WO2016104547A1 - レンズ鏡筒、カメラ - Google Patents

レンズ鏡筒、カメラ Download PDF

Info

Publication number
WO2016104547A1
WO2016104547A1 PCT/JP2015/085907 JP2015085907W WO2016104547A1 WO 2016104547 A1 WO2016104547 A1 WO 2016104547A1 JP 2015085907 W JP2015085907 W JP 2015085907W WO 2016104547 A1 WO2016104547 A1 WO 2016104547A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
lens barrel
rectilinear
protrusion
disposed
Prior art date
Application number
PCT/JP2015/085907
Other languages
English (en)
French (fr)
Inventor
和明 神尾
浜崎 拓司
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to US15/538,718 priority Critical patent/US10877236B2/en
Priority to JP2016566415A priority patent/JP6624072B2/ja
Priority to CN201580074646.7A priority patent/CN107209343B/zh
Publication of WO2016104547A1 publication Critical patent/WO2016104547A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element

Definitions

  • the present invention relates to a lens barrel and a camera equipped with the same.
  • the protrusions and the grooves are arranged so that the longer the length of the portion engaged in the direction along the optical axis OA (hereinafter also referred to as “engagement length”), The backlash is reduced and stable optical performance can be maintained.
  • engagement length the length of the portion engaged in the direction along the optical axis OA
  • a clearance for retracting a cylinder that moves greatly is required, which causes a problem that the engagement length is shortened.
  • an embodiment of the present invention is arranged on the first cylinder and the outer peripheral side or the inner peripheral side of the first cylinder, and is relatively first with respect to the first cylinder.
  • a second cylinder that can move in the direction and does not rotate relatively, and the second cylinder includes a first engagement part that protrudes toward the first cylinder, and the first engagement part.
  • the second engagement part protrudes toward the first cylinder, and the first cylinder is engaged with the first engagement part so that the first engagement part can move linearly.
  • a second engaged portion engaged with the second engaging portion so as to be linearly movable, and one end of the first engaging portion and the other end of the second engaging portion are in a straight direction.
  • the lens barrels are arranged at different positions in FIG.
  • one Embodiment of this invention is a camera provided with the said lens barrel.
  • FIG. 1 is an overall view of a camera 1 according to an embodiment.
  • 3 is a cross-sectional view showing a configuration around a fixed cylinder of the lens barrel 3.
  • FIG. 3 is an exploded perspective view showing a configuration around a fixed cylinder of the lens barrel 3.
  • FIG. 3 is a cross-sectional view showing a configuration around a fixed cylinder of the lens barrel 3.
  • FIG. 3 is a cross-sectional view showing a configuration around a fixed cylinder of the lens barrel 3.
  • FIG. 4 is a schematic diagram showing the arrangement of the protrusions arranged in the first rectilinear cylinder 20 and the rectilinear grooves provided in the fixed cylinder 10.
  • FIG. 1 is an overall view of a camera 1 according to the present embodiment.
  • the camera 1 includes a camera body 2 and a lens barrel 3 that can be attached to and detached from the camera body 2.
  • the camera body 2 includes an image sensor (not shown) that captures a subject image formed by the lens barrel 3.
  • the camera body 2 includes a mount portion (not shown) that can be engaged with the bayonet portion of the lens barrel 3.
  • the lens barrel 3 is a collapsible zoom lens that can continuously change the focal length and can change the overall length to a smaller size when not in use.
  • the lens barrel 3 includes a plurality of lens groups serving as a photographing optical system and a plurality of lens frames (not shown) for holding the lens groups in a cylindrical housing.
  • the camera 1 is a digital single-lens reflex camera with interchangeable lenses.
  • FIGS. 2 and 4 are cross-sectional views when the extension of each cylinder is the longest with respect to the fixed cylinder 10 (for example, in the telephoto end state).
  • FIG. 4 is a cross-sectional view of the lens barrel LT shown in FIG.
  • FIG. 4 is a cross-sectional view of the fixed cylinder 10 when the extension of each cylinder is the shortest (for example, retracted state).
  • hatching indicating a cross section of the member is partially omitted in order to make it easy to understand the overlap of each part.
  • FIG. 6 is a schematic diagram showing the arrangement of the protrusions arranged in the first rectilinear cylinder 20 and the rectilinear grooves provided in the fixed cylinder 10.
  • the lens cylinder LT includes a fixed cylinder 10, a first rectilinear cylinder 20, a first rotating cylinder 30, a second rotating cylinder 40, and a second rectilinear cylinder 50.
  • the axis of each cylinder substantially coincides with the optical axis OA within a range that allows manufacturing errors and the like.
  • the optical axis OA is the optical axis of the photographing optical system included in the lens barrel 3.
  • the fixed cylinder (first cylinder) 10 is a cylindrical member that becomes a base of the lens barrel LT, and when the lens barrel 3 is mounted and used, the position and angle with respect to the mount portion are fixed. It is said.
  • the fixed cylinder 10 has a bayonet portion (not shown) joined to the end on the Z minus direction side.
  • the fixed cylinder 10 includes a first rectilinear groove 11, a second rectilinear groove 12, and a cam groove 13, as shown in FIGS.
  • the first rectilinear groove (first engaged portion) 11 is a groove that guides the first protrusion 21 (described later) of the first rectilinear cylinder 20 rectilinearly.
  • the first rectilinear groove 11 is a through groove that penetrates the fixed cylinder 10 and is linearly formed in a direction along the optical axis OA. As shown in FIG. 3, the first rectilinear grooves 11 are provided at three locations at equal intervals in the circumferential direction of the fixed cylinder 10.
  • the second rectilinear groove (second engaged portion) 12 is a groove that guides the second protrusion 22 of the first rectilinear cylinder 20 in a straight line.
  • the second rectilinear groove 12 is a non-penetrating groove that does not penetrate the fixed cylinder 10 and is linearly formed in a direction along the optical axis OA.
  • the second rectilinear grooves 12 are provided at three locations at equal intervals in the circumferential direction of the fixed cylinder 10.
  • Each of the second rectilinear grooves 12 is provided continuously from the end portion on the rear end side (in the present embodiment, the Z minus direction side) of the fixed cylinder 10. Further, as shown in FIG. 6, each second rectilinear groove 12 is provided at a position 30 degrees away from the first rectilinear groove 11 with the optical axis OA as the center.
  • the cam groove 13 is a groove that guides the cam follower 31 of the first rotating cylinder 30 along the circumferential direction and the straight direction. As shown in FIG. 3, the cam grooves 13 are provided at three locations at equal intervals in the circumferential direction of the fixed cylinder 10. Each cam groove 13 is formed in a substantially curved shape with the same shape in the direction along the optical axis OA in the fixed cylinder 10.
  • the first rectilinear cylinder (second cylinder) 20 is disposed on the inner peripheral side of the fixed cylinder 10 and can move relatively straight in the direction along the optical axis OA with respect to the fixed cylinder 10. This is a cylindrical member.
  • the first rectilinear cylinder 20 includes a first protrusion 21, a second protrusion 22, and a cam follower 23.
  • the first protrusion (first engaging portion) 21 is formed so as to protrude outward from the outer peripheral surface of the first rectilinear cylinder 20.
  • the first protrusion 21 is a plate-like member extending along the optical axis OA and engages with the first rectilinear groove 11 of the fixed cylinder 10.
  • the first protrusion 21 moves along the first rectilinear groove 11 while passing through the first rectilinear groove 11.
  • the first protrusions 21 are arranged at three locations at equal intervals in the circumferential direction of the first rectilinear cylinder 20.
  • the first protrusion 21 is formed so that the cross section has a convex shape when viewed from the Z direction.
  • the central portion 21 a of the first protrusion 21 passes through the first rectilinear groove 11.
  • the two shoulder portions 21b formed on both sides of the central portion 21a abut on the inner peripheral side of the fixed cylinder 10 without penetrating the first rectilinear groove 11 (in FIG. 6, the central portion 21a, the shoulder portion). 21b is written only on the first protrusion 21 located in the upper part in the Y direction).
  • the second protrusion (second engaging portion) 22 is formed so as to protrude outward from the outer peripheral surface of the first rectilinear cylinder 20. Moreover, the 2nd protrusion 22 is the position different from the 1st protrusion 21 in the circumferential direction, and is formed by the same number as the 1st protrusion 21 (refer FIG. 6).
  • the second protrusion 22 is a plate-like member extending along the optical axis OA and engages with the second rectilinear groove 12 of the fixed cylinder 10. The second protrusion 22 moves along the second rectilinear groove 12 while being in contact with the inner peripheral surface of the second rectilinear groove 12. As shown in FIG.
