WO2022065365A1 - 吸水性樹脂粉末の製造方法 - Google Patents

吸水性樹脂粉末の製造方法 Download PDF

Info

Publication number
WO2022065365A1
WO2022065365A1 PCT/JP2021/034800 JP2021034800W WO2022065365A1 WO 2022065365 A1 WO2022065365 A1 WO 2022065365A1 JP 2021034800 W JP2021034800 W JP 2021034800W WO 2022065365 A1 WO2022065365 A1 WO 2022065365A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
water
mass
hydrogel
crosslinked polymer
Prior art date
Application number
PCT/JP2021/034800
Other languages
English (en)
French (fr)
Inventor
剛 従野
知幸 荒毛
弘喜 林
亮太 若林
雅史 井上
直樹 片倉
芳史 足立
義朗 光上
達也 山口
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to CN202180065434.8A priority Critical patent/CN116323688A/zh
Priority to JP2022552033A priority patent/JPWO2022065365A1/ja
Priority to EP21872494.6A priority patent/EP4219568A1/en
Priority to KR1020237009834A priority patent/KR20230057408A/ko
Priority to US18/028,310 priority patent/US20230372896A1/en
Publication of WO2022065365A1 publication Critical patent/WO2022065365A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0065Preparation of gels containing an organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/481Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with paddles, gears or discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/66Recycling the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/94Liquid charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/875Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling for achieving a non-uniform temperature distribution, e.g. using barrels having both cooling and heating zones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/008Treatment of solid polymer wetted by water or organic solvents, e.g. coagulum, filter cakes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/08Making granules by agglomerating smaller particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing a water-absorbent resin powder.
  • Water-absorbent resin (SAP / Super Absorbent Polymer) is a water-swellable water-insoluble polymer gelling agent, which is an absorbent article such as disposable diapers and menstrual napkins, a water-retaining agent for agriculture and gardening, and a water-stopping agent for industrial use. It is widely used in various fields such as agents.
  • the above-mentioned water-absorbent resin is required to have various functions (high physical characteristics) as the performance of the paper diaper, which is the main use, is improved. Specifically, in addition to the basic physical properties of non-pressurized water absorption ratio and pressurized water absorption ratio, gel strength, water-soluble content, water content, water absorption rate, liquid permeability, particle size distribution, urine resistance, and antibacterial properties. Water-absorbent resins are required to have various physical properties such as damage resistance, powder fluidity, deodorant property, color resistance, low dust, and low residual monomer. In particular, in the use of sanitary products such as disposable diapers, it is desired to further improve the water absorption rate as the product becomes thinner.
  • the commercial method for producing a powdery or particulate water-absorbent resin is typically a polymerization step, a gel pulverization (fine granulation) step performed after or at the same time as the polymerization, and a drying step of the finely divided gel.
  • Patent Document 4 proposes a method of wet pulverizing to a size smaller than the gel particles which is the product particle diameter of the water-absorbent resin by using a batch type kneader or a continuous type kneader, but the device size is excessively large. Therefore, it is not realistic.
  • the highly adhesive water-containing gel in which the polymerization reaction of the monomer is in progress is crushed into gel, the water-containing gel easily adheres to the components inside the apparatus, and the reaction proceeds in the adhered state. Since the water-containing gel sticks to the surface, it may cause damage to the components and require time for cleaning during maintenance.
  • an object of the present invention is to provide a water-absorbent resin having an excellent water-absorbing rate.
  • the present inventors first referred to the hydrogel-like crosslinked polymer as a particulate hydrogel-like crosslinked polymer (hereinafter, also referred to as “particulate hydrogel”) using a conventional extruder (meat chopper) equipped with a porous plate. It has been found that a particulate hydrogel can be continuously obtained by performing gel pulverization using a multi-screw kneader (particularly a biaxial kneader) to obtain (referred to as). Further, they have found that a water-absorbent resin powder having an excellent water absorption rate can be obtained by continuously pulverizing the hydrogel-like crosslinked polymer at 50 ° C. or higher in this pulverization means, and completed the present invention.
  • a particulate hydrogel can be continuously obtained by performing gel pulverization using a multi-screw kneader (particularly a biaxial kneader) to obtain (referred to as).
  • a polymerization step of polymerizing a monomer aqueous solution to obtain a hydrogel-like crosslinked polymer and after the polymerization step, the hydrogel-like crosslinked polymer is pulverized using a gel crushing apparatus.
  • the gel crushing apparatus includes a gel crushing step of obtaining a particulate hydrated gel-like crosslinked polymer and a drying step of drying the particulate hydrated gel-like crosslinked polymer to obtain a dried product.
  • the rotary shaft has a crushing means, and the water-containing gel-like crosslinked polymer is introduced into the inlet in the gel crushing step.
  • the hydrated gel-like crosslinked polymer is continuously pulverized by the crushing means at 50 ° C.
  • the polymerization rate of the hydrous gel-like crosslinked polymer to be charged into the water-containing gel-like crosslinked polymer is 90% by mass or more, and the mass average particle diameter d1 of the particulate hydrogel-like crosslinked polymer discharged from the discharge port in terms of solid content is 3 mm or less.
  • FIG. 1 It is a partially cutaway side view which showed an example of the gel crushing apparatus used in the manufacturing method which concerns on embodiment of this invention. It is an enlarged view of the gel crushing apparatus of FIG. 1 (the view which looked at the central part of the main body from above). It is a flow diagram for demonstrating a typical manufacturing process of a water-absorbent resin.
  • Water-absorbent resin refers to a water-swellable water-insoluble polymer gelling agent, and refers to a resin that satisfies the following physical properties. That is, the CRC (centrifugator holding capacity) specified by ERT441.2-02 as water swellability is 5 g / g or more, and the Ext (water soluble) specified by ERT470.2-02 as water insoluble. Minutes) refers to a polymer gelling agent having a content of 50% by mass or less.
  • CRC centrifugator holding capacity
  • Ext water soluble
  • ERT470.2-02 water insoluble. Minutes
  • the water-absorbent resin can be designed according to its use and purpose, and is not particularly limited, but is preferably a hydrophilic crosslinked polymer obtained by cross-linking and polymerizing an unsaturated monomer having a carboxyl group.
  • the composition is not limited to the form in which the total amount is a crosslinked polymer, and may be a composition containing additives and the like as long as each of the above physical characteristics (CRC, Ext) satisfies the above numerical range.
  • the "water-absorbent resin” in the present invention may be surface-crosslinked (also known as post-crosslinked; secondary crosslinked) or may not be surface-crosslinked.
  • the “water-absorbent resin powder” refers to a powdery water-absorbent resin, preferably a water-absorbent resin adjusted to a predetermined solid content (moisture content) and particle size (particle size). Is. Further, the water-absorbent resin powder for which the predetermined surface cross-linking treatment has been completed may be separately referred to as a surface-crosslinked (post-crosslinked) water-absorbent resin powder or a water-absorbing agent.
  • Poly (meth) acrylic acid (salt) refers to poly (meth) acrylic acid and / or a salt thereof, and has (meth) acrylic acid and / or a salt thereof as a main component (hereinafter, "(meth) acrylic acid (salt)”.
  • Acrylic acid (salt) ”) as a repeating unit, and means a crosslinked polymer containing a graft component as an optional component.
  • main component means that the amount (content) of (meth) acrylic acid (salt) used is preferably 50 with respect to the entire monomer used for the polymerization (all monomers excluding the cross-linking agent). It means that it is mol% to 100 mol%, more preferably 70 mol% to 100 mol%, further preferably 90 mol% to 100 mol%, and particularly preferably substantially 100 mol%.
  • poly (meth) acrylate may be unneutralized, but is preferably a partially or completely neutralized poly (meth) acrylate, more preferably a monovalent salt. It is more preferably an alkali metal salt or an ammonium salt, still more preferably an alkali metal salt, and particularly preferably a sodium salt.
  • EDANA is an abbreviation for European Disposables and Nonwovens Associations.
  • ERT is an abbreviation for EDANA Recommended Test Methods, and is a European standard that defines an evaluation method for a water-absorbent resin.
  • the measurement method described in the original ERT is measured in accordance with the measurement method.
  • the method and conditions described in the examples are used for measurement.
  • CRC is an abbreviation for Centrifuge Retention Capacity (centrifuge holding capacity), and means a water absorption ratio (sometimes referred to as a "water absorption ratio") of a water-absorbent resin under no pressure. Specifically, 0.2 g of the water-absorbent resin is placed in a bag made of a non-woven fabric, and then immersed in a large excess of 0.9 mass% sodium chloride aqueous solution for 30 minutes for free swelling, and then a centrifuge (250 G). ) For 3 minutes, the water absorption ratio (unit: g / g) after draining. For the hydrous gel after polymerization and / or gel pulverization, 0.4 g of hydrogel is used, the measurement time is changed to 24 hours, and the solid content is corrected to obtain CRC.
  • “Moisture Content” (ERT430.2-02) “Moisture Content” means the moisture content defined by the drying weight loss of the water-absorbent resin. Specifically, it refers to a value (unit: mass%) calculated from the loss on drying when 4.0 g of the water-absorbent resin is dried at 105 ° C. for 3 hours.
  • the water-absorbent resin after drying is defined by a drying weight loss of 1.0 g of the water-absorbent resin at 180 ° C. for 3 hours
  • the water-containing gel before drying is defined as 180 ° C. of 2.0 g of the water-containing gel. , 24 hours dry weight loss.
  • PSD is an abbreviation for Particle Size Distribution, and means the particle size distribution of the water-absorbent resin measured by sieving classification.
  • the mass average particle size (D50) and the logarithmic standard deviation ( ⁇ ) of the particle size distribution are measured by the same method as described in US Pat. No. 7,638,570.
  • the particle size distribution (PSD) of the particulate hydrogel is defined by wet sieving classification by the method described later.
  • the particle size ( ⁇ m) in terms of solid content of the particulate hydrogel is defined by the calculation method described later from the particle size ( ⁇ m) of the particulate hydrogel and its solid content ratio (mass%).
  • AAP is an abbreviation for Absorption against Pressure, and means the water absorption ratio under pressure of the water-absorbent resin. Specifically, 0.9 g of the water-absorbent resin was swollen with a large excess of 0.9 mass% sodium chloride aqueous solution for 1 hour under a load of 2.06 kPa (21 g / cm 2 , 0.3 psi). It refers to the subsequent water absorption ratio (unit: g / g). In the present specification, it is defined as a value measured by changing the load condition to 4.83 kPa (about 49 g / cm 2 , corresponding to about 0.7 psi).
  • Vortex in the present specification is an index showing the water absorption rate of the water-absorbent resin, and is the time required for 2 g of the water-absorbent resin to absorb 50 ml of a 0.9 mass% sodium chloride aqueous solution to a predetermined state. It means (unit; second).
  • gel crushing refers to a hydrogel crosslinked polymer obtained in a polymerization step (preferably aqueous solution polymerization, non-stirring aqueous aqueous polymerization (static aqueous solution polymerization), particularly preferably belt polymerization).
  • a polymerization step preferably aqueous solution polymerization, non-stirring aqueous aqueous polymerization (static aqueous solution polymerization), particularly preferably belt polymerization.
  • the shape of the water-containing gel obtained may differ depending on the type of the polymerization machine.
  • the shape of the hydrogel obtained by static polymerization is sheet-like or block-like.
  • the sheet shape is a polymer having a thickness on a flat surface, and the thickness thereof is preferably 1 mm to 30 cm, particularly preferably 0.5 to 10 cm.
  • the sheet-like hydrogel is typically obtained by belt polymerization, drum polymerization and batch thin film polymerization. The length and width of the sheet-like hydrogel is appropriately determined by the size of the polymerization apparatus used.
  • a sheet-like hydrogel having an endless length is obtained, and the width thereof is the width of the belt or drum of the polymerization apparatus, preferably 0.1 to. It is 10 m, more preferably 1 to 5 m.
  • This endless sheet-like hydrogel may be used by appropriately cutting in the length direction after polymerization.
  • the block-shaped hydrogel is obtained by tank polymerization or the like. This block-shaped hydrogel may be appropriately crushed into several cm to several m squares after polymerization.
  • the polymerization step is completed when the polymerization rate reaches the range described later.
  • the operation of pulverizing a hydrogel having been granulated to some extent by a method such as kneader polymerization to a particle size of the level required in the present invention is included in the concept of "gel pulverization" in the present invention.
  • XY indicating a range means “X or more and Y or less”.
  • t (ton) which is a unit of mass, means “metric ton”
  • ppm means “mass ppm” or “weight ppm”.
  • mass and weight means “mass part” and “weight part”, and “mass%” and “weight%” are treated as synonyms, respectively.
  • -acid (salt) means “-acid and / or a salt thereof
  • (meth) acrylic means “acrylic and / or methacrylic”.
  • the method for producing water-absorbent resin powder according to the present invention includes a polymerization step, a gel crushing step and a drying step separate from this polymerization step.
  • this production method further includes a cooling step, a drying step, a classification step, a surface cross-linking step, and a sizing step after the surface cross-linking (see FIG. 3).
  • a step of preparing a monomer aqueous solution, a step of adding various additives, a step of removing fine powder, a step of recycling fine powder (a step of recovering fine powder), and a filling step may be included.
  • various known steps can be included depending on the purpose.
  • a hydrogel crosslinked polymer having a polymerization rate of 90% by mass or more is gel-pulverized using a kneader having a plurality of axes (particularly a twin-screw kneader) to convert into solid content.
  • a kneader having a plurality of axes particularly a twin-screw kneader
  • an absorbent resin having an excellent water absorption rate can be obtained.
  • main component means that the amount (content) of the acid group-containing unsaturated monomer used is the entire monomer (excluding the internal cross-linking agent) subjected to the polymerization reaction of the water-absorbent resin. It means that it is usually 50 mol% or more, preferably 70 mol% or more, more preferably 90 mol% or more (upper limit is 100 mol%).
  • the acid group specified in the present invention is not particularly limited, and examples thereof include a carboxyl group, a sulfone group, and a phosphoric acid group.
  • this acid group-containing unsaturated monomer include (meth) acrylic acid, (anhydrous) maleic acid, itaconic acid, silicic acid, vinyl sulfonic acid, allyltoluene sulfonic acid, vinyl toluene sulfonic acid, and styrene sulfonic acid.
  • the monomer other than the acid group-containing unsaturated monomer may be a compound that can be polymerized to become a water-absorbent resin.
  • amide group-containing unsaturated monomers such as (meth) acrylamide, N-ethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide; N, N-dimethylaminoethyl (meth) acrylate, N, N.
  • -Amino group-containing unsaturated monomers such as dimethylaminopropyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide; mercapto group-containing unsaturated monomers; phenolic hydroxyl group-containing unsaturated monomers; Examples thereof include lactam group-containing unsaturated monomers such as N-vinylpyrrolidone.
  • a neutralized salt in which a part or all of the acid groups contained in the acid group-containing unsaturated monomer is neutralized can be used.
  • the salt of the acid group-containing unsaturated monomer is preferably a salt with a monovalent cation, and more preferably at least one selected from an alkali metal salt, an ammonium salt and an amine salt.
  • Alkali metal salts are even more preferred, at least one selected from sodium salts, lithium salts and potassium salts is even more preferred, and sodium salts are particularly preferred.
  • the neutralizing agent used to neutralize the acid group-containing unsaturated monomer is not particularly limited, but is an inorganic salt such as sodium hydroxide, potassium hydroxide, sodium carbonate, ammonium carbonate, or an amino group.
  • a basic substance such as an amine-based organic compound having an imino group or an imino group is appropriately selected and used. Two or more basic substances may be used in combination as a neutralizing agent.
  • the monomer in the present invention is a concept containing a neutralizing salt unless otherwise specified.
  • the number of moles of the neutralizing salt (hereinafter referred to as "neutralization rate") with respect to the total number of moles of the acid group-containing unsaturated monomer and its neutralizing salt is preferably 40 mol% or more. It is more preferably 40 mol% to 80 mol%, further preferably 45 mol% to 78 mol%, and particularly preferably 50 mol% to 75 mol%.
  • a method for adjusting the neutralization rate a method of mixing an acid group-containing unsaturated monomer and a neutralizing salt thereof; a method of adding a known neutralizing agent to the acid group-containing unsaturated monomer; A method using a partially neutralized salt of an acid group-containing unsaturated monomer adjusted to a predetermined neutralization rate (that is, a mixture of an acid group-containing unsaturated monomer and the neutralized salt thereof); and the like can be mentioned. .. Moreover, you may combine these methods.
  • the neutralization rate may be adjusted before the start of the polymerization reaction of the acid group-containing unsaturated monomer, during the polymerization reaction of the acid group-containing unsaturated monomer, or the acid group-containing unsaturated monomer. This may be performed on the hydrogel-like crosslinked polymer obtained after the completion of the polymerization reaction of the unsaturated monomer. Further, the neutralization rate may be adjusted by selecting one of the steps before the start of the polymerization reaction, during the polymerization reaction, or after the completion of the polymerization reaction, or the neutralization rate may be adjusted in a plurality of steps.
  • the medium is preferably used before the start of the polymerization reaction and / or during the polymerization reaction, more preferably before the start of the polymerization reaction.
  • the sum ratio may be adjusted.
  • an internal cross-linking agent In the method for producing the water-absorbent resin powder, an internal cross-linking agent is preferably used.
  • the internal cross-linking agent adjusts the water absorption performance of the obtained water-absorbent resin, the gel strength at the time of water absorption, and the like.
  • the internal cross-linking agent may have a total of two or more unsaturated bonds or reactive functional groups in one molecule.
  • an internal cross-linking agent having a plurality of polymerizable unsaturated groups which can be copolymerized with a monomer
  • N, N-methylenebis (meth) acrylamide polymerizable unsaturated groups (which can be copolymerized with a monomer) in the molecule
  • polymerizable unsaturated groups which can be copolymerized with a monomer
  • Poly Propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, glycerin (meth) acrylate, glycerin acrylate methacrylate, ethylene oxide-modified trimethylolpropane tri (meth) acrylate, pentaerythritol hexa (meth) acrylate, tri.
  • Examples thereof include allyl cyanurate, triallyl isocyanurate, and triallyl phosphate.
  • an internal cross-linking agent having a plurality of reactive functional groups which can react with a monomer functional group (eg, carboxy group)) in the molecule, triallylamine, polyaryloxyalkane, (poly) ethylene glycol diglycidyl ether, etc.
  • Examples thereof include glycerol diglycidyl ether, ethylene glycol, polyethylene glycol, propylene glycol, glycerin, 1,4-butanediol, pentaerythritol, ethylenediamine, ethylene carbonate, propylene carbonate, polyethyleneimine and the like (here, ethylene carbonate and the like).
  • Cyclic carbonate is a cross-linking agent that further produces functional group OH by reaction with a carboxyl group).
  • examples of the internal cross-linking agent having a polymerizable unsaturated group and a reactive functional group in the molecule include glycidyl (meth) acrylate and the like. Of these, two or more may be used in combination.
  • a compound having a plurality of polymerization unsaturated groups in the molecule is preferable, and a compound having a (poly) alkylene structural unit in the molecule is more preferable.
  • the water-containing gel obtained by using these internal cross-linking agents has low adhesiveness. Drying this water-containing gel with low adhesiveness is preferable because fusion and aggregation during drying can be reduced.
  • the amount of the internal cross-linking agent used is appropriately set according to the type of the monomer and the internal cross-linking agent and the like. From the viewpoint of the gel strength of the obtained water-absorbent resin, it is preferably 0.001 mol% or more, more preferably 0.005 mol% or more, still more preferably 0.01 mol% or more with respect to the monomer. Further, from the viewpoint of improving the water absorption performance of the water-absorbent resin, it is preferably 5 mol% or less, more preferably 2 mol% or less. It is not necessary to use the internal cross-linking agent under the polymerization conditions in which the self-cross-linking reaction of the monomer is effective.
  • the monomer used for the polymerization preferably contains a small amount of a polymerization inhibitor because of the stability of the polymerization.
  • a preferred polymerization inhibitor is p-methoxyphenol.
  • the amount of the polymerization inhibitor contained in the monomer (particularly acrylic acid and its salt) is usually 1 ppm to 250 ppm, preferably 10 ppm to 160 ppm, and more preferably 20 ppm to 80 ppm.
  • a substance exemplified below (hereinafter referred to as “other substance”) may be added to the aqueous monomer solution within the range in which the object of the present invention is achieved.
  • chain transfer agents such as thiols, thiolic acids, secondary alcohols, amines and hypophosphites; foaming agents such as carbonates, bicarbonates, azo compounds and bubbles; ethylenediamine.
  • Chelating agents such as tetra (methylenephosphinic acid) and its metal salt, ethylenediamine 4acetic acid and its metal salt, diethylenetriamine-5acetic acid and its metal salt; polyacrylic acid (salt) and crosslinked products thereof (eg, recycled water-absorbent resin).
  • Fine powder starch, cellulose, starch-cellulose derivative, hydrophilic polymers such as polyvinyl alcohol, and the like.
  • Other substances may be used alone or in combination of two or more.
  • the amount of other substances used is not particularly limited, but is 30% by mass or less based on the monomer in the recycled fine powder, and the total concentration of the other substances other than the fine powder is preferably 10 with respect to the monomer. It is 0% by mass or less, more preferably 0.001% by mass to 5% by mass, and particularly preferably 0.01% by mass to 1% by mass.
  • the polymerization initiator used in the present invention is appropriately selected depending on the polymerization form and the like, and is not particularly limited. Examples thereof include a redox-based polymerization initiator in which a reducing agent that promotes the decomposition of the agent is used in combination. Specifically, one or more of the polymerization initiators disclosed in US Pat. No. 7,265,190 are used. From the viewpoint of the handleability of the polymerization initiator and the physical properties of the water-absorbent resin, a peroxide or an azo compound is preferably used, more preferably a peroxide, and still more preferably a persulfate.
  • the amount of the polymerization initiator used is preferably 0.001 mol% to 1 mol%, more preferably 0.001 mol% to 0.5 mol%, based on the monomer.
  • the amount of the reducing agent used in combination with the oxidizing agent is preferably 0.0001 mol% to 0.02 mol% with respect to the monomer.
  • the dissolved oxygen in the aqueous monomer solution before polymerization may be reduced by raising the temperature or substituting with an inert gas.
