WO2015129917A1 - ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法 - Google Patents

ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法 Download PDF

Info

Publication number
WO2015129917A1
WO2015129917A1 PCT/JP2015/056110 JP2015056110W WO2015129917A1 WO 2015129917 A1 WO2015129917 A1 WO 2015129917A1 JP 2015056110 W JP2015056110 W JP 2015056110W WO 2015129917 A1 WO2015129917 A1 WO 2015129917A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
weight
absorbent resin
absorbing
polymerization
Prior art date
Application number
PCT/JP2015/056110
Other languages
English (en)
French (fr)
Inventor
義貴 池内
芳史 足立
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to US15/122,095 priority Critical patent/US10207250B2/en
Priority to CN201580010989.7A priority patent/CN106029220B/zh
Priority to JP2016505362A priority patent/JP6441894B2/ja
Priority to KR1020167023538A priority patent/KR20160127742A/ko
Priority to EP15756085.5A priority patent/EP3112022A4/en
Publication of WO2015129917A1 publication Critical patent/WO2015129917A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/18Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/425Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3028Granulating, agglomerating or aggregating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels

Definitions

  • the present invention relates to a particulate water-absorbing agent mainly composed of a poly (meth) acrylic acid (salt) water-absorbing resin. More specifically, the present invention relates to a particulate water-absorbing agent that is excellent in handleability in the manufacturing process of paper diapers and the like and can improve the performance of absorbent articles such as paper diapers.
  • a water-absorbing resin (SAP / Super Absorb Polymer) is a water-swelling, water-insoluble polymer gelling agent, and exhibits excellent characteristics of absorbing body fluids. For this reason, water-absorbing agents mainly composed of water-absorbing resins are widely used for absorbent articles such as disposable diapers and sanitary napkins, as well as agricultural and horticultural water retention agents and industrial water-stopping materials. Many monomers and hydrophilic polymers have been proposed as raw materials for the water-absorbing resin constituting such a water-absorbing agent. From the viewpoint of price and performance, (meth) acrylic acid and / or its salts are mainly used. The poly (meth) acrylic acid (salt) water-absorbing resin used as a component is most frequently used industrially.
  • Non-Patent Document 1 Such a water-absorbent resin is produced through a polymerization process, a drying process, and if necessary, a undried product removal process, a pulverization process, a classification process, a surface cross-linking process, and the like.
  • disposable diapers which are the main use of water-absorbing agents, are required to improve urine leakage and skin irritation.
  • a method for evaluating these a method of measuring a return amount from a paper diaper under pressure and a method of measuring a liquid absorption time of a paper diaper under pressure are proposed.
  • Patent Document 1 a technology that uses a water-absorbing agent having high total water absorption capacity (PAI) under four different pressures (PAI) in a paper diaper (Patent Document 1), in the SAP layer under pressure, only in the vertical direction Technology that improves the diffusibility of the liquid in the horizontal direction (Patent Documents 2 and 3), technology that improves the water absorption capacity under pressure when the amount of SAP per unit area is large (Patent Documents 4 and 5), There has been proposed a technique (Patent Document 6) and the like for improving a water absorption magnification under pressure measured in a state where a difference in height is provided between a contacting glass filter and a liquid surface on the liquid supply side.
  • Patent Documents 1 to 6 evaluate the water absorption magnification under pressure in a state where the measurement time is long and saturated. If these are improved, the amount of return of the disposable diaper can be reduced and the liquid absorption speed can be shortened. However, the effect is still insufficient, and a new evaluation parameter has been demanded.
  • a technique for improving the water absorption rate by increasing the specific surface area is known.
  • a technique for finely controlling the particle diameter Patent Document 7
  • a technique for finely controlling the particle diameter to perform surface crosslinking and finally granulating with a small amount of water
  • Patent Document 8 when pulverizing the polymer gel Technology for pulverizing with specific energy to form granulated particles
  • Patent Documents 9 and 10 technology for granulating water absorbent resin fine particles having a large surface area using a binder
  • Patent Documents 17 and 18 a large surface area Technology for granulating water-absorbent resin fine particles with water or hot water at high speed
  • the polymerization is performed in multiple stages to granulate spherical particles For obtaining a product (Patent Documents 19 and 20), a technique for freeze-drying a hydrogel to
  • Patent Documents 37 and 38 Polymerization in a state
  • Patent Documents 39, 40 and 41 Technology using an azo compound
  • Patent Documents 42 and 43 Technology using insoluble inorganic powder and water-insoluble particles
  • Patent Document 44 a technique for polymerizing a slurry in which a fine precipitate of sodium (meth) acrylate having a concentration of 45 to 60% by weight containing gas microbubbles is dispersed
  • Patent Document 45 a technique of foaming and crosslinking after polymerization
  • Patent Document 46 a technique of foaming by adjusting a wind speed at the time of drying, etc.
  • Patent Documents 47 and 52 a technique for adding water-insoluble inorganic fine particles (Patent Documents 47 and 52), a technique for adding a polyvalent metal salt of an organic acid having 7 or more carbon atoms in the molecule (Patent Document 48), water A technique for associating an insoluble metal phosphate with the surface (Patent Document 49), a technique for treating with a specific silicone surfactant (Patent Document 50), a technique for mixing clay in a water-absorbing resin (Patent Document 51), etc. are proposed. Has been.
  • Patent Documents 1 to 6 cannot necessarily correlate with the return amount of the disposable diaper. It was considered that the evaluation was performed in a state in which the water absorption ratio was almost saturated as long as 1 hour (or several hours). Therefore, we focused on the urine discharge pattern in disposable diapers. That is, human urine is discharged in units of several tens of ml at intervals of several hours. And a paper diaper is required to absorb urine several times.
  • the water-absorbing agent absorbs the liquid quickly every urination and the absorbent has a strong suction force that can absorb the liquid in the pulp, the amount of urine remaining in the pulp decreases, and the time for the skin to contact the urine is reduced. We thought that it would be easier for rash to occur and leakage could be reduced because it would be shorter.
  • the water absorbing agent was liquidated in a short time (10 minutes) in a state where a difference of 10 cm in height was provided between the surface of the 0.90 wt% sodium chloride aqueous solution and the glass filter.
  • GCA Gel Capillary Absorption
  • the particulate water-absorbing agent according to the present invention is a particulate water-absorbing agent mainly composed of a poly (meth) acrylic acid (salt) -based water-absorbing resin, and has a weight average particle diameter.
  • a first method for producing a particulate water-absorbing agent according to the present invention comprises (a1) a poly (meth) acrylic acid (salt) water-absorbing resin having an average particle diameter of 10 to 180 ⁇ m. A granulation step of granulating to obtain a granulated product, (b) a surface cross-linking step of surface cross-linking the granulated product, and (c) all of the granulated product before and / or after the surface cross-linking step.
  • the 2nd manufacturing method of the particulate water absorbing agent which concerns on this invention is the (a2) monomer aqueous solution preparation process which obtains the sodium acrylate aqueous solution which disperse
  • the ratio of particles having a particle diameter of 150 to 850 ⁇ m (specified by a standard sieve) to 100% by weight of all the particles of the foamed polymer is 95 to 100% by weight.
  • the method for producing a water-absorbing agent is characterized in that the sizing step and (d) the mixing step of mixing the water-insoluble inorganic fine particles are sequentially performed, or the step (c) and the step (d) are simultaneously performed. .
  • FIG. 1 is a perspective view showing an example of an apparatus used for a continuous temperature raising method by heating an acrylic acid (salt) monomer aqueous solution as a method of incorporating bubbles to which the production method according to the present invention is applied. is there.
  • FIG. 2 is a sectional view schematically showing closed cells (Closed-Cell) and open cells (Open-Cell) in the water-absorbent resin particles.
  • FIG. 3 is a cross-sectional view schematically showing an operation for finely pulverizing water-absorbent resin particles (for example, the ratio of the particle size of 850 to 150 ⁇ m is 95% by weight or more) for measuring the internal bubble rate of the present invention to less than 45 ⁇ m. It is.
  • FIG. 4 shows an outline of an embodiment in which a bubble is introduced as a method of incorporating bubbles by applying the production method according to the present invention, by heating the acrylic acid (salt) monomer aqueous solution with heat of neutralization.
  • FIG. 5 shows a method of adding bubbles to a case where bubbles are generated by raising the temperature of an acrylic acid-based monomer aqueous solution as a method of incorporating bubbles according to the invention.
  • FIG. 6 shows a method of incorporating bubbles, to which the production method according to the present invention is applied, after introducing bubbles by raising the temperature of an acrylic acid (salt) monomer aqueous solution, and further introducing an inert gas (for example, nitrogen gas).
  • an inert gas for example, nitrogen gas.
  • FIG. 7 shows a method of incorporating bubbles in which the production method according to the invention is applied.
  • FIG. 8 shows a method of incorporating bubbles by applying the manufacturing method according to the present invention.
  • the monomer aqueous solution of an inert gas for example, nitrogen
  • FIG. 8 shows a schematic flowchart which shows the embodiment which performs deoxygenation before superposition
  • FIG. 9 is a schematic flow diagram showing a decrease in gas solubility and bubble generation by mixing a water-soluble organic compound in an acrylic acid monomer aqueous solution as a method of containing bubbles to which the manufacturing method according to the invention is applied.
  • FIG. 10 is a schematic flow diagram showing a decrease in gas solubility and bubble generation by mixing a water-soluble organic compound in an acrylic acid monomer aqueous solution as a method of incorporating bubbles, to which the manufacturing method according to the invention is applied.
  • FIG. 11 is a schematic diagram of an apparatus used for the GCA measurement of the present invention.
  • the present invention is not limited to the following embodiments, and various modifications are possible within the scope of the claims, and technical means disclosed in different embodiments are appropriately combined. Embodiments obtained in this manner are also included in the technical scope of the present invention.
  • water-absorbing agent refers to a water-absorbing resin as a main component (preferably 60% by weight or more, further 80% by weight or more, 90% by weight).
  • water, inorganic fine particles, moisture absorption blocking inhibitors, cationic polymer compounds, water-soluble polyvalent metal cation-containing compounds, surfactants, dust generation Inhibitors, anti-coloring agents, urine resistance improvers, deodorants, fragrances, antibacterial agents, foaming agents, pigments, dyes, fertilizers, oxidizing agents, reducing agents, etc. are each 0 to 10% by weight, preferably 0.8. It may be contained in an amount of 1 to 1% by weight.
  • Water Absorbent Resin The water-absorbing resin in the present invention means a water-swellable water-insoluble polymer gelling agent. “Water swellability” means that the CRC (absorption capacity under no pressure) specified by ERT441.2-02 is 5 [g / g] or more, and “water insolubility” means ERT470. Ext (soluble content) specified in 2-02 is 0 to 50% by weight.
  • the total amount (100% by weight) of the water-absorbent resin is not limited to the polymer, and may contain additives and the like within the range of maintaining the above performance, and the water-absorbent resin composition containing a small amount of additives is also included.
  • it is generically called a water-absorbing resin.
  • the shape of the water-absorbent resin is preferably a powder, and particularly preferably a powder-form water-absorbent resin having a particle size described later.
  • the water absorbent resin is sometimes referred to as a water absorbent resin powder or a water absorbent resin particle.
  • the “poly (meth) acrylic acid (salt) -based water-absorbing resin” in the present invention optionally includes a graft component, and (meth) acrylic acid and / or a salt thereof (hereinafter referred to as (meth) acrylic acid) as a repeating unit. (Referred to as “salt”).
  • a polymer containing 50 to 100 mol% of (meth) acrylic acid (salt) among total monomers (excluding the crosslinking agent) used in the polymerization preferably 70 to 100 mol%, More preferably, it refers to a water-absorbing resin containing 90 to 100 mol%, particularly preferably substantially 100 mol%.
  • poly (meth) acrylate type (neutralization type) polymers are also collectively referred to as poly (meth) acrylic acid (salt) water-absorbing resins.
  • EDANA European Disposables and Nonwovens Associations
  • ERT is an abbreviation for a method for measuring water-absorbent resin (EDANA Recommended Test Methods), which is a European standard (almost world standard). is there.
  • EDANA Recommended Test Methods European Standard (almost world standard).
  • CRC is an abbreviation for Centrifugation Retention Capacity (centrifuge retention capacity) and means water absorption capacity without pressure (hereinafter also referred to as “water absorption capacity”). Specifically, 0.200 g of the water-absorbing agent (or water-absorbing resin) in the nonwoven fabric was freely swollen for 30 minutes in a large excess of 0.90 wt% sodium chloride aqueous solution, and then drained with a centrifuge. It is a subsequent water absorption ratio (unit: [g / g]).
  • AAP is an abbreviation for Absorption Against Pressure, which means water absorption capacity under pressure. Specifically, 0.900 g of a water absorbing agent (or water absorbing resin) was swollen under a load of 2.06 kPa (0.3 psi) for 1 hour against a 0.90 wt% sodium chloride aqueous solution. It is a water absorption magnification (unit; [g / g]). In ERT442.2-02, “Absorption Under Pressure” is described, but the contents are substantially the same.
  • PSD is an abbreviation for Particle Size Distribution and means a particle size distribution measured by sieve classification.
  • the weight average particle diameter (D50) and the particle size distribution width are measured by the same method as “(1) Average Particle Diameter and Distribution of Particle Diameter” described in US Pat. No. 2006-204755.
  • Ext is an abbreviation for Extractables and means a soluble component (water-soluble component amount). Specifically, it is the amount of dissolved polymer (unit: wt%) after adding 1.000 g of a water absorbing agent (or water absorbing resin) to 200 ml of a 0.90 wt% sodium chloride aqueous solution and stirring for 16 hours. The amount of dissolved polymer is measured using pH titration.
  • X to Y indicating a range means “X or more and Y or less”.
  • t (ton) which is a unit of weight means “Metric ton”, and “ppm” means “ppm by weight” unless otherwise noted.
  • weight and “mass”, “wt%” and “mass%”, “part by weight” and “part by mass” are treated as synonyms.
  • ⁇ acid (salt) means “ ⁇ acid and / or salt thereof”
  • (meth) acryl means “acryl and / or methacryl”.
  • it is measured at room temperature (20 to 25 ° C.) and relative humidity 40 to 50% RH.
  • the first production method (production method 1) of the particulate water-absorbing agent according to the present invention is (a1) poly (meta) having an average particle diameter of 10 to 180 ⁇ m.
  • a granulating step of granulating an acrylic acid (salt) -based water-absorbing resin to obtain a granulated product (b) a surface cross-linking step of surface-crosslinking the granulated product, (c) before the surface cross-linking step and And / or a particle size adjusting step in which the ratio of particles having a particle diameter of 150 to 850 ⁇ m (specified by a standard sieve) to 100% by weight of all the particles of the granulated product is 95 to 100% by weight, and (d) water-insoluble
  • the mixing step of mixing the inorganic fine particles is performed sequentially, or at least a part of the steps (a1) to (d) is performed simultaneously.
  • the second production method (production method 2) of the particulate water-absorbing agent according to the present invention is (a2) a single amount for obtaining a sodium acrylate aqueous solution in which bubbles are dispersed in advance before polymerization.
  • a body aqueous solution preparation step (a3) a polymerization step of polymerizing the aqueous solution to obtain a foamed polymer of a poly (meth) acrylic acid (salt) -based water absorbent resin, and (b) surface-crosslinking the foamed polymer.
  • the ratio of the particles having a particle diameter of 150 to 850 ⁇ m (specified by a standard sieve) in 100% by weight of all the particles of the foamed polymer is 95 to 95%. It is characterized in that the sizing step of 100% by weight and (d) the mixing step of mixing the water-insoluble inorganic fine particles are carried out sequentially or simultaneously with the step (c) and the step (d).
  • “sequential” means that the steps (a1) to (d) (production method 1) and the steps (a2) to (d) (production method 2) are performed. It means to be done in this order. That is, for example, in the manufacturing method 1, the step (b) is performed after the step (a1) is completed, the step (c) is performed after the step (b) is completed, and the step (d) is performed after the step (c) is completed. means. Steps other than the above-described steps (a1) to (d) (manufacturing method 1) and steps (a2) to (d) (manufacturing method 2) may be sandwiched between them.
  • the time between the above steps is appropriately determined including transportation time and storage time, and the time is preferably 0 second or more and 2 hours or less, more preferably 1 second or more and 1 hour or less.
  • the manufacturing method of the particulate water-absorbing agent according to the present invention will be described mainly in the order of time, the manufacturing method 1 and the manufacturing method 2 only have to have the above-described essential steps. Other steps may be further included without departing from the spirit of the method.
  • (2-1) Method of introducing foam structure into water-absorbent resin particles by incorporating bubbles in the polymerization step before the polymerization step of (meth) acrylic acid (salt) monomer aqueous solution
  • (2-1-1) Step of preparing (meth) acrylic acid (salt) monomer aqueous solution
  • “(meth) acrylic acid (salt) monomer aqueous solution” is a main component of (meth) acrylic acid (salt).
  • a component constituting a water-absorbing resin such as a crosslinking agent, a graft component and a trace component (chelating agent, surfactant, dispersant, etc.) is prepared as necessary.
  • the (meth) acrylic acid (salt) may be unneutralized or salt type (completely neutralized type or partially neutralized type), and the monomer aqueous solution may exceed the saturation concentration, Even a supersaturated aqueous solution or aqueous slurry (aqueous dispersion) of (meth) acrylic acid (salt) is treated as the (meth) acrylic acid (salt) monomer aqueous solution of the present invention.
  • water is preferable as the solvent for dissolving the monomer, and the (meth) acrylic acid (salt) monomer is treated as an aqueous solution.
  • the “aqueous solution” is not limited to the case where 100% by weight of the solvent is water, and when the total amount of the solvent is 100% by weight of the water-soluble organic solvent (for example, alcohol) in addition to water. May be used in an amount of 0 to 30% by weight, preferably 0 to 5% by weight. In the present invention, these are treated as an aqueous solution.
  • the “(meth) acrylic acid (salt) -based monomer aqueous solution under preparation” described later refers to all monomer aqueous solutions containing the above (meth) acrylic acid (salt) as the main component. This refers to an aqueous solution of (meth) acrylic acid (salt) before the components are mixed. Specifically, (meth) acrylic acid aqueous solution, fully neutralized or partially neutralized (meth) acrylic acid (salt) aqueous solution Applicable.
  • the final (meth) Acrylic acid (salt) monomer aqueous solution By further neutralizing the (meth) acrylic acid (salt) monomer aqueous solution being prepared, mixing water as a solvent, or mixing the above trace components, the final (meth) Acrylic acid (salt) monomer aqueous solution.
  • the state before the polymerization is started before being charged into the polymerization apparatus or after being charged into the polymerization apparatus, It is referred to as “(meth) acrylic acid (salt) monomer aqueous solution after preparation”.
  • (Monomer) For the water-absorbent resin of the present invention, a monomer mainly composed of (meth) acrylic acid (salt) is used.
  • the main component means that (meth) acrylic acid (salt) is usually at least 50 mol%, preferably at least 70 mol%, more preferably at least 80 mol%, based on the entire monomer (excluding the internal crosslinking agent), More preferably, it is 90 mol% or more, particularly preferably 95 mol% or more (the upper limit is 100 mol%).
  • poly (meth) acrylic acid (salt) is not limited to non-neutralized (neutralization rate 0 mol%), but includes a concept of partial neutralization or complete neutralization (neutralization rate 100 mol%). It is.
  • (meth) acrylic acid (salt) as the main component of the monomer, it may also contain a monomer that becomes a water-absorbing resin by polymerization, such as (anhydrous) maleic acid, itaconic acid, Cinnamic acid, vinylsulfonic acid, allyltoluenesulfonic acid, vinyltoluenesulfonic acid, styrenesulfonic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid, 2- (meta ) Anionic unsaturated monomers (salts) such as acryloylpropane sulfonic acid and 2-hydroxyethyl (meth) acryloyl phosphate; mercapto group-containing unsaturated monomers; phenolic hydroxyl group-containing unsaturated monomers; ) Amido groups such as acrylamide, N-ethyl (meth)
  • the neutralization rate of the (meth) acrylic acid (salt) monomer or the hydrogel crosslinked polymer after polymerization is not particularly limited, but the properties of the water-absorbent resin particles obtained and the surface crosslinking agent From the viewpoint of reactivity, it is preferably 40 to 90 mol%, more preferably 50 to 80 mol%, still more preferably 60 to 75 mol%.
  • the neutralization rate is low, the water absorption rate tends to decrease (for example, the water absorption time by the Vortex method increases).
  • the neutralization rate is high, the poly (meth) acrylic acid (salt) system Since the reactivity between the water-absorbent resin and the surface cross-linking agent (especially the dehydration reactive surface cross-linking agent described later) decreases, the productivity decreases or the water absorption capacity under pressure (for example, AAP) tends to decrease.
  • a neutralization rate within the above range is preferred.
  • the neutralization may be performed on the hydrogel after polymerization, or both may be used in combination.
  • the (meth) acrylic acid (salt) monomer or the hydrogel crosslinked polymer is partly or entirely May be in a salt form, monovalent salts such as sodium salt, lithium salt, potassium salt, ammonium salt, amines are preferred, alkali metal salt is more preferred, sodium salt and / or potassium salt is more preferred, cost and physical properties From the viewpoint of, sodium salt is particularly preferable.
  • the (meth) acrylic acid (salt) monomer of the present invention contains a polymerization inhibitor.
  • the polymerization inhibitor is not particularly limited, and examples thereof include N-oxyl compounds, manganese compounds, and substituted phenol compounds disclosed in International Publication No. 2008/096713. Of these, substituted phenols are preferred, and methoxyphenols are particularly preferred.
  • methoxyphenol examples include o, m, p-methoxyphenol, and methoxyphenol having one or more substituents such as a methyl group, a t-butyl group, and a hydroxyl group.
  • p-methoxyphenol is particularly preferred.
  • the content of methoxyphenols in the (meth) acrylic acid (salt) monomer is preferably 10 to 200 ppm by weight, and in the following order, 5 to 160 ppm, 10 to 160 ppm, 100 ppm by weight, 10-80 ppm by weight is preferred, and 10-70 ppm by weight is most preferred.
  • the content of methoxyphenol exceeds the above range, the resulting water-absorbent resin may be deteriorated in color tone (coloring such as yellowing or yellowing), which is not preferable.
  • the content is less than 5 ppm by weight, that is, when p-methoxyphenol is removed by purification such as distillation, there is a high risk of causing polymerization before intentional polymerization is started, which is not preferable.
  • an internal cross-linking agent is used as necessary in the polymerization.
  • the internal cross-linking agent known ones can be used. For example, N, N′-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, trimethyl Roll propane tri (meth) acrylate, glycerin tri (meth) acrylate, glycerin acrylate methacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, pentaerythritol hexa (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, tri Allyl phosphate, triallylamine, poly (meth) allyloxyalkane, (poly) ethylene glycol diglycidyl ether, glycerol diglycidyl ether, ethylene
  • the amount of the internal cross-linking agent used can be appropriately determined depending on the desired properties of the water-absorbent resin, but is 0.001 to 5 mol% with respect to 100 mol% of the (meth) acrylic acid (salt) monomer. Preferably, 0.005 to 2 mol% is more preferable, and 0.01 to 1 mol% is still more preferable.
  • the amount used is 0.001 mol% or more, the water-absorbing resin obtained does not have too much soluble component, and a sufficient amount of water absorption under pressure can be secured.
  • the amount used is 5 mol% or less, the water-absorbent resin obtained has a crosslinking density that is not too high, and a sufficient amount of water absorption can be secured.
  • the internal cross-linking agent is added to the reaction system before or during polymerization of the monomer, after polymerization, or after neutralization. You can do it.
  • the internal cross-linking agent may be added all at once or dividedly to the reaction system.
  • the surfactant and / or the (meth) acrylic acid (salt) monomer aqueous solution during the preparation or after the preparation before the polymerization step. It is preferable to add a dispersant and stably suspend the generated bubbles. Further, by appropriately designing the type and amount of the surfactant and / or dispersant, a water-absorbing resin having desired physical properties can be obtained. can get.
  • the surfactant is preferably a non-polymer compound, and the dispersant is preferably a polymer compound.
  • the surface tension of the obtained water absorbent resin is 60 [mN / m] or more. More preferably, it is added to the (meth) acrylic acid (salt) monomer aqueous solution so as to be in the range described in “(3-5) Surface tension” described later. If the surface tension is less than 60 [mN / m], the amount of return tends to increase when using a disposable diaper, which is not preferable.
  • a water-absorbing resin or a (meth) acrylic acid (salt) monomer and a reactive or polymerizable surfactant such as an unsaturated polymerizable group (particularly ⁇ , ⁇ -unsaturated double bond) or a reactive agent having a reactive group (hydroxyl group, amino group) is preferred, and a hydrophilic surfactant (HLB; 1 to 18, high solubility in water)
  • HLB hydrophilic surfactant
  • the surfactant that can be used is not particularly limited, but the surfactants disclosed in WO 97/017397 and US Pat. No. 6,107,358, that is, nonionic surfactants and anionic surfactants. , Cationic surfactants, amphoteric surfactants and the like.
  • These surfactants may be polymerizable or reactive with (meth) acrylic acid (salt) monomers or water-absorbing resin particles. That is, any surfactant having reactivity with a polymerizable functional group such as a vinyl group, an allyl group, or an allyloxy group, or a functional group of a water-absorbing resin such as a glycidyl group may be used.
  • nonionic surfactant examples include polyoxyalkylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether; Polyoxyalkylene alkyl phenyl ethers such as oxyethylene nonylphenyl ether; polyoxyalkylene alkyl amino ethers such as polyoxyethylene lauryl amino ether and polyoxyethylene stearyl amino ether; sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate Sorbitan fatty acid esters such as sorbitan monooleate; polyoxyethylene sorbitan monolaur Polyoxyalkylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyalkylene sorbitan fatty acid esters such as polyoxyethylene sorbitan monooleate; polyethylene glycol monolaurate, polyethylene glycol monooleate, poly(
  • anionic surfactant examples include sodium polyoxyethylene lauryl ether sulfate, sodium polyoxyethylene octylphenyl ether sulfate, sodium polyoxyethylene nonylphenyl ether sulfate, triethanolamine lauryl sulfate, sodium lauryl sulfate, and potassium lauryl sulfate.
  • sulfate esters such as ammonium lauryl sulfate; sulfonates such as sodium dodecylbenzenesulfonate, sodium alkylnaphthalenesulfonate and sodium dialkylsulfosuccinate; and phosphate ester salts such as potassium alkylphosphate.
  • cationic surfactant examples include quaternary ammonium salts such as lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, cetyltrimethylammonium chloride, and stearyltrimethylammonium chloride.
  • silicone surfactants can be exemplified.
  • silicone surfactant include anionic, nonionic, and cationic silicone surfactants, and polyoxyalkylene-modified silicone surfactants.
  • silicone surfactant include anionic, nonionic, and cationic silicone surfactants, and polyoxyalkylene-modified silicone surfactants.
  • silicone surfactant include anionic, nonionic, and cationic silicone surfactants, and polyoxyalkylene-modified silicone surfactants.
  • silicone surfactant include anionic, nonionic, and cationic silicone surfactants, and polyoxyalkylene-modified silicone surfactants.
  • silicone surfactant include anionic, nonionic, and cationic silicone surfactants, and polyoxyalkylene-modified silicone surfactants.
  • polyoxyethylene-modified dimethylpolysiloxane Polyoxyethylene / polyoxypropylene block or random copolymer-modified dimesyl polysiloxane, dimethylpolysiloxane
  • polyoxyethylene-modified dimethylpolysiloxane polyoxyethylene / polyoxypropylene block or random copolymer-modified dimethylsilsiloxane are preferable, and polyoxyethylene-modified dimethylpolysiloxane is industrially available at low cost. Therefore, it is more preferable.
  • surfactants may be used alone or in combination of two or more thereof, or may be used in combination with a dispersant described below (particularly a polymer dispersant).
  • anionic surfactants, nonionic surfactants, or silicone surfactants are preferably used from the viewpoint of effects, and nonionic surfactants or silicone surfactants are used. More preferably.
  • the amount of the surfactant to be added is appropriately determined according to the type and desired physical properties (particularly the water absorption rate and surface tension), but it exceeds 0 with respect to 100 parts by weight of the monomer used. Parts by weight or less, preferably more than 0 and not more than 0.03 parts by weight, more preferably more than 0 and not more than 0.015 parts by weight, particularly preferably more than 0 and not more than 0.01 parts by weight, more preferably more than 0 and less than 0. 008 parts by weight or less is most preferable.
  • the addition amount of the surfactant is similarly applied to the water absorbent resin particles.
  • the present invention can also be applied to a water-absorbing agent obtained after coating with a surfactant described in “(2-4) Additive adding step” described later.
  • the said addition amount is a value within the said range, since control of foaming at the time of a polymerization reaction becomes easy, it is preferable.
  • the possibility that the surface tension of the water-absorbent resin particles is excessively reduced is also reduced, an increase in the amount of return during use in a disposable diaper or the like is suppressed, which is preferable.
  • the addition of a very small amount of surfactant improves the transportability and damage resistance of the resulting water-absorbent resin particles, and as a result, improves the properties of the water-absorbent resin particles after surface crosslinking and after powder transport. For this reason, it is preferable to exceed 0 ppm by weight, particularly preferably 0.1 ppm by weight or more, more preferably 1 ppm by weight or more, 5 ppm by weight or more, and 10 ppm by weight or more in this order.
  • the dispersant is a compound that stably disperses bubbles generated in a (meth) acrylic acid (salt) monomer aqueous solution during preparation or after preparation before the polymerization step.
  • the dispersant used in the present invention is not particularly limited, and a water-absorbing polymer dispersant or a hydrophilic polymer dispersant exhibiting water absorption is preferable, and a water-soluble polymer dispersant is more preferable.
  • the weight average molecular weight is appropriately determined depending on the type of the dispersant, but is preferably 5 to 10 million, more preferably 5000 to 5 million, and particularly preferably 10,000 to 3 million.
  • the type of the dispersant is not particularly limited.
  • PVA polyvinyl alcohol
  • hydrophilic polymers such as a crosslinked poly (meth) acrylic acid (salt).
  • a water-soluble polymer dispersant selected from starch, cellulose, and PVA is preferable.
  • the amount of these dispersants used is preferably more than 0 parts by weight and 50 parts by weight or less, more preferably 0.01 to 20 parts by weight, based on 100 parts by weight of the (meth) acrylic acid (salt) monomer. 0.05 to 10 parts by weight is more preferable, and 0.1 to 5 parts by weight is particularly preferable.
  • the above-mentioned regulation of the amount of dispersant used is similarly applied to the water-absorbent resin particles obtained. If the usage-amount of the said dispersing agent is a value within the said range, control of foaming at the time of a polymerization reaction becomes easy, and it is preferable. Moreover, since possibility that the water absorption capability etc. of a water absorbing resin particle will reduce excessively is reduced and the increase in the return amount at the time of use with a paper diaper etc. is suppressed, it is preferable.
  • Bubble generation / dispersion step (particularly (a2) a step of obtaining a sodium acrylate aqueous solution in which bubbles are dispersed in advance before polymerization (monomer preparation step)) (Control of bubble rate)
  • water-absorbing resin particles containing internal bubbles are preferably used for surface cross-linking.
  • polymerization is performed by adding a predetermined amount of bubbles during polymerization, and the internal cell ratio of the obtained water-absorbent resin (specified in International Publication No. 2011/078298 pamphlet (Patent Document 37)). Is preferably 0.5% or more, 1.0 to 8.0%, 2.8 to 6.6%, 3.0 to 6.5%, 3.5 to 6.5%, 3 It is preferable in the order of 0.8 to 6.5%, and most preferably 4.0 to 6.5%.
  • the internal bubble rate is a value equal to or higher than the lower limit of the above range, a sufficient effect of improving the water absorption rate can be obtained. Conversely, if the internal bubble rate is equal to or higher than the upper limit of the above range, the volume of the water absorbent resin is increased. The possibility that the density is excessively reduced is reduced, and deterioration of performance such as damage resistance, GCA, water absorption capacity under pressure (AAP) and the like is prevented, which is preferable.
  • the internal bubble rate can be appropriately controlled by the bubble content at the time of polymerization, the drying temperature (expansion at a high temperature), and the like.
  • Solid foaming agents such as carbonates, water-soluble azo compounds (and water-soluble azo polymerization initiators), hydrophobic to A liquid foaming agent such as a hydrophilic organic solvent, or a gas foaming agent such as various bubbles (a gas compound dispersed in a monomer at room temperature) is appropriately used, preferably a gas is dispersed in the monomer, more preferably The method for producing a poly (meth) acrylic acid (salt) water-absorbing resin disclosed in Patent Document 37 (International Publication No. 2011/078298 pamphlet) is applied.
  • the volume of the aqueous monomer solution expands by adding a foaming agent or introducing gas, but the expansion ratio is preferably 5 times or less as the upper limit compared to the case where there is no addition of foaming agent or introducing gas, In the following order, it is preferably 3 times or less, 2 times or less, 1.1 times or less, 1.05 times or less, or 1.02 times or less. Further, the lower limit of the expansion ratio is preferably more than 1 time, particularly preferably 1.01 or more. Conventionally, a method for polymerizing in a state in which a large amount of bubbles are dispersed has been known. However, in the present invention, polymerization is performed without excessively dispersing bubbles, so that a decrease in bulk specific gravity is small. The expansion ratio can be easily measured by comparing the volume of the aqueous monomer solution having the same temperature and the same weight with a graduated cylinder or a graduated flask.
  • Patent Document 37 When controlling the internal bubble rate in the present invention, the method of Patent Document 37 is described below as an example of the control method.
  • the disclosure content is cited by reference and forms part of the disclosure content of the present application.
  • the description in Patent Document 37 can be used as the description and technique of the present invention, but the present invention is not limited to the technique.
  • Preferable bubble content control method in order to increase GCA, increase the water absorption rate, or improve the water absorption ratio under pressure, preferably, bubbles are introduced into the water-absorbent resin, and various foam polymerizations can be applied.
  • the method described in Patent Document 37 is used.
  • Patent Document 37 that can be used to control the bubble content includes a polymerization step of a (meth) acrylic acid (salt) monomer aqueous solution containing bubbles and, if necessary, a hydrous gel during or after polymerization.
  • a poly (meth) acrylic acid (salt) -based water-absorbent resin comprising a step of refining a gel-like crosslinked polymer and a step of drying the hydrogel crosslinked polymer, a surfactant and / or a dispersant
  • a bubble generation-containing step of generating and containing bubbles by reducing the solubility of the dissolved gas in the aqueous monomer solution is included.
  • the surfactant may be added before the bubble generation-containing step, it may be performed after the polymerization step, but is preferably performed before the polymerization step.
  • the (meth) acrylic acid (salt) monomer aqueous solution during or after the preparation before the polymerization step contains a surfactant and / or a dispersant.
  • a gas for example, an inert gas
  • a gas may or may not be introduced into the aqueous solution in advance.
  • a method for reducing the solubility of the dissolved gas specifically, at least one of the following methods (a) and (b) is used. For example, a method of performing a temperature increase of a (meth) acrylic acid (salt) monomer aqueous solution and / or a method of mixing a water-soluble organic substance with respect to a (meth) acrylic acid (salt) monomer aqueous solution. Is mentioned.
  • Method (a) Method of raising temperature of (meth) acrylic acid (salt) monomer aqueous solution As a method of dispersing bubbles in (meth) acrylic acid (salt) monomer aqueous solution, monomer and / or Method of raising the temperature of a (meth) acrylic acid (salt) monomer aqueous solution prepared by mixing a salt, and if necessary, an internal crosslinking agent and water, or a (meth) acrylic acid (salt) monomer
  • a method of increasing the temperature in the preparation of the aqueous body solution to reduce the solubility of the gas in the aqueous solution can be mentioned.
  • the temperature of the heated monomer aqueous solution is preferably a high temperature at which the gas solubility is lowered, specifically, 40 ° C. to the boiling point of the monomer aqueous solution, more preferably 50 to 100 ° C.
  • the temperature is preferably 60 to 98 ° C, and most preferably 70 to 95 ° C.
  • the temperature increase width is preferably + 5 ° C. or more, more preferably +10 to + 100 ° C., still more preferably +20 to + 90 ° C., and particularly preferably +30 to + 80 ° C. from the amount of bubbles generated.
  • the temperature of the monomer aqueous solution before the temperature rise is preferably 0 to 60 ° C., more preferably 20 to 50 ° C. Further, the time required for temperature rise is preferably 60 seconds or less, more preferably 30 seconds or less, and even more preferably 10 seconds or less, and it is preferable to rapidly warm the monomer aqueous solution in order to generate as many bubbles as possible.
  • the temperature rise is performed using the heat of neutralization of (meth) acrylic acid containing a surfactant or an aqueous solution thereof.
  • FIG. 4 shows a schematic flow chart showing a temperature rise and bubble generation by a typical heat of neutralization.
  • the heat of neutralization of (meth) acrylic acid is 13.9 [kcal / mol] (25 ° C.), the specific heat of water is 1 [cal / ° C./g] (25 ° C.), and the specific heat of (meth) acrylic acid is 0.66 [cal / ° C./g] (25 ° C.), and preferably, the (meth) acrylic acid aqueous solution is heated by the heat of neutralization of the (meth) acrylic acid.
  • the range of temperature rise can also be predicted from the heat of neutralization and specific heat.
  • the temperature when the temperature is increased by the heat of neutralization of (meth) acrylic acid 13.9 [kcal / mol] (25 ° C.), the temperature may be appropriately heated during the neutralization reaction to control the range of the temperature increase.
  • the reaction system may be insulated during the neutralization reaction.
  • the step of neutralizing the monomer may be continuously performed. Or in batches. Further, the neutralization step may be performed in one stage up to a predetermined neutralization rate, or may be performed in multiple stages (for example, two stages). Two-step neutralization involves adding a base in two steps, and is shown in the examples below.
  • the solubility of the gas is lowered by such a temperature rise, and bubbles are generated in the (meth) acrylic acid monomer aqueous solution.
  • the bubbles generated by such a mechanism are very fine compared to the conventional foaming method, and further stabilized by a surfactant and / or a dispersing agent. It is estimated that it will be solved.
  • a temperature raising method other than the temperature raising method using neutralization heat there is a method of raising the temperature by heating a (meth) acrylic acid (salt) monomer aqueous solution.
  • An acrylic acid (salt) monomer aqueous solution may be heated.
  • FIG. 1 shows an apparatus diagram (schematic diagram) of a continuous temperature raising method by heating a (meth) acrylic acid (salt) monomer aqueous solution to which the method of the present invention can be applied.
  • the apparatus shown in FIG. 1 is an apparatus that can be used in one method of generating bubbles by raising the temperature of a (meth) acrylic acid (salt) monomer aqueous solution.
  • oil 200 is placed in a thermostatic bath 100 for raising the aqueous monomer solution, and a stainless coil 300 is immersed in the thermostatic bath 100.
  • the aqueous monomer solution is supplied through the stainless steel coil 300 in the direction of the arrow in the figure and heated by passing through the heated oil 200.
  • FIGS. 5 to 8 are flowcharts showing an outline of the embodiment of the gas solubility decrease and bubble generation included in the embodiment of the present invention due to the temperature rise. These temperature raising methods may be used in combination, or may be other methods. Furthermore, you may provide the deaeration process (for example, substitution process with an inert gas) of the dissolved oxygen as needed at the time of superposition
  • the amount of inert gas introduced at this time is not particularly limited, but the amount of dissolved oxygen in the aqueous monomer solution is preferably 4 mg / l or less, more preferably 2 mg / l or less, More preferably, it is 1 mg / l or less.
  • the lower limit of the dissolved oxygen amount is 0 mg / l, but may be about 0.1 mg / l from the viewpoint of balance with the cost of the inert gas.
  • Method (b) In preparation of (meth) acrylic acid (salt) monomer aqueous solution, a method of mixing a water-soluble organic substance with the monomer aqueous solution (Meth) acrylic acid (salt) monomer aqueous solution As a method for dispersing bubbles, a water-soluble organic substance in which a gas is not dissolved or hardly dissolved when preparing by mixing a monomer and / or a salt thereof, if necessary, an internal cross-linking agent and water, Or the method of mixing the (meth) acrylic acid (salt) type monomer aqueous solution which is mixing object, and the water-soluble organic substance in which gas is not melt
  • a compound is used.
  • a monomer that does not contain gas for example, (meth) acrylic acid
  • a (meth) acrylic acid (salt) monomer aqueous solution that contains (dissolves) gas the monomer after mixing A gas that cannot be dissolved in the aqueous solution is generated, and the gas can be dispersed in the monomer aqueous solution as fine bubbles.
  • the number average diameter (volume average particle diameter) of the bubbles introduced into the (meth) acrylic acid (salt) monomer aqueous solution by the method (a) or (b) is preferably 500 ⁇ m or less, and 50 nm (more The thickness is preferably 10 ⁇ m) to 500 ⁇ m, more preferably 100 nm (more preferably 10 ⁇ m) to 100 ⁇ m.
  • the average diameter of the bubbles is equal to or greater than the lower limit of the above range, the surface area is increased and the water absorption rate can be sufficiently secured. Moreover, if an average diameter is a value below the upper limit of the said range, the intensity
  • the solubility of gas in water is determined by the type and temperature of the gas. For example, for water at 25 ° C., carbon dioxide (carbon dioxide) (1.05 [ml / ml]), oxygen (0.0285 [ ml / ml]) and nitrogen (0.0147 [ml / ml]), and the solubility of these gases is reduced by increasing the temperature or mixing water-soluble organic substances (preferably (meth) acrylic acid), and is generated by the decrease in solubility. What is necessary is just to disperse
  • water-soluble organic substances preferably (meth) acrylic acid
  • the amount of bubbles is appropriately determined depending on the type of gas and the method of decreasing the solubility (temperature rise range and mixing ratio of water-soluble organic substances).
  • the volume of the monomer aqueous solution is preferably 1.01 to 1. It is preferable to disperse the bubbles in the (meth) acrylic acid (salt) monomer aqueous solution so as to be 1 time, more preferably 1.02 to 1.08 times.
