
- reaction schemes related to at least one component selected from a crosslinking agent and a crosslinking accelerator are shown below with respect to the reaction site (main part).
- the cross-linking reaction may proceed by any method, but heating, irradiation with actinic radiation (ultraviolet light, visible light, X-ray, etc.), electron beam irradiation, electrical action (voltage application, etc.), acid or base Addition may be mentioned.
- actinic radiation ultraviolet light, visible light, X-ray, etc.
- electron beam irradiation electron beam irradiation
- electrical action voltage application, etc.
- acid or base Addition may be mentioned.
- the preferable range of the heating conditions at the time of crosslinking is the same as that defined in “Preparation of all-solid secondary battery” described later. That is, it is preferable that the polymer compound forming the binder is crosslinked in the production of the all-solid secondary battery.
- a test on use for example, a test by cyclic voltammetry (CV) may be performed, and the crosslinking may be advanced at that time. Furthermore, by repeating charge and discharge after the start of use, it can be expected that the polymer compound forming the binder further crosslinks and that the durability performance is improved with use.
- CV cyclic voltammetry
- the crosslinking agent can be synthesized by a conventional method.
- Specific examples of the method for introducing a reactive group include a method of copolymerizing with a monomer containing a reactive group such as a-101 to a-115 when polymerizing a polymer having a repeating structure forming the main chain. It is done.
- a reactive group may be introduced by copolymerizing a monomer (eg, a-116, a-117) in which the reactive group is protected, and deprotecting the protected site of the resulting polymer.
- a reactive group may be introduced by introducing a monomer (for example, a-118) containing a site that can be eliminated to become a reactive group.
- Dispersion medium In the solid electrolyte composition of the present invention, a dispersion medium in which the above components are dispersed is used.
- the dispersion medium include organic solvents.
- Specific examples of the dispersion medium include the following, which are preferable.
- Examples of the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, Examples include 2-methyl-2,4-pentanediol, 1,3-butanediol, and 1,4-butanediol.
- ether compound solvents include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene. Glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.), dimethyl ether, diethyl ether, dibutyl ether, tetrahydrofuran, and dioxane.
- alkylene glycol alkyl ethers ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl
- amide compound solvent examples include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide and the like.
- amino compound solvent examples include triethylamine, diisopropylethylamine, tributylamine and the like.
- ketone compound solvent examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
- aromatic compound solvent examples include benzene, toluene, xylene and the like.
- Examples of the aliphatic compound solvent include hexane, heptane, and octane.
- ester compound solvent examples include ethyl acetate, propyl acetate, butyl acetate, ethyl butyrate, butyl butyrate, butyl valerate, ⁇ -butyrolactone, heptane, and the like.
- Examples of the carbonate compound solvent include ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, propylene carbonate, and the like.
- nitrile compound solvent examples include acetonitrile, propyronitrile, butyronitrile, and the like.
- the dispersion medium has a boiling point at normal pressure (1 atm) of preferably 50 ° C. or higher, more preferably 80 ° C. or higher.
- the upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
- the said dispersion medium may be used individually by 1 type, or may be used in combination of 2 or more type.
- content of the dispersion medium in a solid electrolyte composition can be made into arbitrary quantity by the balance of the viscosity of a solid electrolyte composition, and a dry load. Generally, 20 to 99% by mass in the solid electrolyte composition is preferable.
- the supporting electrolyte (lithium salt or the like) that can be used in the present invention is preferably a lithium salt that is usually used for this type of product, and is not particularly limited. For example, those described below are preferable.
- (L-1) Inorganic lithium salt
- Inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6, etc.
- Perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4
- Inorganic chloride salts such as LiAlCl 4 and the like.
- (L-2) Fluorine-containing organic lithium salt For example, the following compounds may be mentioned.
- Perfluoroalkane sulfonates such as LiCF 3 SO 3 LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 Perfluoroalkanesulfonylimide salt such as SO 2 ) LiC (CF 3 SO 2 )
- Perfluoroalkanesulfonylmethide salt such as 3 Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 Fluoroalkyl fluorophosphates such as CF 3 ) 2 ] and Li [
- (L-3) Oxalatoborate salt For example, the following compounds may be mentioned. Lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
- Rf 1 and Rf 2 each represent a perfluoroalkyl group.
- the electrolyte used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
- the content of the lithium salt is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the solid electrolyte.
- As an upper limit 10 mass parts or less are preferable, and 5 mass parts or less are more preferable.
- the solid electrolyte composition of the present invention may further contain an electrode active material.
- An electrode active material means a positive electrode active material or a negative electrode active material.
- the solid electrolyte composition of the present invention may contain a positive electrode active material. Thereby, it can be set as the composition for positive electrode materials. It is preferable to use a transition metal oxide for the positive electrode active material, and it is preferable to have a transition element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, and V). Further, mixed element M b (elements of the first (Ia) group of the metal periodic table other than lithium, elements of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si , P, B, etc.) may be mixed.
- Transition metal oxides include, for example, specific transition metal oxides including those represented by any of the following formulas (MA) to (MC), or other transition metal oxides such as V 2 O 5 and MnO 2. Can be mentioned.
- the positive electrode active material a particulate positive electrode active material may be used. Specifically, a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, but the specific transition metal oxide is preferably used.
- the transition metal oxides, oxides containing the above transition element M a is preferably exemplified.
- a mixed element M b (preferably Al) or the like may be mixed.
- the mixing amount is preferably 0 to 30 mol% with respect to the amount of the transition metal. That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2 more preferable.
- M 1 is as defined above M a.
- a represents 0 to 1.2 (preferably 0.2 to 1.2), and preferably 0.6 to 1.1.
- b represents 1 to 3 and is preferably 2.
- a part of M 1 may be substituted with the mixed element M b .
- the transition metal oxide represented by the above formula (MA) typically has a layered rock salt structure.
- the transition metal oxide is more preferably represented by the following formulas.
- Equation (MA-1) Li g CoO k Formula (MA-2) Li g NiO k Formula (MA-3) Li g MnO k Formula (MA-4) Li g Co j Ni 1-j O k Equation (MA-5) Li g Ni j Mn 1-j O k Formula (MA-6) Li g Co j Ni i Al 1-j-i O k Formula (MA-7) Li g Co j Ni i Mn 1-j-i O k
- g has the same meaning as a.
- j represents 0.1 to 0.9.
- i represents 0 to 1; However, 1-ji is 0 or more.
- k has the same meaning as b above.
- Specific examples of the transition metal compound include LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.01 Al 0.05 O 2 (nickel cobalt aluminum acid Lithium [NCA]), LiNi 0.33 Co 0.33 Mn 0.33 O 2 (lithium nickel manganese cobaltate [NMC]), LiNi 0.5 Mn 0.5 O 2 (lithium manganese nickelate).
- transition metal oxide represented by the formula (MA) partially overlaps, but when expressed in different notations, the following are also preferable examples.
- M 2 is as defined above M a.
- c represents 0 to 2 (preferably 0.2 to 2), and preferably 0.6 to 1.5.
- d represents 3 to 5 and is preferably 4.
- the transition metal oxide represented by the formula (MB) is more preferably represented by the following formulas.
- m is synonymous with c.
- n is synonymous with d.
- p represents 0-2.
- Specific examples of the transition metal compound are LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
- transition metal oxide represented by the formula (MB) examples include those represented by the following.
- an electrode containing Ni is more preferable from the viewpoint of high capacity and high output.
- Transition metal oxide represented by formula (MC) As the lithium-containing transition metal oxide, it is also preferable to use a lithium-containing transition metal phosphor oxide, and among them, one represented by the following formula (MC) is also preferable.
- e 0 to 2 (preferably 0.2 to 2), and preferably 0.5 to 1.5.
- f represents 1 to 5, preferably 0.5 to 2.
- M 3 represents one or more elements selected from V, Ti, Cr, Mn, Fe, Co, Ni, and Cu.
- the M 3 are, in addition to the mixing element M b above, Ti, Cr, Zn, Zr, may be substituted by other metals such as Nb.
- Specific examples include, for example, olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and Li 3.
- Monoclinic Nasicon type vanadium phosphate salts such as V 2 (PO 4 ) 3 (lithium vanadium phosphate) can be mentioned.
- the a, c, g, m, and e values representing the composition of Li are values that change due to charge and discharge, and are typically evaluated as values in a stable state when Li is contained.
- the composition of Li is shown as a specific value, but this also varies depending on the operation of the battery.
- the average particle diameter of the positive electrode active material used is not particularly limited, but is preferably 0.1 ⁇ m to 50 ⁇ m.
- an ordinary pulverizer or classifier may be used.
- the positive electrode active material obtained by the firing method may be used after washing with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
- the method for measuring the average particle size of the positive electrode active material particles is in accordance with the method for measuring the average particle size of the inorganic particles shown in the Examples section below.
- the concentration of the positive electrode active material is not particularly limited, but is preferably 20 to 90% by mass, more preferably 40 to 80% by mass in 100% by mass of the solid component in the solid electrolyte composition.
- the solid electrolyte composition of the present invention may contain a negative electrode active material. Thereby, it can be set as the composition for negative electrode materials.
- a negative electrode active material those capable of reversibly inserting and releasing lithium ions are preferable.
- the material is not particularly limited, and is a carbonaceous material, a metal oxide such as tin oxide or silicon oxide, a metal composite oxide, a lithium alloy such as lithium alone or a lithium aluminum alloy, and a lithium such as Sn, Si, or In. And metals capable of forming an alloy. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.
- carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of reliability.
- the metal composite oxide is preferably capable of inserting and extracting lithium.
- the material is not particularly limited, but preferably contains at least one atom selected from titanium and lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
- the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
- Examples thereof include carbonaceous materials obtained by baking various synthetic resins such as artificial pitches such as petroleum pitch, natural graphite, and vapor-grown graphite, and PAN-based resins and furfuryl alcohol resins.
- various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase micro
- Examples thereof include spheres, graphite whiskers, and flat graphite.
- carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization.
- the carbonaceous material preferably has a face spacing, density, and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473.
- the carbonaceous material does not need to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, and the like. It can also be used.
- an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done.
- amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
- the strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. Is preferably 5 times or less, and particularly preferably has no crystalline diffraction line.
- amorphous metal oxides and chalcogenides are more preferable, and elements in groups 13 (IIIB) to 15 (VB) of the periodic table are preferable.
- Oxides and chalcogenides composed of one kind of Al, Ga, Si, Sn, Ge, Pb, Sb, Bi or a combination of two or more kinds thereof are particularly preferred.
- preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , such as SnSiS 3 may preferably be mentioned. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
- the average particle size of the negative electrode active material is preferably 0.1 ⁇ m to 60 ⁇ m.
- a well-known pulverizer or classifier is used to obtain a predetermined average particle size.
- a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used.
- wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
- classification is preferably performed.
- the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
- the method for measuring the average particle size of the negative electrode active material particles is in accordance with the method for measuring the average particle size of the inorganic particles shown in the Examples section below.
- the chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
- ICP inductively coupled plasma
- Examples of the negative electrode active material that can be used together with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge include carbon materials that can occlude and release lithium ions or lithium metal, lithium, lithium alloys, lithium A metal that can be alloyed with is preferable.
- a negative electrode active material containing Si element it is preferable to apply a negative electrode active material containing Si element.
- a Si negative electrode can occlude more Li ions than current carbon negative electrodes (graphite, acetylene black, etc.). That is, since the amount of Li ion storage per mass increases, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
- the volume change associated with insertion and extraction of Li ions is large. In one example, the volume expansion of the carbon negative electrode is about 1.2 to 1.5 times, and the volume of Si negative electrode is about three times. There is also an example.
- the durability of the electrode layer is insufficient, and for example, contact shortage is likely to occur, and cycle life (battery life) is shortened.
- the solid electrolyte composition according to the present invention even in an electrode layer in which such expansion or contraction increases, the high durability (strength) can be exhibited, and the excellent advantages can be exhibited more effectively. is there.
- the concentration of the negative electrode active material is not particularly limited, but is preferably 10 to 90% by mass, more preferably 20 to 80% by mass in 100% by mass of the solid component in the solid electrolyte composition.
- a paste containing a positive electrode active material or a negative electrode active material may be prepared using a general binder.
- the specific binder is preferably used in combination with a crosslinking agent or crosslinking accelerator and a positive electrode active material.
- you may make the active material layer of a positive electrode and a negative electrode contain a conductive support agent suitably as needed.
- a general conductive assistant graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder, metal fiber, polyphenylene derivative, and the like can be included as an electron conductive material.
- an electron conductor that does not cause a chemical change is preferably used.
- the current collector of the positive electrode in addition to aluminum, stainless steel, nickel, titanium, etc., the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver. Among them, aluminum and aluminum alloys are preferable. More preferred.
- the negative electrode current collector aluminum, copper, stainless steel, nickel, and titanium are preferable, and aluminum, copper, and a copper alloy are more preferable.
- a film sheet is usually used, but a net, a punched one, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like can also be used.
- the thickness of the current collector is not particularly limited, but is preferably 1 ⁇ m to 500 ⁇ m.
- the current collector surface is roughened by surface treatment.
- the all-solid-state secondary battery may be manufactured by a conventional method. Specifically, there is a method in which the solid electrolyte composition is applied onto a metal foil serving as a current collector to form a coating electrode sheet (film formation). For example, a composition serving as a positive electrode material is applied onto a metal foil that is a positive electrode current collector and then dried to form a positive electrode layer. Next, the solid electrolyte composition is applied onto the positive electrode sheet for a battery and then dried to form a solid electrolyte layer. Furthermore, after applying the composition used as a negative electrode material on it, it dries and forms a negative electrode layer.
- a structure of an all-solid-state secondary battery in which a solid electrolyte layer is sandwiched between a positive electrode layer and a negative electrode layer can be obtained by stacking a current collector (metal foil) on the negative electrode side thereon.
- coating method of said each composition should just follow a conventional method.
- heat treatment may be performed after each of the composition forming the positive electrode active material layer, the composition forming the inorganic solid electrolyte layer (solid electrolyte composition), and the composition forming the negative electrode active material layer. Then, heat treatment may be performed after the multilayer coating. This heating can evaporate the solvent and advance the crosslinking of the polymer by the action of the crosslinking agent or crosslinking accelerator.
- heating temperature is not specifically limited, 30 degreeC or more is preferable, 60 degreeC or more is more preferable, 80 degreeC or more is further more preferable, and 100 degreeC or more is especially preferable.
- the upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, further preferably 200 ° C. or lower, and particularly preferably 150 ° C. or lower.
- the all solid state secondary battery according to the present invention can be applied to various uses.
- the application mode for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, memory card, etc. It is done.
- Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
- Solid electrolyte composition active electrode or negative electrode composition
- a battery electrode sheet obtained by forming the solid electrolyte composition on a metal foil.
- a crosslinker side reactive group of the crosslinker and a polymer reactive group contained in the solid electrolyte composition A battery electrode sheet in which the polymer forms a crosslinked structure by reacting and bonding (4) A plurality of reactive groups of the polymer contained in the solid electrolyte composition react and bond with the action of a crosslinking accelerator.
- a battery electrode sheet in which the polymer forms a crosslinked structure An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, wherein the positive electrode active material layer, the negative electrode
- the solid electrolyte composition is placed on a metal foil, and this is formed into a film Manufacturing method of battery electrode sheet In forming the film, the binder polymer is crosslinked through the action of a crosslinking agent or a crosslinking accelerator by heating. (7) Manufacturing method of all-solid-state secondary battery which manufactures all-solid-state secondary battery via the manufacturing method of the said electrode sheet for batteries
- binder particles can be formed without adding a surfactant, and inhibitory factors such as side reactions associated therewith can be reduced.
- the inversion emulsification step can be omitted, which leads to relatively improved production efficiency.
- An all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte.
- this invention presupposes an inorganic all-solid-state secondary battery.
- the all-solid-state secondary battery includes an organic (polymer) all-solid-state secondary battery using a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state secondary battery using the above-described Li-PS, LLT, LLZ, or the like. It is divided into batteries.
- the application of the polymer compound to the inorganic all-solid secondary battery is not hindered, and the polymer compound can be applied as a binder for the positive electrode active material, the negative electrode active material, and the inorganic solid electrolyte particles.
- the inorganic solid electrolyte is distinguished from an electrolyte (polymer electrolyte) using the above-described polymer compound as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include the above-described Li—PS, LLT, and LLZ.
- the inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function.
- a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations is sometimes called an electrolyte, but it is distinguished from the electrolyte as the ion transport material.
- electrolyte salt or “supporting electrolyte”.
- the electrolyte salt include LiTFSI (lithium bistrifluoromethanesulfonimide).
- composition means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
- Example 1 Synthesis example of polymer compound
- Example 2 Synthesis example of polymer compound
- a reflux condenser and a gas introduction cock 47 parts by mass of 43 mass% heptane solution of macromonomer M-1 and 60 parts by mass of heptane were added, and nitrogen gas was introduced at a flow rate of 200 mL / min for 10 minutes. Then, the temperature was raised to 80 ° C.
- a liquid prepared in a separate container (93 parts by mass of a 43% by mass heptane solution of macromonomer M-1; 104 parts by mass of methyl acrylate [A-3] (manufactured by Wako Pure Chemical Industries, Ltd.); A-4] (Wako Pure Chemical Industries, Ltd.) 26 parts by mass, glycidyl methacrylate [a-104] (Wako Pure Chemical Industries, Ltd.) 10 parts by mass, V-601 (trade name, dimethyl-2 , 2′-azobis (2-methylpropinate, Wako Pure Chemical Industries, Ltd., 1.1 parts by mass) was added dropwise over 2 hours, and then stirred at 80 ° C. for 2 hours.
- M1 Monomer composing the repeating unit (1)
- M2 Monomer composing the repeating unit (2)
- a Reactive group-containing monomer (B-11 is synthesized after the elimination of HCl from the side chain of a-118 by the base) Used after conversion to acryloyl group.)
- the solid content concentration was 43.4%, the SP value was 9.1, and the mass average molecular weight was 16,000.
- Dodecyl methacrylate MM-2 (manufactured by Wako Pure Chemical Industries, Ltd.) 150 parts by mass Methyl methacrylate A-4 (manufactured by Wako Pure Chemical Industries, Ltd.) 59 parts by mass 3-mercaptoisobutyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 2 Mass part V-601 (Wako Pure Chemical Industries, Ltd.) 1.9 parts by mass
- a macromonomer is obtained by reacting 4-hydroxystyrene (Wako Pure Chemical Industries, Ltd.) with a 12-hydroxystearic acid (Wako Pure Chemical Industries, Ltd.) self-condensate (GPC polystyrene standard mass average molecular weight: 2,000). M-3 was obtained. The ratio of 12-hydroxystearic acid to 4-hydroxystyrene was 99: 1 (molar ratio). The macromonomer M-3 had an SP value of 9.2 and a weight average molecular weight of 2,100.
- Macromonomer M-4 One-end methacryloylated poly-n-butyl acrylate oligomer (GPC polystyrene standard mass average molecular weight: 13,000, trade name: AB-6, manufactured by Toa Gosei Chemical Co., Ltd.) was used as macromonomer M-4. The SP value of this macromonomer M-4 was 9.3.
- Dodecyl methacrylate MM-2 (manufactured by Wako Pure Chemical Industries, Ltd.) 150 parts by mass Methyl methacrylate A-4 (manufactured by Wako Pure Chemical Industries, Ltd.) 59 parts by mass Acrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) 2 parts by mass V-601 (Wako Pure Chemical Industries, Ltd.) 5 parts by mass
- each resin (B-1 etc.) are 0 .15 g (mass of solid component), crosslinking accelerator (for example, S-1 manufactured by Sanshin Chemical Industry Co., Ltd., trade name “Sun-Aid SI-100L”, 0.05 g) or crosslinking agent (for example, S-5) Is 0.1 g of AD-1 synthesized below and 17.0 g of a dispersion medium (heptane, etc.), and then the container is set on a planetary ball mill manufactured by Fritsch, and mixing is continued for 2 hours at a rotational speed of 300 rpm.
- Each solid electrolyte composition shown in Table 3 was obtained.
- the crosslinking accelerator is abbreviated as an accelerator.
- AD-1 Polymer synthesized by the following method 190 parts by mass of toluene was added to a 1 L three-necked flask equipped with a reflux condenser and a gas introduction cock, nitrogen gas was introduced at a flow rate of 200 mL / min for 10 minutes, and then the temperature was raised to 80 ° C. Warm up.
- the liquid prepared in a separate container 150 parts by mass of butyl acrylate, 50 parts by mass of hydroxybutyl acrylate, and 1.9 parts by mass of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) was mixed for 2 hours. And then stirred at 80 ° C. for 2 hours.
- TEG Tetraethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.)
- EA Ethylenediamine (manufactured by Wako Pure Chemical Industries, Ltd.)
- PTFE Polytetrafluoroethylene particles
- BC-1 Polymer synthesized by the following method In an autoclave, 700 parts by mass of n-butyl acrylate, 200 parts by mass of styrene, 5 parts by mass of methacrylic acid, 10 parts by mass of divinylbenzene, polyoxyethylene lauryl ether (Kao) Emergen 108, nonionic surfactant, alkyl group having 12 carbon atoms, HLB value 12.1) 25 parts by mass, ion-exchanged water 1500 parts by mass, 2,2′-azobisiso as a polymerization initiator 15 parts by mass of butyronitrile was charged and sufficiently stirred. Then, it superposed
- Kao polyoxyethylene lauryl ether
- Example of production of solid electrolyte sheet Each solid electrolyte composition obtained above was applied onto an aluminum foil having a thickness of 20 ⁇ m with an applicator having an arbitrary clearance, and heated at 80 ° C. for 1 hour and further at 120 ° C. for 1 hour to dry the coating solvent. Then, it heated and pressurized so that it might become arbitrary density using a heat press machine, and obtained each solid electrolyte sheet. The thickness of the electrolyte layer was 50 ⁇ m.
- Other solid electrolyte sheets were prepared in the same manner. The following tests were conducted and the obtained results are shown in Table 4 below.
- the solid electrolyte sheet obtained above was cut into a disk shape having a diameter of 14.5 mm and placed in a coin case. Specifically, an aluminum foil cut into a disk shape having a diameter of 15 mm was brought into contact with the solid electrolyte layer, a spacer and a washer were incorporated, and placed in a stainless steel 2032 type coin case. A cell for measuring ionic conductivity was produced by caulking the coin case. Refer to FIG. 2 for details of the structure of the test body. 11 is a coin case, 12 is a solid electrolyte electrode sheet, and 13 is a coin battery.
- the ion conductivity was measured using the ion conductivity measurement cell obtained above. Specifically, AC impedance was measured in a constant temperature bath at 30 ° C. using a 1255B FREQUENCY RESPONSE ANALYZER (trade name) manufactured by SOLARTRON to a voltage amplitude of 5 mV and a frequency of 1 MHz to 1 Hz. Thereby, the resistance in the film thickness direction of the sample was obtained and calculated by the following formula (I).
- This scratch test serves as an index of the damage of members during production. Therefore, the better the performance, the better the manufacturing and the better the manufacturing quality.
- the solid electrolyte sheet was cut into a size of 2 cm ⁇ 10 cm.
- the surface on the current collector side of this sheet was wound around a SUS rod having a different diameter along the longitudinal direction, the presence or absence of peeling was observed, and the evaluation was performed based on the diameter of the SUS rod where peeling occurred (FIG. 4. (b)). ).
- composition for secondary battery positive electrode (1) Preparation of composition for positive electrode 180 zirconia beads having a diameter of 5 mm were put into a 45 mL container (manufactured by Fritsch) made of zirconia, 2.7 g of Li / P / S, 0.3 g of each resin (B-1 etc.) as a solid content, a crosslinking accelerator (for example, in the case of U-1, made by Sanshin Chemical Industry Co., Ltd., trade name “Sun Aid SI-100L”, 0.1 g) or crosslinking An agent (for example, in the case of U-5, 0.2 g of AD-1 synthesized above) and 22 g of heptane etc.
- a crosslinking accelerator for example, in the case of U-1, made by Sanshin Chemical Industry Co., Ltd., trade name “Sun Aid SI-100L”, 0.1 g
- An agent for example, in the case of U-5, 0.2 g of AD-1 synthesized above
- the container was set on a planetary ball mill P-7 (trade name) manufactured by Fritsch, and stirred at 25 ° C. at a rotation speed of 300 rpm for 2 hours. Then, 7.0 g of NMC (manufactured by Nippon Chemical Industry Co., Ltd.) as the active material is charged, and similarly, the container is set in the planetary ball mill P-7, and mixing is continued for 15 minutes at 25 ° C. and a rotation speed of 100 rpm. Each positive electrode composition was obtained.
- the crosslinking accelerator is abbreviated as an accelerator.
- each solid electrolyte composition (S-1 etc.) obtained above was applied with an applicator having an arbitrary clearance, and 80 Heated at 1 ° C for 1 hour and further at 120 ° C for 1 hour. Then, it heated and pressurized so that it might become arbitrary density using a heat press machine, and obtained each electrode sheet for secondary batteries.
- the film thickness of the positive electrode layer was 80 ⁇ m, and the film thickness of the electrolyte layer was 30 ⁇ m.
- the secondary battery electrode sheet obtained above was cut into a disk shape having a diameter of 14.5 mm, placed in a stainless steel 2032 type coin case incorporating a spacer and a washer, and a solid electrolyte (SE ) An indium foil cut to 15 mm ⁇ was overlaid on the layer. A stainless foil was further stacked thereon, and a coin case was caulked to produce an all-solid-state secondary battery (see FIG. 2 for the test specimen). The following tests were conducted and the results obtained are shown in Table 6 below.
- Example 3 The ratio of A-4 (formulation ⁇ ) introduced into the macromonomer M-1 can be changed or removed, or a part or all of A-4 can be replaced with A-3 or A-31. Synthesized. Tests were conducted in the same manner as in Test 101 and Test 201 using these macromonomers instead of the macromonomer M-1 of the resin B-1. As a result, it was confirmed that any of the items of scratch resistance, binding property, ionic conductivity, and discharge capacity retention rate showed good performance.