  • the dissolved oxygen is preferably reduced to 5 ppm or less, more preferably 3 ppm or less, and particularly preferably 1 ppm or less.
  • bubbles can be dispersed in the monomer aqueous solution.
  • foam polymerization occurs in the polymerization reaction.
  • This step is a step of polymerizing the monomer aqueous solution to obtain a hydrogel-like crosslinked polymer.
  • it is a step of obtaining a water-containing gel which is a crosslinked product containing poly (meth) acrylic acid (salt) as a main component.
  • the polymerization form is batch type or continuous type aqueous solution polymerization. Further, belt polymerization or kneader polymerization may be used. Further, continuous aqueous solution polymerization is more preferable, and both continuous belt polymerization and continuous kneader polymerization are applied.
  • continuous belt polymerization is referred to in US Pat. No. 4,893999, No. 624,928, US Patent Application Publication No. 2005/215734, etc.
  • continuous kneader polymerization is referred to in US Pat. No. 6,987,151, No. 6710141, etc. , Each is disclosed. By adopting these continuous aqueous solution polymerizations, the production efficiency of the water-absorbent resin is improved.
  • high temperature start polymerization and “high concentration polymerization” are mentioned as a preferable form of the said continuous aqueous solution polymerization.
  • the “high temperature start polymerization” means that the temperature of the monomer aqueous solution is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, further preferably 40 ° C. or higher, and particularly preferably 50 ° C. or higher (upper limit is the boiling point).
  • “High-concentration polymerization” refers to a form in which the monomer concentration is preferably 30% by mass or more, more preferably 35% by mass or more, still more preferably 40% by mass or more, and particularly preferably 45% by mass or more. It refers to a form in which polymerization is carried out at (the upper limit is the saturation concentration).
  • the polymerization rate of the water-containing gel-like crosslinked polymer obtained in the polymerization step is 90% by mass or more. It is preferably 95% by mass or more, more preferably 98% by mass or more, and particularly preferably 99% by mass or more.
  • gel pulverization is performed in a state where the polymerization rate is low (that is, a state where the polymerization rate is less than 90% by mass) (for example, when polymerization and gel pulverization are performed simultaneously as in kneader polymerization), the pulverized gel particles are contained.
  • the upper limit of the polymerization rate is not particularly limited, and 100% by mass is ideal. However, a high polymerization rate requires a long polymerization time and strict polymerization conditions, which may lead to a decrease in productivity and physical properties.
  • the upper limit is 99.95% by mass, further 99.9% by mass, and usually about 99.8% by mass is sufficient.
  • the polymerization rate of the water-containing gel-like crosslinked polymer obtained in the polymerization step is 98 to 99.99% by mass.
  • the shredding step is an arbitrary step of cutting or coarsely crushing the hydrous gel-like crosslinked polymer into a size that can be put into a gel crushing apparatus after the polymerization step and before the gel crushing step. ..
  • the hydrogel-like crosslinked polymer obtained after the polymerization step is in the form of a sheet, and a shredding step of shredding the sheet-like hydrogel-like crosslinked polymer is performed before the gel crushing step. Further included.
  • the means for cutting or coarsely crushing the water-containing gel in the shredding step is not particularly limited, and a rotary cutter, a roller cutter, a guillotine cutter, or the like is used.
  • the size of the shredded gel is not particularly limited as long as it can be put into the gel crushing apparatus described later, but the size of the hydrogel after shredding is preferably 1 mm to 3 m, more preferably 5 mm to 2.5 m. It is particularly preferably 1 cm to 2 m. When the object of the present invention is achieved, it is not necessary to carry out the shredding step.
  • a gel crushing device having an input port, a main body having a plurality of rotating shafts, and a discharge port is used.
  • Each axis of rotation has a crushing means.
  • the hydrogel-like crosslinked polymer continuously charged into the main body from the charging port is pulverized at 50 ° C. or higher by the pulverizing means of each rotation axis to form a particulate hydrogel-like crosslinked polymer. , Is taken out continuously from the outlet.
  • the main body means a body portion (reference numeral 208 in FIG. 1) in which a plurality of rotating shafts and crushing means are installed, and is also referred to as a barrel, a trough, a casing, or the like.
  • the gel crushing apparatus used in the production method according to the present invention may be a vertical type (the traveling direction of the water-containing gel is in the vertical direction) as long as it is a continuous type, and may be a horizontal type or a horizontal type (the traveling direction of the water-containing gel is in the horizontal direction). Or it may be horizontal). Further, in the vertical type and horizontal type gel crushing apparatus, it may have an inclination of 0 ° to 90 ° with respect to the horizontal direction. For example, in the case of the horizontal continuous pulverizer shown in FIG. 1, an inclination is appropriately provided as needed, and the inclination is from the inlet to the outlet (that is, with respect to the traveling direction of the hydrogel). It may be downward or upward. Usually, the inclination angle is 0 ° to 10 °, preferably 0 ° to 1 °, and particularly preferably 0 °.
  • the hydrous gel is substantially crushed near the die installed at the extrusion port, and most of the gel is in the screw portion related to the transfer of the hydrogel. No crushing is done.
  • the gel crushing device particularly, the kneader
  • the particles are crushed by the crushing means of the rotating shaft until the charged water-containing gel reaches the discharge port. It is characterized by being crushed to a diameter of 3 mm or less.
  • this gel crushing device the hydrous gel charged from the charging port is crushed to the target particle size before being discharged from the discharging port. Therefore, in this gel crushing device, unlike a conventional extruder (meat chopper), it is not essential to extrude from the die, and the particulate water-containing gel adjusted to the target particle size is taken out from the discharge port. In the production method according to the present invention, a water-absorbent resin having an excellent water-absorbing rate can be obtained by using this gel crushing device.
  • the gel crushing device preferably has a heating means and / or a heat retaining means.
  • the heating means and / or the heat retaining means is not particularly limited, but from the viewpoint of preventing adhesion and aggregation of the water-containing gel and the particulate water-containing gel, the direct heat transfer by convection heat transfer and / or the gel crushing device heated by the heat medium.
  • a heating means by indirect heat transfer by heat conduction from a heating surface (contact surface with a water-containing gel, a heat source portion) is preferable. More preferable heating means are aeration heating type for direct heat transfer and outer wall heating type for indirect heat transfer.
  • a heating means and / or a heat insulating means is provided on the outer surface of the main body.
  • a heat insulating means for example, a part or the entire surface of the outer surface of the main body (preferably 50% or more, more preferably 80% or more, particularly preferably the entire surface of the outer surface (area) of the main body) is covered with a heat insulating material.
  • the method can be mentioned.
  • the heating means electricity installed so as to cover a part or the entire surface of the outer surface of the main body (preferably 50% or more, more preferably 80% or more, particularly preferably the entire surface of the outer surface (area) of the main body).
  • Examples include a tress, a steam tress, a jacket heated by a heat medium, and the like.
  • the particle size of the particulate hydrogel required in the present invention is considerably smaller than that of the conventional one. Therefore, it was found that the variation in the adhesiveness and fluidity of the hydrogel particles due to the temperature change is larger than expected in the range of the prior art. As a result, it was clarified by the study in the present invention that the energy required for pulverizing the hydrogel and the cohesiveness between the pulverized gel particles greatly fluctuate depending on the temperature.
  • the gel crushing step can be carried out in a more preferable temperature range.
  • the type of crushing means possessed by each rotating shaft is not particularly limited.
  • discs having various shapes can be mentioned as having a shearing action on a hydrogel.
  • the disc may be referred to as a tip, paddle, element, kneading, rotor, or the like.
  • the shape of the disc is not particularly limited, and is appropriately selected from a disk shape, an elliptical shape, a substantially triangular shape, and the like. It is also possible to use a combination of discs having different shapes, and the arrangement thereof is appropriately adjusted from the viewpoint of the particle size of the target particulate hydrogel and the energy required for grinding.
  • an arm, a blade, a blade, a cut disk (CD) or the like may be used in combination.
  • the main body when each rotating shaft has a disk-shaped or elliptical disk as a crushing means, the main body with respect to the maximum diameter D (Diameter; when using a plurality of disks having different diameters, the maximum disk diameter) of this disk.
  • the ratio of the internal effective length L (Length) is defined as L / D.
  • the L / D is preferably 5 to 40, more preferably 6 to 30, and even more preferably 6.5 to 20.
  • the effective length L means the axial length (total length) of the main body (barrel) portion including the inlet to the outlet.
  • the distance (clearance) between the disc and the main body (barrel) may differ depending on the location.
  • the minimum clearance C is the distance at which the distance between the outer circumference of the disk and the inner wall of the main body (barrel) is the shortest
  • the minimum clearance C is preferably 20% or less, more preferably 15% or less with respect to the maximum diameter D of the disk.
  • 10% or less is even more preferable, and 5% or less is particularly preferable.
  • the minimum clearance C is preferably 0.2% or more, more preferably 0.5% or more, still more preferably 1% or more with respect to the maximum diameter D of the disc.
  • the minimum clearance C is 0.2 to 20% with respect to the maximum diameter D of the disk.
  • the hydrous gel is crushed to a predetermined particle size by the rotation of a plurality of rotating shafts having crushing means.
  • the number of rotations of the plurality of rotating shafts may be constant velocity or non-constant velocity, and may be appropriately set by an apparatus, but is preferably in the range of 1 rpm to 1000 rpm, more preferably 3 rpm to 500 rpm, and further preferably 5 rpm to 300 rpm. Is.
  • the ratio of the rotation speeds of the other rotation axes to the rotation speed of one rotation axis is usually in the range of 1 to 10, preferably in the range of 1 to 2.
  • the peripheral speed (V) of the disk defined by the following (Equation 3) may be constant velocity or non-constant velocity, and may be appropriately set by an apparatus. However, it is preferably 0.05 m / s to 5 m / s, more preferably 0.1 m / s to 5 m / s, still more preferably 0.15 m / s to 3 m / s, and 0.2 m / s. ⁇ 2 m / s is particularly preferable.
  • the shearing force of the hydrogel becomes excessive, and the physical properties of the hydrogel particles after pulverization deteriorate and excessive consolidation occurs, which is not preferable. Further, if it is less than the above range, the amount of treatment per unit time in the gel pulverization step decreases, which is not preferable.
  • the ratio of the peripheral speeds of one rotating shaft to the peripheral speeds of the other rotating shafts is usually in the range of 1 to 10, preferably in the range of 1 to 2. Is.
  • V is the peripheral speed of the disk (unit: m / s)
  • D is the maximum diameter of the disk (unit: m)
  • n is the rotation speed of the disk per unit time (unit: rpm). Is.
  • the rotation direction of the plurality of rotation axes may be the same direction type in which each rotation axis rotates in the same direction, or a different direction type in which each rotation axis rotates in the opposite direction.
  • Self-cleaning can be expected in the omnidirectional device, and strong shearing force can be expected in the omnidirectional device.
  • the rotation direction of each rotation axis is appropriately selected in combination with the above-mentioned arrangement (disk pattern) of the crushing means.
  • this gel crushing device has a function of supplying water and / or steam inside the main body.
  • water and / or water vapor preferably water and water vapor
  • a water-absorbent resin powder having a higher water absorption rate can be obtained. Therefore, according to one embodiment of the present invention, water and / or steam is supplied to the inside of the main body in the gel crushing step.
  • water and steam are supplied to the inside of the main body in the gel grinding step.
  • the gel crusher may be provided with a plurality of inlets as a means of supplying water and / or steam.
  • the location of the water and / or water vapor inlet is not limited, but it is preferably installed on the water-containing gel inlet side. Further, water and steam may be supplied from different inlets.
  • the addition of water vapor is not particularly limited, but for example, a gas such as air, dry air, or nitrogen may be mixed with water vapor and added as a mixed gas.
  • the pressure of the added steam is not particularly limited, but is preferably 0.2 to 0.8 MPa, more preferably 0.3 to 0.7 MPa.
  • the temperature of water and / or steam (including mixed gas) is not particularly limited, but is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 70 ° C. or higher, and particularly preferably 80 ° C. or higher. From the viewpoint of suppressing excessive temperature rise and drying of the hydrogel, 200 ° C. or lower is preferable, 170 ° C. or lower is more preferable, 150 ° C.
  • the temperature of water and / or steam supplied to the inside of the main body is 50 to 120 ° C. It is also possible to adjust the temperature of the hydrous gel and the particulate hydrogel in the gel crusher by the temperature of the water and / or the steam (including the mixed gas) used and the input amount. In this case, the water vapor and / or the mixed gas acts directly as a heat medium for heat transfer, and the water-containing gel and the particulate water-containing gel inside the main body are heated or kept warm to a predetermined temperature.
  • Additives such as a gel fluidizing agent, a cross-linking agent, an oxidizing agent, a reducing agent, and a polymerization initiator, which will be described later, may be added to the water and / or water vapor (including the mixed gas) to be added.
  • the amount of water and / or water vapor supplied is preferably 0.1% by mass to 50% by mass, more preferably 0.5% by mass to 40% by mass, respectively, with respect to the mass of the hydrous gel in terms of solid content. 1% by mass to 30% by mass is more preferable.
  • the gel crushing apparatus used in the production method according to the present invention preferably has a heating means and / or a heat retaining means on the outer surface of the main body, but liquid heat such as hot water or oil is provided on a jacket or the like installed on the outer surface of the main body.
  • a medium may be introduced, or a heated gas (hot air) may be introduced as a heat medium.
  • These heat media act as heat media for indirect heat transfer.
  • the temperature of the heat medium is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 70 ° C. or higher, and particularly preferably 80 ° C. or higher.
  • the temperature of the heat medium is preferably 200 ° C. or lower, more preferably 170 ° C. or lower, further preferably 150 ° C. or lower, still more preferably 130 ° C. or lower. , 110 ° C. or lower is particularly preferable.
  • a particularly preferred heat medium is hot water or steam.
  • the temperature of the heat medium may be a constant temperature or may be appropriately changed during gel pulverization.
  • the temperature inside the main body is 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 70 ° C. or higher, still more preferably 80 ° C. before the hydrogel is charged into the gel crusher. It is preferable that the product is heated to a temperature higher than ° C. This reduces the adhesion of the hydrogel to the inner surface of the main body. Further, this further improves the water absorption rate of the obtained water-absorbent resin powder. That is, in the production method according to the present invention, it is preferable that the inner surface of the main body is heated to the above-mentioned temperature or higher before the addition of the hydrous gel and at the start of gel pulverization.
  • the inner surface of the main body, the plurality of rotating shafts, and the outer surface of the crushing means included in each rotating shaft are heated to the above-mentioned temperature or higher.
  • the heating temperature inside the main body (inner surface) is preferably 200 ° C. or less, preferably 170 ° C. or less, before the hydrous gel is put into the gel crushing apparatus. Is more preferable, 150 ° C. or lower is even more preferable, 130 ° C. or lower is even more preferable, and 110 ° C. or lower is particularly preferable.
  • the temperature inside the main body (inner surface) can be adjusted to a desired range by circulating and holding the heat medium inside the jacket provided in the main body. From the viewpoint of keeping the temperature in the gel crushing step at 50 ° C. or higher, it is preferable that the temperature inside the main body (inner surface) is kept in the above range in the gel crushing step.
  • continuously pulverizing the hydrogel-like crosslinked polymer at 50 ° C. or higher means that in the section shown in FIG. 1A, that is, the section from passing the inlet to the outlet. It refers to continuously pulverizing the hydrogel-like crosslinked polymer while maintaining the temperature of the hydrogel-containing crosslinked polymer at 50 ° C. or higher.
  • the hydrogel-like crosslinked polymer is continuously pulverized by the pulverizing means at 50 ° C. or higher means “the hydrogel-like crosslinked polymer is continuously pulverized by the pulverizing means at 50 ° C. or higher". Refers to "crushing".
  • the temperature of the hydrogel-like crosslinked polymer charged into the inlet of the gel crushing apparatus is 50 ° C. or higher and the heat medium temperature of the jacket installed outside the main body of the apparatus is 50 ° C. or higher, FIG. 1 In the section (A), the temperature of the hydrogel-like crosslinked polymer can be maintained at 50 ° C. or higher, and the hydrogel-like crosslinked polymer can be continuously pulverized at 50 ° C. or higher. Further, for example, even if the temperature T1 of the water-containing gel-like crosslinked polymer charged into the inlet of the gel crushing apparatus is 50 ° C. or lower, the apparatus main body supplies high-temperature water and / or steam at the inlet portion. The case where the water-containing gel-like crosslinked polymer is rapidly heated by setting the jacket heat medium temperature to a high temperature and continuously pulverized at 50 ° C. or higher in the portion (A) is also included.
  • the temperature at which the hydrogel-like crosslinked polymer is continuously pulverized is 50 ° C. or higher, preferably 60 ° C. or higher, more preferably 70 ° C. or higher, still more preferably 80 ° C. or higher.
  • the upper limit of the temperature at which the water-containing gel-like crosslinked polymer is continuously pulverized is not particularly limited, but is preferably 200 ° C. or lower, preferably 170 ° C. or lower, from the viewpoint of suppressing excessive temperature rise and drying of the water-containing gel. Is more preferable, 150 ° C. or lower is even more preferable, 130 ° C. or lower is even more preferable, and 110 ° C. or lower is particularly preferable.
  • the average residence time of the water-containing gel in this gel crusher is not particularly limited, but is preferably 30 seconds to 30 minutes from the viewpoint of reducing mechanical damage to the water-containing gel. be.
  • the average residence time of the hydrous gel is adjusted by the rotation speed of the rotating shaft and the charging speed of the hydrous gel.
  • the aperture ratio of the die is preferably 25% or more, more preferably 50% or more, further preferably 60% or more, further preferably 70% or more, and further preferably 80% or more. Especially preferable.
  • the upper limit of the aperture ratio is not particularly limited.
  • the aperture ratio of 100% is synonymous with the case where the die is not used.
  • the die (die plate) is a plate having (plural) through holes for discharging the material inside the main body, and is installed near the discharge port of the crushing device.
  • the aperture ratio refers to the ratio of the total plane-viewing area of all through holes to the plane-viewing area of the die. The larger the aperture ratio, the more difficult it is for the material inside the main body to be dammed up and the easier it is for the material to be discharged, so that the effect of the present invention becomes more remarkable.
  • FIGS. 1 and 2 show an example of the gel crushing apparatus 200 used in the manufacturing method according to the present invention.
  • FIG. 1 is a partially cutaway side view of the gel crushing device 200
  • FIG. 2 is an enlarged view of the gel crushing device 200 (a view of the central portion of the main body as viewed from above).
  • the basic configuration and usage of the gel crusher 200 will be described with reference to FIGS. 1 and 2.
  • this gel crushing device 200 includes an input port 204, a main body 208, two rotating shafts 206, an discharge port 210, a drive device 214, and a gas input port 216.
  • the main body 208 is also referred to as a barrel.
  • two rotation axes 206 are provided along the orthogonal direction of the paper surface.
  • the rotation shaft 206 extends in the length direction of the main body 208.
  • One end of the rotary shaft 206 penetrates the main body 208 and is connected to the drive device 214.
  • the other end of the rotating shaft 206 is rotatably supported by a bearing bearing installed behind the rotating shaft 206. That is, the rotating shaft 206 is held at both ends thereof.
  • the gel crushing device in the manufacturing method according to the present invention is not limited to such a double-screw holding form, and has a bearing bearing behind the discharge port 210 as long as the object of the present invention is achieved. It may have a so-called uniaxial holding structure.
  • the input port 204, the gas input port 216, and the discharge port 210 are fixed to the main body 208 and communicate with the inside of the main body 208, respectively.
  • the left-right direction in FIG. 1 is the length direction of the main body 208, and is the axial direction of the rotation shaft 206.
  • the body 208 has a jacket structure.
  • FIG. 2 shows a part of the main body 208 of the gel crusher 200.
  • FIG. 2 is an enlarged view of the gel crushing apparatus of FIG. 1 (a view of the central portion of the main body as viewed from above).
  • this gel crushing device 200 two rotating shafts 206 are built in the main body 208.
  • a crushing means 212 is provided on the outer periphery of each of the two rotating shafts 206. That is, the crushing means 212 and the rotating shaft 206 are configured as separate bodies.
  • the rotary shaft 206 has a plurality of discs as the crushing means 212.
  • the vertical direction in FIG. 2 is the width direction of the main body 208.
  • the left-right direction in FIG. 2 is the length direction of the main body 208, and is the axial direction of the rotation shaft 206.
  • a heat medium is circulated in a jacket (not shown) to heat the main body 208.
  • each rotating shaft 206 is rotated by a driving device 214 (for example, a motor).
  • a driving device 214 for example, a motor.
  • a plurality of disks which are the rotating shaft 206 and the crushing means 212, rotate.
  • the hydrogel is continuously charged into the charging port 204.
  • water and / or steam may be charged into the charging port 204 at the same time.
  • steam and / or water may be charged into the gas inlet 216.
  • the water-containing gel and the main body 208 are heated by water and / or water vapor and kept at a predetermined temperature.
  • the water-containing gel charged into the main body 208 moves toward the discharge port 210.
  • the water-containing gel comes into contact with the crushing means 212 (that is, a plurality of discs) in the main body 208.
  • the hydrogel is atomized by shearing action by a plurality of rotating discs.
  • the hydrous gel moves toward the discharge port 210 while being crushed by the shearing action of the crushing means 212.
  • the particulate hydrogel adjusted to a predetermined particle size is taken out.
  • the rotating shaft of the gel crusher has a plurality of discs.
  • the shapes of the plurality of discs may be the same or different, but are preferably different.
  • the combination of discs is appropriately changed depending on the physical characteristics of the hydrogel, the size of the crushed gel to be obtained, etc., with reference to, for example, Patent Document (Japanese Unexamined Patent Publication No. 2005-35212).
  • a gel crusher having such a basic configuration
  • a double-screw kneader (kneader) having two or more shafts can be mentioned.
  • Specific examples thereof include a 2-axis, 3-axis, 4-axis or 8-axis kneader.
  • this gel crushing device a continuous type is preferably used from the viewpoint of production efficiency.