  • the bubbles are dispersed by lowering the solubility of the dissolved gas in the (meth) acrylic acid (salt) monomer aqueous solution, but separately introducing the gas from the outside to disperse the bubbles. May be. That is, the bubbles may be dispersed in the (meth) acrylic acid (salt) -based monomer aqueous solution by bubbles that are dispersed with a reduced solubility or, if necessary, bubbles that are dispersed with a gas introduced from the outside.
  • examples of the gas constituting the bubbles dispersed in the (meth) acrylic acid (salt) monomer aqueous solution include oxygen, air, nitrogen, carbon dioxide (carbon dioxide), ozone, and mixtures thereof.
  • an inert gas such as nitrogen or carbon dioxide (carbon dioxide) is used.
  • air and nitrogen are particularly preferable in view of polymerizability and cost.
  • the pressure at the time of introducing the gas or after the introduction is appropriately determined by normal pressure, pressurization, and decompression.
  • the method described in Patent Document 37 can be exemplified.
  • a method for introducing a gas into a (meth) acrylic acid (salt) monomer aqueous solution a known method such as a static mixer method, a cavitation method, a venturi method, or the like can be appropriately used. You may use a method together. Furthermore, introduction of microbubbles (or nanobubbles) that can increase the amount of gas introduced is suitable.
  • Polymerization step (particularly (a3) a foamed polymer of poly (meth) acrylic acid (salt) water-absorbing resin is obtained by polymerizing a sodium acrylate aqueous solution in which bubbles are dispersed before polymerization.
  • Polymerization step (Polymerization method)
  • Examples of the polymerization method for obtaining the water-absorbent resin of the present invention in the first production method or the second production method include spray polymerization, droplet polymerization, bulk polymerization, precipitation polymerization, aqueous solution polymerization, or reverse phase suspension polymerization.
  • aqueous solution polymerization or reverse phase suspension polymerization using a monomer as an aqueous solution is preferable.
  • the aqueous solution polymerization is a method of polymerizing an aqueous monomer solution without using a dispersion solvent.
  • the reverse phase suspension polymerization is a method in which an aqueous monomer solution is suspended in a hydrophobic organic solvent for polymerization.
  • a hydrophobic organic solvent for polymerization for example, U.S. Pat. Nos. 4,093,764, 4,367,323, 4,446,261, Nos. 4,683,274 and 5,244,735.
  • Monomers, polymerization initiators and the like disclosed in these patent documents can also be applied to the present invention.
  • the concentration of the aqueous monomer solution during the polymerization is not particularly limited, but is preferably 20% by weight to saturated concentration, more preferably 25 to 80% by weight, still more preferably 30 to 70% by weight. A concentration of 20% by weight or more is preferable because high productivity can be achieved.
  • the polymerization in the monomer slurry ((meth) acrylate aqueous dispersion) shows a decrease in physical properties, and therefore, it is preferable to carry out the polymerization at a saturated concentration or less (see Japanese Patent Laid-Open No. 1-318021). Publication).
  • the polymerization step in the present invention can be carried out at normal pressure, reduced pressure, or increased pressure, but is preferably carried out at normal pressure (or in the vicinity thereof, usually ⁇ 10 mmHg). Further, in order to accelerate the polymerization and improve the physical properties, as shown in FIGS. 5 to 10, a dissolved oxygen degassing step (for example, a replacement step with an inert gas) may be provided as needed during the polymerization.
  • a dissolved oxygen degassing step for example, a replacement step with an inert gas
  • the temperature at the start of polymerization depends on the type of polymerization initiator used, but is preferably 15 to 130 ° C, more preferably 20 to 120 ° C.
  • the polymerization initiator used in the present invention is appropriately determined depending on the polymerization form and is not particularly limited, and examples thereof include a photodegradable polymerization initiator, a thermal decomposition polymerization initiator, and a redox polymerization initiator. The polymerization of the present invention is initiated by these polymerization initiators.
  • Examples of the photodegradable polymerization initiator include benzoin derivatives, benzyl derivatives, acetophenone derivatives, benzophenone derivatives, azo compounds, and the like.
  • Examples of the thermal decomposition polymerization initiator include persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate; peroxides such as hydrogen peroxide, t-butyl peroxide, and methyl ethyl ketone peroxide; 2 Azo compounds such as 2,2′-azobis (2-amidinopropane) dihydrochloride and 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride.
  • examples of the redox polymerization initiator include a system in which a reducing compound such as L-ascorbic acid or sodium bisulfite is used in combination with the persulfate or peroxide. It is also a preferred embodiment to use the photodegradable polymerization initiator and the thermal decomposition polymerization initiator in combination.
  • a reducing compound such as L-ascorbic acid or sodium bisulfite
  • the photodegradable polymerization initiator and the thermal decomposition polymerization initiator in combination.
  • an azo polymerization initiator that generates N 2 by thermal decomposition may be used to promote foaming.
  • active energy rays such as ultraviolet rays, electron beams, and ⁇ rays may be used alone or in combination with the above polymerization initiator.
  • the amount of the polymerization initiator used is preferably 0.0001 to 1 mol%, more preferably 0.0005 to 0.5 mol%, based on 100 mol% of the monomer. If the usage-amount is 1 mol% or less, the color tone deterioration of the water-absorbent resin particles is suppressed, which is preferable. Further, it is preferable that the amount used is 0.0001 mol% or more because an increase in residual monomers can be suppressed.
  • aqueous solution polymerization is performed from the viewpoint of physical properties of the water absorbent resin (for example, water absorption speed and liquid permeability) and ease of polymerization control. Is adopted. Among them, kneader polymerization or belt polymerization is preferable, continuous aqueous solution polymerization is more preferable, high concentration continuous aqueous solution polymerization is further preferable, and high concentration / high temperature starting continuous aqueous solution polymerization is particularly preferably employed.
  • aqueous solution polymerization examples include continuous belt polymerization (disclosed in US Pat. Nos. 4,893,999 and 6,241,928, US Patent Application Publication No. 2005/215734, etc.), continuous kneader polymerization, batch kneader polymerization (US Pat. No. 6,987,151). , And the like are disclosed in No. 6710141). In these aqueous solution polymerizations, a water-absorbing resin can be produced with high productivity.
  • the polymerization initiation temperature is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, further preferably 60 ° C. or higher, particularly preferably 70 ° C. or higher, and most preferably 80 ° C. or higher (the upper limit is High-temperature starting continuous aqueous solution polymerization, or the monomer concentration is preferably 40% by weight or more, more preferably 45% by weight or more, further preferably 50% by weight or more (the upper limit is 90% by weight or less, preferably 80%).
  • High concentration continuous aqueous solution polymerization to be not more than wt%, more preferably not more than 70 wt%), and high concentration / high temperature starting continuous aqueous solution polymerization combining these. Foaming is further promoted by these polymerization methods. Further, in order to promote foaming, it is preferable that the maximum temperature reached during polymerization is high. Specifically, the maximum temperature reached during polymerization is preferably 100 ° C. or higher, more preferably 100 to 130 ° C., and more preferably 105 to 120 ° C. Is more preferable.
  • the monomer concentration is also applied as the solid content concentration of the hydrogel crosslinked polymer after polymerization. Furthermore, by setting the monomer concentration within the above range, the stability of fine bubbles is increased, and the present invention is particularly advantageous.
  • the polymerization start time (the time from the addition of the polymerization initiator to the start of the polymerization) exceeds 0 and is 300 seconds from the viewpoint of suppressing the reduction of bubbles in the aqueous monomer solution. Is preferably within 1 to 240 seconds.
  • the polymerization start time of 300 seconds or less is preferable because a sufficient amount of bubbles introduced into the water-absorbent resin particles is ensured and the effects of the present invention are exhibited.
  • a chain transfer agent such as hypophosphorous acid (salt), a chelating agent, etc.
  • a chain transfer agent such as hypophosphorous acid (salt), a chelating agent, etc.
  • a chain transfer agent such as hypophosphorous acid (salt), a chelating agent, etc.
  • Gel pulverization step includes gel pulverization of a hydrogel crosslinked polymer containing bubbles inside (hereinafter referred to as “hydrogel”) obtained through the above polymerization step, This is a step of obtaining a particulate hydrogel (hereinafter referred to as “particulate hydrogel”).
  • GCA is improved and the impact resistance is further improved by being finely divided by gel pulverization of the hydrated gel, particularly gel pulverization by kneading. That is, in order to solve the problems of the present invention, it is preferable to employ aqueous solution polymerization rather than reverse phase suspension polymerization that does not require gel grinding, and particularly during polymerization (for example, kneader polymerization) or after polymerization ( For example, it is preferable to employ aqueous solution polymerization in which gel pulverization is employed for belt polymerization and further, if necessary, kneader polymerization.
  • the gel pulverizer that can be used in the present invention is not particularly limited.
  • a gel pulverizer having a plurality of rotary stirring blades such as a batch-type or continuous double-arm kneader, a single-screw extruder, and a twin-screw extruder. , Meat chopper and the like.
  • a screw type extruder having a perforated plate at the tip is preferable, and examples thereof include a screw type extruder disclosed in Japanese Patent Application Laid-Open No. 2000-063527.
  • the temperature of the hydrogel before gel grinding is preferably 60 to 120 ° C., more preferably 65 to 110 ° C., from the viewpoints of particle size control and physical properties. If the said gel temperature is 60 degreeC or more, the raise of the hardness resulting from the characteristic of a water-containing gel will be suppressed, and control of the particle shape and particle size distribution at the time of a gel grinding
  • the gel temperature can be controlled by the temperature during polymerization, heating or cooling after polymerization, and the like.
  • the weight average particle diameter (D50) (specified by sieve classification) of the particulate hydrogel after gel pulverization is preferably 0.5 to 3 mm, more preferably 0.6 to 2 mm, and 0.8 to 1.5 mm. Is more preferable.
  • the ratio of the coarse particulate hydrogel having a particle diameter of 5 mm or more is preferably 10% by weight or less, more preferably 5% by weight or less, and still more preferably 1% by weight or less with respect to 100% by weight of the particulate hydrous gel.
  • This step is a step of obtaining a dry polymer by drying the water-containing gel containing bubbles obtained through the polymerization step and the like.
  • polymerization process is aqueous solution polymerization
  • pulverization fine-graining
  • the drying method in the present invention is not particularly limited, and various methods can be employed. Specific examples include heat drying, hot air drying, vacuum drying, infrared drying, microwave drying, azeotropic dehydration drying with a hydrophobic organic solvent, and high humidity drying using high-temperature steam. Or 2 types can also be used together.
  • the drying temperature in the present invention is preferably 100 to 300 ° C, more preferably 150 to 250 ° C.
  • the drying time depends on the surface area and water content of the hydrated gel, the type of dryer, etc., and is preferably 1 minute to 5 hours, and more preferably 5 minutes to 1 hour, for example.
  • the solid content of the water-absorbent resin determined from loss on drying (1 g of powder or particles dried at 180 ° C. for 3 hours) is preferably 80% by weight or more, more preferably 85 to 99% by weight, and 90 to 98% by weight. More preferred is 92 to 97% by weight.
  • the dried polymer obtained in the drying step or the granulated product obtained by granulation in (2-2) described later is pulverized and / or classified, and preferably has a specific particle size.
  • This is a step of obtaining resin particles, particularly a sizing step.
  • the (2-1-4) gel pulverization step is different in that the object to be pulverized has undergone a drying step. Further, the water absorbent resin after the pulverization step may be referred to as a pulverized product.
  • This step is carried out before and / or after the (2-4) surface crosslinking step, preferably (2-4) before the surface crosslinking step, more preferably (2-4) the surface. It is carried out at least twice before and after the crosslinking step.
  • Examples of the equipment (pulverizer) used in the pulverization process of the present invention include a high-speed rotary pulverizer such as a roll mill, a hammer mill, a screw mill, and a pin mill, a vibration mill, a knuckle type pulverizer, and a cylindrical mixer. , Used as needed.
  • the weight average particle diameter (D50) of the water-absorbent resin particles before surface cross-linking is preferably 300 to 500 ⁇ m from the viewpoints of handleability (especially handleability under moisture absorption), GCA, water absorption rate, water absorption magnification under pressure, etc. 310 to 480 ⁇ m is more preferable, and 320 to 450 ⁇ m is even more preferable. Further, the content of fine particles having a particle diameter of less than 150 ⁇ m as defined by the standard sieve classification is preferably as small as possible, preferably 0 to 5% by weight, more preferably 0 to 3% by weight, based on 100% by weight of the water absorbent resin particles. More preferred is ⁇ 1% by weight.
  • 0 to 5% by weight is preferable with respect to 100% by weight of the water-absorbent resin particles, and 0 to 3% by weight. Is more preferable, and 0 to 1% by weight is still more preferable.
  • the proportion of particles having a particle size of 150 ⁇ m or more and less than 850 ⁇ m is preferably 90% by weight or more, and 95% by weight or more with respect to 100% by weight of the water-absorbent resin particles in terms of GCA, water absorption speed, water absorption capacity under pressure, and the like.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution is preferably 0.20 to 0.50, more preferably 0.25 to 0.45, and still more preferably 0.30 to 0.40.
  • the control of the particle size can be performed at the time of polymerization, gel pulverization or pulverization after drying, and classification, but it is particularly preferably performed during classification after drying.
  • the particle size is measured using a JIS standard sieve according to the method defined in International Publication No. 2004/69915 pamphlet and EDANA-ERT420.2-02.
  • the above particle size is also applied to the particulate water-absorbing agent which is the final product after surface crosslinking.
  • Fine particles generated by controlling the particle size may be discarded, or, as conventionally known, a method for recovering into an aqueous monomer solution before polymerization (International Publication No. 92 / No. 001008, No. 92/020723) and a method of recovering to a hydrous gel during polymerization (International Publication Nos. 2007/074167, 2009/109563, 2009/153196, 2010/006937)
  • a method for recovering into an aqueous monomer solution before polymerization International Publication No. 92 / No. 001008, No. 92/020723
  • a method of recovering to a hydrous gel during polymerization International Publication Nos. 2007/074167, 2009/109563, 2009/153196, 2010/006937
  • the water-absorbent resin particles suitable for the present invention are obtained by performing a granulation treatment according to (2-2) described later.
  • the shape of the water-absorbent resin particles of the present invention is not particularly limited, such as spherical, fibrous, rod-like, substantially spherical, flat, indeterminate, granulated, or porous particles. From the viewpoint of water absorption speed, an irregularly crushed shape obtained through a pulverization step or a granulated product thereof is preferable.
  • the preferred content of the irregularly shaped particles is 70 to 100% by weight, more preferably 85 to 100%. % By weight, particularly preferably 95 to 100% by weight.
  • amorphous crushed particles are particles obtained by drying and then pulverizing a water-containing polymer obtained by aqueous solution polymerization or the like. Particles confirmed by a microscope or an optical microscope.
  • (2-2) A method of granulating (meth) acrylic acid (salt) -based water-absorbing resin fine particles to form water-absorbing resin particles (particularly (a1) poly (meth) having an average particle diameter of 10 to 180 ⁇ m.
  • granulation refers to forming particles larger than the original particles by adhering the particles to each other by a physical or chemical technique, and the particles thus obtained are granulated or granulated. It is called a grain particle.
  • the composition of the water-absorbing resin used in the granulation step in the present invention is not particularly limited as long as it is a poly (meth) acrylic acid (salt) -based water-absorbing resin, but preferably it is shown in (2-1-1). It is preferable that the water absorbent resin has a composition as described above.
  • the water absorbent resin used in the granulating step in the present invention is preferably a water absorbent resin produced by introducing a foam structure as shown in (2-1), but such a water absorbent resin is not necessarily used. Not only a thing but a water-absorbing resin obtained by a conventionally well-known manufacturing method may be used. Examples of conventionally known production methods include aqueous solution polymerization, reverse phase suspension polymerization, spray polymerization, droplet polymerization, bulk polymerization, and precipitation polymerization.
  • the shape of the water-absorbing resin used in the granulating step in the present invention is particularly limited, such as spherical, fibrous, rod-like, substantially spherical, flat, irregular, granulated particles, particles having a porous structure, and the like.
  • pulverization process with respect to a water-containing gel or a dry polymer is preferable from a viewpoint of a water absorption speed
  • the weight average particle diameter of the water-absorbent resin used in the granulation step in the present invention is preferably 10 ⁇ m to 200 ⁇ m, more preferably 15 ⁇ m to 180 ⁇ m, and particularly preferably 20 ⁇ m to 160 ⁇ m. Further, the ratio of the particles having a particle diameter exceeding 200 ⁇ m is preferably 30% by weight or less, more preferably 20% by weight or less, still more preferably 15% by weight or less, with respect to 100% by weight of the water-absorbent resin particles. Is particularly preferred. If the weight average particle diameter is a value equal to or less than the upper limit value of these ranges, the possibility that GCA is lowered or the water absorption speed is decreased is preferable.
  • the weight average particle diameter is a value equal to or greater than the lower limit of these ranges, the pulverization cost for obtaining fine particles is increased or the strength of the granulated particles is reduced due to non-uniform granulation. Is preferable.
  • the water absorbent resin used in the granulation step in the present invention is finely pulverized for the granulation step, the water absorbent resin fine particles generated in the water absorbent resin pulverization step are classified by classification operation. You may take and use.
  • the pulverizer exemplified in (2-1-6) pulverization and classification step can be used.
  • water-absorbing resin fine particles can be obtained by using a sieve having an opening of 100 ⁇ m to 300 ⁇ m.
  • the weight average particle diameter (D50) of the water absorbent resin fine particles at this time is preferably 200 ⁇ m or less, more preferably 180 ⁇ m or less.
  • the water-absorbent resin used in the granulation step in the present invention is preferably a water-absorbent resin that is not surface-crosslinked, but may be a surface-crosslinked water-absorbent resin, or a surface-crosslinked water-absorbent resin. And a water-absorbent resin that is not surface-crosslinked. Moreover, the mixture of the water absorbing resin which shows a different composition and different water absorption ratio may be sufficient.
  • the granulation step and the surface cross-linking step may be performed simultaneously.
  • the surface cross-linking step is performed after the granulation step. Is preferably performed.
  • the water-absorbent resin used in the granulating step in the present invention has a CRC of preferably 10 g / g or more, more preferably 15 g / g or more, still more preferably 20 g / g or more, and still more preferably. It is 25 g / g or more, and particularly preferably 28 g / g or more. Although an upper limit is not specifically limited, Preferably it is 100 g / g or less, More preferably, it is 80 g / g or less, More preferably, it is 60 g / g or less.
  • polyanions such as polyanions and polyethyleneimines, various polymers such as nonions, polyhydric alcohols such as glycerin, and water can be used as the granulating binder.
  • specific examples of these methods include the methods described in Patent Documents 10 to 17, for example.
  • the method for obtaining a water-absorbent resin granulated product using an aqueous liquid in the present invention is not particularly limited, and can be widely applied including the methods of Patent Documents 11 to 20, in which case rolling granulation method, compression type granulation are performed. Method, stirring granulation method, extrusion granulation method, crushing granulation method, fluidized bed granulation method, spray drying granulation method and the like. Among the granulation methods, the stirring type method is most conveniently used.
  • the equipment used for carrying out this method includes a continuous type and a batch type, and there are a vertical type and a horizontal type, respectively.
  • the vertical continuous granulator includes Taiheiyo Kiko Spiral Pin Mixer and Fukuken Powtex Flow Jet Mixer
  • the horizontal continuous granulator includes Drysberge's Annular Layer Mixer.
  • Vertical batch granulators include Mitsui Mining's Henschel mixer and Moritz turbo shear mixer.
  • Horizontal batch granulators include Redige's Littleford mixer and Gericke's multi-flux mixer. is there.
  • the aqueous liquid mixed with the water-absorbent resin particles is not particularly limited, and examples thereof include water, an aqueous liquid containing a water-soluble salt, or a hydrophilic organic solvent.
  • water is preferably 90% by weight or more, preferably 99% by weight or more, more preferably 99 to 100% by weight of the aqueous liquid, and it is particularly composed of water alone. preferable.
  • the amount of the aqueous liquid used is usually 1 part by weight or more, preferably 5 parts by weight or more with respect to 100 parts by weight of the water-absorbent resin particles.
  • the surface of granulation strength is used. Therefore, the amount is preferably 80 to 280 parts by weight. If the usage-amount of an aqueous liquid is 280 weight part or less, it can handle as a granulated material easily and is advantageous also in terms of drying cost.
  • the amount of the aqueous liquid used is 80 parts by weight or more, sufficient granulation strength is ensured and excellent characteristics can be exhibited in the final product. Moreover, the granulated material with which mixing was made uniform is obtained.
  • the above-mentioned granulation is known as one method for compositing a plurality of water-absorbing resin particles into particles, and water or aqueous liquid has been frequently used as a binder.
  • a high-speed agitating mixer US Pat. No. 5,002986, US Pat. No. 4,734,4708
  • a specific spray continuous granulator US Pat. No. 5,369,148
  • a fluidized bed European Patent No. 0318989
  • the amount of water added was about 30 parts by weight at most with respect to 100 parts by weight of the resin.
  • the aqueous liquid in the present invention sufficient granulation strength is ensured and the present invention is easily achieved.
  • the amount of the aqueous liquid added to the water absorbent resin is set within a predetermined range, and the particulate water absorbent resin granulated It is important to get things directly.
  • “Directly obtaining particulate water-absorbing resin granules” is not a method of pulverizing or subdividing a huge gel after obtaining an integrated gel by kneading or the like, but aggregating a plurality of particles It means that a particulate water-absorbing resin having a specific particle size is obtained.
  • a suitable water-absorbent resin granulated product of the present invention includes a granulated product obtained by rapidly mixing an aqueous liquid in which the water-absorbent resin granulated product has been heated in advance with water-absorbent resin particles.
  • the water absorbent resin granulated product in the present invention is composed of a plurality of water absorbent resin particles, and the particle size of the granulated product is 20 mm or less, preferably 0.3 to 10 mm, more preferably 0.3 to 5 mm. Means things.
  • the water-absorbent resin granulated product is a general term for a granulated product containing water or dried, and a water-absorbing resin granulated product obtained by drying the water-absorbent resin granulated product separately has a water content of 10% by weight or less. It may be called a dried resin granulated product.
  • a heated aqueous liquid By using a heated aqueous liquid, it is possible to uniformly mix the water-absorbent resin particles and the aqueous liquid without kneading and without using a mixing aid that causes a decrease in physical properties. Furthermore, by using a heated aqueous liquid, a particulate aggregate having an appropriate size in which individual water-absorbing resin particles are aggregated, that is, a water-absorbent resin granule suitable for the present invention can be obtained.
  • a granulated product can be confirmed by the fact that a plurality of individual particles are gathered and aggregated while maintaining the shape by an optical microscope, and the fact that they are swollen as a plurality of discontinuous particles upon liquid absorption.
  • the mixing aid used for granulation and the gel used for other than granulation are pulverized by using the method of granulating after preheating the aqueous liquid before mixing as described above For the first time, a particulate water-absorbent resin granulated product substantially composed of water and fine particles can be obtained, and is more preferable.
  • aqueous liquid used for granulation examples include water, an aqueous solution containing a hydrophilic organic solvent described later, and heated water containing a small amount of a crosslinking agent.
  • a crosslinking agent the surface crosslinking agent of the kind and usage-amount mentioned later can be used.
  • the heating of the aqueous liquid is usually 40 ° C. or higher, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and further preferably 70 ° C. or higher.
  • the upper limit is below the boiling point of the aqueous liquid, and the boiling point may be variously adjusted by changing the addition of salts and other solvents, pressure (decompression, pressurization), etc., but it is large even when the temperature exceeds 100 ° C. Since there is no change, it is usually performed at 100 ° C. or lower.
  • the aqueous liquid supplied in the granulation step may be in a liquid state or supplied as water vapor. Furthermore, you may supply combining an aqueous liquid and water vapor
  • High-speed mixing means mixing the aqueous liquid and the water-absorbent resin particles, and the time from the contact point of the aqueous liquid and the water-absorbent resin particles to the formation of the water-absorbent resin granulated product, that is, the mixing time is short.
  • the mixing time is preferably 3 minutes or less, more preferably 1 minute or less, and most preferably 1 to 60 seconds.
  • the mixing time is 3 minutes or less, uniform mixing of the aqueous liquid and the water-absorbent resin particles is easy and the formation of huge aggregates is suppressed. Can be obtained. Further, if mixing is continued for a long time after completion of mixing, the water-absorbing resin may be deteriorated, such as an increase in soluble components of the water-absorbing resin or a decrease in water absorption capacity under pressure.
  • the mixer to be used is not particularly limited as long as the above high-speed mixing can be achieved, but a container-fixed mixer, particularly a mechanical stirring mixer is preferable.
  • this mechanical stirring type mixer for example, a turbulizer (manufactured by Hosokawa Micron Co., Ltd.), a Redige mixer (manufactured by Redige Corporation), a mortar mixer (manufactured by West Japan Testing Machine Co., Ltd.), a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.), Examples include TurboSphereMixer (manufactured by Moritz), MultiFluxMixer (manufactured by Gercke), and the like, and either a batch mixer or a continuous mixer may be used.
  • the water absorbent resin granulated product of the present invention obtained as described above, particularly preferably, after the aqueous liquid is preheated before mixing, 100 parts by weight of the water absorbent resin particles and 80 to 280 parts by weight of the aqueous liquid are added.
  • the water absorbent resin granulated product obtained by mixing and granulating can then be further dried to improve the granulating strength. By drying the water-absorbent resin granulated product, the fine particles are more firmly integrated and regenerated to the same strength as the primary particles.
  • the drying method is not particularly limited, and ordinary dryers or heating furnaces are widely used. Specifically, the temperature, time, and solid content described in (2-1-5) may be used. Drying at such a high temperature is preferable because the water-absorbent resin granulated product shrinks during drying, resulting in a strong granulated dried product. Drying may be performed only with the water-absorbent resin granulated product obtained in the present invention, or may be dried together with the polymer gel before drying obtained by the aqueous solution polymerization or reverse phase suspension polymerization described above. .
  • the dried water-absorbent-resin-granulated material thus obtained is shrunk by drying into a strong granulated material, but may be pulverized to adjust the particle size as necessary.
  • a preferable method for pulverization and particle size adjustment is the above-mentioned (2-1-6).
  • water-absorbent resin fine particles (for example, particles passing through a 150 ⁇ m wire mesh) generated again by pulverization and particle size adjustment may be granulated again using an aqueous liquid as a binder.
  • This step is a step of preparing water-absorbing resin particles containing a surface cross-linking agent to be used in the surface cross-linking step by mixing the granulated product or the foamed polymer and the surface cross-linking agent.
  • surface cross-linking is performed by adding an organic surface cross-linking agent described later, polymerization of a monomer (polymerizable surface cross-linking agent) on the surface of water-absorbent resin particles, or a radical polymerization initiator such as persulfate (in a broad sense).
  • Organic surface cross-linking agent As the organic surface cross-linking agent that can be used in the present invention, from the viewpoint of physical properties of the water-absorbing resin particles obtained, a carboxyl group that is a functional group of the poly (meth) acrylic acid (salt) -based water-absorbing resin particles, and dehydration esterification An organic compound having a reactive group such as a hydroxyl group and / or an amino group that undergoes a reaction or dehydration amidation reaction is preferable.
  • the organic compound is not limited to an alcohol compound or an amine compound having a hydroxyl group or an amino group directly, and even if it is a cyclic compound such as an alkylene carbonate compound or an oxazolidinone compound, a reactive group and / or a hydroxyl group and an amino group are generated.
  • a compound having a reactive group that directly reacts with the carboxyl group is also included.
  • organic surface crosslinking agent examples include polyhydric alcohol compounds, epoxy compounds, polyvalent amine compounds or condensates thereof with haloepoxy compounds, oxazoline compounds, (mono, di, or poly) oxazolidinone compounds, oxetane compounds, alkylene carbonate compounds, and the like.
  • a polyhydric alcohol compound, an alkylene carbonate compound, and an oxazolidinone compound are more preferable.
  • organic surface crosslinking agent examples include (di, tri, tetra, poly) ethylene glycol, (di, poly) propylene glycol, 1,3-propanediol, 2,2,4-trimethyl-1,3-pentanediol.
  • the polyhydric alcohol is preferably a polyhydric alcohol having 2 to 8 carbon atoms, more preferably a polyhydric alcohol having 3 to 6 carbon atoms, and still more preferably a polyhydric alcohol having 3 or 4 carbon atoms.
  • diols are preferable, and examples include ethylene glycol, propylene glycol, 1,3-propanediol, and 1,4-butanediol, and a polyvalent selected from propylene glycol, 1,3-propanediol, and 1,4-butanediol. Alcohol is preferred.
  • the epoxy compound is preferably a polyglycidyl compound, ethylene glycol diglycidyl ether is preferably used, the oxazoline compound is preferably 2-oxazolidinone, and the alkylene carbonate compound is 1,3-dioxolan-2-one. (Ethylene carbonate) is preferably used.
  • a combination of two or more compounds selected from polyhydric alcohol compounds, epoxy compounds, oxazoline compounds, and alkylene carbonate compounds is preferable, a combination of a polyhydric alcohol and the organic surface crosslinking agent other than the polyhydric alcohol is preferable, a combination of a polyhydric alcohol and an epoxy compound or an alkylene carbonate compound is more preferable, and a polyhydric alcohol and an alkylene carbonate. More preferred are combinations with compounds.
  • the ratio (weight ratio) is 1 except for the polyhydric alcohol: polyhydric alcohol. : 100 to 100: 1 is preferable, 1:50 to 50: 1 is more preferable, and 1:30 to 30: 1 is still more preferable.
  • the total amount of the organic surface cross-linking agent added is preferably 0.001 to 15 parts by weight, and 0.01 to 5 parts by weight with respect to 100 parts by weight of the water absorbent resin before the addition. More preferably.
  • the polyhydric alcohol compound is added to 100 parts by weight of the water-absorbing resin before addition.
  • the total amount is preferably 0.001 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, and the total amount of compounds other than polyhydric alcohols is 0.001 to 10 parts by weight.
  • the amount is preferably 0.01 to 5 parts by weight.
  • the organic surface cross-linking agent is preferably added as an aqueous solution.
  • the amount of water used in the aqueous solution is preferably 0.5 to 20 parts by weight, and more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the water absorbent resin before the addition treatment. Note that the amount of water includes crystallization water, hydration water, and the like of the surface cross-linking agent.
  • a hydrophilic organic solvent may be added to the organic surface crosslinking agent aqueous solution.
  • the amount of the hydrophilic organic solvent is 0 part by weight with respect to 100 parts by weight of the water absorbent resin before the addition treatment. Is more preferably 10 parts by weight or less, more preferably more than 0 parts by weight and 5 parts by weight or less.
  • the hydrophilic organic solvent include primary alcohols having 1 to 4 carbon atoms, further 2 to 3 carbon atoms, and other lower ketones having 4 or less carbon atoms such as acetone. Volatile alcohols having a temperature of less than 100 ° C., more preferably less than 100 ° C. are more preferable because they do not leave a residue because they volatilize during the surface crosslinking treatment.
  • lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol and t-butyl alcohol; ketones such as acetone; dioxane, tetrahydrofuran, methoxy (poly ) Ethers such as ethylene glycol; Amides such as ⁇ -caprolactam and N, N-dimethylformamide; Sulphoxides such as dimethyl sulfoxide; Polyhydric alcohols such as polyoxypropylene and oxyethylene-oxypropylene block copolymers Is mentioned.
  • the water-insoluble fine particles and the surfactant are added to 100 parts by weight of the water-absorbent resin before the addition treatment within a range that does not interfere with the effects of the present invention.
  • it can be present in an amount exceeding 0 part by weight and not more than 10 parts by weight, preferably exceeding 0 part by weight and not more than 5 parts by weight, more preferably exceeding 0 part by weight and not more than 1 part by weight.
  • the surfactant used is disclosed in US Pat. No. 7,473,739.
  • the concentration of the surface cross-linking agent in the surface cross-linking agent aqueous solution is appropriately determined. From the viewpoint of physical properties, the concentration is 1 to 80% by weight, more preferably 5 to 60% by weight, 10 to 40% by weight, and 15 to 30% by weight. The The remainder contains the hydrophilic organic solvent and other components.
  • the temperature of the organic surface cross-linking agent aqueous solution is appropriately determined from the solubility of the organic surface cross-linking agent used, the viscosity of the aqueous solution, etc., but is preferably ⁇ 10 to 100 ° C., more preferably 5 to 70 ° C., and more preferably 10 to 65. ° C is more preferable, and a range of 25 to 50 ° C is particularly preferable.
  • the cyclic compound may hydrolyze (for example, decomposition from ethylene carbonate to ethylene glycol, decomposition from oxazolidinone to ethanolamine), water or hydrophilic organics before mixing or reacting with the water absorbent resin particles. This is not preferable because the solvent may be volatilized and the mixing property may decrease.
  • the temperature is too low, the surface cross-linking agent solution may solidify or the surface cross-linking agent may precipitate, which is not preferable.
  • the surface crosslinking agent solution contains an acid or a base in addition to the organic surface crosslinking agent, the hydrophilic organic solvent, the surfactant and the water-insoluble fine particles in order to promote the reaction and uniform mixing of the surface crosslinking agent. You may go out.
  • an organic acid or a salt thereof, an inorganic acid or a salt thereof, or an inorganic base is used, and is 0 to 10 parts by weight, more preferably 0. 10 parts by weight with respect to 100 parts by weight of the water absorbent resin before the addition treatment. 001 to 5 parts by weight, more preferably 0.01 to 3 parts by weight, is appropriately used.
  • the organic acid is a water-soluble organic acid having 1 to 6 carbon atoms, more preferably 2 to 4 carbon atoms, a water-soluble saturated organic acid, particularly a saturated organic acid containing a hydroxyl group.
  • non-crosslinkable water-soluble inorganic bases preferably alkali metal salts, ammonium salts, alkali metal hydroxides, and ammonia or hydroxides thereof
  • non-reducing alkali metal salt pH buffering agents Preferably bicarbonate, dihydrogen phosphate, hydrogen phosphate, etc.
  • the organic surface crosslinking agent is added to the water-absorbent resin particles.
  • the method of the addition treatment is not particularly limited.
  • the water-absorbing resin is immersed in a hydrophilic organic solvent to adsorb the added cross-linking agent, or the additive cross-linking agent solution is sprayed or dropped directly on the water-absorbing resin particles.
  • the method of mixing etc. can be illustrated and the latter is preferable from the viewpoint of uniformly adding a predetermined amount.
  • two or more kinds of the additive crosslinking agents having different compositions may be added simultaneously using, for example, different spray nozzles, but a single composition is preferable from the viewpoint of uniformity. Moreover, if it is a single composition, you may use several spray nozzles in consideration of the magnitude
  • Examples of the apparatus used for the addition treatment include, for example, a cylindrical mixer, a double wall conical mixer, a V-shaped mixer, a ribbon mixer, and a screw-type mixer. Suitable are a machine, a fluidized-type furnace, a rotary disk mixer, an airflow-type mixer, a double-arm kneader, an internal mixer, a pulverizing kneader, a rotary mixer, a screw-type extruder, a turbuler, a pro-share mixer, etc. . Furthermore, in large-scale production such as commercial production, an apparatus capable of continuous mixing is preferable. Moreover, the same apparatus may be used for each addition process, and a different apparatus may be used.
  • the water absorbent resin particles used in this step are preferably heated and kept warm, and the temperature is preferably in the range of 30 to 100 ° C., more preferably 35 to 80 ° C., still more preferably 40 to 70 ° C. It is. If this temperature is 30 ° C. or higher, precipitation of the surface cross-linking agent and moisture absorption of the water absorbent resin are suppressed, and the surface treatment is performed sufficiently and uniformly, which is preferable. Moreover, if this temperature is 100 degrees C or less, since evaporation of the water from surface crosslinking agent aqueous solution is suppressed and fear of precipitation of a surface crosslinking agent etc. is reduced, it is preferable.
  • This step is a step of performing a heat treatment for crosslinking the surface of the water-absorbent resin particles or the vicinity of the surface in order to improve the water absorption capacity under pressure and GCA of the water-absorbent resin particles.
  • a heat treatment for crosslinking the surface of the water-absorbent resin particles or the vicinity of the surface in order to improve the water absorption capacity under pressure and GCA of the water-absorbent resin particles.
  • this step may be carried out simultaneously with the surface cross-linking agent addition step or after the surface cross-linking agent addition step, it is preferably carried out after the surface cross-linking agent addition step.
  • this step may be performed once, or may be performed a plurality of times under the same conditions or different conditions.
  • Heating device As the heating device used in the present invention, a continuous or batch type (batch type) heating device provided with a gas discharge mechanism and / or a gas supply mechanism for setting a predetermined atmosphere in a known dryer or heating furnace, A continuous heating device is preferable.
  • a conduction heat transfer type As the heating method of the heating device, a conduction heat transfer type, a radiation heat transfer type, a hot air heat transfer type, and a dielectric heating type are suitable. More preferred is a conductive heat transfer and / or hot air heat transfer type heating method, and still more preferred is a conductive heat transfer type method.
  • control temperature of the heating device is not limited as long as the water-absorbent resin can be heated to a temperature described later, and does not have to be constant from the beginning to the end of the process. However, it is preferably 50 to 300 ° C. in order to prevent partial overheating and the like.
  • As a physical property of the water-absorbing agent to be obtained when importance is attached to damage resistance, it is preferably 250 ° C. or lower, more preferably 70 to 200 ° C., and particularly preferably 90 to 180 ° C.
  • it is more preferably 120 to 280 ° C., further preferably 150 to 250 ° C., and particularly preferably 170 to 230 ° C.
  • an apparatus equipped with a mechanism for continuously stirring and / or flowing the object to be heated in order to increase the heating efficiency and perform uniform heat treatment is preferable.
  • a stirring and / or fluidizing method a grooved stirring method, a screw type, a rotary type, a disk type, a kneading type, a fluidized tank type, etc. are preferable, such as a stirring method using a stirring blade (paddle) or a rotary retort furnace.
  • a stirring method by movement of the heat transfer surface itself is more preferable.
  • the agitation and / or flow mechanism is intended to perform a uniform heat treatment, and therefore is not used when the amount of treatment is small, for example, when the thickness of an object to be dried is less than 1 cm. It doesn't matter.
  • the discharge mechanism When the gas is discharged from the outlet of the heat treatment product as well as a simple exhaust port, the discharge mechanism also corresponds to the discharge mechanism. Further, it is preferable to adjust the amount of gas discharged and the pressure using a blower or the like. Further, the number of exhaust locations is not limited to one, and a plurality of exhaust locations can be provided in consideration of the size of the heating device and the adjustment state of the dew point and temperature.
  • the heating device includes a gas supply mechanism, and the dew point and temperature of the atmosphere of the heating unit can be controlled by adjusting the mechanism, for example, the supply amount.
  • the gas pressure in the heating part is slightly reduced from normal pressure.
  • the differential pressure with respect to atmospheric pressure is preferably 0 to ⁇ 10 kPa, more preferably 0 to ⁇ 5 kPa, and further preferably 0 to ⁇ 2 kPa.
  • the water-absorbing resin taken out from the heating device as necessary is preferably less than 100 ° C., more preferably 0 to 95 ° C., 40 to 90 for the purpose of suppressing excessive crosslinking reaction and improving the handleability in the subsequent process. It may be cooled to ° C.
  • Additive adding step (particularly (d) water-insoluble inorganic fine particle adding step)
  • This step is a step of adding each additive in order to impart various functions to the water-absorbent resin, and is composed of one or a plurality of steps.
  • the additive include a moisture absorption blocking inhibitor for improving blocking properties under moisture absorption, a dust generation inhibitor, a surfactant for improving the fluidity of powder, a coloring inhibitor, and a urine resistance improver. Etc.
  • step (d)) water-insoluble inorganic fine particles are essentially added for the purpose of improving the blocking property under moisture absorption.
  • the addition of these additives (step (d)) may be performed simultaneously with the surface cross-linking step (step (b)) or may be performed simultaneously with the granulation step (step (c)).
  • step (d)) is separate from the surface cross-linking step (step (b)) and the sizing step (step (c)) (especially after the completion of these steps), You may go.
  • the hygroscopic blocking inhibitor is a compound added to prevent the water-absorbing resin from becoming lumps when it absorbs moisture.
  • water-insoluble inorganic fine particles that improve blocking properties under moisture absorption are essential, but the water-absorbing agent of the present invention essentially contains water-insoluble inorganic fine particles.
  • other moisture absorption blocking inhibitors other than water-insoluble inorganic fine particles may be used in combination.
  • Water-absorbent resin is easy to absorb moisture in a humid environment and tends to clump.
  • the water-absorbing resin in the form of a lump has a significant decrease in fluidity, and problems such as the inability to supply a predetermined amount of water-absorbing resin in the production of disposable diapers and the like are likely to occur. Therefore, it is necessary to add a moisture absorption blocking inhibitor to the water absorbent resin.