  • the first rectilinear groove 11 and the shoulder portion 21 b of the first protrusion 21 abut and the second rectilinear groove 12 and the second protrusion 22 abut. Therefore, when the central portion 21a of the first protrusion 21 moves along the first rectilinear groove 11, the first rectilinear cylinder 20 is stabilized so that the axis line coincides with the optical axis OA on the inner peripheral side of the fixed cylinder 10. Can be held.
  • each of the second protrusions 22 is disposed at a position 30 degrees away from the first protrusion 21 with the optical axis OA as the center. That is, the first protrusion 21 and the second protrusion 22 are arranged at different positions in the circumferential direction of the first rectilinear cylinder 20 when viewed from the direction along the optical axis OA. As shown in FIGS. 2 and 4, the front end (end in the Z plus direction) of the second protrusion 22 is located at the front end (end in the Z plus direction) of the first protrusion 21 of the first rectilinear cylinder 20. It is arranged on the rear end side (Z minus direction side in this embodiment).
  • the rear end (end in the Z minus direction) of the second protrusion 22 is closer to the rear end (Z minus direction side) of the first rectilinear cylinder 20 than the rear end (end in the Z minus direction) of the first protrusion 21. ). That is, the front end of the second protrusion 22 is arranged at a position different from the front end of the first protrusion 21 in the direction along the optical axis OA. Further, the rear end of the second protrusion 22 is disposed at a position different from the rear end of the first protrusion 21 in the direction along the optical axis OA. Note that the front end of the second protrusion 22 and the rear end of the first protrusion 21 may be the same or different in the direction along the optical axis OA.
  • the engagement length in the direction along the optical axis OA between the fixed cylinder 10 and the first rectilinear cylinder 20 is regulated by the length of the fixed cylinder 10 or the first rectilinear cylinder 20 in the direction along the optical axis OA.
  • the Therefore, the substantial engagement length when the second protrusion 22 is not provided is the length a of the first protrusion 21 as shown in FIG.
  • the engagement length in the direction along the optical axis OA is short and the backlash between the fixed cylinder 10 and the first rectilinear cylinder 20 cannot be reduced, it is difficult to maintain stable optical performance.
  • the first rectilinear barrel 20 includes a first protrusion 21 and a second protrusion 22 disposed at a different position in the direction along the first protrusion 21 and the optical axis OA. Therefore, in the lens barrel 3 of the present embodiment, the apparent engagement length in the direction along the optical axis OA between the fixed barrel 10 and the first rectilinear barrel 20 is as shown in FIG. b (> a). As described above, in the lens barrel 3 of the present embodiment, the substantial engagement length in the direction along the optical axis OA can be secured longer, so that the backlash between the fixed barrel 10 and the first rectilinear barrel 20 is not significant. Can be reduced, and stable optical performance can be maintained.
  • the first rectilinear cylinder 20 can also be formed by cutting out a region on the Z minus direction side from the first protrusion 21. Therefore, it is possible to reduce the size of the lens barrel 3 by arranging different members on the Z minus direction side of the first rectilinear barrel 20.
  • the first rectilinear cylinder 20 has a standing wall portion 24 protruding in the direction orthogonal to the optical axis OA on the rear end side of the first protrusion 21.
  • the standing wall portion 24 has a function as a light shielding member. Further, the first rectilinear cylinder 20 is cut out in a region on the Z minus direction side from the standing wall portion 24.
  • a part of the fixed cylinder 10 enters the cut-out region of the first rectilinear cylinder 20 in the retracted state.
  • the first rectilinear cylinder 20 may be formed so that a region where at least one end of the first protrusion 21 is formed protrudes along the first rectilinear groove 11 from one end of the cylindrical member.
  • the first rectilinear cylinder 20 may be formed so as to protrude along the second rectilinear groove 12 from the other end of the cylindrical member at least in the region where the other end of the second protrusion 22 is formed.
  • the first protrusion 21 and the second protrusion 22 are arranged at different positions in the circumferential direction on the outer peripheral portion of the first rectilinear cylinder 20. That is, the first rectilinear cylinder 20 is guided linearly by a plurality of types of projecting members. Therefore, the first rectilinear cylinder 20 can be guided straight ahead more smoothly than when it is guided rectilinearly by only one type of protrusion having the engagement length b.
  • the cam follower 23 of the first rectilinear cylinder 20 is a member that engages with a first cam groove 41 (described later) of the second rotating cylinder 40.
  • the cam follower 23 is formed integrally with the first protrusion 21 so as to protrude outward from the upper part of the first protrusion 21. Accordingly, the cam followers 23 are arranged at three locations at equal intervals in the circumferential direction on the outer peripheral portion of the first rectilinear cylinder 20, similarly to the first protrusions 21.
  • the first rotating cylinder (third cylinder) 30 is a cylindrical member disposed between the fixed cylinder 10 and the first rectilinear cylinder 20.
  • the Z minus side end of the first rotating cylinder 30 is always arranged on the Z plus direction side from the Z minus side end of the first rectilinear cylinder 20.
  • the first rotary cylinder 30 includes a cam follower 31, a protrusion 32, and a cam groove 33 (see FIG. 2).
  • the cam follower 31 is a member that engages with the cam groove 13 of the fixed cylinder 10.
  • the cam followers 31 are arranged at three locations at equal intervals in the circumferential direction on the outer peripheral portion of the first rotating cylinder 30.
  • the protrusion 32 is a member that engages with a second cam groove 42 (described later) of the second rotating cylinder 40.
  • the protrusion 32 is formed integrally with the cam follower 31 so as to protrude outward from the upper portion of the cam follower 31. Accordingly, the protrusions 32 are arranged at three locations at equal intervals in the circumferential direction on the outer peripheral portion of the first rotating cylinder 30, as with the cam follower 31.
  • the cam groove 33 is a groove that guides a cam follower 51 (described later) of the second rectilinear cylinder 50 along the circumferential direction, as shown in FIG.
  • a cam follower 51 (described later) of the second rectilinear cylinder 50 along the circumferential direction, as shown in FIG.
  • the cam grooves 33 are provided at three locations at equal intervals in the circumferential direction of the first rotating cylinder 30.
  • Each cam groove 33 is formed in the same shape in the direction along the optical axis OA.
  • the second rotating cylinder (fourth cylinder) 40 is disposed on the outer peripheral side of the fixed cylinder 10, is rotatable relative to the fixed cylinder 10, and moves in the direction along the optical axis OA (Z direction). Is a restricted cylindrical member.
  • a zoom ring (not shown) is provided on the outer periphery of the second rotating cylinder 40. When the photographer performs an operation of rotating the zoom ring, the second rotating cylinder 40 rotates clockwise or counterclockwise together with the zoom ring.
  • the second rotating cylinder 40 includes a first cam groove 41 and a second cam groove 42 (see FIG. 4).
  • the second rotating cylinder 40 may be integrated with the zoom ring, or may be connected to the zoom ring through another member.
  • the first cam groove 41 is a groove that drives the cam follower 23 of the first rectilinear cylinder 20 in a direction along the optical axis OA.
  • the cam follower 23 is driven in the direction along the optical axis OA by the first cam groove 41 of the second rotating cylinder 40. Therefore, the first rectilinear cylinder 20 moves in the direction along the optical axis OA in a state where the first protrusion 21 is restricted from rotating in the circumferential direction by the first rectilinear groove 11.
  • the first cam grooves 41 are provided at three locations at equal intervals in the circumferential direction of the second rotating cylinder 40. Each first cam groove 41 is formed in the same shape in the direction along the optical axis OA.
  • the second cam groove 42 is a groove for driving the protrusion 32 of the first rotating cylinder 30 in the circumferential direction.
  • the protrusion 32 is driven in the circumferential direction by the second cam groove 42 of the second rotating cylinder 40. Therefore, in the first rotating cylinder 30, the cam follower 31 integrated with the protrusion 32 is guided along the cam groove 13 of the fixed cylinder 10. Thereby, the first rotating cylinder 30 moves in the direction along the optical axis OA while rotating in the circumferential direction.