  • a gel crusher a CKH type continuous kneader (Honda Iron Works Co., Ltd.), a twin-screw extruder TEX (Nippon Steel Works Co., Ltd.), and a twin-screw extruder TEX ⁇ III (Nippon Steel Works Co., Ltd.) ), Continue Earth Kneader (CONTINUOUS KNEADER, Dalton Co., Ltd.), KRC Hybrid Reactor (KRC HYBRID RECORDER, Kurimoto Iron Works Co., Ltd.), KRC Kneader (KURIMOTO-READCO CONTINUOUS Kurimoto Co., Ltd.) , KEX Extruder (KEX EXTRUDER, Kurimoto, Ltd.), KEXD Extruder (KEXD EXTRUDER, Kurimoto, Ltd.), Double-armed Kneader Ruder (KNEADER-RUDER, Moriyama Co., Ltd.), 2, Shaft kneading ex
  • GGE Gel Grinding Energy
  • the preferable gel grinding energy (GGE) applied in the present invention may be 15 J / g or more, preferably 25 J / g or more, more preferably 40 J / g or more, still more preferably 50 J / g or more, still more preferably. It is 100 J / g or more, most preferably 120 J / g or more.
  • the upper limit may be 200 J / g or less.
  • the temperature T1 of the water-containing gel-like crosslinked polymer charged into the charging port of the gel crushing device in the gel crushing step (hereinafter, “at the charging port”).
  • the gel temperature T1 or simply referred to as“ gel temperature T1 ”) is preferably 50 ° C. or higher.
  • the gel temperature T1 is preferably measured by a thermometer installed at the inlet. From the viewpoint of preventing adhesion between the gel-crushed water-containing gels, the gel temperature T1 is preferably 60 ° C. or higher, and from the viewpoint of further improving the water absorption rate of the water-absorbent resin powder, 70 ° C.
  • the gel temperature T1 is preferably 130 ° C. or lower, more preferably 110 ° C. or lower, further preferably 100 ° C. or lower, and particularly preferably 90 ° C. or lower.
  • the gel temperature at the time of grinding is preferably 130 ° C. or lower.
  • the gel temperature T1 is the water-containing gel-like crosslinked polymer charged into the gel crushing apparatus, which retains the heat of the water-containing gel-like crosslinked polymer whose temperature has risen due to the heat of polymerization, or the obtained water-containing gel-like crosslinked polymer. By heating, it can be adjusted within a desired range.
  • the temperature T2 of the particulate hydrogel-like crosslinked polymer discharged from the gel crusher (hereinafter, "gel temperature T2 at the discharge port” or simply “gel temperature T2"”.
  • gel temperature T2 at the discharge port or simply “gel temperature T2".
  • (Also referred to as) is preferably 60 ° C. to 140 ° C., more preferably 70 ° C. to 130 ° C., even more preferably 80 ° C. to 125 ° C., still more preferably 85 ° C. to 120 ° C., particularly preferably 90 ° C. to 115 ° C., and particularly preferably 100 to 115 ° C. ° C is most preferred.
  • the temperature T2 is set to be the temperature range, and the temperature T1 is set to be the temperature range described above.
  • the gel temperature T2 is preferably measured by a thermometer installed at the discharge port.
  • the gel temperature T2 is within a desired range by appropriately adjusting the set temperature of the heating means and / or the heat retaining means of the gel crushing device and the residence time of the hydrous gel-like crosslinked polymer inside the gel crushing device. Can be adjusted within.
  • the gel temperature T2 at the discharge port is preferably higher than the gel temperature T1 at the inlet.
  • the difference ⁇ T (T2-T1) is set to the relevant temperature range, and the temperature T1 and the temperature T2 are set to be in the above-mentioned temperature range.
  • ⁇ T can be adjusted within a desired range by adjusting each of T1 and T2 as described above.
  • gel solid content the solid content of the hydrous gel charged into the inlet of the gel crushing device (hereinafter referred to as gel solid content) is determined by the measuring method described in Examples described later.
  • the gel solid content is preferably 25% by mass to 75% by mass, more preferably 30% by mass to 70% by mass, from the viewpoint of the degree of aggregation between the gel-crushed hydrous gels, the energy required for crushing, the drying efficiency and the absorption performance. , 35% by mass to 65% by mass, more preferably 40% by mass to 60% by mass.
  • a gel fluidizing agent is preferably added before and / or during the gel crushing step.
  • the particulate hydrogel containing the gel fluidizing agent is taken out from the discharge port.
  • the addition of the gel fluidizing agent has the effect of suppressing the strong adhesion or adhesion between the finely pulverized gel fine particles and improving the water absorption rate of the obtained water-absorbent resin.
  • the load in the crushing step after the drying step and the crushing step in the granulation step, which will be described later is reduced, and the amount of fine powder generated is also reduced. From the viewpoint that each particle of the obtained particulate hydrogel contains the gel fluidizing agent uniformly, the addition during the gel pulverization step is more preferable, and the addition at the same time as the addition of the hydrogel is even more preferable.
  • the amount of the gel fluidizing agent added is appropriately set according to the solid content of the hydrous gel or the particulate hydrogel and the type of the gel fluidizing agent.
  • the amount added is preferably 0.001% by mass to 5% by mass, more preferably 0.01% by mass to 3% by mass, and further preferably 0.02% by mass to 2% by mass with respect to the solid content of the hydrogel. %, Especially preferably 0.03% by mass to 1% by mass.
  • this gel fluidizing agent examples include anionic, cationic, nonionic and amphoteric surfactants, as well as these low-molecular-weight or high-molecular-weight surfactants, polymer lubricants and the like. Of these, surfactants are preferred.
  • sucrose fatty acid ester Specifically, as the surfactant used for the gel fluidizing agent, (1) sucrose fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid.
  • amphoteric tenside agents are preferable, and alkyldimethylaminoacetic acid betaine is more preferable, from the viewpoint of further improving the water absorption rate of the water-absorbent resin powder.
  • polymer lubricant In the production method according to the present invention, the polymer lubricant exemplified below can be added to the above-mentioned monomer aqueous solution or hydrogel within the range where the object of the present invention is achieved.
  • polymer lubricant examples include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, and maleic anhydride-modified ethylene / propylene / diene ternary copolymer (EPDM).
  • Maleic anhydride-modified polybutadiene Maleic anhydride / ethylene copolymer, Maleic anhydride / propylene copolymer, Maleic anhydride / ethylene / propylene copolymer, Maleic anhydride / butadiene copolymer, Polyethylene, Polypropylene, Polyalkylene oxides such as ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, oxidized ethylene / propylene copolymer, ethylene / acrylic acid copolymer, ethyl cellulose, ethyl hydroxyethyl cellulose, polyethylene glycol, side chains and / Or terminal polyether-modified polysiloxane and the like can be mentioned.
  • These molecular weights are appropriately selected in the range of preferably 2 to 2 million, more preferably 4 to 1 million. Of these, two or more may be used in combination.
  • these polymer lubricants and the above-mentioned surfactant may be used in combination.
  • the surfactant and the polymer lubricant are used in combination, the total addition amount thereof is appropriately set according to the polymerization form, the composition of the monomer aqueous solution, and the water content of the water-containing gel.
  • the concentration is set with respect to the monomer component, when added to a hydrogel, the solid content thereof is set, and when added to both, the above total is set.
  • the total amount of the surfactant and the polymer lubricant added is preferably 5% by mass or less, more preferably 3% by mass or less, and preferably 0.001% by mass or more, particularly, with respect to the solid content of the hydrogel. It is preferably 0.01% by mass or more.
  • the type and amount of the gel fluidizing agent are appropriately adjusted in consideration of suppression of aggregation of the particulate hydrogel in the gel crushing step and the drying step. From the viewpoint of the amount of return of the obtained water-absorbent resin powder in an absorbent article (diaper) in actual use, a gel fluidizing agent of a type and amount that does not excessively reduce the surface tension of the water-absorbent resin of the final product is preferable.
  • the surface tension of the water-absorbent resin is preferably 55 mN / m or more, more preferably 60 mN / m or more, still more preferably 65 mN / m or more.
  • the type and amount of the gel fluidizing agent are selected. This surface tension is measured by the method described in WO2015 / 129917.
  • An amphoteric surfactant is exemplified as a gel fluidizing agent capable of applying surface tension within such a range.
  • the mass average particle diameter d1 in terms of solid content of the particulate hydrogel crosslinked polymer discharged from the discharge port of the gel crusher is It is 3 mm or less. If d1 exceeds 3 mm, it cannot be used in a subsequent step, so that a water-absorbent resin powder cannot be obtained (Experimental Example 5 described later).
  • d1 is preferably 1 ⁇ m to 3 mm, more preferably 10 ⁇ m to 3 mm, further preferably 30 ⁇ m to 2 mm, further preferably 50 ⁇ m to 1 mm, and particularly preferably 100 ⁇ m to 200 ⁇ m.
  • the mass average particle diameter d1 in terms of solid content of the particulate hydrogel crosslinked polymer discharged from the discharge port of the gel crusher is, for example, the temperature of the hydrogel crosslinked polymer at the time of pulverization (for example, inside the main body of the pulverizer). (Controlled by temperature and temperature of water and / or steam supplied to the inside of the main body), minimum clearance for the maximum disk diameter of the gel crusher, charging speed of hydrogel, rotation axis of the gel crusher, gel crushing It can be controlled by energy (GGE) or the like.
  • GGE energy
  • the mass average particle diameter d1 in terms of solid content of the particulate hydrogel is defined by the physical property measuring methods (g) and (h) described later.
  • the particle size distribution of the particulate hydrogel is preferably in the range of less than 150 ⁇ m in terms of solid content, preferably 10% by mass or more, more preferably 25% by mass or more, and further preferably 40% by mass or more. ..
  • the particle size distribution of the particulate hydrogel is preferably in the range of less than 850 ⁇ m in terms of solid content, preferably 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more, particularly. It is preferably 95% by mass or more, and the upper limit is 100% by mass.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution is 0.2 to 1.0, more preferably 0.2 to 0.8, and even more preferably 0.2 to 0.7.
  • the solid content of the particulate hydrogel discharged from the discharge port of the gel crusher is preferably 25% by mass to 75% by mass, more preferably 30% by mass to 70% by mass, and further preferably 35% by mass to 65% by mass. It is preferable, and 40% by mass to 60% by mass is particularly preferable.
  • the polymerization rate of the particulate hydrogel discharged from the gel crushing device is within the range of the polymerization rate before being charged into the gel crushing device, and the polymerization may be further advanced in the gel crushing step.
  • the degree of the progress of the polymerization is appropriately adjusted by the heating and residence time in the gel pulverizer, the residual amount of the polymerization initiator in the hydrogel after the polymerization, the post-addition amount of any polymerization initiator and the like.
  • the polymerization rate after the gel crushing step is defined by the method for measuring physical properties described later, similarly to the polymerization rate before gel crushing.
  • the polymerization rate of the particulate hydrogel after gel pulverization is 90% by mass or more, preferably 95% by mass or more, more preferably 98 to 99.99% by mass, and ideally 100%. Is. In a particulate hydrogel having a polymerization rate in the above range, aggregation and adhesion during drying are avoided.
  • a particulate hydrogel crosslinked polymer preferably a particulate hydrogel crosslinked polymer containing a gel fluidizing agent, is dried to a desired solid content to obtain a dried product. It is a process.
  • the "solid content ratio” means a value calculated from the weight loss by drying (mass change when 1.0 g of a sample is dried at 180 ° C. for 3 hours).
  • the solid content of the dried product after the drying step is preferably 80% by mass or more, more preferably 85% by mass to 99.8% by mass, still more preferably 90% by mass to 99.7% by mass, and even more preferably 92.
  • the order is mass% to 99.5% by mass, particularly preferably 96% by mass to 99.5% by mass, and extremely preferably 98% by mass to 99.5% by mass. If the solid content after drying is excessively high, not only long-time drying is required, but also physical property deterioration and coloring after drying may occur. Further, when the solid content ratio after drying is low, the productivity may be lowered in the granulation step described later and the water absorption ratio (CRC) may be lowered. When the surface cross-linking step described later is carried out after the drying step, it is preferable to dry to the above solid content ratio because the physical properties are further improved.
  • the drying method in the drying step of the present invention is not particularly limited, and static drying, stirring drying, fluidized bed drying and the like are appropriately used.
  • various drying methods such as heat drying, hot air drying, vacuum drying, infrared drying, microwave drying, drum dryer drying, azeotropic dehydration drying with hydrophobic organic solvent, and high humidity drying using high temperature steam are adopted. Can be done.
  • the drying device used in the drying process is not particularly limited, and one or more types such as a heat transfer conduction type dryer, a radiant heat transfer type dryer, a hot air heat transfer type dryer, and a dielectric heating type dryer are used. Is selected as appropriate. It may be a batch type or a continuous type. Further, it may be a direct heating type or an indirect heating type. Examples thereof include heat transfer type dryers such as a ventilation band type, a ventilation circuit type, a ventilation vertical type, a parallel flow band type, a ventilation tunnel type, a ventilation stirring type, a ventilation rotation type, a fluidized bed type, and an air flow type.
  • the heating means is not particularly limited, but is heated by direct heat transfer by convection heat transfer and / or a heat medium as a heating means of the particulate hydrogel from the viewpoint of drying efficiency and reduction of thermal damage to the water-absorbent resin.
  • a heating means by indirect heat transfer by heat conduction from the heating surface (contact surface with the particulate hydrogel, heat source portion) of the dryer is preferable. More preferable heating means are aeration heating type for direct heat transfer, outer wall heating type for indirect heat transfer, and tubular heating type for indirect heat transfer.
  • gas may be introduced inside the dryer.
  • the gas is not particularly limited, and examples thereof include air, dry air, nitrogen, water vapor, and a mixed gas thereof.
  • the gas acts as a carrier gas and promotes drying by discharging the water vapor generated during drying to the outside of the dryer.
  • the gas also acts as a heat medium, further promoting drying.
  • nitrogen, water vapor, and a mixed gas of these and air are used.
  • a mixed gas containing water vapor hereinafter, also referred to as a high-humidity mixed gas
  • the inside of the dryer becomes in a low oxygen state, and oxidation and deterioration during drying are suppressed.
  • the moving direction of this gas may be parallel flow or counterflow with respect to the moving direction of the particulate hydrogel which is the object to be dried, or may be a mixture of these.
  • the drying conditions are appropriately selected depending on the type of the drying device, the solid content of the particulate hydrogel, and the like, but the drying temperature is preferably 100 ° C. to 300 ° C., more preferably 150 ° C. to 250 ° C., and 160 ° C. to 220 ° C. °C is more preferable, and 170 ° C to 200 ° C is particularly preferable. If it is below the above range, it is uneconomical because the drying time becomes excessively long. If it exceeds the above range, the physical properties of the water-absorbent resin are deteriorated and remarkable coloring occurs, which is not preferable.
  • the drying time is preferably 1 minute to 10 hours, more preferably 5 minutes to 2 hours, still more preferably 10 minutes to 120 minutes, and particularly preferably 20 minutes to 60 minutes. If it is less than the above range, it is necessary to raise the drying temperature excessively, which is not preferable because the physical properties of the water-absorbent resin are deteriorated and remarkable coloring occurs. If it exceeds the above range, it is uneconomical because the dryer becomes huge and the processing amount decreases.
  • This step is a step of crushing and / or classifying the dried product obtained in the above drying step to obtain a water-absorbent resin powder having a specific particle size. It is different from the above (2-4) gel crushing step in that the crushed object has undergone a drying step.
  • This step is performed before and / or after the [2-7] surface cross-linking step, preferably before the [2-7] surface cross-linking step, and before and after the [2-7] surface cross-linking step. It may be carried out at least twice.
  • Examples of the equipment (crusher) used in the crushing process of the present invention include high-speed rotary crushers such as roll mills, hammer mills, screw mills, and pin mills, vibration mills, knuckle type crushers, and cylindrical mixers. , Used together as needed.
  • the weight average particle size (D50) of the water-absorbent resin powder before surface cross-linking is preferably 200 ⁇ m or more, more preferably 200 ⁇ m to 600 ⁇ m, and further preferably 250 ⁇ m to 550 ⁇ m from the viewpoint of water absorption rate, water absorption ratio under pressure, and the like. Particularly preferably, it is 300 ⁇ m to 500 ⁇ m.
  • the proportion of particles having a particle size of 150 ⁇ m or more and less than 850 ⁇ m is preferably 90% by weight or more, more preferably 95% by weight or more, based on the total water-absorbing resin powder, from the viewpoints of water absorption rate, water absorption ratio under pressure, and the like. 98% by weight or more is more preferable, and 99% by weight or more is particularly preferable (upper limit is 100% by weight).
  • a cross-linking reaction is carried out by adding a surface cross-linking agent that reacts with functional groups (particularly carboxyl groups) of the water-absorbent resin powder obtained through the [2-6] pulverization and classification steps. It is a step of making the crosslink, and is also called a post-crosslinking step.
  • a surface cross-linking agent is added to the water-absorbent resin powder and then heat-treated to cause a cross-linking reaction.
  • This step includes a surface cross-linking agent addition step and a heat treatment step, and may have a cooling step after the heat treatment step, if necessary.
  • a surface cross-linking agent capable of reacting with a plurality of functional groups (preferably a plurality of carboxyl groups) of the water-absorbent resin, preferably a covalent bond or an ionic bond, and further a surface cross-linking agent capable of covalent bonding is used.
  • a surface cross-linking agent capable of reacting with a plurality of functional groups (preferably a plurality of carboxyl groups) of the water-absorbent resin, preferably a covalent bond or an ionic bond, and further a surface cross-linking agent capable of covalent bonding is used.
  • Valuable amine compounds and their inorganic or organic salts polyvalent isocyanate compounds such as 2,4-tolylene diisocyanate, hexamethylene diisocyanate; aziridine compounds such as polyaziridine; 1,2-ethylene bisoxazoline, bisoxazoline, polyoxazoline Polyvalent oxazoline compounds such as; carbonic acid derivatives such as urea, thiourea, guanidine, dicyandiamide, 2-oxazolidinone; 1,3-dioxolan-2-one (ethylene carbonate), 4-methyl-1,3-dioxolan-2- On, 4,5-dimethyl-1,3-dioxolan-2-one, 4,4-dimethyl-1,3-dioxolan-2-one, 4-ethyl-1,3-dioxolan-2-one, 4- Hydroxymethyl-1,3-di Oxolan-2-one, 1,3-dioxane-2-one, 4-methyl-1,3
  • the amount of the surface cross-linking agent added is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less, still more preferably 1% by mass or less, based on the solid content of the water-absorbent resin. Particularly preferably, it is 0.1% by mass or less.
  • the lower limit is preferably 0.001% by mass or more, more preferably 0.01% by mass or more.
  • the form of addition of the surface cross-linking agent may be left as it is, but it is preferable to add it as a solution dissolved in water or an organic solvent from the viewpoint of ease of addition.
  • the concentration of this surface cross-linking agent solution is preferably 1% by mass or more, more preferably 2% by mass or more.
  • the total amount of the solvent selected from water and the organic solvent is preferably 0 to 10% by mass, more preferably 0.1% by mass to 8% by mass, still more preferably 0.% by mass, based on the solid content of the water-absorbent resin. It is 5% by mass to 5% by mass.
  • water and an organic solvent are used in combination, it is preferable that water is the main component.
  • the concentration of the aqueous solution can be adjusted according to the water content of the water-absorbent resin powder at the time of contact with the surface cross-linking agent.
  • a hydrophilic solvent such as alcohol
  • Heat Treatment Step This step is a step of heat-treating a water-absorbent resin powder containing a surface cross-linking agent to obtain a surface-crosslinked dried product.
  • a water-absorbent resin powder containing a surface cross-linking agent is heated to 100 ° C. or higher to obtain a water-absorbent resin powder.
  • the preferable maximum temperature varies depending on the type of the surface cross-linking agent, but is 100 ° C. to 250 ° C., more preferably 120 ° C. to 230 ° C., and further preferably 150 ° C. to 210 ° C.
  • the time of the heat treatment step may be appropriately set from the water content of the particulate water-containing gel and / or the granular dried product, the type of the surface cross-linking agent, the thermal efficiency of the heating device, and the like. As a tentative guide, heating may be performed until the water content becomes 10% by mass or less, and the time is in the range of 10 minutes to 120 minutes, preferably 30 minutes to 90 minutes.
  • the heating device used in the surface cross-linking step is not particularly limited, but from the viewpoint that heating unevenness is unlikely to occur, a heating device having a stirring mechanism in a conduction heat transfer format by solid-solid contact is preferably used.
  • Cooling Step Preferably, after the above-mentioned drying step or surface cross-linking step and before the later-described granulation step, the dried product or the surface-crosslinked dried product is forcibly cooled to adjust to a desired temperature.
  • the cooling step can be performed by using a conventionally known cooling means.
  • the cooling temperature can be adjusted as appropriate.
  • Granulation step This step is a step of adjusting the particle size of the surface-crosslinked dried product. By this sizing step, a water-absorbent resin powder having a more positively controlled particle size or particle size distribution can be obtained.
  • the sizing step comprises a crushing step and / or a classification step.
  • the crushing step is a step of crushing loosely aggregated granular dried sol through a surface treatment step with a crusher to adjust the particle size.
  • the classification step is a step of removing coarse particles and fine particles from the surface-crosslinked granular dried product or its crushed product using a classifying machine.
  • the crusher is not particularly limited, and examples thereof include a vibration mill, a roll granulator, a knuckle type crusher, a roll mill, a high-speed rotary crusher (pin mill, hammer mill, screw mill), a cylindrical mixer, and the like. .. It is preferable that the dried product or the dried product that has been surface-crosslinked is less damaged. And so on.
  • a vibration type or swing type sieve classifier using a sieve net is used as the classifier.
  • Fine powder recycling step means a step of supplying the fine powder removed in the classification step as it is or after granulating the fine powder to any of the steps.
  • the fine powder or the fine powder granulated product is put into a step before the drying step and reused.
  • the step before the drying step include a monomer solution before polymerization prepared in the polymerization step, a hydrogel during polymerization, a step of crushing the hydrogel after polymerization, and a step of drying the granular hydrogel.
  • the fine powder may be added as it is to these steps, or the fine powder may be swollen with water to gel or granulate and then added.
  • water e.g, a cross-linking agent, a binder other than water (eg, a water-soluble polymer, a thermoplastic resin), a polymerization initiator, a reducing agent, a chelating agent, an anticoloring agent and the like may be added together with the fine powder.