  • Examples of the moisture absorption blocking inhibitor include polyvalent metal salts, water-insoluble fine particles, and surfactants.
  • the polyvalent metal salt is preferably divalent or higher, more preferably trivalent or tetravalent polyvalent metal salt (organic salt or inorganic salt) or hydroxide, that is, a polyvalent metal cation.
  • examples of the polyvalent metal include aluminum, zirconium, and calcium
  • examples of the polyvalent metal salt include aluminum lactate, aluminum sulfate, and tricalcium phosphate.
  • water-insoluble fine particles examples include water-insoluble inorganic fine particles such as silicon oxide, aluminum oxide, aluminum hydroxide, zinc oxide, hydrotalcite, clay and kaolin, calcium lactate, metal soap (polyvalent metal salt of long chain fatty acid), etc.
  • the volume average particle diameter (particularly of the water-insoluble inorganic fine particles) is preferably 10 ⁇ m or less, more preferably 3 ⁇ m or less, and even more preferably 1 ⁇ m or less.
  • the lower limit of the volume average particle diameter of the water-insoluble fine particles (particularly of the water-insoluble inorganic fine particles) is preferably 0.01 ⁇ m or more.
  • the type and amount of the hygroscopic blocking inhibitor are appropriately determined, but the amount used is preferably 10% by weight or less, more preferably 5% by weight, 3% by weight or less, and 1% by weight or less in order. As a minimum, 0.01 weight% or more is preferable and 0.05 weight% or more is more preferable.
  • the water-absorbent resin of the present invention is a foam or a granulated product, its impact resistance tends to be low, and the physical properties may be deteriorated due to damage caused by pneumatic transportation or the like especially during surface crosslinking or after surface crosslinking. This tendency becomes more conspicuous as the production amount increases.
  • the production amount per line is 0.5 [t / h] or more, and in the following order, 1 [t / h] or more, 5 [t / h] or more, It becomes more remarkable as it becomes 10 [t / h] or more.
  • the water-absorbing agent of the present invention is a foam or granulated body having a large specific surface area, the bulk specific gravity tends to decrease.
  • the bulk specific gravity is low, it becomes difficult to fill a predetermined amount during a filling operation for transporting the water absorbent resin. Therefore, a vibration operation or the like is required at the time of filling, and the water absorbent resin is damaged. Therefore, it is preferable to use a surfactant.
  • the type and amount of the surfactant are appropriately determined, but the amount used is preferably more than 0% by weight and 2% by weight or less, more than 0% by weight and 0.03% by weight or less in order, and 0% by weight. And more than 0.015% by weight, more than 0% by weight and 0.01% by weight or less, more than 0% by weight and 0.008% by weight or less.
  • the lower limit is preferably 0.1 ppm by weight or more, and more preferably 1 ppm by weight, 5 ppm by weight or more, and 10 ppm by weight or more in order. Further, it is used in an amount and a kind for maintaining the following surface tension (preferably 60 [mN / m] or more, more preferably within the range indicated by “(3-5) Surface tension” described later).
  • water is used or contained in an amount of preferably 0.1 to 10% by weight, more preferably 1 to 8% by weight, still more preferably 2 to 7% by weight, based on the water-absorbent resin.
  • the dust suppressor is a compound used for the purpose of reducing the amount of dust generated from the water absorbing agent. Since the water-absorbent resin of the present invention is a foam or a granulated product, it tends to have low impact resistance, and dust may be generated due to damage caused by air transportation or the like particularly during surface crosslinking or after surface crosslinking. The generation of dust causes the problem of deterioration of the work environment and the amount of water absorption agent falling off the absorber during creation of the absorber, which causes the problem of prolonged absorption time of the absorber. It is preferable to coat the surface.
  • the dust suppressor examples include polyvinyl alcohol, polyethylene oxide, polyethylene glycol, polypropylene glycol, polyacrylamide, polyacrylic acid, sodium polyacrylate, polyethyleneimine, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, disclosed in Patent Document 5. Hydroxypropyl cellulose, dextrin, sodium alginate, starch and the like can be mentioned. Among these, polyethylene glycol is preferable.
  • the amount of the dust suppressor used is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, still more preferably 0.1 parts by weight or more, based on 100 parts by weight of the water absorbent resin. 15 parts by weight or more is particularly preferable. Moreover, 5.0 parts by weight or less is preferable, 4.0 parts by weight or less is more preferable, 3.0 parts by weight or less is further preferable, and 2.5 parts by weight or less is particularly preferable.
  • chelating agent especially organophosphorus chelating agents and aminocarboxylic acid chelating agents
  • ⁇ -hydroxycarboxylic acids especially lactic acid (salts)
  • inorganic or organic reducing agents for the purpose of preventing coloring and deterioration.
  • a coloring inhibitor or a urine resistance (weather resistance) improver selected from (especially sulfur-based inorganic reducing agents).
  • a water-absorbing resin having a large surface area generally tends to be colored or deteriorated.
  • the amount of the anti-coloring agent such as the chelating agent or the urine resistance (weather resistance) improver used is preferably 0 to 3 parts by weight, preferably 0.001 to 1 part by weight based on 100 parts by weight of the solid content of the water absorbent resin. Is more preferable, and 0.05 to 0.5 part by weight is particularly preferable. Since these anti-coloring agents or urine resistance (weather resistance) improvers are added to monomers, water-containing gels, dry polymers, water-absorbing resins, etc., the addition step is the polymerization step or later (for example, (I ) At the time of polymerization, (II) at the time of granulation, and (III) at least one time selected from the group consisting of after surface crosslinking). In addition, since the said inorganic or organic reducing agent is consumed at a superposition
  • Examples of the chelating agent include chelating agents disclosed in US Pat. Nos. 6,599,989, 6,469,080, and European Patent No. 2,163,302, particularly non-polymer chelating agents, organophosphorus chelating agents, and aminocarboxylic acid chelating agents.
  • Examples of the ⁇ -hydroxycarboxylic acid include malic acid (salt), succinic acid (salt), and lactic acid (salt) disclosed in US Patent Application Publication No. 2009/0312183.
  • Examples of the inorganic or organic reducing agent include sulfur-based reducing agents disclosed in U.S. Patent Application Publication No. 2010/0062252, and particularly sulfites and hydrogen sulfites.
  • An oxidizing agent, a reducing agent, etc. may be added to the water-absorbing tree in an amount exceeding 0% by weight and 3% by weight or less, preferably exceeding 0% by weight and 1% by weight or less.
  • (2-1) illustrates particles having a foamed structure
  • (2-2) illustrates particles having a granulated structure.
  • the mixing ratio is preferably 1:99 to 99: 1, more preferably 5:95 to 95: 5, still more preferably 10:90 to 90:10, and 20: 80-80: 20 is particularly preferred.
  • the timing of mixing them is not particularly limited, but preferred mixing methods include a method of mixing particles having a granulated structure between a step of obtaining a foamed polymer and a surface cross-linking step, and a foamed polymer and a granulated product.
  • the particles having a foamed structure and the particles having a granulated structure may be produced and mixed in the same production line, or may be produced and mixed in different production lines. More specifically, when the production method 1 and the production method 2 are used in combination, the water-absorbent resin obtained through the steps (a2) and (a3) in the production method 2 is used as the step (a1) of the production method 1.
  • the “granulated product obtained by granulating a water-absorbent resin having an average particle diameter of 10 to 180 ⁇ m” obtained by subjecting to the above is designated as granulated product (I), and “obtained in step (b) of production method 1”
  • the water-absorbing agent (IV) is the granulated product (III) and the “water-absorbing agent obtained by adding water-insoluble inorganic fine particles to the granulated product (III)” obtained in the step (d) of the production method 1
  • ⁇ 4> a step of mixing the water-absorbing agent (IV) after the step of adding the insoluble inorganic fine particles (d), [3] Physical properties of poly (meth) acrylic acid (salt) -based particulate water-absorbing agent (3-1) Water absorption capacity without pressure (CRC)
  • the water absorption capacity without load (CRC) of the particulate water-absorbing agent of the present invention is preferably 10 [g / g] or more, more preferably 20 [g / g] or more, and further preferably 25 [g / g]. More preferably, it is controlled to 28 [g / g] or more, more preferably 30 [g / g], most preferably 32 [g / g] or more.
  • CRC absorption capacity without pressure
  • the water absorption capacity under pressure of the particulate water-absorbing agent of the present invention is defined as the water absorption capacity with respect to a 0.90% by weight sodium chloride aqueous solution under a pressure of 2.06 kPa, as shown in Examples below, but preferably 25. [G / g] or more, more preferably 28 [g / g] or more, still more preferably 30 [g / g] or more, particularly preferably 31 [g / g] or more, and most preferably 32 [g / g]. Be controlled.
  • the upper limit of AAP is preferably as high as possible, but usually about 40 [g / g] is preferable from the balance with other physical properties.
  • the performance of the disposable diaper can be further improved if the water absorption capacity under pressure (AAP) can be further controlled within the above range after the GCA is improved to the range specified in the present invention.
  • the water absorption time (Vortex method) of the particulate water-absorbing agent of the present invention is preferably 40 seconds or less, more preferably 35 seconds or less, and even more preferably 30 seconds or less. If the water absorption time (Vortex method) can be further controlled within the above range after the GCA is improved to the range specified in the present invention, the performance of the disposable diaper can be further improved.
  • Particle size (PSD) The particle size described in (2-1-6) above is also applied to the water-absorbing agent, and by adjusting it within the above range, dust generation is reduced and fluidity under moisture absorption is improved, so that it is easy to handle. In addition, an improvement in GCA and an increase in water absorption under pressure are found.
  • the surface tension of the particulate water-absorbing agent of the present invention is preferably 60 [mN / m] or more, more preferably 65 [mN / m] or more, and further Preferably it is 67 [mN / m] or more, particularly preferably 70 [mN / m] or more, most preferably 72 [mN / m] or more, and there is no substantial reduction in surface tension.
  • the upper limit is usually 75 [mN / m].
  • GCA Gel Capillary Absorption
  • GCA is a parameter newly introduced in the present invention, and evaluates the liquid absorption capacity for 10 minutes with a height difference of 10 cm between the upper surface of the glass filter and the lower meniscus of the Marriott tube. Is. GCA evaluates the absorption performance in a short time of 10 minutes.
  • AAP water absorption capacity under pressure
  • FHA water absorption capacity under pressure
  • the GCA value of the particulate water-absorbing agent of the present invention is calculated by the method described in the examples described later. The higher the value, the better the performance. 28.0 g / g or more is preferable, and 30. 0 g / g or more is more preferable.
  • the upper limit of GCA is preferably as high as possible, but usually about 50.0 [g / g] is preferable from the balance with other physical properties.
  • the GCA is within the above range, and it is preferable that the water absorption capacity under pressure is high and the water absorption speed is high (the water absorption time by the Vortex method is short).
  • the value of the moisture absorption blocking rate of the particulate water-absorbing agent of the present invention is calculated by the method described in the examples described later, and is preferably as low as possible, preferably 20% by weight or less, and 15% by weight or less. Is more preferable, and 10 weight% or less is still more preferable.
  • the lower limit is 0% by weight on the calculation principle.
  • the moisture absorption blocking rate can be controlled to be low by mixing the moisture absorption blocking inhibitor described in (2-5) in an appropriate amount. By controlling the moisture absorption blocking rate to be low, the particulate water-absorbing agent can be stably used in any working environment or user's usage conditions (for example, operating conditions in the diaper manufacturing process). In the present invention, it is particularly important to control the moisture absorption blocking rate within the above range.
  • the moisture content value of the particulate water-absorbing agent of the present invention is calculated by the method described in Examples described later, and is preferably 1 to 15% by weight, and preferably 2 to 12% by weight. More preferably, it is 3 to 10% by weight. If the water content is 15% by weight or less, the decrease in water absorption capacity without pressure or the decrease in water absorption capacity under pressure is suppressed, and it is also preferable because it is excellent in handleability. This is preferable because a decrease in water absorption capacity under pressure due to mechanical damage is suppressed.
  • the use of the particulate water-absorbing agent of the present invention is not particularly limited, it is preferably used for an absorbent used in a paper diaper or a sanitary napkin.
  • the absorbent body in the present invention is an absorbent material formed mainly of the particulate water-absorbing agent of the present invention and hydrophilic fibers.
  • the particulate water-absorbing agent and hydrophilic fibers are used.
  • the content (core concentration) of the particulate water-absorbing agent with respect to the total weight is preferably 20 to 95% by weight, more preferably 30 to 95% by weight, and particularly preferably 35 to 90% by weight. .
  • the absorber of the present invention when the absorber of the present invention is thin, it is preferable that the absorber has a thin thickness of 0.1 to 5 mm.
  • a thin absorbent article By using such a thin absorbent body, a thin absorbent article can be obtained.
  • it is set as an absorbent article provided with the above-mentioned thin absorber of the present invention, a top sheet having liquid permeability, and a back sheet having liquid impermeability.
  • the method for producing a thin absorbent article according to the present invention includes, for example, an absorbent body (absorbing core) prepared by blending or sandwiching a fiber base material and a particulate water absorbing agent, and a base material such as a surface sheet having liquid permeability. And absorbent material, especially disposable diapers and sanitary items by sandwiching the absorbent body with a base material such as a back sheet having liquid impermeability and, if necessary, equipped with an elastic member, diffusion layer, adhesive tape, etc. Use a napkin.
  • Such an absorbent article is compression molded to a density of 0.06 to 0.50 g / cc and a basis weight of 0.01 to 0.20 g / cm 2 .
  • the fiber base used include hydrophilic fibers such as pulverized wood pulp, cotton linters and cross-linked cellulose fibers, rayon, cotton, wool, acetate, and vinylon. Preferably, they are airlaid.
  • the particulate water-absorbing agent of the present invention exhibits excellent absorption characteristics. Accordingly, the absorbent article of the present invention specifically includes adult diapers that have been growing rapidly in recent years, sanitary materials such as diapers for children, sanitary napkins, so-called incontinence pads, and the like. Since the particulate water-absorbing agent of the present invention present in the absorbent article reduces the amount of leakage and reduces skin irritation, the burden on the wearer and the caregiver can be greatly reduced.
  • each step in each example is carried out at a substantially normal pressure ( ⁇ 5% of atmospheric pressure, more preferably within 1%). In the same step, pressure by intentional pressurization or reduced pressure is used. It was carried out without any changes.
  • 0.200 g (weight W0 [g]) of the particulate water-absorbing agent was weighed, uniformly placed in a non-woven bag (60 ⁇ 85 mm) and heat-sealed, and then 0.90 weight adjusted to 23 ⁇ 2 ° C. It was immersed in 500 mL of a sodium chloride aqueous solution. After 30 minutes, the bag was pulled up and drained using a centrifuge (centrifuge manufactured by Kokusan Co., Ltd .: type H-122) at 250 G for 3 minutes. Thereafter, the weight of the bag (W1 [g]) was measured.
  • AAP (g / g) (W5-W4) / W3 (C) Water absorption time (Vortex method) To 1000 parts by weight of a 0.90% by weight sodium chloride aqueous solution prepared in advance, 0.02 part by weight of food blue No. 1 as a food additive was added, and the liquid temperature was adjusted to 30 ° C. Weigh 50 ml of 0.90 wt% sodium chloride aqueous solution colored in blue into a 100 ml beaker and add 2.00 g of particulate water-absorbing agent while stirring at 600 rpm with a cylindrical stirrer 40 mm long and 8 mm thick. The water absorption time (seconds) was measured.
  • the end point is the time from when the water-absorbing agent absorbs physiological saline and the test solution covers the stirrer chip in accordance with the criteria described in JISK 7224-1996 “Explanation of water absorption rate test method for highly water-absorbent resin”. Was measured as the water absorption time (seconds).
  • a JIS standard sieve having a mesh size of 850 ⁇ m, 710 ⁇ m, 600 ⁇ m, 500 ⁇ m, 425 ⁇ m, 300 ⁇ m, 212 ⁇ m, 150 ⁇ m, 106 ⁇ m, 75 ⁇ m (The IIDA TESTING SIEVE: inner diameter 80 mm; JIS Z8801-1 (2000)), or JIS standard sieve 10.00 g of the particulate water-absorbing agent was classified using a sieve corresponding to. After classification, the weight of each sieve was measured, and the weight percentage (% by weight) having a particle diameter of less than 150 ⁇ m was calculated. The “percent by weight with a particle diameter of less than 150 ⁇ m” is the weight ratio (%) of the particles passing through the JIS standard sieve having an opening of 150 ⁇ m to the entire water-absorbing agent.
  • a weight average particle diameter (D50) means the particle diameter corresponding to 50 weight% of the whole particulate water absorbing agent.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution is expressed by the following (Equation 3), and the smaller the value of ⁇ , the narrower the particle size distribution.
  • a well-washed cylindrical stirrer with a length of 25 mm and a particulate water-absorbing agent 0.500 g were put into a beaker containing a 0.90% by weight sodium chloride aqueous solution after measuring the surface tension adjusted to 20 ° C. And stirred for 4 minutes at 500 rpm. After 4 minutes, stirring was stopped, and the water-containing particulate water-absorbing agent settled, and then the surface tension of the supernatant was measured again by the same operation.
  • a plate method using a platinum plate was adopted, and the plate was thoroughly washed with deionized water before each measurement and heated and washed with a gas burner.
  • Moisture absorption blocking rate also known as Caking rate at high humidity
  • the particulate water-absorbing agent in the aluminum cup was gently transferred onto a JIS standard sieve (The IIDA TESTING SIEVE / inner diameter 80 mm) having an opening of 2000 ⁇ m (8.6 mesh), and a low-tap type sieve shaker (Iida Co., Ltd.).
  • a JIS standard sieve The IIDA TESTING SIEVE / inner diameter 80 mm
  • a low-tap type sieve shaker Iida Co., Ltd.
  • classification was performed for 8 seconds under conditions of a temperature of 20 to 25 ° C. and a relative humidity of 50% RH.
  • the weight of the particulate water-absorbing agent remaining on the JIS standard sieve (W6 [g]) and the weight of the particulate water-absorbing agent that passed through the JIS standard sieve (W7 [g]) were measured.
  • the moisture absorption fluidity moisture absorption blocking rate
  • the glass filter 2 used in this measurement method is a 500 ml glass filter as defined in ISO 4793 (1980), has a pore diameter of P40 (16 to 40 ⁇ m) and a thickness of 7 mm. For example, it is made of Schott Duran glass. Grade 3 of the filter. Also, a 30 cm radius filter at 20 ° C.
  • the silicon tube 3 is connected to the lower part of the filter 1 with the glass filter, and further connected to the lower part of the tank 6 equipped with the glass tube 5 and the stopcock 4. At this time, the upper surface of the glass filter is fixed at a position 10 cm higher than the meniscus below the glass tube in the tank. Fill the system with 0.90 wt% aqueous sodium chloride solution.
  • a high wet strength cellulose tissue 8 cut into an 8 cm square is fixed to the bottom of a plastic support cylinder 7 having an inner diameter of 60 mm with a metal ring.
  • the tissue has a basis weight max of 24.6 g / m 2 , wet tensile strength Min 0.32 N / cm (CD direction), 0.8 N / cm (MD direction) (the flow direction when paper is made on a paper machine is MD direction, The vertical direction is the CD direction) and is available, for example, from Fripa, Germany.
  • a pulp sheet of 12 cm ⁇ 38 cm was prepared in advance using 8.5 g of pulverized wood pulp. 11.3 g of the particulate water-absorbing agent obtained in the present example is uniformly spread on the pulp sheet, and a pulp sheet of the same size and weight is placed thereon, and a pressure of 3.8 kg / cm 2 is applied for 1 minute. By applying, an absorbent sheet having a size of 12 cm ⁇ 38 cm and a thickness of about 5.5 mm was prepared. Next, the absorbent sheet was spread on a flat surface, and a resin cylinder (outer diameter 100 mm, inner diameter 25 mm, height 220 mm, weight 3.6 kg, inner volume 108 cm 3 ) was placed in the center of the sheet.
  • a resin cylinder outer diameter 100 mm, inner diameter 25 mm, height 220 mm, weight 3.6 kg, inner volume 108 cm 3
  • the third liquid injection was carried out in the same procedure as the first liquid injection except that 50 g of 0.90 wt% sodium chloride aqueous solution was used and 30 g of filter paper was used. The amount was measured.
  • Production Example 1 is a production example of a water-absorbing resin in a form other than the foamed polymer (result is Table 1).
  • Production Example 2 and Production Example 3 are production examples of a water absorbent resin in the form of a foamed polymer (results are Tables 1 and 2).
  • Production Example 4 and Production Example 5 are production examples of a water-absorbent resin in a granulated form (results are shown in Table 1).
  • Examples 1 to 6 are examples of the water-absorbing agent according to the production method 1 using a water-absorbing resin in the form of a granulated product.
  • Examples 7 to 12 are examples of a water-absorbing agent according to Production Method 2 using a water-absorbing resin in the form of a foamed polymer.
  • Comparative Examples 1 to 6 are comparative examples of water-absorbing agents produced by a production method that does not use any form of water-absorbing resin in the form of foamed polymer or granulated product.
  • Comparative Examples 7 and 11 are comparative examples of the water-absorbing agent described in Examples of Patent Literature.
  • Comparative Examples 8 to 9 are comparative examples of the water-absorbing agent to which a surfactant is further added in Comparative Example 7.
  • Comparative Example 10 is a comparative example of a water-absorbing agent produced by a production method that does not use water-insoluble inorganic fine particles.
  • Tables 1 to 4 The results of Production Examples 1 to 3, Examples 1 to 12 and Comparative Examples 1 to 11 are shown in Tables 1 to 4 below.
  • Table 1 shows the particle size (particle size distribution, D50) and various physical properties (CRC, moisture content) of the water-absorbent resin particles obtained in Production Examples 1 to 5, which are raw materials for the water-absorbing agent.
  • Tables 2 and 3 show the particle sizes and various physical properties of the water-absorbing agent and the comparative water-absorbing agent.
  • Table 4 shows the evaluation results of the absorbent articles containing the water absorbing agent and the comparative water absorbing agent.
  • the obtained water-containing gel-like crosslinked polymer had been subdivided into a diameter of about 5 mm.
  • This finely divided hydrogel crosslinked polymer was spread on a 50 mesh wire net and dried with hot air at 160 ° C. for 60 minutes.
  • the dried product was pulverized using a roll mill (manufactured by Inoguchi Giken Co., Ltd., WML type roll pulverizer) to obtain water absorbent resin particles (A).
  • the water-absorbent resin particles (A) are classified by a 850 ⁇ m wire mesh and a 180 ⁇ m wire mesh so that the water-absorbent resin particles (A1) are fractions that pass through the 850 ⁇ m wire mesh but do not pass through the 180 ⁇ m wire mesh.
  • water-absorbent resin fine particles (A2) which were fractions that passed through a 180 ⁇ m wire mesh.
  • the ratio of the particles having a particle diameter of less than 150 ⁇ m in the water-absorbent resin particles (A) is 10.5% by weight.
  • the particle diameter is less than 150 ⁇ m. The ratio of the particles was reduced to 1.9% by weight.
  • Table 1 shows the CRC, water content, particle size distribution, and D50 of the water-absorbent resin particles (A1) and water-absorbent resin fine particles (A2) obtained.
  • the temperature of the aqueous monomer solution (1 ′) rose to 65 ° C. by the heat of neutralization in the first stage immediately after preparation. Due to the decrease in gas solubility accompanying this temperature increase, the appearance of the aqueous monomer solution (1 ′) containing a surfactant was clouded due to the introduction of very fine bubbles.
  • the monomer aqueous solution (1 ′) was cooled with stirring, and when the liquid temperature reached 53 ° C., 178.7 g of 48.5 wt% sodium hydroxide aqueous solution adjusted to 30 ° C. was added.
  • the monomer aqueous solution (1) was prepared by mixing. At this time, the temperature of the aqueous monomer solution (1) rose to 83.5 ° C. due to the heat of neutralization in the second stage immediately after preparation. The appearance of the aqueous monomer solution (1) containing the surfactant was clouded due to the introduction of very fine bubbles due to the decrease in the solubility of the gas accompanying the temperature increase.
  • the polymerization reaction started 25 seconds after the monomer aqueous solution (1) was poured into the vat-shaped container.
  • the polymerization reaction proceeded by expanding and foaming up, down, left and right while generating water vapor, and then contracted to a size slightly larger than the bat-type container. This expansion and contraction was completed within about 1 minute.
  • a hydrogel crosslinked polymer (hydrogel) was taken out. The series of operations were performed in an open air system, and the peak temperature during polymerization was 108 ° C.
  • a hydrogel crosslinked polymer (hydrogel) obtained by the above polymerization reaction was used as a meat chopper (manufactured by Iizuka Kogyo Co., Ltd., MEAT-CHOPER TYPE: 12VR-400KSOX, die hole diameter: 7.5 mm, hole number: 38, die thickness. 8 mm) to obtain a finely divided hydrogel crosslinked polymer.
  • the amount of water-containing gel was 450 [g / min]
  • gel pulverization was performed while adding deionized water adjusted to 90 ° C. at 50 [g / min] in parallel with the water-containing gel.
  • the finely divided hydrogel crosslinked polymer obtained by the gel pulverization operation was spread on a stainless steel wire mesh with an opening of 850 ⁇ m and dried with hot air at 190 ° C. for 30 minutes. Subsequently, the dried product obtained by the drying operation was pulverized using a roll mill to obtain water absorbent resin particles (B).
  • the water-absorbing resin particles (B) are classified by a 850 ⁇ m wire mesh and a 150 ⁇ m wire mesh, so that the foamed water-absorbent resin particles (the fraction that has passed through the 850 ⁇ m wire mesh and did not pass through the 150 ⁇ m wire mesh) ( B1) and water-absorbing resin fine particles (B2) that were fractions that passed through a 150 ⁇ m wire mesh were obtained.
  • the ratio of the particles having a particle diameter of less than 150 ⁇ m in the water-absorbent resin particles (B) is 12.4% by weight.
  • the particle diameter is less than 150 ⁇ m. The ratio of the particles was reduced to 1.9% by weight.
  • Production Example 3 Production Example (2) of a water absorbent resin in the form of a foamed polymer
  • the same reaction and operation as in Production Example 2 was carried out except that 1.38 g of polyethylene glycol diacrylate was changed to 0.67 g, and water absorbent resin particles (B) corresponding to the water absorbent resin particles (B) ( C) was obtained.
  • the water-absorbing resin particles (C) that are the fractions that have passed through the 850 ⁇ m wire mesh and have not passed through the 150 ⁇ m wire mesh and the water-absorbing material that is the fraction that has passed through the 150 ⁇ m wire mesh Resin fine particles (C2) were obtained.
  • the ratio of the particles having a particle diameter of less than 150 ⁇ m in the water-absorbent resin particles (C) is 11.5% by weight.
  • the particle diameter is less than 150 ⁇ m.
  • the proportion of the particles of can be reduced to 1.4% by weight.
  • the water-absorbent resin particles (C1) were observed with an SEM, it was confirmed that a foamed shape was effectively formed because there were many crater-like depressions derived from bubbles.
  • the water-absorbent resin particles (C2) since the particle shape is fine, the number of crater-shaped depressions due to bubbles is reduced, but the presence thereof is clearly confirmed.
  • Table 1 shows CRC, water content, particle size distribution, and D50 of the obtained water absorbent resin (C1) and water absorbent resin fine particles (C2).
  • the water-absorbent resin fine particles (A2) and deionized water were mixed within 10 seconds, and the entire contents became a hydrogel granulated product having a particle diameter of about 3 to 10 mm.
  • the hydrated gel-like granulated material was in a disjointed state and was not kneaded by mixing with stirring blades.
  • the obtained hydrous gel-like granulated product was spread on a 50 mesh wire net and dried with hot air at 150 ° C. for 60 minutes.
  • the dried granulated product was pulverized using a roll mill to obtain a water absorbent resin granulated product (A3 ′).
  • the water absorbent resin granulated product (A3 ′) is further classified by a 850 ⁇ m wire mesh and a 150 ⁇ m wire mesh so that it passes through the 850 ⁇ m wire mesh and does not pass through the 150 ⁇ m wire mesh.
  • a granulated product (A3) was obtained.
  • the ratio of the particles having a particle diameter of less than 150 ⁇ m in the water absorbent resin granulated product (A3 ′) is 21.8% by weight, and in the water absorbent resin granulated product (A3) obtained by classification, The proportion of particles smaller than 150 ⁇ m could be reduced to 2.0% by weight.
  • Production Example (2) of a water-absorbent resin in the form of a granulated product 300 g of the water-absorbent resin fine particles (B2) obtained in Production Example 2 were placed in a 5 L mortar mixer (5 L container was kept warm in a 80 ° C. bath) manufactured by West Japan Testing Machine Co., Ltd., and the stirring blades of the mortar mixer were fast at 60 Hz / 100 V. While rotating, 300 g of deionized water heated to 90 ° C. was added all at once.
  • the water-absorbent resin fine particles (B2) and deionized water were mixed within 10 seconds, and the entire contents became a hydrogel granulated product having a particle size of about 3 to 10 mm.
  • the hydrated gel-like granulated material was in a disjointed state and was not kneaded by mixing with stirring blades.
  • the obtained hydrous gel-like granulated product was spread on a 50 mesh wire net and dried with hot air at 150 ° C. for 60 minutes.
  • the dried granulated product was pulverized using a roll mill to obtain a water absorbent resin granulated product (B3 ').
  • the water-absorbent resin granulated product (B3 ′) is further classified by a 850 ⁇ m wire mesh and a 150 ⁇ m wire mesh so that it passes through the 850 ⁇ m wire mesh and does not pass through the 150 ⁇ m wire mesh.
  • a granulated product (B3) was obtained.
  • the ratio of the particles having a particle diameter of less than 150 ⁇ m in the water absorbent resin granulated product (B3 ′) is 11.4% by weight, and in the water absorbent resin granulated product (B3) obtained by classification, The proportion of particles having a particle size of less than 150 ⁇ m could be reduced to 2.4% by weight.
  • Table 1 shows CRC, water content, particle size distribution, and D50 of the obtained water absorbent resin granulated product (B3).
  • Example 1 Water-absorbing agent according to Production Method 1 using a water-absorbing resin in the form of a granulated product 100 parts by weight of the water-absorbent resin granulated product (A3) obtained in Production Example 4 was added to 0.1 parts of ethylene glycol diglycidyl ether. A surface crosslinking agent solution consisting of 025 parts by weight, 0.3 parts by weight of ethylene carbonate, 0.5 parts by weight of propylene glycol, and 2.0 parts by weight of deionized water was mixed. The mixture was heat-treated at 200 ° C. for 35 minutes to obtain a surface-crosslinked water-absorbent resin granulated product (A4).
  • the surface-crosslinked water-absorbent resin granulated product (A4) was swollen with a 0.90% by weight sodium chloride aqueous solution and observed with an optical microscope. As a result of surface crosslinking, the particle shape could be maintained even after water absorption. It was confirmed that
  • Example 2 In Example 1, except that 0.3 part by weight of hydrotalcite was changed to 0.3 part by weight of Aerosil 200 (manufactured by Nippon Aerosil Co., Ltd.), the same reaction and operation as in Example 1 were performed, and a particulate water absorbing agent ( EX-2) was obtained.
  • Example 3 Colloidal silica (manufactured by AZ Electromaterials, Klebsol 30B12) 3.3 parts by weight and propylene glycol 1.0 part by weight with respect to 100 parts by weight of the water absorbent resin granulated product (A4 ′) obtained in Example 1. After mixing, the mixture is left to stand in a hot air dryer at 60 ° C. for 60 minutes, and then passed through a wire mesh with an opening of 850 ⁇ m to give a particulate water-absorbing agent (EX-3). Obtained.
  • Example 4 In Example 1, except that hydrotalcite 0.3 parts by weight was changed to 0.3 parts by weight of the following water-insoluble inorganic fine particles, the same reaction and operation as in Example 1 was carried out to obtain a particulate water-absorbing agent (EX- 4) to a particulate water-absorbing agent (EX-6) were obtained.
  • Zinc oxide made by ALDRICH changed to 0.3 parts by weight (Example 4) Tricalcium phosphate (Wako Pure Chemical Industries, Ltd.) changed to 0.3 parts by weight (Example 5) Aluminum hydroxide (manufactured by Nippon Light Metal Co., Ltd., particle size 1.6 ⁇ m) changed to 0.3 parts by weight (Example 6) (Example 7) Water-absorbing agent by production method 2 using a water-absorbent resin in the form of a foamed polymer In 100 parts by weight of the water-absorbent resin particles (B1) obtained in Production Example 2, 0.025 wt.% Of ethylene glycol diglycidyl ether A surface cross-linking agent solution consisting of 0.3 parts by weight, 0.3 parts by weight of ethylene carbonate, 0.5 parts by weight of propylene glycol, and 2.0 parts by weight of water was mixed. The mixture was heat-treated at 200 ° C. for 35 minutes to obtain surface-crosslinked water-absorbing resin particles (B5).
  • Example 8 Water-absorbing agent according to production method 1 and production method 2 using a granulated product of water-absorbing resin in the form of a foamed polymer
  • Water-absorbing resin granulated product (B3) 100 parts by weight of ethylene glycol diglycidyl ether 0
  • a surface cross-linking agent solution consisting of 0.025 parts by weight, 0.3 parts by weight of ethylene carbonate, 0.5 parts by weight of propylene glycol, and 2.0 parts by weight of deionized water was mixed. The mixture was heat-treated at 200 ° C. for 35 minutes to obtain a surface-crosslinked water-absorbent resin granulated product (B4).
  • Example 9 Water-absorbing agent according to Production Method 1 and Production Method 2 using a granulated product of another production line for the foamed polymer of the water-absorbent resin
  • Water-absorbent resin granulated product (A3) 50 obtained in Production Example 4 Part by weight and 50 parts by weight of the water absorbent resin particles (B1) obtained in Production Example 2 were mixed to obtain water absorbent resin particles (E2).
  • a particulate water-absorbing agent (EX-9) was obtained in the same manner as in Example 7, except that the water-absorbent resin particles (B1) were changed to the water-absorbent resin particles (E2) in Example 7. It was.
  • Example 10 Water-absorbing agent by production method 1 and production method 2 using a granulated product of the same production line for the foamed polymer of water-absorbent resin 50 weight of water-absorbent resin granulated product (B3) obtained in Production Example 5 And 50 parts by weight of the water absorbent resin particles (B1) obtained in Production Example 2 were mixed to obtain water absorbent resin particles (E3).
  • a particulate water-absorbing agent (EX-10) was obtained in the same manner as in Example 7, except that the water-absorbent resin particles (B1) were changed to the water-absorbent resin particles (E3) in Example 7. It was.
  • Example 11 Water-absorbing agent by production method 2 using a water-absorbent resin in the form of a foamed polymer
  • 100 parts by weight of the water-absorbent resin particles (C1) obtained in Production Example 3 0.03 weight by weight of ethylene glycol diglycidyl ether
  • a surface cross-linking agent solution consisting of 1.5 parts by weight of propylene glycol and 3.5 parts by weight of water was mixed. The mixture was heat-treated at 100 ° C. for 45 minutes to obtain surface-crosslinked water-absorbing resin particles (C3).
  • Example 12 In Example 11, except that 0.03 part by weight of ethylene glycol diglycidyl ether was changed to 0.015 part by weight, the same reaction and operation as in Example 11 were carried out to give a particulate water absorbing agent (EX-12). Obtained.
  • Example 1 Water-absorbing agent for comparison by a production method using no foamed polymer or granulated product
  • the water-absorbing resin particles (B1) in the form of the foamed polymer were changed to water-absorbing resin particles (A1).
  • a comparative particulate water-absorbing agent (COMP-1) containing 0.3 part by weight of hydrotalcite was obtained by carrying out the same reaction and operation as in Example 7 except for changing.
  • Comparative Example 2 In Comparative Example 1, except that hydrotalcite 0.3 parts by weight was changed to 0.3 parts by weight of Aerosil 200 (manufactured by Nippon Aerosil Co., Ltd.), the same reaction and operation as in Comparative Example 1 were performed, and particulate water absorption for comparison was performed. An agent (COMP-2) was obtained.
  • the mixture is passed through a wire mesh having an opening of 850 ⁇ m, and 3.3 parts by weight of colloidal silica (manufactured by AZ Electromaterials Co., Ltd., Klebsol 30B12) and 1.0 of propylene glycol.
  • a mixed solution consisting of parts by weight was uniformly added with stirring. After mixing, the mixture was allowed to stand in a hot air dryer at 60 ° C. for 60 minutes, and then passed through a wire mesh having an opening of 850 ⁇ m, and a comparative particulate water absorbing agent (COMP- 3) was obtained.
  • Comparative Examples 4 to 6 In Comparative Example 1, except that 0.3 parts by weight of hydrotalcite was changed to 0.3 parts by weight of the following water-insoluble inorganic fine particles, the same reaction and operation as in Comparative Example 1 were performed, and a comparative particulate water absorbing agent ( COMP-4) to comparative particulate water-absorbing agent (COMP-6) were obtained.
  • the dried product is pulverized using a roll granulator type pulverizer, and further classified by a 850 ⁇ m wire mesh and a 150 ⁇ m wire mesh, thereby passing through a 850 ⁇ m wire mesh and a fraction not passing through a 150 ⁇ m wire mesh.
  • Water-absorbent resin particles (D2) which are fractions that passed through a certain water-absorbent resin particle (D1) and a 150 ⁇ m wire mesh, were obtained.
  • Table 1 shows the CRC, water content, particle size distribution, and D50 of the obtained water-absorbing resin particles (D1) and water-absorbing resin fine particles (D2).
  • the water-absorbing resin fine particles (D2) are charged into the continuous extrusion mixer at a rate of 2 kg / min, and a liquid having a diameter of 5 mm provided in the continuous extrusion mixer.
  • the water-absorbing resin fine particles (D2) By adding 163 parts by weight of ion-exchanged water in which 0.1 part by weight of glycerin is dissolved from the supply port with respect to 100 parts by weight of the water-absorbing resin fine particles (D2), the water-absorbing resin fine particles (D2 ) And ion-exchanged water containing glycerin were continuously mixed.
  • the particulate uniform hydrogel granulated material was continuously discharged from the discharge port.
  • the obtained particulate hydrogel granules were aggregates of individual particles, most of which were uniform hydrogel granules with a particle size of about 1 mm to 5 mm.
  • the hydrated gel-like granulated product was spread on a wire mesh having an opening of 300 ⁇ m so as to have a thickness of about 5 cm, and dried with a 160 ° C. hot air circulation dryer.
  • this dried granulated product was pulverized using a roll granulator type pulverizer, and then classified with a wire mesh having an opening of 850 ⁇ m to obtain a water absorbent resin granulated product (D3).
  • Table 1 shows the obtained water absorbent resin granulated product (D3) CRC, water content, particle size distribution, and D50.
  • Comparative Example 8 To 100 parts by weight of the comparative particulate water-absorbing agent (COMP-7) obtained in Comparative Example 7, an additive solution consisting of 0.01 parts by weight of sorbitan monolaurate and 0.09 parts by weight of methanol was mixed. A particulate water-absorbing agent for comparison (COMP-8) was obtained by heating at 80 ° C. for 40 minutes.
  • Comparative Example 9 To 100 parts by weight of the comparative particulate water-absorbing agent (COMP-7) obtained in Comparative Example 7, an additive solution consisting of 0.1 parts by weight of sorbitan monolaurate and 0.4 parts by weight of methanol was mixed. A particulate water absorbing agent for comparison (COMP-9) was obtained by heating at 80 ° C. for 40 minutes.
  • Comparative Example 10 Comparative water-absorbing agent by a production method using no water-insoluble inorganic particles 1 part by weight of a 1 wt% DTPA aqueous solution based on the surface-crosslinked water-absorbing resin particles (B5) obtained in Example 7 was added with stirring and mixed for 1 minute. Next, the plate was left in a hot air dryer at 60 ° C. for 30 minutes, and then passed through a wire mesh having an opening of 850 ⁇ m to obtain water absorbent resin particles (B6).
  • the monomer aqueous solution (2) adjusted to 40 ° C. was continuously supplied with a metering pump, and then 97.1 parts by weight of a 48 wt% sodium hydroxide aqueous solution was continuously line-mixed. At this time, the temperature of the aqueous monomer solution (2) rose to 85 ° C. due to heat of neutralization.
  • the thickness of the continuous polymerization machine having a planar polymerization belt with weirs at both ends is about 7.5 mm.
  • Continuously fed Thereafter, polymerization (polymerization time 3 minutes) was continuously carried out to obtain a band-like hydrogel crosslinked polymer (3). Also, it contained bubbles due to boiling during polymerization.
  • the hydrogel crosslinked polymer (3) was continuously cut at equal intervals in the width direction with respect to the traveling direction of the polymerization belt so that the cutting length was about 200 mm.
  • the above-mentioned finely divided hydrogel crosslinked polymer (4) is sprayed on the ventilation belt within 1 minute after completion of the gel grinding (the finely divided hydrogel crosslinked polymer (at this time)
  • the temperature of 4) was 80 ° C.) and dried at 185 ° C. for 30 minutes to obtain 246 parts by weight of a dried product (5).
  • the moving speed of the ventilation belt was 1 [m / min], and the average wind speed of the hot air was 1.0 [m / s] in the direction perpendicular to the traveling direction of the ventilation belt.
  • the entire amount of the dried product (5) obtained at the above drying step (5) at about 60 ° C. is continuously supplied to a three-stage roll mill and pulverized (pulverizing step), and then further classified with JIS standard sieves having openings of 710 ⁇ m and 175 ⁇ m.
  • an irregularly crushed water-absorbing resin particle (V) was obtained.
  • the weight average particle diameter (D50) is 350 ⁇ m
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution is 0.33
  • the CRC is 42.1 [g / g].
  • the soluble content (Ext as defined in ERT470.2-02) was 14.1% by weight
  • the proportion of particles passing through 150 ⁇ m was 0.6% by weight. It was.
  • Example 7 From the comparison between Example 7 and Comparative Example 10, it can be seen that the novel water-absorbing agent of the present invention can be obtained by the production method of the present invention using water-insoluble inorganic fine particles.
  • the particulate water-absorbing agents of Examples 1 to 12 and the comparative particulate water-absorbing agents of Comparative Examples 1 to 11 have the same particle size distribution, but contain the water-absorbing agents described in Table 4.
  • the particulate water-absorbing agents of Examples 1 to 12 according to the present invention had a return amount (Re-Wet) of 8 to 11.5 g at the second time and 15 to 17 g at the third time. It can be seen that the amount of return of the comparative particulate water-absorbing agent according to the prior art in Examples 1 to 6 is significantly improved compared to the return amount (13 to 14 g for the second time and 18.8 to 20 g for the third time).
  • the return amount of the water-absorbing agent (Comparative Example 7) of Patent Document 17 (10 g for the second time and 15 g for the third time) and the return amount of the water-absorbing agent (Comparative Example 11) of Patent Document 52 are the particles according to the present invention. Although the amount of the water-absorbing agent partially overlaps with the above-mentioned return amount, the water-absorbing agent of Patent Document 17 (Comparative Example 7) has a poor moisture absorption blocking rate and blocks 100% (see Table 2). Including the mixing with, the handleability was poor. The water absorbing agent of Patent Document 52 (Comparative Example 11) was inferior to the water absorbing agent of the present invention (15 to 17 g) in the third return amount (17.5 g).
  • the production method of the present invention provides a novel water-absorbing agent excellent in GCA and provides an excellent absorbent article with a small amount of return (Re-Wet) than the above examples.
  • the present application provides a novel water-absorbing agent defined by the new parameter GCA and the like of the present application by a novel manufacturing method (Manufacturing Method 1 and Manufacturing Method 2) which has not been conventionally performed. Reduce the return amount of absorbent articles during use.
  • particulate water-absorbing agent of the present invention it is possible to easily produce a disposable diaper having a reduced return amount than in the past even in humid areas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