- Example 4 A macromonomer was synthesized using the following monomers in place of MM-2 (formulation ⁇ ) introduced into the macromonomer M-1. Using these macromonomers, tests were conducted in the same manner as Test 101 and Test 201. As a result, it was confirmed that any of the items of scratch resistance, binding property, ionic conductivity, and discharge capacity retention rate showed good performance.
- n2 represents 10 ⁇ n2 ⁇ 200.
- each resin (binder is added) using A-6, A-26, A-28, A-30 instead of M2 (A-4) used as a monomer forming the main chain. High molecular compound).
- tests were performed in the same manner as Test 101 and Test 201. As a result, it was confirmed that any of the items of scratch resistance, binding property, ionic conductivity, and discharge capacity retention rate showed good performance.
- Example 6 In the synthesis of the resin B-1, a resin (polymer compound forming a binder) was synthesized using a-106 instead of a-104 used as the monomer for introducing the reactive group (a). A test was performed in the same manner as in the test 101 and the test 201 using each of these resins. As a result, it was confirmed that any of the items of scratch resistance, binding property, ionic conductivity, and discharge capacity retention rate showed good performance.
- Example 7 Under the conditions of Test 101 and Test 201, A-3 of binder B-1 is A-19 and A-44, and under the conditions of Test 101 and Test 201, A-4 of binder B-1 is A-26.
- the above test was carried out in the same manner except that each was replaced with A-56 (average particle size was about 200 nm). As a result, it was confirmed that good performance was obtained in any solid electrolyte sheet, secondary battery electrode sheet, and all solid secondary battery.
- each resin (polymer compound forming a binder) was synthesized using Macromonomer M-2 and M-3 instead of Macromonomer M-1. Using these resins, tests were performed in the same manner as Test 101 and Test 201. As a result, it was confirmed that any of the items of scratch resistance, binding property, ionic conductivity, and discharge capacity retention rate showed good performance.
- ⁇ Measurement of particle size> (Measurement of average particle size of binder)
- the average particle diameter of the binder particles was measured according to the following procedure.
- the binder prepared above was diluted with a solvent (dispersion medium used for preparing the solid electrolyte composition; heptane in the case of binder B-1), and 1% by mass of the dispersion was diluted.
- the diluted dispersion sample was irradiated with 1 kHz ultrasonic waves for 10 minutes and used for the test immediately after that.
- the average particle diameter of the inorganic (solid electrolyte) particles was measured according to the following procedure.
- the inorganic particles were diluted with a 1 mass% dispersion in a 20 ml sample bottle using water (heptane in the case of a substance unstable to water).
- the diluted dispersion sample was irradiated with 1 kHz ultrasonic waves for 10 minutes and used for the test immediately after that.
- using a laser diffraction / scattering type particle size distribution analyzer LA-920 manufactured by HORIBA
- data acquisition was performed 50 times using a quartz cell for measurement at a temperature of 25 ° C.
- the volume average particle size was defined as the average particle size.
- JISZ8828 2013 “Particle Size Analysis—Dynamic Light Scattering Method” was referred to as necessary. Five samples were prepared for each level, and the average value was adopted.
- Tg glass transition temperature
- Atmosphere in measurement chamber Nitrogen (50 mL / min) ⁇ Raising rate: 5 ° C / min -Measurement start temperature: -100 ° C Measurement end temperature: 200 ° C (c12 is 250 ° C) -Sample pan: Aluminum pan-Mass of measurement sample: 5 mg -Calculation of Tg: Tg is the intermediate temperature between the descent start point and descent end point of the DSC chart
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Dispersion Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Conductive Materials (AREA)
Abstract
周期律表第1族または第2族に属する金属のイオンの伝導性を有する無機固体電解質、反応性基を有するポリマーで構成されたバインダー粒子及び分散媒体を含み、かつ、架橋剤及び架橋促進剤から選択される少なくとも1種の成分を含む固体電解質組成物、これを用いた電池用電極シート及び全固体二次電池、並び電池用電極シート及び全固体二次電池の製造方法。
Description
本発明は、固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法に関する。
リチウムイオン電池には、電解液が用いられている。その電解液を固体電解質に置き換え、構成材料を全て固体にした全固体二次電池とする試みが進められている。無機の固体電解質を利用する技術の利点として挙げられるのが、信頼性である。リチウムイオン二次電池に用いられる電解液には、その媒体として、カーボネート系溶媒など、可燃性の材料が適用されている。様々な安全対策が採られているものの、過充電時などに不具合を来たすおそれがないとは言えず、さらなる対応が望まれる。その抜本的な解決手段として、電解質を不燃性のものにしうる全固体二次電池が位置づけられる。
全固体二次電池のさらなる利点としては、電極のスタックによる高エネルギー密度化に適していることが挙げられる。具体的には、電極と電解質を直接並べて直列化した構造を持つ電池にすることができる。このとき、電池セルを封止する金属パッケージ、電池セルをつなぐ銅線やバスバーを省略することができるため、電池のエネルギー密度が大幅に高められる。また、高電位化が可能な正極材料との相性の良さなども利点として挙げられる。
全固体二次電池のさらなる利点としては、電極のスタックによる高エネルギー密度化に適していることが挙げられる。具体的には、電極と電解質を直接並べて直列化した構造を持つ電池にすることができる。このとき、電池セルを封止する金属パッケージ、電池セルをつなぐ銅線やバスバーを省略することができるため、電池のエネルギー密度が大幅に高められる。また、高電位化が可能な正極材料との相性の良さなども利点として挙げられる。
上記のような各利点から、次世代のリチウムイオン二次電池として、その開発は精力的に進められている(非特許文献1)。一方で、無機系の全固体二次電池においては、その電解質が硬質の固体であるために改良が必要な点もある。例えば、固体粒子間、固体粒子と集電体間等の界面抵抗が大きくなることが挙げられる。これを改善するために、高分子化合物からなるバインダーを用いることがある。
特許文献1ではアクリル系の樹脂に、乳化剤としてポリオキシエチレンラウリルエーテルを適用する例が開示されている。特許文献2ではポリテトラフルオロエチレンをバインダーとして用いた例が開示されている。特許文献3ではエチレンプロピレンジエンゴム(EPDM)の溶解液を用いた例が開示されている。
NEDO技術開発機構,燃料電池・水素技術開発部,蓄電技術開発室「NEDO次世代自動車用蓄電池技術開発 ロードマップ2008」(平成21年6月)
上記特許文献1~3に開示されたバインダーでは更に高まる高性能化のニーズに応えるにはいまだ十分ではなく、さらなる改良が望まれた。
そこで本発明は、全固体二次電池において、固体粒子間または固体粒子と集電体間等の界面抵抗の上昇を抑えることができ、かつ良好な結着性及び耐擦傷性をも実現できる固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法の提供を目的とする。さらに、必要により二次電池のサイクル特性をも良化することができる固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法の提供を目的とする。
そこで本発明は、全固体二次電池において、固体粒子間または固体粒子と集電体間等の界面抵抗の上昇を抑えることができ、かつ良好な結着性及び耐擦傷性をも実現できる固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法の提供を目的とする。さらに、必要により二次電池のサイクル特性をも良化することができる固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法の提供を目的とする。
上記の課題は、以下の手段により解決された。
(1)周期律表第1族または第2族に属する金属のイオンの伝導性を有する無機固体電解質、反応性基を有するポリマーで構成されたバインダー粒子および分散媒体を含み、かつ、架橋剤および架橋促進剤から選択される少なくとも1種の成分を含む固体電解質組成物。
(2)上記ポリマーが側鎖成分として質量平均分子量1,000以上のマクロモノマーに由来する繰り返し単位を有する(1)に記載の固体電解質組成物。
(3)上記バインダー粒子の平均粒子径が0.01μm超20μm以下である(1)または(2)に記載の固体電解質組成物。
(4)上記ポリマーの反応性基が下記官能基群(A)から選択される少なくとも1つである(1)~(3)のいずれか1つに記載の固体電解質組成物。
(1)周期律表第1族または第2族に属する金属のイオンの伝導性を有する無機固体電解質、反応性基を有するポリマーで構成されたバインダー粒子および分散媒体を含み、かつ、架橋剤および架橋促進剤から選択される少なくとも1種の成分を含む固体電解質組成物。
(2)上記ポリマーが側鎖成分として質量平均分子量1,000以上のマクロモノマーに由来する繰り返し単位を有する(1)に記載の固体電解質組成物。
(3)上記バインダー粒子の平均粒子径が0.01μm超20μm以下である(1)または(2)に記載の固体電解質組成物。
(4)上記ポリマーの反応性基が下記官能基群(A)から選択される少なくとも1つである(1)~(3)のいずれか1つに記載の固体電解質組成物。
官能基群(A)
イソシアネート基、オキセタン基、エポキシ基、ジカルボン酸無水物基、シリル基、(メタ)アクリロイル基、アルケニル基、アルキニル基
イソシアネート基、オキセタン基、エポキシ基、ジカルボン酸無水物基、シリル基、(メタ)アクリロイル基、アルケニル基、アルキニル基
(5)上記架橋促進剤がカチオン重合開始剤またはラジカル重合開始剤である(1)~(4)のいずれか1つに記載の固体電解質組成物。
(6)上記架橋剤が分子内にヒドロキシ基、アミノ基およびメルカプト基から選択される少なくとも1種の反応性基を有する化合物である(1)~(4)のいずれか1つに記載の固体電解質組成物。
(7)上記架橋促進剤を上記バインダー粒子100質量部に対して0.1質量部以上50質量部以下で含有する(5)に記載の固体電解質組成物。
(8)上記架橋剤を上記バインダー粒子100質量部に対して20質量部以上200質量部以下で含有する(6)に記載の固体電解質組成物。
(9)上記ポリマーが、(メタ)アクリル酸モノマー、(メタ)アクリル酸エステルモノマー、(メタ)アクリル酸アミドおよび(メタ)アクリロニトリルから選択されるモノマーに由来する繰り返し単位を含む(1)~(8)のいずれか1つに記載の固体電解質組成物。
(10)上記分散媒体が、アルコール化合物溶媒、アミド化合物溶媒、アミノ化合物溶媒、ケトン化合物溶媒、エーテル化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒およびニトリル化合物溶媒から選択される(1)~(9)のいずれか1つに記載の固体電解質組成物。
(11)上記無機固体電解質が硫化物系無機固体電解質または酸化物系無機固体電解質である(1)~(10)のいずれか1つに記載の固体電解質組成物。
(12)さらに電極活物質を含む(1)~(11)のいずれか1つに記載の固体電解質組成物。
(13) (1)~(12)のいずれか1つに記載の固体電解質組成物を金属箔上に製膜した電池用電極シート。
(14)上記架橋剤が分子内にヒドロキシ基、アミノ基およびメルカプト基から選択される少なくとも1種の反応性基を有し、この反応性基と、上記ポリマーの反応性基とが反応して結合し、上記ポリマーが架橋構造を形成してなる(13)に記載の電池用電極シート。
(15)上記ポリマーの複数の反応性基どうしが、上記架橋促進剤の作用により反応して結合し、上記ポリマーが架橋構造を形成してなる(13)に記載の電池用電極シート。
(16) (1)~(12)のいずれか1つに記載の固体電解質組成物を金属箔上に製膜する電池用電極シートの製造方法。
(17)製膜後に80℃以上で加熱する工程を含む(16)に記載の電池用電極シートの製造方法。
(18) (16)または(17)に記載の電池用電極シートの製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
(19) (13)~(15)のいずれか1つに記載の電池用電極シートを具備する全固体二次電池。
(6)上記架橋剤が分子内にヒドロキシ基、アミノ基およびメルカプト基から選択される少なくとも1種の反応性基を有する化合物である(1)~(4)のいずれか1つに記載の固体電解質組成物。
(7)上記架橋促進剤を上記バインダー粒子100質量部に対して0.1質量部以上50質量部以下で含有する(5)に記載の固体電解質組成物。
(8)上記架橋剤を上記バインダー粒子100質量部に対して20質量部以上200質量部以下で含有する(6)に記載の固体電解質組成物。
(9)上記ポリマーが、(メタ)アクリル酸モノマー、(メタ)アクリル酸エステルモノマー、(メタ)アクリル酸アミドおよび(メタ)アクリロニトリルから選択されるモノマーに由来する繰り返し単位を含む(1)~(8)のいずれか1つに記載の固体電解質組成物。
(10)上記分散媒体が、アルコール化合物溶媒、アミド化合物溶媒、アミノ化合物溶媒、ケトン化合物溶媒、エーテル化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒およびニトリル化合物溶媒から選択される(1)~(9)のいずれか1つに記載の固体電解質組成物。
(11)上記無機固体電解質が硫化物系無機固体電解質または酸化物系無機固体電解質である(1)~(10)のいずれか1つに記載の固体電解質組成物。
(12)さらに電極活物質を含む(1)~(11)のいずれか1つに記載の固体電解質組成物。
(13) (1)~(12)のいずれか1つに記載の固体電解質組成物を金属箔上に製膜した電池用電極シート。
(14)上記架橋剤が分子内にヒドロキシ基、アミノ基およびメルカプト基から選択される少なくとも1種の反応性基を有し、この反応性基と、上記ポリマーの反応性基とが反応して結合し、上記ポリマーが架橋構造を形成してなる(13)に記載の電池用電極シート。
(15)上記ポリマーの複数の反応性基どうしが、上記架橋促進剤の作用により反応して結合し、上記ポリマーが架橋構造を形成してなる(13)に記載の電池用電極シート。
(16) (1)~(12)のいずれか1つに記載の固体電解質組成物を金属箔上に製膜する電池用電極シートの製造方法。
(17)製膜後に80℃以上で加熱する工程を含む(16)に記載の電池用電極シートの製造方法。
(18) (16)または(17)に記載の電池用電極シートの製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
(19) (13)~(15)のいずれか1つに記載の電池用電極シートを具備する全固体二次電池。
本明細書において、特定の符号で表示された置換基や連結基が複数存在するとき、または複数の置換基等(置換基数の規定も同様)を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよい。また、複数の置換基等が近接するときにはそれらが互いに結合したり縮合したりして環を形成していてもよい。
また、(メタ)アクリロイル基、(メタ)アクリル基もしくは樹脂のように「(メタ)」は、例えば、(メタ)アクリロイル基の場合、アクリロイル基とメタクリロイル基を含む総称であって、いずれか一方でも、両方であっても構わない。
(ポリ)エステル結合のような「(ポリ)」は、「ポリ」であっても「モノ」であってもよいことを意味するもので、1つのエステル結合の場合も、複数のエステル結合が存在する場合も包含する。
(ポリ)エステル結合のような「(ポリ)」は、「ポリ」であっても「モノ」であってもよいことを意味するもので、1つのエステル結合の場合も、複数のエステル結合が存在する場合も包含する。
本明細書では、置換基の規定において、上位概念の基と下位概念の基、例えばアルキル基とカルボキシアルキル基や、アルキル基とアラルキル基を列挙することがある。この場合、例えば、「カルボキシアルキル基」と「アルキル基」の関係において、「アルキル基」は、無置換のアルキル基を意味するものでなく、「カルボキシ基」以外の置換基で置換されていてもよいことを意味する。すなわち、「アルキル基」の中で、特に「カルボキシアルキル基」に着目していることを示すものである。
本発明の固体電解質組成物は、全固体二次電池の固体電解質層や活物質層の材料として用いたときに、その固体粒子間または固体粒子と集電体間等の界面抵抗の上昇を抑えることができ、さらに良好な結着性及び耐擦傷性をも実現できるという優れた効果を奏する。さらに、本発明の固体電解質組成物によれば、必要により、二次電池におけるサイクル特性をも良化することができる。また、本発明の電池用電極シートおよび全固体二次電池は、上記固体電解質組成物を利用し、その優れた性能を発揮する。さらに本発明の製造方法によれば、本発明の電池用電極シートおよび全固体二次電池を好適に製造することができる。
本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
本発明の固体電解質組成物は、無機固体電解質と、反応性基をもつ特定ポリマー(反応性ポリマー)で構成されたバインダー粒子と、架橋剤もしくは架橋促進剤とを含む。本発明においては、左記のとおりバインダーとして、粒子状のものを採用した。そのため、非粒子状のものに比べ、活物質や固体電解質に過剰な被膜を形成しにくく、イオン伝導を阻害せず、電池抵抗を低く抑えることが可能となる。このとき、製造適正を考慮して、柔らかいバインダー粒子を用い、活物質や固体電解質に対する濡れ性を向上させ、接触面積を増やすことが塗膜の結着性を高めることに対しては有効と考えられる。しかし、電池の使用時(充放電時)には、塗膜の強度を高めることが好ましく、バインダーの高弾性率化が有効であると考えられる。両者は二律背反する関係となる。本発明においては、未架橋のバインダー粒子を製造時あるいは使用開始時に適用し良好な塗布性を実現しうる。一方で、これを使用するときないし使用を継続していくときにはバインダー粒子を架橋させることで高弾性率化し、上記の相反する特性の両立を図った。以下、その好ましい実施形態について説明するが、まずその好ましい応用形態である全固体二次電池の例について説明する。
図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、その順で有する。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e-)が供給され、そこにリチウムイオン(Li+)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li+)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。本発明の固体電解質組成物は、上記負極活物質層、正極活物質層、固体電解質層の構成材料として用いることが好ましく、中でも、固体電解質層および正極活物質層、負極活物質層の全ての構成材料として用いることが好ましい。
正極活物質層4、固体電解質層3、負極活物質層2の厚さは特に限定されないが、正極活物質層および負極活物質層は目的とする電池用途に応じて、任意に定めることができる。一方、固体電解質層は正負極の短絡を防止しつつ、できる限り薄いことが望ましい。具体的には1~1000μmが好ましく、3~400μmがより好ましい。
なお、上記負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5の各層の間あるいはその外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
なお、上記負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5の各層の間あるいはその外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
<固体電解質組成物>
(無機固体電解質)
無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。この観点から、後記電解質塩(支持電解質)との区別を考慮し、イオン伝導性の無機固体電解質と呼ぶことがある。
有機物(炭素原子)を含まないことから、有機固体電解質(PEOなどに代表される高分子電解質、LiTFSIなどに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、カチオンおよびアニオンに解離または遊離していない。この点で、電解液やポリマー中でカチオンおよびアニオンが解離または遊離している無機電解質塩(LiPF6、LiBF4、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族または第2族に属する金属のイオンの伝導性を有するものであれば特に限定されず電子伝導性を有さないものが一般的である。
(無機固体電解質)
無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。この観点から、後記電解質塩(支持電解質)との区別を考慮し、イオン伝導性の無機固体電解質と呼ぶことがある。
有機物(炭素原子)を含まないことから、有機固体電解質(PEOなどに代表される高分子電解質、LiTFSIなどに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、カチオンおよびアニオンに解離または遊離していない。この点で、電解液やポリマー中でカチオンおよびアニオンが解離または遊離している無機電解質塩(LiPF6、LiBF4、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族または第2族に属する金属のイオンの伝導性を有するものであれば特に限定されず電子伝導性を有さないものが一般的である。
本発明において、無機固体電解質は、周期律表第1族または第2族に属する金属のイオン伝導性を有する。上記無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質と(ii)酸化物系無機固体電解質が代表例として挙げられる。
(i)硫化物系無機固体電解質
硫化物固体電解質は、硫黄(S)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。例えば下記式(1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
硫化物固体電解質は、硫黄(S)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。例えば下記式(1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
La1Mb1Pc1Sd1Ae1 式(1)
式中、LはLi、NaおよびKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。なかでも、B、Sn、Si、Al、Geが好ましく、Sn、Al、Geがより好ましい。Aは、I、Br、Cl、Fを示し、I、Brが好ましく、Iが特に好ましい。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~1:1:2~12:0~5を満たす。a1はさらに、1~9が好ましく、1.5~4がより好ましい。b1は0~0.5が好ましい。d1はさらに、3~7が好ましく、3.25~4.5がより好ましい。e1はさらに、0~3が好ましく、0~1がより好ましい。
式(1)において、L、M、P、S及びAの組成比は、好ましくはb1、e1が0であり、より好ましくはb1=0、e1=0で且つa1、c1及びd1の比(a1:c1:d1)がa1:c1:d1=1~9:1:3~7であり、さらに好ましくはb1=0、e1=0で且つa1:c1:d1=1.5~4:1:3.25~4.5である。各元素の組成比は、下記するように、硫化物系固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
硫化物系固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。
Li-P-S系ガラスおよびLi-P-S系ガラスセラミックスにおける、Li2SとP2S5との比率は、Li2S:P2S5のモル比で、好ましくは65:35~85:15、より好ましくは68:32~75:25である。Li2SとP2S5との比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下が実際的である。
具体的な化合物例としては、例えばLi2Sと、第13族~第15族の元素の硫化物とを含有する原料組成物を用いてなるものを挙げることができる。具体的には、Li2S-P2S5、Li2S-LiI-P2S5、Li2S-LiI-Li2O-P2S5、Li2S-LiBr-P2S5、Li2S-Li2O-P2S5、Li2S-Li3PO4-P2S5、Li2S-P2S5-P2O5、Li2S-P2S5-SiS2、Li2S-P2S5-SnS、Li2S-P2S5-Al2S3、Li2S-GeS2、Li2S-GeS2-ZnS、Li2S-Ga2S3、Li2S-GeS2-Ga2S3、Li2S-GeS2-P2S5、Li2S-GeS2-Sb2S5、Li2S-GeS2-Al2S3、Li2S-SiS2、Li2S-Al2S3、Li2S-SiS2-Al2S3、Li2S-SiS2-P2S5、Li2S-SiS2-P2S5-LiI、Li2S-SiS2-LiI、Li2S-SiS2-Li4SiO4、Li2S-SiS2-Li3PO4、Li10GeP2S12などが挙げられる。その中でも、Li2S-P2S5、Li2S-GeS2-Ga2S3、Li2S-LiI-P2S5、Li2S-LiI-Li2O-P2S5、Li2S-SiS2-P2S5、Li2S-SiS2-Li4SiO4、Li2S-SiS2-Li3PO4、Li2S-Li3PO4-P2S5、Li2S-GeS2-P2S5、Li10GeP2S12からなる結晶質およびまたは非晶質の原料組成物が高いリチウムイオン伝導性を有するので好ましい。このような原料組成物を用いて硫化物固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法および溶融急冷法を挙げることができ、中でもメカニカルミリング法が好ましい。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
硫化物固体電解質は、下記式(2)で表されるものがより好ましい。
LilaPmaSna 式(2)
式中、la~naは各元素の組成比を示し、la:ma:naは2~4:1:3~10を満たす。
(ii)酸化物系無機固体電解質
酸化物系固体電解質は、酸素(O)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