  • a cross-linking agent e.g, a water-soluble polymer, a thermoplastic resin
  • a polymerization initiator e.g, a reducing agent, a chelating agent, an anticoloring agent and the like
  • a reducing agent e.g., a reducing agent, a chelating agent, an anticoloring agent and the like
  • the preferable amount of fine powder recovered is appropriately set according to the target particle size.
  • the manufacturing method according to the present invention includes a crushing step, a classification step, a rewetting step, a granulation step, a transportation step, a storage step, and a packing step, if necessary. , Storage steps, etc. may be further included.
  • additives In addition to the above-mentioned arbitrarily used surface cross-linking agent and gel fluidizing agent, other additives such as polymer powder (for example, starch such as tapioca acetate starch), inorganic fine particles, and dust inhibitor are used before or after drying. , Conventionally known components such as a dry water-absorbent resin (fine powder), a liquid permeability improver, and a reducing agent (for example, sodium sulfite) can be further added.
  • polymer powder for example, starch such as tapioca acetate starch
  • inorganic fine particles for example, inorganic fine particles, and dust inhibitor are used before or after drying.
  • Conventionally known components such as a dry water-absorbent resin (fine powder), a liquid permeability improver, and a reducing agent (for example, sodium sulfite) can be further added.
  • the water-absorbent resin powder obtained by the production method according to the present invention is the water-absorbent resin powder.
  • the water-absorbing agent is used for an absorbent article, particularly a paper omelet, at least one or more, preferably two or more, more preferably one or more of the physical properties listed in (3-1) to (3-7) below. It is desired that three or more, more preferably all physical properties are controlled within a desired range.
  • CRC centrifugal force holding capacity
  • the CRC (centrifugator holding capacity) of the water-absorbent resin powder (water-absorbing agent) of the present invention is usually 5 g / g or more, preferably 15 g / g or more, and more preferably 25 g / g or more.
  • the upper limit is not particularly limited, and a higher CRC is preferable, but from the viewpoint of balance with other physical properties, it is preferably 70 g / g or less, more preferably 50 g / g or less, still more preferably 40 g / g or less. ..
  • the CRC When the CRC is less than 5 g / g, the amount of absorption is small and it is not suitable as an absorber for absorbent articles such as disposable diapers. Further, when the CRC exceeds 70 g / g, the rate of absorbing body fluids such as urine and blood decreases, so that it is not suitable for use in high water absorption rate type disposable diapers and the like.
  • the CRC can be controlled by changing the type and amount of the internal cross-linking agent, the surface cross-linking agent, and the like.
  • the water content of the surface-crosslinked water-absorbent resin powder is preferably more than 0% by mass and 20% by mass or less, more preferably 1% by mass to 15% by mass. %, More preferably 2% by mass to 13% by mass, and particularly preferably 2% by mass to 10% by mass. By setting this water content within the above range, a water absorbing agent having excellent powder properties (for example, fluidity, transportability, damage resistance, etc.) can be obtained.
  • the solid content of the surface-crosslinked water-absorbent resin powder (water-absorbing agent) is preferably 80% by mass or more, more preferably 85% by mass to 99% by mass, and further preferably 87% by mass to 98% by mass, particularly. It is preferably 90% by mass to 98% by mass.
  • the mass average particle diameter d3 (D50) of the water-absorbent resin powder (water-absorbing agent) is preferably 200 ⁇ m or more, more preferably 200 ⁇ m to 600 ⁇ m, still more preferably 250 ⁇ m to 550 ⁇ m, and particularly preferably 300 ⁇ m to 500 ⁇ m. Is.
  • the proportion of particles having a particle diameter of less than 150 ⁇ m is preferably 10% by mass or less, more preferably 8% by mass or less, and further preferably 6% by mass or less.
  • the proportion of the water-absorbent resin particles having a particle size of more than 850 ⁇ m is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 1% by mass or less.
  • This water absorbing agent contains particles having a particle diameter of 150 ⁇ m to 850 ⁇ m, preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably 97% by mass or more, and particularly preferably 99% by mass or more. Ideally, it is 100% by mass.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution is preferably 0.20 to 0.50, more preferably 0.25 to 0.40, and even more preferably 0.27 to 0.35.
  • AAP water absorption ratio under pressure
  • the AAP (water absorption ratio under pressure) of the water-absorbent resin powder (water-absorbing agent) is preferably 15 g / g or more, more preferably 20 g / g or more, still more preferably 23 g / g or more, and particularly preferably 24 g / g or more. It is preferably 25 g / g or more.
  • the upper limit is not particularly limited, but is preferably 30 g / g or less.
  • the AAP When the AAP is less than 15 g / g, the amount of liquid returned when pressure is applied to the absorber (sometimes referred to as "Re-Wet") increases, so that absorbent articles such as disposable diapers Not suitable as an absorber.
  • the AAP can be controlled by adjusting the particle size, changing the surface cross-linking agent, and the like.
  • the Voltex (water absorption rate) of the water-absorbent resin powder (water-absorbing agent) is preferably 65 seconds or less, more preferably 60 seconds or less, still more preferably 50 seconds or less, still more preferably 40 seconds or less, and particularly preferably 30 seconds or less. Most preferably, it is 25 seconds or less.
  • the lower limit value is not particularly limited, but is preferably 5 seconds or longer, more preferably 10 seconds or longer.
  • Vortex By setting Vortex within the above range, it becomes possible to absorb a predetermined amount of liquid in a short time.
  • absorbent articles such as disposable diapers
  • the time for the user to feel the skin wet is reduced, discomfort is less likely to occur, and the amount of leakage can be reduced.
  • water-absorbent resin powder water-absorbent agent
  • water-absorbent resin powder water-absorbent agent
  • absorbent articles such as paper diapers, menstrual napkins, and incontinence pads. Can be mentioned. In particular, it can be used as an absorber for high-concentration disposable diapers. Further, since the water-absorbing agent has an excellent water-absorbing time and the particle size distribution is controlled, a remarkable effect can be expected when it is used in the upper layer portion of the absorber.
  • an absorbent material such as pulp fiber can be used together with the water absorbent.
  • the content (core concentration) of the water-absorbing agent in the absorber is preferably 30% by mass to 100% by mass, more preferably 40% by mass to 100% by mass, and further preferably 50% by mass to 100% by mass. It is even more preferably 60% by mass to 100% by mass, particularly preferably 70% by mass to 100% by mass, and most preferably 75% by mass to 95% by mass.
  • the absorbent article can be kept in a clean white state. Further, since the absorber is excellent in diffusivity of body fluids such as urine and blood, efficient liquid distribution is expected to improve the absorption amount.
  • the "water-absorbent resin” described below means a granular dried product that has undergone a drying step, a surface-crosslinked granular dried product or a water-absorbent resin powder, and a surface-crosslinked water-absorbent resin powder, and is a "water-containing gel”.
  • liter may be expressed as “l” or “L”
  • mass% or “weight%”
  • wt% When measuring trace components, N.I. It may be expressed as D (Non Directed).
  • the center of the JIS standard sieve (inner diameter 20 cm, sieve mesh; 8 mm / 4 mm / 2 mm / 1 mm / 0.60 mm / 0.30 mm / 0.15 mm / 0.075 mm) installed on the turntable.
  • the above dispersion was put into the portion.
  • the water-containing gel was classified by repeating the work of pouring evenly so that the water injection range (50 cm 2 ) spreads over the entire sieve using 6.0 [L / min]) four times.
  • the water-containing gel on the first-stage sieve that had been classified was drained for about 2 minutes and then weighed.
  • the second and subsequent sieves were also classified by the same operation, and the water-containing gel remaining on each sieve after draining was weighed.
  • the type of sieve was appropriately changed depending on the particle size of the hydrogel.
  • the particle size of the hydrogel is fine and clogging occurs with a sieve having a mesh size of 0.15 mm or 0.075 mm
  • a JIS standard sieve having a larger diameter was used.
  • the ratio (mass%) in the total hydrogel was calculated from the following (formula 11).
  • the mesh size of the sieve after draining was plotted according to the following (Equation 12), and the particle size distribution of the hydrogel was plotted on a logarithmic probability paper.
  • the particle size corresponding to 50% by mass of the integrated sieve in the plot was defined as the mass average particle size (D50) of the water-containing gel having a solid content ⁇ (mass%).
  • the Voltex (water absorption time) of the water-absorbent resin powder was measured according to the following procedure. First, 0.02 part by mass of edible blue No. 1 (brilliant blue), which is a food additive, is added to 1000 parts by mass of a pre-adjusted physiological saline solution (0.9 mass% sodium chloride aqueous solution), and then the liquid temperature is adjusted. The temperature was adjusted to 30 ° C.
  • edible blue No. 1 brilliant blue
  • AAP of water-absorbent resin powder (water absorption ratio under pressure)
  • the AAP (water absorption magnification under pressure) of the water-absorbent resin powder was measured according to the EDANA method (ERT442.2.2). In the measurement, the load condition was changed to 4.83 kPa (0.7 psi).
  • the b value of the obtained sheet-shaped sample was measured under the measurement conditions of the 1/30 ⁇ floodlight pipe. The measurement was performed 5 times for each sample, and the average value was calculated. A weight was placed for each measurement to adjust the shape of the sample. The b value was calculated in the same manner for the hydrous gel sampled every 5 seconds. The stronger the bluish color of the hydrogel, the smaller the b value (less than 0 and the larger the absolute value).
  • the sampling time of the hydrogel containing the strongest bluish color (minimizing the b value) was defined as the average residence time (min). When the gel crushing step was carried out a plurality of times, the average residence time of each time was measured, and the total was taken as the average residence time (min).
  • the continuous polymerization machine having a flat polymerization belt having weirs at both ends was continuously used so as to have a thickness of 10 mm. Supplyed. Then, the polymerization was continuously carried out for a polymerization time of 3 minutes to obtain a strip-shaped (sheet-shaped) water-containing gel-like crosslinked polymer (1a). The obtained strip-shaped hydrogel (1a) was cut according to the processing speed and the charging interval in the gel crushing apparatus described later to obtain a strip-shaped hydrogel (1b) having a width of several cm.
  • the mass per strip-shaped hydrogel is 0.0267 kg.
  • the polymerization rate of the strip-shaped hydrogel (1b) was 98.5% by mass, and the solid content was 53% by mass.
  • a heat medium of 60 ° C was circulated inside the jacket to maintain the temperature inside the main body (barrel) at 60 ° C.
  • the strip-shaped hydrogel (1b) heated to 60 ° C. at a rotation speed of 40 rpm was charged into the inlet of the twin-screw kneader at a speed of 0.64 kg / min.
  • water at 60 ° C. was supplied from the inlet, and further, water vapor of 0.6 MPa was supplied from the gas inlet.
  • the amount of water supplied at 60 ° C. was 11.8% by mass with respect to the solid content of the strip-shaped hydrogel (1b).
  • the amount of water vapor input of 0.6 MPa was 9.7% by mass with respect to the solid content of the strip-shaped hydrogel (1b).
  • the diameter D of the discs used for gel crushing was as shown in Table 1, and the minimum clearance between the barrel and the disc was 6 mm (15% of the disc diameter D).
  • the gel crushing conditions are shown in Table 1.
  • Table 2 shows the characteristics of the particulate hydrogel (A) obtained by pulverization. The GGE at the time of crushing the gel was 19 J / g.
  • the obtained particulate hydrogel (A) was dried using a hot air dryer.
  • This dryer is equipped with a basket (bottom size 30 cm ⁇ 20 cm) made of wire mesh having an opening of 1.2 mm.
  • 500 g of the particulate hydrogel (A) was spread on the bottom surface of the basket so as to be substantially uniform, and hot air at 190 ° C. was blown from below for 30 minutes to obtain a dried product.
  • the cooled dried product was supplied to a roll mill, pulverized, and classified using JIS standard sieves having an opening of 850 ⁇ m and 150 ⁇ m. A component that passed through an 850 ⁇ m sieve and did not pass through a 150 ⁇ m sieve was collected to obtain a water-absorbent resin powder (AP1).
  • AP1 water-absorbent resin powder
  • Example 2 A particulate hydrogel (B) was obtained in the same manner as in Experimental Example 1 except that the minimum clearance between the barrel and the disc was changed to 2 mm (4.16% of the disc diameter D).
  • the disk arrangement pattern was the same as in Experimental Example 1, but the GGE at the time of gel crushing was 41 J / g.
  • the gel crushing conditions are shown in Table 1.
  • Table 2 shows the characteristics of the particulate hydrogel (B) obtained by pulverization.
  • the above particulate water-containing gel (B) was dried / surface-treated in the same manner as in Experimental Example 1 to obtain a water-absorbent resin powder (BP1) and a surface-crosslinked water-absorbent resin powder (BP2).
  • BP1 water-absorbent resin powder
  • BP2 surface-crosslinked water-absorbent resin powder
  • Example 4 The heating temperature of the strip-shaped hydrogel (1b) (gel temperature T1 charged into the inlet of the gel crusher) was changed to 70 ° C, and the rotation speed of the rotating shaft was changed to 100 rpm without supplying water and steam. However, except that the heat medium temperature of the jacket was changed to 80 ° C (that is, the temperature inside the main body was kept at 80 ° C) and the minimum clearance between the barrel and the disc was changed to 1 mm (2% of the disc diameter D). A particulate hydrogel (D) was obtained in the same manner as in Experimental Example 1. The gel crushing conditions are shown in Table 1. Table 2 shows the characteristics of the particulate hydrogel (D) obtained by pulverization. The GGE at the time of crushing the gel was 54 J / g.
  • the above particulate hydrogel (D) was dried / surface-treated in the same manner as in Experimental Example 1 to obtain a water-absorbent resin powder (DP1) and a surface-crosslinked water-absorbent resin powder (DP2).
  • the physical characteristics are shown in Table 3.
  • Example 6 The temperature of the strip-shaped hydrogel (1b) was changed to room temperature (20 ° C), water and water vapor were not supplied, and the heat medium temperature of the jacket was changed to room temperature (20 ° C) (that is, the temperature inside the main body was changed to room temperature). The same operation as in Experimental Example 4 was performed except that the temperature was maintained at (20 ° C.). As a result, the device stopped due to overload. After stopping, the barrel was opened and the contents were checked. As a result, the hydrogel (F) was integrated into a rice cake shape and could not be used for the subsequent manufacturing process.
  • Example 7 A particulate hydrogel (G) was obtained in the same manner as in Experimental Example 4 except that water at 90 ° C. was supplied from the inlet at the same time as the strip-shaped hydrogel (1b). The pattern of the disc was the same as that of Experimental Example 4, but the GGE at the time of gel crushing was 48 J / g. The gel crushing conditions are shown in Table 1. Table 2 shows the characteristics of the particulate hydrogel (G) obtained by pulverization.
  • the above particulate water-containing gel (G) was dried / surface-treated in the same manner as in Experimental Example 1 to obtain a water-absorbent resin powder (GP1) and a surface-crosslinked water-absorbent resin powder (GP2).
  • the physical characteristics are shown in Table 3.
  • Example 8 A particulate hydrogel (H) was obtained in the same manner as in Experimental Example 3 except that 0.6 MPa water vapor was not supplied.
  • the pattern of the disc was the same as that of Experimental Example 3, but the GGE at the time of gel crushing was 157 J / g.
  • the gel crushing conditions are shown in Table 1.
  • Table 2 shows the characteristics of the particulate hydrogel (H) obtained by pulverization.
  • Example 9 A particulate hydrogel (I) was obtained in the same manner as in Experimental Example 3 except that the heat medium temperature of the jacket was changed to 60 ° C. (that is, the temperature inside the main body was maintained at 60 ° C.). The pattern of the disc was the same as that of Experimental Example 3, but the GGE at the time of gel crushing was 135 J / g. The gel crushing conditions are shown in Table 1. Table 2 shows the characteristics of the particulate hydrogel (I) obtained by pulverization.
  • the above particulate water-containing gel (I) was dried / surface-treated in the same manner as in Experimental Example 1 to obtain a water-absorbent resin powder (IP1) and a surface-crosslinked water-absorbent resin powder (IP2).
  • IP1 water-absorbent resin powder
  • IP2 surface-crosslinked water-absorbent resin powder
  • Example 10 Similar to Experimental Example 2, except that a 10% by mass aqueous solution of polyethylene glycol 2000 (manufactured by Tokyo Kasei Kogyo Co., Ltd., weight average molecular weight 2,000) was supplied from the inlet at the same time as the strip-shaped hydrogel (1b). A particulate hydrogel (J) was obtained. The amount of polyethylene glycol 2000 supplied as a solid content was 0.8% by mass with respect to the solid content of the strip-shaped hydrogel (1b). The gel crushing conditions are shown in Table 1. Table 2 shows the characteristics of the particulate hydrogel (J) obtained by pulverization. The GGE at the time of crushing the gel was 38 J / g.
  • a particulate hydrogel (L) was obtained in the same manner as in Experimental Example 7.
  • the amount of tapioca acetate starch BK-V supplied as a solid content was 25% by mass with respect to the solid content of the strip-shaped hydrogel (1b).
  • the gel crushing conditions are shown in Table 1.
  • Table 2 shows the characteristics of the particulate hydrogel (L) obtained by pulverization.
  • the GGE at the time of crushing the gel was 30 J / g.
  • the gel temperature T1 represents the gel temperature at the inlet of the gel crusher, and the gel temperature T2 represents the gel temperature at the discharge port of the gel crusher.
  • d1 represents the mass average particle diameter in terms of solid content of the particulate hydrogel.
  • d3 represents the mass average particle size of the water-absorbent resin powder.
  • the hydrogel-like crosslinked polymer was continuously pulverized at 50 ° C. or higher by the pulverizing means. Further, in all the examples, the inside of the main body was heated to 50 ° C. or higher before the water-containing gel was added.
  • the hydrogel-like crosslinked polymer obtained in the polymerization step was gel-ground using a kneader having a plurality of axes to obtain a gel-crushed product that could be used in a subsequent step. Furthermore, the obtained water-absorbent resin powder also showed an excellent absorption rate (Experimental Examples 1 to 4, 7 to 12).