【課題】多湿な地域での紙おむつ製造において不具合がないと共に、戻り量が少なく、吸液時間の短い紙おむつを低コストで提供することである。 【解決手段】ポリ(メタ)アクリル酸(塩)系吸水性樹脂を主成分とする粒子状吸水剤であって、重量平均粒子径が300~500μmの粒度分布を有し、25℃、相対湿度90%の状態で1時間放置した時の吸湿ブロッキング率が20%以下であり、表面張力が60mN/m以上であり、GCA(Gel Capillary Absorption)が28.0g/g以上であることを特徴とする、粒子状吸水剤。

Description

ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
 本発明はポリ(メタ)アクリル酸(塩)系吸水性樹脂を主成分とする粒子状吸水剤に関する。更に詳しくは、紙おむつ等の製造工程において取扱い性に優れ、かつ、紙おむつ等の吸収性物品の性能を向上させることが出来る粒子状吸水剤に関する。
 吸水性樹脂(SAP/Super Absorbent Polymer)は水膨潤性水不溶性の高分子ゲル化剤であり、体液の吸収性に優れた特性を示す。その為、吸水性樹脂を主成分とする吸水剤は、紙おむつ、生理用ナプキン等の吸収物品、さらには、農園芸用保水剤、工業用止水材等の用途に多用されている。このような吸水剤を構成する吸水性樹脂の原料として多くの単量体や親水性高分子が提案されているが、価格と性能の観点から、(メタ)アクリル酸及び/又はその塩を主成分として用いたポリ(メタ)アクリル酸(塩)系吸水性樹脂が工業的に最も多く用いられている。
 かかる吸水性樹脂は、重合工程、乾燥工程、必要により未乾燥物の除去工程、粉砕工程、分級工程、表面架橋工程等を経て製造される(非特許文献1)。
 吸水剤の主用途である紙おむつを例に挙げると、尿漏れ、肌かぶれの改善が求められている。これらを評価する方法としては、圧力がかかった状態で紙おむつからの戻り量を測定する方法、圧力がかかった状態で紙おむつの吸液時間を測定する方法が提案されている。
 紙おむつ着用者の体重がかかった状態において尿が紙おむつの中に取り込まれにくくなる場合、あるいは、取り込まれても吸水剤による吸収が遅い場合に尿漏れや肌かぶれが起こると推定されている。そして、圧力下での吸水剤の吸収性を改善しつつ吸水剤の吸水速度を向上させる事が、紙おむつの戻り量、吸液時間を低減し、引いては尿漏れ、肌かぶれの低減につながると考えられている。
 従来から、これらの紙おむつの戻り量を低減し、紙おむつの吸液時間を短縮する為に、圧力がかかった状態での吸収特性を向上させる技術が数多く提案されている。
 具体的には、4種類の異なる圧力下での吸水倍率の総和(PAI)が高い吸水剤を紙おむつに使用する技術(特許文献1)、圧力がかかった状態のSAP層において、垂直方向だけでなく水平方向の液の拡散性を向上させる技術(特許文献2、3)、単位面積当たりのSAP量が多い状態での加圧下吸水倍率を向上させる技術(特許文献4、5)、吸水剤と接触するガラスフィルターと液供給側の液面との間に高さの差をつけた状態で測定される加圧下吸水倍率を向上させる技術(特許文献6)等が提案されている。
 これら特許文献1~6の技術はいずれも、測定時間が長く、飽和となった状態での加圧下での吸水倍率を評価している。これらを改善するとある程度の紙おむつの戻り量低減、吸液速度の短縮化が可能であるが、その効果は未だ不十分であり、新たな評価パラメータが求められていた。
 また、吸水剤が尿を吸収する時間(吸収時間)を向上させる為に、粒子形状を改善する技術もこれまでに数多く提案されている。
 具体的には、比表面積を向上させて吸水速度を向上させる技術が知られている。例えば、粒子径を細かく制御する技術(特許文献7)、粒子径を細かく制御して表面架橋を施し、最後に少量の水で造粒する技術(特許文献8)、重合ゲルを粉砕する際に特定のエネルギーで粉砕し造粒形状の粒子を形成する技術(特許文献9、10)、表面積の大きな吸水性樹脂微粒子をバインダーを用いて造粒する技術(特許文献11~16)、表面積の大きな吸水性樹脂微粒子を水又はお湯と高速混合して造粒する技術(特許文献17、18)、逆相懸濁重合法で吸水性樹脂を製造するにあたって重合を多段階で行い球状粒子の造粒物を得る技術(特許文献19、20)、含水ゲルを凍結乾燥して多孔質とする技術(特許文献21)、炭酸塩を用いて発泡重合する技術(特許文献22~29)、有機溶媒を使用して発泡させる技術(特許文献30、31)、モノマー水溶液に不活性ガスを導入して発泡する技術(特許文献32~36)、界面活性剤の存在下モノマー水溶液の温度上げる事で発生するガスをモノマー水溶液に分散させた状態で重合する技術(特許文献37、38)、アゾ化合物を使用する技術(特許文献39、40、41)、不溶性無機粉末や水不溶性粒子を使用する技術(特許文献42、43)、不活性ガスのミクロ気泡を含む濃度45~60重量%の(メタ)アクリル酸ナトリウム塩微細沈殿が分散したスラリーをかきまぜることなく重合する技術(特許文献44)も提案されている。また、重合後に発泡及び架橋する技術(特許文献45)、乾燥時の風速等を調整することにより発泡させる技術(特許文献46)等が提案されている。
 特許文献7のように単に粒子径を細かくした場合には、吸水速度の向上効果は確認されるが、一方で、微粉の増加による取扱い性の悪化、特に吸湿下での取扱い性の悪化が顕著になっていた。近年、紙おむつの普及に伴って、多湿な地域での紙おむつ製造が必須となっており、このような取扱い性の悪化は受け入れがたいものとされてきた。また、粒子径が細かい吸水剤では、パルプと吸水剤を積層させて吸収体を作成する際に吸水剤が吸収体から脱落する量が増えたり、作業環境が悪化するという問題、紙おむつの吸液時間が長くなるという問題などが確認されていた。
 また、特許文献8~18の技術のように造粒手法により吸水速度を向上させる場合には、ある程度吸水速度の改善効果は確認されるものの、造粒された粒子の強度が弱く、ドライ状態で、あるいは、膨潤状態で容易に元の微粉に戻ってしまうような、効果が少ない技術も多々あった。また、造粒により、吸水剤の表面積が増加することにより特に吸湿下での取扱い性が悪化する問題も同様に確認されていた。
 また、特許文献19、20の技術のように、逆相懸濁重合法で造粒粒子を作る場合には、工程が煩雑である問題、有機溶媒の残存による問題があるほか、表面張力の低下により戻り量が増えるなど紙おむつでの性能改善効果が不十分であった。
 また、特許文献21~46に記載の発泡の手法により吸水速度を向上させる手法においては、ある程度の改善効果は確認されるものの、十分な効果というには程遠い状態の技術も多く、また、高価な原料や特殊な装置を用いてコストアップする技術も多かった。また、気泡を分散させるために使用する界面活性剤が表面張力を低下させ、戻り量を増加させる問題もあった。更に、造粒の場合と同様に発泡の手法を施された吸水剤により表面積が増え微粉が増加する為、特に吸湿下での取扱い性が悪化する問題も同様に確認されていた。
 従来技術によると、吸湿下での流動性を付与する技術(吸湿ブロッキングを抑制する技術)としては、既に数多くの技術が提案されている。具体的には、水不溶性無機微粒子を添加する技術(特許文献47,52)、分子内の炭素数が7個以上である有機酸の多価金属塩を添加する技術(特許文献48)、水不溶性金属燐酸塩を表面に会合させる技術(特許文献49)、特定のシリコーン系界面活性剤により処理する技術(特許文献50)、吸水性樹脂に粘土を混合する技術(特許文献51)等が提案されている。
 しかし、特許文献1~46の技術に、これら特許文献47~52に記載の吸湿下での流動性を付与する技術を単に適用しただけでは、取扱い性は向上するものの、戻り量が増加したりして、尿漏れや肌のかぶれの発生といった問題が増加することが分かっていた。
米国特許第5601542号明細書 米国特許第5760080号明細書 米国特許第5797893号明細書 米国特許第6297335号明細書 国際公開第2011/040472号パンフレット 米国特許第7108916号明細書 国際公開第92/18171号パンフレット 米国特許第7473470号明細書 国際公開第2011/126079号パンフレット 国際公開第2013/002387号パンフレット 米国特許第6133193号明細書 国際公開第2005/012406号パンフレット 米国特許5002986号明細書 米国特許5124188号明細書 米国特許第416457号明細書 国際公開第2006/078046号パンフレット 米国特許第6071976号明細書 米国特許第7153910号明細書 米国特許5180798号明細書 米国特許出願公開第2013/0130017号明細書 米国特許第6939914号明細書 国際公開第91/15368号パンフレット 米国特許第5154713号明細書 米国特許第5314420号明細書 米国特許第5399591号明細書 米国特許第5451613号明細書 米国特許第5462972号明細書 国際公開第95/02002号パンフレット 国際公開第2005/063313号パンフレット 国際公開第94/022502号パンフレット 米国特許第4703067号明細書 国際公開第97/017397号パンフレット 国際公開第00/052087号パンフレット 米国特許第6107358号明細書 国際公開第2012/002455号パンフレット 国際公開第2010/095427号パンフレット 国際公開第2011/078298号パンフレット 特許第3942660号公報 米国特許第5856370号明細書 米国特許第5985944号明細書 国際公開第96/017884号パンフレット 国際公開第2009/062902号パンフレット 米国特許公開2007/0225422明細書 特開平1-318021号公報 欧州特許第1521601号明細書 国際公開第2011/136301号パンフレット 国際公開第2007/116777号パンフレット 欧州特許公開1592750号明細書 国際公開第2002/060983号パンフレット 特開平15-82250号公報 国際公開第2000/010619号パンフレット 国際公開第2013/002387号パンフレット
Modern Superabsorbent Polymer Technology(1998)
 多湿な地域での紙おむつ製造において不具合が無いと共に、戻り量が少なく、吸液時間の短い紙おむつを低コストで提供することである。
 上記課題を解決するために、本発明者らは、鋭意検討した結果、特許文献1~6に代表される評価方法が必ずしも紙おむつの戻り量と相関出来なかった原因は、測定時間が30分間~1時間(又は数時間)と長く、吸水倍率がほぼ飽和に達した状態で評価しているためであると考えた。そこで再度、紙おむつにおける尿の排出パターンに着目して考えた。すなわち、人間の尿は数時間の間隔をあけて数十mlの単位で排出される。そして、紙おむつには数回の尿を吸収することが求められる。従って、排尿毎に吸水剤が素早く液を吸収し、さらに吸収剤がパルプ中の液を吸収できる強い吸引力を有することができれば、パルプに残る尿量は少なくなり、肌が尿に接する時間が短くなる為、かぶれが起こり難くなるとともに漏れも低減できると考えた。
 そこで、実施例及び図11で詳述するように0.90重量%塩化ナトリウム水溶液の液面とガラスフィルターに高さ10cmの差をつけた状態において、吸水剤が短時間(10分間)に液を吸い取る能力をGCA(Gel Capillary Absorption)として評価したところ、特定のGCA以上に制御することで、吸湿下での流動性を付与するための処理を行った場合であっても紙おむつの吸液速度を維持することができ、しかも紙おむつの戻り量を従来にないレベルに低減できることを見出し、本発明を完成させるに至った。
 すなわち、上記課題を解決するために、本発明に係る粒子状吸水剤は、ポリ(メタ)アクリル酸(塩)系吸水性樹脂を主成分とする粒子状吸水剤であって、重量平均粒子径が300~500μmの粒度分布を有し、25℃、相対湿度90%の状態で1時間放置した時の吸湿ブロッキング率が0~20%以下であり、表面張力が60mN/m以上であり、GCAが28.0g/g以上であることを特徴とする。
 また、上記課題を解決するために、本発明に係る粒子状吸水剤の第1の製造方法は、(a1)平均粒子径10~180μmのポリ(メタ)アクリル酸(塩)系吸水性樹脂を造粒して造粒物を得る造粒工程と、(b)前記造粒物を表面架橋する表面架橋工程と、(c)前記表面架橋工程の前及び/又は後に、前記造粒物の全粒子100重量%に占める粒子径が150~850μm(標準篩で規定)の粒子の割合を95~100重量%とする整粒工程と、(d)水不溶性無機微粒子を混合する混合工程と、を順次、又は前記工程(a1)~工程(d)の少なくとも一部を同時に実施することを特徴とする、吸水剤の製造方法である。
 更に、上記課題を解決するために、本発明に係る粒子状吸水剤の第2の製造方法は、(a2)重合前に予め気泡を分散させたアクリル酸ナトリウム水溶液を得る単量体水溶液調製工程と、(a3)前記水溶液を重合して、ポリ(メタ)アクリル酸(塩)系吸水性樹脂の発泡重合体を得る重合工程と、(b)前記発泡重合体を表面架橋する表面架橋工程と、(c)前記表面架橋工程の前及び/又は後に、前記発泡重合体の全粒子100重量%に占める粒子径が150~850μm(標準篩で規定)の粒子の割合を95~100重量%とする整粒工程と、(d)水不溶性無機微粒子を混合する混合工程と、を順次、又は工程(c)及び工程(d)を同時に実施することを特徴とする、吸水剤の製造方法である。
 本発明によれば、近年紙おむつの需要増加が著しい多湿な地域においても、紙おむつの製造工程でのトラブルが少なく、従来より性能が向上した紙おむつが製造できるようになる。
図1は、本発明に係る製造方法が適用される、気泡を含有させる方法として、アクリル酸(塩)系単量体水溶液の加熱による連続昇温方法に用いられる装置の一例を示す斜視図である。 図2は、吸水性樹脂粒子における、独立気泡(Closed-Cell)と連続気泡(Open-Cell)を模式的に示す断面図である。 図3は、本発明の内部気泡率測定のための、(例えば、粒度850~150μmの割合が95重量%以上の)吸水性樹脂粒子を45μm未満へ微粉砕する操作を模式的に示す断面図である。吸水性樹脂粒子を微粉砕することで実質的に独立気泡が破壊又は連続気泡化したのち、ヘリウムガスによる乾式密度測定を行うことで、吸水性樹脂粒子の真密度及び内部気泡率を測定できる。 図4は、本発明に係る製造方法が適用される、気泡を含有させる方法として、アクリル酸(塩)系単量体水溶液を中和熱により昇温し、気泡を導入する実施態様の概略を示すフロー図である。 図5は、発明に係る製造方法が適用される、気泡を含有させる方法として、アクリル酸系単量体水溶液の昇温による気泡発生において、さらに不活性ガス(例えば窒素)による単量体水溶液の重合前の脱酸素を行う実施態様を示す概略フロー図である。 図6は、本発明に係る製造方法が適用される、気泡を含有させる方法として、アクリル酸(塩)系単量体水溶液の昇温による気泡導入後、更に不活性ガス(例えば、窒素ガス)を導入し、重合前に脱酸素を行う実施態様の概略を示すフロー図である。 図7は、発明に係る製造方法が適用される、気泡を含有させる方法として、アクリル酸系単量体水溶液の昇温による気泡発生において、さらに不活性ガス(例えば窒素)による単量体水溶液の重合前の脱酸素を行う実施態様を示す概略フロー図である。 図8は、発明に係る製造方法が適用される、気泡を含有させる方法として、アクリル酸系単量体水溶液の昇温による気泡発生において、さらに不活性ガス(例えば窒素)による単量体水溶液の重合前の脱酸素を行う実施態様を示す概略フロー図である。 図9は、発明に係る製造方法が適用される、気泡を含有させる方法として、アクリル酸系単量体水溶液への水溶性有機化合物の混合による気体の溶解度低下及び気泡発生を示す概略フロー図を示す。 図10は、発明に係る製造方法が適用される、気泡を含有させる方法として、アクリル酸系単量体水溶液への水溶性有機化合物の混合による気体の溶解度低下及び気泡発生を示す概略フロー図を示す。 図11は本発明のGCA測定に使用される装置の模式図である。
 以下、本発明に係る粒子状吸水剤及びその製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更実施し得る。
 具体的には、本発明は下記の各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。
 〔1〕用語の定義
 (1-1)吸水剤
 本発明において、「吸水剤」とは、吸水性樹脂を主成分(好ましくは全体の60重量%以上、さらには80重量%以上、90重量%以上)とする水性液のゲル化剤であり、その他に任意の成分として水、無機微粒子、吸湿ブロッキング抑制剤、カチオン性高分子化合物、水溶性多価金属カチオン含有化合物、界面活性剤、発塵抑制剤、着色防止剤、耐尿性向上剤、消臭剤、香料、抗菌剤、発泡剤、顔料、染料、肥料、酸化剤、還元剤等を、それぞれ0~10重量%、好ましくは0.1~1重量%含有してもよい。
 (1-2)「吸水性樹脂」
 本発明における吸水性樹脂とは、水膨潤性水不溶性の高分子ゲル化剤を意味する。なお、「水膨潤性」とは、ERT441.2-02で規定するCRC(無加圧下吸水倍率)が5[g/g]以上であることをいい、また、「水不溶性」とは、ERT470.2-02で規定するExt(可溶分)が0~50重量%であることをいう。
 また、吸水性樹脂は全量(100重量%)が重合体に限定されず、上記性能を維持する範囲内において、添加剤等を含んでもよく、少量の添加剤を含有する吸水性樹脂組成物も本発明では吸水性樹脂と総称する。なお、吸水性樹脂の形状として粉末状が好ましく、特に好ましくは後述の粒度を有する粉末状の吸水性樹脂が良い。なお、本発明においては、吸水性樹脂を吸水性樹脂粉末また吸水性樹脂粒子と称することもある。
 (1-3)「ポリ(メタ)アクリル酸(塩)系吸水性樹脂」
 本発明における「ポリ(メタ)アクリル酸(塩)系吸水性樹脂」とは、任意にグラフト成分を含み、繰り返し単位として、(メタ)アクリル酸及び/又はその塩(以下、(メタ)アクリル酸(塩)と称する)を主成分とする重合体を意味する。
 具体的には、重合に用いられる総単量体(架橋剤を除く)のうち、(メタ)アクリル酸(塩)を50~100モル%含む重合体をいい、好ましくは70~100モル%、より好ましくは90~100モル%、特に好ましくは実質100モル%を含む吸水性樹脂をいう。また、本発明では、ポリ(メタ)アクリル酸塩型(中和型)の重合体もポリ(メタ)アクリル酸(塩)系吸水性樹脂と総称する。
 (1-4)「EDANA」及び「ERT」
 「EDANA」は、欧州不織布工業会(European Disposables and Nonwovens Assoiations)の略称であり、「ERT」は、欧州標準(ほぼ世界標準)である吸水性樹脂の測定方法(EDANA Recommended Test Metods)の略称である。なお、本発明では、特に断りのない限り、ERT原本(公知文献:2002年改定)に準拠して、吸水剤(または吸水性樹脂)の物性を測定する。
 (a)「CRC」(ERT441.2-02)
 「CRC」は、Centrifuge Retention Capacity(遠心分離機保持容量)の略称であり、無加圧下吸水倍率(以下、「吸水倍率」と称することもある)を意味する。具体的には、不織布中の吸水剤(または吸水性樹脂)0.200gを、大過剰の0.90重量%塩化ナトリウム水溶液に対して30分間自由膨潤させた後、更に遠心分離機で水切りした後の吸水倍率(単位;[g/g])である。
 (b)「AAP」(ERT442.2-02)
 「AAP」は、Absorption Against Pressureの略称であり、加圧下吸水倍率を意味する。具体的には、吸水剤(または吸水性樹脂)0.900gを、0.90重量%塩化ナトリウム水溶液に対して1時間、2.06kPa(0.3psi)での荷重下で膨潤させた後の吸水倍率(単位;[g/g])である。なお、ERT442.2-02では、Absorption Under Pressureと表記されているが、実質的に同一内容である。
 (c)「PSD」(ERT420.2-02)
 「PSD」とは、Particle Size Disributionの略称であり、篩分級により測定される粒度分布を意味する。なお、重量平均粒子径(D50)及び粒子径分布幅は米国特許2006-204755号に記載された「(1) Average Particle Diameter and Distribution of Particle Diameter」と同様の方法で測定する。
 (d)「Ext」(ERT470.2-02)
 「Ext」は、Extractablesの略称であり、可溶分(水可溶成分量)を意味する。具体的には、吸水剤(または吸水性樹脂)1.000gを0.90重量%塩化ナトリウム水溶液200mlに添加し、16時間攪拌した後の溶解ポリマー量(単位;重量%)である。なお、溶解ポリマー量の測定はpH滴定を用いて行う。
 (1-5)その他
 本明細書において、範囲を示す「X~Y」は、「X以上Y以下」であることを意味する。又、重量の単位である「t(トン)」は、「Metric ton(メトリック トン)」であることを意味し、更に、特に注釈のない限り、「ppm」は「重量ppm」を意味する。又、「重量」と「質量」、「重量%」と「質量%」、「重量部」と「質量部」は同義語として扱う。更に、「~酸(塩)」は「~酸及び/又はその塩」を意味し、「(メタ)アクリル」は「アクリル及び/又はメタクリル」を意味する。又、物性等の測定に関しては、特に断りのない限り、室温(20~25℃)、相対湿度40~50%RHで測定する。
 〔2〕粒子状吸水剤の製造方法
 上述したように、本発明に係る粒子状吸水剤の第1の製造方法(製造方法1)は、(a1)平均粒子径10~180μmのポリ(メタ)アクリル酸(塩)系吸水性樹脂を造粒して造粒物を得る造粒工程と、(b)前記造粒物を表面架橋する表面架橋工程と、(c)前記表面架橋工程の前及び/又は後に、前記造粒物の全粒子100重量%に占める粒子径が150~850μm(標準篩で規定)の粒子の割合を95~100重量%とする整粒工程と、(d)水不溶性無機微粒子を混合する混合工程と、を順次、又は前記工程(a1)~工程(d)の少なくとも一部を同時に実施することを特徴とする。
 また、同様に上述したように、本発明に係る粒子状吸水剤の第2の製造方法(製造方法2)は、(a2)重合前に予め気泡を分散させたアクリル酸ナトリウム水溶液を得る単量体水溶液調製工程と、(a3)前記水溶液を重合して、ポリ(メタ)アクリル酸(塩)系吸水性樹脂の発泡重合体を得る重合工程と、(b)前記発泡重合体を表面架橋する表面架橋工程と、(c)前記表面架橋工程の前及び/又は後に、前記発泡重合体の全粒子100重量%に占める粒子径が150~850μm(標準篩で規定)の粒子の割合を95~100重量%とする整粒工程と、(d)水不溶性無機微粒子を混合する混合工程と、を順次、又は工程(c)及び工程(d)を同時に実施することを特徴とする。
 なお、上記製造方法1および製造方法2において、「順次」とは、工程(a1)~工程(d)(製造方法1)、工程(a2)~工程(d)(製造方法2)の実施がこの順で行われることを意味する。つまり、例えば、製造方法1では、工程(a1)の終了後に工程(b)を、工程(b)の終了後に工程(c)を、工程(c)の終了後に工程(d)を行うことを意味する。なお、上記工程(a1)~工程(d)(製造方法1)、工程(a2)~工程(d)(製造方法2)以外の工程が間に挟まっていてもよい。
 また、上記製造方法1において、「少なくとも一部を同時に実施する」とは、例えば、工程(a1)と工程(b)、工程(b)と工程(c)、工程(c)と工程(d)等を同時行うことを意味する。特に工程(c)と工程(d)、又は工程(b)と工程(d)を同時に行うことが好ましい。
 上記の各工程間の時間は、輸送時間や貯蔵時間を含めて適宜決定され、その時間として好ましくは0秒以上2時間以内、より好ましくは1秒以上1時間以内である。
 以下、本発明に係る粒子状吸水剤の製造方法について主として経時的な順序に沿って説明するが、製造方法1および製造方法2は上述した必須の工程をそれぞれ有していればよく、各製造方法の主旨を逸脱しない範囲でその他の工程を更に含んでもよい。
 (2-1)(メタ)アクリル酸(塩)系単量体水溶液の重合工程前、重合工程中に気泡を含有させて吸水性樹脂粒子に発泡構造を導入する方法
 (2-1-1)(メタ)アクリル酸(塩)系単量体水溶液の調製工程
 本明細書において、「(メタ)アクリル酸(塩)系単量体水溶液」とは、(メタ)アクリル酸(塩)を主成分とする単量体の水溶液であって、必要により架橋剤、グラフト成分や微量成分(キレート剤、界面活性剤、分散剤等)等の吸水性樹脂を構成する成分が調合されたものを指し、そのままの状態で重合開始剤を添加して重合に供されるものをいう。
 上記(メタ)アクリル酸(塩)としては、未中和でも、塩型(完全中和型又は部分中和型)でもよく、また、単量体水溶液としては、飽和濃度を超えてもよく、(メタ)アクリル酸(塩)の過飽和水溶液やスラリー水溶液(水分散液)であっても、本発明の(メタ)アクリル酸(塩)系単量体水溶液として扱う。なお、得られる吸水性樹脂の物性の観点から、飽和濃度以下の(メタ)アクリル酸(塩)系単量体水溶液を用いることが好ましい。
 また、単量体を溶解させる溶媒としては水が好ましく、(メタ)アクリル酸(塩)系単量体は水溶液として扱われる。ここで、「水溶液」とは、溶媒の100重量%が水である場合のみに限定されず、水に加えて水溶性有機溶剤(例えば、アルコール等)を、溶媒の全量100重量%としたときに0~30重量%、好ましくは0~5重量%の量で併用してもよく、本発明ではこれらを水溶液として扱う。
 本明細書において、後述する「調製中の(メタ)アクリル酸(塩)系単量体水溶液」とは、上記(メタ)アクリル酸(塩)を主成分とする単量体水溶液に、すべての構成成分が混合される前の(メタ)アクリル酸(塩)の水溶液をいい、具体的には(メタ)アクリル酸水溶液、完全中和又は部分中和の(メタ)アクリル酸(塩)水溶液が該当する。
 調製中の(メタ)アクリル酸(塩)系単量体水溶液を更に中和したり、溶媒である水を混合したり、上記微量成分等を混合したりすることで、最終的な(メタ)アクリル酸(塩)系単量体水溶液とされる。なお、この最終的な(メタ)アクリル酸(塩)系単量体水溶液について、重合装置に投入される前又は重合装置に投入された後重合が開始する前の状態を、「重合工程前の調製後の(メタ)アクリル酸(塩)系単量体水溶液」という。
 (単量体)
 本発明の吸水性樹脂には、(メタ)アクリル酸(塩)を主成分とする単量体が使用される。主成分とは、単量体(内部架橋剤を除く)全体に対して、(メタ)アクリル酸(塩)が通常50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上、特に好ましくは95モル%以上(上限は100モル%)含まれる状態を指す。なお、本発明においてポリ(メタ)アクリル酸(塩)は、未中和(中和率0モル%)に限定されず、部分中和或いは完全中和(中和率100モル%)を含む概念である。
 (メタ)アクリル酸(塩)を単量体の主成分として含んでいれば、それ以外に重合により吸水性樹脂となる単量体を含んでも良く、例えば、(無水)マレイン酸、イタコン酸、ケイ皮酸、ビニルスルホン酸、アリルトルエンスルホン酸、ビニルトルエンスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸、2-(メタ)アクリロイルプロパンスルホン酸、2-ヒドロキシエチル(メタ)アクリロイルフォスフェート等のアニオン性不飽和単量体(塩);メルカプト基含有不飽和単量体;フェノール性水酸基含有不飽和単量体;(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等のアミド基含有不飽和単量体;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体等が挙げられる。また前記吸水性樹脂は前記他の単量体が共重合成分として含まれていてもよい。
 本発明において、(メタ)アクリル酸(塩)系単量体又は重合後の含水ゲル状架橋重合体の中和率については特に限定されないが、得られる吸水性樹脂粒子の物性や表面架橋剤の反応性の観点から、40~90モル%が好ましく、50~80モル%がより好ましく、60~75モル%が更に好ましい。但し、上記中和率が低い場合は吸水速度が低下する(例えば、Vortex法による吸水時間が増大する)傾向にあり、逆に中和率が高い場合はポリ(メタ)アクリル酸(塩)系吸水性樹脂と表面架橋剤(特に後述の脱水反応性表面架橋剤)との反応性が低下し、生産性が低下したり、加圧下吸水倍率(例えば、AAP)が低下する傾向にあるため、上記範囲内の中和率が好ましい。
 該中和は重合前の前記単量体及び/または前記単量体水溶液に対して行う以外に、重合後の含水ゲルに行ってもよく、両方を併用してもよい。なお、複数回行う場合には全ての塩基性化合物の添加量を考慮して、前記中和率の範囲に調整するのが好ましい。
 また、最終製品として得られる吸水性樹脂の無加圧下吸水倍率(CRC)や吸水速度の観点から、(メタ)アクリル酸(塩)系単量体又は含水ゲル状架橋重合体は一部又は全部が塩型でもよく、ナトリウム塩、リチウム塩、カリウム塩、アンモニウム塩、アミン類等の一価塩が好ましく、中でもアルカリ金属塩がより好ましく、更にナトリウム塩及び/又はカリウム塩が好ましく、コストや物性の観点から特にナトリウム塩が好ましい。
 (重合禁止剤)
 本発明の(メタ)アクリル酸(塩)系単量体には重合禁止剤が含有されている。該重合禁止剤としては、特に限定されないが、例えば、国際公開第2008/096713号に開示されるN-オキシル化合物、マンガン化合物、置換フェノール化合物等が挙げられる。中でも、置換フェノール類が好ましく、メトキシフェノール類が特に好ましい。
 上記メトキシフェノール類としては、例えば、o,m,p-メトキシフェノールや、メチル基、t-ブチル基、水酸基等の1又は2以上の置換基を有するメトキシフェノール類等が挙げられるが、本発明においてはp-メトキシフェノールが特に好ましい。
 なお、上記(メタ)アクリル酸(塩)系単量体中のメトキシフェノール類の含有量は、10~200重量ppmが好ましく、以下順に、5~160重量ppm、10~160重量ppm、10~100重量ppm、10~80重量ppmが好ましく、10~70重量ppmが最も好ましい。メトキシフェノール類の含有量が上記範囲を超える場合、得られる吸水性樹脂の色調が悪化(黄ばみや黄変といった着色)するおそれがあるため、好ましくない。また、上記含有量が5重量ppm未満の場合、即ち、蒸留等の精製によってp-メトキシフェノールを除去した場合、意図的な重合を開始させる前に重合を引き起こす危険性が高くなるため好ましくない。
 (内部架橋剤)
 本発明では、上記重合に際して、必要に応じて内部架橋剤が用いられる。該内部架橋剤としては、公知のものが使用でき、例えば、N,N’-メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチルロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェート、トリアリルアミン、ポリ(メタ)アリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、1,4-ブタンジオール、ペンタエリスリトール、エチレンジアミン、エチレンカーボネート、プロピレンカーボネート、ポリエチレンイミン、グリシジル(メタ)アクリレート等を挙げることができる。これらの中から、反応性を考慮して、1種又は2種以上を使用することができ、中でも2個以上の重合性不飽和基を有する化合物を使用することが好ましい。
 上記内部架橋剤の使用量は、所望する吸水性樹脂の物性により適宜決定できるが、上記(メタ)アクリル酸(塩)系単量体100モル%に対して、0.001~5モル%が好ましく、0.005~2モル%がより好ましく、0.01~1モル%が更に好ましい。該使用量が0.001モル%以上であれば、得られる吸水性樹脂の可溶分が多くなりすぎず、加圧下での吸水量を充分に確保できる。一方、該使用量が5モル%以下であれば、得られる吸水性樹脂の架橋密度が高くなりすぎず、吸水量が充分に確保できる。上記内部架橋剤を用いて架橋構造を重合体内部に導入するには、上記内部架橋剤を、上記単量体の重合前あるいは重合途中、あるいは重合後、又は中和後に反応系に添加するようにすればよい。なお、内部架橋剤は、反応系に一括添加でも、分割添加でもよい。
 (界面活性剤・分散剤)
 本発明の製造方法1または製造方法2(特に製造方法2)においては、調製中又は重合工程前の調製後の(メタ)アクリル酸(塩)系単量体水溶液に、界面活性剤及び/又は分散剤を添加し、発生する気泡を安定的に懸濁させることが好ましく、更に界面活性剤及び/又は分散剤の種類、添加量等を適宜設計することで、所望する物性の吸水性樹脂が得られる。なお、界面活性剤は非高分子化合物が好ましく、分散剤は高分子化合物が好ましい。
 上記界面活性剤及び/又は分散剤の添加量は、その種類に応じて適宜設計され、その具体的数値は後述するが、好ましくは得られる吸水性樹脂の表面張力が60[mN/m]以上、より好ましくは後述の「(3-5)表面張力」に記載した範囲となるように、(メタ)アクリル酸(塩)系単量体水溶液に添加する。上記表面張力が60[mN/m]未満では、紙おむつ使用時に戻り量が増加する傾向にあるため、好ましくない。なお、表面張力の低下を防ぐためには、吸水性樹脂や(メタ)アクリル酸(塩)系単量体と、反応性又は重合性を有する界面活性剤、例えば、不飽和重合性基(特にα、β-不飽和二重結合)や反応性基(ヒドロキシル基、アミノ基)を有する界面活性剤の使用が好ましく、また、水への溶解度が高い親水性界面活性剤(HLB;1~18、特に8~15)の使用も好ましい。
 (界面活性剤)
 本発明において、使用できる界面活性剤としては特に限定されないが、国際公開第97/017397号や米国特許第6107358号に開示された界面活性剤、即ち、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤等が挙げられる。これらの界面活性剤は(メタ)アクリル酸(塩)系単量体や吸水性樹脂粒子との重合性又は反応性を有するものであってもよい。即ち、ビニル基、アリル基、アリルオキシ基等の重合性官能基や、グリシジル基等の吸水性樹脂の官能基と反応性を有する界面活性剤であればよい。
 上記ノニオン性界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシアルキレンアルキルエーテル;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のポリオキシアルキレンアルキルフェニルエーテル;ポリオキシエチレンラウリルアミノエーテル、ポリオキシエチレンステアリルアミノエーテル等のポリオキシアルキレンアルキルアミノエーテル;ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート等のソルビタン脂肪酸エステル;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレエート等のポリオキシアルキレンソルビタン脂肪酸エステル;ポリエチレングリコールモノラウレート、ポリエチレングリコールモノオレエート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のポリアルキレングリコール脂肪酸エステル;ラウリン酸モノグリセライド、ステアリン酸モノグリセライド、オレイン酸モノグリセライド等のグリセリン脂肪酸エステル等が挙げられる。
 上記アニオン性界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンオクチルフェニルエーテル硫酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウム、ラウリル硫酸トリエタノールアミン、ラウリル硫酸ナトリウム、ラウリル硫酸カリウム、ラウリル硫酸アンモニウム等の硫酸エステル塩;ドデシルベンゼンスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム等のスルホン酸塩;アルキルリン酸カリウム等のリン酸エステル塩等が挙げられる。
 上記カチオン性界面活性剤としては、例えば、ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド等の四級アンモニウム塩等が挙げられる。
 更に、上記の界面活性剤以外に、シリコーン系界面活性剤を挙げることができる。該シリコーン系界面活性剤は、アニオン性、ノニオン性、カチオン性のシリコーン系界面活性剤の他、ポリオキシアルキレン変性シリコーン系界面活性剤等があり、具体的には、ポリオキシエチレン変性ジメチルポリシロキサン、ポリオキシエチレン・ポリオキシプロピレンのブロック又はランダム共重合体変性ジメシルポリシロキサン、末端に炭素数1~12のアルキル基を有するポリオキシエチレンで変性されたジメチルポリシロキサン、末端に炭素数1~12のアルキル基を有するポリオキシエチレン・ポリオキシプロピレンのブロック又はランダム共重合体で変性されたジメチルポリシロキサン、ジメチルポリシロキサンの末端及び/又は分子内部にアミノ基、エポキシ基等を有したジメチルポリシロキサン誘導体の上記ポリオキシアルキレン変性物等が挙げられる。これらの中でポリオキシエチレン変性ジメチルポリシロキサン、ポリオキシエチレン・ポリオキシプロピレンのブロック又はランダム共重合体変性ジメシルポリシロキサンが好ましく、ポリオキシエチレン変性ジメチルポリシロキサンが、工業的に安価で入手できるため、より好ましい。
 これらの界面活性剤は1種のみを用いてもよいし、2種以上を併用してもよく、又、後述の分散剤(特に高分子分散剤)と併用してもよい。これらの界面活性剤の中でも、効果の観点から、アニオン性界面活性剤、ノニオン性界面活性剤、又はシリコーン系界面活性剤を用いることが好ましく、ノニオン性界面活性剤又はシリコーン系界面活性剤を用いることが更に好ましい。
 上記界面活性剤の添加量は、その種類や目的とする物性(特に吸水速度や表面張力)に応じて適宜決定されるが、使用される単量体100重量部に対して、0を超え2重量部以下が好ましく、0を超え0.03重量部以下がより好ましく、0を超え0.015重量部以下が更に好ましく、0を超え0.01重量部以下が特に好ましく、0を超え0.008重量部以下が最も好ましい。なお、上記界面活性剤の添加量は吸水性樹脂粒子に対しても同様に適用される。更に必要に応じて後述の「(2-4)添加剤の添加工程」に記載の界面活性剤で被覆した後に得られる吸水剤にも適用することができる。なお、上記添加量が上記範囲内の値であれば、重合反応時の発泡の制御が容易となるため、好ましい。また、吸水性樹脂粒子の表面張力を過度に低下させる虞も低減させるため、紙おむつ等での使用時における戻り量の増加が抑制されるため、好ましい。
 また、極少量の界面活性剤の添加は、得られる吸水性樹脂粒子の搬送性や耐ダメージ性を向上させ、その結果として表面架橋後や粉体輸送後の吸水性樹脂粒子の物性を向上させるため、0重量ppmを超えることが好ましく、特に0.1重量ppm以上、更には1重量ppm以上、5重量ppm以上、10重量ppm以上の順に好ましい。
 (分散剤)