酸化物系固体電解質は、酸素(O)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
具体的な化合物例としては、例えばLixaLayaTiO3〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbMbb
mbOnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)LixcBycMcc
zcOnc(MccはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadPmdOnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)Mee
xeDeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子または2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfOzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、LixgSygOzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、Li3BO3-Li2SO4、Li2O-B2O3-P2O5、Li2O-SiO2、Li6BaLa2Ta2O12、Li3PO(4-3/2w)Nw(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO4、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO3、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi2P3O12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyhP3-yhO12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLi7La3Zr2O12等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(Li3PO4)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD1(D1は、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiA1ON(A1は、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
その中でも、LixaLayaTiO3〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbMbb
mbOnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Li7La3Zr2O12(LLZ)、Li3BO3、Li3BO3-Li2SO4、Lixd(Al,Ga)yd(Ti,Ge)zdSiadPmdOnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)が好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
リチウムイオン伝導性の酸化物系無機固体電解質としてのイオン伝導度は、1×10-6S/cm以上が好ましく、1×10-5S/cm以上がより好ましく、5×10-5S/cm以上が特に好ましい。
無機固体電解質の平均粒子径は特に限定されないが、0.01μm以上が好ましく、0.1μm以上がより好ましい。上限としては、100μm以下が好ましく、50μm以下がより好ましい。なお、無機固体電解質粒子の平均粒子径の測定方法は、後記実施例の項で示した無機粒子の平均粒子径の測定方法に準ずることとする。
無機固体電解質の固体電解質組成物中での濃度は、電池性能と界面抵抗の低減および維持効果の両立を考慮したとき、固形成分100質量%において、5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上が特に好ましい。上限としては、同様の観点から、99.9質量%以下が好ましく、99.5質量%以下がより好ましく、99質量%以下が特に好ましい。
なお、本明細書において固形成分とは、170℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分を言う。典型的には、後記の分散媒体以外の成分を指す。
上記無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
なお、本明細書において固形成分とは、170℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分を言う。典型的には、後記の分散媒体以外の成分を指す。
上記無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(バインダー粒子)
本発明の好ましい実施形態に用いられるバインダー粒子を構成するポリマーは、反応性基(この反応性基を反応性基(a)と呼ぶことがある。)を有する。このポリマーは側鎖成分として質量平均分子量1,000以上のマクロモノマー(X)に由来する繰り返し単位が組み込まれていることが好ましい。
本発明の好ましい実施形態に用いられるバインダー粒子を構成するポリマーは、反応性基(この反応性基を反応性基(a)と呼ぶことがある。)を有する。このポリマーは側鎖成分として質量平均分子量1,000以上のマクロモノマー(X)に由来する繰り返し単位が組み込まれていることが好ましい。
・主鎖成分
本実施形態のポリマーの主鎖は特に限定されず、通常のポリマー成分で構成することができる。主鎖成分を構成するモノマーとしては、重合性不飽和結合を有するモノマーが好ましく、例えばビニル系モノマーやアクリル系モノマーを適用することができる。本発明においては、中でも、主鎖成分として、アクリル系モノマーを用いることが好ましい。さらに好ましくは、主鎖成分として、(メタ)アクリル酸モノマー、(メタ)アクリル酸エステルモノマー、(メタ)アクリル酸アミドおよび(メタ)アクリロニトリルから選ばれるモノマーを用いることが好ましい。重合性基の数は特に限定されないが、1~4個が好ましい。
なお、(メタ)アクリル酸エステルモノマーは、エステルを構成するアルコール由来の構造中に、置換基を有していてもよい。
本実施形態のポリマーの主鎖は特に限定されず、通常のポリマー成分で構成することができる。主鎖成分を構成するモノマーとしては、重合性不飽和結合を有するモノマーが好ましく、例えばビニル系モノマーやアクリル系モノマーを適用することができる。本発明においては、中でも、主鎖成分として、アクリル系モノマーを用いることが好ましい。さらに好ましくは、主鎖成分として、(メタ)アクリル酸モノマー、(メタ)アクリル酸エステルモノマー、(メタ)アクリル酸アミドおよび(メタ)アクリロニトリルから選ばれるモノマーを用いることが好ましい。重合性基の数は特に限定されないが、1~4個が好ましい。
なお、(メタ)アクリル酸エステルモノマーは、エステルを構成するアルコール由来の構造中に、置換基を有していてもよい。
本実施形態のポリマーは、下記官能基群(A)の基を反応性基として有していることが好ましい。この官能基群は、主鎖に含まれていても、後述する側鎖に含まれていてもよく、また、保護されていてもよい。
官能基群(A)
イソシアネート基、オキセタン基(オキセタニル基)、エポキシ基、ジカルボン酸無水物基、シリル基(アルコキシシリル基が好ましく、炭素数は1~20が好ましい)、(メタ)アクリロイル基、アルケニル基(炭素数2~12が好ましく、2~5がより好ましい)、アルキニル基(炭素数2~12が好ましく、2~5がより好ましい)
イソシアネート基、オキセタン基(オキセタニル基)、エポキシ基、ジカルボン酸無水物基、シリル基(アルコキシシリル基が好ましく、炭素数は1~20が好ましい)、(メタ)アクリロイル基、アルケニル基(炭素数2~12が好ましく、2~5がより好ましい)、アルキニル基(炭素数2~12が好ましく、2~5がより好ましい)
反応性基はさらに、イソシアネート基、オキセタン基、エポキシ基、ジカルボン酸無水物基が好ましく、オキセタン基、エポキシ基がより好ましい。
ここで、ジカルボン酸無水物基とは、ジカルボン酸の酸無水物から得られる基(少なくとも1つの水素原子を結合手「-」に置き換えた基)を意味する。
上記のポリマーをなすビニル系モノマーとしては、下記式(a-1)または(a-2)で表されるものが好ましい。
式中、R1は水素原子、ヒドロキシ基、シアノ基、ハロゲン原子、カルボキシ基、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6が特に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6が特に好ましい)、アルキニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6が特に好ましい)、またはアリール基(炭素数6~22が好ましく、6~14がより好ましい)を表す。中でも水素原子またはアルキル基が好ましく、水素原子またはメチル基がより好ましい。
R2は、水素原子または置換基Tが挙げられる。なかでも、水素原子、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6が特に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましい)、アラルキル基(炭素数7~23が好ましく、7~15がより好ましい)、アルコキシ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アリールオキシ基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、アラルキルオキシ基(炭素数7~23が好ましく、7~15がより好ましく、7~11が特に好ましい)、シアノ基、カルボキシ基、ヒドロキシ基、メルカプト基、スルホン酸基、リン酸基、ホスホン酸基、酸素原子を含有する脂肪族複素環基(環員数は3~6員環が好ましく、炭素数2~12が好ましく、2~6がより好ましい)、(メタ)アクリロイル基、またはアミノ基(NRN
2:RNは後記の定義に従い、好ましくは水素原子または炭素数1~3のアルキル基)である。なかでも、メチル基、エチル基、プロピル基、ブチル基、シアノ基、エテニル基、フェニル基、カルボキシ基、メルカプト基、スルホン酸基等が好ましい。
R2は置換基を取りうる基であるとき(例えば、アルキル基、アルケニル基、アリール基等)、さらに後記の置換基Tを有していてもよい。なかでも、カルボキシ基、ハロゲン原子(フッ素原子等)、ヒドロキシ基、(メタ)アクリロイルオキシアルキル基、アルキル基、アルケニル基(ビニル基、アリル基)などが置換していてもよい。アルキル基が置換基を有する基であるとき、例えば、ハロゲン(好ましくはフッ素)化アルキル基や、(メタ)アクリロイルオキシアルキル基が挙げられる。アリール基の場合、カルボキシアリール基や、ヒドロキシアリール基、ハロゲン(好ましくは臭素)化アリール基が挙げられる。
R2が、カルボキシ基、スルホン酸基、リン酸基、ホスホン酸基等の酸性基であるときは、その塩であったり、エステルであったりしてもよい。エステル化する部分としては、例えば炭素数1~6のアルキル基や、炭素数1~6のアルキル基に(メタ)アクリロイルオキシ基が置換した基が挙げられる。
酸素原子を含有する脂肪族複素環基は、エポキシ基含有基、オキセタン基含有基、テトラヒドロフリル基含有基などが好ましい。
酸素原子を含有する脂肪族複素環基は、エポキシ基含有基、オキセタン基含有基、テトラヒドロフリル基含有基などが好ましい。
L1は、任意の連結基であり、後記の連結基Lの例が挙げられる。具体的には、なかでも、炭素数1~6(好ましくは1~3)のアルキレン基、炭素数2~6(好ましくは2~3)のアルケニレン基、炭素数6~24(好ましくは6~10)のアリーレン基、酸素原子、硫黄原子、イミノ基(NRN)、カルボニル基、リン酸連結基(-O-P(OH)(O)-O-)、ホスホン酸連結基(-P(OH)(O)-O-)、(ポリ)アルキレンオキシ基、(ポリ)エステル結合、(ポリ)アミド結合、またはこれらの基を組合せた基等が挙げられる。
ここで、(ポリ)エステル結合は、R1が結合する炭素原子に、エステル結合の-C(=O)-O-のカルボニル基(C=O)の炭素原子と結合しても、-O-の酸素原子と結合してもよいが、本発明では、カルボニル基(C=O)の炭素原子と結合するのが好ましい。同様に、(ポリ)アミド結合は、R1が結合する炭素原子に、アミド結合の-C(=O)-NRN-のカルボニル基(C=O)の炭素原子と結合しても、-NRN-の窒素原子と結合してもよいが、本発明では、カルボニル基(C=O)の炭素原子と結合するのが好ましい。ここで、RNは水素原子または置換基を表す。
上記連結基は任意の置換基を有していてもよい。連結原子数、連結基を構成する原子の数の好ましい範囲も後記と同様である。任意の置換基としては、置換基Tが挙げられ、例えば、アルキル基またはハロゲン原子などが挙げられる。連結基の組合せ数(COとOが組み合わされれば、組合せ数は2となる)は、1~16が好ましく、1~8がより好ましく、1~6がさらに好ましく、1~3が特に好ましい。
L1は、式中の二重結合に-CO-O-で連結するとき、その先の残部は、単結合(n=0)になること、または、その先の残部が、炭素数1~6(好ましくは1~3)のアルキレン基、酸素原子、(ポリ)アルキレンオキシ基、(ポリ)エステル結合、またはこれらの基を組合せた基であることが好ましい。連結基の組合せ数の好ましい範囲は上記と同義である。
L1は、式中の二重結合に-O-で連結するとき、あるいは、COもOもとらないとき、その先の残部は、単結合(n=0)になることが好ましい。
L1はなかでも-CO-O-連結を含む、すなわち、バインダーがアクリル系の高分子化合物で構成されることが好ましい。高分子化合物中のアクリルモノマーの共重合比は、モル分率で0.1~1が好ましく、0.3~1がより好ましく、0.5~1がさらに好ましく、0.8~1が特に好ましい。
L1は、式中の二重結合に-O-で連結するとき、あるいは、COもOもとらないとき、その先の残部は、単結合(n=0)になることが好ましい。
L1はなかでも-CO-O-連結を含む、すなわち、バインダーがアクリル系の高分子化合物で構成されることが好ましい。高分子化合物中のアクリルモノマーの共重合比は、モル分率で0.1~1が好ましく、0.3~1がより好ましく、0.5~1がさらに好ましく、0.8~1が特に好ましい。
nは0または1を表す。
αは非芳香族性の環状構造部を表し、4員~7員環が好ましく、5員または6員環がより好ましい。αは非芳香族炭化水素環であっても、非芳香族複素環であってもよい。αが非芳香族複素環であるとき、複素原子またはその基としては、酸素原子、硫黄原子、カルボニル基、イミノ基(NRN)、窒素原子(=N-)が挙げられる。
R3としては、後記の置換基Tの例が挙げられる。このR3は環構造αと二重結合で結合してもよい。たとえば、環内の炭素原子をともなったカルボニル構造(>C=O)、イミノ構造(>C=NRN)として置換する例が挙げられる。
環構造αとしては、シクロヘキセン環、ノルボルネン環、マレイミド環が挙げられる。
pは0以上置換可能な自然数以下である。
R3としては、後記の置換基Tの例が挙げられる。このR3は環構造αと二重結合で結合してもよい。たとえば、環内の炭素原子をともなったカルボニル構造(>C=O)、イミノ構造(>C=NRN)として置換する例が挙げられる。
環構造αとしては、シクロヘキセン環、ノルボルネン環、マレイミド環が挙げられる。
pは0以上置換可能な自然数以下である。
上記のポリマーをなすモノマーとしては、下記式(b-1)~(b-10)のいずれかで表されるものが好ましい。
R1、nは、上記式(a-1)と同義である。
R4は、R2と同義である。ただし、その好ましいものとしては、水素原子、ハロゲン原子(フッ素原子)を有することがあるアルキル基、カルボキシ基またはハロゲン原子を有することがあるアリール基、カルボキシ基、メルカプト基、リン酸基、ホスホン酸基、スルホン酸基、酸素原子を含有する脂肪族複素環基、アミノ基(NRN 2)などが挙げられる。
R4は、R2と同義である。ただし、その好ましいものとしては、水素原子、ハロゲン原子(フッ素原子)を有することがあるアルキル基、カルボキシ基またはハロゲン原子を有することがあるアリール基、カルボキシ基、メルカプト基、リン酸基、ホスホン酸基、スルホン酸基、酸素原子を含有する脂肪族複素環基、アミノ基(NRN 2)などが挙げられる。
L2は、任意の連結基であり、L1の例が好ましく、酸素原子、炭素数1~6(好ましくは1~3)のアルキレン基、炭素数2~6(好ましくは2~3)のアルケニレン基、カルボニル基、イミノ基(NRN)、(ポリ)アルキレンオキシ基、(ポリ)エステル結合、またはこれらの基を組合せた基等がより好ましい。連結基の組合せ数は、1~16が好ましく、1~8がより好ましく、1~6がさらに好ましく、1~3が特に好ましい。
L3は連結基であり、L2の例が好ましく、炭素数1~6(好ましくは1~3)のアルキレン基がより好ましい。
gは0または1である。
L4は、L1と同義であり、なかでも、アルキレン基、リン酸連結基、(ポリ)アルキレンオキシ基、(ポリ)エステル結合、またはこれらの組合せが好ましい。連結基の組合せ数は、1~16が好ましく、1~8がより好ましく、1~6がさらに好ましく、1~3が特に好ましい。
L3は連結基であり、L2の例が好ましく、炭素数1~6(好ましくは1~3)のアルキレン基がより好ましい。
gは0または1である。
L4は、L1と同義であり、なかでも、アルキレン基、リン酸連結基、(ポリ)アルキレンオキシ基、(ポリ)エステル結合、またはこれらの組合せが好ましい。連結基の組合せ数は、1~16が好ましく、1~8がより好ましく、1~6がさらに好ましく、1~3が特に好ましい。
R5は、水素原子、炭素数1~6(好ましくは1~3)のアルキル基、炭素数0~6(好ましくは0~3)のヒドロキシ基含有基、炭素数0~6(好ましくは0~3)のカルボキシル基含有基、または(メタ)アクリロイルオキシ基含有基である。なお、R5は上記L1の連結基(たとえば酸素原子)になって、この部分で二量体を構成していてもよい。
qは0または1である。
mは1~200の整数を表し、1~100の整数が好ましく、1~50の整数がより好ましい。
qは0または1である。
mは1~200の整数を表し、1~100の整数が好ましく、1~50の整数がより好ましい。
R6は、スルホン酸基、ヒドロキシ基またはアルケニル基を有することがあるアリール基、アルケニル基、シアノ基、アルキル基、カルボキシ基、カルボキシアルキル基(炭素数2~13が好ましく、2~7がより好ましく、2~4が特に好ましい)のいずれかである。
rは0または1である。rが1である場合、なかでも、R6がアルキル基またはアリール基が好ましい。
rは0または1である。rが1である場合、なかでも、R6がアルキル基またはアリール基が好ましい。
R7はR2と同義である。なかでも、水素原子、アルキル基、アリール基が好ましい。
sは0~8の整数である。R7は2つ以上あるとき互いに連結して環構造を形成してもよい。
sは0~8の整数である。R7は2つ以上あるとき互いに連結して環構造を形成してもよい。
R8は、水素原子または置換基Tが挙げられる。なかでも、水素原子、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6が特に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましい)またはアラルキル基(炭素数7~23が好ましく、7~15がより好ましい)が好ましい。なかでも、水素原子、メチル基、エチル基、プロピル基、ブチル基またはフェニル基が特に好ましい。
R9は、R8と同義である。
R9は、R8と同義である。
上記式(b-1)~(b-10)において、アルキル基やアリール基、アルキレン基やアリーレン基など置換基を取ることがある基については、本発明の効果を維持する限りにおいて任意の置換基を有していてもよい。任意の置換基としては、例えば、置換基Tが挙げられ、具体的には、ハロゲン原子、ヒドロキシ基、カルボキシ基、メルカプト基、アシル基、アシルオキシ基、アルコキシ基、アリールオキシ基、アミノ基等の任意の置換基を有していてもよい。
以下にバインダー粒子を構成するポリマーの主鎖をなすモノマーの例を挙げるが、本発明がこれにより限定して解釈されるものではない。下記式中でのn1は、1~1,000,000を表し、1~10,000が好ましく、1~500がより好ましい。
反応性基を含有するモノマーとしては下記の式(c-1)~(c-3)が挙げられる。
R1、L1、nは上記の式(a-1)と同義である。Aは反応性基もしくはこれが保護された基の含有基である。具体的には、上記官能基群(A)から選ばれる基を有する基、もしくはこれが保護された基が挙げられる。上記式(c-2)は下記(c-2a)が好ましい。L2は上記と同義である。
反応性基の分子内の量は、例えば、以下の式の化学当量で評価することができる。
反応性基当量=
(反応性基を有する化合物の1分子の分子量)/
(化合物1分子中に含まれる反応性基の数)
(反応性基を有する化合物の1分子の分子量)/
(化合物1分子中に含まれる反応性基の数)
上記で定義される反応性基当量において、本発明のバインダーに用いられる高分子化合物は、50以上が好ましく、100以上がより好ましく、200以上が特に好ましい。上限としては、100,000以下が好ましく、10,000以下がより好ましく、5,000以下が特に好ましい。
・側鎖成分(マクロモノマー(X))
マクロモノマーは、質量平均分子量が1,000以上であり、2,000以上がより好ましく、3,000以上が特に好ましい。上限としては、500,000以下が好ましく、100,000以下がより好ましく、30,000以下が特に好ましい。
マクロモノマーは、質量平均分子量が1,000以上であり、2,000以上がより好ましく、3,000以上が特に好ましい。上限としては、500,000以下が好ましく、100,000以下がより好ましく、30,000以下が特に好ましい。
バインダーポリマーにおける上記の側鎖成分は溶媒への分散性を良化する働きを有するものと解される。これにより、バインダーが溶媒中で粒子状に好適に分散されるので、固体電解質を局部的あるいは全面的に被覆することなく固着させることができる。その結果、バインダー粒子間に均等な間隔が保持され、粒子間の電気的なつながりが遮断されない。そのため、固体粒子間、集電体間等の界面抵抗の上昇が抑えられると考えられる。さらに、そのバインダーポリマーが側鎖を有することでバインダー粒子が固体電解質粒子に付着するだけでなく、その側鎖が絡みつく効果も期待できる。これにより固体電解質に係る界面抵抗の抑制と固着性の良化との両立が図られるものと考えられる。さらに、その分散性の良さから、水中乳化重合などと比較して有機溶媒中に転層させる工程を省略でき、また、沸点が低い溶媒を分散媒体として用いることができるようにもなる。なお、側鎖成分(X)の分子量は、バインダー粒子を構成するポリマーを合成するときに組み込む重合性化合物(マクロモノマー)の分子量を測定することで同定することができる。
-分子量の測定-
本発明においてポリマーの分子量については、特に断らない限り、質量平均分子量をいい、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の質量平均分子量を計測する。測定法としては、基本として下記条件1または条件2(優先)の方法により測定した値とする。ただし、ポリマー種によっては適宜適切な溶離液を選定して用いればよい。
本発明においてポリマーの分子量については、特に断らない限り、質量平均分子量をいい、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の質量平均分子量を計測する。測定法としては、基本として下記条件1または条件2(優先)の方法により測定した値とする。ただし、ポリマー種によっては適宜適切な溶離液を選定して用いればよい。
(条件1)
カラム:TOSOH TSKgel Super AWM-Hを2本つなげる
キャリア:10mMLiBr/N-メチルピロリドン
測定温度:40℃
キャリア流量:1.0ml/min
試料濃度:0.1質量%
検出器:RI(屈折率)検出器
カラム:TOSOH TSKgel Super AWM-Hを2本つなげる
キャリア:10mMLiBr/N-メチルピロリドン
測定温度:40℃
キャリア流量:1.0ml/min
試料濃度:0.1質量%
検出器:RI(屈折率)検出器
(条件2)優先
カラム:TOSOH TSKgel Super HZM-H、TOSOH TSKgel Super HZ4000、TOSOH TSKgel Super HZ2000をつないだカラムを用いる
キャリア:テトラヒドロフラン
測定温度:40℃
キャリア流量:1.0ml/min
試料濃度:0.1質量%
検出器:RI(屈折率)検出器
カラム:TOSOH TSKgel Super HZM-H、TOSOH TSKgel Super HZ4000、TOSOH TSKgel Super HZ2000をつないだカラムを用いる
キャリア:テトラヒドロフラン
測定温度:40℃
キャリア流量:1.0ml/min
試料濃度:0.1質量%
検出器:RI(屈折率)検出器
マクロモノマー(X)のSP値は10以下が好ましく、9.5以下がより好ましい。下限値は特にないが、5以上が実際的である。
-SP値の定義-
本明細書においてSP値は、特に断らない限り、Hoy法によって求める(H.L.Hoy Journal of Painting,1970,Vol.42,76-118)。また、SP値については単位を省略して示しているが、その単位はcal1/2cm-3/2である。なお、側鎖成分(X)のSP値は、上記側鎖をなす原料モノマーのSP値とほぼ変わらず、それにより評価してもよい。
本明細書においてSP値は、特に断らない限り、Hoy法によって求める(H.L.Hoy Journal of Painting,1970,Vol.42,76-118)。また、SP値については単位を省略して示しているが、その単位はcal1/2cm-3/2である。なお、側鎖成分(X)のSP値は、上記側鎖をなす原料モノマーのSP値とほぼ変わらず、それにより評価してもよい。
SP値は有機溶媒に分散する特性を示す指標となる。ここで、側鎖成分を特定の分子量以上とし、好ましくは上記SP値以上とすることで、固体電解質との結着性を向上させ、かつ、これにより溶媒との親和性を高め、安定に分散させることができ好ましい。
上記のマクロモノマー(X)の側鎖成分の主鎖は特に限定されず、通常のポリマー成分を適用することができる。マクロモノマー(X)は、好ましくは側鎖またはその末端に重合性基を有し、より好ましくはその片末端もしくは両末端に重合性基を有する。重合性基は、重合性不飽和結合を有する基が好ましく、例えば、各種のビニル基や(メタ)アクリロイル基を挙げることができる。本発明においては、中でも、マクロモノマー(X)が(メタ)アクリロイル基、スチレン基、スチレン誘導基を有することが好ましい。
なお、本明細書において、「アクリル」または「アクリロイル」と称するときには、アクリロイル基のみならずその誘導構造を含むものを広く指し、アクリロイル基のα位に特定の置換基を有する構造を含むものとする。ただし、狭義には、α位が水素原子の場合をアクリルないしアクリロイルと称することがある。α位にメチル基を有するものをメタクリルと呼び、アクリル(α位が水素原子)とメタクリル(α位がメチル基)のいずれかのものを意味して(メタ)アクリルなどと称することがある。
なお、本明細書において、「アクリル」または「アクリロイル」と称するときには、アクリロイル基のみならずその誘導構造を含むものを広く指し、アクリロイル基のα位に特定の置換基を有する構造を含むものとする。ただし、狭義には、α位が水素原子の場合をアクリルないしアクリロイルと称することがある。α位にメチル基を有するものをメタクリルと呼び、アクリル(α位が水素原子)とメタクリル(α位がメチル基)のいずれかのものを意味して(メタ)アクリルなどと称することがある。
上記マクロモノマー(X)は、(メタ)アクリル酸モノマー、(メタ)アクリル酸エステルモノマー、および(メタ)アクリロニトリル、スチレン、スチレン誘導モノマーから選ばれるモノマーに由来する繰り返し単位を含むことが好ましい。また、上記マクロモノマー(X)は、重合性二重結合と炭素数6以上の炭化水素構造単位S(好ましくは炭素数6以上30以下のアルキレン基もしくはアルキル基、より好ましくは炭素数8以上24以下のアルキレン基もしくはアルキル基)を含むことが好ましい。このように、マクロモノマーが炭化水素構造単位Sを有することで、溶媒との親和性が高くなり分散安定性が向上するという作用が期待できる。炭素数6以上の炭化水素構造単位Sは、マクロモノマーの主鎖を構成する部分よりも、側鎖を構成するものが好ましい。
ここで、下記マクロモノマー M-1を例にすると、炭化水素構造単位Sは、メタクリル酸ドデシルに由来する構造におけるドデシルである。
ここで、下記マクロモノマー M-1を例にすると、炭化水素構造単位Sは、メタクリル酸ドデシルに由来する構造におけるドデシルである。
上記のマクロモノマー(X)は、下記式(P)で表される部位を重合性基ないしはその一部として有することが好ましい。
R11はR1と同義である。*は結合部である。
上記のマクロモノマー(X)の重合性基は、下記式(P-1)~(P-3)のいずれかで表される部位であることが好ましい。以下、これらの部位を「特定重合性部位」と呼ぶことがある。
R12はR1と同義である。*は結合部である。RNは水素原子または置換基を表す。置換基としては、後述の置換基Tで挙げた基が挙げられる。式(P-3)のベンゼン環には任意の置換基Tが置換していてもよい。
上記のマクロモノマー(X)は、下記式(N-1)~(N-3)で表される化合物が好ましい。
Pは重合性基を表す。L11~L17はそれぞれ独立に連結基を表す。k1、k2、k3、k12およびk13はポリマー中の各繰り返し単位のモル分率を表す。mは1~200の整数を表す。nは0または1を表す。R13~R15、R21およびR23はそれぞれ独立に、重合性基、水素原子、ヒドロキシ基、シアノ基、ハロゲン原子、カルボキシ基、アルキル基、アルケニル基、アルキニル基またはアリール基を表す。R16は水素原子または置換基を表す。qは0または1を表す。R22はR21より高分子量の鎖状構造部位を表す。R24は水素原子または置換基を表す。
Pの重合性基は、好ましくは、上記の式(P)または(P-1)~(P-3)である。L11~L17は後述の連結基Lが好ましく、上記のL1と同義であることが好ましい。
本明細書において、式(N-3)に記載するように波線を用いて表した左端の構造は、主鎖の少なくとも一方の末端構造を表す。
本明細書において、式(N-3)に記載するように波線を用いて表した左端の構造は、主鎖の少なくとも一方の末端構造を表す。
L11は、炭素数1~6(好ましくは1~3)のアルキレン基、炭素数6~24(好ましくは6~10)のアリーレン基、酸素原子、硫黄原子、イミノ基(NRN)、カルボニル基、(ポリ)アルキレンオキシ基、(ポリ)エステル結合、(ポリ)アミド結合またはこれらを組合せた基が好ましい。L11は置換基Tを有していてもよく、例えば、ヒドロキシ基を有していてもよい。
L12およびL13は、炭素数1~6(好ましくは1~3)のアルキレン基、炭素数6~24(好ましくは6~10)のアリーレン基、酸素原子、硫黄原子、イミノ基(NRN)、カルボニル基、(ポリ)アルキレンオキシ基、(ポリ)エステル結合、(ポリ)アミド結合、またはこれらを組合せた基が好ましい。
L14は、炭素数1~24(好ましくは1~18)のアルキレン基、炭素数6~24(好ましくは6~10)のアリーレン基、酸素原子、硫黄原子、イミノ基(NRN)、カルボニル基、(ポリ)アルキレンオキシ基、(ポリ)エステル結合、(ポリ)アミド結合、またはこれらを組合せた基が好ましく、(ポリ)アルキレンオキシ基(xが1~4)が特に好ましい。そのときのアルキレン基の炭素数は1~12が好ましく、1~8がより好ましく、1~6が特に好ましい。このアルキレン基は置換基Tを有していてもよく、例えば、ヒドロキシ基を有していてもよい。