  • the second cam grooves 42 are provided at three locations at equal intervals in the circumferential direction of the second rotating cylinder 40. Each of the second cam grooves 42 is formed in the same shape in the direction along the optical axis OA.
  • the second rectilinear cylinder 50 is disposed on the outer peripheral side of the first rectilinear cylinder 20 and between the first rectilinear cylinder 20 and the first rotating cylinder 30.
  • the second rectilinear cylinder 50 is a cylindrical member that can move linearly relative to the first rectilinear cylinder 20 in the direction along the optical axis OA.
  • the second rectilinear cylinder 50 includes a cam follower 51 as shown in FIGS. 2 and 3.
  • the cam follower 51 is a member that engages with the cam groove 33 of the first rotating cylinder 30.
  • the cam followers 51 are arranged at three locations at equal intervals in the circumferential direction on the outer peripheral portion of the second rectilinear cylinder 50.
  • the second rotary cylinder 40 rotates clockwise or counterclockwise with the zoom ring.
  • the first rectilinear cylinder 20 that engages with the first cam groove 41 of the second rotating cylinder 40 via the cam follower 23 has the first protrusion 21 as the first protrusion 21.
  • the groove moves in the direction along the optical axis OA.
  • the second protrusion 22 of the first rectilinear cylinder 20 moves in the direction along the optical axis OA while being guided linearly in the second rectilinear groove 12 of the fixed cylinder 10 to be engaged.
  • the cam follower 31 is a fixed cylinder in the first rotating cylinder 30 that engages with the second cam groove 42 of the second rotating cylinder 40 via the projection 32. It is guided along 10 cam grooves 13.
  • the first rotating cylinder 30 moves in the same direction as the first rectilinear cylinder 20 along the optical axis OA while rotating in the circumferential direction.
  • the second rectilinear cylinder 50 that engages with the cam groove 33 of the first rotating cylinder 30 via the cam follower 51 performs the first rotation. It moves along the optical axis OA while rotating in the circumferential direction along the cam groove 33 of the cylinder 30.
  • the first rectilinear cylinder 20, the first rotating cylinder 30, and the second rectilinear cylinder 50 are respectively in the same direction along the optical axis OA. Move (forward or backward). Therefore, by rotating the second rotating cylinder 40 in a predetermined direction, as shown in FIGS. 2 and 4, the feeding of each cylinder can be maximized. Further, by rotating the second rotating cylinder 40 in the direction opposite to the predetermined direction, as shown in FIG. 4, the retracted state in which each cylinder is fed out is the shortest.
  • the lens barrel 3 can secure a longer engagement length between the relatively moving fixed cylinder 10 and the first rectilinear cylinder 20, there is a backlash between the fixed cylinder 10 and the first rectilinear cylinder 20. Can be reduced, and stable optical performance can be maintained.
  • the second rectilinear groove 12 is a non-penetrating groove that does not penetrate the fixed cylinder 10, the first rectilinear cylinder 20 is held in a state in which the first rectilinear guide 20 can be guided straight in the direction along the optical axis OA. it can.
  • the second rectilinear groove 12 can stably hold the first rectilinear cylinder 20 on the inner peripheral side of the fixed cylinder 10 so that the axis line coincides with the optical axis OA.
  • the front end portion of the second protrusion 22 of the first rectilinear tube 20 is located on the front end side of the front end portion of the first protrusion 21.
  • the second rectilinear groove 12 that engages with the second protrusion 22 is provided at an end portion on the rear end side of the fixed cylinder 10.
  • the lens barrel 3 can separate the position of the rear end portion of the second protrusion 22 from the front end portion of the first protrusion 21 as much as possible, the fixed barrel 10 and the first rectilinear barrel 20
  • the apparent engagement length in the direction along the optical axis OA can be made longer.
  • the lens barrel 3 has an engagement length in the direction along the optical axis OA even if another moving cylinder is disposed between the fixed cylinder 10 and the first rectilinear cylinder 20 that do not directly overlap. There is no impact. Therefore, even when the lens barrel 3 is a lens barrel including a plurality of cylinders such as a zoom lens, stable optical performance can be maintained.
  • the first protrusion 21 and the second protrusion 22 are arranged at different positions in the circumferential direction of the first rectilinear cylinder 20 when viewed from the direction perpendicular to the optical axis OA. Therefore, in the lens barrel 3, the moving ranges of the first protrusion 21 and the second protrusion 22 can be designed to be longer.
  • the first protrusion 21 of the first rectilinear barrel 20 is formed integrally with the cam follower 23 that engages with the first cam groove 41. According to this, in the lens barrel 3, the first protrusion 21 and the cam follower 23 do not need to be separate parts, so that it is possible to achieve cost reduction and simplification of the structure by reducing the number of parts.
  • the present invention is not limited to the above-described embodiment, and various modifications and changes as described below are possible, and these are also within the scope of the present invention.
  • the fixed cylinder 10 and the first rectilinear cylinder 20 have been described as examples of the two cylinders that move relatively.
  • the present invention is not limited to this, and the configuration of the present invention may be applied to two rectilinear cylinders that move relatively.
  • (3) in the present embodiment, as illustrated in FIG. 6, the example in which the first protrusion 21 and the second protrusion 22 are provided at three positions at equal intervals in the circumferential direction of the first rectilinear cylinder 20 has been described. . Not only this but the 1st protrusion 21 and the 2nd protrusion 22 may be provided in two places at equal intervals in the circumference direction of the 1st rectilinear advance cylinder 20, respectively, and may be provided in four or more places at equal intervals. . Moreover, as shown in FIG.
  • interval of the adjacent 1st protrusion 21 and the 2nd protrusion 22 is not restricted to 30 degree
  • the interval between the first protrusion 21 and the second protrusion 22 when viewed from the Z direction may be arranged at 60 degrees with the optical axis OA as the center.
  • the first protrusion 21 and the second protrusion 22 are arranged at equal intervals in the circumferential direction of the first rectilinear cylinder 20.
  • the first protrusions 21 and the second protrusions 22 may be arranged at unequal intervals in the circumferential direction on the outer peripheral portion of the first rectilinear cylinder 20.
  • first protrusions 21 may be arranged at equal intervals in the circumferential direction on the outer peripheral portion of the first rectilinear cylinder 20 or may be arranged at unequal intervals.
  • second protrusions 22 may be arranged at equal intervals in the circumferential direction on the outer peripheral portion of the first rectilinear cylinder 20 or may be arranged at unequal intervals.
  • the number of the first protrusions 21 and the number of the second protrusions 22 do not necessarily need to match.
  • the first protrusion 21 may be arranged on the Z minus side from the second protrusion 22.
  • the first rotating cylinder 30 has a cam follower 31 and a protrusion 32 on its outer peripheral surface.
  • the cam follower 31 and the protrusion 32 that are integral metal cut products are fixed to the outer peripheral surface of the first rotating cylinder 30
  • the first rotating cylinder 30, the cam follower 31, and the protrusion 32 may be integrally formed.
  • the cam follower 31 and the protrusion 32 may be prepared separately and fixed to the outer peripheral surface of the first rotating cylinder 30 sequentially.
  • the 1st rotation cylinder 30 and the cam follower 31 may be integrally molded, and the protrusion 32 may be fixed to the cam follower.
  • the lens barrel 3 has been described as a retractable zoom lens capable of continuously changing the focal length and reducing the overall length when not in use.
  • the lens barrel 3 may be a single focus lens having a fixed focal length.
  • the lens barrel 3 may be a zoom lens that is not retractable.
  • the camera 1 including the lens barrel 3 has been described as a digital single-lens reflex camera with interchangeable lenses.
  • the present invention is not limited to this, and the present invention can also be applied to a mirrorless interchangeable-lens camera, a lens-integrated digital camera, a video camera, a portable terminal, and the like.
  • transformation form can also be used in combination as appropriate, detailed description is abbreviate
  • the present invention is not limited to the above embodiment.
  • 1 camera
  • 2 camera body
  • 3 lens barrel
  • 10 fixed tube
  • 11 first straight groove
  • 12 second straight groove
  • 20 first straight tube
  • 21 first protrusion
  • 22 first 2 protrusions
  • 23 cam follower
  • 30 first rotating cylinder
  • 40 second rotating cylinder
  • 50 second rectilinear cylinder