 分散剤とは、調製中または重合工程前の調製後の(メタ)アクリル酸(塩)系単量体水溶液中に発生させる気泡を安定的に分散させる化合物である。本発明において使用される分散剤としては特に限定されず、吸水性高分子分散剤又は吸水性を示す親水性高分子分散剤が好ましく、水溶性高分子分散剤がより好ましい。又、その重量平均分子量は分散剤の種類によって適宜決定されるが、500~1000万が好ましく、5000~500万がより好ましく、1万~300万が特に好ましい。
 上記分散剤の種類については、特に限定されず、例えば、澱粉、澱粉誘導体、セルロース、セルロース誘導体、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(ナトリウム)、ヒドロキシエチルセルロース、ポリ(メタ)アクリル酸(塩)、ポリ(メタ)アクリル酸(塩)架橋体等の親水性高分子が挙げられる。中でも本発明の効果の観点から、澱粉、セルロース、PVAから選ばれる水溶性高分子分散剤が好ましい。
 これらの分散剤の使用量は、(メタ)アクリル酸(塩)系単量体100重量部に対して、0重量部を超え50重量部以下が好ましく、0.01~20重量部がより好ましく、0.05~10重量部が更に好ましく、0.1~5重量部が特に好ましい。
 また、上記の分散剤の使用量の規定は、得られる吸水性樹脂粒子に対しても同様に適用される。上記分散剤の使用量が上記範囲内の値であれば、重合反応時の発泡の制御が容易となり、好ましい。また、吸水性樹脂粒子の吸水能力等を過度に低下させる虞が低減され、紙おむつ等での使用時における戻り量の増加が抑制されるため、好ましい。
 (2-1-2)気泡発生・分散工程(特に(a2)重合前に予め気泡を分散させたアクリル酸ナトリウム水溶液を得る工程(単量体調製工程))
 (気泡率の制御)
 本発明では好ましくは内部気泡を含有する吸水性樹脂粒子が表面架橋に用いられる。好ましい気泡の制御方法として、重合時に気泡を所定量含有させることで重合させ、好ましくは得られた吸水性樹脂の内部気泡率(国際公開第2011/078298号パンフレット(特許文献37)にて規定される)が好ましくは0.5%以上であり、1.0~8.0%、2.8~6.6%、3.0~6.5%、3.5~6.5%、3.8~6.5%の順に好ましく、最も好ましくは4.0~6.5%である。
 内部気泡率が上記範囲の下限値以上の値であれば、充分な吸水速度の向上効果が得られ、逆に内部気泡率が上記範囲の上限値以上の値であれば、吸水性樹脂の嵩密度が過度に低下する虞が低減され、耐ダメージ性やGCA、加圧下吸水倍率(AAP)等の性能の悪化が防止されるため、好ましい。かかる内部気泡率は上記本発明の製造方法において、重合時の気泡含有量や乾燥温度(高温でより膨張)等で適宜制御できる。
 気泡の含有方法としては、重合時の単量体水溶液に気泡を含有させればよく、炭酸塩、水溶性アゾ化合物(さらには水溶性アゾ重合開始剤)等の固体の発泡剤、疎水性ないし親水性有機溶媒等の液体の発泡剤、各種気泡等の気体発泡剤(常温で気体の化合物を単量体に分散)が適宜用いられ、好ましくは、気体を単量体に分散、さらに好ましくは、特許文献37(国際公開第2011/078298号パンフレット)のポリ(メタ)アクリル酸(塩)系吸水性樹脂の製造方法が適用される。この際、発泡剤の添加又は気体の導入によって単量体水溶液の体積が膨張するが、その膨張倍率は発泡剤の添加又は気体の導入がない場合に対して、上限として5倍以下が好ましく、以下順に3倍以下、2倍以下、1.1倍以下、1.05倍以下、1.02倍以下が好ましい。また、膨張倍率の下限としては1倍を超えることが好ましく、特に1.01倍以上が好ましい。従来、多量の気泡が分散した状態で重合する方法は知られていたが、本発明では過度に気泡を分散させることなく重合を行うため、嵩比重の低下が少ない。なお、膨張倍率は同じ温度、同じ重量の単量体水溶液について、その容積をメスシリンダーやメスフラスコ等で比較して、容易に測定できる。
 本発明で内部気泡率を制御する場合、その制御方法の一例として、以下、特許文献37の方法を記載する。その開示内容は参照により引用され、本願の開示内容の一部をなすものとする。特許文献37の記載はすべて本発明の記載及び手法として使用できるが、本発明は該手法に限定されない。
 以下、好適な気泡含有量の制御方法について述べる。
 (好ましい気泡含有量の制御方法)
 本発明ではGCAを高めたり、吸水速度を速めたり、加圧下吸水倍率を向上させるために、好ましくは吸水性樹脂の内部に気泡が導入され、各種の発泡重合等が適用できるが、好適な手法として、例えば特許文献37に記載の手法が用いられる。
 気泡含有量を制御するために使用できる特許文献37の製造方法は、気泡を含有する(メタ)アクリル酸(塩)系単量体水溶液の重合工程と、必要により重合時又は重合後の含水ゲル状架橋重合体のゲル細粒化工程と、含水ゲル状架橋重合体の乾燥工程とを含むポリ(メタ)アクリル酸(塩)系吸水性樹脂の製造方法において、界面活性剤及び/又は分散剤の存在下、該(メタ)アクリル酸(塩)系単量体水溶液中の溶存気体の溶解度を低下させて気泡を発生含有させる気泡発生含有工程を含む。
 ここで、上記界面活性剤の添加は、気泡発生含有工程を行う前に行えばよいため、重合工程後に行ってもよいが、重合工程前に行うことが好ましい。
 つまり、本発明の製造方法は、好ましくは、重合工程前の調製中又は調製後の(メタ)アクリル酸(塩)系単量体水溶液が界面活性剤及び/又は分散剤を含有し、該(メタ)アクリル酸(塩)系単量体水溶液中の溶存気体の溶解度を低下させて気泡を発生含有させる気泡発生含有工程を含む、製造方法である。上記気泡発生含有工程は、重合工程が完了するまでに行えばよいため、重合工程開始後に行ってもよいが、重合工程前に行うことが好ましい。また水溶液中にガスを溶存させるために、予め水溶液中にガス(例えば、不活性ガス)を導入してもよいし、しなくてもよい。かかる溶存気体の溶解度を低下させる方法としては、具体的には、以下の方法(a)又は方法(b)の少なくとも1つの方法を用いる。例えば、(メタ)アクリル酸(塩)系単量体水溶液の昇温によって行う方法、及び/又は、(メタ)アクリル酸(塩)系単量体水溶液に対して水溶性有機物の混合によって行う方法が挙げられる。
 方法(a)(メタ)アクリル酸(塩)系単量体水溶液の昇温による方法
 (メタ)アクリル酸(塩)系単量体水溶液への気泡の分散方法として、単量体及び/又はその塩、必要に応じて内部架橋剤及び水を混合して調製された(メタ)アクリル酸(塩)系単量体水溶液を昇温する方法、又は、(メタ)アクリル酸(塩)系単量体水溶液の調製段階で昇温して水溶液中の気体の溶解度を低下させる方法が挙げられる。
 調整後の(メタ)アクリル酸(塩)系単量体水溶液の昇温を行う際は、該単量体水溶液を配管又は容器からなる熱交換器を通す方法や、紫外線照射する方法等が挙げられる。昇温された単量体水溶液の温度は気体の溶解度が下がる高温であることが好ましく、具体的には、40℃~該単量体水溶液の沸点が好ましく、より好ましくは50~100℃、更に好ましくは60~98℃、最も好ましくは70~95℃である。また昇温幅は、気泡の発生量から好ましくは、+5℃以上、より好ましくは+10~+100℃、更に好ましくは+20~+90℃、特に好ましくは+30~+80℃である。
 上記昇温幅が+5℃以上であれば重合前の気泡の安定性が確保され、一方、昇温幅が+100℃以下であれば重合前の気泡の発生量が充分に確保されるため、吸水速度の向上効果を充分に奏することができる。吸水速度やその他物性面からも、昇温前の単量体水溶液の温度は好ましくは0~60℃であり、更に好ましくは20~50℃である。また、昇温にかかる時間は好ましくは60秒以下、より好ましくは30秒以下、更に好ましくは10秒以下として、できるだけ多くの気泡を発生させるために単量体水溶液を急速に温めることが好ましい。
 工程の簡便さ及び効果の面から、昇温は、界面活性剤を含有する(メタ)アクリル酸又はその水溶液の中和熱を利用して行われることが好ましい。図4に代表的な中和熱による昇温及び気泡発生を示す概略フロー図を示す。
 (メタ)アクリル酸の中和熱は13.9[kcal/モル](25℃)であり、水の比熱は1[cal/℃/g](25℃)、(メタ)アクリル酸の比熱は0.66[cal/℃/g](25℃)であり、好ましくは、かかる(メタ)アクリル酸の中和熱によって(メタ)アクリル酸水溶液が昇温される。昇温幅は中和熱及び比熱からも予想できる。
 また、(メタ)アクリル酸の中和熱13.9[kcal/モル](25℃)により昇温する場合、昇温の幅を制御するために、中和反応時に適宜加熱してもよく冷却してもよく、また、中和反応時に反応系を断熱にしてもよい。
 更に、(メタ)アクリル酸(塩)系単量体水溶液の調製段階で昇温を行う際には、単量体の中和度を上げる工程(中和工程)を連続的に行ってもよく、バッチで行ってもよい。また、中和工程は所定の中和率まで1段で行ってもよく、多段階(例えば2段階)で行ってもよい。2段階中和は塩基を2段階に渡って投入するものであり、後述の実施例に示されている。
 本発明の上記方法では、かかる昇温によって気体の溶解度が低下して、(メタ)アクリル酸単量体水溶液中に気泡が発生する。かかる機構(特に本発明を制限しない)で発生する気泡は、従来の発泡方法に比べて、非常に細かく、更に界面活性剤及び/又は分散剤によって、更に安定化することで本発明の課題を解決すると推測される。
 又、中和熱を利用した昇温方法以外の昇温方法として、(メタ)アクリル酸(塩)系単量体水溶液の加熱によって昇温を行う方法が挙げられ、加熱はジャケット等を通じて(メタ)アクリル酸(塩)系単量体水溶液を加熱すればよい。
 図1に、本発明の方法を適用できる、(メタ)アクリル酸(塩)系単量体水溶液の加熱による連続昇温方法の装置図(概略図)を示す。図1に示す装置は、(メタ)アクリル酸(塩)系単量体水溶液の昇温による気泡発生方法の一手法において用いることができる装置である。図1に示す装置では、単量体水溶液昇温用の恒温槽100に、オイル200が入れられており、該恒温槽100にステンレスコイル300が浸漬されている。単量体水溶液は、図の矢印の向きにステンレスコイル300中を通って供給され、加温されたオイル200を通過することにより加熱される。
 また、図5~8は、本発明の実施態様に含まれる昇温による気体の溶解度低下及び気泡発生の実施態様の概略を示すフロー図である。これらの昇温方法は併用してもよく、その他方法でもよい。更に、重合時に必要に応じて溶存酸素の脱気工程(例えば、不活性ガスでの置換工程)を設けてもよい。これにより重合を促進し物性を向上させることができ、また単量体へより多くの気泡を分散させることができる。この際の不活性ガスの導入量は特に限定されるものではないが、単量体水溶液中の溶存酸素量を4mg/l以下とすることが好ましく、2mg/l以下とすることがより好ましく、1mg/l以下とすることがさらに好ましい。該溶存酸素量の下限は0mg/lであるが、不活性ガスのコストとのバランスの観点から、0.1mg/l程度でもよい。
 方法(b)(メタ)アクリル酸(塩)系単量体水溶液の調製において、単量体水溶液に対して水溶性有機物を混合する方法
 (メタ)アクリル酸(塩)系単量体水溶液への気泡の分散方法として、単量体及び/又はその塩、必要に応じて内部架橋剤及び水を混合して調製する際に、気体が溶存していない、又はほとんど溶存していない水溶性有機物、あるいは混合対象である(メタ)アクリル酸(塩)系単量体水溶液や、水に比べて気体が溶解していない水溶性有機物の混合を行い、気体の溶解度を低下させる方法が挙げられる。上記水溶性有機物としては、酸素の溶解度が好ましくは0.02[ml/ml]以下、より好ましくは0.01[ml/ml]以下、特に好ましくは0.005[ml/ml]以下の有機化合物が使用される。例えば、気体を含む(溶存する)(メタ)アクリル酸(塩)系単量体水溶液に気体を含まない単量体(例えば(メタ)アクリル酸)を混合することで、混合後の単量体水溶液に溶存できない気体が発生し、その気体を微細な気泡として単量体水溶液中に分散せしめることができる。
 (溶存気体)
 方法(a)又は(b)によって(メタ)アクリル酸(塩)系単量体水溶液へ導入される気泡の数平均直径(体積平均粒子径)は、500μm以下であることが好ましく、50nm(より好ましくは10μm)~500μmがより好ましく、100nm(より好ましくは10μm)~100μmが更に好ましい。
 気泡の平均直径が上記範囲の下限値以上の値であれば、表面積が大きくなり、吸水速度を充分に確保することができる。また、平均直径が上記範囲の上限値以下の値であれば、得られる吸水性樹脂の強度が充分に確保される。
 気体の水への溶解度は気体の種類や温度で決定され、例えば、25℃の水に対しては、炭酸ガス(二酸化炭素)(1.05[ml/ml])、酸素(0.0285[ml/ml])、窒素(0.0147[ml/ml])となり、これら気体の溶解度は昇温や水溶性有機物(好ましくは(メタ)アクリル酸)の混合によって低下され、溶解度の低下によって発生した気泡を界面活性剤や分散剤によって(メタ)アクリル酸単量体水溶液に分散させればよい。気泡の量は気体の種類や溶解度の低下方法(昇温幅や水溶性有機物の混合比)によって適宜決定されるが、発生した気泡によって単量体水溶液の体積が好ましくは1.01~1.1倍、より好ましくは1.02~1.08倍となるように、(メタ)アクリル酸(塩)系単量体水溶液へ気泡を分散させることが好ましい。
 (気体)
 本発明に係る製造方法では、(メタ)アクリル酸(塩)系単量体水溶液中の溶存気体の溶解度を低下させて気泡を分散させるが、別途、外部から気体を導入して気泡を分散させてもよい。即ち、溶解度を低下させて分散させる気泡や、更に必要により外部から導入する気体で分散させる気泡によって、(メタ)アクリル酸(塩)系単量体水溶液に気泡を分散させればよい。その際、(メタ)アクリル酸(塩)系単量体水溶液へ分散させる気泡を構成する気体としては、酸素、空気、窒素、炭酸ガス(二酸化炭素)、オゾンやそれらの混合物等が挙げられるが、好ましくは、窒素、炭酸ガス(二酸化炭素)等の不活性ガスが使用される。更に好ましくは、重合性やコスト面から空気、窒素が特に好ましい。気体を導入する際又は導入後の圧力は常圧、加圧、減圧で適宜決定される。また、気体を外部から導入する場合の好ましい導入方法としては、特許文献37に記載された方法を挙げることができる。
 具体的に、(メタ)アクリル酸(塩)系単量体水溶液へ気体を導入させる方法としては、スタティックミキサー方式、キャビテーション方式、ベンチュリー方式等の公知の方法を適宜利用することができ、それらの方法を併用してもよい。更に、気体の導入量を多くできるマイクロバブル(又はナノバブル)の導入が好適である。
 (2-1-3)重合工程(特に(a3)重合前に予め気泡を分散させたアクリル酸ナトリウム水溶液を重合して、ポリ(メタ)アクリル酸(塩)系吸水性樹脂の発泡重合体を得る重合工程)
 (重合方法)
 第1の製造方法または第2の製造方法で本発明の吸水性樹脂を得るための重合方法としては、噴霧重合、液滴重合、バルク重合、沈殿重合、水溶液重合又は逆相懸濁重合等を挙げることができるが、本発明の課題解決には、単量体を水溶液とする水溶液重合や逆相懸濁重合が好ましい。
 なお、上記水溶液重合は、分散溶媒を用いずに単量体水溶液を重合する方法であり、例えば、米国特許第4625001号、同第4873299号、同第4286082号、同第4973632号、同第4985518号、同第5124416号、同第5250640号、同第5264495号、同第5145906号、同第5380808号、欧州特許第0811636号、同第0955086号、同第0922717号等に開示されている。
 また、上記逆相懸濁重合は、単量体水溶液を疎水性有機溶媒に懸濁させて重合する方法であり、例えば、米国特許第4093776号、同第4367323号、同第4446261号、同第4683274号、同第5244735号等に開示されている。これらの特許文献に開示された単量体、重合開始剤等も本発明に適用することができる。
 上記重合時における単量体水溶液の濃度については、特に制限がないが、20重量%~飽和濃度以下が好ましく、25~80重量%がより好ましく、30~70重量%が更に好ましい。該濃度が20重量%以上であれば、高い生産性が達成できるため、好ましい。なお、単量体のスラリー((メタ)アクリル酸塩の水分散液)での重合は物性の低下が見られるため、飽和濃度以下で重合を行うことが好ましい(参照;特開平1-318021号公報)。
 本発明における重合工程は、常圧、減圧、加圧のいずれでも行うことができるが、好ましくは常圧(又はその近傍、通常±10mmHg)で行われる。また、重合を促進して物性を向上させるため、図5~10に示すように重合時に必要に応じて溶存酸素の脱気工程(例えば、不活性ガスでの置換工程)を設けてもよい。
 また、重合開始時の温度は、使用する重合開始剤の種類にもよるが、15~130℃が好ましく、20~120℃がより好ましい。
 (重合開始剤)
 本発明において使用される重合開始剤は、重合形態によって適宜決定され、特に限定されないが、例えば、光分解型重合開始剤、熱分解型重合開始剤、レドックス系重合開始剤等が挙げられる。これらの重合開始剤によって、本発明の重合が開始される。
 上記光分解型重合開始剤としては、例えば、ベンゾイン誘導体、ベンジル誘導体、アセトフェノン誘導体、ベンゾフェノン誘導体、アゾ化合物等が挙げられる。また、上記熱分解型重合開始剤としては、例えば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;過酸化水素、t-ブチルパーオキシド、メチルエチルケトンパーオキシド等の過酸化物;2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド等のアゾ化合物等が挙げられる。更に、上記レドックス系重合開始剤としては、例えば、上記過硫酸塩や過酸化物にL-アスコルビン酸や亜硫酸水素ナトリウム等の還元性化合物を併用した系が挙げられる。また、上記光分解型重合開始剤と熱分解型重合開始剤とを併用することも、好ましい態様である。これらの重合開始剤の中でも、熱分解によってNを発生するアゾ系の重合開始剤を使用して発泡を促進してもよい。更に、紫外線、電子線、γ線等の活性エネルギー線を単独で、或いは上記重合開始剤と併用しても良い。
 上記重合開始剤の使用量は、上記単量体100モル%に対して、0.0001~1モル%が好ましく、0.0005~0.5モル%がより好ましい。該使用量が1モル%以下であれば、吸水性樹脂粒子の色調悪化が抑制されるため、好ましい。また、該使用量が0.0001モル%以上であれば、残存モノマーの増加が抑えられるため、好ましい。
 (更に好適な重合方法)
 本発明において、(メタ)アクリル酸(塩)系単量体水溶液の重合方法として、吸水性樹脂の物性(例えば、吸水速度や通液性)や重合制御の容易性等の観点から、水溶液重合が採用される。中でもニーダー重合又はベルト重合が好ましく、連続水溶液重合がより好ましく、高濃度連続水溶液重合が更に好ましく、高濃度・高温開始連続水溶液重合が特に好ましく採用される。
 上記水溶液重合の好ましい形態として、連続ベルト重合(米国特許第4893999号、同第6241928号、米国特許出願公開第2005/215734号等に開示)、連続ニーダー重合、バッチニーダー重合(米国特許第6987151号、同第6710141号等に開示)等が挙げられる。これらの水溶液重合では、高生産性で吸水性樹脂を生産することができる。
 上記水溶液重合の好ましい形態の一例として、重合開始温度を好ましくは40℃以上、より好ましくは50℃以上、更に好ましくは60℃以上、特に好ましくは70℃以上、最も好ましくは80℃以上(上限は沸点)とする高温開始連続水溶液重合、又は、単量体濃度を好ましくは40重量%以上、より好ましくは45重量%以上、更に好ましくは50重量%以上(上限は90重量%以下、好ましくは80重量%以下、更に好ましくは70重量%以下)とする高濃度連続水溶液重合、更に、これらを組み合わせた高濃度・高温開始連続水溶液重合を挙げることができる。これらの重合方法によって発泡がより促進される。更に、発泡を促進させるため、重合時の最高到達温度が高いことが好ましく、具体的には、重合時の最高到達温度は100℃以上が好ましく、100~130℃がより好ましく、105~120℃が更に好ましい。なお、上記単量体濃度は、重合後の含水ゲル状架橋重合体の固形分濃度としても適用される。更に該単量体濃度を上記範囲とすることで、微細な気泡の安定性が高まり、特に本発明の優位性がある。
 また、上記重合に際して、重合開始時間(重合開始剤を添加した時点から重合が開始するまでの時間)は、単量体水溶液中の気泡の減少を抑制するという観点から、0を超えて300秒以内が好ましく、1~240秒がより好ましい。上記重合開始時間が300秒以下であれば、吸水性樹脂粒子への気泡の導入量が充分に確保され、本発明の効果が発揮されるため、好ましい。
 また重合に際して、さらに必要に応じて、重合前又は重合途中の反応系に、次亜燐酸(塩)等の連鎖移動剤、キレート剤等を、単量体100重量%に対して好ましくは0~3重量%、より好ましくは0.01~1重量%添加してもよい。
 (2-1-4)ゲル粉砕工程
 本工程は、上記重合工程等を経て得られる、内部に気泡を含有した含水ゲル状架橋重合体(以下、「含水ゲル」と称する)をゲル粉砕し、粒子状の含水ゲル(以下、「粒子状含水ゲル」と称する)を得る工程である。
 上記含水ゲルのゲル粉砕、特に混練によるゲル粉砕によって細粒化されることで、GCAが向上するとともに、更に耐衝撃性も向上する。即ち、本発明の課題を解決するためには、ゲル粉砕が不要な逆相懸濁重合を採用するよりも水溶液重合を採用する方が好ましく、特に重合中(例えば、ニーダー重合)又は重合後(例えば、ベルト重合、更に必要によりニーダー重合)に、ゲル粉砕を行う水溶液重合を採用する方が好ましい。
 本発明で使用できるゲル粉砕機は、特に限定されないが、例えば、バッチ式又は連続式の双腕型ニーダー等、複数の回転撹拌翼を備えたゲル粉砕機、1軸押出機、2軸押出機、ミートチョッパー等が挙げられる。中でも、先端に多孔板を有するスクリュー型押出機が好ましく、例えば、特開2000-063527号公報に開示されたスクリュー型押出機が挙げられる。
 本発明のゲル粉砕工程において、ゲル粉砕前の含水ゲルの温度(ゲル温度)は、粒度制御や物性の観点から、60~120℃が好ましく、65~110℃がより好ましい。上記ゲル温度が60℃以上であれば、含水ゲルの特性に起因する硬度の上昇が抑えられ、ゲル粉砕時における粒子形状や粒度分布の制御が容易となる。また、上記ゲル温度が120℃以下であれば、含水ゲルの軟度の上昇が抑えられ、やはり粒子形状や粒度分布の制御が容易となる。なお、ゲル温度は、重合時の温度や重合後の加熱又は冷却等で制御することができる。
 また、ゲル粉砕後の粒子状含水ゲルの重量平均粒子径(D50)(篩分級で規定)は、0.5~3mmが好ましく、0.6~2mmがより好ましく、0.8~1.5mmが更に好ましい。また、粒子径5mm以上の粗大粒子状含水ゲルの割合は、粒子状含水ゲル100質量%に対して10重量%以下が好ましく、5重量%以下がより好ましく、1重量%以下が更に好ましい。
 (2-1-5)乾燥工程
 本工程は、上記重合工程等を経て得られる気泡を含有した含水ゲルを乾燥して乾燥重合体を得る工程である。なお、上記重合工程が水溶液重合である場合、含水ゲルの乾燥前及び/又は乾燥後に、ゲル粉砕(細粒化)が行われる。また、乾燥工程で得られる乾燥重合体(凝集物)はそのまま粉砕工程に供給されてもよい。
 本発明における乾燥方法としては、特に限定されず、種々の方法を採用することができる。具体的には、加熱乾燥、熱風乾燥、減圧乾燥、赤外線乾燥、マイクロ波乾燥、疎水性有機溶媒での共沸脱水乾燥、高温の水蒸気を用いた高湿乾燥等が挙げられ、これらの1種又は2種を併用することもできる。
 本発明では、上記重合工程等を経て気泡(特に独立気泡)が含有した含水ゲルが得られるが、気泡を含有する含水ゲルは高温乾燥時に発泡がより促進する。従って、本発明における乾燥温度は100~300℃が好ましく、150~250℃がより好ましい。また、乾燥時間としては、含水ゲルの表面積や含水率、乾燥機の種類等に依存するため、例えば、1分間~5時間が好ましく、5分~1時間がより好ましい。更に、乾燥減量(粉末又は粒子1gを180℃で3時間乾燥)から求められる吸水性樹脂の固形分は、80重量%以上が好ましく、85~99重量%がより好ましく、90~98重量%が更に好ましく、92~97重量%が特に好ましい。
 (2-1-6)粉砕及び分級工程(特に(c)全粒子100重量%に占める粒子径が150~850μm(標準篩で規定)の粒子の割合を95~100重量%とする整粒工程)
 本工程は、上記乾燥工程で得られた乾燥重合体、又は後述する(2-2)で造粒によって得られた造粒物を、粉砕及び/又は分級して、好ましくは特定粒度の吸水性樹脂粒子を得る工程、特に整粒工程である。なお、上記(2-1-4)ゲル粉砕工程とは、粉砕対象物が乾燥工程を経ている点で異なる。また、粉砕工程後の吸水性樹脂を粉砕物と称することもある。
 本工程(整粒工程)は、(2-4)表面架橋工程の前、及び/又は、後に実施され、好ましくは(2-4)表面架橋工程の前、より好ましくは(2-4)表面架橋工程の前後の少なくとも2回実施される。
 本発明の粉砕工程で使用される機器(粉砕機)としては、例えばロールミル、ハンマーミル、スクリューミル、ピンミル等の高速回転式粉砕機、振動ミル、ナックルタイプ粉砕機、円筒型ミキサー等が挙げられ、必要により併用される。
 (粒度)
 表面架橋前の吸水性樹脂粒子の重量平均粒子径(D50)は、取り扱い性(特に吸湿下での取り扱い性)、GCA、吸水速度、加圧下吸水倍率等の観点から、300~500μmが好ましく、310~480μmがより好ましく、320~450μmが更に好ましい。また、標準篩分級で規定される粒子径150μm未満の微粒子の含有量は少ない程よく、吸水性樹脂粒子100重量%に対して0~5重量%が好ましく、0~3重量%がより好ましく、0~1重量%が更に好ましい。更に、標準篩分級で規定される粒子径850μm以上の粗大粒子も少ない程よく、吸水速度等の観点から、吸水性樹脂粒子100重量%に対して0~5重量%が好ましく、0~3重量%がより好ましく、0~1重量%が更に好ましい。また、粒子径が150μm以上850μm未満の粒子の割合は、GCA、吸水速度、加圧下吸水倍率等の面から、吸水性樹脂粒子100重量%に対して90重量%以上が好ましく、95重量%以上がより好ましく、98重量%以上が更に好ましく、99重量%以上が特に好ましい(上限は100重量%)。また、粒度分布の対数標準偏差(σζ)は好ましくは0.20~0.50、より好ましくは0.25~0.45、更に好ましくは0.30~0.40である。150μm未満の微粒子の含有量が上記範囲のように少なく調整されることにより、発塵が低減し、吸湿下での流動性も向上する為取り扱いし易くなるとともに、GCAの向上、加圧下吸水倍率の向上が見出される。
 上記粒度の制御は、重合時、ゲル粉砕時又は乾燥後の粉砕、分級時に行うことができるが、特に乾燥後の分級時に行うことが好ましい。また、上記粒度の測定は、JIS標準篩を用いて、国際公開第2004/69915号パンフレットやEDANA-ERT420.2-02で規定される方法に準じて行われる。
 本発明の課題をより解決するためには、上記粒度は、表面架橋後、最終製品である粒子状吸水剤にも適用される。
 上記粒度の制御により発生する微粒子(例えば150μmの金網を通過する粒子)は、廃棄しても良いし、従来公知のように、重合前の単量体水溶液への回収方法(国際公開第92/001008号、同第92/020723号)や、重合中の含水ゲルへの回収方法(国際公開第2007/074167号、同第2009/109563号、同第2009/153196号、同第2010/006937号)によって回収しても良いが、後述する(2-2)により造粒処理を施し、本発明に好適な吸水性樹脂粒子とすることがより好ましい。
 また、本発明の吸水性樹脂粒子の形状としては、球状、繊維状、棒状、略球状、偏平状、不定形状、造粒粒子状、多孔質構造を有する粒子等特に限定されるものではないが、含水ゲル又は乾燥重合体に対して粉砕工程を経て得られた不定形破砕状又はその造粒物が吸水速度の観点から好ましい。なお、不定形破砕状粒子が、その他粒子、例えば、球状粒子等と混合されて使用される場合の不定形破砕状粒子の好ましい含有率は70~100重量%であり、より好ましくは85~100重量%であり、特に好ましくは95~100重量%である。
 本発明において、「不定形破砕状の粒子」とは、水溶液重合などによって得られる含水重合物を乾燥後、粉砕して得られる粒子であり、粉砕に伴う破断面(平滑面)と角が電子顕微鏡または光学顕微鏡によって確認される粒子である。
 (2-2)(メタ)アクリル酸(塩)系吸水性樹脂微粒子を造粒して吸水性樹脂粒子を造粒物とする方法(特に(a1)平均粒子径10~180μmのポリ(メタ)アクリル酸(塩)系吸水性樹脂を造粒する工程)
 本発明において造粒とは、粒子同士を物理的、化学的な手法により付着させることにより元の粒子より大きな粒子を形成させることであり、そのようにして得られた粒子を造粒物又は造粒粒子と称する。
 本発明における造粒工程において使用される吸水性樹脂はポリ(メタ)アクリル酸(塩)系吸水性樹脂であれば、その組成は特に制限されないが、好ましくは(2-1-1)に示したような組成の吸水性樹脂であることが好ましい。
 また、本発明における造粒工程において使用される吸水性樹脂は、(2-1)に示したような発泡構造を導入して製造された吸水性樹脂であることが好ましいが、必ずしもそのような物に限らず、従来公知の製法で得られる吸水性樹脂を使用しても良い。従来公知の製法としては、例えば水溶液重合、逆相懸濁重合、噴霧重合、液滴重合、バルク重合、沈殿重合等を挙げることができる。
 本発明における造粒工程において使用される吸水性樹脂の形状としては、球状、繊維状、棒状、略球状、偏平状、不定形状、造粒粒子状、多孔質構造を有する粒子等特に限定されるものではないが、含水ゲル又は乾燥重合体に対して粉砕工程を経て得られた不定形破砕状が吸水速度の観点から好ましい。
 本発明における造粒工程において使用される吸水性樹脂の重量平均粒子径は10μm~200μmが好ましく、15μm~180μmがさらに好ましく、20μm~160μmが特に好ましい。また、粒子径が200μmを超える粒子の割合は、吸水性樹脂粒子100重量%に対して30重量%以下が好ましく、20重量%以下がより好ましく、15重量%以下が更に好ましく、10重量%以下が特に好ましい。重量平均粒子径がこれらの範囲の上限値以下の値であれば、GCAが低下したり、吸水速度が遅くなったりする虞が低減されるため、好ましい。また、重量平均粒子径がこれらの範囲の下限値以上の値であれば、細かい粒子を得るための粉砕コストの増大や、造粒が不均一となることに起因する造粒粒子の強度の低下が抑制されるため、好ましい。
 本発明における造粒工程において使用される吸水性樹脂は、本造粒工程の為に細かく粉砕されたものであっても、吸水性樹脂の粉砕工程において発生した吸水性樹脂微粒子を分級操作により分取して使用しても良い。
 なお、細かく粉砕する場合には、(2-1-6)粉砕及び分級工程で例示した粉砕機を使用することができる。また、分取する場合には、目開きが100μm~300μmの篩を用いることで、吸水性樹脂微粒子を得ることができる。このときの吸水性樹脂微粒子の重量平均粒子径(D50)は好ましくは200μm以下、より好ましくは180μm以下である。
 本発明における造粒工程において使用される吸水性樹脂は、表面架橋されていない吸水性樹脂であることが好ましいが、表面架橋された吸水性樹脂であっても良く、表面架橋された吸水性樹脂と表面架橋されていない吸水性樹脂の混合物であっても良い。また、異なる組成、異なる吸水倍率を示す吸水性樹脂の混合物であっても良い。
 また、造粒工程において表面架橋剤を添加することで、造粒工程と表面架橋工程を同時に実施してもよいが、本発明の粒子状吸水剤を得るには、造粒工程後に表面架橋工程が行われることが好ましい。
 本発明における造粒工程において使用される吸水性樹脂は、CRCが、好ましくは10g/g以上であり、より好ましくは15g/g以上であり、さらに好ましくは20g/g以上であり、さらに好ましくは25g/g以上であり、特に好ましくは28g/g以上である。上限値は、特に限定されないが、好ましくは100g/g以下であり、より好ましくは80g/g以下であり、さらに好ましくは60g/g以下である。
 本発明の吸水性樹脂造粒物を得るには、ポリアニオン、ポリエチレンイミンなどのポリアニオン、ノニオンなどの各種高分子や、グリセリンなどの多価アルコール、水をその造粒バインダーとして用いることができる。それらの具体的な方法としては、例えば特許文献10~17等に記載の方法を挙げることができる。物性や安全の面から水性液をバインダーとして必須に用いて造粒することが好ましい。
 本発明においては、水性液をバインダーとして造粒する方法の一例として、以下、米国特許第7153910号に記載の水性液をあらかじめ加熱してから造粒する方法を記載する。さらに特開2005-54151号に記載の水蒸気を用いて造粒する方法、国際公開2009/031701号に記載の水蒸気と水性液を記載する。その開示内容は参照により引用され、本願の開示内容の一部をなすものとする。
 以下、好適な造粒方法について述べる。
 本発明で水性液を用いて吸水性樹脂造粒物を得る方法は特に限定されず、上記特許文献11~20の方法を含め広く適用でき、その際、転動造粒法、圧縮型造粒法、攪拌型造粒法、押し出し造粒法、破砕型造粒法、流動層造粒法、噴霧乾燥造粒法等が挙げられる。前記各造粒法のうちでも、攪拌型法が最も便利に用いられる。
 この方法の実施に用いられる装置としては連続式とバッチ式とがあり、それぞれ縦型と横型とがある。縦型の連続式造粒機には太平洋機工社のスパイラルピンミキサと粉研パウテックス社のフロージェットミキサがあり、横型の連続式造粒機にはドライスベルケ社のアンニュラーレイヤーミキサがある。縦型のバッチ式造粒機には三井鉱山社のヘンシェルミキサとモリッツ社のターボスヘヤーミキサがあり、横型のバッチ式造粒機にはレーディゲ社のリトルフォードミキサとゲリッケ社のマルチフラックスミキサがある。
 本発明において、吸水性樹脂粒子と混合する水性液としては、特に限定されないが、例えば、水や、水溶性塩類あるいは親水性有機溶剤を含んだ水性液などが挙げられる。物性や造粒強度の面から、水性液の90重量%以上、好ましくは99重量%以上、より好ましくは99~100重量%の範囲内が水であることが好ましく、水のみからなることが特に好ましい。
 水性液の使用量は、吸水性樹脂粒子100重量部に対し、通常1重量部以上、好ましくは5重量部以上であるが、特許文献19、20に記載の方法のように造粒強度の面から、80~280重量部とすることが好ましい。水性液の使用量が280重量部以下であれば、造粒物として扱うことが容易であり、乾燥コスト等の面でも有利である。一方、水性液の使用量が80重量部以上であれば、充分な造粒強度が確保され、最終製品において優れた特性を発揮することができる。また、混合が均一になされた造粒物が得られる。
 従来、複数の吸水性樹脂粒子を粒子状に複合化する一つの方法として、前述の造粒が知られており、水又は水性液がバインダーとして多用されてきたが、水の混合性の問題から、高速攪拌型ミキサー(前記した米国特許5002986号,米国特許4734478号),特定の噴霧連続造粒機(米国特許5369148号)、流動床(欧州特許0318989号)などを用いたとしても、吸水性樹脂100重量部に対して水の添加量はせいぜい30重量部前後であった。これに対し、本発明において水性液を充分に用いることで、充分な造粒強度が確保され、本発明の達成が容易である。
 また、造粒における水の混合性の改良のために、不溶性無機粉末や水溶性高分子などの混合助剤を用いる方法(欧州特許064424号公報)では、未だ混合が不均一である上、混合助剤の使用は、かえって造粒強度や諸物性の低下を引き起こす。吸水性樹脂粒子と水性液とを混合して直接、複数の粒子よりなる粒子状吸水性樹脂造粒物を得る方法ではなく、別法として、吸水性樹脂を含水ゲルとして混練した後、ゲルをさらに粉砕する方法も提案されている。ところが、例えば、上記微粒子と水性液との混合に剪断混合機(欧州特許0417761号)やナウタ型混合機(米国特許4950692号)を用いる場合、その強い剪断力のため、100重量部を越える水の添加混合も可能であるが、一体化してしまい粒子状とはならない上、あまり大きな力で混練すると、その剪断力で吸水性樹脂が劣化するという問題を有している。
 従って、諸物性を劣化させずに吸水性樹脂造粒物の造粒強度を向上させるには、吸水性樹脂に対する水性液の添加量を所定範囲内に設定すると共に、粒子状吸水性樹脂造粒物を直接得ることが重要である。なお、「粒子状吸水性樹脂造粒物を直接得る」とは、混練などによって一体化したゲルを得た後、次いで、巨大なゲルを粉砕ないし細分化する方法ではなく、複数の粒子を凝集させて特定粒度の粒子状吸水性樹脂を得ることを意味する。
 造粒方法の中でも、特許文献19、20に記載の方法のように特に80~280重量部などと多量の水性液を混合することで造粒強度や加圧下吸水倍率をより向上させる場合、その良好な混合性から、混合前に水性液を予め加熱してから造粒する方法が好適に用いられる。すなわち、本発明の好適な吸水性樹脂造粒物として、吸水性樹脂造粒物が予め加熱された水性液を吸水性樹脂粒子に高速混合して得られた造粒物が挙げられる。なお、本発明における吸水性樹脂造粒物とは、複数の吸水性樹脂粒子よりなり、且つ造粒物の粒子径が20mm以下、好ましくは0.3~10mm、さらに好ましくは0.3~5mmのものをいう。なお、本発明において、吸水性樹脂造粒物とは、含水又は乾燥した造粒物の総称であり、該吸水性樹脂造粒物を乾燥したものを別途、含水率10重量%以下の吸水性樹脂造粒物乾燥体と呼ぶ場合もある。
 加熱した水性液を用いることにより、吸水性樹脂粒子と水性液とを、混練することなく、しかも、物性の低下を引き起こす混合助剤を用いずに、均一に混合することが可能である。更に、加熱された水性液を用いることにより個々の吸水性樹脂粒子が凝集した適当なサイズの粒子状凝集物、すなわち本発明に好適な吸水性樹脂造粒物が得られる。
 造粒物であることは光学顕微鏡によって個々の粒子が形状を保ったまま複数集まり凝集している事実や、吸液時に複数の不連続粒子として膨潤する事実で確認できる。上記のように混合前に水性液を予め加熱してから造粒する方法を用いることで、従来、造粒に用いられた混合助剤や、造粒以外に用いられたゲルの粉砕を行うことなく、初めて、実質、水と微粒子からなる粒子状吸水性樹脂造粒物が得ることができ更に好ましい。
 造粒に用いる水性液としては、例えば、水や、後述の親水性有機溶媒を含有する水溶液、また、少量の架橋剤を含む加熱された水などが挙げられる。この場合、架橋剤としては、後述する種類や使用量の表面架橋剤を用いることができる。水性液に架橋剤を併用することで、水可溶成分の低減や、造粒強度のさらなる向上を図ることができる場合もある。
 以下、更に説明する。水性液の加熱は、通常40℃以上、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは70℃以上である。また、上限は水性液の沸点以下であり、沸点は塩類や他の溶媒の添加、圧力(減圧,加圧)などを変化させて種々調整してよいが、温度が100℃を越えても大きな変化はないため、通常、100℃以下で行われる。
 また、前記造粒工程において供給される水性液は、液体の状態であっても良いし、水蒸気として供給されても良い。さらに水性液と水蒸気を組み合わせて供給しても良い。