  • the water-absorbent resin powder obtained by the present invention is suitable for use as an absorber for sanitary products such as disposable diapers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

【課題】吸水速度に優れる吸水性樹脂粉末の製造方法を提供する。 【解決手段】本発明に係る吸水性樹脂粉末の製造方法は、単量体水溶液を重合して、含水ゲル状架橋重合体を得る重合工程と、上記重合工程後に、上記含水ゲル状架橋重合体をゲル粉砕装置を用いて粉砕して、粒子状含水ゲル状架橋重合体を得るゲル粉砕工程と、上記粒子状含水ゲル状架橋重合体を乾燥して、乾燥物を得る乾燥工程と、を含んでおり、上記ゲル粉砕装置は、投入口と、排出口と、複数の回転軸を内蔵する本体と、を備え、上記回転軸は、それぞれ粉砕手段を有しており、上記ゲル粉砕工程において、上記含水ゲル状架橋重合体を上記投入口から連続的に投入し、上記粉砕手段により上記含水ゲル状架橋重合体を50℃以上で連続的に粉砕し、上記排出口から粒子状含水ゲル状架橋重合体を連続的に取り出し、上記投入口に投入する上記含水ゲル状架橋重合体の重合率が90質量%以上であり、上記排出口から排出される粒子状含水ゲル状架橋重合体の固形分換算の質量平均粒子径d1が3mm以下である。

Description

吸水性樹脂粉末の製造方法
 本発明は、吸水性樹脂粉末の製造方法に関する。
 吸水性樹脂(SAP/Super Absorbent Polymer)は、水膨潤性水不溶性の高分子ゲル化剤であり、紙オムツや生理用ナプキン等の吸収性物品、農園芸用の保水剤、工業用の止水剤等、様々な分野で多用されている。
 上記吸水性樹脂は、その原料として多くの単量体や親水性高分子が使用されているが、吸水性能の観点から、アクリル酸及び/又はその塩を単量体として用いたポリアクリル酸(塩)系吸水性樹脂が、工業的に最も多く生産されている。
 上記吸水性樹脂には、主用途である紙オムツの高性能化に伴い、様々な機能(高物性化)が求められている。具体的には、基本物性である無加圧下吸水倍率や加圧下吸水倍率の他に、ゲル強度、水可溶分、含水率、吸水速度、通液性、粒度分布、耐尿性、抗菌性、耐ダメージ性、粉体流動性、消臭性、耐着色性、低粉塵、低残存モノマー等の様々な物性が吸水性樹脂に対して要求されている。特に、紙オムツ等衛生用品の用途では、製品の薄型化に伴って、吸水速度のさらなる向上が望まれている。
 上記粉末状又は粒子状の吸水性樹脂の商業的な製造方法は、代表的には、重合工程、重合後又は重合と同時におこなうゲル粉砕(細粒化)工程、細粒化したゲルの乾燥工程、乾燥物の粉砕工程、粉砕物の分級工程、粉砕及び分級により発生する微粉の回収工程、並びに分級後の吸水性樹脂粉末の表面架橋工程を含む。
 これまでに提案された吸水性樹脂の製造方法の一つとして、粉砕機構を有する重合装置を使用して重合工程とゲル粉砕工程とを同時に行う製造方法がある。この製造方法の場合、液状モノマーの重合反応の進行とともに、生成する含水ゲルが粉砕され、細粒化された含水ゲルが重合装置から排出される。この具体例として、バッチ式ニーダーや連続式ニーダーを使用する方法が、特許文献1~3に示されている。
 しかし、これらの装置で得られるゲル粒子のサイズは、数mm~数cm程度であり、吸水速度の更なる向上が求められる近年の状況では、不十分なゲル粉砕であり、追加のゲル粉砕装置が必要であった。特許文献4では、バッチ式ニーダー又は連続式ニーダーを使用して、吸水性樹脂の製品粒子径となるゲル粒子よりも小さいサイズまで湿式粉砕する方法が提案されているが、過度に装置サイズが大きくなるため現実的ではない。
 また、重合工程で、モノマーの重合反応が進行中の付着性の高い含水ゲルをゲル粉砕することから、装置内部の構成部品へ含水ゲルが付着しやすく、さらに付着した状態で反応が進行することで含水ゲルが固着するため、構成部品の破損の原因となったり、メンテナンス時の清掃に時間を要する。
特開昭57-34101号公報 特開昭60-55002号公報 国際公開第2001/038402号パンフレット 特開平05-112654号公報
 近年、特に求められている吸水速度に優れた吸水性樹脂を得るためには、ゲル粉砕工程において、従来以上に小さい粒子径まで含水ゲルを粉砕する必要があるが、従来の重合工程とゲル粉砕工程を、複数軸を有する混練機を用いて同時に行ういわゆるニーダー重合では、所望の粒子径の含水ゲルを得ることができなかった。
 そこで、本発明の目的は、吸水速度に優れる吸水性樹脂を提供することである。
 本発明者らは、まず、含水ゲル状架橋重合体を、従来は多孔板を備えた押出機(ミートチョッパー)を用いて粒子状含水ゲル状架橋重合体(以下、「粒子状含水ゲル」とも称する)を得るところを、複数軸混練機(特に2軸混練機)を用いてゲル粉砕を行うことにより、連続的に粒子状含水ゲルを得ることができることを見出した。さらに、この粉砕手段において、含水ゲル状架橋重合体を50℃以上で連続的に粉砕することにより、吸水速度に優れた吸水性樹脂粉末を得ることができることを見出し、本発明を完成させた。
 即ち、本発明は、単量体水溶液を重合して、含水ゲル状架橋重合体を得る重合工程と、上記重合工程後に、上記含水ゲル状架橋重合体をゲル粉砕装置を用いて粉砕して、粒子状含水ゲル状架橋重合体を得るゲル粉砕工程と、上記粒子状含水ゲル状架橋重合体を乾燥して、乾燥物を得る乾燥工程と、を含んでおり、上記ゲル粉砕装置は、投入口と、排出口と、複数の回転軸を内蔵する本体と、を備え、上記回転軸は、それぞれ粉砕手段を有しており、上記ゲル粉砕工程において、上記含水ゲル状架橋重合体を上記投入口から連続的に投入し、上記含水ゲル状架橋重合体を50℃以上で上記粉砕手段により連続的に粉砕し、上記排出口から粒子状含水ゲル状架橋重合体を連続的に取り出し、上記投入口に投入する上記含水ゲル状架橋重合体の重合率が90質量%以上であり、上記排出口から排出される粒子状含水ゲル状架橋重合体の固形分換算の質量平均粒子径d1が3mm以下である、吸水性樹脂粉末の製造方法である。
本発明の実施形態に係る製造方法に用いられるゲル粉砕装置の一例が示された一部切り欠き側面図である。 図1のゲル粉砕装置の拡大図(本体中央部を上から見た図)である。 吸水性樹脂の代表的な製造工程を説明するためのフロー図である。
 以下、本発明について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下に例示する以外にも、本発明の趣旨を損なわない範囲内で適宜変更して、実施することが可能である。また、本発明は、以下の実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。複数の実施形態についてそれぞれ開示された技術的手段を、適宜組み合わせて得られる他の実施形態についても、本発明の技術的範囲に含まれる。
 〔1〕用語の定義
 〔1-1〕「吸水性樹脂」
 本発明における「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を指し、下記の物性を満たすものをいう。即ち、水膨潤性としてERT441.2-02で規定されるCRC(遠心分離機保持容量)が5g/g以上であり、かつ、水不溶性としてERT470.2-02で規定されるExt(水可溶分)が50質量%以下である高分子ゲル化剤を指す。
 上記吸水性樹脂は、その用途・目的に応じた設計が可能であり、特に限定されないが、カルボキシル基を有する不飽和単量体を架橋重合させた親水性架橋重合体であることが好ましい。また、全量が架橋重合体である形態に限定されず、上記の各物性(CRC、Ext)が上記数値範囲を満たす限り、添加剤等を含んだ組成物であってもよい。
 本発明における「吸水性樹脂」は表面架橋(別称;後架橋、2次架橋)されたものであってもよく、表面架橋されていないものであってもよい。なお、本明細書において、「吸水性樹脂粉末」とは、粉末状の吸水性樹脂を指し、好ましくは、所定の固形分率(含水率)及び粒度(粒子径)に調整された吸水性樹脂である。また、所定の表面架橋処理が完了した吸水性樹脂粉末は、別途、表面架橋(後架橋)された吸水性樹脂粉末ないし吸水剤と称することもある。
 〔1-2〕「ポリ(メタ)アクリル酸(塩)」
 本発明における「ポリ(メタ)アクリル酸(塩)」とは、ポリ(メタ)アクリル酸及び/又はその塩を指し、主成分として(メタ)アクリル酸及び/又はその塩(以下、「(メタ)アクリル酸(塩)」とも称する)を繰り返し単位として含み、任意成分としてグラフト成分を含む架橋重合体を意味する。
 上記「主成分」とは、(メタ)アクリル酸(塩)の使用量(含有量)が、重合に用いられる単量体全体(架橋剤を除く全単量体)に対して、好ましくは50モル%~100モル%、より好ましくは70モル%~100モル%、更に好ましくは90モル%~100モル%、特に好ましくは実質100モル%であることを意味する。
 ここで、「ポリ(メタ)アクリル酸塩」は、未中和でもよいが、好ましくは部分中和または完全中和されたポリ(メタ)アクリル酸塩であり、より好ましくは一価の塩、さらに好ましくはアルカリ金属塩又はアンモニウム塩、よりさらに特に好ましくはアルカリ金属塩、特に好ましくはナトリウム塩である。
 〔1-3〕評価方法の定義
 「EDANA」は、European Disposables and Nonwovens Associationsの略称である。また、「ERT」は、EDANA Recommended Test Methodsの略称であり、吸水性樹脂の評価方法を規定した欧州標準である。本発明では、特に断りのない限り、ERT原本(2002年改定)に記載されている測定法に関しては、それに準拠して測定する。に記載のない評価方法に関しては、実施例に記載された方法及び条件で測定する。
 〔1-3-1〕「CRC」(ERT441.2-02)
 「CRC」は、Centrifuge Retention Capacity(遠心分離機保持容量)の略称であり、吸水性樹脂の無加圧下での吸水倍率(「吸水倍率」と称する場合もある)を意味する。具体的には、吸水性樹脂0.2gを不織布製の袋に入れた後、大過剰の0.9質量%塩化ナトリウム水溶液中に30分間浸漬して自由膨潤させ、その後、遠心分離機(250G)で3分間、水切りした後の吸水倍率(単位;g/g)のことをいう。なお、重合後及び/又はゲル粉砕後の含水ゲルについては、含水ゲル0.4gを使用し、測定時間を24時間に変更し、且つ固形分補正してCRCを求める。
 〔1-3-2〕「Moisture Content」(ERT430.2-02)
 「Moisture Content」は、吸水性樹脂の乾燥減量で規定される含水率を意味する。具体的には、吸水性樹脂4.0gを105℃で3時間乾燥した際の乾燥減量から算出した値(単位;質量%)のことをいう。なお、本発明において、乾燥後の吸水性樹脂については、吸水性樹脂1.0gの180℃、3時間の乾燥減量で規定され、乾燥前の含水ゲルについては、含水ゲル2.0gの180℃、24時間の乾燥減量で規定される。
 〔1-3-3〕「PSD」(ERT420.2-02)
 「PSD」は、Particle Size Distributionの略称であり、篩分級により測定される吸水性樹脂の粒度分布を意味する。なお、質量平均粒子径(D50)及び粒度分布の対数標準偏差(σζ)は、米国特許第7638570号に記載された方法と同様の方法で測定される。なお、本発明において粒子状含水ゲルの粒度分布(PSD)は後述の方法で湿式に篩分級することで規定される。さらに、粒子状含水ゲルの固形分換算の粒子径(μm)は、粒子状含水ゲルの粒子径(μm)とその固形分率(質量%)から後述の計算方法で規定される。
 〔1-3-4〕「AAP」(ERT442.2-02)
 「AAP」は、Absorption Against Pressureの略称であり、吸水性樹脂の加圧下における吸水倍率を意味する。具体的には、吸水性樹脂0.9gを大過剰の0.9質量%塩化ナトリウム水溶液に対して、1時間、2.06kPa(21g/cm、0.3psi)の荷重下で膨潤させた後の吸水倍率(単位;g/g)のことをいう。本明細書では荷重条件を4.83kPa(約49g/cm、約0.7psiに相当)に変更して測定した値として定義される。
 〔1-3-5〕「Vortex」
 本明細書における「Vortex」とは、吸水性樹脂の吸水速度を表す指標であり、2gの吸水性樹脂が50mlの0.9質量%の塩化ナトリウム水溶液を所定の状態まで吸水するのに要する時間(単位;秒)を意味する。
 〔1-4〕「ゲル粉砕」
 本明細書における「ゲル粉砕」とは、重合工程(好ましくは水溶液重合、無攪拌水溶液重合(静置水溶液重合)、特に好ましくはベルト重合)で得られた含水ゲル状架橋重合体(以下、単に「含水ゲル」とも称する)の乾燥を容易にすることを目的に、せん断、圧縮力を加えてその大きさを小さくし表面積を高くする操作のことを意味する。
 尚、重合機の形式によって得られる含水ゲルの形状が異なる場合がある。例えば、静置重合(特にベルト重合)で得られる含水ゲルの形状は、シート状又はブロック状である。ここで、シート状とは、平面に厚みを持った重合体であり、その厚みは、好ましくは1mm~30cm、特に好ましくは0.5~10cmである。シート状含水ゲルは、代表的には、ベルト重合、ドラム重合及びバッチ薄膜重合により得られる。シート状含水ゲルの長さ及び幅は、用いられる重合装置のサイズにより適宜決定される。連続重合(連続ベルト重合又は連続ドラム重合)の場合、その長さがエンドレスのシート状含水ゲルが得られ、その幅は、重合装置のベルト又はドラムの幅であり、好ましくは、0.1~10m、より好ましくは1~5mである。このエンドレスのシート状含水ゲルは、重合後に、長さ方向に適宜裁断して用いられてもよい。また、ブロック状の含水ゲルは、タンク重合等により得られる。このブロック状の含水ゲルは、重合後に、適宜数cm~数m角に解砕されてもよい。これに対して、ニーダー重合の場合、重合工程において、同一装置内で、重合とゲル粉砕とが連続的に行われるため、ある程度細粒化した含水ゲルが得られる。しかし、ニーダー重合で得られる含水ゲル粒子は、本発明に係る製造方法で得られるレベルの粒子径まで細粒化されたものではない。また、ニーダー重合によって、本発明において得られるレベルの粒子径まで粉砕するためには、過大な装置が必要となり、工業的製造方法としては現実的ではない。従って、このような重合工程でのゲル粉砕は、本発明における「ゲル粉砕」の概念には含まれない。尚、本発明においては、重合率が後述する範囲に到達した段階で、重合工程が終了したと見なすものとする。ニーダー重合等の方法によりある程度細粒化された含水ゲルを、本発明で求めるレベルの粒子径まで粉砕する操作は、本発明における「ゲル粉砕」の概念に含まれる。
 〔1-5〕その他
 本明細書において、範囲を示す「X~Y」は「X以上、Y以下」を意味する。また、特に注釈のない限り、質量の単位である「t(トン)」は「Metric ton(メトリック トン)」を意味し、「ppm」は「質量ppm」又は「重量ppm」を意味する。更に、「質量」と「重量」、「質量部」と「重量部」、「質量%」と「重量%」はそれぞれ同義語として扱う。また、「~酸(塩)」は「~酸及び/又はその塩」、「(メタ)アクリル」は「アクリル及び/又はメタクリル」をそれぞれ意味する。
 〔2〕吸水性樹脂粉末の製造方法
 本発明に係る吸水性樹脂粉末の製造方法は、重合工程、この重合工程とは別途のゲル粉砕工程及び乾燥工程を有している。好ましくは、この製造方法は、更に、冷却工程、乾燥物の粉砕工程、分級工程、表面架橋工程、表面架橋後の整粒工程を有している(図3参照)。その他には、単量体水溶液の調整工程、各種添加剤の添加工程、微粉除去工程及び微粉リサイクル工程(微粉回収工程)、充填工程を含んでもよい。更に、目的に応じて各種の公知の工程を含むことができる。
 本発明に係る製造方法によれば、重合率が90質量%以上の含水ゲル状架橋重合体を、複数軸を有する混練機(特に2軸混練機)を用いてゲル粉砕を行い、固形分換算の質量平均粒子径d1が3mm以下である粒子状含水ゲルを乾燥工程に供することにより、吸水速度に優れた吸収性樹脂が得られる。
 以下、各工程について、詳細に説明する。
 〔2-1〕単量体水溶液の調製工程
 本工程は、好ましくは酸基含有不飽和単量体を主成分として含む水溶液(以下、「単量体水溶液」と称する)を調製する任意の工程である。なお、得られる吸水性樹脂の吸水性能が低下しない範囲で、単量体のスラリー液を使用することもできるが、本項では便宜上、単量体水溶液について説明を行う。
 また、上記「主成分」とは、酸基含有不飽和単量体の使用量(含有量)が、吸水性樹脂の重合反応に供される単量体(内部架橋剤は除く)全体に対して、通常50モル%以上、好ましくは70モル%以上、より好ましくは90モル%以上(上限は100モル%)であることをいう。
 (酸基含有不飽和単量体)
 本発明に規定する酸基は、特に限定されないが、カルボキシル基、スルホン基、リン酸基等が例示される。この酸基含有不飽和単量体の例としては、(メタ)アクリル酸、(無水)マレイン酸、イタコン酸、ケイ皮酸、ビニルスルホン酸、アリルトルエンスルホン酸、ビニルトルエンスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸、2-(メタ)アクリロイルプロパンスルホン酸、2-ヒドロキシエチル(メタ)アクリロイルフォスフェート等が挙げられる。吸水性能の観点から、好ましくは(メタ)アクリル酸、(無水)マレイン酸、イタコン酸、ケイ皮酸であり、より好ましくは(メタ)アクリル酸であり、特に好ましくはアクリル酸である。
 (酸基含有不飽和単量体以外の単量体)
 酸基含有不飽和単量体以外の単量体としては、重合して吸水性樹脂となり得る化合物であればよい。例えば、(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等のアミド基含有不飽和単量体;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体;メルカプト基含有不飽和単量体;フェノール性水酸基含有不飽和単量体;N-ビニルピロリドン等のラクタム基含有不飽和単量体等が挙げられる。
 (中和塩)
 本発明において、酸基含有不飽和単量体に含まれる酸基の一部又は全部が中和された中和塩を用いることができる。この場合、酸基含有不飽和単量体の塩としては一価のカチオンとの塩であることが好ましく、アルカリ金属塩、アンモニウム塩及びアミン塩から選ばれる少なくとも1種であることがより好ましく、アルカリ金属塩であることが更に好ましく、ナトリウム塩、リチウム塩及びカリウム塩から選ばれる少なくとも1種であることがより更に好ましく、ナトリウム塩が特に好ましい。
 (塩基性物質)
 上記酸基含有不飽和単量体を中和するために使用される中和剤としては、特に限定されないが、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸アンモニウム等の無機塩や、アミノ基やイミノ基を有するアミン系有機化合物等の塩基性物質が適宜選択されて用いられる。中和剤として、2種以上の塩基性物質が併用されてもよい。なお、本発明における単量体は、特に断りのない限り、中和塩を含む概念である。
 (中和率)
 吸水性能の観点から、酸基含有不飽和単量体とその中和塩の合計モル数に対する中和塩のモル数(以下、「中和率」と称する)は、好ましくは40モル%以上、より好ましくは40モル%~80モル%、更に好ましくは45モル%~78モル%、特に好ましくは50モル%~75モル%である。
 上記中和率を調整する方法としては、酸基含有不飽和単量体とその中和塩とを混合する方法;酸基含有不飽和単量体に公知の中和剤を添加する方法;予め所定の中和率に調整された酸基含有不飽和単量体の部分中和塩(即ち、酸基含有不飽和単量体とその中和塩との混合物)を用いる方法;等が挙げられる。また、これらの方法を組み合わせてもよい。
 上記中和率の調整は、酸基含有不飽和単量体の重合反応開始前に行ってもよいし、酸基含有不飽和単量体の重合反応中で行ってもよいし、酸基含有不飽和単量体の重合反応終了後に得られる含水ゲル状架橋重合体に対して行ってもよい。また、重合反応開始前、重合反応中又は重合反応終了後のいずれか一つの段階を選択して中和率を調整してもよいし、複数の段階で中和率を調整してもよい。なお、紙オムツ等の吸収性物品等、人体に直接接触する可能性のある用途では、好ましくは重合反応の開始前及び/又は重合反応の期間中、より好ましくは重合反応の開始前に、中和率を調整すればよい。
 (内部架橋剤)
 吸水性樹脂粉末の製造方法において、好ましくは内部架橋剤が用いられる。該内部架橋剤によって、得られる吸水性樹脂の吸水性能や吸水時のゲル強度等が調整される。
 上記内部架橋剤としては、1分子内に合計2以上の不飽和結合又は反応性官能基を有していればよい。例えば、分子内に(単量体と共重合しうる)重合性不飽和基を複数有する内部架橋剤として、N,N-メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリン(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェートなどが挙げられる。分子内に(単量体の官能基(例;カルボキシ基)と反応しうる)反応性官能基を複数有する内部架橋剤として、トリアリルアミン、ポリアリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、1,4-ブタンジオール、ペンタエリスリトール、エチレンジアミン、エチレンカーボネート、プロピレンカーボネート、ポリエチレンイミンなどが挙げられる(なお、ここで、エチレンカーボネートなどの環状カーボネートはカルボキシル基との反応によってさらに官能基OHを生成する架橋剤である)。また、分子内に重合性不飽和基及び反応性官能基を有する内部架橋剤として、グリシジル(メタ)アクリレート等が挙げられる。これらのうち、2種以上を併用してもよい。
 これら内部架橋剤の中でも、本発明の効果の面から、好ましくは、分子内に重合不飽和基を複数有する化合物であり、より好ましくは、分子内に(ポリ)アルキレン構造単位を有する化合物であり、さらに好ましくはポリエチレングリコール構造単位を有する化合物であり、特に好ましくは、ポリエチレングリコール構造単位を有するアクリレート化合物である。これら内部架橋剤を用いて得られる含水ゲルは、粘着性が低い。この粘着性の低い含水ゲルを乾燥することにより、乾燥時の融着や凝集を低減できるため好ましい。
 上記内部架橋剤の使用量は、単量体及び内部架橋剤の種類等に応じて適宜設定される。得られる吸水性樹脂のゲル強度の観点から、単量体に対して、好ましくは0.001モル%以上、より好ましくは0.005モル%以上、更に好ましくは0.01モル%以上である。また、吸水性樹脂の吸水性能向上の観点から、好ましくは5モル%以下、より好ましくは2モル%以下である。なお、単量体の自己架橋反応が有効な重合条件においては、上記内部架橋剤を使用しなくともよい。