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

 相対的に移動する2個の筒の係合長さをより長く確保できるレンズ鏡筒及びカメラを提供する。 レンズ鏡筒1は、第1筒10と、前記第1筒10の外周側または内周側に配置され、前記第1筒10に対して相対的に第1方向に移動が可能でかつ相対的に回転しない第2筒20と、を備え、前記第2筒20は、前記第1筒10に向けて突出した第1係合部21と、前記第1係合部21とは異なり前記第1筒10に向けて突出した第2係合部22と、を有し、前記第1筒10は、前記第1係合部21が直進移動可能に係合される第1被係合部11と、前記第2係合部22が直進移動可能に係合される第2被係合部12と、を有し、前記第1係合部21の一端と前記第2係合部22の他端とは、直進方向において異なる位置に配置されることを特徴とする。

Description

レンズ鏡筒、カメラ
 本発明は、レンズ鏡筒、及びこれを備えたカメラに関する。
 従来、レンズ鏡筒において、相対的に移動する2個の筒の直進移動を案内するための突起と溝が各々の筒に配置した構成がある(特許文献1参照)。
特開平8-262302号公報
 相対的に移動する2個の筒において、上記突起及び溝は、光軸OAに沿う方向で係合する部分の長さ(以下、「係合長さ」ともいう)が長いほど筒相互間のガタが小さくなり、安定した光学性能を維持できる。
 しかし、筒の繰出し量が大きいレンズ鏡筒では、大きく移動する筒を退避させる隙間が必要となるため、係合長さが短くなるという課題がある。
 そこで、上記課題を解決するために、本発明の一実施形態は、第1筒と、前記第1筒の外周側または内周側に配置され、前記第1筒に対して相対的に第1方向に移動が可能でかつ相対的に回転しない第2筒と、を備え、前記第2筒は、前記第1筒に向けて突出した第1係合部と、前記第1係合部とは異なり前記第1筒に向けて突出した第2係合部と、を有し、前記第1筒は、前記第1係合部が直進移動可能に係合される第1被係合部と、前記第2係合部が直進移動可能に係合される第2被係合部と、を有し、前記第1係合部の一端と前記第2係合部の他端とは、直進方向において異なる位置に配置されることを特徴とするレンズ鏡筒である。
 また、本発明の一実施形態は、上記レンズ鏡筒を備えるカメラである。
実施形態に係るカメラ1の全体図である。 レンズ鏡筒3の固定筒周りの構成を示す断面図である。 レンズ鏡筒3の固定筒周りの構成を示す分解斜視図である。 レンズ鏡筒3の固定筒周りの構成を示す断面図である。 レンズ鏡筒3の固定筒周りの構成を示す断面図である。 第1直進筒20に配置された各突起及び固定筒10に設けられた各直進溝の配置を示す模式図である。
 以下、図面等を参照して、本発明の実施形態について説明する。なお、以下に示す各図には、説明と理解を容易にするために、XYZ直交座標系を設けた。この座標系では、撮影者が光軸OAを水平として横長の画像を撮影する場合のカメラの位置(以下、正位置という)において撮影者から見て左側に向かう方向をXプラス方向とする。また、正位置において上側に向かう方向をYプラス方向とする。更に、正位置において被写体に向かう方向をZプラス方向又は前側とし、結像面に向かう方向をZマイナス方向又は後側とする。
 また、以下の説明においては、光軸OAと平行な方向への移動を「直進」といい、光軸OAを中心とする回動を「回転」という。
 図1は、本実施形態に係るカメラ1の全体図である。
 図1に示すように、カメラ1は、カメラ本体2と、カメラ本体2に対して着脱可能なレンズ鏡筒3と、を備える。カメラ本体2は、レンズ鏡筒3により結像された被写体像を撮像するイメージセンサ(不図示)を備える。また、カメラ本体2は、レンズ鏡筒3のバヨネット部と係合可能なマウント部(不図示)を備える。レンズ鏡筒3は、焦点距離を連続的に変化させることができ、また、不使用時には全長をより小さく変化させることができる沈胴式のズームレンズである。レンズ鏡筒3は、円筒状の筐体内に、撮影光学系となる複数のレンズ群と、これを保持する複数のレンズ枠等(不図示)とを備える。レンズ鏡筒3のバヨネット部(不図示)をカメラ本体2のマウント部に嵌め込み、光軸OAを中心として所定方向に回転させることにより、カメラ本体2にレンズ鏡筒3を装着することができる。このように、本実施形態に係るカメラ1は、レンズ交換可能なデジタル一眼レフカメラである。
 次に、レンズ鏡筒3の構成について説明する。以下に示す各図では、レンズ群、絞り機構等の図示を省略する。
 図2、図4及び図5は、レンズ鏡筒3の主要部である固定筒周りの構成(以下、「レンズ筒体LT」ともいう)を示す断面図である。図3は、レンズ鏡筒3の主要部である固定筒周りの構成を示す分解斜視図である。
 図2及び図4は、固定筒10に対して各筒の繰り出しを最も長くした時(例えば、望遠端状態)の断面図である。図4は、図2に示すレンズ筒体LTを、Zプラス方向において、光軸OAを中心として時計回りに30度回転させた状態での断面図である。
 図4は、固定筒10に対して各筒の繰り出しを最も短くした時(例えば、沈胴状態)の断面図である。図2~図4では、各部の重なりを分かり易くするため、部材の断面を示すハッチングを部分的に省略する。
 図6は、第1直進筒20に配置された各突起及び固定筒10に設けられた各直進溝の配置を示す模式図である。
 図2に示すように、レンズ筒体LTは、固定筒10と、第1直進筒20と、第1回転筒30と、第2回転筒40と、第2直進筒50と、を備える。各筒の軸線は、製造誤差等を許容する範囲で、光軸OAと略一致する。なお、光軸OAとは、レンズ鏡筒3に含まれる撮影光学系の光軸である。
 固定筒(第1筒)10は、レンズ筒体LTの基盤となる円筒状の部材であり、レンズ鏡筒3がカメラ本体2装着されて使用される際に、マウント部に対する位置及び角度を固定とされる。固定筒10は、Zマイナス方向側の端部にバヨネット部(不図示)が接合される。
 固定筒10は、図2~図4に示すように、第1直進溝11と、第2直進溝12と、カム溝13と、を備える。
 第1直進溝(第1被係合部)11は、第1直進筒20の第1突起21(後述)を直進案内する溝である。第1直進溝11は、固定筒10を貫通する貫通溝であり、光軸OAに沿う方向に直線状に形成されている。第1直進溝11は、図3に示すように、固定筒10の円周方向に等間隔で3箇所に設けられている。
 第2直進溝(第2被係合部)12は、第1直進筒20の第2突起22を直進案内する溝である。第2直進溝12は、固定筒10を貫通しない非貫通溝であり、光軸OAに沿う方向に直線状に形成されている。第2直進溝12は、図6に示すように、固定筒10の円周方向に等間隔で3箇所に設けられている。それぞれの第2直進溝12は、固定筒10の後端側(本実施形態ではZマイナス方向側)の端部から連続して設けられている。また、それぞれの第2直進溝12は、図6に示すように、光軸OAを中心として、第1直進溝11からそれぞれ30度離れた位置に設けられている。
 カム溝13は、図4に示すように、第1回転筒30のカムフォロア31を円周方向かつ直進方向に沿って案内する溝である。図3に示すように、カム溝13は、固定筒10の円周方向に等間隔で3箇所に設けられている。それぞれのカム溝13は、固定筒10において、光軸OAに沿う方向に同一形状で略曲線状に形成されている。
 第1直進筒(第2筒)20は、図2に示すように、固定筒10の内周側に配置され、固定筒10に対して光軸OAに沿う方向に相対的に直進移動が可能な円筒状の部材である。
 第1直進筒20は、図3に示すように、第1突起21と、第2突起22と、カムフォロア23と、を備える。
 第1突起(第1係合部)21は、第1直進筒20の外周面から外方に突出するように形成されている。また、第1突起21は、光軸OAに沿って延びる板状の部材であり、固定筒10の第1直進溝11と係合する。第1突起21は、第1直進溝11を貫通した状態で、第1直進溝11に沿って移動する。第1突起21は、図6に示すように、第1直進筒20の円周方向に等間隔で3箇所に配置されている。第1突起21は、Z方向から見たときに、断面が凸形状となるように形成されている。第1突起21の中央部21aは、第1直進溝11を貫通する。この中央部21aの両側に形成された2つの肩部21bは、第1直進溝11を貫通することなしに、固定筒10の内周側に当接する(図6では、中央部21a、肩部21bの符号を、Y方向の上部に位置する第1突起21にのみ表記する)。