L15は、なかでも、アルキレン基が好ましい。比較的長鎖であることが好ましく、炭素数4~30が好ましく、炭素数6~20がより好ましく、炭素数6~16が特に好ましい。L15は任意の置換基を有していてもよい。任意の置換基としては、例えば、置換基Tが挙げられ、具体的には、ハロゲン原子、ヒドロキシ基、カルボキシ基、メルカプト基、アシル基、アシルオキシ基、アルコキシ基、アリールオキシ基、アミノ基等の任意の置換基を有していてもよい。
L16は、単結合(n=0)が好ましい。
L16は、単結合(n=0)が好ましい。
L17は、炭素数1~6(好ましくは1~3)のアルキレン基、炭素数6~24(好ましくは6~10)のアリーレン基、酸素原子、硫黄原子、イミノ基(NRN)、カルボニル基、(ポリ)アルキレンオキシ基、(ポリ)エステル結合、(ポリ)アミド結合またはこれらを組合せた基が好ましい。L17は置換基Tを有していてもよく、例えば、ヒドロキシ基を有していてもよい。
nは0または1である。
L11~L16はなかでも、酸素原子、炭素原子、水素原子、硫黄原子、窒素原子で構成された原子数1~60(好ましくは1~30)の連結基が好ましい。連結基の構成原子数としては4~40が好ましく、6~24がより好ましい。
k1、k2、k3はポリマー中の各繰り返し単位のモル分率で、k1+k2+k3=1である。k1は0.001~0.3が好ましく、0.01~0.1がより好ましい。k2は0~0.7が好ましく、0~0.5がより好ましい。k3は0.3~0.99が好ましく、0.4~0.9がより好ましい。
mは1~200の整数を表し、1~100の整数が好ましく、1~50の整数がより好ましい。
k12、k13はポリマー中の各繰り返し単位のモル分率で、k12+k13=1である。k12は0~0.7が好ましく、0~0.6がより好ましい。k13は0.3~1が好ましく、0.4~1がより好ましい。
mは1~200の整数を表し、1~100の整数が好ましく、1~50の整数がより好ましい。
k12、k13はポリマー中の各繰り返し単位のモル分率で、k12+k13=1である。k12は0~0.7が好ましく、0~0.6がより好ましい。k13は0.3~1が好ましく、0.4~1がより好ましい。
R13、R14、R15はR1と同義の基またはPの重合性基である。なかでも、R1の基が好ましく、水素原子またはアルキル基(炭素数1~3が好ましい)、シアノ基が好ましい。
R16は上記R2と同義である。なかでも、好ましくは、水素原子、炭素数1~6のアルキル基、炭素数6~24(好ましくは6~10)のアリール基、ヒドロキシ基、カルボキシ基である。
R16は上記R2と同義である。なかでも、好ましくは、水素原子、炭素数1~6のアルキル基、炭素数6~24(好ましくは6~10)のアリール基、ヒドロキシ基、カルボキシ基である。
qは0または1である。
R21、R23は上記のR1と同義の基またはPの重合性基である。
R22はR21より高分子量の鎖状構造部位であり、アルキル基(炭素数4~60が好ましく、6~36がより好ましい)、アルケニル基(炭素数4~60が好ましく、6~36がより好ましい)、アリール基(炭素数4~60が好ましく、6~36がより好ましい)、ハロゲン化アルキル基(炭素数6~60が好ましく、6~36がより好ましい。ハロゲン原子はフッ素原子が好ましい)、(ポリ)オキシアルキレン基含有基、(ポリ)エステル結合含有基、(ポリ)アミド結合含有基、(ポリ)シロキサン結合含有基が好ましい。このような部位としては、ヒドロキシ基含有脂肪酸の自己縮合物やアミノ基含有脂肪酸の自己縮合物などが挙げられる。このとき、R22は置換基Tを有してもよく、ヒドロキシ基、アルコキシ基、アシル基等を適宜有していてもよい。上記連結基含有基は後記の連結基Lの定義に従う。その末端基は後記RPであることが好ましい。
R22はR21より高分子量の鎖状構造部位であり、アルキル基(炭素数4~60が好ましく、6~36がより好ましい)、アルケニル基(炭素数4~60が好ましく、6~36がより好ましい)、アリール基(炭素数4~60が好ましく、6~36がより好ましい)、ハロゲン化アルキル基(炭素数6~60が好ましく、6~36がより好ましい。ハロゲン原子はフッ素原子が好ましい)、(ポリ)オキシアルキレン基含有基、(ポリ)エステル結合含有基、(ポリ)アミド結合含有基、(ポリ)シロキサン結合含有基が好ましい。このような部位としては、ヒドロキシ基含有脂肪酸の自己縮合物やアミノ基含有脂肪酸の自己縮合物などが挙げられる。このとき、R22は置換基Tを有してもよく、ヒドロキシ基、アルコキシ基、アシル基等を適宜有していてもよい。上記連結基含有基は後記の連結基Lの定義に従う。その末端基は後記RPであることが好ましい。
R24は水素原子または置換基であり、R2と同義の基である。なかでも、水素原子、アルキル基(炭素数1~24が好ましく、1~18がより好ましく、1~12が特に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましい)、アラルキル基(炭素数7~23が好ましく、7~15がより好ましい)が好ましい。このとき、R24は置換基Tを有してもよく、ヒドロキシ基、アルコキシ基、アシル基等を適宜有していてもよい。上記連結基含有基は後記の連結基Lの定義に従う。その末端基は後記RPであることが好ましい。
なお、本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、表示した化合物そのもののほか、その塩、そのイオンを含む意味に用いる。
本明細書において置換もしくは無置換を明記していない置換基(連結基についても同様)については、特段に断りがない限り、その基に任意の置換基を有していてもよい意味である。これは置換もしくは無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。また、単に「置換基」と称した場合、置換基Tが参照される。
本明細書において置換もしくは無置換を明記していない置換基(連結基についても同様)については、特段に断りがない限り、その基に任意の置換基を有していてもよい意味である。これは置換もしくは無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。また、単に「置換基」と称した場合、置換基Tが参照される。
置換基Tとしては、下記のものが挙げられる。
アルキル基(好ましくは炭素数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等、ただし本明細書において、単にアルキル基というときには通常シクロアルキル基を含む意味である。)、アリール基(好ましくは炭素数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素数2~20のヘテロ環基、好ましくは、環構成原子に、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、テトラヒドロピラニル、テトラヒドロフラニル、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル、2-ピリドン-6-イル等)、
アルキル基(好ましくは炭素数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等、ただし本明細書において、単にアルキル基というときには通常シクロアルキル基を含む意味である。)、アリール基(好ましくは炭素数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素数2~20のヘテロ環基、好ましくは、環構成原子に、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、テトラヒドロピラニル、テトラヒドロフラニル、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル、2-ピリドン-6-イル等)、
アルコキシ基(好ましくは炭素数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アルケニルオキシ基(好ましくは炭素原子数2~20のアルケニルオキシ基、例えば、ビニルオキシ、アリルオキシ、オレイルオキシ等)、アルキニルオキシ基((好ましくは炭素原子数2~20のアルキニルオキシ基、例えば、エチニルオキ、フェニルエチニルオキシ等)、シクロアルキルオキシ基(好ましくは炭素原子数3~20のシクロアルキルオキシ基、例えば、シクロプロピルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ、4-メチルシクロヘキシルオキシ等)、アリールオキシ基(好ましくは炭素数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数7~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素数0~20のアミノ基、アルキルアミノ基、アルケニルアミノ基、アルキニルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、N-アリルアミノ、N-エチニルアミノ、アニリノ、4-ピリジルアミノ等)、スルファモイル基(好ましくは炭素数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(アルカノイル基、アルケノイル基、アルキノイル基、シクロアルカノイル基、アリーロイル基、ヘテロ環カルボニル基を含み、好ましくは炭素数1~23のアシル基、例えば、ホルミル、アセチル、プロピオニル、ブチリル、ピバロイル、ステアロイル、アクリロイル、メタクリロイル、クロトノイル、オレオイル、プロピオロイル、シクロプロパノイル、シクロペンタノイルン、シクロヘキサノイル、ベンゾイル、ニコチノイル、イソニコチノイル等)、アシルオキシ基(アルカノイルオキシ基、アルケノイルオキシ基、アルキノイルオキシ基、シクロアルカノイルオキシ基、アリーロイルオキシ基、ヘテロ環カルボニルオキシ基を含み、好ましくは炭素数1~23のアシルオキシ基、例えば、ホルミルオキシ、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、ピバロイルオキシ、ステアロイルオキシ、アクリロイルオキシ、メタクリロイルオキシ、クロトノイルオキシ、オレオイルオキシ、プロピオロイルオキシ、シクロプロパノイルオキシ、シクロペンタノイルオキシ、シクロヘキサノイルオキシ、ニコチノイルオキシ、イソニコチノイルオキシ等)、
カルバモイル基(好ましくは炭素数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、アクリロイルアミノ、メタクリロイルアミノ、ベンゾイルアミノ等)、スルホンアミド基(アルキルスルホンアミド基、アリールスルホンアミド基を含み、好ましくは炭素数1~20のスルホンアミド基、例えば、メタンスルホンアミド、ベンゼンスルホンアミド等)、アルキルチオ基(好ましくは炭素数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキルスルホニル基(好ましくは炭素数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素原子数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル、ベンジルジメチルシリル等)、アリールシリル基(好ましくは炭素数6~42のアリールシリル基、例えば、トリフェニルシリル、ジメチルフェニルシリル等)、アルコキシシリル基(好ましくは炭素数1~20のアルコキシシリル基、例えば、モノメトキシシリル、ジメトキシシリル、トリメトキシシリル、トリエトキシシリル等)、アリールオキシシリル基(好ましくは炭素数6~42のアリールオキシシリル基、例えば、トリフェニルオキシシリル等)、ホスホリル基(好ましくは炭素原子数0~20のホスホリル基、例えば、-OP(=O)(RP)2)、ホスホニル基(好ましくは炭素数0~20のホスホニル基、例えば、-P(=O)(RP)2)、ホスフィニル基(好ましくは炭素原子数0~20のホスフィニル基、例えば、-P(RP)2)、ヒドロキシ基、メルカプト基、カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。
また、これらの置換基Tで挙げた各基は、上記の置換基Tがさらに置換していてもよい。例えば、アルキル基にアリール基が置換したアラルキル基や、アルキル基にハロゲン原子が置換したハロゲン化アルキル基である。
また、上記置換基が酸性基または塩基性基のときはその塩を形成していてもよい。
化合物または置換基もしくは連結基等がアルキル基もしくはアルキレン基、アルケニル基もしくはアルケニレン基、アルキニル基もしくはアルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。
化合物または置換基もしくは連結基等がアルキル基もしくはアルキレン基、アルケニル基もしくはアルケニレン基、アルキニル基もしくはアルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。
本明細書で規定される各置換基は、本発明の効果を奏する範囲で下記の連結基Lを介在して置換されていても、その構造中に連結基Lが介在していてもよい。例えば、アルキル基もしくはアルキレン基、アルケニル基もしくはアルケニレン基等はさらに構造中に下記のヘテロ原子を含む連結基を介在していてもよい。
連結基Lとしては、炭化水素からなる連結基〔炭素数1~10のアルキレン基(より好ましくは炭素数1~6、さらに好ましくは1~3)、炭素数2~10のアルケニレン基(より好ましくは炭素数2~6、さらに好ましくは2~4)、炭素数2~10のアルキニレン基(より好ましくは炭素数2~6、さらに好ましくは2~4)、炭素数6~22のアリーレン基(より好ましくは炭素数6~10)、またはこれらの組合せ〕、ヘテロ原子を含む連結基〔カルボニル基(-CO-)、チオカルボニル基(-CS-)、エーテル結合(-O-)、チオエーテル結合(-S-)、イミノ基(-NRN-または=NRN)、アンモニウム連結基(-NRN
2
+-)、ポリスルフィド基(好ましくはS原子の連結数が2~8個)、炭素原子にイミノ結合が置換した連結基(RN-N=C<、-N=C(RN)-)、スルホニル基(-SO2-)、スルフィニル基(-SO-)、リン酸連結基(-O-P(OH)(O)-O-)、ホスホン酸連結基(-P(OH)(O)-O-)、またはこれらの組合せ〕、またはこれらを組み合せた連結基が好ましい。なお、置換基や連結基が縮合して環を形成する場合には、上記炭化水素連結基が、二重結合や三重結合を適宜形成して連結していてもよい。形成される環として好ましくは、5員環または6員環が好ましい。5員環としては含窒素の5員環が好ましく、例えば、ピロール環、イミダゾール環、ピラゾール環、インダゾール環、インドール環、ベンゾイミダゾール環、ピロリジン環、イミダゾリジン環、ピラゾリジン環、インドリン環、カルバゾール環などが挙げられる。6員環としては、ピペリジン環、モルホリン環、ピペラジン環などが挙げられる。
なお、アリール環、ヘテロ環等を含むとき、それらは単環でも縮環でもよく、同様に置換されていても無置換でもよい。
なお、アリール環、ヘテロ環等を含むとき、それらは単環でも縮環でもよく、同様に置換されていても無置換でもよい。
ここで、上記のRNは水素原子または置換基を表す。置換基としては、上記の置換基Tが挙げられるが、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6がさらに好ましく、1~3が特に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アルキニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アラルキル基(炭素数7~22が好ましく、7~14がより好ましく、7~10が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)が好ましい。
RPは水素原子、ヒドロキシ基またはヒドロキシ基以外の置換基を表す。置換基としては、上記の置換基Tが挙げられるが、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6がさらに好ましく、1~3が特に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アルキニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アラルキル基(炭素数7~22が好ましく、7~14がより好ましく、7~10が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、アルコキシ基(炭素数1~24が好ましく、1~12がより好ましく、1~6がさらに好ましく、1~3が特に好ましい)、アルケニルオキシ基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アルキニルオキシ基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アラルキルオキシ基(炭素数7~22が好ましく、7~14がより好ましく、7~10が特に好ましい)、アリールオキシ基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、が好ましい。
連結基Lを構成する原子の数は、1~36が好ましく、1~24がより好ましく、1~12がさらに好ましく、1~6が特に好ましい。連結基の連結原子数は10以下が好ましく、8以下がより好ましい。下限としては、1以上である。
なお、上記の連結基Lを構成する原子の数(連結原子数)とは所定の構造部間を結ぶ経路に位置し連結に関与する最少の原子数を言う。例えば、-CH2-C(=O)-O-の場合、連結基を構成する原子の数は6となるが、連結原子数は3となる。
なお、上記の連結基Lを構成する原子の数(連結原子数)とは所定の構造部間を結ぶ経路に位置し連結に関与する最少の原子数を言う。例えば、-CH2-C(=O)-O-の場合、連結基を構成する原子の数は6となるが、連結原子数は3となる。
具体的に連結基の組合せとしては、以下のものが挙げられる。オキシカルボニル結合(-OCO-)、カーボネート結合(-OCOO-)、アミド結合(-CONRN-)、ウレタン結合(-NRNCOO-)、ウレア結合(-NRNCONRN-)、(ポリ)アルキレンオキシ結合(-(Lr-O)x-)、カルボニル(ポリ)オキシアルキレン結合(-CO-(O-Lr)x-)、カルボニル(ポリ)アルキレンオキシ結合(-CO-(Lr-O)x-)、カルボニルオキシ(ポリ)アルキレンオキシ結合(-COO-(Lr-O)x-)、(ポリ)アルキレンイミノ結合(-(Lr-NRN)x)、アルキレン(ポリ)イミノアルキレン結合(-Lr-(NRN-Lr)x-)、カルボニル(ポリ)イミノアルキレン結合(-CO-(NRN-Lr)x-)、カルボニル(ポリ)アルキレンイミノ結合(-CO-(Lr-NRN)x-)、(ポリ)エステル結合(-(CO-O-Lr)x-、-(O-CO-Lr)x-、-(O-Lr-CO)x-、-(Lr-CO-O)x-、-(Lr-O-CO)x-)、(ポリ)アミド結合(-(CO-NRN-Lr)x-、-(NRN-CO-Lr)x-、-(NRN-Lr-CO)x-、-(Lr-CO-NRN)x-、-(Lr-NRN-CO)x-)、ポリシロキサン結合(-SiRP
2-O-)xなどである。xは1以上の整数であり、1~500が好ましく、1~100がより好ましい。
Lrはアルキレン基、アルケニレン基、アルキニレン基が好ましい。Lrの炭素数は、1~12が好ましく、1~6がより好ましく、1~3が特に好ましい(ただし、アルケニレン基、アルキニレン基は、炭素数の下限は2以上)。複数のLrやRN、RP、xは、各々において、互いに同じであっても異なっていてもよい。連結基の向きは上記の記載の順序により限定されず、適宜所定の化学式に合わせた向きで理解すればよい。例えば、アミド結合(-CONRN-)は、カルバモイル結合(-NRNCO-)である。
Lrはアルキレン基、アルケニレン基、アルキニレン基が好ましい。Lrの炭素数は、1~12が好ましく、1~6がより好ましく、1~3が特に好ましい(ただし、アルケニレン基、アルキニレン基は、炭素数の下限は2以上)。複数のLrやRN、RP、xは、各々において、互いに同じであっても異なっていてもよい。連結基の向きは上記の記載の順序により限定されず、適宜所定の化学式に合わせた向きで理解すればよい。例えば、アミド結合(-CONRN-)は、カルバモイル結合(-NRNCO-)である。
上記マクロモノマー(X)に、上記の反応性基を導入してもよい。導入の方法は主鎖において説明したことと同じである。ただし、本発明においては、マクロモノマー(X)がなす側鎖ではなく、主鎖に反応性基が導入されていることが好ましい。
マクロモノマー(X)に由来する繰り返し単位の共重合比は特に限定されないが、バインダー粒子を構成するポリマー中、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上が特に好ましい。上限としては、70質量%以下が好ましく、50質量%以下がより好ましく、30質量%以下が特に好ましい。
・バインダー粒子の諸元
バインダー粒子を構成するポリマーの質量平均分子量は5,000以上が好ましく、10,000以上がより好ましく、30,000以上が特に好ましい。上限としては、1,000,000以下が好ましく、200,000以下がより好ましい。なお、バインダーが架橋されて分子量が測定できない場合はこの限りではない。
バインダー粒子を構成するポリマーの質量平均分子量は5,000以上が好ましく、10,000以上がより好ましく、30,000以上が特に好ましい。上限としては、1,000,000以下が好ましく、200,000以下がより好ましい。なお、バインダーが架橋されて分子量が測定できない場合はこの限りではない。
バインダー粒子の配合量は、上記固体電解質(活物質を用いる場合はこれを含む)100質量部に対して、0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.5質量部以上が特に好ましい。上限としては、20質量部以下が好ましく、10質量部以下がより好ましく、5質量部以下が特に好ましい。
固体電解質組成物に対しては、その固形成分中、バインダー粒子の含有量は、0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.5質量%以上が特に好ましい。上限としては、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下が特に好ましい。
バインダー粒子を上記の範囲で用いることにより、一層効果的に固体電解質の固着性と界面抵抗の抑制性とを両立して実現することができる。
固体電解質組成物に対しては、その固形成分中、バインダー粒子の含有量は、0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.5質量%以上が特に好ましい。上限としては、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下が特に好ましい。
バインダー粒子を上記の範囲で用いることにより、一層効果的に固体電解質の固着性と界面抵抗の抑制性とを両立して実現することができる。
バインダー粒子は1種を単独で用いても、複数の種類のものを組み合わせて用いてもよい。また、他の粒子と組み合わせて用いてもよい。
本発明において「粒子」とは、0.01μm(10nm)超の平均粒径を示すものを指す。本発明においてバインダー粒子の平均粒子径は20μm以下が好ましく、10μm以下がより好ましく、1μm以下がさらに好ましく、700nm以下が特に好ましい。このなかでも、500nm以下が特に好ましく、300nm以下が最も好ましい。下限値は10nm超に設定され、30nm以上が好ましく、50nm以上がより好ましく、100nm以上が特に好ましい。本発明においてバインダー粒子の平均粒子径は、特に断らない限り、後記実施例の項のバインダーの平均粒子径の測定で測定した条件によるものである。バインダー粒子の大きさを上記の範囲とすることにより、良好な密着性と界面抵抗の抑制とを実現することができる。
なお、作製された全固体二次電池からの測定は、例えば、電池を分解し電極を剥がした後、その電極材料について後述のバインダーの平均粒子径測定の方法に準じてその測定を行い、あらかじめ測定していたバインダー以外の粒子の平均粒子径の測定値を排除することにより行うことができる。
バインダー粒子はこれを構成するポリマーのみから構成されていてもよく、あるいは、別種の材料(ポリマーや低分子化合物、無機化合物など)を含む形で構成されていてもよい。本発明では、好ましくは、構成ポリマーのみからなるバインダー粒子である。
<架橋剤、架橋促進剤>
本発明の固体電解質組成物は、架橋剤および架橋促進剤から選択される少なくとも1種の成分を含有する。これにより上述したように、電解質粒子や活物質粒子に固着したバインダー粒子を使用に際して硬化することができ、より高強度および高耐久性の部材形態への変更を実現することができる。図3はこの状態を模式的に示した断面図である。複合粒子40は無機粒子(固体電解質粒子または活物質粒子)41の表面にバインダー粒子42が付着する形で構成されている。なお、本発明がこの図面よって限定して解釈されるものではなく、例えば、無機粒子やバインダー粒子がこのような理想的な球体である必要はない。
本発明の固体電解質組成物は、架橋剤および架橋促進剤から選択される少なくとも1種の成分を含有する。これにより上述したように、電解質粒子や活物質粒子に固着したバインダー粒子を使用に際して硬化することができ、より高強度および高耐久性の部材形態への変更を実現することができる。図3はこの状態を模式的に示した断面図である。複合粒子40は無機粒子(固体電解質粒子または活物質粒子)41の表面にバインダー粒子42が付着する形で構成されている。なお、本発明がこの図面よって限定して解釈されるものではなく、例えば、無機粒子やバインダー粒子がこのような理想的な球体である必要はない。
図中の円(細線)で拡大した部分は、バインダーを構成する高分子化合物43の構造を模式的に示したものである(図3(a))。図3(a)の状態は架橋剤および架橋促進剤から選択される少なくとも1種の成分を添加する前あるいは添加後であり、これらが未反応の状態を示している。本発明の第1の実施形態(図3(b))においては、架橋促進剤が系内に添加され、その効果により架橋点45で、高分子化合物の反応性基(図示せず)が結合し、架橋構造を形成した例を示している。このとき、高分子化合物の反応性基がすべて反応する必要はなく、未反応のまま残存するものがあってもよい。架橋反応率は10~100%(個数)程度であることが実際的である。本発明の第2の実施形態(図3(c))においては、架橋剤44を介して、架橋剤が有する反応性基(図示せず)と高分子化合物の反応性基(図示せず)とが結合し、架橋構造形成した例を示している。
なお、本発明において、架橋促進剤とは、基本的にはそれ自体は架橋構造に組み込まれず、被架橋物(高分子化合物)の反応性基の反応を促進し、被架橋物(高分子化合物)自身を連結させて架橋構造を形成させるものである。一方、架橋剤とは、それ自身もしくはその一部が架橋構造に組み込まれながら、被架橋物(高分子化合物)が架橋するものである。具体的には、架橋剤のもつ反応性基(以下、架橋剤側反応性基とも称す)が高分子化合物のもつ反応性基と反応し、互いに結合して架橋構造を形成する形態のものである。あるいは、架橋剤の一部が高分子化合物間の架橋鎖に組み込まれ、残部は低分子化合物として残存するような形態も挙げられる。
・架橋促進剤
架橋促進剤の典型例は重合開始剤である。具体的には、ラジカル重合開始剤またはカチオン重合開始剤が挙げられ、好ましい。なお、架橋促進剤は、熱重合開始剤であっても、光重合開始剤であってもよい。
架橋促進剤によって反応する高分子化合物(ポリマー)の反応性基は、オキセタン基、エポキシ基、(メタ)アクリロイル基、アルケニル基またはアルキニル基が好ましく、オキセタン基、エポキシ基または(メタ)アクリロイル基がより好ましい。
架橋促進剤の典型例は重合開始剤である。具体的には、ラジカル重合開始剤またはカチオン重合開始剤が挙げられ、好ましい。なお、架橋促進剤は、熱重合開始剤であっても、光重合開始剤であってもよい。
架橋促進剤によって反応する高分子化合物(ポリマー)の反応性基は、オキセタン基、エポキシ基、(メタ)アクリロイル基、アルケニル基またはアルキニル基が好ましく、オキセタン基、エポキシ基または(メタ)アクリロイル基がより好ましい。
(ラジカル重合開始剤)
ラジカル重合開始剤の例としては(a)芳香族ケトン類、(b)アシルフォスフィンオキサイド化合物、(c)芳香族オニウム塩化合物、(d)有機過酸化物、(e)チオ化合物、(f)ヘキサアリールビイミダゾール化合物、(g)ケトオキシムエステル化合物、(h)ボレート化合物、(i)アジニウム化合物、(j)メタロセン化合物、(k)活性エステル化合物、(l)炭素ハロゲン結合を有する化合物、(m)α-アミノケトン化合物、及び(n)アルキルアミン化合物等が挙げられる。
ラジカル重合開始剤の例としては(a)芳香族ケトン類、(b)アシルフォスフィンオキサイド化合物、(c)芳香族オニウム塩化合物、(d)有機過酸化物、(e)チオ化合物、(f)ヘキサアリールビイミダゾール化合物、(g)ケトオキシムエステル化合物、(h)ボレート化合物、(i)アジニウム化合物、(j)メタロセン化合物、(k)活性エステル化合物、(l)炭素ハロゲン結合を有する化合物、(m)α-アミノケトン化合物、及び(n)アルキルアミン化合物等が挙げられる。
ラジカル重合開始剤の例としては、特開2006-085049号公報の段落番号0135~0208に記載されたラジカル重合開始剤を挙げることができる。
具体例としては以下のものが挙げられる。
熱によって開裂して開始ラジカルを発生する熱ラジカル重合開始剤としては、メチルエチルケトンパーオキサイド、メチルイソブチルケトンパーオキサイド、アセチルアセトンパーオキサイド、シクロヘキサノンパーオキサイド及びメチルシクロヘキサノンパーオキサイドなどのケトンパーオキサイド類;1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド及びt-ブチルハイドロパーオキサイドなどのハイドロパーオキサイド類;ジイソブチリルパーオキサイド、ビス-3,5,5-トリメチルヘキサノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド及びm-トルイルベンゾイルパーオキサイドなどのジアシルパーオキサイド類;ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、1,3-ビス(t-ブチルペルオキシイソプロピル)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド及び2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキセンなどのジアルキルパーオキサイド類;1,1-ジ(t-ブチルペルオキシ-3,5,5-トリメチル)シクロヘキサン、1,1-ジ-t-ブチルペルオキシシクロヘキサン及び2,2-ジ(t-ブチルペルオキシ)ブタンなどのパーオキシケタール類;t-ヘキシルペルオキシピバレート、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルペルオキシ-2-エチルヘキサノエート、t-アミルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシイソブチレート、ジ-t-ブチルペルオキシヘキサヒドロテレフタレート、1,1,3,3-テトラメチルブチルペルオキシ-3,5,5-トリメチルヘキサネート、t-アミルペルオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシアセテート、t-ブチルペルオキシベンゾエート及びジブチルペルオキシトリメチルアジペートなどのアルキルパーエステル類;1,1,3,3-テトラメチルブチルペルオキシネオジカーボネート、α-クミルペルオキシネオジカーボネート、t-ブチルペルオキシネオジカーボネート、ジ-3-メトキシブチルペルオキシジカーボネート、ジ-2-エチルヘキシルペルオキシジカーボネート、ビス(1,1-ブチルシクロヘキサオキシジカーボネート)、ジイソプロピルオキシジカーボネート、t-アミルペルオキシイソプロピルカーボネート、t-ブチルペルオキシイソプロピルカーボネート、t-ブチルペルオキシ-2-エチルヘキシルカーボネート及び1,6-ビス(t-ブチルペルオキシカルボキシ)ヘキサンなどのパーオキシカーボネート類;1,1-ビス(t-ヘキシルペルオキシ)シクロヘキサン及び(4-t-ブチルシクロヘキシル)パーオキシジカルボネートなどが挙げられる。