 (重合禁止剤)
 重合に使用される単量体は、重合の安定性から、好ましくは少量の重合禁止剤を含む。好ましい重合禁止剤はp-メトキシフェノールである。単量体(特にアクリル酸及びその塩)中に含まれる重合禁止剤の量は、通常1ppm~250ppm、好ましくは10ppm~160ppm、より好ましくは20ppm~80ppmである。
 (その他の物質)
 本発明に係る製造方法において、本発明の目的が達成される範囲内で、以下に例示する物質(以下、「その他の物質」と称する)を単量体水溶液に添加することもできる。
 その他の物質の具体例として、チオール類、チオール酸類、2級アルコール類、アミン類、次亜リン酸塩類等の連鎖移動剤;炭酸塩、重炭酸塩、アゾ化合物、気泡等の発泡剤;エチレンジアミンテトラ(メチレンホスフィン酸)やその金属塩、エチレンジアミン4酢酸やその金属塩、ジエチレントリアミン5酢酸やその金属塩等のキレート剤;ポリアクリル酸(塩)及びこれらの架橋体(例えばリサイクルされる吸水性樹脂微粉)、澱粉、セルロース、澱粉-セルロース誘導体、ポリビニルアルコール等の親水性高分子等が挙げられる。その他の物質は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 その他の物質の使用量は、特に限定されないが、リサイクルされる微粉では単量体に対して30質量%以下、微粉以外ではその他の物質の全濃度としては、好ましくは単量体に対して10質量%以下、より好ましくは0.001質量%~5質量%、特に好ましくは0.01質量%~1質量%である。
 (単量体組成物中の単量体濃度)
 本工程において、単量体組成物中の単量体濃度(=総単量体量/(総単量体量+総重合溶媒量(通常は水))は、吸水性樹脂の物性及び生産性の観点から、好ましくは10質量%~90質量%、より好ましくは20質量%~80質量%、更に好ましくは30質量%~70質量%、特に好ましくは40質量%~60質量%である。以下、単量体濃度を「モノマー濃度」と称する場合がある。
 (重合開始剤)
 本発明で使用される重合開始剤は、重合形態等によって適宜選択されるため、特に限定されないが、例えば、熱分解型重合開始剤、光分解型重合開始剤、若しくはこれらの併用、又は重合開始剤の分解を促進する還元剤を併用したレドックス系重合開始剤等が挙げられる。具体的には、米国特許第7265190号に開示された重合開始剤のうち、1種又は2種以上が用いられる。なお、重合開始剤の取扱性や吸水性樹脂の物性の観点から、好ましくは過酸化物又はアゾ化合物、より好ましくは過酸化物、更に好ましくは過硫酸塩が使用される。
 該重合開始剤の使用量は、単量体に対して、好ましくは0.001モル%~1モル%、より好ましくは0.001モル%~0.5モル%である。また、必要によりレドックス重合を行う場合、酸化剤と併用される該還元剤の使用量は、単量体に対して、好ましくは0.0001モル%~0.02モル%である。
 (溶存酸素量)
 なお、重合前の単量体水溶液中の溶存酸素を、昇温又は不活性ガスとの置換により低減させてもよい。例えば、溶存酸素は、好ましくは5ppm以下、より好ましくは3ppm以下、特に好ましくは1ppm以下に低減される。
 また、単量体水溶液に気泡(特に上記不活性ガス等)を分散させることもできる。この場合には、重合反応において発泡重合となる。
 〔2-2〕重合工程
 本工程は、前記単量体水溶液を重合して、含水ゲル状架橋重合体を得る工程である。好ましくは、ポリ(メタ)アクリル酸(塩)を主成分とする架橋体である含水ゲルを得る工程である。
 なお、上記重合開始剤を添加することで重合反応を行う方法以外に、放射線、電子線、紫外線等の活性エネルギー線を照射する方法がある。また、重合開始剤を添加したうえで、活性エネルギー線の照射を併用してもよい。
 (重合形態)
 重合形態としては、バッチ式又は連続式の水溶液重合である。また、ベルト重合でもニーダー重合でもよい。さらに、連続水溶液重合がより好ましく、連続ベルト重合及び連続ニーダー重合の何れでも適用される。具体的な重合形態として、連続ベルト重合は米国特許第4893999号、同第6241928号、米国特許出願公開第2005/215734号等に、連続ニーダー重合は米国特許第6987151号、同第6710141号等に、それぞれ開示されている。これらの連続水溶液重合を採用することで、吸水性樹脂の生産効率が向上する。
 また、上記連続水溶液重合の好ましい形態として、「高温開始重合」や「高濃度重合」が挙げられる。「高温開始重合」とは、単量体水溶液の温度を好ましくは30℃以上、より好ましくは35℃以上、更に好ましくは40℃以上、特に好ましくは50℃以上(上限は沸点)の温度で重合を開始する形態をいい、「高濃度重合」とは、単量体濃度を好ましくは30質量%以上、より好ましくは35質量%以上、更に好ましくは40質量%以上、特に好ましくは45質量%以上(上限は飽和濃度)で重合を行う形態をいう。これらの重合形態を併用することもできる。
 (含水ゲルの重合率)
 重合工程で得られる含水ゲル状架橋重合体の重合率は、90質量%以上である。好ましくは95質量%以上、より好ましくは98質量%以上、特に好ましくは99質量%以上である。重合率が低い状態(すなわち、重合率90質量%未満の状態)でゲル粉砕を行った場合(例えば、ニーダー重合のように重合およびゲル粉砕を同時に行った場合)、粉砕されたゲル粒子中に含まれる多量の未反応モノマーが重合して、粉砕されたゲル粒子同士を接着するため、再度大粒子径のゲル粒子が生成される。従って、重合工程中にゲル粉砕を行う場合には、再生した大粒子径のゲル粒子を再度粉砕する必要があり、粉砕に要するエネルギーが増大し、重合装置が過大なものになるという問題がある。また、重合工程後に、重合率の低い含水ゲルを粉砕して、多量の未反応モノマーを含む状態で乾燥工程を行った場合、乾燥中に重合反応が進行して、粒子径の小さいゲル粒子から大粒子径の含水ゲル粒子が再生されるため、得られる吸水性樹脂の吸水速度の低下、乾燥物の粒子径の増大等の問題が発生する。なお、重合率の上限は特に限定されず、100質量%が理想的であるが、高い重合率には長い重合時間や厳しい重合条件が必要であり、生産性や物性面の低下を招くこともあり、上限は99.95質量%、さらに99.9質量%、通常99.8質量%程度で十分である。代表的には、重合工程で得られる含水ゲル状架橋重合体の重合率は、98~99.99質量%である。
 〔2-3〕細断工程
 細断工程は、重合工程後ゲル粉砕工程前に、含水ゲル状架橋重合体を、ゲル粉砕装置に投入可能な大きさに切断又は粗砕する任意の工程である。特に、上記重合工程がベルト重合であり、シート状又はブロック状の含水ゲルが得られる場合に、この細断工程を実施することが好ましい。したがって、本発明の一実施形態では、重合工程後に得られる含水ゲル状架橋重合体がシート状であり、ゲル粉砕工程前に、シート状の含水ゲル状架橋重合体を細断する細断工程をさらに含む。細断工程における含水ゲルを切断又は粗砕する手段は特に限定されず、ロータリーカッター、ローラーカッター、ギロチンカッター等が用いられる。細断するサイズは、後述するゲル粉砕装置に投入できる範囲であれば特に限定されないが、細断後の含水ゲルの大きさとして、好ましくは1mm~3mであり、より好ましくは5mm~2.5mであり、特に好ましくは1cm~2mである。なお、本発明の目的が達成される場合、細断工程を実施しなくてもよい。
 〔2-4〕ゲル粉砕工程
 本工程は、上記重合後に、この重合工程で得られた含水ゲル状架橋重合体を粉砕して細粒化することにより、粒子状含水ゲル状架橋重合体(以下、「粒子状含水ゲル」)を得る工程である。目的とする形状及び性能の(表面架橋された)吸水性樹脂粉末が高収率で得られるように、粒子状含水ゲルの粒子径が、後述する好ましい範囲に調整される。尚、所定の粒子径の粒子状含水ゲルを得るために、本工程を2回以上実施してもよい。
 (ゲル粉砕装置)
 本発明に係る製造方法では、図1、図2に示すように、重合工程後のゲル粉砕工程において、投入口、複数の回転軸を内蔵する本体、排出口を有するゲル粉砕装置が用いられる。それぞれの回転軸は粉砕手段を有する。このゲル粉砕装置では、投入口から本体内に連続的に投入された含水ゲル状架橋重合体が、各回転軸が有する粉砕手段により50℃以上で粉砕され、粒子状含水ゲル状架橋重合体として、排出口から連続的に取り出される。尚、本発明において、本体とは、複数の回転軸及び粉砕手段が設置される胴体部分(図1の符号208)を意味し、バレル、トラフ、ケーシング等とも称される。
 本発明に係る製造方法に用いるゲル粉砕装置は、連続式である限り、縦型(含水ゲルの進行方向が上下方向)であってもよく、横型又は水平型(含水ゲルの進行方向が左右方向又は水平方向)であってもよい。また、縦型及び横型のゲル粉砕装置において、水平方向に対して0°~90°の傾斜を有してもよい。例えば、図1に示される横型連続粉砕装置の場合、必要に応じて適宜傾斜が設けられるが、その傾斜は、投入口から排出口に向かって(即ち、含水ゲルの進行方向に対して)、下向きであってもよく、上向きであってもよい。通常、その傾斜角度は0°~10°であり、好ましくは0°~1°であり、特に好ましくは0°である。
 なお、従来の製造方法においてゲル粉砕に用いられる押出機(ミートチョッパー)の場合、押出口に設置されたダイス付近で実質的に含水ゲルが粉砕され、含水ゲルの搬送に係るスクリュー部分では殆どゲル粉砕が行われない。これに対し、本発明に係る製造方法に用いるゲル粉砕装置(特に、混練機)の場合、投入された含水ゲルが、排出口に到達するまでの間に、回転軸が有する粉砕手段によって、粒子径3mm以下にまで粉砕されることに特徴を有する。
 詳細には、このゲル粉砕装置では、投入口から投入された含水ゲルは、排出口から排出されるまでの間に、目的とする粒度にまで粉砕される。したがって、このゲル粉砕装置では、従来の押出機(ミートチョッパー)のように、ダイスから押し出すことを必須とせず、目的とする粒度に調整された粒子状含水ゲルが排出口から取り出される。本発明に係る製造方法では、このゲル粉砕装置を用いることにより、吸水速度に優れた吸水性樹脂が得られる。
 50℃以上で連続的にゲル粉砕を行う観点から、ゲル粉砕装置は、加熱手段及び/又は保温手段を有することが好ましい。加熱手段及び/又は保温手段としては特に限定されないが、含水ゲル及び粒子状含水ゲルの付着及び凝集防止の観点から、対流伝熱による直接伝熱及び/又は熱媒で加熱されたゲル粉砕装置の加熱面(含水ゲルとの接触面、熱源部分)からの熱伝導による間接伝熱による加熱手段が好ましい。より好ましい加熱手段は、直接伝熱では通気加熱式、間接伝熱では外壁加熱式である。
 含水ゲルへのダメージ低減の観点から、好ましくは、本体の外面に、加熱手段及び/又は保温手段、より好ましくは加熱手段を備える。この保温手段としては、例えば、本体の外面の一部または全面(好ましくは本体の外表面(面積)の50%以上、より好ましくは80%以上、特に好ましくは全面)を、断熱材で被覆する方法が挙げられる。また、加熱手段としては、本体の外面の一部または全面(好ましくは本体の外表面(面積)の50%以上、より好ましくは80%以上、特に好ましくは全面)を覆うように設置された電気トレス、スチームトレス、熱媒で加熱されたジャケット等が例示される。本発明において求められる粒子状含水ゲルの粒子径は、従来よりもかなり小さい。そのため、従来技術の範囲で想定されるよりも、温度変化による含水ゲル粒子の付着性及び流動性の変動が大きいことがわかった。その結果として、含水ゲルの粉砕に必要なエネルギーや、粉砕されたゲル粒子同士の凝集性が、温度によって大きく変動することが、本発明における検討により明らかになった。ゲル粉砕装置が、上記加熱手段及び/又は保温手段を備えることにより、より好ましい温度域でゲル粉砕工程を実施することができる。また、季節や昼夜といった気温差の影響によるゲル粉砕の質の悪化を避けることができる。さらに、ゲル粉砕装置の立ち上げ時にも、スムーズに安定運転に誘導することも可能になる。
 本発明の効果が得られる限り、それぞれの回転軸が有する粉砕手段の種類は特に限定されない。例えば、含水ゲルに対する剪断作用を有するものとして、各種形状のディスクが挙げられる。ディスクは、チップ、パドル、エレメント、ニーディング、ローター等と称される場合がある。ディスクの形状は特に限定されず、円板状、楕円状、略三角形状等から適宜選択される。異なる形状のディスクを組み合わせて使用することも可能であり、その配列は、目的とする粒子状含水ゲルの粒子径、粉砕に要するエネルギーの観点から適宜調整される。また、粉砕手段として、アーム、羽根、ブレード、カットディスク(CD)等が併用されてもよい。
 例えばそれぞれの回転軸が粉砕手段として、円板状又は楕円状のディスクを有する場合、このディスクの最大径D(Diameter;直径の異なる複数のディスクを使用する場合は、最大ディスクの直径)に対する本体内部の有効長さL(Length)の比は、L/Dとして定義される。このL/Dは、5~40が好ましく、6~30がより好ましく、6.5~20がさらに好ましい。尚、この有効長さLとは、図1に示されるように、投入口から排出口を含めた本体(バレル)部分の軸方向長さ(全長)を意味する。
 また、ディスクおよび本体(バレル)の間の距離(クリアランス)は、場所によって異なる場合もある。ディスク外周と本体(バレル)の内壁との距離が最短となる距離を最小クリアランスCとしたとき、最小クリアランスCは、ディスクの最大径Dに対して、20%以下が好ましく、15%以下がより好ましく、10%以下がさらにより好ましく、5%以下が特に好ましい。上記上限値以下であれば、ゲル粉砕時にバレルとディスクとの間でのせん断力が強くなり、ゲル粉砕効率が良好となる。また、最小クリアランスCは、ディスクの最大径Dに対して、0.2%以上が好ましく、0.5%以上がより好ましく、1%以上がさらに好ましい。上記下限値以上であれば、ディスクと本体(バレル)内壁との接触が抑制され、磨耗による金属異物混入が抑制される。本発明の好適な形態は、最小クリアランスCは、ディスクの最大径Dに対して、0.2~20%である。
 後述する通り、このゲル粉砕装置では、粉砕手段を有する複数の回転軸の回転によって、含水ゲルが所定粒度まで粉砕される。この複数の回転軸の回転数は、等速でもよく、非等速でもよく、装置によって適宜設定されるが、好ましくは1rpm~1000rpm、より好ましくは3rpm~500rpm、さらに好ましくは5rpm~300rpmの範囲である。また、各回転軸の回転数が異なる場合、一の回転軸の回転数に対する他の回転軸の回転数の比率は、通常1~10の範囲であり、好ましくは1~2の範囲である。
 また、この複数の回転軸が、粉砕手段としてディスクを有する場合、下記(式3)で定義されるディスクの周速(V)は、等速でもよく、非等速でもよく、装置によって適宜設定されるものであるが、0.05m/s~5m/sが好ましく、0.1m/s~5m/sがより好ましく、0.15m/s~3m/sがさらに好ましく、0.2m/s~2m/sが特に好ましい。上記範囲を超えると、含水ゲルに係る剪断力が過大になり、粉砕後の含水ゲル粒子の物性劣化及び過度の圧密が発生するため好ましくない。また、上記範囲を下回ると、ゲル粉砕工程における単位時間当たりの処理量が減少するため好ましくない。また、各回転軸が有するディスクの周速が異なる場合、一の回転軸における周速に対する他の回転軸における周速の比率は、通常1~10の範囲であり、好ましくは1~2の範囲である。
 周速(V)(m/s)=πD×n/60 ・・・ (式3)
 ここで、(式3)中、Vはディスクの周速(単位;m/s)、Dはディスクの最大径(単位;m)、nは単位時間当たりのディスクの回転数(単位;rpm)である。
 また、複数の回転軸の回転方向は、それぞれの回転軸が同じ方向に回転する同方向型であってもよく、それぞれの回転軸が反対方向に回転する異方向型であってもよい。同方向型装置ではセルフクリーニング性が期待でき、異方向型装置では強力な剪断力が期待できる。各回転軸の回転方向は、前述した粉砕手段の配列(ディスクパターン)との組み合わせにより適宜選択される。
 このゲル粉砕装置は、本体内部に、水及び/又は水蒸気を供給する機能を備えることが好ましい。水及び/又は水蒸気(好ましくは、水及び水蒸気)を供給しながらゲル粉砕を行うことで、吸水速度により優れた吸水性樹脂粉末を得ることができる。したがって、本発明の一実施形態によれば、ゲル粉砕工程において、本体の内部に水及び/又は水蒸気が供給される。他の好ましい一実施形態は、ゲル粉砕工程において、本体の内部に水及び水蒸気が供給される。水及び/又は水蒸気を供給する手段として、ゲル粉砕装置に、複数の投入口を備えてもよい。この水及び/又は水蒸気の投入口の設置位置は問わないが、好ましくは、含水ゲルの投入口側に設置される。また、水と水蒸気とが、それぞれ異なる投入口から供給されてもよい。
 水蒸気添加に際しては特に限定されないが、例えば、空気、ドライエアー、窒素等のガスを水蒸気に混合し、混合気体として添加してもよい。添加される水蒸気の圧力は特に限定されないが、好ましくは0.2~0.8MPaであり、より好ましくは0.3~0.7MPaである。水及び/又は水蒸気(混合気体を含む)の温度は特に限定されないが、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは70℃以上、特に好ましくは80℃以上である。過度の昇温と含水ゲルの乾燥を抑制する観点から、200℃以下が好ましく、170℃以下がより好ましく、150℃以下がさらに好ましく、120℃以下がさらにより好ましく、100℃以下が特に好ましい。好ましい形態は、本体の内部に供給される水及び/又は水蒸気の温度が50~120℃である。ゲル粉砕装置中の含水ゲル及び粒子状含水ゲルの温度を、用いられる水及び/又は水蒸気(混合気体を含む)の温度並びに投入量によって調整することも可能である。この場合、水蒸気及び/又は混合気体は直接伝熱の熱媒とし作用して、本体内部の含水ゲル及び粒子状含水ゲルが所定の温度に加熱又は保温される。尚、添加する水及び/又は水蒸気(混合気体を含む)に、後述するゲル流動化剤、架橋剤、酸化剤、還元剤、重合開始剤等の添加剤を配合してもよい。
 この水及び/又は水蒸気の供給量としては、含水ゲルの固形分換算による質量に対して、それぞれ、0.1質量%~50質量%が好ましく、0.5質量%~40質量%がより好ましく、1質量%~30質量%が更に好ましい。
 本発明に係る製造方法に用いるゲル粉砕装置は、好ましくは本体の外面に、加熱手段及び/又は保温手段を備えるが、本体の外面に設置されたジャケット等に温水やオイルのような液状の熱媒を導入してもよく、加熱されたガス(熱風)を熱媒として導入してもよい。これら熱媒は、間接伝熱の熱媒として作用する。間接伝熱の加熱効率及び/又は保温効率の観点から、熱媒の温度は、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは70℃以上、特に好ましくは80℃以上である。一方、過度の昇温と含水ゲルの乾燥を抑制する観点から、熱媒の温度は、200℃以下が好ましく、170℃以下がより好ましく、150℃以下がさらに好ましく、130℃以下がさらにより好ましく、110℃以下が特に好ましい。特に好ましい熱媒は、温水又は水蒸気である。また、熱媒の温度は一定温度でもよいし、ゲル粉砕途中で適宜変更してもよい。
 より好ましくは、含水ゲルがゲル粉砕装置に投入される前に、本体内部(内表面)の温度が、50℃以上、より好ましくは60℃以上、さらに好ましくは70℃以上、さらにより好ましくは80℃以上に加熱されていることが好ましい。これにより、本体の内表面への含水ゲルの付着が低減される。また、これにより、得られる吸水性樹脂粉末の吸水速度がさらに向上する。すなわち本発明に係る製造方法では、含水ゲルの投入前、ゲル粉砕開始時に、本体の内表面が前述した温度以上に加熱されていることが好ましい。より好ましくは、本体の内表面及び複数の回転軸並びに各回転軸が有する粉砕手段の外表面が、前述した温度以上に加熱されていることが好ましい。一方、過度の昇温と含水ゲルの乾燥を抑制する観点から、含水ゲルがゲル粉砕装置に投入される前において、本体内部(内表面)の加熱温度は、200℃以下が好ましく、170℃以下がより好ましく、150℃以下がさらに好ましく、130℃以下がさらにより好ましく、110℃以下が特に好ましい。例えば、本体に備えられたジャケット内部に熱媒を循環させて保持することにより、本体内部(内表面)の温度を所望の範囲に調節することができる。ゲル粉砕工程における温度を50℃以上に保持する観点から、ゲル粉砕工程において本体内部(内表面)の温度は上記範囲に保持されていることが好ましい。
 ここで、「含水ゲル状架橋重合体を50℃以上で連続的に粉砕する」とは、図1の(A)で示す区間、つまり投入口を過ぎてから排出口に至るまでの区間において、含水ゲル状架橋重合体の温度を50℃以上に維持しながら、含水ゲル状架橋重合体を連続的に粉砕することをいう。換言すれば、「含水ゲル状架橋重合体を50℃以上で連続的に粉砕手段により粉砕する」とは、「含水ゲル状架橋重合体を50℃以上に維持した状態で粉砕手段により連続的に粉砕する」ことを指す。例えば、ゲル粉砕装置の投入口に投入される含水ゲル状架橋重合体の温度T1を50℃以上とし、装置本体の外側に設置されたジャケットの熱媒温度を50℃以上とすれば、図1の(A)の区間において含水ゲル状架橋重合体の温度を50℃以上に維持でき、含水ゲル状架橋重合体を50℃以上で連続的に粉砕することができる。また、例えば、ゲル粉砕装置の投入口に投入される含水ゲル状架橋重合体の温度T1が50℃以下であっても、投入口部分で高温の水及び/又は水蒸気を供給する、装置本体のジャケット熱媒温度を高温に設定するなどして、含水ゲル状架橋体重合体を急速に昇温させ、(A)部分では50℃以上として連続的に粉砕する場合も含まれる。
 含水ゲル状架橋重合体を連続的に粉砕する温度は、50℃以上であるが、好ましくは60℃以上、より好ましくは70℃以上、さらに好ましくは80℃以上である。
 含水ゲル状架橋重合体を連続的に粉砕する温度の上限は、特に制限されるものではないが、過度の昇温と含水ゲルの乾燥を抑制する観点から、200℃以下が好ましく、170℃以下がより好ましく、150℃以下がさらに好ましく、130℃以下がさらにより好ましく、110℃以下が特に好ましい。
 さらに、大型のゲル粉砕装置の場合には、複数の回転軸の内部にも熱媒を循環させて、加熱手段及び/又は保温手段とすることが好ましい。これにより、ゲル粉砕装置の始動時に、本体内部を昇温する時間が短縮できる。
 含水ゲルが目的とする粒度に調整される限り、このゲル粉砕装置における含水ゲルの平均滞留時間は特に限定されないが、含水ゲルに対する機械的ダメージの低減の観点から、好ましくは30秒~30分である。このゲル粉砕装置において、含水ゲルの平均滞留時間は、回転軸の回転速度及び含水ゲルの投入速度により調整される。