 第2突起(第2係合部)22は、第1直進筒20の外周面から外方に突出するように形成されている。また、第2突起22は、円周方向において第1突起21とは異なる位置であって、第1突起21と同じ数だけ形成されている(図6参照)。第2突起22は、光軸OAに沿って延びる板状の部材であり、固定筒10の第2直進溝12と係合する。第2突起22は、第2直進溝12の内周面に当接した状態で、第2直進溝12に沿って移動する。
 図6に示すように、固定筒10の内周側では、第1直進溝11と第1突起21の肩部21bとが当接すると共に、第2直進溝12と第2突起22とが当接する。そのため、第1突起21の中央部21aが第1直進溝11に沿って移動する際に、固定筒10の内周側において、軸線が光軸OAと一致するように第1直進筒20を安定して保持できる。
 それぞれの第2突起22は、図6に示すように、光軸OAを中心として、第1突起21からそれぞれ30度離れた位置に配置されている。即ち、第1突起21と第2突起22とは、光軸OAに沿った方向から見て、第1直進筒20の周方向における異なる位置に配置されている。また、図2及び図4に示すように、第2突起22の前端(Zプラス方向の端部)は、第1突起21の前端(Zプラス方向の端部)よりも第1直進筒20の後端側(本実施形態ではZマイナス方向側)に配置されている。また、第2突起22の後端(Zマイナス方向の端部)は、第1突起21の後端(Zマイナス方向の端部)よりも第1直進筒20の後端側(Zマイナス方向側)に配置されている。即ち、第2突起22の前端は、第1突起21の前端とは、光軸OAと沿う方向において異なる位置に配置されている。また、第2突起22の後端は、第1突起21の後端とは、光軸OAに沿う方向において異なる位置に配置されている。なお、第2突起22の前端と第1突起21の後端とは、光軸OAに沿う方向において一致していても異なっていてもよい。
 ここで、本実施形態における第1突起21及び第2突起22の作用について説明する。
 一般に、固定筒10と第1直進筒20との間の光軸OAに沿う方向の係合長さは、固定筒10又は第1直進筒20の光軸OAに沿う方向の長さにより規制される。そのため、第2突起22を備えていない場合の実質的な係合長さは、図2に示すように、第1突起21の長さaとなる。この場合、光軸OAに沿う方向の係合長さが短く、固定筒10と第1直進筒20との相互間のガタを小さくできないため、安定した光学性能を維持することが難しい。
 一方、本実施形態のレンズ鏡筒3において、第1直進筒20は、第1突起21、及び第1突起21と光軸OAに沿う方向において異なる位置に配置された第2突起22を備える。そのため、本実施形態のレンズ鏡筒3において、固定筒10と第1直進筒20との間の光軸OAに沿う方向における見かけ上の係合長さは、図2に示すように、長さb(>a)となる。このように、本実施形態のレンズ鏡筒3では、光軸OAに沿う方向の実質的な係合長さをより長く確保できるため、固定筒10と第1直進筒20との相互間のガタを小さくすることが可能となり、安定した光学性能を維持できる。
 また、第1直進筒20は、第1突起21よりZマイナス方向側の領域を切り欠いて形成することもできる。そのため、第1直進筒20のZマイナス方向側に異なる部材を配置して、レンズ鏡筒3の小型化を達成することも可能である。本実施形態においては、第1直進筒20は、第1突起21の後端側に、光軸OAと直交する方向に突出する立ち壁部24を有している。立ち壁部24は、遮光部材としての機能を有する。また、第1直進筒20は、立ち壁部24よりZマイナス方向側の領域を切り欠かれている。第1直進筒20の切り欠かれた領域には、沈胴状態において、固定筒10の一部が入り込むようになっている。このように、第1突起21の長さを短くすることにより、第1直進筒20の一部を切り欠いて他の部材を配置することが可能である。そのため、沈胴状態におけるレンズ鏡筒3の長さをより短くすることができる。
 なお、第1直進筒20は、円筒状の部材の一端から、少なくとも第1突起21の一端が形成された領域を第1直進溝11に沿って突出するように形成してもよい。また、第1直進筒20は、円筒状の部材の他端から、少なくとも第2突起22の他端が形成された領域を第2直進溝12に沿って突出するように形成してもよい。
 また、図6に示すように、第1突起21と第2突起22とは、第1直進筒20の外周部において、円周方向において異なる位置に配置されている。つまり、第1直進筒20は、複数種類の突起部材で直進案内することになる。そのため、第1直進筒20は、係合長さbの1種類の突起だけで直進案内するよりも、より円滑に直進案内できる。
 再び、図面を参照しながらレンズ筒体LTの構成について説明する。
 図2において、第1直進筒20のカムフォロア23は、第2回転筒40の第1カム溝41(後述)と係合する部材である。カムフォロア23は、第1突起21の上部からより外方に突出するように、第1突起21と一体に形成されている。従って、カムフォロア23は、第1突起21と同じく、第1直進筒20の外周部において、円周方向に等間隔で3箇所に配置されている。
 第1回転筒(第3筒)30は、図2に示すように、固定筒10と第1直進筒20との間に配置される円筒状の部材である。第1回転筒30のZマイナス側端部は、第1直進筒20のZマイナス側端部より常にZプラス方向側に配置されている。第1回転筒30は、図3に示すように、カムフォロア31と、突起32と、カム溝33(図2参照)と、を備える。
 カムフォロア31は、固定筒10のカム溝13と係合する部材である。カムフォロア31は、第1回転筒30の外周部において、円周方向に等間隔で3箇所に配置されている。
 突起32は、第2回転筒40の第2カム溝42(後述)と係合する部材である。突起32は、カムフォロア31の上部からより外方に突出するように、カムフォロア31と一体に形成されている。従って、突起32は、カムフォロア31と同じく、第1回転筒30の外周部において、円周方向に等間隔で3箇所に配置されている。
 カム溝33は、図2に示すように、第2直進筒50のカムフォロア51(後述)を円周方向に沿って案内する溝である。第2回転筒40の回転に伴って第1回転筒30が回転しながら直進すると、第1回転筒30のカム溝33とカムフォロア51を介して係合する第2直進筒50は、直進溝(不図示)に沿って直進する。カム溝33は、第1回転筒30の円周方向に等間隔で3箇所に設けられている。それぞれのカム溝33は、光軸OAに沿う方向に同一形状で形成されている。
 第2回転筒(第4筒)40は、固定筒10の外周側に配置され、固定筒10に対して相対的に回転可能であって、光軸OAに沿う方向(Z方向)への移動が規制された円筒状の部材である。第2回転筒40の外周部にはズームリング(不図示)が設けられている。撮影者がズームリングを回転させる操作を行うと、第2回転筒40は、ズームリングと共に時計回り又は反時計回りに回転する。第2回転筒40は、第1カム溝41と、第2カム溝42(図4参照)と、を備える。なお、第2回転筒40は、ズームリングと一体であってもよいし、他の部材を介してズームリングと連結されていてもよい。
 第1カム溝41は、第1直進筒20のカムフォロア23を光軸OAに沿う方向に駆動する溝である。第2回転筒40が回転すると、第2回転筒40の第1カム溝41によりカムフォロア23が光軸OAに沿う方向に駆動される。そのため、第1直進筒20は、第1突起21が第1直進溝11により円周方向への回転が規制された状態で、光軸OAに沿う方向に移動する。第1カム溝41は、第2回転筒40の円周方向に等間隔で3箇所に設けられている。それぞれの第1カム溝41は、光軸OAに沿う方向に同一形状で形成されている。
 第2カム溝42は、第1回転筒30の突起32を円周方向に駆動する溝である。第2回転筒40が回転すると、第2回転筒40の第2カム溝42により突起32が円周方向に駆動される。そのため、第1回転筒30において、突起32と一体のカムフォロア31は、固定筒10のカム溝13に沿って案内される。これにより、第1回転筒30は、円周方向へ回転しながら光軸OAに沿う方向に移動する。第2カム溝42は、第2回転筒40の円周方向に等間隔で3箇所に設けられている。それぞれの第2カム溝42は、光軸OAに沿う方向に同一形状で形成されている。