熱によって開裂して開始ラジカルを発生する熱ラジカル重合開始剤としては、メチルエチルケトンパーオキサイド、メチルイソブチルケトンパーオキサイド、アセチルアセトンパーオキサイド、シクロヘキサノンパーオキサイド及びメチルシクロヘキサノンパーオキサイドなどのケトンパーオキサイド類;1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド及びt-ブチルハイドロパーオキサイドなどのハイドロパーオキサイド類;ジイソブチリルパーオキサイド、ビス-3,5,5-トリメチルヘキサノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド及びm-トルイルベンゾイルパーオキサイドなどのジアシルパーオキサイド類;ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、1,3-ビス(t-ブチルペルオキシイソプロピル)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド及び2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキセンなどのジアルキルパーオキサイド類;1,1-ジ(t-ブチルペルオキシ-3,5,5-トリメチル)シクロヘキサン、1,1-ジ-t-ブチルペルオキシシクロヘキサン及び2,2-ジ(t-ブチルペルオキシ)ブタンなどのパーオキシケタール類;t-ヘキシルペルオキシピバレート、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルペルオキシ-2-エチルヘキサノエート、t-アミルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシイソブチレート、ジ-t-ブチルペルオキシヘキサヒドロテレフタレート、1,1,3,3-テトラメチルブチルペルオキシ-3,5,5-トリメチルヘキサネート、t-アミルペルオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシアセテート、t-ブチルペルオキシベンゾエート及びジブチルペルオキシトリメチルアジペートなどのアルキルパーエステル類;1,1,3,3-テトラメチルブチルペルオキシネオジカーボネート、α-クミルペルオキシネオジカーボネート、t-ブチルペルオキシネオジカーボネート、ジ-3-メトキシブチルペルオキシジカーボネート、ジ-2-エチルヘキシルペルオキシジカーボネート、ビス(1,1-ブチルシクロヘキサオキシジカーボネート)、ジイソプロピルオキシジカーボネート、t-アミルペルオキシイソプロピルカーボネート、t-ブチルペルオキシイソプロピルカーボネート、t-ブチルペルオキシ-2-エチルヘキシルカーボネート及び1,6-ビス(t-ブチルペルオキシカルボキシ)ヘキサンなどのパーオキシカーボネート類;1,1-ビス(t-ヘキシルペルオキシ)シクロヘキサン及び(4-t-ブチルシクロヘキシル)パーオキシジカルボネートなどが挙げられる。
アゾ系(AIBN等)の重合開始剤として使用するアゾ化合物の具体例としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、1,1’-アゾビス-1-シクロヘキサンカルボニトリル、ジメチル-2,2’-アゾビスイソブチレート、4,4’-アゾビス-4-シアノバレリック酸、2,2’-アゾビス-(2-アミジノプロパン)ジハイドロクロライド等が挙げられる(特開2010-189471号公報など参照)。あるいは、ジメチル-2,2’-アゾビス(2-メチルプロピネート)(商品名 V-601、和光純薬社製)なども好適に用いられる。
ラジカル重合開始剤として、上記の熱ラジカル重合開始剤の他に、光、電子線又は放射線で開始ラジカルを生成するラジカル重合開始剤を用いることができる。
このようなラジカル重合開始剤としては、ベンゾインエーテル、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン〔IRGACURE651、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン〔IRGACURE184、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン〔DAROCUR1173、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン〔IRGACURE2959、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル]-2-メチル-プロパン-1-オン〔IRGACURE127、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン〔IRGACURE907、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1〔IRGACURE369、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モノホリニル)フェニル]-1-ブタノン〔IRGACURE379、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド〔DAROCUR TPO、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド〔IRGACURE819、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム〔IRGACURE784、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]〔IRGACURE OXE 01、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)〔IRGACURE OXE 02、チバ・スペシャルティ・ケミカルズ(株)製、商標〕などを挙げることができる。
これらのラジカル重合開始剤は、1種を単独で又は2種以上を組み合わせて用いることができる。
(カチオン重合開始剤)
カチオン重合開始剤としては、分解して酸を発生するジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩などのオニウム塩化合物、イミドスルホネート、オキシムスルホネート、ジアゾジスルホン、ジスルホン、o-ニトロベンジルスルホネート等のスルホネート化合物などを挙げることができる。化合物の例としては、特開2008-13646号公報の段落番号0066~0122に記載の化合物を挙げることができる。その中でもオニウム塩化合物が好ましく、三新科学社製サンエイドSIシリーズ、和光純薬株式階社製WPIシリーズが特に好ましい。
カチオン重合開始剤としては、分解して酸を発生するジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩などのオニウム塩化合物、イミドスルホネート、オキシムスルホネート、ジアゾジスルホン、ジスルホン、o-ニトロベンジルスルホネート等のスルホネート化合物などを挙げることができる。化合物の例としては、特開2008-13646号公報の段落番号0066~0122に記載の化合物を挙げることができる。その中でもオニウム塩化合物が好ましく、三新科学社製サンエイドSIシリーズ、和光純薬株式階社製WPIシリーズが特に好ましい。
本発明では、カチオン重合開始剤は、オニウム塩化合物またはスルホネート化合物が好ましい。オニウム塩化合物の例は上記のとおりであるが、その中間概念としては、RO1-N*N+(*は三重結合の意味)、SRO2
3
+、PRO3
4
+、およびIRO4
2
+のいずれかの構造をもつものが好ましい。ここで、RO1~RO4は置換基を表す。
本発明に用いることができるカチオン重合開始剤の好ましい化合物として、下記式(b1)、(b2)または(b3)で表される化合物を挙げることができる。
R201~R203は、各々独立に有機基を表す。X-は、非求核性アニオンを表し、好ましくはスルホン酸アニオン、カルボン酸アニオン、ビス(アルキルスルホニル)アミドアニオン、トリス(アルキルスルホニル)メチドアニオン、BF4
-、PF6
-、SbF6
-やB(C6F6)4などが挙げられ、好ましくはPF6
-、SbF6
-または炭素原子を有する有機アニオンである。その他の各有機アニオンも好適に使用することができる。
有機基の炭素数は、一般的に1~30、好ましくは1~20である。また、R201~R203のうち2つが結合して環構造を形成してもよく、環内に酸素原子、硫黄原子、エステル結合、アミド結合、カルボニル基を含んでいてもよい。R201~R203の内の2つが結合して形成する基としては、アルキレン基(例えば、ブチレン基、ペンチレン基)を挙げることができる。
なお、有機基は、後述の置換基Tにおける有機の置換基が挙げられる。
なお、有機基は、後述の置換基Tにおける有機の置換基が挙げられる。
これらのうち、式(b1)で表される化合物がより好ましく、このなかでも、以下に説明する化合物(b1-1)、(b1-2)および(b1-3)がさらに好ましい。
化合物(b1-1)は、上記式(b1)のR201~R203の少なくとも1つがアリール基である、アリールスルホニム化合物、即ち、アリールスルホニウムをカチオンとする化合物である。アリールスルホニウム化合物は、R201~R203の全てがアリール基でもよいし、R201~R203の一部がアリール基で、残りがアルキル基、シクロアルキル基でもよい。アリールスルホニウム化合物としては、例えば、トリアリールスルホニウム化合物、ジアリールアルキルスルホニウム化合物、アリールジアルキルスルホニウム化合物、ジアリールシクロアルキルスルホニウム化合物、アリールジシクロアルキルスルホニウム化合物等を挙げることができる。アリールスルホニウム化合物のアリール基としてはフェニル基、ナフチル基などのアリール基、インドール残基、ピロール残基、などのヘテロアリール基が好ましく、更に好ましくはフェニル基、インドール残基である。アリールスルホニム化合物が2つ以上のアリール基を有する場合に、2つ以上存在するアリール基は同一であっても異なっていてもよい。アリールスルホニウム化合物は適宜本発明の効果を奏する範囲で置換基Tを有していてもよい。
化合物(b1-2)は、式(b1)におけるR201~R203が、各々独立に、芳香環を含有しない有機基を表す場合の化合物である。ここで芳香環とは、ヘテロ原子を含有する芳香族環も包含するものである。R201~R203としての芳香環を含有しない有機基は、一般的に炭素数1~30、好ましくは炭素数1~20である。R201~R203は、各々独立に、好ましくはアルキル基、シクロアルキル基、アリル基またはビニル基であり、より好ましくは直鎖、分岐、環状の2-オキソアルキル基、アルコキシカルボニルメチル基、特に好ましくは直鎖、分岐の2-オキソアルキル基である。
化合物(b1-3)は、下記式(b1-3)で表される化合物であり、フェナシルスルフォニウム塩構造を有する化合物である。
R1c~R5cは、各々独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基またはハロゲン原子を表す。R6cおよびR7cは、各々独立に、水素原子、アルキル基またはシクロアルキル基を表す。RxおよびRyは、各々独立に、アルキル基、シクロアルキル基、アリル基またはビニル基を表す。R1c~R5c中のいずれか2つ以上、R6cとR7c、および、RxとRyが、それぞれ互いに結合して環構造を形成してもよい。Zc-は、非求核性アニオンを表し、式(b1)におけるX-の非求核性アニオンと同様のものを挙げることができる。R1c~R5c中のいずれか2つ以上、R6cとR7c、および、RxとRyが、それぞれ互いに結合して形成する基としては、ブチレン基、ペンチレン基等を挙げることができる。この環構造は、酸素原子、硫黄原子、エステル結合、アミド結合を含んでいてもよい。
Rx、Ryは、好ましくは炭素数4個以上のアルキル基、シクロアルキル基であり、より好ましくは6個以上、更に好ましくは8個以上のアルキル基、シクロアルキル基である。
Rx、Ryは、好ましくは炭素数4個以上のアルキル基、シクロアルキル基であり、より好ましくは6個以上、更に好ましくは8個以上のアルキル基、シクロアルキル基である。
式(b2)、(b3)中、R204~R207は、各々独立に、アリール基、アルキル基またはシクロアルキル基を表す。X-は、非求核性アニオンを表し、式(b1)におけるX-の非求核性アニオンと同様のものを挙げることができる。R204~R207のアリール基としてはフェニル基、ナフチル基が好ましく、更に好ましくはフェニル基である。R204~R207としてのアルキル基は、直鎖状、分岐状のいずれであってもよく、好ましくは、炭素数1~10の直鎖もしくは分岐アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基)を挙げることができる。R204~R207としてのシクロアルキル基は、好ましくは、炭素数3~10のシクロアルキル基(シクロペンチル基、シクロヘキシル基、ノルボニル基)を挙げられる。R204~R207の各基は、さらに適宜本発明の効果を奏する範囲で置換基Tを有していてもよい。
架橋促進剤の組成物中の含有量は、組成物の固形成分全量に対して、0.0001質量%以上が好ましく、0.0005質量%以上がより好ましく、0.001質量%以上が特に好ましい。上限としては、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が特に好ましい。
バインダー粒子100質量部に対しては、0.001質量部以上が好ましく、0.01質量部以上がより好ましく、0.1質量部以上が特に好ましい。上限としては、200質量部以下が好ましく、100質量部以下がより好ましく、50質量部以下が特に好ましい。
バインダー粒子100質量部に対しては、0.001質量部以上が好ましく、0.01質量部以上がより好ましく、0.1質量部以上が特に好ましい。上限としては、200質量部以下が好ましく、100質量部以下がより好ましく、50質量部以下が特に好ましい。
・架橋剤
架橋剤はバインダーをなす高分子化合物に含まれる反応性基(a)と反応して結合を形成する官能基(反応性基(b))が2つ以上分子内に含まれるものが好ましい。バインダーをなす高分子化合物に含まれる反応性基(a)が求電子基であれば、架橋剤に含まれる反応性基(b)は求核基であることが好ましい。逆に、高分子化合物の反応性基(a)が求核基であれば、架橋剤の反応性基(b)は求電子基が好ましい。具体例を下記表1にまとめて示す。
架橋剤はバインダーをなす高分子化合物に含まれる反応性基(a)と反応して結合を形成する官能基(反応性基(b))が2つ以上分子内に含まれるものが好ましい。バインダーをなす高分子化合物に含まれる反応性基(a)が求電子基であれば、架橋剤に含まれる反応性基(b)は求核基であることが好ましい。逆に、高分子化合物の反応性基(a)が求核基であれば、架橋剤の反応性基(b)は求電子基が好ましい。具体例を下記表1にまとめて示す。
なかでも、高分子化合物の反応性基(a)と、架橋剤の反応性基(b)の組合せとしては、反応性基(a)が上記表1の反応性基(I)であり、反応性基(b)が反応性基(II)であることが好ましい。反応性基の組合せNo.A~Dにおいては、下線のものが特に好ましい。
ここで、カルボン酸クロライド基とは、カルボン酸クロライドから、-C(=O)Clを残して得られる基(少なくとも1つの水素原子を結合手「-」に置き換えた基)を意味し、クロルカルボニル基〔-C(=O)Cl〕を含有する基である。
また、ニトリルオキシド基は、-CN+-O-で、CとNの結合が三重結合の基である。
なお、反応性基の組み合わせNo.Cは、反応性基(I)のエポキシ基もしくはオキセタン基が、反応性基(II)のカルボキシ基、すなわち、カルボン酸の酸で、開環重合するものであり、便宜上上記のように求核基と求電子基に分類した。
また、ニトリルオキシド基は、-CN+-O-で、CとNの結合が三重結合の基である。
なお、反応性基の組み合わせNo.Cは、反応性基(I)のエポキシ基もしくはオキセタン基が、反応性基(II)のカルボキシ基、すなわち、カルボン酸の酸で、開環重合するものであり、便宜上上記のように求核基と求電子基に分類した。
ブロックイソシアネート基の例としては、反応性基含有モノマーとして上記a-116やa-117のものが挙げられる。
ジカルボン酸無水物基の例としては、反応性基含有モノマーとしてa-101やa-105を使用する例が挙げられる。
ジカルボン酸無水物基の例としては、反応性基含有モノマーとしてa-101やa-105を使用する例が挙げられる。
架橋剤の具体例としてはピロメリット酸無水物、4,4’-オキシジフタル酸無水物、ビフタル酸無水物、4,4’-(ヘキサフロロイソプロピリデン)ジフタル酸無水物などの低分子化合物、ジカルボン酸無水物基が二つ以上導入された高分子化合物などが挙げられる。
ヒドロキシ基を有する化合物の例としては、テトラエチレングリコールやエチレングリコールなどの低分子化合物や、実施例で示したAD-1のような側鎖にヒドロキシ基が入ったポリマー、ポリエチレングリコール、ポリヒドロキシスチレンなどの高分子化合物が挙げられる。
アミノ基を有する化合物の例としては、エチレンジアミン、ブチレンジアミンなどが挙げられる。
なお、本明細書において、典型的には、低分子化合物とは分子量1000未満のものを言い、高分子化合物とは分子量1000以上のものを言う。
ヒドロキシ基を有する化合物の例としては、テトラエチレングリコールやエチレングリコールなどの低分子化合物や、実施例で示したAD-1のような側鎖にヒドロキシ基が入ったポリマー、ポリエチレングリコール、ポリヒドロキシスチレンなどの高分子化合物が挙げられる。
アミノ基を有する化合物の例としては、エチレンジアミン、ブチレンジアミンなどが挙げられる。
なお、本明細書において、典型的には、低分子化合物とは分子量1000未満のものを言い、高分子化合物とは分子量1000以上のものを言う。
下記式で表される反応性基(a)に対する反応性基(b)の比率は、0.01以上が好ましく、0.1以上がより好ましく、0.3以上が特に好ましい。上限としては、10000以下が好ましく、100以下がより好ましく、10以下が特に好ましい。
反応性基(a)に対する反応性基(b)の比率(架橋反応性基含有率α)
=[ポリマー1分子の反応性基(a)の数×系内の分子のモル量]/
[架橋剤1分子の反応性基(b)の数×系内の分子のモル量]
=[ポリマー1分子の反応性基(a)の数×系内の分子のモル量]/
[架橋剤1分子の反応性基(b)の数×系内の分子のモル量]
架橋剤の組成物中での含有量は、組成物の固形成分全量に対して、0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.5質量%以上が特に好ましい。上限としては、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が特に好ましい。
バインダー粒子100質量部に対しては、1質量部以上が好ましく、10質量部以上がより好ましく、20質量部以上が特に好ましい。上限としては、200質量部以下が好ましく、100質量部以下がより好ましく、70質量部以下が特に好ましい。
架橋剤もしくは架橋促進剤は1種を単独で用いても、2種以上を組み合わせて用いてもよい。
バインダー粒子100質量部に対しては、1質量部以上が好ましく、10質量部以上がより好ましく、20質量部以上が特に好ましい。上限としては、200質量部以下が好ましく、100質量部以下がより好ましく、70質量部以下が特に好ましい。
架橋剤もしくは架橋促進剤は1種を単独で用いても、2種以上を組み合わせて用いてもよい。
架橋剤および架橋促進剤から選択される少なくとも1種の成分に関連する反応スキームの例を、その反応部位(要部)について、下記にいくつか示す。
架橋反応の進行は任意の方法によればよいが、加熱、活性放射線(紫外線、可視光、X線など)の照射、電子線の照射、電気的作用(電圧の印加等)、酸もしくは塩基の添加が挙げられる。なかでも、本発明においては、加熱もしくは電気的作用により架橋を進行させることが好ましい。架橋の際の加熱条件の好ましい範囲は、後記の「全固体二次電池の作製」で既定したことと同義である。すなわち、全固体二次電池の作製の際にバインダーをなす高分子化合物が架橋されることが好ましい。しかしながら、未架橋の状態もしくは未架橋部分が残った状態で、使用に際した試験、例えばサイクリックボルタンメトリー(CV)による試験を行い、その際に架橋を進行させてもよい。さらに、使用を開始した後に、充放電を繰り返すことで、バインダーをなす高分子化合物の架橋が一層進行し、使用にともなって耐久性能が向上することも期待することができる。
架橋剤は定法により合成できる。具体的に反応性基の導入方法として、例えば上記主鎖をなす繰り返し構造をもつポリマーを重合する際にa-101~a-115のような反応基を含有するモノマーと共重合する方法が挙げられる。また、反応基が保護されたモノマー(例えばa-116、a-117)を共重合し、得られたポリマーの保護部位を脱保護することで反応基を導入してもよい。さらには、脱離して反応性基となるような部位を含有するモノマー(例えばa-118)を導入し、脱離反応させることで反応性基を導入しても良い。あるいは重合開始剤や連鎖移動剤と重合することでポリマー末端に官能基を導入してもよいし、高分子反応で側鎖や末端に官能基を導入してもよい。
(分散媒体)
本発明の固体電解質組成物では、上記の各成分を分散させる分散媒体を用いる。分散媒体としては、例えば、有機溶媒が挙げられる。分散媒体の具体的としては下記のものが挙げられ、好ましい。
本発明の固体電解質組成物では、上記の各成分を分散させる分散媒体を用いる。分散媒体としては、例えば、有機溶媒が挙げられる。分散媒体の具体的としては下記のものが挙げられ、好ましい。
アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられる。
エーテル化合物溶媒としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)、ジメチルエーテル、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンが挙げられる。
アミド化合物溶媒としては、例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。
アミノ化合物溶媒としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミンなどが挙げられる。
ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが挙げられる。
芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレンなどが挙げられる。
脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、オクタンなどが挙げられる。
エステル化合物溶媒としては、例えば、酢酸エチル、酢酸プロピル、酢酸ブチル、酪酸エチル、酪酸ブチル、吉草酸ブチル、γ-ブチロラクトン、ヘプタンなどが挙げられる。
カーボネート化合物溶媒としては、例えば、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、プロピレンカーボネートなどが挙げられる。
ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル、ブチロニトリルなどが挙げられる。
本発明では、これらのなかでも、エーテル化合物溶媒、アミノ化合物溶媒、ケトン化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒、エステル化合物溶媒が好ましい。分散媒体は常圧(1気圧)での沸点が、50℃以上が好ましく、80℃以上がより好ましい。上限は250℃以下が好ましく、220℃以下がさらに好ましい。上記分散媒体は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
本発明では、固体電解質組成物中の分散媒体の含有量は、固体電解質組成物の粘度と乾燥負荷とのバランスで任意の量とすることができる。一般的に、固体電解質組成物中、20~99質量%が好ましい。
本発明では、固体電解質組成物中の分散媒体の含有量は、固体電解質組成物の粘度と乾燥負荷とのバランスで任意の量とすることができる。一般的に、固体電解質組成物中、20~99質量%が好ましい。
(支持電解質[リチウム塩等])
本発明に用いることができる支持電解質(リチウム塩等)としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はないが、例えば、以下に述べるものが好ましい。
本発明に用いることができる支持電解質(リチウム塩等)としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はないが、例えば、以下に述べるものが好ましい。
(L-1)無機リチウム塩
例えば、下記の化合物が挙げられる。
LiPF6、LiBF4、LiAsF6、LiSbF6等の無機フッ化物塩
LiClO4、LiBrO4、LiIO4等の過ハロゲン酸塩
LiAlCl4等の無機塩化物塩等。
例えば、下記の化合物が挙げられる。
LiPF6、LiBF4、LiAsF6、LiSbF6等の無機フッ化物塩
LiClO4、LiBrO4、LiIO4等の過ハロゲン酸塩
LiAlCl4等の無機塩化物塩等。
(L-2)含フッ素有機リチウム塩
例えば、下記の化合物が挙げられる。
LiCF3SO3等のパーフルオロアルカンスルホン酸塩
LiN(CF3SO2)2、LiN(CF3CF2SO2)2、LiN(FSO2)2、LiN(CF3SO2)(C4F9SO2)等のパーフルオロアルカンスルホニルイミド塩
LiC(CF3SO2)3等のパーフルオロアルカンスルホニルメチド塩
Li[PF5(CF2CF2CF3)]、Li[PF4(CF2CF2CF3)2]、Li[PF3(CF2CF2CF3)3]、Li[PF5(CF2CF2CF2CF3)]、Li[PF4(CF2CF2CF2CF3)2]、Li[PF3(CF2CF2CF2CF3)3]等のフルオロアルキルフッ化リン酸塩等。
例えば、下記の化合物が挙げられる。
LiCF3SO3等のパーフルオロアルカンスルホン酸塩
LiN(CF3SO2)2、LiN(CF3CF2SO2)2、LiN(FSO2)2、LiN(CF3SO2)(C4F9SO2)等のパーフルオロアルカンスルホニルイミド塩
LiC(CF3SO2)3等のパーフルオロアルカンスルホニルメチド塩
Li[PF5(CF2CF2CF3)]、Li[PF4(CF2CF2CF3)2]、Li[PF3(CF2CF2CF3)3]、Li[PF5(CF2CF2CF2CF3)]、Li[PF4(CF2CF2CF2CF3)2]、Li[PF3(CF2CF2CF2CF3)3]等のフルオロアルキルフッ化リン酸塩等。
(L-3)オキサラトボレート塩
例えば、下記の化合物が挙げられる。
リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等。
例えば、下記の化合物が挙げられる。
リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等。
これらのなかで、LiPF6、LiBF4、LiAsF6、LiSbF6、LiClO4、Li(Rf1SO3)、LiN(Rf1SO2)2、LiN(FSO2)2、及びLiN(Rf1SO2)(Rf2SO2)が好ましく、LiPF6、LiBF4、LiN(Rf1SO2)2、LiN(FSO2)2、及びLiN(Rf1SO2)(Rf2SO2)などのリチウムイミド塩がさらに好ましい。ここで、Rf1、Rf2はそれぞれパーフルオロアルキル基を示す。
なお、電解液に用いる電解質は、1種を単独で使用しても、2種以上を任意に組み合わせてもよい。
なお、電解液に用いる電解質は、1種を単独で使用しても、2種以上を任意に組み合わせてもよい。
リチウム塩の含有量は、固体電解質100質量部に対して0.1質量部以上が好ましく、0.5質量部以上がより好ましい。上限としては、10質量部以下が好ましく、5質量部以下がより好ましい。
(電極活物質)
本発明の固体電解質組成物には、さらに電極活物質を含有させてもよい。電極活物質とは、正極活物質や負極活物質を意味する。
本発明の固体電解質組成物には、さらに電極活物質を含有させてもよい。電極活物質とは、正極活物質や負極活物質を意味する。
(i)正極活物質
本発明の固体電解質組成物には、正極活物質を含有させてもよい。それにより、正極材料用の組成物とすることができる。正極活物質には遷移金属酸化物を用いることが好ましく、中でも、遷移元素Ma(Co、Ni、Fe、Mn、Cu、Vから選択される1種以上の元素)を有することが好ましい。また、混合元素Mb(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなど)を混合してもよい。
遷移金属酸化物は、例えば、下記式(MA)~(MC)のいずれかで表されるものを含む特定遷移金属酸化物、あるいはその他の遷移金属酸化物としてV2O5、MnO2等が挙げられる。
正極活物質には、粒子状の正極活物質を用いてもよい。具体的には、可逆的にリチウムイオンを挿入および放出できる遷移金属酸化物を用いることができるが、上記特定遷移金属酸化物を用いるのが好ましい。
本発明の固体電解質組成物には、正極活物質を含有させてもよい。それにより、正極材料用の組成物とすることができる。正極活物質には遷移金属酸化物を用いることが好ましく、中でも、遷移元素Ma(Co、Ni、Fe、Mn、Cu、Vから選択される1種以上の元素)を有することが好ましい。また、混合元素Mb(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなど)を混合してもよい。
遷移金属酸化物は、例えば、下記式(MA)~(MC)のいずれかで表されるものを含む特定遷移金属酸化物、あるいはその他の遷移金属酸化物としてV2O5、MnO2等が挙げられる。
正極活物質には、粒子状の正極活物質を用いてもよい。具体的には、可逆的にリチウムイオンを挿入および放出できる遷移金属酸化物を用いることができるが、上記特定遷移金属酸化物を用いるのが好ましい。
遷移金属酸化物としては、上記遷移元素Maを含む酸化物等が好適に挙げられる。このとき混合元素Mb(好ましくはAl)などを混合してもよい。混合量としては、遷移金属の量に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものがより好ましい。
〔式(MA)で表される遷移金属酸化物(層状岩塩型構造)〕
リチウム含有遷移金属酸化物としては、中でも下式で表されるものが好ましい。
リチウム含有遷移金属酸化物としては、中でも下式で表されるものが好ましい。
LiaM1Ob ・・・ 式(MA)
式中、M1は上記Maと同義である。aは0~1.2(0.2~1.2が好ましい)を表し、0.6~1.1が好ましい。bは1~3を表し、2が好ましい。M1の一部は上記混合元素Mbで置換されていてもよい。上記式(MA)で表される遷移金属酸化物は典型的には層状岩塩型構造を有する。
本遷移金属酸化物は下記の各式で表されるものがより好ましい。
式(MA-1) LigCoOk
式(MA-2) LigNiOk
式(MA-3) LigMnOk
式(MA-4) LigCojNi1-jOk
式(MA-5) LigNijMn1-jOk
式(MA-6) LigCojNiiAl1-j-iOk
式(MA-7) LigCojNiiMn1-j-iOk
式(MA-2) LigNiOk
式(MA-3) LigMnOk
式(MA-4) LigCojNi1-jOk
式(MA-5) LigNijMn1-jOk
式(MA-6) LigCojNiiAl1-j-iOk
式(MA-7) LigCojNiiMn1-j-iOk
ここで、gは上記aと同義である。jは0.1~0.9を表す。iは0~1を表す。ただし、1-j-iは0以上になる。kは上記bと同義である。上記遷移金属化合物の具体例を示すと、LiCoO2(コバルト酸リチウム[LCO])、LiNi2O2(ニッケル酸リチウム)LiNi0.85Co0.01Al0.05O2(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi0.33Co0.33Mn0.33O2(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5O2(マンガンニッケル酸リチウム)である。