 本発明に係る製造方法に用いるゲル粉砕装置では、ダイス(ダイプレート)を使用しないことが最も好ましいが、本発明の効果が得られる限り、排出口にダイスを設置してもよい。ダイスを使用する場合には、ダイスの開口率が25%以上であることが好ましく、50%以上であることがより好ましく、60%以上がさらに好ましく、70%以上がさらに好ましく、80%以上が特に好ましい。開口率の上限は特に限定されない。開口率100%とは、ダイスを使用しない場合と同義である。尚、ダイス(ダイプレート)とは、本体内部の材料を排出するための(複数)の貫通孔を有する板であり、粉砕装置の排出口付近に設置される。また、開口率とは、全貫通孔の平面視面積合計の、ダイスの平面視面積に対する割合を指す。開口率が大きいほど、本体内部の材料がせき止められにくく、排出されやすくなるため、本発明の効果がより顕著になる。
 図1及び2には、本発明に係る製造方法で用いるゲル粉砕装置200の一例が示されている。図1は、このゲル粉砕装置200の一部切り欠き側面図であり、図2は、このゲル粉砕装置200の拡大図(本体中央部を上から見た図)である。以下、図1及び2を用いて、このゲル粉砕装置200の基本構成及び使用方法を説明する。
 図示される通り、このゲル粉砕装置200は、投入口204、本体208、2本の回転軸206、排出口210、駆動装置214及びガス投入口216を備えている。尚、本体208は、バレルとも称される。図1においては、紙面の直交方向に沿って2本の回転軸206が設けられている。回転軸206は、本体208の長さ方向に延在している。回転軸206は、その一端が本体208を貫通して、駆動装置214に接続されている。図示されないが、このゲル粉砕装置200では、回転軸206の他端は、その後方に設置されている軸受けベアリングで回転自在に支持されている。つまり、回転軸206はその両端で保持された形態となっている。但し、本発明に係る製造方法におけるゲル粉砕装置は、このような両軸持ちの形態に限定されるものではなく、本発明の目的が達成される限り、排出口210の後方に軸受けベアリングを有さない、所謂片軸持ち構造であってもよい。投入口204、ガス投入口216及び排出口210は、それぞれ、本体208に固定され、本体208の内部と連通している。図1における左右方向は、本体208の長さ方向であり、回転軸206の軸方向である。図示されないが、本体208はジャケット構造を有している。
 図2には、ゲル粉砕装置200の本体208の一部が示されている。図2は、図1のゲル粉砕装置の拡大図(本体中央部を上から見た図)である。図示される通り、このゲル粉砕装置200では、2本の回転軸206が、本体208に内蔵されている。2本の回転軸206の外周には、それぞれ、粉砕手段212が設けられている。すなわち、粉砕手段212および回転軸206は、別体として構成されている。この実施形態では、回転軸206は、粉砕手段212として複数のディスクを有している。図2における上下方向は、本体208の幅方向である。図2における左右方向は、本体208の長さ方向であり、回転軸206の軸方向である。
 このゲル粉砕装置200を用いてゲル粉砕工程を実施する好適な一形態では、始めに、図示されないジャケットに熱媒体を循環させて、本体208を加温する。その後、駆動装置214(例えば、モーター)により各回転軸206を回転させる。回転軸206の回転にともなって、回転軸206及び粉砕手段212である複数のディスクが回転する。
 次に、含水ゲルを投入口204に連続的に投入する。この際、投入口204には、同時に水及び/又は水蒸気を投入してもよい。また、ガス投入口216には水蒸気及び/又は水を投入してもよい。水及び/又は水蒸気により、含水ゲル及び本体208が加温され、所定の温度に保温される。
 本体208に投入された含水ゲルは、排出口210に向かって移動する。
 含水ゲルは、本体208内において、粉砕手段212(即ち、複数のディスク)と接触する。含水ゲルは、回転する複数のディスクによる剪断作用によって細粒化される。含水ゲルは、粉砕手段212の剪断作用により、粉砕されつつ、排出口210に向かって移動する。排出口210では、所定の粒度に調整された粒子状含水ゲルが取り出される。
 ゲル粉砕装置の回転軸は、複数のディスクを有している。複数のディスクの形状は、同一であっても異なっていてもよいが、異なることが好ましい。ディスクの組合せは、例えば特許文献(特開2005-35212号公報)などを参考に含水ゲルの物性、得たい粉砕ゲルのサイズ等に応じて、適宜変更される。
 このような基本構成を備えたゲル粉砕装置の例として、例えば、二軸以上の複軸型混練機(ニーダー)が挙げられる。具体的には、2軸、3軸、4軸または8軸の混練機が挙げられる。このゲル粉砕装置は、生産効率の観点から連続式が好適に用いられる。具体的には、ゲル粉砕装置として、CKH型連続混練機(本田鐵工(株))、2軸押出機TEX((株)日本製鋼所)、2軸押出機TEXαIII((株)日本製鋼所)、コンティニュアースニーダー(CONTINUOUS KNEADER、(株)ダルトン)、KRCハイブリッドリアクタ(KRC HYBRID REACTER、(株)栗本鐵工所)、KRCニーダー(KURIMOTO-READCO CONTINUOUS KNEADER、(株)栗本鐵工所)、KEXエクストルーダー(KEX EXTRUDER、(株)栗本鐵工所)、KEXDエクストルーダー(KEXD EXTRUDER、(株)栗本鐵工所)、双腕型ニーダールーダー(KNEADER-RUDER、(株)モリヤマ)、2軸混練押出機TEX-SSG(東芝機械(株))、2軸混練押出機TEX-CS(東芝機械(株))、2軸混練押出機TEX-SX(東芝機械(株))、2軸混練押出機TEX-DS(東芝機械(株))、2軸混練押出機TEX-A(東芝機械(株))、2軸混練押出機TEX-B(東芝機械(株))、2軸混練押出機TEX-BS(東芝機械(株))4軸、8軸混練押出機WDRシリーズ((株)テクノベル)等が例示される。したがって、本発明の好ましい実施形態において、ゲル粉砕装置は、連続式の複軸型混練機である。
 (ゲル粉砕エネルギー)
 ゲル粉砕エネルギー(Gel Grinding Energy,GGE)とは、国際公開第2011/126079号(米国特許出願公開第2013/026412号明細書、米国特許出願公開第2016/332141号明細書に対応)に記載され、含水ゲルをゲル粉砕する際、ゲル粉砕装置が必要とする単位質量(含水ゲルの単位質量)あたりの機械的エネルギーを意味し、ゲル粉砕装置が三相交流電力で駆動する場合、下記(式5)により算出される。
 ゲル粉砕エネルギー[J/g]={31/2×電圧×電流×力率×モーター効率}/{1秒間にゲル粉砕装置に投入される含水ゲルの質量}  ・・・(式5)
 ここで、力率及びモーター効率は、ゲル粉砕装置の稼働条件等によって変化する装置固有の値であり、0~1までの値をとる。ゲル粉砕装置が単相交流電力で駆動する場合、上記式中の31/2を1に変更することで算出される。上記(式5)において、電圧の単位は[V]、電流の単位は[A]、含水ゲルの質量の単位は[g]である。本発明で適用される好ましいゲル粉砕エネルギー(GGE)は、15J/g以上であればよく、好ましくは25J/g以上、より好ましくは40J/g以上、さらに好ましくは50J/g以上、さらに好ましくは100J/g以上、最も好ましくは120J/g以上である。上限としては200J/g以下であればよい。
 (ゲル温度)
 含水ゲル状架橋重合体を50℃以上で連続的に粉砕する観点から、ゲル粉砕工程において、ゲル粉砕装置の投入口に投入される含水ゲル状架橋重合体の温度T1(以下、「投入口におけるゲル温度T1」または単に「ゲル温度T1」とも称する)は、50℃以上であることが好ましい。このゲル温度T1は、好ましくは、投入口に設置された温度計にて測定される。ゲル粉砕された含水ゲル同士の付着防止の観点から、このゲル温度T1は、60℃以上が好ましく、吸水性樹脂粉末の吸水速度をさらに向上させる観点から、70℃以上がより好ましく、80℃以上がさらに好ましい。過度の乾燥を抑制する観点から、ゲル温度T1は130℃以下が好ましく、110℃以下がより好ましく、100℃以下がさらに好ましく、90℃以下が特に好ましい。これと同様の理由から、粉砕時のゲル温度は、好ましくは130℃以下である。なお、ゲル温度T1は、ゲル粉砕装置に投入される含水ゲル状架橋重合体について、重合熱で温度が上昇した含水ゲル状架橋重合体を保温する、あるいは得られた含水ゲル状架橋重合体を加温することにより、所望の範囲内に調節することができる。
 ゲル粉砕された含水ゲル同士の凝集抑制の観点から、ゲル粉砕装置から排出される粒子状含水ゲル状架橋重合体の温度T2(以下、「排出口におけるゲル温度T2」または単に「ゲル温度T2」とも称する)は、60℃~140℃が好ましく、70℃~130℃がより好ましく、80℃~125℃、85℃~120℃がさらにより好ましく、90℃~115℃が特に好ましく、100~115℃が最も好ましい。好ましくは、温度T2が係る温度範囲であり、かつ温度T1が前述した温度範囲となるように設定される。このゲル温度T2は、好ましくは、排出口に設置された温度計にて測定される。なお、ゲル温度T2は、ゲル粉砕装置の加熱手段及び/又は保温手段の設定温度、さらには、ゲル粉砕装置内部での含水ゲル状架橋重合体の滞留時間を適宜調整することにより、所望の範囲内に調節することができる。
 吸水性樹脂粉末の吸水速度をさらに向上させる観点から、排出口におけるゲル温度T2は、投入口におけるゲル温度T1より高いことが好ましい。差ΔT=(T2-T1)は、好ましくは5℃以上であり、より好ましくは8℃以上であり、さらに好ましくは10℃以上である。また、差ΔT=(T2-T1)は、好ましくは60℃以下であり、より好ましくは50℃以下であり、さらに好ましくは40℃以下であり、特に好ましくは35℃以下である。好ましくは、差ΔT=(T2-T1)が係る温度範囲であり、かつ、温度T1及び温度T2が前述した温度範囲となるように設定される。なお、ΔTは、上記のようにT1およびT2のそれぞれを調節することにより、所望の範囲内に調節することができる。
 (ゲル固形分率)
 ゲル粉砕工程において、ゲル粉砕装置の投入口に投入される含水ゲルの固形分率(以下、ゲル固形分率と称する)は、後述する実施例に記載した測定方法によって求められる。ゲル粉砕された含水ゲル同士の凝集度合い、粉砕に要するエネルギー、乾燥効率及び吸収性能の観点から、ゲル固形分率は25質量%~75質量%が好ましく、30質量%~70質量%がより好ましく、35質量%~65質量%がさらに好ましく、40質量%~60質量%が特に好ましい。
 (ゲル流動化剤)
 本発明に係る製造方法において、好ましくは、ゲル粉砕工程前及び/又はゲル粉砕工程中に、ゲル流動化剤が添加される。これにより、ゲル流動化剤を含む粒子状含水ゲルが、排出口から取り出される。ゲル流動化剤の添加によって、微細に粉砕されたゲル微粒子同士の強固な付着又は接着が抑制され、得られる吸水性樹脂の吸水速度が向上するという効果が得られる。また、後述する乾燥工程後の粉砕工程および整粒工程中の解砕ステップにおける負荷が低減され、微粉発生量が減少するという効果も得られる。得られる粒子状含水ゲルの各粒子が均一にゲル流動化剤を含むとの観点から、ゲル粉砕工程中の添加がより好ましく、含水ゲルの投入と同時の添加がさらにより好ましい。
 ゲル流動化剤の添加量は、含水ゲル又は粒子状含水ゲルの固形分率やゲル流動化剤の種類に応じて適宜設定される。その添加量は、含水ゲルの固形分に対して、好ましくは0.001質量%~5質量%、より好ましくは0.01質量%~3質量%、更に好ましくは0.02質量%~2質量%、特に好ましくは0.03質量%~1質量%である。
 このゲル流動化剤の例として、アニオン性、カチオン性、ノニオン性及び両性の界面活性剤、並びにこれらの低分子型又は高分子型の界面活性剤、高分子滑剤等が挙げられる。中でも、界面活性剤が好ましい。
 (界面活性剤)
 具体的には、ゲル流動化剤に用いられる界面活性剤として、(1)ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル、アルキルグルコシド、N-アルキルグルコンアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルエーテルのリン酸エステル、及びポリオキシエチレンアルキルアリルエーテルのリン酸エステルなどのノニオン性界面活性剤、(2)カプリルジメチルアミノ酢酸ベタイン、ラウリルジメチルアミノ酢酸ベタイン、ミリスチルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン等のアルキルジメチルアミノ酢酸ベタイン;ラウリン酸アミドプロピルベタイン、ヤシ油脂肪酸アミドプロピルベタイン、パーム核油脂肪酸アミドプロピルベタイン等のアルキルアミドプロピルベタイン、ラウリルヒドロキシスルホベタイン等のアルキルヒドロキシスルホベタイン、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン等のアルキルカルボキシメチルヒドロキシエチルイミダゾリニウムベタインなどの両性界面活性剤、(3)ラウリルアミノジ酢酸モノナトリウム、ラウリルアミノジ酢酸カリウム、ミリスチルアミノジ酢酸ナトリウム等のアルキルアミノジ酢酸モノアルカリ金属などのアニオン性界面活性剤、(4)長鎖アルキルジメチルアミノエチル4級塩などのカチオン性界面活性剤等が挙げられる。これらのうち、2種以上を併用してもよい。中でも、吸水性樹脂粉末の吸水速度のさらなる向上の観点から、両性界面活性剤が好ましく、アルキルジメチルアミノ酢酸ベタインがより好ましい。
 (高分子滑剤)
 本発明に係る製造方法において、本発明の目的が達成される範囲内で、以下に例示する高分子滑剤を、上記単量体水溶液や含水ゲルに添加することができる。
 上記高分子滑剤として、具体的には、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性エチレン・プロピレン・ジエン三元共重合体(EPDM)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース、ポリエチレングリコールのようなポリアルキレンオキサイド、側鎖及び/又は末端ポリエーテル変性ポリシロキサン等が挙げられる。これらの分子量(重量平均分子量)は、好ましくは200~200万、より好ましくは400~100万の範囲で適宜選択される。これらのうち、2種以上を併用してもよい。
 また、ゲル流動化剤として、これらの高分子滑剤と上記界面活性剤とを併用してもよい。界面活性剤と高分子滑剤とを併用する場合、その合計添加量は、重合形態、単量体水溶液の組成及び含水ゲルの含水率に応じて適宜設定される。単量体水溶液に添加する場合には単量体成分に対する濃度として、含水ゲルに添加する場合にはその固形分に対して、両方に添加する場合には上記の合計として設定される。
 界面活性剤と高分子滑剤との合計添加量は、含水ゲルの固形分に対して、好ましくは5質量%以下、より好ましくは3質量%以下であり、好ましくは0.001質量%以上、特に好ましくは0.01質量%以上である。
 (表面張力)
 ゲル流動化剤の種類と添加量とは、ゲル粉砕工程及び乾燥工程における粒子状含水ゲルの凝集抑制等を考慮して適宜調整される。得られる吸水性樹脂粉末の吸収性物品(おむつ)での実使用における戻り量等から、最終製品の吸水性樹脂の表面張力が過度に低下しない種類や量のゲル流動化剤が好ましい。例えば、吸水性樹脂の表面張力(生理食塩水中の吸水性樹脂の分散液の表面張力)が、好ましくは55mN/m以上、より好ましくは60mN/m以上、更に好ましくは65mN/m以上となるように、ゲル流動化剤の種類及び量が選択される。この表面張力はWO2015/129917に記載の方法で測定される。表面張力をかかる範囲内にできるゲル流動化剤としては、両性界面活性剤が例示される。
 (その他添加剤)
 ゲル粉砕工程中、或いは、ゲル粉砕工程から次の乾燥工程に移行する間に、〔2-7-1〕に記載する表面架橋剤又は〔2-10〕に記載するその他の添加剤を添加してもよい。
 (粒子状含水ゲルの粒度)
 本発明に係る製造方法において、製造される吸水性樹脂粉末の吸収速度の観点から、ゲル粉砕装置の排出口から排出される粒子状含水ゲル架橋重合体の固形分換算の質量平均粒子径d1は、3mm以下である。d1が3mmを超える場合には、後工程に供することができないため、吸水性樹脂粉末を得ることができない(後述の実験例5)。d1は、1μm~3mmが好ましく、10μm~3mmがより好ましく、30μm~2mmがさらに好ましく、50μm~1mmがさらにより好ましく、100μm~200μmが特に好ましい。ゲル粉砕装置の排出口から排出される粒子状含水ゲル架橋重合体の固形分換算の質量平均粒子径d1は、例えば、粉砕時の含水ゲル状架橋重合体の温度(例えば、粉砕装置本体内部の温度や本体内部に供給される水及び/又は水蒸気の温度によって制御される)、ゲル粉砕装置のディスク最大径に対する最小クリアランス、含水ゲルの投入速度、ゲル粉砕装置の回転軸の回転数、ゲル破砕エネルギー(GGE)等によって制御することができる。なお、粒子状含水ゲルの固形分換算の質量平均粒子径d1は、後述の物性測定方法(g)及び(h)により規定される。
 また、粒子状含水ゲルの粒度分布としては、固形分換算で、150μm未満の範囲にあるものが、好ましくは10質量%以上、より好ましくは25質量%以上、更に好ましくは40質量%以上である。また、粒子状含水ゲルの粒度分布としては、固形分換算で、850μm未満の範囲にあるものが、好ましくは80質量%以上、より好ましくは85質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上、上限は100質量%である。粒度分布の対数標準偏差(σζ)は0.2~1.0であり、より好ましくは0.2~0.8、更に好ましくは0.2~0.7とされる。
 (粒子状含水ゲルの固形分率)
 ゲル粉砕装置の排出口から排出された粒子状含水ゲルの固形分率は、25質量%~75質量%が好ましく、30質量%~70質量%がより好ましく、35質量%~65質量%がさらに好ましく、40質量%~60質量%が特に好ましい。固形分率が上記範囲の粒子状含水ゲルを乾燥工程に供することにより、CRCが高く、かつ乾燥によるダメージ(水可溶分の増加等)が少ない粒状乾燥物が得られる。
 (粒子状含水ゲルの重合率)
 ゲル粉砕装置から排出された粒子状含水ゲルの重合率は、上記ゲル粉砕装置に投入する前の重合率の範囲であり、ゲル粉砕工程でさらに重合を進行させてもよい。重合の進行の程度は、ゲル粉砕装置における加熱及び滞留時間、重合後の含水ゲル中の重合開始剤の残存量、任意の重合開始剤の後添加量等で適宜調整される。ゲル粉砕工程後の重合率は、ゲル粉砕前の重合率と同様に、後述する物性測定方法で規定される。ゲル粉砕後の粒子状含水ゲルの重合率は、90質量%以上であり、好ましくは95質量%以上であり、更に好ましくは、98~99.99質量%であり、理想的には、100%である。重合率が上記範囲の粒子状含水ゲルでは、乾燥時の凝集及び付着が回避される。
 〔2-5〕乾燥工程
 本工程は、粒子状含水ゲル架橋重合体、好ましくは、ゲル流動化剤を含む粒子状含水ゲル架橋重合体を所望する固形分率まで乾燥させることで乾燥物を得る工程である。当該「固形分率」とは、乾燥減量(試料1.0gを180℃で3時間乾燥した際の質量変化)から算出される値を意味する。
 乾燥工程を経た乾燥物の固形分率は、好ましくは80質量%以上、より好ましくは85質量%~99.8質量%、更に好ましくは90質量%~99.7質量%、更により好ましくは92質量%~99.5質量%、特に好ましくは96質量%~99.5質量%、極めて好ましくは98質量%~99.5質量%の順である。乾燥後の固形分率が過度に高いと長時間の乾燥が必要であるだけでなく、乾燥後の物性劣化や着色が生じる恐れがある。また乾燥後の固形分率が低い場合、後述の整粒工程での生産性低下や、吸水倍率(CRC)の低下が生じる場合がある。乾燥工程後に後述の表面架橋工程を実施する場合、上記固形分率まで乾燥することで、より物性が向上するため好ましい。なお、乾燥物の含水率(=100-固形分率)は上記固形分率から求められる。
 本発明の乾燥工程における乾燥方法としては、特に制限はなく、静置乾燥、攪拌乾燥、流動層乾燥等が適宜用いられる。また、加熱乾燥、熱風乾燥、減圧乾燥、赤外線乾燥、マイクロ波乾燥、ドラムドライヤー乾燥、疎水性有機溶媒との共沸脱水乾燥、高温の水蒸気を用いた高湿乾燥等、種々の乾燥方法が採用されうる。
 (乾燥装置)
 乾燥工程で使用される乾燥装置としては、特に限定されず、伝熱伝導型乾燥機、輻射伝熱型乾燥機、熱風伝熱型乾燥機、誘電加熱型乾燥機等の1種又は2種以上が適宜選択される。バッチ式でもよく、連続式でもよい。また、直接加熱式でもよく、間接加熱式でもよい。例えば、通気バンド式、通気回路式、通気縦型式、平行流バンド式、通気トンネル式、通気攪拌式、通気回転式、流動層式、気流式等の伝熱型乾燥機が挙げられる。
 加熱手段としては、特に限定されないが、乾燥効率及び吸水性樹脂への熱的ダメージ低減の観点から、粒子状含水ゲルの加熱手段として、対流伝熱による直接伝熱及び/又は熱媒で加熱された乾燥機の加熱面(粒子状含水ゲルとの接触面、熱源部分)からの熱伝導による間接伝熱による加熱手段が好ましい。より好ましい加熱手段は、直接伝熱では通気加熱式、間接伝熱では外壁加熱式、管状加熱式である。
 乾燥工程において、乾燥機内部に、ガスを導入してもよい。該ガスとしては、特に限定されないが、例えば、空気、ドライエアー、窒素、水蒸気及びこれらの混合気体等が挙げられる。ガスはキャリアーガスとして作用し、乾燥時に発生した水蒸気を乾燥機外に排出することで乾燥を促進する。さらに、加熱したガスを使用する場合、ガスは熱媒としても作用し、さらに乾燥が促進する。好ましくは、窒素、水蒸気、及びこれらと空気との混合気体等が用いられる。水蒸気を含む混合気体(以下、高湿混合気体とも称される)を用いる場合、該乾燥機内部が低酸素状態となり、乾燥時の酸化や劣化が抑制される。その結果として、吸水性樹脂の性能向上と低着色を達成することができる。また、このガスの移動方向は、被乾燥物である粒子状含水ゲルの移動方向に対して、並流であっても向流であってもよく、これらが混ざったものでもよい。
 乾燥条件は、乾燥装置の種類及び粒子状含水ゲルの固形分率等により、適宜選択されるが、乾燥温度は100℃~300℃が好ましく、150℃~250℃がより好ましく、160℃~220℃がさらに好ましく、170℃~200℃が特に好ましい。上記範囲を下回る場合、乾燥時間が過度に長くなるため不経済である。上記範囲を上回る場合、吸水性樹脂の物性劣化や顕著な着色が生じるため好ましくない。また、乾燥時間は、好ましくは1分~10時間、より好ましくは5分~2時間、さらに好ましくは10分~120分、特に好ましくは20分~60分である。上記範囲を下回る場合、乾燥温度を過度に高くする必要があり、吸水性樹脂の物性劣化や顕著な着色が生じるため好ましくない。上記範囲を上回る場合、乾燥機が巨大化し、また処理量が低下するため不経済である。