 第2直進筒50は、第1直進筒20の外周側であって、第1直進筒20と第1回転筒30との間に配置されている。第2直進筒50は、第1直進筒20に対して光軸OAに沿う方向に相対的に直進移動が可能な円筒状の部材である。第2直進筒50は、図2及び図3に示すように、カムフォロア51を備える。
 カムフォロア51は、第1回転筒30のカム溝33と係合する部材である。カムフォロア51は、第2直進筒50の外周部において、円周方向に等間隔に3箇所に配置されている。
 次に、レンズ筒体LTの動作について説明する。
 撮影者がズームリング(不図示)を回転させる操作を行うと、第2回転筒40は、ズームリングと共に時計回り又は反時計回りに回転する。第2回転筒40が回転すると、図2に示すように、第2回転筒40の第1カム溝41とカムフォロア23を介して係合する第1直進筒20は、第1突起21が第1直進溝11により円周方向への回転が規制された状態で、光軸OAに沿う方向に移動する。また同時に、第1直進筒20の第2突起22は、係合する固定筒10の第2直進溝12に直進案内されながら、光軸OAに沿う方向に移動する。
 また、第2回転筒40が回転すると、図4に示すように、第2回転筒40の第2カム溝42と突起32を介して係合する第1回転筒30は、カムフォロア31が固定筒10のカム溝13に沿って案内される。これにより、第1回転筒30は、円周方向へ回転しながら、光軸OAに沿って第1直進筒20と同じ方向に移動する。
 また、第1回転筒30が円周方向に回転すると、図2に示すように、第1回転筒30のカム溝33とカムフォロア51を介して係合する第2直進筒50は、第1回転筒30のカム溝33に沿って円周方向へ回転しながら、光軸OAに沿って移動する。
 このように、撮影者の操作するズームリングと共に第2回転筒40が回転すると、第1直進筒20、第1回転筒30及び第2直進筒50は、それぞれ光軸OAに沿って同じ方向に移動(前進又は後退)する。そのため、第2回転筒40を所定方向に回転させることにより、図2及び図4に示すように、各筒の繰り出しを最も長くすることができる。また、第2回転筒40を所定方向と反対回りに回転させることにより、図4に示すように、各筒の繰り出しが最も短い沈胴状態となる。
 本実施形態によれば、以下の効果を奏する。
(1)レンズ鏡筒3は、相対的に移動する固定筒10及び第1直進筒20の係合長さをより長く確保できるため、固定筒10と第1直進筒20との相互間のガタを小さくすることが可能となり、安定した光学性能を維持できる。
(2)レンズ鏡筒3において、第2直進溝12は、固定筒10を貫通しない非貫通溝であるため、第1直進筒20を光軸OAに沿う方向に直進案内が可能な状態に保持できる。また、第2直進溝12は、固定筒10の内周側において、軸線が光軸OAと一致するように第1直進筒20を安定して保持できる。
(3)レンズ鏡筒3において、第1直進筒20の第2突起22の前端部は、第1突起21の前端部よりも前端側に位置する。また、第2突起22と係合する第2直進溝12は、固定筒10の後端側の端部に設けられている。これによれば、レンズ鏡筒3は、第1突起21の前端部に対して第2突起22の後端部の位置を可能な限り離すことができるので、固定筒10と第1直進筒20との間の光軸OAに沿う方向における見かけ上の係合長さをより長くすることができる。
(4)レンズ鏡筒3は、直接に重なり合わない固定筒10と第1直進筒20との間に他の移動する筒を配置しても、光軸OAに沿う方向の係合長さに影響を与えることがない。そのため、レンズ鏡筒3は、ズームレンズ等の複数の筒を備えたレンズ鏡筒とした場合でも、安定した光学性能を維持できる。
(5)レンズ鏡筒3において、第1突起21と第2突起22とは、光軸OAと垂直な方向から見て、第1直進筒20の周方向における異なる位置に配置されている。そのため、レンズ鏡筒3においては、第1突起21及び第2突起22のそれぞれの移動範囲をより長く設計できる。
(6)レンズ鏡筒3において、第1直進筒20の第1突起21は、第1カム溝41と係合するカムフォロア23と一体に形成されている。これによれば、レンズ鏡筒3においては、第1突起21とカムフォロア23とを別部品とする必要がないので、部品点数の削減によるコストの低減、及び構造の簡素化を達成できる。
(変形形態)
 以上、説明した実施形態に限定されることなく、以下に示すような種々の変形や変更が可能であり、それらも本発明の範囲内である。
(1)本実施形態では、固定筒10と第1直進筒20との間に、2個の移動する筒(第1直進筒20、第1回転筒30)を配置した例について説明した。これに限らず、固定筒10と第1直進筒20との間に配置する他の移動する筒は1つでもよいし、3つ以上であってもよい。
(2)本実施形態では、相対的に移動する2個の筒として、固定筒10と第1直進筒20とを例に説明した。これに限らず、相対的に移動する2個の直進筒に対して本発明の構成を適用してもよい。
(3)本実施形態では、図6に示すように、第1突起21及び第2突起22を、それぞれ第1直進筒20の円周方向において、等間隔で3箇所に設けた例について説明した。これに限らず、第1突起21及び第2突起22を、それぞれ第1直進筒20の円周方向において、等間隔で2箇所に設けてもよいし、等間隔で4箇所以上設けてもよい。また、隣接する第1突起21と第2突起22との間隔は、図6に示すように、30度に限らず、適宜に設定することができる。例えば、図6において、Z方向から見たときの第1突起21と第2突起22との間隔を、光軸OAを中心として60度に配置してもよい。この場合、第1直進筒20の円周方向において、第1突起21と第2突起22とは、均等な間隔で配置される。
 なお、第1突起21及び第2突起22は、第1直進筒20の外周部において、円周方向に不均等な間隔で配置されていてもよい。また、第1突起21は、第1直進筒20の外周部において、円周方向に均等な間隔で配置されていてもよく、不均等な間隔で配置されていてもよい。同様に、第2突起22は、第1直進筒20の外周部において、円周方向に均等な間隔で配置されていてもよく、不均等な間隔で配置されていてもよい。また、第1突起21の数と第2突起22の数とは必ずしも一致していなくてもよい。また、第1突起21が第2突起22よりZマイナス側に配置されていてもよい。
(4)本実施形態において、第1回転筒30は、その外周面にカムフォロワ31と突起32とそれぞれ有している。また、一体の金属切削品であるカムフォロワ31と突起32とが、第1回転筒30の外周面に固定されている例について説明した。これに限らず、第1回転筒30とカムフォロワ31と突起32とを一体成型してもよい。また、カムフォロワ31と突起32とをそれぞれ別体で用意し、第1回転筒30の外周面に順次固定してもよい。さらに、第1回転筒30とカムフォロワ31とを一体成型し、カムフォロワに突起32を固定してもよい。
(5)本実施形態では、レンズ鏡筒3を、焦点距離を連続的に変化させることができ、かつ、不使用時には全長をより小さくすることができる沈胴式ズームレンズとして説明した。これに限らず、レンズ鏡筒3は、焦点距離の固定された単焦点レンズであってもよい。また、レンズ鏡筒3は、沈胴式でないズームレンズであってもよい。
(6)本実施形態では、レンズ鏡筒3を備えるカメラ1を、レンズ交換可能なデジタル一眼レフカメラとして説明した。これに限らず、レンズ交換可能なミラーレス一眼カメラ、レンズ一体式のデジタルカメラ、ビデオカメラ、携帯端末等に適用することもできる。
 なお、実施形態及び変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は、上記実施形態によって限定されることはない。
 1:カメラ、2:カメラ本体、3:レンズ鏡筒、10:固定筒、11:第1直進溝、12:第2直進溝、20:第1直進筒、21:第1突起、22:第2突起、23:カムフォロア、30:第1回転筒、40:第2回転筒、50:第2直進筒