 加熱された水性液と吸水性樹脂粒子とは高速混合することが好ましい。高速混合とは、水性液と吸水性樹脂粒子との混合を行う上で、水性液と吸水性樹脂粒子との接触時点から吸水性樹脂造粒物が生成するまでの時間、即ち混合時間が短時間であることを指す。混合時間は好ましくは3分以下、より好ましくは1分以下であり、1~60秒が最も好ましい。
 混合時間が3分以下であれば、水性液と吸水性樹脂粒子との均一な混合が容易であり巨大な凝集物の生成が抑制される結果、本発明の目的とする吸水性樹脂造粒物を得ることができる。また、混合完了後に、混合を長時間続けると、吸水性樹脂の可溶成分の増加や加圧下吸水倍率の低下など、吸水性樹脂の劣化を生じる場合がある。上記の高速混合が達成できるのであれば、用いる混合機は、特に限定されないが、容器固定型混合機、なかでも、機械攪拌型混合機が好ましい。この機械攪拌型混合機としては、たとえば、タービュライザー(ホソカワミクロン社製)、レーディゲミキサー(レーディゲ社製)や、モルタルミキサー(西日本試験機社製)、ヘンシェルミキサ(三井鉱山社製)、TurboSphereMixer(Moritz社製)、MultiFluxMixer(Gercke社製)等を挙げることができ、バッチ式混合機および連続式混合機のいずれでも良い。
 以上のようにして得られた本発明の吸水性樹脂造粒物、特に好ましくは、混合前に水性液を予め加熱してから吸水性樹脂粒子100重量部と水性液80~280重量部とを混合して造粒する方法によって得られた吸水性樹脂造粒物は、次いで、さらに乾燥して造粒強度を向上させることができる。吸水性樹脂造粒物を乾燥することで、微粒子はより強固に一体化され、一次粒子並みの強度に再生される。
 乾燥方法は特に限定されず、通常の乾燥機又は加熱炉が広く用いられる。具体的には(2-1-5)に記載の温度、時間、固形分の範囲で行えばよい。このような高温で乾燥を行うことで、吸水性樹脂造粒物が乾燥時に収縮して、その結果、強固な造粒物乾燥体となるので好ましい。乾燥は、本発明で得られた吸水性樹脂造粒物のみで行ってもよいし、前述の水溶液重合ないし逆相懸濁重合で得られた乾燥前の重合ゲルと一緒に乾燥してもよい。
 こうして得られた吸水性樹脂造粒物乾燥体は、乾燥によって収縮して強固な造粒物となっているが、必要に応じて粉砕して粒度調整すればよい。好ましい粉砕と粒度調整の方法は上述の(2-1-6)である。
 また、粉砕、粒度調整によって再度生じた吸水性樹脂微粒子(例えば150μmの金網を通過する粒子)は水性液をバインダーとして再度造粒を行っても良い。
 (2-3)表面架橋剤添加工程(特に(b)造粒物の表面架橋工程又は発泡重合体の表面架橋工程)
 本工程は、上記造粒物や上記発泡重合体と表面架橋剤とを混合することで、表面架橋工程に供する表面架橋剤を含有する吸水性樹脂粒子を調製する工程である。一般に、表面架橋は、後述の有機表面架橋剤の添加や、吸水性樹脂粒子表面での単量体(重合性表面架橋剤)の重合、又は、過硫酸塩等のラジカル重合開始剤(広義の表面架橋剤)の添加及び加熱・紫外線照射等によって行われる。本発明においては、上記(2-1)、(2-2)で得られた吸水性樹脂に有機表面架橋剤を添加するのが好ましい。
 (有機表面架橋剤)
 本発明で使用できる有機表面架橋剤としては、得られる吸水性樹脂粒子の物性の観点から、ポリ(メタ)アクリル酸(塩)系吸水性樹脂粒子の官能基であるカルボキシル基と、脱水エステル化反応、あるいは脱水アミド化反応する水酸基及び/又はアミノ基等の反応性基を有する有機化合物が好ましい。該有機化合物は、水酸基やアミノ基を直接有するアルコール化合物やアミン化合物に限られず、アルキレンカーボネート化合物やオキサゾリジノン化合物のように環状化合物であっても、水酸基やアミノ基を生成する反応性基及び/又は直接的に前記カルボキシル基と反応するような反応性基を有する化合物も含まれる。
 前記有機表面架橋剤としては、多価アルコール化合物、エポキシ化合物、多価アミン化合物又はそのハロエポキシ化合物との縮合物、オキサゾリン化合物、(モノ、ジ、又はポリ)オキサゾリジノン化合物、オキセタン化合物、アルキレンカーボネート化合物等が挙げられ、多価アルコール化合物、アルキレンカーボネート化合物、オキサゾリジノン化合物がより好ましい。
 前記有機表面架橋剤の具体例として、(ジ、トリ、テトラ、ポリ)エチレングリコール、(ジ、ポリ)プロピレングリコール、1,3-プロパンジオール、2,2,4-トリメチルー1,3-ペンタンジオール、(ポリ)グリセリン、2―ブテンー1,4-ジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、トリメチロールプロパン、ジ又はトリエタノールアミン、ペンタエリスリトール、ソルビトール等のポリアルコール化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ジ、ポリ)グリセロールポリグリシジルエーテル、グリシドール等のエポキシ化合物;2-オキサゾリドン、N-ヒドロキシエチル-2-オキサゾリドン、1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;1,3-ジオキソラン-2-オン、4-メチル-1,3-ジオキソラン-2-オン、4,5-ジメチル-1,3-ジオキソラン-2-オン、4,4-ジメチル-1,3-ジオキソラン-2-オン、4-エチル-1,3-ジオキソラン-2-オン、4-ヒドロキシメチル-1,3-ジオキソラン-2-オン、1,3-ジオキサン-2-オン、4-メチル-1,3-ジオキサン-2-オン、4,6-ジメチル-1,3-ジオキサン-2-オン、1,3-ジオキソパン-2-オン等のアルキレンカーボネート化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物、及び、その多価アミン付加物(例えばハーキュレス製カイメン;登録商標);γ-グリシドキシプロピルトリメトキシシラン、γーアミノプロピルトリエトキシシラン等のシランカップリング剤;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル3-オキセタンエタノール、3-クロロメチル-3-メチルオキセタン、3-クロロメチル-3-エチルオキセタン、多価オキセタン化合物などのオキセタン化合物、2-イミダゾリジノン等の環状尿素化合物等が挙げられる。
 前記多価アルコールとしては、炭素数が2~8の多価アルコールが好ましく、炭素数3~6の多価アルコールがより好ましく、炭素数3又は4の多価アルコールが更に好ましい。更に、ジオールが好ましく、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオールが例示され、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオールから選ばれる多価アルコールが好ましい。
 また、エポキシ化合物としてはポリグリシジル化合物が好ましく、エチレングリコールジグリシジルエーテルが好適に使用され、オキサゾリン化合物としては2-オキサゾリジノンが好適に使用され、アルキレンカーボネート化合物としては1,3-ジオキソラン-2-オン(エチレンカーボネート)が好適に使用される。
 更に、多価アルコール化合物、エポキシ化合物、オキサゾリン化合物、アルキレンカーボネート化合物から選ばれる2種以上の化合物を組み合わせて用いることが好ましい。より高物性という観点から、多価アルコールと多価アルコール以外の前記有機表面架橋剤との組合せが好ましく、多価アルコールとエポキシ化合物又はアルキレンカーボネート化合物との組合せがより好ましく、多価アルコールとアルキレンカーボネート化合物との組合せが更に好ましい。
 前記複数の有機表面架橋剤を組み合わせる場合、特に多価アルコールと多価アルコール以外の前記有機表面架橋剤との組合せにおいては、その比率(重量比)は、多価アルコール:多価アルコール以外で1:100~100:1が好ましく、1:50~50:1がより好ましく、1:30~30:1が更に好ましい。
 (溶媒及び濃度)
 前記有機表面架橋剤の添加量は、その総量が、添加前の前記吸水性樹脂100重量部に対して、0.001~15重量部であることが好ましく、0.01~5重量部であることがさらに好ましい。
 また、前記有機表面架橋剤として、多価アルコール化合物と多価アルコール以外の化合物から選ばれる2種類を用いる場合には、添加前の前記吸水性樹脂100重量部に対して、多価アルコール化合物の総量が0.001~10重量部であることが好ましく、0.01~5重量部であることがさらに好ましく、また、多価アルコール以外の化合物の総量が0.001~10重量部であることが好ましく、0.01~5重量部であることがさらに好ましい。
 前記有機表面架橋剤は、水溶液として添加されるのが好ましい。該水溶液に用いられる水の量は、添加処理前の前記吸水性樹脂100重量部に対する総量で、0.5~20重量部が好ましく、0.5~10重量部がより好ましい。なお、表面架橋剤の結晶水や水和水等も該水の量に含まれる。
 更に、前記有機表面架橋剤水溶液に、親水性有機溶媒を添加してもよく、この際、該親水性有機溶媒の量は、添加処理前の吸水性樹脂100重量部に対して、0重量部を超え10重量部以下が好ましく、0重量部を超え5重量部以下がより好ましい。該親水性有機溶媒としては、炭素数1~炭素数4、さらには炭素数2~炭素数3の一級アルコール、その他、アセトン等の炭素数4以下の低級ケトン等が挙げられ、特に沸点が150℃未満、より好ましくは100℃未満の揮発性アルコール類は表面架橋処理時に揮発してしまうので残存物が残らず、より好ましい。
 具体的には、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、t-ブチルアルコール等の低級アルコール類;アセトン等のケトン類;ジオキサン、テトラヒドロフラン、メトキシ(ポリ)エチレングリコール等のエーテル類;ε-カプロラクタム、N,N-ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;ポリオキシプロピレン、オキシエチレン-オキシプロピレンブロック共重合体等の多価アルコール類等が挙げられる。
 また、更に、吸水性樹脂粒子への表面架橋剤溶液の混合に際し、水不溶性微粒子や界面活性剤を、本発明の効果を妨げない範囲内で、添加処理前の吸水性樹脂100重量部に対して、0重量部を超え10重量部以下、好ましくは0重量部を超え5重量部以下、より好ましくは0重量部を超え1重量部以下を共存させることもできる。この際、用いられる界面活性剤等については、米国特許第7473739号等に開示されている。
 前記表面架橋剤水溶液中の表面架橋剤濃度は適宜決定されるが、物性面から1~80重量%、さらには5~60重量%、10~40重量%、15~30重量%の水溶液とされる。なお、残余として、前記親水性有機溶媒やその他の成分を含んでいる。
 前記有機表面架橋剤水溶液の温度は、用いる前記有機表面架橋剤の溶解度や該水溶液の粘度等から適宜決定されるが、-10~100℃が好ましく、5~70℃がより好ましく、10~65℃が更に好ましく、25~50℃の範囲であると特に好ましい。温度が高いと、吸水性樹脂粒子と混合又は反応する前に、環状化合物が加水分解(例えば、エチレンカーボネートからエチレングリコールへの分解、オキサゾリジノンからエタノールアミンへの分解)したり、水や親水性有機溶媒が揮発するなどして混合性が低下したりすることがあるので好ましくない。また、温度が低すぎると、該表面架橋剤溶液が凝固したり、表面架橋剤が析出したりする虞があるため好ましくない。
 (表面架橋剤溶液への酸又は塩基の併用)
 前記表面架橋剤溶液は、表面架橋剤の反応や均一な混合を促進するため、前記有機表面架橋剤、前記親水性有機溶媒、前記界面活性剤及び前記水不溶性微粒子以外に、酸又は塩基を含んでいてもよい。
 前記酸又は塩基としては、有機酸又はその塩、無機酸又はその塩、無機塩基が使用され、添加処理前の前記吸水性樹脂100重量部に対して0~10重量部、より好ましくは0.001~5重量部、更に好ましくは0.01~3重量部で適宜使用される。該有機酸としては、炭素数が1~6、より好ましくは2~4の水溶性有機酸、水溶性飽和有機酸、特にヒドロキシル基含有の飽和有機酸である。
 その他としては、非架橋性の水溶性無機塩基類(好ましくは、アルカリ金属塩、アンモニウム塩、アルカリ金属水酸化物、及び、アンモニアあるいはその水酸化物)や、非還元性アルカリ金属塩pH緩衝剤(好ましくは炭酸水素塩、リン酸二水素塩、リン酸水素塩等)などが挙げられる。
 (有機表面架橋剤溶液の添加方法)
 添加処理により、前記有機表面架橋剤は吸水性樹脂粒子に添加される。該添加処理の方法は特に限定されず、例えば、吸水性樹脂を親水性有機溶剤に浸漬し、添加架橋剤を吸着させる方法、吸水性樹脂粒子に直接、添加架橋剤溶液を噴霧又は滴下して混合する方法等が例示でき、所定量を均一に添加する観点から、後者が好ましい。更に、均一に添加するために、吸水性樹脂粒子を攪拌しながら添加処理を行うのが好ましく、更に前記有機表面架橋剤溶液を噴霧するのが好ましい。
 添加処理において、組成の異なる2種類以上の前記添加架橋剤を例えば異なる噴霧ノズルを用いて同時に添加しても良いが、均一性などの点から単一組成の方が好ましい。また、単一組成であるならば、添加処理装置の大きさや処理量及び噴霧ノズルの噴霧角等を勘案して、複数の噴霧ノズルを使っても良い。
 前記添加処理に用いられる装置(以下、混合装置と称することがある)としては、例えば、円筒型混合機、二重壁円錐型混合機、V字型混合機、リボン型混合機、スクリュー型混合機、流動型炉、ロータリーディスク混合機、気流型混合機、双腕型ニーダー、内部混合機、粉砕型ニーダー、回転式混合機、スクリュー型押出機、タービュラーザー、プロシェアミキサー等が好適である。さらに、商業生産等の大規模生産においては、連続混合できる装置が好ましい。また、各々の添加処理は、同じ装置を用いても良く、異なる装置を用いても良い。
 本工程に供される吸水性樹脂粒子は、加熱・保温されていることが好ましく、該温度は、好ましくは30~100℃、より好ましくは35~80℃、更に好ましくは40~70℃の範囲である。この温度が30℃以上であれば、表面架橋剤の析出や吸水性樹脂の吸湿などが抑制され、表面処理が充分かつ均一に行われるため、好ましい。また、この温度が100℃以下であれば、表面架橋剤水溶液からの水の蒸発が抑制され、表面架橋剤の析出などの虞が低減されるため、好ましい。
 (2-4)表面架橋工程(特に(b)造粒物の表面架橋工程又は発泡重合体の表面架橋工程)
 本工程は、吸水性樹脂粒子の加圧下吸水倍率やGCAを向上させるために、吸水性樹脂粒子の表面又は表面近傍を架橋処理するために加熱処理を行う工程である。ただし、過度の表面架橋処理はCRCを低下させすぎる虞があることから、CRCが28g/g以上まで表面架橋処理する工程を有することが好ましい。前記表面架橋剤添加工程と同時に実施しても良いし、又は前記表面架橋剤添加工程の後に実施しても良いが、前記表面架橋剤添加工程の後に実施するのが好ましい。また、本工程の実施は一回でもよく、同じ条件又は別の条件で複数回行ってもよい。
 (加熱装置)
 本発明で用いられる加熱装置としては、公知の乾燥機又は加熱炉に所定の雰囲気とするための気体排出機構及び/又は気体供給機構を具備せしめた連続式又は回分式(バッチ式)加熱装置、好ましくは連続式加熱装置が好適である。
 該加熱装置の加熱方式としては、伝導伝熱型、輻射伝熱型、熱風伝熱型、誘電加熱型が好適である。より好ましくは、伝導伝熱及び/又は熱風伝熱型の加熱方式であり、さらに好ましくは伝導伝熱型の方式である。
 該加熱装置のいわゆる制御温度は、吸水性樹脂を後述する温度に加熱することができればよく、該工程の最初から最後まで一定である必要はない。ただし、部分的な過加熱などを防ぐため、50~300℃であると好ましい。得られる吸水剤の物性として、耐ダメージ性を重視する場合には、250℃以下がより好ましく、70~200℃が更に好ましく、90~180℃が特に好ましい。一方、吸水性能を重視する場合には、120~280℃であるとより好ましく、150~250℃であると更に好ましく、170~230℃であると特に好ましい。
 また、加熱の効率を高め、均一な加熱処理を行うために、被加熱物を連続で攪拌及び/又は流動させる機構を備えている装置が好ましい。攪拌及び/又は流動させる方式としては、溝型攪拌式、スクリュー型、回転型、円盤型、捏和型、流動槽式等が好ましく、攪拌翼(パドル)による攪拌方式や回転レトルト炉のような伝熱面自体の運動による攪拌方式が、より好ましい。なお、該攪拌及び/又は流動機構は、均一な加熱処理を行うことを目的としているため、処理量が少ない場合、例えば、被乾燥物の厚みが1cmに満たないような場合には用いなくても構わない。
 前記排出機構は、単なる排気口だけでなく加熱処理物の出口から気体が排出される場合には該出口も排出機構に該当する。更に、ブロワー等を用いて排出される気体量や圧力を調整するのが好ましい。また、排気の箇所は1箇所に限らず、前記加熱装置の大きさと露点及び温度の調整状態とを勘案して複数設けることができる。
 該加熱装置は、気体供給機構を備え、該機構の調整、例えば供給量により加熱部の雰囲気の露点及び温度を制御することもできる。
 前記加熱部の気体圧力は常圧からわずかに減圧になっていることが好ましい。その範囲としては大気圧に対して差圧が0~-10kPaであることが好ましく、0~-5kPaであることがより好ましく、0~-2kPaであることがさらに好ましい。
 工業的連続生産を行う際には、上記の機構を備えた回分処理方式や連続処理方式の加熱装置を用いることができる。
 なお、加熱処理の前後の両方で添加処理を行う場合には、前記添加処理と同一の装置を用いて、あるいは異なる装置を用いて添加処理を行っても良い。特に連続式の生産装置を用いる場合には、加熱前の添加処理と加熱処理とを同じ装置を用いて、加熱後の添加処理は別装置を用いるのが、生産効率上、好ましいことがある。
 また、必要に応じて加熱装置から取り出した吸水性樹脂は、過度の架橋反応の抑制や後工程での取扱い性向上を目的として、好ましくは100℃未満、さらには0~95℃、40~90℃に冷却してもよい。
 (2-5)添加剤の添加工程(特に(d)水不溶性無機微粒子の添加工程)
 本工程は、吸水性樹脂に種々の機能を付与するために、各添加剤を添加する工程であり、一つ又は複数の工程から構成される。上記添加剤としては、吸湿下でのブロッキング性を改善する為の吸湿ブロッキング抑制剤、発塵抑制剤、粉体の流動性向上のための界面活性剤、或いは着色防止剤、耐尿性向上剤等が挙げられる。
 本発明の製造方法ではこれらのうち、吸湿下でのブロッキング性を改善する目的で水不溶性無機微粒子が必須に添加される。また、これらの添加剤の添加(工程(d))は、上記表面架橋工程(工程(b))と同時に行ってもよく、上記整粒工程(工程(c))と同時に行ってもよい。また、これらの添加剤の添加(工程(d))は、上記表面架橋工程(工程(b))や、上記整粒工程(工程(c))と別途(特にこれらの工程の終了後)、行ってもよい。
 (吸湿ブロッキング抑制剤、特に水不溶性無機粒子)
 吸湿ブロッキング抑制剤とは、吸水性樹脂が吸湿した際に塊になるのを防ぐために添加される化合物である。本発明の製造方法ではこれらのうち、吸湿下でのブロッキング性を改善する水不溶性無機微粒子が必須に添加されるが、本発明の吸水剤中には水不溶性無機微粒子が必須に含有されたうえで、さらに水不溶性無機微粒子以外のその他の吸湿ブロッキング抑制剤を併用しても構わない。
 吸水性樹脂は多湿な環境下では吸湿しやすく、塊になりやすい。塊になった吸水性樹脂は流動性が著しく低下し、紙おむつ等の生産において所定量の吸水性樹脂を供給できないなどの問題が生じやすい。そのため吸水性樹脂に吸湿ブロッキング抑制剤を添加する必要がある。
 吸湿ブロッキング抑制剤としては、多価金属塩、水不溶性微粒子、界面活性剤等が挙げられる。上記多価金属塩としては、好ましくは2価以上、より好ましくは3価又は4価の多価金属塩(有機塩又は無機塩)又は水酸化物、即ち、多価金属カチオンが例示される。具体的には、多価金属としてはアルミニウム、ジルコニウム、カルシウム等が挙げられ、多価金属塩としては乳酸アルミニウム、硫酸アルミニウム、リン酸三カルシウム等が挙げられる。
 上記水不溶性微粒子としては、酸化ケイ素、酸化アルミニウム、水酸化アルミニウム、酸化亜鉛、ハイドロタルサイト、クレイ、カオリン等の水不溶性無機微粒子、乳酸カルシウム、金属石鹸(長鎖脂肪酸の多価金属塩)等の水不溶性有機微粒子が挙げられ、その(特に水不溶性無機微粒子の)体積平均粒子径は10μm以下が好ましく、3μm以下がより好ましく、1μm以下が更に好ましい。一方、水不溶性微粒子の(特に水不溶性無機微粒子の)体積平均粒子径の下限値は、好ましくは0.01μm以上である。
 上記吸湿ブロッキング抑制剤の種類や使用量は適宜決定されるが、使用量については、10重量%以下が好ましく、以下順に5重量%以下、3重量%以下、1重量%以下が好ましい。下限としては0.01重量%以上が好ましく、0.05重量%以上がより好ましい。
 (界面活性剤)
 本発明の吸水性樹脂の表面を界面活性剤で被覆することで、高吸水速度及び高通液性の吸水性樹脂が得られる。なお、界面活性剤としては、上記(2-1)に記載した化合物が同様に適用される。
 本発明の吸水性樹脂は発泡体または造粒体であるため、耐衝撃性が低い傾向にあり、特に表面架橋時又は表面架橋後の空気輸送等によるダメージによって、物性が低下することもある。この傾向は生産量が大きい程顕著であり、例えば、1ライン当りの生産量が0.5[t/h]以上、以下順に、1[t/h]以上、5[t/h]以上、10[t/h]以上となる程、より顕著となる。
 即ち、GCAが高い粒子状吸水剤を得るためには、特に上記の巨大スケールでの連続生産時においては、乾燥後に表面架橋を行い、表面架橋と同時又は別途、吸水性樹脂の表面を界面活性剤で被覆することが好ましい。
 また本発明の吸水剤は比表面積の大きい発泡体または造粒体であるため、嵩比重が低下しやすい。嵩比重が低いと、吸水性樹脂の輸送のための充填作業時に所定量充填するのが難しくなる。そのため充填時に振動操作等が必要となり吸水性樹脂にダメージがかかるため、界面活性剤を使用する方が好ましい。
 上記界面活性剤の種類や使用量は適宜決定されるが、使用量については、0重量%を超え2重量%以下が好ましく、以下順に0重量%を超え0.03重量%以下、0重量%を超え0.015重量%以下、0重量%を超え0.01重量%以下、0重量%を超え0.008重量%以下が好ましい。下限としては0.1重量ppm以上が好ましく、以下順に1重量ppm以上、5重量ppm以上、10重量ppm以上が好ましい。更に下記表面張力(好ましくは60[mN/m]以上、更に好ましくは後述の「(3-5)表面張力」で示す範囲内)を維持する使用量及び種類で使用される。
 また、吸水速度や耐衝撃性の観点から、界面活性剤と同時に水を含有することが好ましい。上記水は、吸水性樹脂に対して、好ましくは0.1~10重量%、より好ましくは1~8重量%、更に好ましくは2~7重量%で、使用又は含有される。
 (発塵抑制剤)
 粉塵抑制剤とは、吸水剤から発生する粉塵量を低減させる目的で用いられる化合物である。本発明の吸水性樹脂は発泡体または造粒体であるため、耐衝撃性が低い傾向にあり、特に表面架橋時又は表面架橋後の空気輸送等によるダメージによって、粉塵が発生することもある。粉塵の発生は、作業環境の悪化や吸収体を作成時に吸水剤が吸収体から脱落する量が増加し、吸収体の吸液時間が長くなる問題を引き起こすため、発塵抑制剤で吸水性樹脂表面を被覆することが好ましい。
 上記発塵抑制剤としては、特許文献5に開示されたポリビニルアルコール、ポリエチレンオキサイド、ポリエチレングリコール、ポリプロピレングリコール、ポリアクリルアミド、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリエチレンイミン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、デキストリン、アルギン酸ナトリウム、デンプン等を挙げることができる。中でも、ポリエチレングリコールが好ましい。
 上記粉塵抑制剤の使用量は、吸水性樹脂100重量部に対して、0.01重量部以上が好ましく、0.05重量部以上がより好ましく、0.1重量部以上が更に好ましく、0.15重量部以上が特に好ましい。また、5.0重量部以下が好ましく、4.0重量部以下がより好ましく、3.0重量部以下が更に好ましく、2.5重量部以下が特に好ましい。
 (キレート剤、α-ヒドロキシカルボン酸、無機又は有機還元剤)
 本発明においては、着色防止や劣化防止を目的として、キレート剤(特に有機リン系キレート剤、アミノカルボン酸系キレート剤)、α-ヒドロキシカルボン酸(特に乳酸(塩))、無機又は有機還元剤(特に硫黄系無機還元剤)から選ばれる着色防止剤又は耐尿性(耐候性)向上剤を更に含むことが好ましい。なお、表面積の大きい吸水性樹脂は一般的に着色や劣化し易い傾向にある。
 上記キレート剤等の着色防止剤又は耐尿性(耐候性)向上剤の使用量は、吸水性樹脂の固形分量100重量部に対して0~3重量部が好ましく、0.001~1重量部がより好ましく、0.05~0.5重量部が特に好ましい。これらの着色防止剤又は耐尿性(耐候性)向上剤は、単量体、含水ゲル、乾燥重合体、吸水性樹脂等に添加されるため、添加工程については重合工程以降(例えば、(I)重合時、(II)造粒時、及び(III)表面架橋後からなる群から選択される1以上の時期)で適宜決定される。なお、上記無機又は有機還元剤は重合工程で消費されるため、重合工程後、更には乾燥工程後に、特に表面架橋工程後に添加することが好ましい。
 上記キレート剤としては、米国特許第6599989号、同第6469080号、欧州特許第2163302号等に開示されたキレート剤、特に非高分子キレート剤、更には有機リン系キレート剤、アミノカルボン酸系キレート剤が挙げられる。上記α-ヒドロキシカルボン酸としては、米国特許出願公開第2009/0312183号等に開示されたリンゴ酸(塩)、琥珀酸(塩)、乳酸(塩)が挙げられる。上記無機又は有機還元剤としては、米国特許出願公開第2010/0062252号等に開示された硫黄系還元剤、特に亜硫酸塩又は亜硫酸水素塩等が挙げられる。
 更に、目的に応じて、吸水性樹脂に、水、無機微粒子、カチオン性高分子化合物、水溶性多価金属カチオン含有化合物、消臭剤、香料、抗菌剤、発泡剤、顔料、染料、肥料、酸化剤、還元剤等を吸水性樹中に、0重量%を超え3重量%以下、好ましくは0重量%を超え1重量%以下添加してもよい。
 (2-6)その他の工程
 本発明においては、好ましい例として(2-1)では発泡構造を有する粒子、(2-2)では造粒構造を有する粒子を例示しているが、それらは単独で用いられても、混合して用いられても良い。混合して使用する場合のそれらの混合比率(重量比)は1:99~99:1が好ましく、5:95~95:5がより好ましく、10:90~90:10がさらに好ましく、20:80~80:20が特に好ましい。それらを混合するタイミングは、特に限定されないが、好ましい混合方法としては、発泡重合体を得る工程と表面架橋工程の間で、造粒構造を有する粒子を混合する方法、発泡重合体と造粒物をそれぞれ個別に表面架橋した後に混合する方法、発泡重合体と造粒物をそれぞれ個別に水不溶性無機微粒子を添加した後に混合する方法などが挙げられる。また発泡構造を有する粒子と造粒構造を有する粒子は同一の製造ラインで製造し混合しても良いし、別の製造ラインで製造し混合しても良い。より具体的に、製造方法1と製造方法2とを併用する場合には、製造方法2における工程(a2)及び(a3)を経て得られた吸水性樹脂を、製造方法1の工程(a1)に供することで得られる「平均粒子径10~180μmの吸水性樹脂を造粒して得られた造粒物」を造粒物(I)とし、製造方法1の工程(b)において得られる「造粒物(I)を表面架橋した造粒物」を造粒物(II)とし、製造方法1の工程(c)において得られる「造粒物(II)を整粒した造粒物」を造粒物(III)とし、製造方法1の工程(d)において得られる「造粒物(III)に水不溶性無機微粒子を添加した吸水剤」を吸水剤(IV)としたときに、
<1>造粒物(I)を製造方法2における(a3)重合工程と(b)表面架橋工程との間で混合する工程、
<2>造粒物(II)を製造方法1又は製造方法2における(b)表面架橋工程と(c)整粒工程との間で混合する工程、
<3>造粒物(III)を製造方法1又は製造方法2における(c)整粒工程と(d)水不溶性無機微粒子の添加工程との間で混合する工程、
<4>吸水剤(IV)を(d)不溶性無機微粒子の添加工程の後で混合する工程、
の<1>~<4>のうち少なくともいずれか一つを含む
 〔3〕ポリ(メタ)アクリル酸(塩)系粒子状吸水剤の物性
 (3-1)無加圧下吸水倍率(CRC)
 本発明の粒子状吸水剤の無加圧下吸水倍率(CRC)は、好ましくは10[g/g]以上であり、より好ましくは20[g/g]以上、更に好ましくは25[g/g]以上、更に好ましくは28[g/g]以上、更に好ましくは30[g/g]、最も好ましくは32[g/g]以上に制御される。CRCは高いほど好ましく上限値は特に限定されないが、他の物性(特に通液性)とのバランスから、好ましくは50[g/g]以下、より好ましくは45[g/g]以下、更に好ましくは42[g/g]以下である。CRCは架橋剤量等で制御できる。本発明に係るGCAの範囲を達成するためには、上記範囲内に無加圧下吸水倍率(CRC)を制御することが好ましい。
 (3-2)加圧下吸水倍率(AAP)
 本発明の粒子状吸水剤の加圧下吸水倍率は、後述の実施例で示すように、2.06kPaの圧力下における0.90重量%塩化ナトリウム水溶液に対する吸水倍率として規定されるが、好ましくは25[g/g]以上、より好ましくは28[g/g]以上、更に好ましくは30[g/g]以上、特に好ましくは31[g/g]以上、最も好ましくは32[g/g]に制御される。AAPの上限は高いほど好ましいが、他の物性とのバランスから通常40[g/g]程度が好ましい。GCAを本発明に規定する範囲に向上させた上で、さらに加圧下吸水倍率(AAP)を上記範囲に制御することができれば紙おむつの性能をさらに向上させることができる。
 (3-3)吸水時間(Vortex法)
 本発明の粒子状吸水剤の吸水時間(Vortex法)は40秒以下が好ましく、35秒以下がより好ましく、30秒以下が更に好ましい。GCAを本発明に規定する範囲に向上させたうえで、更に吸水時間(Vortex法)を上記範囲に制御することができれば、紙おむつの性能を更に向上させることができる。
 (3-4)粒度(PSD)
 上記(2-1-6)に記載の粒度が吸水剤にも適用され、上記範囲のように調整されることにより、発塵が低減し、吸湿下での流動性も向上する為、取り扱い易くなるとともに、GCAの向上、加圧下吸水倍率の向上が見出される。
 (3-5)表面張力
 本発明の粒子状吸水剤の表面張力(実施例の測定法で規定)は、好ましくは60[mN/m]以上、より好ましくは65[mN/m]以上、更に好ましくは67[mN/m]以上、特に好ましくは70[mN/m]以上、最も好ましくは72[mN/m]以上であり、実質的な表面張力の低下もない。上限は通常75[mN/m]で十分である。
 従来、吸水速度の向上のために、吸水性樹脂粒子の発泡重合は知られている。しかしながら、特許文献31、32のように発泡のために多量の界面活性剤(例えば0.1~10重量%)を使用するため、得られた吸水性樹脂粒子の表面張力が低下(特に60[mN/m]未満、更には55[mN/m]未満)したり、過度の発泡によって微粉が発生(特に10重量%以上)したり、紙おむつの戻り量が増加する問題を有していた。本発明ではこの表面張力を上記範囲に制御することが特に重要である。
 (3-6)GCA(Gel Capillary Absorption)
 GCAとは本発明において新規に導入されるパラメータであり、ガラスフィルターの上面とマリオット管の下部のメニスカスとの間に高さ10cmの差をつけた状態での10分間の液吸収能力を評価するものである。GCAは10分間という短時間での吸収性能を評価しており、従来公知の加圧下吸水倍率(AAP)や、米国特許第7108916号に記載のFHAの場合、1時間での飽和状態での吸収性能を評価していることから、本発明に係るGCAとは思想を異にする評価方法である。粒子状吸水剤のGCAの値が高いほど、紙おむつにおいてパルプからの尿の吸い取り能力に優れ、戻り量を低減でき、肌かぶれや尿漏れを抑制できるようになる。
 本発明の粒子状吸水剤のGCAの値は、後述する実施例に記載の方法により算出され、その値は高いほど性能が優れていることを示し、28.0g/g以上が好ましく、30.0g/g以上がより好ましい。GCAの上限は高いほど好ましいが、他の物性とのバランスから通常50.0[g/g]程度が好ましい。
 本発明においてはこのGCAが上記範囲内にあることが特に重要であり、その上で、加圧下吸水倍率が高く吸水速度が速い(Vortex法による吸水時間が短い)ことが好ましい。
 (3-7)吸湿ブロッキング率
 本発明の粒子状吸水剤の吸湿ブロッキング率の値は、後述する実施例に記載の方法により算出され、低いほど好ましく、20重量%以下が好ましく、15重量%以下がより好ましく、10重量%以下が更に好ましい。下限値は算出原理上、0重量%となる。吸湿ブロッキング率は上記(2-5)に記載の吸湿ブロッキング抑制剤を適切な量で混合することによって低く制御できる。吸湿ブロッキング率を低く制御することで、いかなる作業環境やユーザー先の使用条件(例えばおむつ製造工程の運転条件)でも安定的に粒子状吸水剤を使用できる。本発明ではこの吸湿ブロッキング率を上記範囲に制御することが特に重要である。
 (3-8)含水率
 本発明の粒子状吸水剤の含水率の値は、後述する実施例に記載の方法により算出され、1~15重量%であることが好ましく、2~12重量%であることがより好ましく、3~10重量%であることが更に好ましい。含水率が15重量%以下であれば、無加圧下吸水倍率や加圧下吸水倍率の低下が抑制され、また取り扱い性にも優れるため好ましく、含水率が1重量%以上であれば、搬送などによる機械的ダメージによる加圧下吸水倍率の低下が抑制されるため、好ましい。
 〔4〕吸収性物品
 本発明の粒子状吸水剤の用途は特定に限定されないが、好ましくは、紙おむつや生理用ナプキンに使用される吸収体に好適に使用される。
 本発明で吸収体とは、本発明の粒子状吸水剤と親水性繊維とを主成分して成型された吸収材のことであり、本発明の吸収体において、粒子状吸水剤と親水性繊維との合計重量に対する粒子状吸水剤の含有量(コア濃度)は好ましくは20~95%重量%であり、さらには好ましくは30~95重量%であり、特に好ましくは35~90重量%である。
 また、本発明の吸収体が薄型の場合には、吸収体の厚みが0.1~5mmの薄型であることが好ましい。このような薄型の吸収体を使用して、薄型吸収性物品とすることができる。たとえば、上記した本発明の薄型の吸収体、液透過性を有する表面シート、及び液不透過性を有する背面シートを備える吸収性物品とする。
 本発明の薄型吸収性物品の製造方法は、例えば繊維基材と粒子状吸水剤とをブレンドないしサンドイッチすることで吸収体(吸収コア)を作成し、液透過性を有する表面シートなどの基材と液不透過性を有する背面シートなどの基材で吸収体をサンドイッチして、必要に応じて、弾性部材、拡散層、粘着テープ等を装備することで、吸収性物品、特に紙おむつや生理用ナプキンとすればよい。かかる吸収性物品は密度0.06~0.50g/cc、坪量0.01~0.20g/cmの範囲に圧縮成形される。なお、用いられる繊維基材としては、親水性繊維、例えば、粉砕された木材パルプ、その他、コットンリンターや架橋セルロース繊維、レーヨン、綿、羊毛、アセテート、ビニロン等を例示できる。好ましくはそれらをエアレイドしたものである。
 本発明の粒子状吸水剤は優れた吸収特性を示すものである。従って、本発明の吸収性物品としては、具体的には、近年成長の著しい大人用紙おむつをはじめ、子供用オムツや生理用ナプキン、いわゆる失禁パッド等の衛生材料等が挙げられる。吸収性物品の中に存在する本発明の粒子状吸水剤により漏れ量も少なく、肌かぶれも少なくなる為、装着している本人、介護の人々の負担を大きく低減することができる。
 以下、実施例に従って発明を説明するが、本発明は実施例に限定されて解釈されるものではない。また、本発明の特許請求の範囲や実施例に記載の諸物性は、以下の測定法(a)~(k)に従って求めた。なお、特に断りのない限り、各実施例での各工程は実質常圧(大気圧の±5%、更に好ましくは1%以内)で行なわれ、同一工程では意図的な加圧又は減圧による圧力変化は加えずに実施した。
 (a)無加圧下吸水倍率(CRC)(ERT441.1-02)
 本発明に係る粒子状吸水剤の無加圧下吸水倍率(CRC)は、ERT441.2-02に準じて測定した。
 即ち、粒子状吸水剤0.200g(重量W0[g])を秤量し、不織布製の袋(60×85mm)に均一に入れヒートシールした後、23±2℃に調温した0.90重量%塩化ナトリウム水溶液500mL中に浸漬した。30分経過後、袋を引上げ、遠心分離機(株式会社コクサン社製遠心機:形式H-122)を用いて、250G、3分間の条件で水切りを行った。その後、袋の重量(W1[g])を測定した。
 同様の操作を、粒子状吸水剤を入れずに行い、そのときの袋の重量(W2[g])を測定した。得られたW0[g]、W1[g]、W2[g]から下記(式1)にしたがって、無加圧下吸水倍率(CRC)を算出した。
 (式1) CRC(g/g)={(W1-W2)/W0}-1
 (b)加圧下吸水倍率(AAP)(ERT442.2-02)
 本発明に係る粒子状吸水剤の加圧下吸水倍率(AAP)は、ERT442.2-02に準じて測定した。
 即ち、粒子状吸水剤0.900g(重量W3[g])を測定装置に投入し、測定装置一式の重量(W4[g])を測定した。次に、23±2℃に調温した0.90重量%塩化ナトリウム水溶液を2.06kPa(0.3psi,21g/cm2)の荷重下で吸収させた。1時間経過後、測定装置一式の重量(W5[g])を測定し、得られたW3[g]、W4[g]、W5[g]から下記(式2)にしたがって、加圧下吸水倍率(AAP)を算出した。
 (式2) AAP(g/g)=(W5-W4)/W3
 (c)吸水時間(Vortex法)
 予め調製された0.90重量%塩化ナトリウム水溶液の1000重量部に食品添加物である食用青色1号0.02重量部を添加し、液温30℃に調整した。青色に着色した0.90重量%塩化ナトリウム水溶液50mlを100mlビーカーに計り取り、長さ40mmで太さ8mmの円筒型攪拌子で600rpmで攪拌する中に、粒子状吸水剤2.00gを投入し、吸水時間(秒)を測定した。終点は、JISK 7224-1996年度「高吸水性樹脂の吸水速度試験方法 解説」に記載されている基準に準じ、吸水剤が生理食塩水を吸液して試験液がスターラーチップを覆うまでの時間を吸水時間(秒)として測定した。
 (d)粒度(PSD、σζ)
 本発明に係る粒子状吸水剤の粒度(PSD)および粒度分布の対数標準偏差(σζ)は、米国特許出願公開第2006/204755号に開示された測定方法に準じて測定した。
 即ち、目開き850μm、710μm、600μm、500μm、425μm、300μm、212μm、150μm、106μm、75μmを有するJIS標準篩(The IIDA TESTING SIEVE:内径80mm;JIS Z8801-1(2000))、又はJIS標準篩に相当する篩を用いて、粒子状吸水剤10.00gを分級した。分級後、各篩の重量を測定し、粒子径150μm未満の重量百分率(重量%)を算出した。なお、「粒子径150μm未満の重量百分率」とは、目開き150μmのJIS標準篩を通過する粒子の、吸水剤全体に対する重量割合(%)である。