式(MA)で表される遷移金属酸化物は、一部重複するが、表記を変えて示すと、下記で表されるものも好ましい例として挙げられる。
(i)LigNixMnyCozO2(x>0.2,y>0.2,z≧0,x+y+z=1)
代表的なもの:
LigNi1/3Mn1/3Co1/3O2
LigNi1/2Mn1/2O2
代表的なもの:
LigNi1/3Mn1/3Co1/3O2
LigNi1/2Mn1/2O2
(ii)LigNixCoyAlzO2(x>0.7,y>0.1,0.1>z≧0.05,x+y+z=1)
代表的なもの:
LigNi0.8Co0.15Al0.05O2
代表的なもの:
LigNi0.8Co0.15Al0.05O2
〔式(MB)で表される遷移金属酸化物(スピネル型構造)〕
リチウム含有遷移金属酸化物は、中でも下記式(MB)で表されるものも好ましい。
リチウム含有遷移金属酸化物は、中でも下記式(MB)で表されるものも好ましい。
LicM2
2Od ・・・ 式(MB)
式中、M2は上記Maと同義である。cは0~2(0.2~2が好ましい)を表し、0.6~1.5が好ましい。dは3~5を表し、4が好ましい。
式(MB)で表される遷移金属酸化物は、下記の各式で表されるものがより好ましい。
式(MB-1) LimMn2On
式(MB-2) LimMnpAl2-pOn
式(MB-3) LimMnpNi2-pOn
式(MB-2) LimMnpAl2-pOn
式(MB-3) LimMnpNi2-pOn
mはcと同義である。nはdと同義である。pは0~2を表す。上記遷移金属化合物の具体例を示すと、LiMn2O4、LiMn1.5Ni0.5O4である。
式(MB)で表される遷移金属酸化物は、さらに下記で表されるものも好ましい例として挙げられる。
式(a) LiCoMnO4
式(b) Li2FeMn3O8
式(c) Li2CuMn3O8
式(d) Li2CrMn3O8
式(e) Li2NiMn3O8
式(b) Li2FeMn3O8
式(c) Li2CuMn3O8
式(d) Li2CrMn3O8
式(e) Li2NiMn3O8
高容量、高出力の観点で上記のうち、Niを含む電極が更に好ましい。
〔式(MC)で表される遷移金属酸化物〕
リチウム含有遷移金属酸化物としてはリチウム含有遷移金属リン酸化物を用いることも好ましく、中でも下記式(MC)で表されるものも好ましい。
リチウム含有遷移金属酸化物としてはリチウム含有遷移金属リン酸化物を用いることも好ましく、中でも下記式(MC)で表されるものも好ましい。
LieM3(PO4)f ・・・ 式(MC)
式中、eは0~2(0.2~2が好ましい)を表し、0.5~1.5が好ましい。fは1~5を表し、0.5~2が好ましい。
上記M3はV、Ti、Cr、Mn、Fe、Co、Ni、Cuから選択される1種以上の元素を表す。上記M3は、上記の混合元素Mbのほか、Ti、Cr、Zn、Zr、Nb等の他の金属で置換していてもよい。具体例としては、例えば、LiFePO4、Li3Fe2(PO4)3等のオリビン型リン酸鉄塩、LiFeP2O7等のピロリン酸鉄類、LiCoPO4等のリン酸コバルト類、Li3V2(PO4)3(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
なお、Liの組成を表す上記a、c、g、m、e値は、充放電により変化する値であり、典型的には、Liを含有したときの安定な状態の値で評価される。上記式(a)~(e)では特定値としてLiの組成を示しているが、これも同様に電池の動作により変化するものである。
なお、Liの組成を表す上記a、c、g、m、e値は、充放電により変化する値であり、典型的には、Liを含有したときの安定な状態の値で評価される。上記式(a)~(e)では特定値としてLiの組成を示しているが、これも同様に電池の動作により変化するものである。
本発明において、用いられる正極活物質の平均粒子径は特に限定されないが、0.1μm~50μmが好ましい。正極活物質を所定の平均粒子径にするには、通常の粉砕機や分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶媒にて洗浄した後使用してもよい。正極活物質粒子の平均粒子径の測定方法は、後記実施例の項で示した無機粒子の平均粒子径の測定方法に準ずる。
正極活物質の濃度は特に限定されないが、固体電解質組成物中、固形成分100質量%において、20~90質量%が好ましく、40~80質量%がより好ましい。
(ii)負極活物質
本発明の固体電解質組成物には、負極活物質を含有させてもよい。それにより、負極材料用の組成物とすることができる。負極活物質としては、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、及び、SnやSi、In等のリチウムと合金形成可能な金属等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。なかでも炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵、放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタンおよびリチウムから選択される原子を少なくとも1種含有していることが、高電流密度充放電特性の観点で好ましい。
本発明の固体電解質組成物には、負極活物質を含有させてもよい。それにより、負極材料用の組成物とすることができる。負極活物質としては、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、及び、SnやSi、In等のリチウムと合金形成可能な金属等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。なかでも炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵、放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタンおよびリチウムから選択される原子を少なくとも1種含有していることが、高電流密度充放電特性の観点で好ましい。
負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、天然黒鉛、気相成長黒鉛等の人造黒鉛、及びPAN系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。
これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素材料と黒鉛系炭素材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔や密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報に記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報に記載の被覆層を有する黒鉛等を用いることもできる。
負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下が好ましく、5倍以下がより好ましく、結晶性の回折線を有さないことが特に好ましい。
上記非晶質酸化物及びカルコゲナイドからなる化合物群のなかでも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb、Biの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、及びカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga2O3、SiO、GeO、SnO、SnO2、PbO、PbO2、Pb2O3、Pb2O4、Pb3O4、Sb2O3、Sb2O4、Sb2O5、Bi2O3、Bi2O4、SnSiO3、GeS、SnS、SnS2、PbS、PbS2、Sb2S3、Sb2S5、SnSiS3などが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、Li2SnO2であってもよい。
負極活物質の平均粒子径は、0.1μm~60μmが好ましい。所定の平均粒子径にするには、よく知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の平均粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。負極活物質粒子の平均粒子径の測定方法は、後記実施例の項で示した無機粒子の平均粒子径の測定方法に準ずる。
上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
Sn、Si、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵および放出できる炭素材料や、リチウム、リチウム合金、リチウムと合金可能な金属が好適に挙げられる。
本発明においては、Si元素を有する負極活物質を適用することが好ましい。一般的にSi負極は、現行の炭素負極(黒鉛、アセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、質量あたりのLiイオン吸蔵量が増加するため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。一方で、Liイオンの吸蔵、放出に伴う体積変化が大きいことが知られており、一例では、炭素負極で体積膨張が1.2~1.5倍程度のところ、Si負極では約3倍になる例もある。この膨張収縮を繰り返すこと(充放電を繰り返すこと)によって、電極層の耐久性が不足し、例えば接触不足を起こしやすくなったり、サイクル寿命(電池寿命)が短くなったりすることも挙げられる。
本発明に係る固体電解質組成物によれば、このような膨張もしくは収縮が大きくなる電極層においてもその高い耐久性(強度)を発揮し、より効果的にその優れた利点を発揮しうるものである。
本発明に係る固体電解質組成物によれば、このような膨張もしくは収縮が大きくなる電極層においてもその高い耐久性(強度)を発揮し、より効果的にその優れた利点を発揮しうるものである。
負極活物質の濃度は特に限定されないが、固体電解質組成物中、固形成分100質量%において、10~90質量%が好ましく、20~80質量%がより好ましい。
なお、上記の実施形態では、本発明に係る固体電解質組成物に正極活物質ないし負極活物質を含有させる例を示したが、本発明はこれにより限定して解釈されるものではない。例えば、一般のバインダーを用いて正極活物質ないし負極活物質を含むペーストを調製してもよい。ただし、本発明においては、上述したとおり、上記特定のバインダーを架橋剤もしくは架橋促進剤と正極活物質と組み合わせて用いることが好ましい。また、正極および負極の活物質層には、適宜必要に応じて導電助剤を含有させてもよい。一般的な導電助剤としては、電子伝導性材料として、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や金属粉、金属繊維、ポリフェニレン誘導体などを含ませることができる。
<集電体(金属箔)>
正もしくは負極の集電体としては、化学変化を起こさない電子伝導体が用いられることが好ましい。正極の集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンなどの他にアルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、その中でも、アルミニウム、アルミニウム合金がより好ましい。負極の集電体としては、アルミニウム、銅、ステンレス鋼、ニッケル、チタンが好ましく、アルミニウム、銅、銅合金がより好ましい。
正もしくは負極の集電体としては、化学変化を起こさない電子伝導体が用いられることが好ましい。正極の集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンなどの他にアルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、その中でも、アルミニウム、アルミニウム合金がより好ましい。負極の集電体としては、アルミニウム、銅、ステンレス鋼、ニッケル、チタンが好ましく、アルミニウム、銅、銅合金がより好ましい。
上記集電体の形状としては、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。上記集電体の厚みとしては、特に限定されないが、1μm~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
<全固体二次電池の作製>
全固体二次電池の作製は常法によればよい。具体的には、上記固体電解質組成物を集電体となる金属箔上に塗布し、塗膜を形成(製膜)した電池用電極シートとする方法が挙げられる。例えば、正極集電体である金属箔上に正極材料となる組成物を塗布後、乾燥し、正極層を形成する。次いでその電池用正極シート上に、固体電解質組成物を塗布後、乾燥し、固体電解質層を形成する。さらに、その上に、負極材料となる組成物を塗布後、乾燥し、負極層を形成する。その上に、負極側の集電体(金属箔)を重ねることで、正極層と負極層の間に、固体電解質層が挟まれた全固体二次電池の構造を得ることができる。なお、上記の各組成物の塗布方法は常法によればよい。このとき、正極活物質層をなす組成物、無機固体電解質層をなす組成物(固体電解質組成物)、及び負極活物質層をなす組成物のそれぞれの塗布の後に、加熱処理を施しても良いし、重層塗布した後に加熱処理をしても良い。この加熱により溶媒を蒸発させるとともに、架橋剤もしくは架橋促進剤の作用によるポリマーの架橋を進行させることができる。加熱温度は特に限定されないが、30℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましく、100℃以上が特に好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましく、150℃以下が特に好ましい。このような温度範囲で加熱することで、分散媒体を除去し固体状態とし、かつ良好なバインダーの架橋形態を得ることができる。また、温度を高くしすぎず、電離の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性及び耐擦傷性と非加圧でのイオン伝導性を得ることができる。
全固体二次電池の作製は常法によればよい。具体的には、上記固体電解質組成物を集電体となる金属箔上に塗布し、塗膜を形成(製膜)した電池用電極シートとする方法が挙げられる。例えば、正極集電体である金属箔上に正極材料となる組成物を塗布後、乾燥し、正極層を形成する。次いでその電池用正極シート上に、固体電解質組成物を塗布後、乾燥し、固体電解質層を形成する。さらに、その上に、負極材料となる組成物を塗布後、乾燥し、負極層を形成する。その上に、負極側の集電体(金属箔)を重ねることで、正極層と負極層の間に、固体電解質層が挟まれた全固体二次電池の構造を得ることができる。なお、上記の各組成物の塗布方法は常法によればよい。このとき、正極活物質層をなす組成物、無機固体電解質層をなす組成物(固体電解質組成物)、及び負極活物質層をなす組成物のそれぞれの塗布の後に、加熱処理を施しても良いし、重層塗布した後に加熱処理をしても良い。この加熱により溶媒を蒸発させるとともに、架橋剤もしくは架橋促進剤の作用によるポリマーの架橋を進行させることができる。加熱温度は特に限定されないが、30℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましく、100℃以上が特に好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましく、150℃以下が特に好ましい。このような温度範囲で加熱することで、分散媒体を除去し固体状態とし、かつ良好なバインダーの架橋形態を得ることができる。また、温度を高くしすぎず、電離の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性及び耐擦傷性と非加圧でのイオン伝導性を得ることができる。
<全固体二次電池の用途>
本発明に係る全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
本発明に係る全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
なかでも、高容量且つ高レート放電特性が要求されるアプリケーションに適用されることが好ましい。例えば、今後大容量化が予想される蓄電設備等においては高い信頼性が必須となりさらに電池性能の両立が要求される。また、電気自動車などは高容量の二次電池を搭載し、家庭で日々充電が行われる用途が想定され、過充電時に対して一層の信頼性が求められる。本発明によれば、このような使用形態に好適に対応してその優れた効果を発揮することができる。
本発明の好ましい実施形態によれば、以下のような各応用形態が導かれる。
(1)周期律表第1族または第2族に属する金属のイオンの挿入放出が可能な活物質を含んでいる固体電解質組成物(正極または負極の電極用組成物)
(2)上記固体電解質組成物を金属箔上に製膜した電池用電極シート
(3)上記固体電解質組成物に含有される架橋剤の架橋剤側反応性基と、ポリマーの反応性基とが反応して結合し、上記ポリマーが架橋構造を形成する電池用電極シート
(4)上記固体電解質組成物に含有されるポリマーの複数の反応性基どうしが、架橋促進剤の作用により反応して結合し、上記ポリマーが架橋構造を形成する電池用電極シート
(5)正極活物質層と負極活物質層と固体電解質層とを具備する全固体二次電池であって、上記正極活物質層、負極活物質層、および固体電解質層の少なくともいずれかを上記固体電解質組成物で構成した層とした全固体二次電池
(6)上記固体電解質組成物を金属箔上に配置し、これを製膜する電池用電極シートの製造方法
この製膜に際し、加熱することにより、架橋剤もしくは架橋促進剤の作用を介して、バインダーポリマーを架橋させる。
(7)上記電池用電極シートの製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法
(1)周期律表第1族または第2族に属する金属のイオンの挿入放出が可能な活物質を含んでいる固体電解質組成物(正極または負極の電極用組成物)
(2)上記固体電解質組成物を金属箔上に製膜した電池用電極シート
(3)上記固体電解質組成物に含有される架橋剤の架橋剤側反応性基と、ポリマーの反応性基とが反応して結合し、上記ポリマーが架橋構造を形成する電池用電極シート
(4)上記固体電解質組成物に含有されるポリマーの複数の反応性基どうしが、架橋促進剤の作用により反応して結合し、上記ポリマーが架橋構造を形成する電池用電極シート
(5)正極活物質層と負極活物質層と固体電解質層とを具備する全固体二次電池であって、上記正極活物質層、負極活物質層、および固体電解質層の少なくともいずれかを上記固体電解質組成物で構成した層とした全固体二次電池
(6)上記固体電解質組成物を金属箔上に配置し、これを製膜する電池用電極シートの製造方法
この製膜に際し、加熱することにより、架橋剤もしくは架橋促進剤の作用を介して、バインダーポリマーを架橋させる。
(7)上記電池用電極シートの製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法
また、本発明の好ましい実施形態においては、界面活性剤を入れずにバインダー粒子を形成することができ、それに伴う副反応等の阻害因子を低減することができるという利点を有する。また、それに伴い、転層乳化工程を省略できることができ、相対的に製造効率の向上にもつながる。
全固体二次電池とは、正極、負極、電解質がともに固体で構成された二次電池を言う。換言すれば、電解質としてカーボネート系の溶媒を用いるような電解液型の二次電池とは区別される。このなかで、本発明は無機全固体二次電池を前提とする。全固体二次電池には、電解質としてポリエチレンオキサイド等の高分子化合物を用いる有機(高分子)全固体二次電池と、上記のLi-P-SやLLT、LLZ等を用いる無機全固体二次電池とに区分される。なお、無機全固体二次電池に高分子化合物を適用することは妨げられず、正極活物質、負極活物質、無機固体電解質粒子のバインダーとして高分子化合物を適用することができる。
無機固体電解質とは、上述した高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLi-P-SやLLT、LLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがあるが、上記のイオン輸送材料としての電解質と区別するときにはこれを「電解質塩」または「支持電解質」と呼ぶ。電解質塩としては例えばLiTFSI(リチウムビストリフルオロメタンスルホンイミド)が挙げられる。
本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集や偏在が生じていてもよい。
無機固体電解質とは、上述した高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLi-P-SやLLT、LLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがあるが、上記のイオン輸送材料としての電解質と区別するときにはこれを「電解質塩」または「支持電解質」と呼ぶ。電解質塩としては例えばLiTFSI(リチウムビストリフルオロメタンスルホンイミド)が挙げられる。
本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集や偏在が生じていてもよい。
以下に実施例に基づき本発明についてさらに詳細に説明するが、本発明がこれに限定して解釈されるものではない。なお、特に断らない限り、本実施例で示す配合は質量基準である。
(実施例1)
(高分子化合物の合成例)
還流冷却管、ガス導入コックを付した1L三口フラスコに、マクロモノマーM-1の43質量%ヘプタン溶液を47質量部、ヘプタンを60質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温した。別容器にて調製した液(マクロモノマーM-1の43質量%ヘプタン溶液を93質量部、アクリル酸メチル〔A-3〕(和光純薬工業株式会社製)を104質量部、メタクリル酸メチル〔A-4〕(和光純薬工業株式会社製)を26質量部、メタクリル酸グリシジル〔a-104〕(和光純薬工業株式会社製)を10質量部、V-601(商品名、ジメチル-2,2’-アゾビス(2-メチルプロピネート、和光純薬工業株式会社製)を1.1質量部混合した液)を2時間かけて滴下し、その後80℃で2時間攪拌した。その後V-601を0.2g添加し、さらに95℃で2時間攪拌した。室温まで冷却した後、ヘプタンを250質量部加えてろ過することで樹脂(高分子化合物)B-1の分散液を得た。固形分濃度は30.2%、平均粒子径は220nmであった。樹脂B-1の質量平均分子量は123,000であり、ガラス転移温度(Tg)は-15.2℃であった。
樹脂B-1と同様にして合成したその他の樹脂と共に、下記表2にまとめて記載する。
(高分子化合物の合成例)
還流冷却管、ガス導入コックを付した1L三口フラスコに、マクロモノマーM-1の43質量%ヘプタン溶液を47質量部、ヘプタンを60質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温した。別容器にて調製した液(マクロモノマーM-1の43質量%ヘプタン溶液を93質量部、アクリル酸メチル〔A-3〕(和光純薬工業株式会社製)を104質量部、メタクリル酸メチル〔A-4〕(和光純薬工業株式会社製)を26質量部、メタクリル酸グリシジル〔a-104〕(和光純薬工業株式会社製)を10質量部、V-601(商品名、ジメチル-2,2’-アゾビス(2-メチルプロピネート、和光純薬工業株式会社製)を1.1質量部混合した液)を2時間かけて滴下し、その後80℃で2時間攪拌した。その後V-601を0.2g添加し、さらに95℃で2時間攪拌した。室温まで冷却した後、ヘプタンを250質量部加えてろ過することで樹脂(高分子化合物)B-1の分散液を得た。固形分濃度は30.2%、平均粒子径は220nmであった。樹脂B-1の質量平均分子量は123,000であり、ガラス転移温度(Tg)は-15.2℃であった。
樹脂B-1と同様にして合成したその他の樹脂と共に、下記表2にまとめて記載する。
表中の%は質量%を意味する(共重合比に相当する)
M1:繰り返し単位(1)を構成するモノマー
M2:繰り返し単位(2)を構成するモノマー
a:反応性基含有モノマー(B-11は合成後、塩基によりa-118の側鎖よりHClを脱離してアクリロイル基へ変換後用いた。)
M1:繰り返し単位(1)を構成するモノマー
M2:繰り返し単位(2)を構成するモノマー
a:反応性基含有モノマー(B-11は合成後、塩基によりa-118の側鎖よりHClを脱離してアクリロイル基へ変換後用いた。)
<B-11の脱離反応例>
還流冷却管、ガス導入コックを付した1L三口フラスコにトルエンを100質量部、バインダーB-11を100質量部、トリエチルアミンを20質量部加えた。流速200mL/minにて窒素ガスを10分間導入した後に100℃で8時間攪拌した。室温まで冷却したのちメタノールに加えて沈殿させメタノールで2回洗浄後、50℃で送風乾燥することでa-118部位のHClの脱離反応を行い、アクリロイル基を形成させた。
還流冷却管、ガス導入コックを付した1L三口フラスコにトルエンを100質量部、バインダーB-11を100質量部、トリエチルアミンを20質量部加えた。流速200mL/minにて窒素ガスを10分間導入した後に100℃で8時間攪拌した。室温まで冷却したのちメタノールに加えて沈殿させメタノールで2回洗浄後、50℃で送風乾燥することでa-118部位のHClの脱離反応を行い、アクリロイル基を形成させた。
<マクロモノマー M-1の合成例>
還流冷却管、ガス導入コックを付した1L三口フラスコにトルエンを190質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温した。別容器にて調製した液(処方α)を2時間かけて滴下し、その後80℃で2時間攪拌した。その後V-601を0.2g添加し、さらに95℃で2時間攪拌した。攪拌後95℃に保った溶液に2,2,6,6-テトラメチルピペリジン-1-オキシル(東京化成工業株式会社製)を0.025質量部、メタクリル酸グリシジル(和光純薬工業株式会社製)を13質量部、テトラブチルアンモニウムブロミド(東京化成工業株式会社製)を2.5質量部加えて大気下で120℃3時間攪拌した。室温まで冷却した後、メタノールに加えて沈殿させメタノールで2回洗浄後、50℃で送風乾燥した。得られた固体を300質量部のヘプタンに溶解させることでマクロモノマーM-1の溶液を得た。固形分濃度は43.4%、SP値は9.1、質量平均分子量は16,000であった。
(処方α)
メタクリル酸ドデシル MM-2(和光純薬工業株式会社製)150質量部
メタクリル酸メチル A-4(和光純薬工業株式会社製) 59質量部
3-メルカプトイソ酪酸 (東京化成工業株式会社製) 2質量部
V-601 (和光純薬工業株式会社製) 1.9質量部
還流冷却管、ガス導入コックを付した1L三口フラスコにトルエンを190質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温した。別容器にて調製した液(処方α)を2時間かけて滴下し、その後80℃で2時間攪拌した。その後V-601を0.2g添加し、さらに95℃で2時間攪拌した。攪拌後95℃に保った溶液に2,2,6,6-テトラメチルピペリジン-1-オキシル(東京化成工業株式会社製)を0.025質量部、メタクリル酸グリシジル(和光純薬工業株式会社製)を13質量部、テトラブチルアンモニウムブロミド(東京化成工業株式会社製)を2.5質量部加えて大気下で120℃3時間攪拌した。室温まで冷却した後、メタノールに加えて沈殿させメタノールで2回洗浄後、50℃で送風乾燥した。得られた固体を300質量部のヘプタンに溶解させることでマクロモノマーM-1の溶液を得た。固形分濃度は43.4%、SP値は9.1、質量平均分子量は16,000であった。
(処方α)
メタクリル酸ドデシル MM-2(和光純薬工業株式会社製)150質量部
メタクリル酸メチル A-4(和光純薬工業株式会社製) 59質量部
3-メルカプトイソ酪酸 (東京化成工業株式会社製) 2質量部
V-601 (和光純薬工業株式会社製) 1.9質量部
(マクロモノマー M-2の合成例)
12-ヒドロキシステアリン酸(和光純薬工業株式会社製)の自己縮合体(GPCポリスチレンスタンダード質量平均分子量:9,000)にグリシジルメタクリレート(東京化成工業株式会社製)を反応させることでマクロモノマーM-2を得た。12-ヒドロキシステアリン酸とグリシジルメタクリレートの比率は、99:1とした(モル比)。このマクロモノマーM-2のSP値は9.2、質量平均分子量は9,000であった。
12-ヒドロキシステアリン酸(和光純薬工業株式会社製)の自己縮合体(GPCポリスチレンスタンダード質量平均分子量:9,000)にグリシジルメタクリレート(東京化成工業株式会社製)を反応させることでマクロモノマーM-2を得た。12-ヒドロキシステアリン酸とグリシジルメタクリレートの比率は、99:1とした(モル比)。このマクロモノマーM-2のSP値は9.2、質量平均分子量は9,000であった。
(マクロモノマー M-3の合成例)
12-ヒドロキシステアリン酸(和光純薬工業株式会社製)の自己縮合体(GPCポリスチレンスタンダード質量平均分子量:2,000)に4-ヒドロキシスチレン(和光純薬工業株式会社)を反応させることでマクロモノマーM-3を得た。12-ヒドロキシステアリン酸と4-ヒドロキシスチレンの比率は、99:1とした(モル比)。このマクロモノマーM-3のSP値は9.2、質量平均分子量2,100であった。
12-ヒドロキシステアリン酸(和光純薬工業株式会社製)の自己縮合体(GPCポリスチレンスタンダード質量平均分子量:2,000)に4-ヒドロキシスチレン(和光純薬工業株式会社)を反応させることでマクロモノマーM-3を得た。12-ヒドロキシステアリン酸と4-ヒドロキシスチレンの比率は、99:1とした(モル比)。このマクロモノマーM-3のSP値は9.2、質量平均分子量2,100であった。
(マクロモノマー M-4)
片末端メタクリロイル化ポリ-n-ブチルアクリレートオリゴマー(GPCポリスチレンスタンダード質量平均分子量:13,000、商品名:AB-6、東亜合成化学工業(株)製)をマクロモノマーM-4として用いた。このマクロモノマーM-4のSP値は、9.3であった。
片末端メタクリロイル化ポリ-n-ブチルアクリレートオリゴマー(GPCポリスチレンスタンダード質量平均分子量:13,000、商品名:AB-6、東亜合成化学工業(株)製)をマクロモノマーM-4として用いた。このマクロモノマーM-4のSP値は、9.3であった。
<マクロモノマー M-5の合成例>
還流冷却管、ガス導入コックを付した1L三口フラスコにトルエンを190質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温した。別容器にて調製した液(処方β)を2時間かけて滴下し、その後80℃で2時間攪拌した。その後V-601を0.2質量部添加し、さらに95℃で2時間攪拌した。攪拌後95℃に保った溶液に2,2,6,6-テトラメチルピペリジン-1-オキシル フリーラジカル(東京化成工業株式会社製)を0.025質量部、メタクリル酸グリシジル(和光純薬工業株式会社製)を13質量部、テトラブチルアンモニウムブロミド(東京化成工業株式会社製)を2.5質量部加えて大気下で120℃3時間攪拌した。室温まで冷却した後、メタノールに加えて沈殿させメタノールで2回洗浄後、50℃で送風乾燥した。得られた固体を300質量部のヘプタンに溶解させることでマクロモノマーM-5の溶液を得た。固形分濃度は38.1%、SP値は9.1、質量平均分子量は3,500であった。