Claims (12)

  1.  第1筒と、
     前記第1筒の外周側または内周側に配置され、前記第1筒に対して相対的に第1方向に移動が可能でかつ相対的に回転しない第2筒と、を備え、
     前記第2筒は、前記第1筒に向けて突出した第1係合部と、前記第1係合部とは異なり前記第1筒に向けて突出した第2係合部と、を有し、
     前記第1筒は、前記第1係合部が直進移動可能に係合される第1被係合部と、前記第2係合部が直進移動可能に係合される第2被係合部と、を有し、
     前記第1係合部の一端と前記第2係合部の他端とは、直進方向において異なる位置に配置されることを特徴とするレンズ鏡筒。
  2.  第1筒と、
     前記第1筒に対して相対的に直進移動が可能な第2筒と、を備え、
     前記第2筒は、第1係合部と第2係合部を有し、
     前記第1筒は、前記第1係合部を直進案内する第1被係合部及び前記第2係合部を直進案内する第2被係合部を有し、
     前記第1係合部と前記第2係合部とは、光軸方向において異なる位置に配置されることを特徴とするレンズ鏡筒。
  3.  請求項1または2に記載のレンズ鏡筒であって、
     前記第1係合部と前記第2係合部は、前記第2筒の周方向において異なる位置に配置されること、
    を特徴とするレンズ鏡筒。
  4.  請求項1から3のいずれかに記載のレンズ鏡筒であって、
     前記第1筒の内周側に前記第2筒が配置され、
     前記第1被係合部は、前記第1係合部の少なくとも一部が前記第1筒より外周側に貫通する貫通溝であり、
     前記第2被係合部は、前記第2係合部が前記第1筒より外周側に貫通しない非貫通溝であること、
    を特徴とするレンズ鏡筒。
  5.  請求項1から4のいずれかに記載のレンズ鏡筒であって、
     前記第2係合部は、前記第1係合部よりも前記第2筒の一端側に位置し、
     前記第2被係合部は、前記第1筒の前記一端側の端部に設けられていること、
    を特徴とするレンズ鏡筒。
  6.  請求項1から5のいずれかに記載のレンズ鏡筒であって、
     前記第2筒と前記第1筒との間に第3筒が配置されていること、
    を特徴とするレンズ鏡筒。
  7.  請求項1から6のいずれかに記載のレンズ鏡筒であって、
     前記第1筒および前記第2筒の外周側に配置される第4筒を備え、
     前記第4筒は前記第2筒の駆動用のカム溝を有し、
     前記第2筒の第1係合部と、前記カム溝に係合するカムフォロアとは一体であること、を特徴とするレンズ鏡筒。
  8.  請求項1から7のいずれかに記載のレンズ鏡筒であって、
    前記第1筒は、前記第2筒の外周側に配置され、
     前記第1筒は、前記第2筒の外径より大きな径を有する大径部と、前記第2筒の外径より小さな径を有する小径部とを有すること、
    を特徴とするレンズ鏡筒。
  9.  請求項1から8のいずれかに記載のレンズ鏡筒であって、
    前記第2筒は、円周方向の一部を切り欠いた切欠き部を有し、
     前記第2筒において、前記切欠き部と前記第2係合部とは、前記直進方向において少なくとも一部が同じ位置に配置されること、
    を特徴とするレンズ鏡筒。
  10.  請求項1から9のいずれかに記載のレンズ鏡筒であって、
     前記第1筒は、前記第2筒の外周側に配置され、
     前記第1筒は、前記第2筒の外径より大きな径を有する大径部と、前記第2筒の外径より小さな径を有する小径部とを有し、
    前記第2筒は、円周方向の一部を切り欠いた切欠き部を有し、
     前記第2筒において、前記切欠き部と前記第2係合部とは、前記直進方向において少なくとも一部が同じ位置に配置されており、
     沈胴状態において、前記切欠き部の形成された領域に、前記小径部の少なくとも一部が配置されること、
    を特徴とするレンズ鏡筒。
  11.  請求項1から9のいずれかに記載のレンズ鏡筒であって、
     前記第2筒と前記第1筒との間に第3筒が配置されており、
     沈胴状態において、前記第3筒の少なくとも一部は、前記第1係合部の少なくとも一部と、直進方向において同じ位置に配置されること、
    を特徴とするレンズ鏡筒。
  12.  請求項1から11のいずれかに記載のレンズ鏡筒を備えるカメラ。
PCT/JP2015/085907 2014-12-26 2015-12-24 レンズ鏡筒、カメラ WO2016104547A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/538,718 US10877236B2 (en) 2014-12-26 2015-12-24 Lens barrel and camera
JP2016566415A JP6624072B2 (ja) 2014-12-26 2015-12-24 レンズ鏡筒、カメラ
CN201580074646.7A CN107209343B (zh) 2014-12-26 2015-12-24 镜头镜筒、相机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-266558 2014-12-26
JP2014266558 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016104547A1 true WO2016104547A1 (ja) 2016-06-30

Family

ID=56150561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085907 WO2016104547A1 (ja) 2014-12-26 2015-12-24 レンズ鏡筒、カメラ

Country Status (4)