 また、重量平均粒子径(D50)は、上記各粒度の残留百分率Rを対数確率紙にプロットし、このグラフからR=50重量%に相当する粒子径を重量平均粒子径(D50)として読み取った。なお、重量平均粒子径(D50)は、粒子状吸水剤全体の50重量%に対応する粒子径のことをいう。また粒度分布の対数標準偏差(σζ)は下記(式3)で表され、σζの値が小さいほど粒度分布が狭いことを意味する。
 (式3) σζ=0.5×ln(X2/X1)(X1はR=84.1%、X2は15.9%の時のそれぞれの粒径)
 (e)表面張力
 十分に洗浄された100mlのビーカーに20℃に調整された0.90重量%塩化ナトリウム水溶液50mlを入れ、まず、0.90重量%塩化ナトリウム水溶液の表面張力を表面張力計(KRUSS社製のK11自動表面張力計)を用いて測定する。この測定において表面張力の値が71~75[mN/m]の範囲でなくてはならない。次に、20℃に調整した表面張力測定後の0.90重量%塩化ナトリウム水溶液を含んだビーカーに、十分に洗浄された長さ25mmの円筒型攪拌子および粒子状吸水剤0.500gを投入し、500rpmの条件で4分間攪拌する。4分後、攪拌を止め、含水した粒子状吸水剤が沈降した後に、上澄み液の表面張力を再度同様の操作を行い測定した。なお、本発明では白金プレートを用いるプレート法を採用し、プレートは各測定前に十分脱イオン水にて洗浄し、かつガスバーナーで加熱洗浄して使用した。
 (f)吸湿ブロッキング率(別称;高湿度でのCaking率)
 粒子状吸水剤約2gを、直径52mmのアルミカップに均一に散布した後、温度25℃、相対湿度90±5%RHに調整した恒温恒湿器(エスペック株式会社製;MODEL: SH-641)に1時間静置した。
 その後、上記アルミカップ中の粒子状吸水剤を目開き2000μm(8.6メッシュ)のJIS標準篩(The IIDA TESTING SIEVE/内径80mm)上に静かに移し、ロータップ型篩振とう機(株式会社飯田製作所製;ES-65型篩振とう機/回転数230rpm、衝撃数130rpm)を用いて、温度20~25℃、相対湿度50%RHの条件下で8秒間分級した。
 次いで、上記JIS標準篩上に残存した粒子状吸水剤の重量(W6[g])及びJIS標準篩を通過した粒子状吸水剤の重量(W7[g])を測定し、下記(式4)に従って吸湿流動性(吸湿ブロッキング率)を算出した。吸湿ブロッキング率はその値が低い程、吸湿下での流動性に優れている。
 (式4) 吸湿ブロッキング率(%)={W6/(W6+W7)}×100
 (g)固形分及び含水率
 底面の直径が約5cmのアルミカップ(重量W8[g])に、約1gの吸水性樹脂(吸水剤)を量り取り(重量W9[g])、180℃の無風乾燥機中において3時間静置し、乾燥させた。乾燥後のアルミカップと吸水性樹脂(吸水剤)との合計重量(W10[g])を測定し、下記(式5)より固形分を求めた。また、含水率は、下記(式6)より求められる。
 (式5)固形分[重量%]={(W10-W8)/W9}×100
 (式6)含水率[重量%]=100-固形分[重量%]
 (h)GCA(Gel Capillary Absorption)
 図11を参照してGCAを測定する装置及び方法を記載する。この測定法で使用されるガラスフィルター2はISO4793(1980)で規定される通りの500mlガラス濾過器であり、孔径がP40(16~40μm)、厚さ7mmであり、例えばSchott社のDuranガラス製濾過器のグレード3である。また20℃で30cm半径のフィルターが50mbarの圧力差にて50ml/minの水流能力を持たなければならない。このガラスフィルター付きの濾過器1の下部にシリコン製チューブ3をつなぎ、さらにガラス管5及びストップコック4を完備しているタンク6の下部につなぐ。このとき、ガラスフィルターの上面を、タンク内のガラス管の下部のメニスカスより10cm高い位置で固定する。系に0.90重量%塩化ナトリウム水溶液を満たす。内径60mmのプラスチックの支持円筒7の底に、8cmの正方形に切断された高湿潤強度セルロースティッシュ8を金属リングにより固定する。該ティッシュは坪量max24.6g/m、湿潤引っ張り強度Min0.32N/cm(CD方向)、0.8N/cm(MD方向)(抄紙機で抄かれる際の流れ方向をMD方向、これに垂直な方向をCD方向)であり、例えばドイツのフリパ社(Fripa)から入手可能である。室温(20~25℃)、湿度50RH%の条件下で、該ティッシュ上に粒子状吸水剤10 0.2g(重量W11[g])を均一に散布し、その上に、吸水剤に対して0.39kPa(0.05psi)の荷重を均一に加えることができるよう調整された、外径が60mmよりわずかに小さく支持円筒との隙間が生じず、かつ上下の動きが妨げられないピストン9を載置し、この測定装置一式の重量(W12[g])を測定した。
 上記測定装置一式をガラスフィルター上に載せ、マリオット管付き流体貯槽のバルブを開けて、10分間吸収させる。その後測定装置一式を持ち上げ、その重量(W13[g])を測定した。W11、W12、W13から下記(式7)に従って、GCA(g/g)を算出した。
 (式7) GCA(g/g)=(W13-W12)/W11
 (i)吸収体の評価方法
 本発明に係る吸水剤について、吸収体としての性能を評価するために、以下に掲げる吸収体(吸水剤濃度40重量%)を作製し、その多段階の排尿モデルとして吸液時間(1回目、2回目、3回目)及び戻り量(1回目、2回目、3回目)を測定し、評価した。
 あらかじめ木材粉砕パルプ8.5gを用いて、12cm×38cmのパルプシートを作成した。該パルプシート上に本実施例で得られた粒子状吸水剤11.3gを均一に撒き、さらにその上に、同サイズ同重量のパルプシートを乗せ、1分間3.8kg/cmの圧力をかけることにより12cm×38cm、厚さ約5.5mmの大きさの吸収シートを作成した。次いで、当該吸収シートを平面に拡げ、シートの中央部に樹脂製の円筒(外径100mm、内径25mm、高さ220mm、重量3.6kg、内容積108cm)を置いた。
 液注入1回目では、100gの0.90重量%塩化ナトリウム水溶液を7ml/sで樹脂製円筒内に注ぎこみ、塩化ナトリウム水溶液が物品に完全に吸収される時間を1回目の吸液時間とした。液を添加して10分後、樹脂製円筒を取り除き、濾紙(ADVANTEC東洋株式会社、品名:(JISP3801、No.2)、厚さ0.26mm、保留粒子径5μm、直径90mm)10g(重量W14[g])を中央部に配置し、濾紙の上面に2.5kgの円筒形錘(直径8cm)を静置した。2分後、円筒形錘を取り除き、濾紙の重量W15[g]を測定し、下記(式8)に従って1回目の戻り量を求めた。
 (式8) 戻り量(g)=W15-W14
 液注入2回目は、0.90重量%塩化ナトリウム水溶液を50gとしたこと、濾紙を20g使用した以外は、液注入1回目と同様の手順を行い、2回目の吸液時間および2回目の戻り量を測定した。
 液注入3回目は、0.90重量%塩化ナトリウム水溶液を50gとしたこと、濾紙を30g使用した以外は、液注入1回目と同様の手順を行い、3回目の吸液時間および3回目の戻り量を測定した。
 (実施例の全体説明)
 製造例1は、発泡重合体以外の形態の吸水性樹脂の製造例である(結果は表1)。
 製造例2及び製造例3は、発泡重合体の形態の吸水性樹脂の製造例である(結果は表1、表2)。
 製造例4及び製造例5は、造粒形態の吸水性樹脂の製造例である(結果は表1)。
 実施例1~6は、造粒物の形態の吸水性樹脂を用いる製造方法1による吸水剤の実施例である。
 実施例7~12は、発泡重合体の形態の吸水性樹脂を用いる製造方法2による吸水剤の実施例である。
 比較例1~6は、発泡重合体又は造粒物のいずれの形態の吸水性樹脂も使用しない製造方法による吸水剤の比較例である。
 比較例7,11は、特許文献の実施例に記載の吸水剤の比較例である。
 比較例8~9は、比較例7において更に界面活性剤を添加した吸水剤の比較例である。
 比較例10は、水不溶性無機微粒子を用いない製造方法による吸水剤の比較例である。
 (実験結果と表)
 以下、製造例1~3、実施例1~12および比較例1~11の結果を下記の表1~4に示す。表1は吸水剤の原料である製造例1~5で得られた吸水性樹脂粒子の粒度(粒度分布、D50)および諸物性(CRC、含水率)を示す。表2及び表3は吸水剤および比較吸水剤の粒度および諸物性を示す。表4は吸水剤及び比較吸水剤を含む吸収性物品の評価結果を示す。
 (吸水性樹脂の製造例)
 (製造例1)発泡重合体以外の形態の吸水性樹脂の製造例
 アクリル酸ナトリウム(中和率75モル%)の38重量%水溶液5500重量部に、ポリエチレングリコールジアクリレート(n=9)4.4重量部を溶解させて単量体水溶液とした。次に、この反応液を窒素ガス雰囲気下で30分間脱気した。次いで、開閉可能な蓋付きのシグマ型羽根を2本有するジャケット付きステンレス製双腕型ニーダーに上記反応液を供給し、反応液を30℃に保ちながら系を窒素ガス置換した。続いて、反応液を撹拌しながら、過硫酸ナトリウム2.8重量部およびL-アスコルビン酸0.12重量部を添加したところ、凡そ1分後に重合が開始した。そして、30~90℃で重合を行い、重合を開始して60分後に含水ゲル状架橋重合体を取り出した。
 得られた含水ゲル状架橋重合体は、その径が約5mmに細分化されていた。この細分化された含水ゲル状架橋重合体を50メッシュの金網上に広げ、160℃で60分間熱風乾燥した。次いで、乾燥物をロールミル(有限会社井ノ口技研社製、WML型ロール粉砕機)を用いて粉砕し、吸水性樹脂粒子(A)を得た。さらに吸水性樹脂粒子(A)を目開き850μmの金網と180μmの金網で分級することにより、850μmの金網を通過し、180μmの金網を通過しなかった分画である吸水性樹脂粒子(A1)と180μmの金網を通過した分画である吸水性樹脂微粒子(A2)を得た。このとき、吸水性樹脂粒子(A)における粒子径が150μm未満の粒子の割合は10.5重量%であり、分級することにより得られた吸水性樹脂粒子(A1)では、粒子径が150μm未満の粒子の割合を1.9重量%まで減少することができた。得られた吸水性樹脂粒子(A1)及び吸水性樹脂微粒子(A2)のCRC、含水率、粒度分布およびD50を表1に示す。
 (製造例2)発泡重合体の形態の吸水性樹脂の製造例(1)
 容量2リットルのポリプロピレン製容器に、アクリル酸422.0g、内部架橋剤としてポリエチレングリコールジアクリレート(分子量523)1.38g、2重量%ジエチレントリアミン5酢酸・3ナトリウム水溶液5.68g、48.5重量%水酸化ナトリウム水溶液173.9g、界面活性剤として1.0重量%ポリオキシエチレン(20)ソルビタンモノステアレート(花王株式会社製)水溶液4.39g、脱イオン水(イオン交換水)401.27gを投入し、溶解(混合)させて単量体水溶液(1’)を調製した。該単量体水溶液(1’)の温度は、調製直後の1段階目の中和熱によって65℃まで上昇した。この温度上昇に伴う気体の溶解度低下によって、界面活性剤を含んだ該単量体水溶液(1’)の外観は、非常に細かい気泡が導入されて白濁していた。
 次に、上記単量体水溶液(1’)を攪拌しながら冷却し、液温が53℃となった時点で、30℃に調温した48.5重量%水酸化ナトリウム水溶液178.7gを加え、混合することで単量体水溶液(1)を調製した。この際、該単量体水溶液(1)の温度は、調製直後の2段階目の中和熱によって83.5℃まで上昇した。この温度上昇に伴う気体の溶解度低下によって、界面活性剤を含んだ単量体水溶液(1)の外観は、非常に細かい気泡が導入されて白濁していた。
 次に、2段階目の水酸化ナトリウム水溶液を添加した後1分以内に上記単量体水溶液(1)へ4.0重量%過硫酸ナトリウム水溶液17.6gを攪拌しながら加えた後、すぐにステンレス製バット型容器(底面340×340mm、高さ25mm、内面;テフロン(登録商標)を貼り付け)に大気開放系で注いだ。なお、該バット型容器は、ホットプレート(株式会社井内盛栄堂社製;NEO HOTPLATE HI-1000)を用いて加熱し、表面温度が40℃となるよう調整されていた。上記単量体水溶液(1)がバット型容器に注がれて25秒後に重合反応が開始した。該重合反応は、水蒸気を発生しながら上下左右に膨張発泡して進行し、その後、バット型容器よりも若干大きなサイズにまで収縮した。この膨張、収縮は約1分以内に終了した。重合反応の開始から3分経過後に、含水ゲル状架橋重合体(含水ゲル)を取り出した。なお、これら一連の操作は、大気開放系で行い、重合時のピーク温度は108℃であった。
 上記重合反応で得られた含水ゲル状架橋重合体(含水ゲル)をミートチョッパー(飯塚工業株式会社製、MEAT-CHOPPER TYPE:12VR-400KSOX、ダイ孔径:7.5mm、孔数:38、ダイ厚み8mm)を用いてゲル粉砕し、細分化された含水ゲル状架橋重合体を得た。このとき、含水ゲルの投入量は450[g/min]、含水ゲル投入と並行して90℃に調温した脱イオン水を50[g/min]で添加しながらゲル粉砕を行った。
 上記ゲル粉砕操作で得られた細分化された含水ゲル状架橋重合体を目開き850μmのステンレス製金網上に広げ、190℃で30分間熱風乾燥を行った。続いて、該乾燥操作で得られた乾燥物をロールミルを用いて粉砕し、吸水性樹脂粒子(B)を得た。さらに吸水性樹脂粒子(B)を目開き850μmの金網と150μmの金網で分級することにより、850μmの金網を通過し、150μmの金網を通過しなかった分画である発泡した吸水性樹脂粒子(B1)と150μmの金網を通過した分画である吸水性樹脂微粒子(B2)を得た。このとき、吸水性樹脂粒子(B)における粒子径が150μm未満の粒子の割合は12.4重量%であり、分級することにより得られた吸水性樹脂粒子(B1)では、粒子径が150μm未満の粒子の割合を1.9重量%まで減少することができた。吸水性樹脂粒子(B1)の粒子をSEMにて観察したところ、気泡に由来するクレーター状の窪みが多数存在することから有効に発泡形状が形成されていることが確認された。一方、吸水性樹脂粒子(B2)においては粒子形状が細かいことから、気泡によるクレーター状の窪みの数は減るものの、その存在は明確に確認された。得られた吸水性樹脂粒子(B1)及び吸水性樹脂微粒子(B2)のCRC、含水率、粒度分布、D50を表1に示す。
 (製造例3)発泡重合体の形態の吸水性樹脂の製造例(2)
 製造例2において、ポリエチレングリコールジアクリレート1.38gを0.67gに変更した以外は、製造例2と同様の反応・操作を行って、吸水性樹脂粒子(B)に対応する吸水性樹脂粒子(C)を得た。さらに吸水性樹脂粒子(C)から、850μmの金網を通過し、150μmの金網を通過しなかった分画である発泡した吸水性樹脂粒子(C1)と150μmの金網を通過した分画である吸水性樹脂微粒子(C2)を得た。このとき、吸水性樹脂粒子(C)における粒子径が150μm未満の粒子の割合は11.5重量%であり、分級することにより得られた吸水性樹脂粒子(C1)では、粒子径が150μm未満の粒子の割合を1.4重量%まで減少することができた。吸水性樹脂粒子(C1)の粒子をSEMにて観察したところ、気泡に由来するクレーター状の窪みが多数存在することから有効に発泡形状が形成されていることが確認された。一方、吸水性樹脂粒子(C2)においては粒子形状が細かいことから、気泡によるクレーター状の窪みの数は減るものの、その存在は明確に確認された。得られた吸水性樹脂(C1)及び吸水性樹脂微粒子(C2)のCRC、含水率、粒度分布、D50を表1に示す。
 (製造例4)造粒物の形態の吸水性樹脂の製造例(1)
 製造例1で得られた吸水性樹脂微粒子(A2)300gを西日本試験機製作所製5Lモルタルミキサー(5L容器は80℃のバスで保温されている)に入れ、該モルタルミキサーの攪拌羽根を60Hz/100Vで高速回転させながら、90℃に加熱した脱イオン水300gを一気に投入した。
 吸水性樹脂微粒子(A2)と脱イオン水とは10秒以内に混合され、内容物全体が粒子径約3~10mmの含水ゲル状造粒物となった。モルタルミキサー中で、該含水ゲル状造粒物はバラバラの状態で、攪拌羽根の混合によって混練される様子はなかった。1分間モルタルミキサー中で高速攪拌した後、得られたバラバラの含水ゲル状造粒物を50メッシュの金網上に広げ、150℃で60分間熱風乾燥した。次いで、乾燥造粒物をロールミルを用いて粉砕し、吸水性樹脂造粒物(A3’)を得た。さらに吸水性樹脂造粒物(A3’)をさらに目開き850μmの金網と150μmの金網で分級することにより、850μmの金網を通過し、150μmの金網を通過しなかった分画である吸水性樹脂造粒物(A3)を得た。このとき、吸水性樹脂造粒物(A3’)における粒子径が150μm未満の粒子の割合は21.8重量%であり、分級することにより得られた吸水性樹脂造粒物(A3)では、150μm未満の粒子の割合を2.0重量%まで減少することができた。吸水性樹脂造粒物(A3)の形状をSEMにて観察したところ、原料に使用した吸水性樹脂微粒子の形状を部分的に維持しながら、大きな粒子に造粒されており、粒子表面に多数の凹凸を有する表面積の大きい粒子であった。得られた吸水性樹脂造粒物(A3)のCRC、含水率、粒度分布およびD50を表1に示す。
 (製造例5)造粒物の形態の吸水性樹脂の製造例(2)
 製造例2で得られた吸水性樹脂微粒子(B2)300gを西日本試験機製作所製5Lモルタルミキサー(5L容器は80℃のバスで保温)に入れ、該モルタルミキサーの攪拌羽根を60Hz/100Vで高速回転させながら、90℃に加熱した脱イオン水300gを一気に投入した。
 吸水性樹脂微粒子(B2)と脱イオン水とは10秒以内に混合され、内容物全体が粒子径約3~10mmの含水ゲル状造粒物となった。モルタルミキサー中で、該含水ゲル状造粒物はバラバラの状態で、攪拌羽根の混合によって混練される様子はなかった。1分間モルタルミキサー中で高速攪拌した後、得られたバラバラの含水ゲル状造粒物を50メッシュの金網上に広げ、150℃で60分間熱風乾燥した。次いで、乾燥造粒物をロールミルを用いて粉砕し、吸水性樹脂造粒物(B3’)を得た。さらに吸水性樹脂造粒物(B3’)をさらに目開き850μmの金網と150μmの金網で分級することにより、850μmの金網を通過し、150μmの金網を通過しなかった分画である吸水性樹脂造粒物(B3)を得た。このとき、吸水性樹脂造粒物(B3’)における粒子径が150μm未満の粒子の割合は11.4重量%であり、分級することにより得られた吸水性樹脂造粒物(B3)では、粒子径が150μm未満の粒子の割合を2.4重量%まで減少することができた。得られた吸水性樹脂造粒物(B3)のCRC、含水率、粒度分布およびD50を表1に示す。
 (実施例1)造粒物の形態の吸水性樹脂を用いる製造方法1による吸水剤
 製造例4で得られた吸水性樹脂造粒物(A3)100重量部に、エチレングリコールジグリシジルエーテル0.025重量部と、エチレンカーボネート0.3重量部と、プロピレングリコール0.5重量部と、脱イオン水2.0重量部とからなる表面架橋剤溶液を混合した。上記の混合物を200℃で35分間加熱処理することにより、表面架橋された吸水性樹脂造粒物(A4)を得た。
 表面架橋された吸水性樹脂造粒物(A4)を0.90重量%の塩化ナトリウム水溶液で膨潤させて光学顕微鏡にて観察したところ、表面架橋の結果、吸水後でも粒子形状を維持できるようになっていることが確認された。
 表面架橋された吸水性樹脂造粒物(A4)100重量部に対して、1重量%のDTPA水溶液1重量部を攪拌しながら添加し、1分間混合した。次いで60℃の熱風乾燥機中に30分間放置してから、目開き850μmの金網を通過させ、吸水性樹脂造粒物(A4’)を得た。更に、得られた吸水性樹脂造粒物(A4’)100重量部に対して、ハイドロタルサイト(製品名DHT-6、協和化学工業株式会社製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mlのマヨネーズ瓶にハイドロタルサイトと共に入れ、ペイントシェーカー(No.488/東洋製機製作所製)を用いて800(cycle/min(CPM))の条件下3分間振とうし、粒子状吸水剤(EX-1)を得た。
 (実施例2)
 実施例1において、ハイドロタルサイト0.3重量部をアエロジル200(日本アエロジル製)0.3重量部に変更した以外は、実施例1と同様の反応・操作を行って、粒子状吸水剤(EX-2)を得た。
 (実施例3)
 実施例1で得られた吸水性樹脂造粒物(A4’)100重量部に対して、コロイダルシリカ(AZエレクトロマテリアルズ株式会社製、Klebsol 30B12)3.3重量部とプロピレングリコール1.0重量部とからなる混合液を攪拌下均一に添加し、混合後60℃の熱風乾燥機中に60分間放置してから、目開き850μmの金網を通過させ、粒子状吸水剤(EX-3)を得た。
 (実施例4~6)
 実施例1において、ハイドロタルサイト0.3重量部を以下の水不溶性無機微粒子0.3重量部に変更する以外は実施例1と同様の反応・操作を行って、粒子状吸水剤(EX-4)~粒子状吸水剤(EX-6)を得た。
 酸化亜鉛(ALDRICH製)0.3重量部に変更(実施例4)
 リン酸三カルシウム(和光純薬工業株式会社製)0.3重量部に変更(実施例5)
 水酸化アルミニウム(日本軽金属株式会社製、粒子径1.6μm)0.3重量部に変更(実施例6)
 (実施例7)発泡重合体の形態の吸水性樹脂を用いる製造方法2による吸水剤
 製造例2で得られた吸水性樹脂粒子(B1)100重量部に、エチレングリコールジグリシジルエーテル0.025重量部と、エチレンカーボネート0.3重量部と、プロピレングリコール0.5重量部と、水2.0重量部とからなる表面架橋剤溶液を混合した。上記の混合物を200℃で35分間加熱処理することにより、表面架橋された吸水性樹脂粒子(B5)を得た。
 さらに、表面架橋された吸水性樹脂粒子(B5)100重量部に対して、1重量%のDTPA水溶液1重量部を攪拌しながら添加し、1分間混合した。次いで60℃の熱風乾燥機中に30分間放置してから、目開き850μmの金網を通過させ、吸水性樹脂粒子(B5’)を得た。更に、得られた吸水性樹脂粒子(B5’)100重量部に対して、ハイドロタルサイト(製品名DHT-6、協和化学工業株式会社製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mlのマヨネーズ瓶にハイドロタルサイトと共に入れ、ペイントシェーカー(No.488/東洋製機製作所製)を用いて800(cycle/min)(CPM)の条件下3分間振とうし、粒子状吸水剤(EX-7)を得た。得られた粒子状吸水剤(EX-7)の内部気泡率は3.1%であった。
 (実施例8)発泡重合体の形態の吸水性樹脂の造粒物を用いる製造方法1及び製造方法2による吸水剤
 吸水性樹脂造粒物(B3)100重量部に、エチレングリコールジグリシジルエーテル0.025重量部と、エチレンカーボネート0.3重量部、プロピレングリコール0.5重量部と、脱イオン水2.0重量部とからなる表面架橋剤溶液を混合した。上記の混合物を200℃で35分間加熱処理することにより、表面架橋された吸水性樹脂造粒物(B4)を得た。表面架橋された吸水性樹脂造粒物(B4)50重量部と実施例7で得られた表面架橋された吸水性樹脂粒子(B5)50重量部とを混合して、吸水性樹脂(E1)を得た。
 吸水性樹脂(E1)100重量部に対して、1重量%のDTPA水溶液1重量部を攪拌しながら添加し、1分間混合した。次いで60℃の熱風乾燥機中に30分間放置してから、目開き850μmの金網を通過させ、吸水性樹脂(E1’)を得た。更に、得られた吸水性樹脂(E1’)100重量部に対して、ハイドロタルサイト(製品名DHT-6、協和化学工業株式会社製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mlのマヨネーズ瓶にハイドロタルサイトと共に入れ、ペイントシェーカーを用いて3分間振とうし、粒子状吸水剤(EX-8)を得た。
 (実施例9)吸水性樹脂の発泡重合体に別の製造ラインの造粒物を用いる製造方法1及び製造方法2による吸水剤
 製造例4で得られた吸水性樹脂造粒物(A3)50重量部と製造例2で得られた吸水性樹脂粒子(B1)50重量部とを混合して、吸水性樹脂粒子(E2)を得た。
 実施例7において、吸水性樹脂粒子(B1)を吸水性樹脂粒子(E2)に変更した以外は、実施例7と同様の反応・操作を行って、粒子状吸水剤(EX-9)を得た。
 (実施例10)吸水性樹脂の発泡重合体に同一製造ラインの造粒物を用いる製造方法1及び製造方法2による吸水剤
 製造例5で得られた吸水性樹脂造粒物(B3)50重量部と製造例2で得られた吸水性樹脂粒子(B1)50重量部とを混合して、吸水性樹脂粒子(E3)を得た。
 実施例7において、吸水性樹脂粒子(B1)を吸水性樹脂粒子(E3)に変更した以外は、実施例7と同様の反応・操作を行って、粒子状吸水剤(EX-10)を得た。
 (実施例11)発泡重合体の形態の吸水性樹脂を用いる製造方法2による吸水剤
 製造例3で得られた吸水性樹脂粒子(C1)100重量部に、エチレングリコールジグリシジルエーテル0.03重量部、プロピレングリコール1.5重量部及び水3.5重量部からなる表面架橋剤溶液を混合した。上記混合物を100℃で45分間加熱処理することにより、表面架橋された吸水性樹脂粒子(C3)を得た。
 さらに、表面架橋された吸水性樹脂粒子(C3)100重量部に対して、1重量%のDTPA水溶液1重量部を攪拌しながら添加し、1分間混合した。次いで60℃の熱風乾燥機中に30分間放置してから、目開き850μmの金網を通過させ、吸水性樹脂粒子(C3’)を得た。更に、得られた吸水性樹脂粒子(C3’)100重量部に対して、ハイドロタルサイト(製品名DHT-6、協和化学工業株式会社製)0.3重量部を混合した。混合は吸水性樹脂30gを容量225mlのマヨネーズ瓶にハイドロタルサイトと共に入れ、ペイントシェーカー(No.488/東洋製機製作所製)を用いて800(cycle/min(CPM))の条件下3分間振とうし、粒子状吸水剤(EX-11)を得た。
 (実施例12)
 実施例11において、エチレングリコールジグリシジルエーテル0.03重量部を0.015重量部に変更した以外は、実施例11と同様の反応・操作を行って、粒子状吸水剤(EX-12)を得た。
 (比較例1)発泡重合体又は造粒物を使用しない製造方法による比較用吸水剤
 実施例7において、発泡重合体の形態である吸水性樹脂粒子(B1)を吸水性樹脂粒子(A1)に変更した以外は、実施例7と同様の反応・操作を行って、ハイドロタルサイト0.3重量部を含む比較用粒子状吸水剤(COMP-1)を得た。
 (比較例2)
 比較例1において、ハイドロタルサイト0.3重量部をアエロジル200(日本アエロジル製)0.3重量部に変更した以外は、比較例1と同様の反応・操作を行って、比較用粒子状吸水剤(COMP-2)を得た。
 (比較例3)
 製造例1で得られた吸水性樹脂粒子(A1)100重量部に、エチレングリコールジグリシジルエーテル0.025重量部と、エチレンカーボネート0.3重量部と、プロピレングリコール0.5重量部と、脱イオン水2.0重量部とからなる表面架橋剤溶液を混合した。上記の混合物を200℃で40分間加熱処理することにより、表面架橋された吸水性樹脂粒子(A5)を得た。表面架橋された吸水性樹脂粒子(A5)100重量部に対して、1重量%のDTPA水溶液1重量部を攪拌しながら添加し、1分間混合した。次いで60℃の熱風乾燥機中に30分間放置してから、目開き850μmの金網を通過させ、コロイダルシリカ(AZエレクトロマテリアルズ株式会社製、Klebsol 30B12)3.3重量部とプロピレングリコール1.0重量部とからなる混合液を攪拌下均一に添加し、混合後60℃の熱風乾燥機中に60分間放置してから、目開き850μmの金網を通過させ、比較用粒子状吸水剤(COMP-3)を得た。
 (比較例4~6)
 比較例1において、ハイドロタルサイト0.3重量部を以下の水不溶性無機微粒子0.3重量部に変更する以外は比較例1と同様の反応・操作を行って、比較用粒子状吸水剤(COMP-4)~比較用粒子状吸水剤(COMP-6)を得た。
 酸化亜鉛(ALDRICH製)0.3重量部に変更(比較例4)
 リン酸三カルシウム(和光純薬工業株式会社製)0.3重量部に変更(比較例5)
 水酸化アルミニウム(日本軽金属株式会社製、粒子径1.6μm)0.3重量部に変更(比較例6)
 (比較例7)特許文献17(米国特許6071976号)の追試
 本発明に係る(d)水不溶性無機微粒子の混合工程を含まない特許文献17の実施例17に準じて、吸水剤を製造した。
 すなわち、特許文献17の記載に従い、アクリル酸ナトリウム(中和率75モル%)の33重量%水溶液5500重量部に、内部架橋剤としてのポリエチレングリコールジアクリレート(n=8)2.9重量部を溶解させて反応液とし、30℃~80℃で重合を行い、重合を開始して60分後に含水ゲル状重合体を取り出した。得られた含水ゲル状重合体を目開き300μmの金網上に広げ、150℃で90分間熱風乾燥した。次いで、乾燥物をロールグラニュレター型粉砕機を用いて粉砕し、さらに目開き850μmの金網と150μmの金網で分級することにより850μmの金網を通過し、150μmの金網を通過しなかった分画である吸水性樹脂粒子(D1)と150μmの金網を通過した分画である吸水性樹脂微粒子(D2)を得た。得られた吸水性樹脂粒子(D1)および吸水性樹脂微粒子(D2)のCRC、含水率、粒度分布、D50を表1に示す。
 次いで、特許文献17の記載に従い、上記の吸水性樹脂微粒子(D2)を、連続押出式混合機に2kg/分の割合で投入すると共に、上記連続押出式混合機に設けられた口径5mmの液供給口から、グリセリン0.1重量部を溶解させたイオン交換水を、吸水性樹脂微粒子(D2)100重量部に対して163重量部の割合で投入することによって、上記吸水性樹脂微粒子(D2)と、グリセリンを含むイオン交換水とを連続的に混合した。この結果、排出口から、粒子状の均一な含水ゲル状造粒物が連続的に排出された。得られた粒子状の含水ゲル状造粒物は、個々の粒子の凝集体であり、その大部分が、粒径約1mm~5mmの均一な含水ゲル状造粒物であった。
 次に、この含水ゲル状造粒物を、目開き300μmの金網上に、約5cmの厚みになるように広げ、160℃の熱風循環式乾燥機で乾燥させた。
 次いで、この乾燥造粒物を、ロールグラニュレター型粉砕機を用いて粉砕し、その後、目開き850μmの金網で分級することにより、吸水性樹脂造粒物(D3)を得た。得られた吸水性樹脂造粒物(D3)CRC、含水率、粒度分布、D50を表1に示す。
 さらに、上記吸水性樹脂造粒物(D3)100重量部に対し、エチレングリコールジグリシジルエーテル0.05重量部、グリセリン0.75重量部、水3重量部、イソプロピルアルコール0.75重量部、及び乳酸0.5重量部からなる表面架橋剤を混合し、200℃で40分間加熱することにより、比較用粒子状吸水剤(COMP-7)を得た。
 (比較例8)
 比較例7で得られた比較用粒子状吸水剤(COMP-7)100重量部に、ソルビタンモノラウレート0.01重量部とメタノール0.09重量部とからなる添加剤溶液を混合した。80℃で40分加熱することにより比較用粒子状吸水剤(COMP-8)を得た。
 (比較例9)
 比較例7で得られた比較用粒子状吸水剤(COMP-7)100重量部に、ソルビタンモノラウレート0.1重量部とメタノール0.4重量部とからなる添加剤溶液を混合した。80℃で40分加熱することにより比較用粒子状吸水剤(COMP-9)を得た。
 (比較例10)水不溶性無機粒子を使用しない製造方法による比較用吸水剤
 実施例7で得られた表面架橋された吸水性樹脂粒子(B5)に対して、1重量%のDTPA水溶液1重量部を攪拌しながら添加し、1分間混合した。次いで60℃の熱風乾燥機中に30分間放置してから、目開き850μmの金網を通過させ、吸水性樹脂粒子(B6)を得た。
 上記吸水性樹脂粒子(B6)100重量部に対して、硫酸アルミニウム27重量%水溶液(酸化アルミニウム換算で8重量%)0.80重量部、乳酸ナトリウム60重量%水溶液0.134重量部、及びプロピレングリコール0.016重量部からなる混合液を添加した。添加後、無風条件下、60℃で1時間乾燥した。次いで、得られた粒子を目開き850μmのJIS標準篩に通過させて、比較用粒子状吸水剤(COMP-10)を得た。
 (比較例11)特許文献52の追試
 本発明に係る(a2)重合前に予め気泡を分散させたアクリル酸ナトリウム水溶液を得る工程を含まない特許文献52(国際公開第2013/002387号)の実施例5に準じて、吸水剤を製造した。なお、この例は、重合時の沸騰によって、得られる含水ゲル中に気泡が含まれるものの、その量(気泡の数)は少なく、また、本発明に係る(a1)吸水性樹脂を造粒して造粒物を得る造粒工程も含まないものである。
 すなわち、特許文献52の記載に従い、アクリル酸193.3重量部、48重量%水酸化ナトリウム水溶液64.4重量部、ポリエチレングリコールジアクリレート(平均n数9)0.88重量部、0.1重量%エチレンジアミンテトラ(メチレンホスホン酸)5ナトリウム水溶液52重量部、脱イオン水134重量部、パラメトキシフェノール700ppm(対アクリル酸)からなる単量体水溶液(2)を作成した。
 次に、40℃に調温した上記単量体水溶液(2)を定量ポンプで連続供給した後、更に48重量%水酸化ナトリウム水溶液97.1重量部を連続的にラインミキシングした。なお、このとき、中和熱によって単量体水溶液(2)の液温は85℃まで上昇した。
 更に、4重量%過硫酸ナトリウム水溶液8.05重量部を連続的にラインミキシングした後、両端に堰を備えた平面状の重合ベルトを有する連続重合機に、厚みが約7.5mmとなるように連続的に供給した。その後、重合(重合時間3分間)が連続的に行われ、帯状の含水ゲル状架橋重合体(3)を得た。また重合時の沸騰で気泡を含有するものであった。上記含水ゲル状架橋重合体(3)を重合ベルトの進行方向に対して幅方向に、切断長が約200mmとなるように等間隔に連続して切断した。
 特許文献52の記載に従い、上記細分化された含水ゲル状架橋重合体(4)をゲル粉砕終了後1分以内に通気ベルト上に散布(この時の細分化された含水ゲル状架橋重合体(4)の温度は80℃)し、185℃で30分間乾燥を行い、乾燥物(5)246重量部を得た。上記通気ベルトの移動速度は1[m/min]であり、熱風の平均風速は通気ベルトの進行方向に対して垂直方向に1.0[m/s]であった。
 次いで、上記乾燥工程で得られた約60℃の乾燥物(5)全量を3段ロールミルに連続供給して粉砕(粉砕工程)し、その後更に、目開き710μm及び175μmのJIS標準篩で分級することで、不定形破砕状の吸水性樹脂粒子(V)を得た。吸水性樹脂粒子(V)について、重量平均粒子径(D50)は350μmであり、粒度分布の対数標準偏差(σζ)は0.33であり、CRCは42.1[g/g]であり、可溶分(ERT470.2-02に規定されるExt)は14.1重量%であり、150μm通過粒子の割合(目開き150μmの篩を通過する粒子の割合)は0.6重量%であった。
 次に、上記吸水性樹脂粒子(V)100重量部に対して、1,4-ブタンジオール0.3重量部、プロピレングリコール0.6重量部及び脱イオン水3.0重量部からなる(共有結合性)表面架橋剤溶液を均一に混合し、208℃で40分間程度加熱処理した。その後、目開き710μmのJIS標準篩を通過するまで解砕(整粒工程)し、内部気泡率2.40%の吸水性樹脂粒子(VI)を得た。
 さらに上記吸水性樹脂粒子(VI)100重量部に水不溶性無機微粒子(アエロジル200、日本アエロジル社製)0.5重量部を乾式撹拌混合することで、比較用粒子状吸水剤(COMP-11)を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 (まとめ)
 (表2及び表3の説明)
 実施例1~6と比較例1~6との対比から、造粒物の形態の吸水性樹脂を用いる本発明の製造方法1によって、本発明の新規な吸水剤が得られることが分かる。
 実施例7~12と比較例1~6との対比から、発泡重合体の形態の吸水性樹脂を用いる本発明の製造方法2よって、本発明の新規な吸水剤が得られることが分かる。
 実施例7と比較例10との対比から、水不溶性無機微粒子を用いる本発明の製造方法によって、本発明の新規な吸水剤が得られることが分かる。
 比較例7の結果から、水不溶性無機微粒子を用いない特許文献17に記載の吸水性樹脂の造粒物では吸湿ブロッキング率が悪く100%ブロックすること、すなわち特許文献17に記載の吸水性樹脂の造粒方法では本発明の新規な吸水剤が得られないことが分かる。
 比較例8及び比較例9の結果から、特許文献17に記載の吸水性樹脂の造粒物にさらにブロッキング抑制剤として界面活性剤を使用しても、GCAや表面張力が低下するのみであって、依然として本発明の新規な吸水剤が得られないことが分かる。
 比較例11の結果から、特許文献52に記載の吸水剤では、重合時の沸騰によって、得られる含水ゲル中に気泡が含まれるものの、その量(気泡の数)は少なく、また、重合時に(a2)重合前に予め気泡を分散させたアクリル酸ナトリウム水溶液を得る工程を含まず、更に吸水性樹脂を造粒して造粒物を得る造粒工程も含まないため、本発明の新規な吸水剤が得られないことが分かる。
 (表4の説明)
 表2及び表3より、実施例1~12の粒子状吸水剤と比較例1~11の比較用粒子状吸水剤とは同程度の粒度分布を示すが、表4に記載の吸水剤を含む吸収性物品の評価結果から、本発明に係る実施例1~12の粒子状吸水剤は戻り量(Re-Wet)が2回目で8~11.5g、3回目で15~17gと少なく、比較例1~6の従来技術による比較用粒子状吸水剤の戻り量(2回目で13~14g、3回目で18.8~20g)に比べて格段に向上していることが分かる。
 なお、特許文献17の吸水剤(比較例7)の戻り量(2回目で10g、3回目で15g)や、特許文献52の吸水剤(比較例11)の戻り量は、本発明に係る粒子状吸水剤の上記戻り量と一部重複するが、特許文献17(比較例7)の吸水剤は、吸湿ブロッキング率が悪く100%ブロックするため(表2を参照)、吸収体製造時の繊維との混合を含め、取り扱い性が悪いものであった。また特許文献52(比較例11)の吸水剤は3回目の戻り量(17.5g)が本発明の吸水剤(15~17g)に比べて劣っていた。
 以上、上記実施例よりも本発明の製造方法はGCAに優れた新規な吸水剤を提供し、戻り量(Re-Wet)の少ない優れた吸収性物品を提供することが分かる。
 (5)従来技術との対比
 特許文献1~52は、本願により提供される新規パラメータであるGCA(Gell Capillary Absorption)を開示しない。また、特許文献47~52に記載の吸水性ポリマーの吸湿流動性の付与技術は本願製造方法を開示しない。更に、特許文献8、11~18に記載の造粒による吸水速度の向上技術も本願製造方法を開示しない(例えば特許文献17の実施例17を示す上記比較例7など)。また、特許文献21~46に記載の発泡による吸水速度の向上技術も本願製法方法を開示しない。
 本願は従来にない新規な製造方法(製造方法1、製造方法2)によって、本願新規パラメータGCAなどで規定された新規な吸水剤を提供し、かかるGCAなどで規定された新規な吸水剤は実使用時の吸収物品の戻り量を低減する。
 本発明の粒子状吸水剤を使用すれば、多湿な地域においても従来よりも戻り量の低減された紙おむつを容易に生産できるようになる。
 本出願は、2014年2月28日に出願された日本特許出願番号2014-039599号に基づいており、その開示内容は、参照により全体として組み入れられている。