還流冷却管、ガス導入コックを付した1L三口フラスコにトルエンを190質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温した。別容器にて調製した液(処方β)を2時間かけて滴下し、その後80℃で2時間攪拌した。その後V-601を0.2質量部添加し、さらに95℃で2時間攪拌した。攪拌後95℃に保った溶液に2,2,6,6-テトラメチルピペリジン-1-オキシル フリーラジカル(東京化成工業株式会社製)を0.025質量部、メタクリル酸グリシジル(和光純薬工業株式会社製)を13質量部、テトラブチルアンモニウムブロミド(東京化成工業株式会社製)を2.5質量部加えて大気下で120℃3時間攪拌した。室温まで冷却した後、メタノールに加えて沈殿させメタノールで2回洗浄後、50℃で送風乾燥した。得られた固体を300質量部のヘプタンに溶解させることでマクロモノマーM-5の溶液を得た。固形分濃度は38.1%、SP値は9.1、質量平均分子量は3,500であった。
(処方β)
メタクリル酸ドデシル MM-2(和光純薬工業株式会社製)150質量部
メタクリル酸メチル A-4(和光純薬工業株式会社製) 59質量部
アクリル酸(和光純薬工業株式会社製) 2質量部
V-601(和光純薬工業株式会社製) 5質量部
メタクリル酸ドデシル MM-2(和光純薬工業株式会社製)150質量部
メタクリル酸メチル A-4(和光純薬工業株式会社製) 59質量部
アクリル酸(和光純薬工業株式会社製) 2質量部
V-601(和光純薬工業株式会社製) 5質量部
(固体電解質組成物の調製例)
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、固体電解質(下記で合成した硫化物固体電解質等)を4.85g、各樹脂(B-1等)を0.15g(固形成分質量)、架橋促進剤(例えばS-1の場合は三新化学工業株式会社製、商品名「サンエイドSI-100L」、0.05g)または架橋剤(例えばS-5の場合は下記で合成したAD-1を0.1g)、分散媒体(ヘプタン等)を17.0g投入した後に、フリッチュ社製遊星ボールミルに容器をセットし、回転数300rpmで2時間混合を続け、下記表3に示す各固体電解質組成物を得た。
なお、下記表3では、架橋促進剤を促進剤と省略して記載した。
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、固体電解質(下記で合成した硫化物固体電解質等)を4.85g、各樹脂(B-1等)を0.15g(固形成分質量)、架橋促進剤(例えばS-1の場合は三新化学工業株式会社製、商品名「サンエイドSI-100L」、0.05g)または架橋剤(例えばS-5の場合は下記で合成したAD-1を0.1g)、分散媒体(ヘプタン等)を17.0g投入した後に、フリッチュ社製遊星ボールミルに容器をセットし、回転数300rpmで2時間混合を続け、下記表3に示す各固体電解質組成物を得た。
なお、下記表3では、架橋促進剤を促進剤と省略して記載した。
<表の注釈>
表中数字は質量部
バインダーの番号は上記で合成した樹脂を参照
LLT :Li0.33La0.55TiO3 (豊島製作所製)
LLZ :Li7La3Zr2O12 ランタンジルコン酸リチウム(豊島製作所製)
SI-100L :サンエイド SI-100L
(商品名、三新化学工業株式会社製、アリールスルホニウム塩型)
V-601:V-601(商品名、和光純薬工業株式会社製)
DBE:ジブチルエーテル
EPDM:エチレンプロピレンジエンゴム
(住友化学社製、質量平均分子量120,000、溶剤溶解時平均粒子径10nm未満)
表中数字は質量部
バインダーの番号は上記で合成した樹脂を参照
LLT :Li0.33La0.55TiO3 (豊島製作所製)
LLZ :Li7La3Zr2O12 ランタンジルコン酸リチウム(豊島製作所製)
SI-100L :サンエイド SI-100L
(商品名、三新化学工業株式会社製、アリールスルホニウム塩型)
V-601:V-601(商品名、和光純薬工業株式会社製)
DBE:ジブチルエーテル
EPDM:エチレンプロピレンジエンゴム
(住友化学社製、質量平均分子量120,000、溶剤溶解時平均粒子径10nm未満)
AD-1:下記の方法で合成したポリマー
還流冷却管、ガス導入コックを付した1L三口フラスコにトルエンを190質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温した。別容器にて調製した液(アクリル酸ブチルを150質量部、ヒドロキシブチルアクリレートを50質量部、V-601(和光純薬工業株式会社製)を1.9質量部混合した液)を2時間かけて滴下し、その後80℃で2時間攪拌した。その後V-601を0.2g添加し、さらに95℃で2時間攪拌した。室温まで冷却した後、メタノールに加えて沈殿させ、メタノールで2回洗浄後、120℃で真空乾燥することでポリマーAD-1を得た。
還流冷却管、ガス導入コックを付した1L三口フラスコにトルエンを190質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に80℃に昇温した。別容器にて調製した液(アクリル酸ブチルを150質量部、ヒドロキシブチルアクリレートを50質量部、V-601(和光純薬工業株式会社製)を1.9質量部混合した液)を2時間かけて滴下し、その後80℃で2時間攪拌した。その後V-601を0.2g添加し、さらに95℃で2時間攪拌した。室温まで冷却した後、メタノールに加えて沈殿させ、メタノールで2回洗浄後、120℃で真空乾燥することでポリマーAD-1を得た。
TEG:テトラエチレングリコール(和光純薬株式会社製)
EA:エチレンジアミン(和光純薬株式会社製)
PTFE:ポリテトラフルオロエチレン粒子
EA:エチレンジアミン(和光純薬株式会社製)
PTFE:ポリテトラフルオロエチレン粒子
BC-1:下記の方法で合成したポリマー
オートクレーブに、アクリル酸n-ブチル700質量部、スチレン200質量部、メタクリル酸5質量部、ジビニルベンゼン10質量部、乳化剤としてのポリオキシエチレンラウリルエーテル(花王社製、エマルゲン108、非イオン性界面活性剤、アルキル基の炭素数12、HLB値12.1)25質量部、イオン交換水1500質量部、重合開始剤としての2,2’-アゾビスイソブチロニトリル15質量部を仕込み、十分攪拌した。その後、80℃に加温して重合を行なった。そして、重合開始後、冷却して重合反応を停止することで、ポリマー粒子のラテックスを得た。
オートクレーブに、アクリル酸n-ブチル700質量部、スチレン200質量部、メタクリル酸5質量部、ジビニルベンゼン10質量部、乳化剤としてのポリオキシエチレンラウリルエーテル(花王社製、エマルゲン108、非イオン性界面活性剤、アルキル基の炭素数12、HLB値12.1)25質量部、イオン交換水1500質量部、重合開始剤としての2,2’-アゾビスイソブチロニトリル15質量部を仕込み、十分攪拌した。その後、80℃に加温して重合を行なった。そして、重合開始後、冷却して重合反応を停止することで、ポリマー粒子のラテックスを得た。
Li/P/S:下記で合成した硫化物固体電解質
アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(Li2S、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P2S5、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、乳鉢に投入した。Li2S及びP2S5はモル比でLi2S:P2S5=75:25とした。メノウ製乳鉢上において、メノウ製乳棒を用いて、5分間混合した。
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、前記混合物全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7に容器をセットし、25℃で、回転数510rpmで20時間メカニカルミリングを行うことで黄色粉体の硫化物固体電解質材料(Li/P/Sガラス)6.20gを得た。
アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(Li2S、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P2S5、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、乳鉢に投入した。Li2S及びP2S5はモル比でLi2S:P2S5=75:25とした。メノウ製乳鉢上において、メノウ製乳棒を用いて、5分間混合した。
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、前記混合物全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7に容器をセットし、25℃で、回転数510rpmで20時間メカニカルミリングを行うことで黄色粉体の硫化物固体電解質材料(Li/P/Sガラス)6.20gを得た。
(固体電解質シートの作製例)
上記で得られた各固体電解質組成物を厚み20μmのアルミ箔上に、任意のクリアランスを有するアプリケーターにより塗布し、80℃1時間とさらに120℃1時間加熱し、塗布溶媒を乾燥させた。その後、ヒートプレス機を用いて、任意の密度になるように加熱および加圧し、各固体電解質シートを得た。電解質層の膜厚は50μmであった。他の固体電解質シートも同様の方法で調製した。以下の試験を行い、得られた結果を下記表4に記載した。
上記で得られた各固体電解質組成物を厚み20μmのアルミ箔上に、任意のクリアランスを有するアプリケーターにより塗布し、80℃1時間とさらに120℃1時間加熱し、塗布溶媒を乾燥させた。その後、ヒートプレス機を用いて、任意の密度になるように加熱および加圧し、各固体電解質シートを得た。電解質層の膜厚は50μmであった。他の固体電解質シートも同様の方法で調製した。以下の試験を行い、得られた結果を下記表4に記載した。
<イオン伝導度の測定>
上記で得られた固体電解質シートを直径14.5mmの円板状に切り出しコインケースに入れた。具体的には、直径15mmの円板状に切り出したアルミ箔を固体電解質層と接触させ、スペーサーとワッシャーを組み込んで、ステンレス製の2032型コインケースに入れた。コインケースをかしめることでイオン伝導度測定用セルを作製した。
この試験体の構造の詳細は図2を参照することができる。11がコインケース、12が固体電解質電極シート、13がコイン電池である。
上記で得られた固体電解質シートを直径14.5mmの円板状に切り出しコインケースに入れた。具体的には、直径15mmの円板状に切り出したアルミ箔を固体電解質層と接触させ、スペーサーとワッシャーを組み込んで、ステンレス製の2032型コインケースに入れた。コインケースをかしめることでイオン伝導度測定用セルを作製した。
この試験体の構造の詳細は図2を参照することができる。11がコインケース、12が固体電解質電極シート、13がコイン電池である。
上記で得られたイオン伝導度測定用セルを用いて、イオン伝導度を測定した。具体的には、30℃の恒温槽中、SOLARTRON社製 1255B FREQUENCY RESPONSE ANALYZER(商品名)を用いて電圧振幅5mV、周波数1MHz~1Hzまで交流インピーダンス測定した。これにより試料の膜厚方向の抵抗を求め、下記式(I)により計算して求めた。
イオン伝導度(mS/cm)=
1000×試料膜厚(cm)/(抵抗(Ω)×試料面積(cm2))・・・式(I)
1000×試料膜厚(cm)/(抵抗(Ω)×試料面積(cm2))・・・式(I)
<耐擦傷性の評価>
固体電解質シートを径の異なるSUS棒で、シートとSUS棒のなす角度を50~70°に保ちながら3~5cm/秒で擦り、剥離の有無を観察し、剥離が生じたSUS棒の直径で評価を行った(図4.(a))。
固体電解質シートを径の異なるSUS棒で、シートとSUS棒のなす角度を50~70°に保ちながら3~5cm/秒で擦り、剥離の有無を観察し、剥離が生じたSUS棒の直径で評価を行った(図4.(a))。
5: 3mm未満
4: 3mm以上5mm未満
3: 5mm以上10mm未満
2: 10mm以上50mm未満
1: 50mm以上
4: 3mm以上5mm未満
3: 5mm以上10mm未満
2: 10mm以上50mm未満
1: 50mm以上
なお、この擦傷試験は製造時の部材の傷入りの指標となるものである。したがって、この性能が良好なほど、製造適正に優れ、製造品質も良化する方向となる。
<結着性の評価>
固体電解質シートを2cm×10cmの大きさに切り出した。このシートの集電体側の面を異なる径のSUS棒に長手方向に沿って巻きつけ、剥離の有無を観察し、剥離が生じたSUS棒の直径で評価を行った(図4.(b))。
固体電解質シートを2cm×10cmの大きさに切り出した。このシートの集電体側の面を異なる径のSUS棒に長手方向に沿って巻きつけ、剥離の有無を観察し、剥離が生じたSUS棒の直径で評価を行った(図4.(b))。
5: 10mm未満
4: 10mm以上20mm未満
3: 20mm以上40mm未満
2: 40mm以上100mm未満
1: 100mm以上
4: 10mm以上20mm未満
3: 20mm以上40mm未満
2: 40mm以上100mm未満
1: 100mm以上
なお、下記表4の試験c11~c13は比較例である。
(実施例2)
二次電池正極用組成物の調製
(1)正極用組成物の調製
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、Li/P/Sを2.7g、各樹脂(B-1等)を固形分として0.3g、架橋促進剤(例えばU-1の場合は三新化学工業株式会社製、商品名「サンエイドSI-100L」、0.1g)または架橋剤(例えばU-5の場合は上記で合成したAD-1を0.2g)、分散媒体として、ヘプタン等22gを投入した。その後に、フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、25℃で、回転数300rpmで2時間攪拌した。その後、活物質としてNMC(日本化学工業株式会社製)等7.0gを投入し、同様に、遊星ボールミルP-7に容器をセットし、25℃、回転数100rpmで15分間混合を続けることで各正極用組成物を得た。
なお、下記表5では、架橋促進剤を促進剤と省略して記載した。
二次電池正極用組成物の調製
(1)正極用組成物の調製
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、Li/P/Sを2.7g、各樹脂(B-1等)を固形分として0.3g、架橋促進剤(例えばU-1の場合は三新化学工業株式会社製、商品名「サンエイドSI-100L」、0.1g)または架橋剤(例えばU-5の場合は上記で合成したAD-1を0.2g)、分散媒体として、ヘプタン等22gを投入した。その後に、フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、25℃で、回転数300rpmで2時間攪拌した。その後、活物質としてNMC(日本化学工業株式会社製)等7.0gを投入し、同様に、遊星ボールミルP-7に容器をセットし、25℃、回転数100rpmで15分間混合を続けることで各正極用組成物を得た。
なお、下記表5では、架橋促進剤を促進剤と省略して記載した。
<表の注釈>
LCO;LiCoO2 コバルト酸リチウム
NMC;Li(Ni1/3Mn1/3Co1/3)O2 ニッケル、マンガン、コバルト酸リチウム
LCO;LiCoO2 コバルト酸リチウム
NMC;Li(Ni1/3Mn1/3Co1/3)O2 ニッケル、マンガン、コバルト酸リチウム
二次電池用正極シートの作製
上記で得られた各二次電池正極用組成物(U-1等)を厚み20μmのアルミ箔上に、任意のクリアランスを有するアプリケーターにより塗布し、80℃1時間とさらに120℃1時間加熱し、塗布溶媒を乾燥させた。その後、ヒートプレス機を用いて、任意の密度になるように加熱および加圧し、各二次電池用正極シートを得た。
上記で得られた各二次電池正極用組成物(U-1等)を厚み20μmのアルミ箔上に、任意のクリアランスを有するアプリケーターにより塗布し、80℃1時間とさらに120℃1時間加熱し、塗布溶媒を乾燥させた。その後、ヒートプレス機を用いて、任意の密度になるように加熱および加圧し、各二次電池用正極シートを得た。
二次電池用電極シートの作製
上記で得られた二次電池用正極上に、上記で得られた各固体電解質組成物(S-1等)を、任意のクリアランスを有するアプリケーターにより塗布し、80℃1時間とさらに120℃1時間加熱した。その後、ヒートプレス機を用いて、任意の密度になるように加熱および加圧し、各二次電池用電極シートを得た。正極層の膜厚は80μm、電解質層の膜厚は30μmであった。
上記で得られた二次電池用正極上に、上記で得られた各固体電解質組成物(S-1等)を、任意のクリアランスを有するアプリケーターにより塗布し、80℃1時間とさらに120℃1時間加熱した。その後、ヒートプレス機を用いて、任意の密度になるように加熱および加圧し、各二次電池用電極シートを得た。正極層の膜厚は80μm、電解質層の膜厚は30μmであった。
全固体二次電池の作製
上記で得られた二次電池用電極シートを直径14.5mmの円板状に切り出し、スペーサーとワッシャーを組み込んだステンレス製の2032型コインケースに入れ、固体電解質(SE)層上に15mmφに切り出したインジウム箔を重ねた。その上にさらにステンレス箔を重ねた後、コインケースをかしめることで全固体二次電池を作製した(試験体は図2を参照)。
以下の試験を行い、得られた結果を下記表6に記載した。
上記で得られた二次電池用電極シートを直径14.5mmの円板状に切り出し、スペーサーとワッシャーを組み込んだステンレス製の2032型コインケースに入れ、固体電解質(SE)層上に15mmφに切り出したインジウム箔を重ねた。その上にさらにステンレス箔を重ねた後、コインケースをかしめることで全固体二次電池を作製した(試験体は図2を参照)。
以下の試験を行い、得られた結果を下記表6に記載した。
<サイクル特性の評価>
上記で得られた全固体二次電池を東洋システム社製充放電評価装置TOSCAT-3000(商品名)により評価を実施した。充電は電流密度0.2mA/cm2で電池電圧が3.6Vに達するまで行い、3.6Vに到達後は、電流密度が0.02mA/cm2未満となるまで、定電圧充電を実施した。放電は電流密度0.2mA/cm2で電池電圧が2.5Vに達するまで行った。上記条件で3サイクル充放電を繰り返すことで初期化を行った。初期化後1サイクル目の放電容量を100%とし、20サイクル充放電を繰り返した際の放電容量維持率を以下の基準で評価を実施した。
上記で得られた全固体二次電池を東洋システム社製充放電評価装置TOSCAT-3000(商品名)により評価を実施した。充電は電流密度0.2mA/cm2で電池電圧が3.6Vに達するまで行い、3.6Vに到達後は、電流密度が0.02mA/cm2未満となるまで、定電圧充電を実施した。放電は電流密度0.2mA/cm2で電池電圧が2.5Vに達するまで行った。上記条件で3サイクル充放電を繰り返すことで初期化を行った。初期化後1サイクル目の放電容量を100%とし、20サイクル充放電を繰り返した際の放電容量維持率を以下の基準で評価を実施した。
A: 96%以上
B: 93%以上96%未満
C: 90%以上93%未満
D: 90%未満
B: 93%以上96%未満
C: 90%以上93%未満
D: 90%未満
<耐擦傷性および結着性の評価>
上記で得られた二次電池用正極シートについて、試験101と同様の試験により耐擦傷性および結着性を評価した。
上記で得られた二次電池用正極シートについて、試験101と同様の試験により耐擦傷性および結着性を評価した。
なお、下記表6の試験c21~c23は比較例である。
(実施例3)
上記マクロモノマーM-1に導入したA-4(処方α)の比率を変えたり、除いたり、A-4の一部または全てをA-3、A-31に置き換えたりして各マクロモノマーを合成した。樹脂B-1のマクロモノマーM-1に代えて、これらのマクロモノマーを用いて、試験101および試験201と同様に試験を行った。その結果、いずれにおいても、耐擦傷性、結着性、イオン伝導度、放電容量維持率の各項目で、良好な性能を示すことを確認した。
上記マクロモノマーM-1に導入したA-4(処方α)の比率を変えたり、除いたり、A-4の一部または全てをA-3、A-31に置き換えたりして各マクロモノマーを合成した。樹脂B-1のマクロモノマーM-1に代えて、これらのマクロモノマーを用いて、試験101および試験201と同様に試験を行った。その結果、いずれにおいても、耐擦傷性、結着性、イオン伝導度、放電容量維持率の各項目で、良好な性能を示すことを確認した。
(実施例4)
上記マクロモノマーM-1に導入したMM-2(処方α)に代えて、下記の各モノマーを用いてマクロモノマーを合成した。これらのマクロモノマーを用いて、試験101および試験201と同様に試験を行った。その結果、いずれにおいても、耐擦傷性、結着性、イオン伝導度、放電容量維持率の各項目で、良好な性能を示すことを確認した。
なお、下記マクロモノマーMM-10におけるn2は、10≦n2≦200を表す。
上記マクロモノマーM-1に導入したMM-2(処方α)に代えて、下記の各モノマーを用いてマクロモノマーを合成した。これらのマクロモノマーを用いて、試験101および試験201と同様に試験を行った。その結果、いずれにおいても、耐擦傷性、結着性、イオン伝導度、放電容量維持率の各項目で、良好な性能を示すことを確認した。
なお、下記マクロモノマーMM-10におけるn2は、10≦n2≦200を表す。
(実施例5)
上記樹脂B-1の合成において、主鎖をなすモノマーとして用いたM2(A-4)に代えて、A-6、A-26、A-28、A-30を用いて各樹脂(バインダーをなす高分子化合物)を合成した。これらの樹脂を用いて、試験101および試験201と同様に試験を行った。その結果、いずれにおいても、耐擦傷性、結着性、イオン伝導度、放電容量維持率の各項目で、良好な性能を示すことを確認した。
上記樹脂B-1の合成において、主鎖をなすモノマーとして用いたM2(A-4)に代えて、A-6、A-26、A-28、A-30を用いて各樹脂(バインダーをなす高分子化合物)を合成した。これらの樹脂を用いて、試験101および試験201と同様に試験を行った。その結果、いずれにおいても、耐擦傷性、結着性、イオン伝導度、放電容量維持率の各項目で、良好な性能を示すことを確認した。
(実施例6)
上記樹脂B-1の合成において、反応性基(a)を導入するモノマーとして用いたa-104に代えて、a-106を用いて樹脂(バインダーをなす高分子化合物)を合成した。これらの各樹脂を用いて、試験101および試験201と同様に試験を行った。その結果、いずれにおいても、耐擦傷性、結着性、イオン伝導度、放電容量維持率の各項目で、良好な性能を示すことを確認した。
上記樹脂B-1の合成において、反応性基(a)を導入するモノマーとして用いたa-104に代えて、a-106を用いて樹脂(バインダーをなす高分子化合物)を合成した。これらの各樹脂を用いて、試験101および試験201と同様に試験を行った。その結果、いずれにおいても、耐擦傷性、結着性、イオン伝導度、放電容量維持率の各項目で、良好な性能を示すことを確認した。
(実施例7)
試験101および試験201の条件において、バインダーB-1のA-3を、A-19、A-44に、試験101および試験201の条件において、バインダーB-1のA-4をA-26、A-56(平均粒子径はいずれも約200nm)にそれぞれ代えた以外同様にして上記の試験を行った。その結果、いずれの固体電解質シート、二次電池用電極シートおよび全固体二次電池においても良好な性能が得られることを確認した。
試験101および試験201の条件において、バインダーB-1のA-3を、A-19、A-44に、試験101および試験201の条件において、バインダーB-1のA-4をA-26、A-56(平均粒子径はいずれも約200nm)にそれぞれ代えた以外同様にして上記の試験を行った。その結果、いずれの固体電解質シート、二次電池用電極シートおよび全固体二次電池においても良好な性能が得られることを確認した。
(実施例8)
上記樹脂B-1の合成において、マクロモノマー M-1に代えて、マクロモノマー M-2、M-3を用いて各樹脂(バインダーをなす高分子化合物)を合成した。これらの樹脂を用いて、試験101および試験201と同様に試験を行った。その結果、いずれにおいても、耐擦傷性、結着性、イオン伝導度、放電容量維持率の各項目で、良好な性能を示すことを確認した。
上記樹脂B-1の合成において、マクロモノマー M-1に代えて、マクロモノマー M-2、M-3を用いて各樹脂(バインダーをなす高分子化合物)を合成した。これらの樹脂を用いて、試験101および試験201と同様に試験を行った。その結果、いずれにおいても、耐擦傷性、結着性、イオン伝導度、放電容量維持率の各項目で、良好な性能を示すことを確認した。
<粒子径の測定>
(バインダーの平均粒子径の測定)
バインダー粒子の平均粒子径の測定は、以下の手順で行った。
上記で調製したバインダーを任意の溶媒(固体電解質組成物の調製に用いる分散媒体。バインダーB-1の場合はヘプタン)を用いて、20mlサンプル瓶中で1質量%の分散液を希釈調整した。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用した。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、得られた体積平均粒子径を平均粒子径とした。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照した。1水準につき5つの試料を作製しその平均値を採用した。
(バインダーの平均粒子径の測定)
バインダー粒子の平均粒子径の測定は、以下の手順で行った。
上記で調製したバインダーを任意の溶媒(固体電解質組成物の調製に用いる分散媒体。バインダーB-1の場合はヘプタン)を用いて、20mlサンプル瓶中で1質量%の分散液を希釈調整した。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用した。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、得られた体積平均粒子径を平均粒子径とした。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照した。1水準につき5つの試料を作製しその平均値を採用した。
(無機(固体電解質)粒子の平均粒子径の測定)
無機(固体電解質)粒子の平均粒子径の測定は、以下の手順で行った。
無機粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調整した。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用した。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、得られた体積平均粒子径を平均粒子径とした。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照した。1水準につき5つの試料を作製しその平均値を採用した。
無機(固体電解質)粒子の平均粒子径の測定は、以下の手順で行った。
無機粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調整した。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用した。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、得られた体積平均粒子径を平均粒子径とした。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照した。1水準につき5つの試料を作製しその平均値を採用した。
<ガラス転移温度(Tg)の測定方法>
ガラス転移温度(Tg)は、上記の乾燥試料を用いて、示差走査熱量計(SIIテクノロジー社製、DSC7000)を用いて下記の条件で測定した。測定は同一の試料で2回実施し、2回目の測定結果を採用した。
ガラス転移温度(Tg)は、上記の乾燥試料を用いて、示差走査熱量計(SIIテクノロジー社製、DSC7000)を用いて下記の条件で測定した。測定は同一の試料で2回実施し、2回目の測定結果を採用した。
・測定室内の雰囲気:窒素(50mL/min)
・昇温速度:5℃/min
・測定開始温度:-100℃
・測定終了温度:200℃(c12は250℃)
・試料パン:アルミニウム製パン
・測定試料の質量:5mg
・Tgの算定:DSCチャートの下降開始点と下降終了点の中間温度をTgとした
・昇温速度:5℃/min
・測定開始温度:-100℃
・測定終了温度:200℃(c12は250℃)
・試料パン:アルミニウム製パン
・測定試料の質量:5mg
・Tgの算定:DSCチャートの下降開始点と下降終了点の中間温度をTgとした
本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
本願は、2015年2月12日に日本国で特許出願された特願2015-025077に基づく優先権を主張するものであり、これをここに参照してその内容を本明細書の記載の一部として取り込む。
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 コインケース
12 シート(固体電解質シートまたは二次電池用電極シート)
13 コイン電池
40 複合粒子
41 無機粒子(固体電解質粒子または活物質粒子)
42 バインダー粒子
43 高分子化合物
44 架橋剤
45 架橋点
51 SUS棒
52 SUS棒断面
61 固体電解質層または電極層
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 コインケース
12 シート(固体電解質シートまたは二次電池用電極シート)
13 コイン電池
40 複合粒子
41 無機粒子(固体電解質粒子または活物質粒子)
42 バインダー粒子
43 高分子化合物
44 架橋剤
45 架橋点
51 SUS棒
52 SUS棒断面
61 固体電解質層または電極層
Claims (19)
- 周期律表第1族または第2族に属する金属のイオンの伝導性を有する無機固体電解質、反応性基を有するポリマーで構成されたバインダー粒子および分散媒体を含み、かつ、架橋剤および架橋促進剤から選択される少なくとも1種の成分を含む固体電解質組成物。
- 前記ポリマーが側鎖成分として質量平均分子量1,000以上のマクロモノマーに由来する繰り返し単位を有する請求項1に記載の固体電解質組成物。
- 上記バインダー粒子の平均粒子径が0.01μm超20μm以下である請求項1または2に記載の固体電解質組成物。
- 前記ポリマーの反応性基が下記官能基群(A)から選択される少なくとも1つである請求項1~3のいずれか1項に記載の固体電解質組成物。
官能基群(A)
イソシアネート基、オキセタン基、エポキシ基、ジカルボン酸無水物基、シリル基、(メタ)アクリロイル基、アルケニル基、アルキニル基 - 前記架橋促進剤がカチオン重合開始剤またはラジカル重合開始剤である請求項1~4のいずれか1項に記載の固体電解質組成物。
- 前記架橋剤が分子内にヒドロキシ基、アミノ基およびメルカプト基から選択される少なくとも1種の反応性基を有する化合物である請求項1~4のいずれか1項に記載の固体電解質組成物。
- 前記架橋促進剤を前記バインダー粒子100質量部に対して0.1質量部以上50質量部以下で含有する請求項5に記載の固体電解質組成物。
- 前記架橋剤を前記バインダー粒子100質量部に対して20質量部以上200質量部以下で含有する請求項6に記載の固体電解質組成物。
- 前記ポリマーが、(メタ)アクリル酸モノマー、(メタ)アクリル酸エステルモノマー、(メタ)アクリル酸アミドおよび(メタ)アクリロニトリルから選択されるモノマーに由来する繰り返し単位を含む請求項1~8のいずれか1項に記載の固体電解質組成物。
- 前記分散媒体が、アルコール化合物溶媒、アミド化合物溶媒、アミノ化合物溶媒、ケトン化合物溶媒、エーテル化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒およびニトリル化合物溶媒から選択される請求項1~9のいずれか1項に記載の固体電解質組成物。
- 前記無機固体電解質が硫化物系無機固体電解質または酸化物系無機固体電解質である請求項1~10のいずれか1項に記載の固体電解質組成物。
- さらに電極活物質を含む請求項1~11のいずれか1項に記載の固体電解質組成物。
- 請求項1~12のいずれか1項に記載の固体電解質組成物を金属箔上に製膜した電池用電極シート。