Country Link
US (1) US10877236B2 (ja)
JP (2) JP6624072B2 (ja)
CN (1) CN107209343B (ja)
WO (1) WO2016104547A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110573962A (zh) * 2017-04-26 2019-12-13 株式会社尼康 透镜镜筒、相机机身、相机系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547980B2 (ja) 2017-12-19 2019-07-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd レンズ装置、撮像装置、移動体
TWI679484B (zh) * 2018-01-05 2019-12-11 大陸商信泰光學(深圳)有限公司 鏡頭裝置(二)
JP2023064196A (ja) * 2021-10-26 2023-05-11 ニデックプレシジョン株式会社 カメラ装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182094A (ja) * 2000-12-15 2002-06-26 Canon Inc レンズ鏡筒およびカメラ
JP2008249983A (ja) * 2007-03-30 2008-10-16 Nidec Copal Corp レンズ鏡筒

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634881Y2 (ja) * 1976-03-18 1981-08-17
JPS5855905A (ja) * 1981-09-30 1983-04-02 Konishiroku Photo Ind Co Ltd レンズ鏡筒
JPS60146209A (ja) * 1984-01-10 1985-08-01 Nippon Kogaku Kk <Nikon> 撮影レンズ鏡筒
DE3710646A1 (de) * 1987-03-31 1988-10-20 Norbert Lemke Varioobjektiv fuer eine fernsehkamera insbesondere fuer endoskopische anwendungen
JP3198679B2 (ja) 1992-11-17 2001-08-13 富士写真光機株式会社 ズームレンズ駆動装置
JP3595597B2 (ja) 1995-03-28 2004-12-02 キヤノン株式会社 撮影用レンズ
JPH116946A (ja) * 1997-06-17 1999-01-12 Nikon Corp レンズ鏡筒
JP2001215387A (ja) * 2000-02-03 2001-08-10 Asahi Optical Co Ltd ズームレンズ鏡筒
JP2001235669A (ja) * 2000-02-23 2001-08-31 Fuji Photo Optical Co Ltd レンズ装置
JP4974418B2 (ja) * 2001-05-23 2012-07-11 オリンパス株式会社 レンズ鏡筒
US6639731B1 (en) * 2002-07-16 2003-10-28 Primax Electronics, Ltd. Zoom lens barrel assembly of camera
JP3905874B2 (ja) 2002-09-26 2007-04-18 ペンタックス株式会社 レンズ鏡筒
JP2004302001A (ja) * 2003-03-31 2004-10-28 Fuji Photo Optical Co Ltd レンズ鏡筒
JP4218964B2 (ja) * 2004-08-05 2009-02-04 キヤノン株式会社 レンズ装置および撮像装置
CN2784956Y (zh) * 2004-12-29 2006-05-31 鸿富锦精密工业(深圳)有限公司 数码相机变焦镜头
JP5065588B2 (ja) * 2005-11-22 2012-11-07 オリンパス株式会社 レンズ鏡筒およびレンズ鏡筒システム
JP4804155B2 (ja) * 2006-01-25 2011-11-02 オリンパスイメージング株式会社 レンズ鏡筒
JP2007248770A (ja) * 2006-03-15 2007-09-27 Fujinon Corp ズームレンズ装置
JP4891213B2 (ja) * 2007-12-13 2012-03-07 オリンパスイメージング株式会社 レンズ鏡筒
JP5211055B2 (ja) * 2008-01-25 2013-06-12 パナソニック株式会社 レンズ鏡筒
JP5328181B2 (ja) * 2008-03-11 2013-10-30 キヤノン株式会社 レンズ鏡筒および撮影装置
JP5143644B2 (ja) * 2008-07-01 2013-02-13 Hoya株式会社 レンズ鏡筒の遮光部材支持構造
JP5515322B2 (ja) * 2009-02-24 2014-06-11 株式会社ニコン レンズ鏡筒および撮像装置
US8325431B2 (en) * 2009-02-24 2012-12-04 Nikon Corporation Lens barrel and image capturing apparatus
JP2011095618A (ja) * 2009-10-30 2011-05-12 Fujifilm Corp レンズ装置
JP2013080202A (ja) * 2011-09-22 2013-05-02 Panasonic Corp レンズ鏡筒および撮像装置
JP2015083999A (ja) * 2012-02-02 2015-04-30 パナソニック株式会社 レンズ鏡筒
WO2013114908A1 (ja) * 2012-02-02 2013-08-08 パナソニック株式会社 レンズ鏡筒
JP2015083997A (ja) * 2012-02-02 2015-04-30 パナソニック株式会社 レンズ鏡筒
CN103246042B (zh) * 2012-02-10 2015-06-10 佳能企业股份有限公司 镜头机构以及具有该镜头机构的电子装置
JP6064420B2 (ja) * 2012-08-06 2017-01-25 株式会社ニコン レンズ鏡筒および光学機器
KR20140109184A (ko) * 2013-03-05 2014-09-15 삼성전자주식회사 경통 조립체 및 이를 구비한 촬영장치
JP2015040942A (ja) * 2013-08-21 2015-03-02 オリンパス株式会社 レンズ鏡筒、撮影装置、およびレンズ鏡筒の部品
JP6136791B2 (ja) * 2013-09-11 2017-05-31 ソニー株式会社 レンズ鏡筒及び撮像装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182094A (ja) * 2000-12-15 2002-06-26 Canon Inc レンズ鏡筒およびカメラ
JP2008249983A (ja) * 2007-03-30 2008-10-16 Nidec Copal Corp レンズ鏡筒

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110573962A (zh) * 2017-04-26 2019-12-13 株式会社尼康 透镜镜筒、相机机身、相机系统
CN110573962B (zh) * 2017-04-26 2022-03-25 株式会社尼康 透镜镜筒、相机机身、相机系统

Also Published As

Publication number Publication date
JP2020038390A (ja) 2020-03-12
JP6624072B2 (ja) 2019-12-25
JPWO2016104547A1 (ja) 2017-10-12
US20180113271A1 (en) 2018-04-26
JP6801769B2 (ja) 2020-12-16
CN107209343A (zh) 2017-09-26
CN107209343B (zh) 2020-10-16
US10877236B2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
JP6801769B2 (ja) レンズ鏡筒及び撮像装置
US8134784B2 (en) Lens apparatus capable of performing extension/retraction operation with respect to image pickup apparatus body and image pickup apparatus having the same
JP6436787B2 (ja) ズームレンズ鏡筒およびこれを用いた光学機器
JP2009169388A (ja) レンズ鏡胴、カメラ、携帯型情報端末装置、画像入力装置およびレンズ鏡胴用筒
WO2013114908A1 (ja) レンズ鏡筒
US11022775B2 (en) Lens apparatus and optical apparatus
US11029479B2 (en) Lens barrel and optical apparatus
JP2010049022A (ja) レンズ駆動装置、レンズ鏡胴およびカメラ
JP5525971B2 (ja) レンズ鏡胴及び撮像装置
JP5570098B2 (ja) レンズ鏡筒、及び、カメラ
JP5573026B2 (ja) レンズ鏡筒及びカメラ
WO2020003921A1 (ja) レンズ鏡筒
JP2013050701A (ja) レンズ鏡筒および撮像装置
US9477063B2 (en) Lens barrel
JP5504106B2 (ja) レンズ鏡胴及び撮像装置
JP6746909B2 (ja) レンズ鏡筒及び光学機器
JP2013156562A (ja) レンズ鏡筒およびそれを備える撮像装置
JP2016126137A (ja) 光学機器
JP2005234259A (ja) 光学鏡筒
JP2009244613A (ja) 沈胴式のカメラ用レンズ鏡胴
JP2016200791A (ja) レンズ鏡筒および光学機器
JP2015079020A (ja) レンズ鏡筒
JP2007193149A (ja) レンズ鏡筒
JP2015079022A (ja) レンズ鏡筒
JP2015040971A (ja) ズームレンズ鏡筒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566415

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15538718

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15873115

Country of ref document: EP

Kind code of ref document: A1