Claims (26)

  1.  ポリ(メタ)アクリル酸(塩)系吸水性樹脂を主成分とする粒子状吸水剤であって、重量平均粒子径が300~500μmの粒度分布を有し、25℃、相対湿度90%の状態で1時間放置した時の吸湿ブロッキング率が20%以下であり、表面張力が60mN/m以上であり、GCA(Gel Capillary Absorption)が28.0g/g以上であることを特徴とする、粒子状吸水剤。
  2.  表面架橋されている、請求項1に記載の粒子状吸水剤。
  3.  無加圧下吸水倍率(CRC)が28g/g以上である、請求項1又は2に記載の粒子状吸水剤。
  4.  加圧下吸水倍率(AAP)が25g/g以上である、請求項1~3のいずれか1項に記載の粒子状吸水剤。
  5.  Vortex法による吸水時間が40秒以下である、請求項1~4のいずれか1項に記載の粒子状吸水剤。
  6.  表面張力が65mN/m以上である、請求項1~5のいずれか1項に記載の粒子状吸水剤。
  7.  GCA(Gel Capillary Absorption)が30.0g/g以上である、請求項1~6のいずれか1項に記載の粒子状吸水剤。
  8.  水不溶性無機微粒子を含む、請求項1~7のいずれか1項に記載の粒子状吸水剤。
  9.  前記水不溶性無機微粒子の含有量が、ポリアクリル酸(塩)系吸水性樹脂(固形分)100重量%に対して0.01~1.0重量%である、請求項8に記載の粒子状吸水剤。
  10.  前記水不溶性無機微粒子の体積平均粒子径が0.01~3μmである、請求項8又は9に記載の粒子状吸水剤。
  11.  キレート剤を含む、請求項1~10のいずれか1項に記載の粒子状吸水剤。
  12.  前記キレート剤の含有量が、ポリアクリル酸(塩)系吸水性樹脂(固形分)100重量部に対して0.001~1重量部である、請求項11に記載の粒子状吸水剤。
  13.  前記キレート剤が、有機リン系キレート剤、及びアミノカルボン酸系キレート剤からなる群から選択される化合物である、請求項11又は12に記載の粒子状吸水剤。
  14.  形状が不定形破砕状またはその造粒物である、請求項1~13のいずれか1項に記載の粒子状吸水剤。
  15.  請求項1~14のいずれか1項に記載の粒子状吸水剤及び親水性繊維を含んで成形されてなる、吸収性物品。
  16.  (a1)平均粒子径10~180μmのポリ(メタ)アクリル酸(塩)系吸水性樹脂を造粒して造粒物を得る造粒工程と、
     (b)前記造粒物を表面架橋する表面架橋工程と、
     (c)前記表面架橋工程の前及び/又は後に、前記造粒物の全粒子100重量%に占める粒子径が150~850μm(標準篩で規定)の粒子の割合を95~100重量%とする整粒工程と、
     (d)水不溶性無機微粒子を混合する混合工程と、
    を順次、又は前記工程(a1)~工程(d)の少なくとも一部を同時に実施することを特徴とする、吸水剤の製造方法。
  17.  (a2)重合前に予め気泡を分散させたアクリル酸ナトリウム水溶液を得る単量体水溶液調製工程と、
     (a3)前記水溶液を重合して、ポリ(メタ)アクリル酸(塩)系吸水性樹脂の発泡重合体を得る重合工程と、
     (b)前記発泡重合体を表面架橋する表面架橋工程と、
     (c)前記表面架橋工程の前及び/又は後に、前記発泡重合体の全粒子100重量%に占める粒子径が150~850μm(標準篩で規定)の粒子の割合を95~100重量%とする整粒工程と、
     (d)水不溶性無機微粒子を混合する混合工程と、
    を順次、又は工程(c)及び工程(d)を同時に実施することを特徴とする、吸水剤の製造方法。
  18.  CRCが28g/g以上まで表面架橋処理する工程を有する、請求項16又は17に記載の製造方法。
  19.  前記工程(a2)及び(a3)を経て得られた平均粒子径10~180μmの吸水性樹脂を造粒して得られた造粒物を造粒物(I)とし、前記造粒物(I)を表面架橋した造粒物を造粒物(II)とし、前記造粒物(II)を整粒した造粒物を造粒物(III)とし、前記造粒物(III)に水不溶性無機微粒子を添加した吸水剤を吸水剤(IV)としたときに、
    <1>造粒物(I)を請求項17に記載の(a3)重合工程と(b)表面架橋工程との間で混合する工程、
    <2>造粒物(II)を請求項17に記載の(b)表面架橋工程と(c)整粒工程との間で混合する工程、
    <3>造粒物(III)を請求項17に記載の(c)整粒工程と(d)水不溶性無機微粒子の添加工程との間で混合する工程、
    <4>吸水剤(IV)を請求項17に記載の(d)不溶性無機微粒子の添加工程の後で混合する工程、
    の<1>~<4>のうち少なくともいずれか一つを含む、請求項17に記載の製造方法。
  20.  (a3)重合工程と(b)表面架橋工程との間で、目開きが100μm以上、300μm以下の篩網を用いて、重量平均粒子径が180μm以下の吸水性樹脂を得て、この吸水性樹脂を造粒することで前記造粒物(I)を得ることを含む、請求項19に記載の製造方法。
  21.  前記水不溶性無機微粒子の含有量が、ポリ(メタ)アクリル酸(塩)系吸水性樹脂の固形分量100重量%に対して0.01~1.0重量%である、請求項16~18のいずれか1項に記載の製造方法。
  22.  前記水不溶性無機微粒子の体積平均粒子径が0.01~3μmである、請求項21に記載の製造方法。
  23.  何れかの工程でキレート剤を添加する工程をさらに含む、請求項16~20のいずれか1項に記載の製造方法。
  24.  前記キレート剤を添加する工程において、前記キレート剤をポリ(メタ)アクリル酸(塩)系吸水性樹脂の固形分量100重量部に対して0.001~0.1重量部添加する、請求項23に記載の製造方法。
  25.  前記キレート剤が有機リン系キレート剤、及びアミノカルボン酸系キレート剤からなる群から選択される化合物である、請求項23又は24に記載の製造方法。
  26.  (I)重合時、(II)造粒時、及び(III)表面架橋後からなる群から選択される1以上の時期に前記キレート剤を添加する、請求項23~25のいずれか1項に記載の製造方法。
PCT/JP2015/056110 2014-02-28 2015-03-02 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法 WO2015129917A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/122,095 US10207250B2 (en) 2014-02-28 2015-03-02 Poly(meth)acrylic acid (salt)-based particulate absorbent
CN201580010989.7A CN106029220B (zh) 2014-02-28 2015-03-02 聚(甲基)丙烯酸(盐)系颗粒状吸水剂和制造方法
JP2016505362A JP6441894B2 (ja) 2014-02-28 2015-03-02 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
KR1020167023538A KR20160127742A (ko) 2014-02-28 2015-03-02 폴리(메트)아크릴산(염)계 입자상 흡수제 및 제조 방법
EP15756085.5A EP3112022A4 (en) 2014-02-28 2015-03-02 Poly(meth)acrylic acid (salt)-based particulate absorbent, and production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-039599 2014-02-28
JP2014039599 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129917A1 true WO2015129917A1 (ja) 2015-09-03

Family

ID=54009225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056110 WO2015129917A1 (ja) 2014-02-28 2015-03-02 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法

Country Status (6)

Country Link
US (1) US10207250B2 (ja)
EP (1) EP3112022A4 (ja)
JP (1) JP6441894B2 (ja)
KR (1) KR20160127742A (ja)
CN (1) CN106029220B (ja)
WO (1) WO2015129917A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164462A1 (ko) * 2016-03-24 2017-09-28 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이로부터 제조된 고흡수성 수지
WO2017170605A1 (ja) 2016-03-28 2017-10-05 株式会社日本触媒 粒子状吸水剤
WO2018092864A1 (ja) 2016-11-16 2018-05-24 株式会社日本触媒 吸水性樹脂粉末の製造方法及びその製造装置
JP2018131558A (ja) * 2017-02-16 2018-08-23 Sdpグローバル株式会社 吸水性樹脂粒子及びその製造方法
WO2018155591A1 (ja) 2017-02-22 2018-08-30 株式会社日本触媒 吸水性シート、長尺状吸水性シートおよび吸収性物品
JPWO2017170604A1 (ja) * 2016-03-28 2019-02-28 株式会社日本触媒 吸水剤の製造方法
WO2019074094A1 (ja) 2017-10-12 2019-04-18 株式会社日本触媒 粒子状吸水剤の物性の測定方法及び粒子状吸水剤
JP2019518815A (ja) * 2016-12-26 2019-07-04 エルジー・ケム・リミテッド 多孔性高吸水性樹脂の製造方法
WO2019221154A1 (ja) 2018-05-16 2019-11-21 株式会社日本触媒 吸水性樹脂粒子の製造方法
US10632451B2 (en) 2016-03-24 2020-04-28 Lg Chem, Ltd. Method for preparing superabsorbent polymer and superabsorbent polymer prepared thereby
WO2020122217A1 (ja) * 2018-12-12 2020-06-18 住友精化株式会社 吸水性樹脂粒子、吸収体及び吸収性物品
JP2020121090A (ja) * 2019-01-30 2020-08-13 住友精化株式会社 吸水性樹脂粒子、吸収体及び吸収性物品
JPWO2019098244A1 (ja) * 2017-11-16 2020-12-10 株式会社日本触媒 吸水剤および吸収性物品
WO2021049488A1 (ja) * 2019-09-09 2021-03-18 住友精化株式会社 吸水性樹脂粒子、及び吸収性物品
WO2021049487A1 (ja) * 2019-09-09 2021-03-18 住友精化株式会社 吸水性樹脂粒子、吸収性物品、及び吸水性樹脂粒子の製造方法
JPWO2021095806A1 (ja) * 2019-11-12 2021-05-20
JPWO2021140905A1 (ja) * 2020-01-06 2021-07-15
JP2021518874A (ja) * 2019-01-07 2021-08-05 エルジー・ケム・リミテッド 高吸水性樹脂およびその製造方法
JP2021178982A (ja) * 2014-01-10 2021-11-18 小松マテーレ株式会社 繊維強化樹脂材料及びそれを用いた繊維強化樹脂成形体
JP2022504321A (ja) * 2019-09-18 2022-01-13 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
WO2022065365A1 (ja) 2020-09-25 2022-03-31 株式会社日本触媒 吸水性樹脂粉末の製造方法
WO2022181771A1 (ja) 2021-02-26 2022-09-01 株式会社日本触媒 粒子状吸水剤、該吸水剤を含む吸収体及び該吸収体を用いた吸収性物品
WO2022239723A1 (ja) 2021-05-12 2022-11-17 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
US11535689B2 (en) 2015-06-19 2022-12-27 Nippon Shokubai Co., Ltd. Poly (meth) acrylic acid (salt)-based particulate water-absorbing agent and production method therefor
US12030997B2 (en) 2018-05-16 2024-07-09 Nippon Shokubai Co., Ltd. Method for producing water-absorbent resin particles

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3412710B1 (en) 2016-12-23 2021-11-10 LG Chem, Ltd. Method for producing porous superabsorbent polymer
KR102086052B1 (ko) 2016-12-27 2020-03-06 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
EP3661986B1 (en) * 2017-08-04 2022-05-11 Röhm GmbH Concrete flow improvers and water reducers
KR102566942B1 (ko) 2017-10-27 2023-08-14 주식회사 엘지화학 고흡수성 수지의 제조 방법
WO2019083211A1 (ko) * 2017-10-27 2019-05-02 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR102498238B1 (ko) 2017-12-14 2023-02-08 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
JP6352563B1 (ja) * 2018-01-22 2018-07-04 株式会社大貴 生ゴミ処理材及びその製造方法、並びに生ゴミの処理方法
CN108854996A (zh) * 2018-06-11 2018-11-23 江苏久吾高科技股份有限公司 一种铝盐吸附剂及其在盐湖卤水提锂中的用途
CN112512476A (zh) * 2018-08-01 2021-03-16 巴斯夫欧洲公司 流体吸收芯
JP7273067B2 (ja) * 2019-01-11 2023-05-12 株式会社日本触媒 吸水性樹脂を主成分とする吸水剤及びその製造方法
KR20210139288A (ko) * 2019-03-08 2021-11-22 스미토모 세이카 가부시키가이샤 흡수성 수지 입자 및 그 제조 방법
KR20210137070A (ko) * 2019-03-08 2021-11-17 스미토모 세이카 가부시키가이샤 흡수체, 흡수성 물품, 및 침투 속도의 조정 방법
CN113491788B (zh) * 2020-03-20 2023-07-04 山东威高宏瑞医学科技有限公司 用于消化道创面的组合物以及消化道创面凝胶
JP2023534821A (ja) * 2021-01-18 2023-08-14 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142714A (ja) * 2003-02-10 2008-06-26 Nippon Shokubai Co Ltd 吸水剤
WO2012102406A1 (ja) * 2011-01-28 2012-08-02 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2014021388A1 (ja) * 2012-08-01 2014-02-06 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末を用いた吸水剤及びその製造方法

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US416457A (en) 1889-12-03 Separable pulley
DE3239476C2 (de) 1981-10-26 1984-06-20 Arakawa Kagaku Kogyo K.K., Osaka Verfahren zur Herstellung eines festen, trockenen und wasserabsorbierenden harzes
JPH01318021A (ja) 1988-06-17 1989-12-22 Kazuo Saotome 吸水性樹脂成形物の製造方法
US5002986A (en) 1989-02-28 1991-03-26 Hoechst Celanese Corporation Fluid absorbent compositions and process for their preparation
JP2938920B2 (ja) 1990-01-31 1999-08-25 住友精化株式会社 吸水性樹脂の製造方法
US5124188A (en) 1990-04-02 1992-06-23 The Procter & Gamble Company Porous, absorbent, polymeric macrostructures and methods of making the same
KR100200238B1 (ko) 1990-04-02 1999-06-15 제이코버스 코넬리스 레이서 입자간 가교결합 응집체를 함유하는 미립상 흡수성 중합체 조성물
SK279288B6 (sk) 1991-04-12 1998-09-09 The Procter & Gamble Company Absorpčný výrobok na pohlcovanie telesných kvapalí
US5154713A (en) 1991-10-22 1992-10-13 Nalco Chemical Company Enhancing absorption rates of superabsorbents by incorporating a blowing agent
CA2114815C (en) 1993-02-24 2005-06-14 Mark Kevin Melius Absorbent composite
US5338766A (en) 1993-03-26 1994-08-16 The Procter & Gamble Company Superabsorbent polymer foam
IL110134A (en) 1993-07-09 1998-07-15 Stockhausen Chem Fab Gmbh Polymers capable of adsorbing aqueous liquids and body fluids, their preparation and use
US5451613A (en) 1993-09-17 1995-09-19 Nalco Chemical Company Superabsorbent polymer having improved absorption rate and absorption under pressure
US5314420A (en) 1993-09-17 1994-05-24 Nalco Chemical Company Superabsorbent polymer having improved absorption rate and absorption under pressure
DE4344224A1 (de) 1993-12-23 1995-06-29 Stockhausen Chem Fab Gmbh Vernetzte synthetische Polymerisate mit poröser Struktur, hoher Aufnahmegeschwindigkeit für Wasser, wäßrige Lösungen und Körperflüssigkeiten, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Absorption und/oder Retention von Wasser und/oder wäßrigen Flüssigkeiten
US5830543A (en) 1994-05-30 1998-11-03 Nippon Shokubai Co., Ltd. Gelling material for aqueous fluids
JP3942660B2 (ja) 1994-05-30 2007-07-11 株式会社日本触媒 吸水性樹脂粒子および水性液体のゲル化材
WO1995034377A1 (fr) 1994-06-13 1995-12-21 Nippon Shokubai Co., Ltd. Produit absorbant l'eau, son procede de production, et article absorbant le renfermant
KR100269980B1 (ko) 1994-10-26 2000-10-16 다나카 쇼소 흡수성수지조성물및그제조방법
CN1071356C (zh) 1994-12-08 2001-09-19 株式会社日本触媒 吸水性树脂及其制造方法以及吸水性树脂组合物
TW522024B (en) 1995-09-01 2003-03-01 Nippon Catalytic Chem Ind Absorbing agent composite, absorbent material, and absorbent product containing absorbent material
DE19540951A1 (de) 1995-11-03 1997-05-07 Basf Ag Wasserabsorbierende, schaumförmige, vernetzte Polymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung
WO1997024394A1 (en) 1995-12-27 1997-07-10 Nippon Shokubai Co., Ltd. Water absorbent and process and equipment for the production thereof
FR2744456A1 (fr) * 1996-02-07 1997-08-08 Atochem Elf Sa Polymeres superabsorbants a structure coeur-coquille et leur procede d'obtention
US6107358A (en) 1996-08-23 2000-08-22 Nippon Shokubai Co., Ltd. Water-absorbent resin and method for production thereof
US6228930B1 (en) 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
US6124391A (en) 1998-08-18 2000-09-26 Stockhausen Gmbh & Co. Kg Superabsorbent polymers having anti-caking characteristics
US6297335B1 (en) 1999-02-05 2001-10-02 Basf Aktiengesellschaft Crosslinked, hydrophilic, highly swellable hydrogels, production thereof and use thereof
DE19909214A1 (de) 1999-03-03 2000-09-07 Basf Ag Wasserabsorbierende, schaumförmige, vernetzte Polymerisate mit verbesserter Verteilungswirkung, Verfahren zu ihrer Herstellung und ihre Verwendung
JP4991084B2 (ja) 2001-01-19 2012-08-01 ビーエーエスエフ ソシエタス・ヨーロピア 水吸収剤、その製造法および該水吸収剤の使用
JP2003082250A (ja) 2001-06-27 2003-03-19 San-Dia Polymer Ltd 吸水性樹脂組成物及びその製造法
US6939914B2 (en) 2002-11-08 2005-09-06 Kimberly-Clark Worldwide, Inc. High stiffness absorbent polymers having improved absorbency rates and method for making the same
DE10231356B4 (de) 2002-07-11 2007-02-15 Stockhausen Gmbh Wasserabsorbierende, schaumförmige Polymergebilde, Verfahren zu deren Herstellung, deren Verwendung sowie daraus hergestellte Verbunde
BRPI0403938A (pt) 2003-02-10 2005-03-01 Nippon Catalytic Chem Ind Absorvente de água particulado contendo resina absorvente de água como principal componente, método de produzir um absorvente de água particulado e material sanitário para absorver fluido corporal
EP2221068A2 (en) 2003-06-30 2010-08-25 The Procter & Gamble Company Absorbent structures comprising coated super-absorbent polymer articles
DE10334271B4 (de) 2003-07-25 2006-02-23 Stockhausen Gmbh Verfahren zur Agglomeration von Superabsorberfeinteilchen, daraus erhältliche Superabsorberpartikel, deren Verwendung sowie diese beinhaltende Verbunde
US7163966B2 (en) 2003-12-19 2007-01-16 Stockhausen, Inc. Superabsorbent polymer having increased rate of water absorption
JP2006055833A (ja) * 2004-03-29 2006-03-02 Nippon Shokubai Co Ltd 吸水性樹脂を主成分とする粒子状吸水剤
EP1730219B1 (en) 2004-03-29 2016-02-03 Nippon Shokubai Co.,Ltd. Particulate water absorbing agent with water-absorbing resin as main component
WO2006078046A2 (en) 2005-01-18 2006-07-27 Nippon Shokubai Co., Ltd. Water absorbent and method for production thereof
EP1837348B9 (en) 2006-03-24 2020-01-08 Nippon Shokubai Co.,Ltd. Water-absorbing resin and method for manufacturing the same
CN102698719B (zh) 2006-03-27 2016-04-27 株式会社日本触媒 吸水剂、使用所述吸水剂的吸水芯片以及制备吸水剂的方法
WO2008108277A1 (ja) * 2007-03-01 2008-09-12 Nippon Shokubai Co., Ltd. 吸水性樹脂を主成分とする粒子状吸水剤
WO2009062902A2 (de) 2007-11-15 2009-05-22 Basf Se Superabsorbierender schaum mit grafischen zeichen an der oberfläche
JP5600670B2 (ja) 2009-02-17 2014-10-01 株式会社日本触媒 ポリアクリル酸系吸水性樹脂粉末およびその製造方法
EP2484439B1 (en) 2009-09-29 2022-12-14 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
JP5647625B2 (ja) 2009-12-24 2015-01-07 株式会社日本触媒 ポリアクリル酸系吸水性樹脂粉末及びその製造方法
CN102822209B (zh) 2010-04-07 2014-09-03 株式会社日本触媒 聚丙烯酸(盐)系吸水性树脂粉末的制造方法、聚丙烯酸(盐)系吸水性树脂粉末
EP2565219B1 (en) 2010-04-27 2018-06-27 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbent resin powder
US9074030B2 (en) 2010-06-30 2015-07-07 Nippon Shokubai Co., Ltd. Polyacrylic acid-type water absorbent resin and method for producing same
SG187061A1 (en) 2010-08-19 2013-02-28 Sumitomo Seika Chemicals Water-absorbing resin
CN109225176A (zh) * 2010-09-30 2019-01-18 株式会社日本触媒 颗粒状吸水剂及其制造方法
JP5722921B2 (ja) * 2011-01-28 2015-05-27 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
KR101992816B1 (ko) 2011-06-29 2019-06-25 가부시기가이샤 닛뽕쇼꾸바이 폴리아크릴산(염)계 흡수성 수지 분말 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142714A (ja) * 2003-02-10 2008-06-26 Nippon Shokubai Co Ltd 吸水剤
WO2012102406A1 (ja) * 2011-01-28 2012-08-02 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2014021388A1 (ja) * 2012-08-01 2014-02-06 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末を用いた吸水剤及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3112022A1 *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021178982A (ja) * 2014-01-10 2021-11-18 小松マテーレ株式会社 繊維強化樹脂材料及びそれを用いた繊維強化樹脂成形体
US11958921B2 (en) 2015-06-19 2024-04-16 Nippon Shokubai Co., Ltd. Poly (meth) acrylic acid (salt)-based particulate water-absorbing agent and production method therefor
US11535689B2 (en) 2015-06-19 2022-12-27 Nippon Shokubai Co., Ltd. Poly (meth) acrylic acid (salt)-based particulate water-absorbing agent and production method therefor
US10632451B2 (en) 2016-03-24 2020-04-28 Lg Chem, Ltd. Method for preparing superabsorbent polymer and superabsorbent polymer prepared thereby
US11071968B2 (en) 2016-03-24 2021-07-27 Lg Chem, Ltd. Method for preparing superabsorbent polymer and superabsorbent polymer prepared thereby
WO2017164462A1 (ko) * 2016-03-24 2017-09-28 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이로부터 제조된 고흡수성 수지
KR20180128463A (ko) 2016-03-28 2018-12-03 가부시키가이샤 닛폰 쇼쿠바이 입자상 흡수제
US11224857B2 (en) 2016-03-28 2022-01-18 Nippon Shokubai Co., Ltd. Method for manufacturing water absorbing agent
WO2017170605A1 (ja) 2016-03-28 2017-10-05 株式会社日本触媒 粒子状吸水剤
EP3437732B1 (en) 2016-03-28 2022-05-11 Nippon Shokubai Co., Ltd. Particulate water absorbing agent
JPWO2017170604A1 (ja) * 2016-03-28 2019-02-28 株式会社日本触媒 吸水剤の製造方法
US10562006B2 (en) 2016-03-28 2020-02-18 Nippon Shokubai Co., Ltd. Particulate water absorbing agent
US11766659B2 (en) 2016-11-16 2023-09-26 Nippon Shokubai Co., Ltd. Method for producing water-absorbent resin powder, and drying device and drying method for particulate hydrous gel
WO2018092864A1 (ja) 2016-11-16 2018-05-24 株式会社日本触媒 吸水性樹脂粉末の製造方法及びその製造装置
WO2018092863A1 (ja) 2016-11-16 2018-05-24 株式会社日本触媒 吸水性樹脂粉末の製造方法、並びに粒子状含水ゲルの乾燥装置及び乾燥方法
US11465126B2 (en) 2016-11-16 2022-10-11 Nippon Shokubai Co., Ltd. Method for producing water-absorbent resin powder and production apparatus therefor
JP2019518815A (ja) * 2016-12-26 2019-07-04 エルジー・ケム・リミテッド 多孔性高吸水性樹脂の製造方法
JP2018131558A (ja) * 2017-02-16 2018-08-23 Sdpグローバル株式会社 吸水性樹脂粒子及びその製造方法
WO2018155591A1 (ja) 2017-02-22 2018-08-30 株式会社日本触媒 吸水性シート、長尺状吸水性シートおよび吸収性物品
US11633717B2 (en) 2017-10-12 2023-04-25 Nippon Shokubai Co., Ltd. Measurement method for properties of particulate absorbent agent, and particulate absorbent agent
KR20220080210A (ko) 2017-10-12 2022-06-14 가부시키가이샤 닛폰 쇼쿠바이 입자상 흡수제의 물성의 측정 방법 및 입자상 흡수제
KR20200067857A (ko) 2017-10-12 2020-06-12 가부시키가이샤 닛폰 쇼쿠바이 입자상 흡수제의 물성의 측정 방법 및 입자상 흡수제
EP4113099A2 (en) 2017-10-12 2023-01-04 Nippon Shokubai Co., Ltd. Particulate absorbent agent
WO2019074094A1 (ja) 2017-10-12 2019-04-18 株式会社日本触媒 粒子状吸水剤の物性の測定方法及び粒子状吸水剤
JPWO2019098244A1 (ja) * 2017-11-16 2020-12-10 株式会社日本触媒 吸水剤および吸収性物品
US11607667B2 (en) 2017-11-16 2023-03-21 Nippon Shokubai Co., Ltd. Absorption agent and absorbent article
WO2019221154A1 (ja) 2018-05-16 2019-11-21 株式会社日本触媒 吸水性樹脂粒子の製造方法
US12030997B2 (en) 2018-05-16 2024-07-09 Nippon Shokubai Co., Ltd. Method for producing water-absorbent resin particles
WO2020122217A1 (ja) * 2018-12-12 2020-06-18 住友精化株式会社 吸水性樹脂粒子、吸収体及び吸収性物品
JP7210082B2 (ja) 2019-01-07 2023-01-23 エルジー・ケム・リミテッド 高吸水性樹脂およびその製造方法
US11718694B2 (en) 2019-01-07 2023-08-08 Lg Chem, Ltd. Super absorbent polymer and preparation method thereof
JP2021518874A (ja) * 2019-01-07 2021-08-05 エルジー・ケム・リミテッド 高吸水性樹脂およびその製造方法
JP2020121090A (ja) * 2019-01-30 2020-08-13 住友精化株式会社 吸水性樹脂粒子、吸収体及び吸収性物品
WO2021049487A1 (ja) * 2019-09-09 2021-03-18 住友精化株式会社 吸水性樹脂粒子、吸収性物品、及び吸水性樹脂粒子の製造方法
WO2021049488A1 (ja) * 2019-09-09 2021-03-18 住友精化株式会社 吸水性樹脂粒子、及び吸収性物品
JP2022504321A (ja) * 2019-09-18 2022-01-13 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
US11613591B2 (en) 2019-09-18 2023-03-28 Lg Chem, Ltd. Method for preparing super absorbent polymer
JP7309255B2 (ja) 2019-09-18 2023-07-18 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
WO2021095806A1 (ja) * 2019-11-12 2021-05-20 株式会社日本触媒 粒子状吸水剤およびその製造方法
JPWO2021095806A1 (ja) * 2019-11-12 2021-05-20
JP7296474B2 (ja) 2019-11-12 2023-06-22 株式会社日本触媒 粒子状吸水剤およびその製造方法
WO2021140905A1 (ja) * 2020-01-06 2021-07-15 株式会社日本触媒 吸収体、吸水性樹脂、及び吸収性物品
JP7387765B2 (ja) 2020-01-06 2023-11-28 株式会社日本触媒 吸収体、吸水性樹脂、及び吸収性物品
JPWO2021140905A1 (ja) * 2020-01-06 2021-07-15
WO2022065365A1 (ja) 2020-09-25 2022-03-31 株式会社日本触媒 吸水性樹脂粉末の製造方法
WO2022181771A1 (ja) 2021-02-26 2022-09-01 株式会社日本触媒 粒子状吸水剤、該吸水剤を含む吸収体及び該吸収体を用いた吸収性物品
WO2022239723A1 (ja) 2021-05-12 2022-11-17 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体

Also Published As

Publication number Publication date
US20170014801A1 (en) 2017-01-19
KR20160127742A (ko) 2016-11-04
EP3112022A1 (en) 2017-01-04
EP3112022A4 (en) 2017-11-01
JP6441894B2 (ja) 2018-12-19
JPWO2015129917A1 (ja) 2017-03-30
CN106029220A (zh) 2016-10-12
CN106029220B (zh) 2020-08-18
US10207250B2 (en) 2019-02-19

Similar Documents

Publication Publication Date Title
JP6441894B2 (ja) ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
JP6460495B2 (ja) ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
JP6385993B2 (ja) ポリアクリル酸(塩)系吸水剤
JP6282669B2 (ja) ポリアクリル酸(塩)系吸水剤及びその製造方法
JP5914677B2 (ja) ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤
JP5022226B2 (ja) 吸水性樹脂の表面処理方法
JP5430620B2 (ja) 吸水性樹脂の製造方法
JP5977839B2 (ja) ポリアクリル酸(塩)系吸水性樹脂およびその製造方法
JP5587348B2 (ja) 吸水性樹脂の製造方法
WO2011024975A1 (ja) ポリアクリル酸(塩)系吸水性樹脂およびその製造方法
JP4879423B2 (ja) 吸水性樹脂の製造方法
WO2014119553A1 (ja) 吸水性樹脂材料及びその製造方法
JP2010502415A (ja) 吸水剤およびその製造方法
JP2016113465A (ja) ポリアクリル酸(塩)系吸水性樹脂及びその製造方法
JP2015016450A (ja) 吸水剤及びその製造方法
JPWO2019124536A1 (ja) 発熱体組成物用吸水性樹脂粉末、及び発熱体組成物
JP2007327008A (ja) 抗菌性吸水性樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15756085

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505362

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167023538

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15122095

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015756085

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201606486

Country of ref document: ID

Ref document number: 2015756085

Country of ref document: EP