- 前記架橋剤が分子内にヒドロキシ基、アミノ基およびメルカプト基から選択される少なくとも1種の反応性基を有し、該反応性基と、前記ポリマーの反応性基とが反応して結合し、該ポリマーが架橋構造を形成してなる請求項13に記載の電池用電極シート。
- 前記ポリマーの複数の反応性基どうしが、前記架橋促進剤の作用により反応して結合し、該ポリマーが架橋構造を形成してなる請求項13に記載の電池用電極シート。
- 請求項1~12のいずれか1項に記載の固体電解質組成物を金属箔上に製膜する電池用電極シートの製造方法。
- 製膜後に80℃以上で加熱する工程を含む請求項16に記載の電池用電極シートの製造方法。
- 請求項16または17に記載の電池用電極シートの製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
- 請求項13~15のいずれか1項に記載の電池用電極シートを具備する全固体二次電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016574736A JP6343850B2 (ja) | 2015-02-12 | 2016-01-29 | 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法 |
US15/635,858 US20170301950A1 (en) | 2015-02-12 | 2017-06-28 | Solid electrolyte composition, electrode sheet for battery using the same, all solid state secondary battery, and method for manufacturing electrode sheet for battery and all solid state secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-025077 | 2015-02-12 | ||
JP2015025077 | 2015-02-12 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/635,858 Continuation US20170301950A1 (en) | 2015-02-12 | 2017-06-28 | Solid electrolyte composition, electrode sheet for battery using the same, all solid state secondary battery, and method for manufacturing electrode sheet for battery and all solid state secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016129427A1 true WO2016129427A1 (ja) | 2016-08-18 |
Family
ID=56614368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/052820 WO2016129427A1 (ja) | 2015-02-12 | 2016-01-29 | 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20170301950A1 (ja) |
JP (1) | JP6343850B2 (ja) |
WO (1) | WO2016129427A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180057558A (ko) * | 2016-11-21 | 2018-05-30 | 주식회사 엘지화학 | 황화물계 고체 전해질 시트의 제조 방법 및 상기 방법에 의해 제조된 황화물계 고체 전해질 시트 |
WO2018174565A1 (ko) * | 2017-03-22 | 2018-09-27 | 주식회사 엘지화학 | 전고체 전지용 전극 및 이를 제조하는 방법 |
WO2018198689A1 (ja) * | 2017-04-27 | 2018-11-01 | パナソニックIpマネジメント株式会社 | 二次電池 |
WO2019017309A1 (ja) * | 2017-07-21 | 2019-01-24 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 |
EP3410530A4 (en) * | 2016-01-27 | 2019-02-13 | FUJI-FILM Corporation | SOLID ELECTROLYTE COMPOSITION LAYER FOR SOLID-SECONDARY BATTERY, ELECTRODE LAYER FOR SOLID-SECONDARY BATTERIES, SOLID-SECONDARY BATTERY, METHOD FOR PRODUCING A LAYER OF SOLID STATE-SECONDARY BATTERY, METHOD FOR PRODUCING AN ELECTRODE LAYER FOR SOLID-SECONDARY BATTERY AND METHOD FOR PRODUCING A SOLID-SECONDARY BATTERY |
JP2019050174A (ja) * | 2017-09-12 | 2019-03-28 | 関西ペイント株式会社 | 二次電池用硫黄化合物固体電解質分散ペースト、これを用いた二次電池用硫黄化合物固体電解質層及びこれを用いた全固体二次電池 |
EP3509139A4 (en) * | 2016-08-30 | 2019-08-28 | FUJIFILM Corporation | FESTELECTROLYTE COMPOSITION, FESTELECTROLYTIC LAYER, FIRM PARTICULAR BATTERY, METHOD FOR THE PRODUCTION OF A FESTELECTROLYTIC LAYER AND METHOD FOR THE PRODUCTION OF A SOLID BODY CERTAIN BATTERY |
KR20200029378A (ko) * | 2017-03-03 | 2020-03-18 | 블루 커런트, 인크. | 중합된 즉석 하이브리드 고체 이온-전도성 조성물 |
CN110998953A (zh) * | 2017-07-21 | 2020-04-10 | 富士胶片株式会社 | 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及含固体电解质的片材及全固态二次电池的制造方法 |
WO2020129802A1 (ja) * | 2018-12-21 | 2020-06-25 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 |
KR20210003317A (ko) * | 2017-11-09 | 2021-01-11 | 재단법인 포항산업과학연구원 | 전고체 전지, 이의 제조 방법, 이를 포함하는 이차 전지 및 이를 포함하는 모놀리식 전지 모듈 |
US11394054B2 (en) | 2019-12-20 | 2022-07-19 | Blue Current, Inc. | Polymer microspheres as binders for composite electrolytes |
US11572459B2 (en) | 2019-12-20 | 2023-02-07 | Blue Current, Inc. | Composite electrolytes with binders |
US11581570B2 (en) | 2019-01-07 | 2023-02-14 | Blue Current, Inc. | Polyurethane hybrid solid ion-conductive compositions |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107112587B (zh) * | 2015-02-12 | 2019-03-19 | 富士胶片株式会社 | 全固态二次电池、固体电解质组合物、电池用电极片 |
JP7003151B2 (ja) * | 2017-11-17 | 2022-01-20 | 富士フイルム株式会社 | 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法 |
US10505224B2 (en) * | 2017-12-28 | 2019-12-10 | Industrial Technology Research Institute | Electrolyte, composition for electrolyte and lithium battery employing the same |
JP6799713B2 (ja) * | 2018-03-30 | 2020-12-16 | 富士フイルム株式会社 | 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池の製造方法 |
WO2020067106A1 (ja) * | 2018-09-27 | 2020-04-02 | 富士フイルム株式会社 | 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法 |
US10957910B2 (en) * | 2019-05-01 | 2021-03-23 | Global Graphene Group, Inc. | Particulates of conducting polymer network-protected cathode active material particles for lithium batteries |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002284981A (ja) * | 2001-03-22 | 2002-10-03 | Tokai Rubber Ind Ltd | 導電性組成物およびそれを用いた導電性ロール |
JP2010106252A (ja) * | 2008-10-03 | 2010-05-13 | Idemitsu Kosan Co Ltd | 極性化ジエン系重合体 |
JP2010518568A (ja) * | 2007-02-09 | 2010-05-27 | コミツサリア タ レネルジー アトミーク | 電気化学システムの電極用バインダー、該バインダーを含む電極、及び該電極を含む電気化学システム |
JP2010192258A (ja) * | 2009-02-18 | 2010-09-02 | Tdk Corp | 固体電解質、リチウムイオン二次電池及び固体電解質の製造方法。 |
JP2011014387A (ja) * | 2009-07-02 | 2011-01-20 | Nippon Zeon Co Ltd | 全固体二次電池 |
WO2012093689A1 (ja) * | 2011-01-06 | 2012-07-12 | 三菱レイヨン株式会社 | ポリフッ化ビニリデン用改質剤、電池用バインダー樹脂組成物、二次電池用電極及び電池 |
JP2014116164A (ja) * | 2012-12-07 | 2014-06-26 | Samsung R&D Institute Japan Co Ltd | 固体電池 |
WO2015129704A1 (ja) * | 2014-02-25 | 2015-09-03 | 富士フイルム株式会社 | 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6232372B1 (en) * | 1998-03-18 | 2001-05-15 | E. I. Du Pont De Nemours And Company | Multicomponent particles of fluoropolymer and high temperature resistant non-dispersed polymer binder |
CN103038224A (zh) * | 2010-07-30 | 2013-04-10 | 日本瑞翁株式会社 | 醚化合物、非水系电池用电解液组合物、非水系电池电极用粘合剂组合物、非水系电池电极用浆料组合物、非水系电池用电极及非水系电池 |
JP5348342B2 (ja) * | 2012-03-26 | 2013-11-20 | ダイキン工業株式会社 | 複合粒子、粉体塗料、塗膜、積層体、及び、複合粒子の製造方法 |
KR101950895B1 (ko) * | 2012-03-28 | 2019-02-21 | 제온 코포레이션 | 전고체 이차 전지용 전극 및 그 제조 방법 |
-
2016
- 2016-01-29 WO PCT/JP2016/052820 patent/WO2016129427A1/ja active Application Filing
- 2016-01-29 JP JP2016574736A patent/JP6343850B2/ja active Active
-
2017
- 2017-06-28 US US15/635,858 patent/US20170301950A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002284981A (ja) * | 2001-03-22 | 2002-10-03 | Tokai Rubber Ind Ltd | 導電性組成物およびそれを用いた導電性ロール |
JP2010518568A (ja) * | 2007-02-09 | 2010-05-27 | コミツサリア タ レネルジー アトミーク | 電気化学システムの電極用バインダー、該バインダーを含む電極、及び該電極を含む電気化学システム |
JP2010106252A (ja) * | 2008-10-03 | 2010-05-13 | Idemitsu Kosan Co Ltd | 極性化ジエン系重合体 |
JP2010192258A (ja) * | 2009-02-18 | 2010-09-02 | Tdk Corp | 固体電解質、リチウムイオン二次電池及び固体電解質の製造方法。 |
JP2011014387A (ja) * | 2009-07-02 | 2011-01-20 | Nippon Zeon Co Ltd | 全固体二次電池 |
WO2012093689A1 (ja) * | 2011-01-06 | 2012-07-12 | 三菱レイヨン株式会社 | ポリフッ化ビニリデン用改質剤、電池用バインダー樹脂組成物、二次電池用電極及び電池 |
JP2014116164A (ja) * | 2012-12-07 | 2014-06-26 | Samsung R&D Institute Japan Co Ltd | 固体電池 |
WO2015129704A1 (ja) * | 2014-02-25 | 2015-09-03 | 富士フイルム株式会社 | 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法 |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10854914B2 (en) | 2016-01-27 | 2020-12-01 | Fujifilm Corporation | Solid electrolyte composition, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery |
EP3410530A4 (en) * | 2016-01-27 | 2019-02-13 | FUJI-FILM Corporation | SOLID ELECTROLYTE COMPOSITION LAYER FOR SOLID-SECONDARY BATTERY, ELECTRODE LAYER FOR SOLID-SECONDARY BATTERIES, SOLID-SECONDARY BATTERY, METHOD FOR PRODUCING A LAYER OF SOLID STATE-SECONDARY BATTERY, METHOD FOR PRODUCING AN ELECTRODE LAYER FOR SOLID-SECONDARY BATTERY AND METHOD FOR PRODUCING A SOLID-SECONDARY BATTERY |
EP3509139A4 (en) * | 2016-08-30 | 2019-08-28 | FUJIFILM Corporation | FESTELECTROLYTE COMPOSITION, FESTELECTROLYTIC LAYER, FIRM PARTICULAR BATTERY, METHOD FOR THE PRODUCTION OF A FESTELECTROLYTIC LAYER AND METHOD FOR THE PRODUCTION OF A SOLID BODY CERTAIN BATTERY |
US11114689B2 (en) | 2016-08-30 | 2021-09-07 | Fujifilm Corporation | Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, and methods for manufacturing solid electrolyte-containing sheet and all-solid state secondary battery |
KR102392157B1 (ko) * | 2016-11-21 | 2022-04-28 | 주식회사 엘지에너지솔루션 | 황화물계 고체 전해질 시트의 제조 방법 및 상기 방법에 의해 제조된 황화물계 고체 전해질 시트 |
KR20180057558A (ko) * | 2016-11-21 | 2018-05-30 | 주식회사 엘지화학 | 황화물계 고체 전해질 시트의 제조 방법 및 상기 방법에 의해 제조된 황화물계 고체 전해질 시트 |
JP2020509132A (ja) * | 2017-03-03 | 2020-03-26 | ブルー カレント、インコーポレイテッド | in−situで重合したハイブリッド固体イオン導電性組成物 |
KR20200029378A (ko) * | 2017-03-03 | 2020-03-18 | 블루 커런트, 인크. | 중합된 즉석 하이브리드 고체 이온-전도성 조성물 |
JP7378783B2 (ja) | 2017-03-03 | 2023-11-14 | ブルー カレント、インコーポレイテッド | in-situで重合したハイブリッド固体イオン導電性組成物 |
KR102656786B1 (ko) * | 2017-03-03 | 2024-04-12 | 블루 커런트, 인크. | 중합된 인 시투 하이브리드 고체 이온-전도성 조성물 |
US12018131B2 (en) | 2017-03-03 | 2024-06-25 | Blue Current, Inc. | Polymerized in-situ hybrid solid ion-conductive compositions |
WO2018174565A1 (ko) * | 2017-03-22 | 2018-09-27 | 주식회사 엘지화학 | 전고체 전지용 전극 및 이를 제조하는 방법 |
KR102166459B1 (ko) * | 2017-03-22 | 2020-10-15 | 주식회사 엘지화학 | 전고체 전지용 전극 및 이를 제조하는 방법 |
JP2019527919A (ja) * | 2017-03-22 | 2019-10-03 | エルジー・ケム・リミテッド | 全固体電池用電極及びその製造方法 |
KR20180107755A (ko) * | 2017-03-22 | 2018-10-02 | 주식회사 엘지화학 | 전고체 전지용 전극 및 이를 제조하는 방법 |
US11631839B2 (en) | 2017-03-22 | 2023-04-18 | Lg Energy Solution, Ltd. | Electrode for solid state battery and method for manufacturing the same |
JPWO2018198689A1 (ja) * | 2017-04-27 | 2020-03-12 | パナソニックIpマネジメント株式会社 | 二次電池 |
WO2018198689A1 (ja) * | 2017-04-27 | 2018-11-01 | パナソニックIpマネジメント株式会社 | 二次電池 |
JP7117643B2 (ja) | 2017-04-27 | 2022-08-15 | パナソニックIpマネジメント株式会社 | 二次電池 |
WO2019017309A1 (ja) * | 2017-07-21 | 2019-01-24 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 |
CN110998953A (zh) * | 2017-07-21 | 2020-04-10 | 富士胶片株式会社 | 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及含固体电解质的片材及全固态二次电池的制造方法 |
JPWO2019017309A1 (ja) * | 2017-07-21 | 2020-01-16 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 |
CN110945702A (zh) * | 2017-07-21 | 2020-03-31 | 富士胶片株式会社 | 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及含固体电解质的片材及全固态二次电池的制造方法 |
CN110998953B (zh) * | 2017-07-21 | 2023-06-23 | 富士胶片株式会社 | 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及含固体电解质的片材及全固态二次电池的制造方法 |
US11482726B2 (en) | 2017-07-21 | 2022-10-25 | Fujifilm Corporation | Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, and method for manufacturing solid electrolyte-containing sheet and all-solid state secondary battery |
CN110945702B (zh) * | 2017-07-21 | 2023-04-25 | 富士胶片株式会社 | 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及后两者的制造方法 |
JP2019050174A (ja) * | 2017-09-12 | 2019-03-28 | 関西ペイント株式会社 | 二次電池用硫黄化合物固体電解質分散ペースト、これを用いた二次電池用硫黄化合物固体電解質層及びこれを用いた全固体二次電池 |
KR20210003317A (ko) * | 2017-11-09 | 2021-01-11 | 재단법인 포항산업과학연구원 | 전고체 전지, 이의 제조 방법, 이를 포함하는 이차 전지 및 이를 포함하는 모놀리식 전지 모듈 |
KR102378534B1 (ko) * | 2017-11-09 | 2022-03-24 | 재단법인 포항산업과학연구원 | 전고체 전지, 이의 제조 방법, 이를 포함하는 이차 전지 및 이를 포함하는 모놀리식 전지 모듈 |
US12095026B2 (en) | 2017-11-09 | 2024-09-17 | Research Institute Of Industrial Science & Technology | All-solid-state battery, manufacturing method therefor, secondary battery comprising same and monolithic battery module comprising same |
JP7165750B2 (ja) | 2018-12-21 | 2022-11-04 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 |
JPWO2020129802A1 (ja) * | 2018-12-21 | 2021-09-27 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 |
WO2020129802A1 (ja) * | 2018-12-21 | 2020-06-25 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 |
US11581570B2 (en) | 2019-01-07 | 2023-02-14 | Blue Current, Inc. | Polyurethane hybrid solid ion-conductive compositions |
US11572459B2 (en) | 2019-12-20 | 2023-02-07 | Blue Current, Inc. | Composite electrolytes with binders |
US11667772B2 (en) | 2019-12-20 | 2023-06-06 | Blue Current, Inc. | Composite electrolytes with binders |
US11394054B2 (en) | 2019-12-20 | 2022-07-19 | Blue Current, Inc. | Polymer microspheres as binders for composite electrolytes |
Also Published As
Publication number | Publication date |
---|---|
US20170301950A1 (en) | 2017-10-19 |
JPWO2016129427A1 (ja) | 2017-07-20 |
JP6343850B2 (ja) | 2018-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6343850B2 (ja) | 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法 | |
JP6415008B2 (ja) | 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法 | |
JP6253155B2 (ja) | 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池 | |
JP6101223B2 (ja) | 複合固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法 | |
JP6295332B2 (ja) | 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法 | |
JP6096701B2 (ja) | 全固体二次電池、これに用いる固体電解質組成物および電池用電極シート、ならびに電池用電極シートの製造方法および全固体二次電池の製造方法 | |
JP6492181B2 (ja) | 全固体二次電池用電極シートおよび全固体二次電池の製造方法 | |
JP6587394B2 (ja) | 固体電解質組成物、電池用電極シートおよび全固体二次電池ならびに電池用電極シートおよび全固体二次電池の製造方法 | |
JP6332882B2 (ja) | 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法 | |
WO2015115561A1 (ja) | 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法 | |
CN114303271A (zh) | 含有无机固体电解质的组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法 | |
WO2015046312A1 (ja) | 固体電解質組成物、電池用電極シート、電池用電極シートの製造方法、全固体二次電池、および全固体二次電池の製造方法 | |
CN114450832A (zh) | 含有无机固体电解质的组合物、全固态二次电池用片材及全固态二次电池、以及含有无机固体电解质的组合物、全固态二次电池用片材及全固态二次电池的制造方法 | |
US20190157711A1 (en) | Solid electrolyte composition, sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing sheet for all-solid state secondary battery and all-solid state secondary battery | |
WO2019017310A1 (ja) | 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 | |
CN114144907A (zh) | 电极用组合物的制造法、全固态二次电池用电极片的制造法及全固态二次电池的制造法 | |
WO2019017309A1 (ja) | 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法 | |
CN114144918A (zh) | 含有无机固体电解质的组合物、全固态二次电池用片材、全固态二次电池用电极片及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法 | |
CN114631215B (zh) | 含无机固体电解质组合物、全固态二次电池用片材及全固态二次电池以及后两者的制造方法 | |
CN115298873A (zh) | 含无机固体电解质组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法 | |
CN114303268A (zh) | 含有无机固体电解质的组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法 | |
WO2020022195A1 (ja) | 固体電解質組成物、固体電解質含有シート、及び全固体二次電池、並びに固体電解質含有シート及び全固体二次電池の製造方法 | |
JP7407286B2 (ja) | 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法 | |
KR20240122549A (ko) | 이차 전지용 바인더 조성물, 비수 이차 전지용 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지, 및, 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법 | |
KR20230050420A (ko) | 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지 및, 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16749071 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016574736 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16749071 Country of ref document: EP Kind code of ref document: A1 |