 〔2-6〕粉砕及び分級工程
 本工程は、上記乾燥工程で得られ乾燥物を粉砕及び/又は分級して、好ましくは特定粒度の吸水性樹脂粉末を得る工程である。なお、上記(2-4)ゲル粉砕工程とは、粉砕対象物が乾燥工程を経ている点で異なる。
 本工程は、〔2-7〕表面架橋工程の前、及び/又は、後に実施され、好ましくは〔2-7〕表面架橋工程の前に実施され、〔2-7〕表面架橋工程の前後の少なくとも2回実施されてもよい。
 本発明の粉砕工程で使用される機器(粉砕機)としては、例えばロールミル、ハンマーミル、スクリューミル、ピンミル等の高速回転式粉砕機、振動ミル、ナックルタイプ粉砕機、円筒型ミキサー等が挙げられ、必要により併用される。
 (粒度)
 表面架橋前の吸水性樹脂粉末の重量平均粒子径(D50)は、吸水速度、加圧下吸水倍率等の観点から、好ましくは200μm以上であり、より好ましくは200μm~600μm、さらに好ましくは250μm~550μm、特に好ましくは300μm~500μmである。
 また、標準篩分級で規定される粒子径150μm未満の微粒子の含有量は少ない程よく、吸水性樹脂粉末全体に対して0~5重量%が好ましく、0~3重量%がより好ましく、0~2重量%がさらに好ましい。
 さらに、標準篩分級で規定される粒子径850μm以上の粗大粒子も少ない程よく、吸水速度等の観点から、吸水性樹脂粉末全体に対して0~5重量%が好ましく、0~3重量%がより好ましく、0~1重量%がさらに好ましい。
 また、粒子径が150μm以上850μm未満の粒子の割合は、吸水速度、加圧下吸水倍率等の面から、吸水性樹脂粉末全体に対して90重量%以上が好ましく、95重量%以上がより好ましく、98重量%以上がさらに好ましく、99重量%以上が特に好ましい(上限は100重量%)。
 〔2-7〕表面架橋工程
 本工程は、〔2-6〕粉砕及び分級工程を経て得られた吸水性樹脂粉末の官能基(特にカルボキシル基)と反応する表面架橋剤を添加して架橋反応させる工程であり、後架橋工程とも称される。本発明に係る製造方法では、本工程において、吸水性樹脂粉末に表面架橋剤を添加した後、加熱処理することにより、架橋反応させる。本工程は、表面架橋剤添加工程と熱処理工程とを有し、必要に応じて熱処理工程後に冷却工程を有していてもよい。
 〔2-7-1〕表面架橋剤添加工程
 本工程は、上記吸水性樹脂粉末と、表面架橋剤とを混合することで、表面架橋工程に供する表面架橋剤を含有する吸水性樹脂粉末を調製する工程である。
 (表面架橋剤)
 上記表面架橋剤として、吸水性樹脂の複数の官能基(好ましくは複数のカルボキシル基)と反応しうる表面架橋剤、好ましくは共有結合またはイオン結合、さらには共有結合しうる表面架橋剤が使用される。具体的には、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、1,3-プロパンジオール、ジプロピレングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、ポリプロピレングリコール、グリセリン、ポリグリセリン、2-ブテン-1,4-ジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,2-シクロヘキサノール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピレン、オキシエチレン-オキシプロピレンブロック共重合体、ペンタエリスリトール、ソルビトール等の多価アルコール化合物;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールポリグリシジルエーテル、グリシドール、ソルビトールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル等のエポキシ化合物;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン等の多価アミン化合物及びこれらの無機塩又は有機塩;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等の多価イソシアネート化合物;ポリアジリジン等のアジリジン化合物;1,2-エチレンビスオキサゾリン、ビスオキサゾリン、ポリオキサゾリン等の多価オキサゾリン化合物;尿素、チオ尿素、グアニジン、ジシアンジアミド、2-オキサゾリジノン等の炭酸誘導体;1,3-ジオキソラン-2-オン(エチレンカーボネート)、4-メチル-1,3-ジオキソラン-2-オン、4,5-ジメチル-1,3-ジオキソラン-2-オン、4,4-ジメチル-1,3-ジオキソラン-2-オン、4-エチル-1,3-ジオキソラン-2-オン、4-ヒドロキシメチル-1,3-ジオキソラン-2-オン、1,3-ジオキサン-2-オン、4-メチル-1,3-ジオキサン-2-オン、4,6-ジメチル-1,3-ジオキサン-2-オン、1,3-ジオキソパン-2-オン等のアルキレンカーボネート化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物及びこれらの多価アミン付加物;オキセタン化合物;γ-グリシドキシプロピルトリメトキシシラン、γ-アミノブロピルトリエトキシシラン等のシランカップリング剤;亜鉛、カルシウム、マグネシウム、アルミニウム、鉄、ジルコニウム等の水酸化物、塩化物、硫酸塩、硝酸塩又は炭酸塩等の多価金属化合物;等が挙げられる。これらのうち、2種以上を併用してもよい。上記表面架橋剤の中でも、多価金属イオン、エポキシ系化合物、オキサゾリン系化合物、アルキレンカーボネート化合物から選択された1又は2以上が好ましい。
 (表面架橋剤溶液)
 上記表面架橋剤の添加量は、吸水性樹脂の固形分に対して、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは2質量%以下、さらにより好ましくは1質量%以下、特に好ましくは0.1質量%以下である。また、下限値としては、好ましくは0.001質量%以上、より好ましくは0.01質量%以上である。
 上記表面架橋剤の添加形態は、そのままでもよいが、添加の容易さからすると水や有機溶媒に溶かした溶液として添加するのが好ましい。この表面架橋剤溶液の濃度は好ましくは1質量%以上、より好ましくは2質量%以上である。水及び有機溶媒から選択される溶媒の合計量は、吸水性樹脂の固形分に対して、好ましくは0~10質量%、より好ましくは0.1質量%~8質量%、更に好ましくは0.5質量%~5質量%である。水と有機溶媒とを併用する場合、水が主成分であることが好ましい。
 水溶液として添加する場合、表面架橋剤と接触する時点での吸水性樹脂粉末の含水率に応じて水溶液濃度を調整することができるので好ましい。表面架橋剤の水に対する溶解度が低いために溶液とならない場合には、アルコール等の親水性溶媒を適宜添加して、均一溶液にすることが好ましい。
 〔2-6-2〕熱処理工程
 本工程は、表面架橋剤を含有する吸水性樹脂粉末を加熱処理して、表面架橋された乾燥物を得る工程である。
 (表面架橋温度)
 本工程では、表面架橋剤を含有する吸水性樹脂粉末を100℃以上に加熱することで吸水剤が得られる。好ましい最高温度は、表面架橋剤の種類により異なるが、100℃~250℃であり、より好ましくは120℃~230℃であり、さらに好ましくは150℃~210℃である。
 (時間)
 熱処理工程の時間は、粒子状含水ゲル及び/又は粒状乾燥物の含水率、表面架橋剤の種類、加熱装置の熱効率などから適宜設定すればよい。一応の目安としては、含水率が10質量%以下になるまで加熱すればよく、時間としては10分間~120分間の範囲であり、好ましくは30分間~90分間である。
 (加熱形態)
 表面架橋工程に用いる加熱装置は特に限定されないが、加熱ムラが発生しにくいとの観点から、固体-固体接触による伝導伝熱形式で撹拌機構を有する加熱装置が好適に用いられる。
 〔2-7〕冷却工程
 好ましくは、前述の乾燥工程又は表面架橋工程後、後述する整粒工程前に、乾燥物又は表面架橋された乾燥物を強制冷却して、所望の温度に調整する冷却工程を有している。冷却工程は、従来公知の冷却手段を用いて行うことができる。また、冷却温度は適宜調節することができる。
 〔2-8〕整粒工程
 本工程は、表面架橋された乾燥物の粒度を調整する工程である。この整粒工程によって、粒子径又は粒度分布がより積極的に制御された吸水性樹脂粉末が得られる。
 好ましくは、整粒工程は、解砕ステップ及び/又は分級ステップを含む。解砕ステップは、表面処理工程を経て緩く凝集した粒状乾燥物を解砕機で解して粒子径を整えるステップである。分級ステップは、分級機を用いて、表面架橋された粒状乾燥物又は、それらの解砕物から、粗大粒子及び微粉を除去する工程である。
 解砕機としては、特に限定されず、例えば、振動ミル、ロールグラニュレーター、ナックルタイプ粉砕機、ロールミル、高速回転式粉砕機(ピンミル、ハンマーミル、スクリューミル)、円筒状ミキサー等を挙げることができる。乾燥物又は表面架橋された乾燥物へのダメージが少ないものが好ましく、具体的にはロールグラニュレーター(株式会社マツボー)、グラニュレータ(株式会社栗本鐵工所)やランデルミル(株式会社徳寿工作所)等が挙げられる。分級機としては、篩網を用いた振動式または揺動式の篩分級機が用いられる。
 〔2-9〕微粉リサイクル工程
 「微粉リサイクル工程」とは、分級ステップで除去された微粉をそのまま、又は微粉を造粒した後に何れかの工程に供給する工程を意味する。好ましくは、微粉又は微粉造粒物を、乾燥工程以前の工程に投入して再利用する工程である。乾燥工程以前の工程としては、重合工程で調整した重合前の単量体溶液、重合途中の含水ゲル、重合後の含水ゲルの粉砕工程、粒状含水ゲルの乾燥工程等が挙げられる。これらの工程に、微粉をそのまま添加してもよく、微粉を水で膨潤ゲル化ないし造粒してから添加してもよい。また、微粉とともに、水、架橋剤、水以外のバインダー(例;水溶性ポリマー、熱可塑性樹脂)、重合開始剤、還元剤、キレート剤、着色防止剤などを添加してもよい。
 好ましい微粉回収量は目的粒度により適宜設定される。
 〔2-10〕その他の工程
 本発明に係る製造方法は、上述した各工程以外に、必要に応じて、粉砕工程、分級工程、再湿潤工程、造粒工程、輸送工程、貯蔵工程、梱包工程、保管工程等を更に含んでもよい。
 (その他の添加剤)
 上記任意に使用される表面架橋剤やゲル流動化剤以外にも、その他の添加剤として、乾燥前又は乾燥後に、高分子粉末(例えば、タピオカ酢酸デンプンなどのデンプン)、無機微粒子、粉塵防止剤、乾燥した吸水性樹脂(微粉)、通液性向上剤、還元剤(例えば亜硫酸ナトリウム)等の従来公知の成分を、更に加えることが可能である。
 〔3〕製品としての吸水性樹脂粉末の物性
 本発明に係る製造方法で得られる吸水性樹脂粉末(特に、表面架橋された吸水性樹脂粉末を吸水剤とも称する)については、該吸水性樹脂粉末又は吸水剤を吸収性物品、特に紙オムツに使用する場合に、下記の(3-1)~(3-7)に掲げた物性のうち、少なくとも1つ以上、好ましくは2つ以上、より好ましくは3つ以上、更に好ましくは全ての物性が、所望する範囲に制御されることが望まれる。以下の全ての物性が下記の範囲を満たさない場合、本発明の効果が十分に得られず、特に、紙オムツ一枚当たりの吸水剤の使用量が多い、所謂、高濃度紙オムツにおいて十分な性能を発揮しないおそれがある。
 〔3-1〕CRC(遠心分離機保持容量)
 本発明の吸水性樹脂粉末(吸水剤)のCRC(遠心分離機保持容量)は、通常5g/g以上であり、好ましくは15g/g以上、より好ましくは25g/g以上である。上限値については特に限定されず、より高いCRCが好ましいが、他の物性とのバランスの観点から、好ましくは70g/g以下、より好ましくは50g/g以下、更に好ましくは40g/g以下である。
 上記CRCが5g/g未満の場合、吸収量が少なく、紙オムツ等の吸収性物品の吸収体としては適さない。また、上記CRCが70g/gを超える場合、尿や血液等の体液等を吸収する速度が低下するため、高吸水速度タイプの紙オムツ等への使用に適さない。なお、CRCは、内部架橋剤や表面架橋剤等の種類や量を変更することで制御することができる。
 〔3-2〕含水率及び固形分率
 表面架橋された吸水性樹脂粉末(吸水剤)の含水率は、好ましくは0質量%を超えて20質量%以下、より好ましくは1質量%~15質量%、更に好ましくは2質量%~13質量%、特に好ましくは2質量%~10質量%である。この含水率を上記範囲内とすることで、粉体特性(例えば、流動性、搬送性、耐ダメージ性等)に優れた吸水剤が得られる。また、表面架橋された吸水性樹脂粉末(吸水剤)の固形分率は、好ましくは80質量%以上、より好ましくは85質量%~99質量%、更に好ましくは87質量%~98質量%、特に好ましくは90質量%~98質量%である。
 〔3-3〕粒度
 吸水性樹脂粉末(吸水剤)の質量平均粒子径d3(D50)は、好ましくは200μm以上、より好ましくは200μm~600μm、さらに好ましくは250μm~550μm、特に好ましくは300μm~500μmである。また、粒子径150μm未満の粒子の割合は、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは6質量%以下である。また、粒径850μm超の吸水性樹脂粒子の割合は、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。この吸水剤は、粒子径150μm~850μmの粒子を、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは97質量%以上、特に好ましくは99質量%以上含む。理想的には100質量%である。粒度分布の対数標準偏差(σζ)は、好ましくは0.20~0.50、より好ましくは0.25~0.40、更に好ましくは0.27~0.35である。
 〔3-4〕AAP(加圧下吸水倍率)
 吸水性樹脂粉末(吸水剤)のAAP(加圧下吸水倍率)は、好ましくは15g/g以上、より好ましくは20g/g以上、更に好ましくは23g/g以上、特に好ましくは24g/g以上、最も好ましくは25g/g以上である。上限値については特に限定されないが、好ましくは30g/g以下である。
 AAPが15g/g未満の場合、吸収体に圧力が加わった際の液の戻り量(「Re-Wet(リウェット)」と称する場合がある)が多くなるので、紙オムツ等の吸収性物品の吸収体としては適さない。なお、AAPは、粒度の調整や表面架橋剤の変更等により制御することができる。
 〔3-5〕Vortex(吸水速度)
 吸水性樹脂粉末(吸水剤)のVortex(吸水速度)は、好ましくは65秒以下、より好ましくは60秒以下、更に好ましくは50秒以下、更により好ましくは40秒以下、特に好ましくは30秒以下、最も好ましくは25秒以下である。下限値については特に限定されないが、好ましくは5秒以上、より好ましくは10秒以上である。
 Vortexを上記範囲とすることで、短時間で所定量の液を吸収することができるようになる。紙オムツ等の吸収性物品の吸収体に使用した際に、使用者が肌の濡れを感じる時間が少なくなり、不快感を与えにくくなるとともに、漏れ量も減少することができる。
 〔4〕吸水性樹脂粉末(吸水剤)の用途
 吸水性樹脂粉末(吸水剤)の用途は、特に限定されないが、好ましくは紙オムツ、生理用ナプキン、失禁パッド等の吸収性物品の吸収体用途が挙げられる。特に、高濃度紙オムツの吸収体として使用することができる。更に、吸水剤は、吸水時間に優れ、かつ粒度分布が制御されているので、上記吸収体の上層部に使用する場合に、顕著な効果が期待できる。
 また、上記吸収体の原料として、上記吸水剤と共にパルプ繊維等の吸収性材料を使用することもできる。この場合、吸収体中の吸水剤の含有量(コア濃度)としては、好ましくは30質量%~100質量%、より好ましくは40質量%~100質量%、更に好ましくは50質量%~100質量%、更により好ましくは60質量%~100質量%、特に好ましくは70質量%~100質量%、最も好ましくは75質量%~95質量%である。
 上記コア濃度を上記範囲とすることで、該吸収体を吸収性物品の上層部に使用した場合に、この吸収性物品を清浄感のある白色状態に保つことができる。更に、該吸収体は尿や血液等の体液等の拡散性に優れるため、効率的な液分配がなされることにより、吸収量の向上が見込める。
 以下の実験例に従って本発明をより具体的に説明するが、本発明はこれらの説明に限定解釈されるものではなく、各実験例に開示された技術的手段を適宜組み合わせて得られる実験例も、本発明の範囲に含まれるものとする。
 なお、以下に記載する「吸水性樹脂」は、乾燥工程を経た粒状乾燥物、表面架橋された粒状乾燥物又は吸水性樹脂粉末及び表面架橋された吸水性樹脂粉末を意味し、「含水ゲル」は、乾燥工程を経ていない含水ゲル状架橋重合体又は粒子状含水ゲル状架橋重合体を意味する。
 また、実験例で使用する電気機器(吸水性樹脂の物性測定用機器も含む)には、特に注釈のない限り、60Hzで200V又は100Vの電源を使用した。また、以下に記載する吸水性樹脂及び含水ゲルの諸物性は、特に注釈のない限り、室温(20℃~25℃)、相対湿度50%RH±10%の条件下で測定された。
 また、便宜上、「リットル」を「l」又は「L」、「質量%」又は「重量%」を「wt%」と表記することがある。微量成分の測定を行う場合、検出限界以下をN.D(Non Detected)と表記する場合がある。
 [物性測定方法]
 (a)吸水性樹脂粉末のCRC(遠心分離機保持容量)
 吸水性樹脂粉末のCRC(遠心分離機保持容量)を、EDANA法(ERT441.2-02)に準拠して測定した。
 (b)吸水性樹脂粉末の含水率及び固形分率
 吸水性樹脂粉末の含水率を、EDANA法(ERT430.2-02)に準拠して測定した。なお、測定に際し、試料の質量を1.0gに、乾燥温度を180℃にそれぞれ変更し、3時間乾燥した際の乾燥減量から、吸水性樹脂粉末の含水率及び固形分率を算出した。
 (c)吸水性樹脂粉末の質量平均粒子径(d3)
 吸水性樹脂粉末の質量平均粒子径(d3)を、米国特許第7638570号のカラム27及び28に記載された方法に準拠して測定した。
 (d)含水ゲルの重合率
 室温のイオン交換水1000gにサンプリングした含水ゲル1.00gを投入し(この時点で重合反応は実質的に停止した)、300rpmで2時間攪拌した後に濾過することにより、不溶分を除去した。上記操作で得られた濾液中に抽出された単量体の量を、液体クロマトグラフを用いて測定した。該単量体の量を残存モノマー量m(g)としたときに、下記(式8)にしたがって、含水ゲルの重合率C(質量%)を求めた。尚、含水ゲルをサンプリング後、直ちに重合率を測定することが好ましいが、サンプリングから測定までに時間がかかる場合には、強制冷却(ドライアイス、液体窒素、氷水との接触等)によって、重合停止操作をおこなう必要がある。
 C(質量%)=100×{1-m/(M×α/100)} ・・・ (式8)
 ただし、(式8)中、Mは含水ゲルの質量(g)、αは含水ゲルの固形分率(質量%)を意味する。
 (e)含水ゲルの固形分率
 含水ゲルの含水率を、EDANA法(ERT430.2-02)に準拠して測定した。なお、測定に際し、試料の質量を2.0gに、乾燥温度を180℃に、乾燥時間を24時間にそれぞれ変更した。具体的には、底面の直径が50mmのアルミカップに含水ゲル2.0gを投入した後、試料(含水ゲル及びアルミカップ)の総質量W1(g)を正確に秤量した。次に、上記試料を、雰囲気温度180℃に設定されたオーブン内に静置した。24時間経過後、該試料を上記オーブンから取り出し、総質量W2(g)を正確に秤量した。本測定に供された含水ゲルの質量をM(g)としたときに、下記(式10)にしたがって、含水ゲルの固形分率α(質量%)を求めた。
 α(質量%)=100-{(W1-W2)/M}×100 ・・・ (式10)。
 (f)粒子状含水ゲルの粒度
 WO2016/204302に記載の方法に準拠して、粒子状含水ゲルの質量平均粒子径(D50)を測定した。
 即ち、温度20~25℃の含水ゲル(固形分率α(質量%))20gを、0.08質量%エマール20C(界面活性剤、花王株式会社製)を含む20質量%塩化ナトリウム水溶液(以下、「エマール水溶液」と称する)1000g中に添加して分散液とし、長さ50mm×直径7mmのスターラーチップを300rpmで16時間攪拌した(高さ21cm、直径8cmの円柱のポリプロピレン製、約1.14L容器を使用)。
 攪拌終了後、回転盤の上に設置したJIS標準の篩(内径20cm、篩の目開き;8mm/4mm/2mm/1mm/0.60mm/0.30mm/0.15mm/0.075mm)の中央部に、上記分散液を投入した。エマール水溶液100gを使用して全含水ゲルを篩上に洗い出した後、上部からエマール水溶液6000gを、篩を手で回転させながら(20rpm)、30cmの高さからシャワー(孔72個あき、液量;6.0[L/min])を使って注水範囲(50cm)が篩全体にいきわたるよう満遍なく注ぐ作業を4回繰り返し、含水ゲルを分級した。分級した一段目の篩上の含水ゲルを約2分間水切り後、秤量した。二段目以降の篩についても同様の操作で分級し、水切り後にそれぞれの篩の上に残留した、含水ゲルを秤量した。なお、上記篩の種類は、含水ゲルの粒径によって適宜変更するものとした。例えば、含水ゲルの粒径が細かく、目開き0.15mmや0.075mmの篩で目詰まりが発生する場合には、より直径の大きいJIS標準篩(直径30cm、目開き0.15mm及び0.075mm)を使用した。
 各篩の上に残留した含水ゲルの質量から下記(式11)より、全含水ゲル中の割合(質量%)を算出した。水切り後の篩の目開きは下記(式12)に従い、含水ゲルの粒度分布を対数確率紙にプロットした。プロットの積算篩上%Rが50質量%に相当する粒子径を、固形分率α(質量%)の含水ゲルの質量平均粒子径(D50)とした。
 X(%)=(w/W)*100 ・・・ (式11)
 R(α)(mm)=(20/W)1/3*r ・・・ (式12)
尚、ここで、
 X;分級、水切り後に各篩上に残留した含水ゲルの質量%(%)
 w;分級、水切り後に各篩上に残留した含水ゲルのそれぞれの質量(g)
 W;分級、水切り後に各篩上に残留した含水ゲルの総質量(g)
 R(α);固形分率α(質量%)の含水ゲルに換算したときの篩の目開き(mm)
 r;20質量%塩化ナトリウム水溶液中で膨潤した含水ゲルが分級された篩の目開き(mm)である。
 (g)粒子状含水ゲルの固形分換算の質量平均粒子径(d1)
 WO2016/204302に準じて、上記(e)で求めた粒子状含水ゲルの固形分率α(質量%)及び上記(f)で求めた固形分率α(質量%)の含水ゲルの質量平均粒子径(D50)から、粒子状含水ゲルの固形分換算の粒子径(粒子状含水ゲルの乾燥物に固形分に換算した質量平均粒子径)d1を、下記(式14)に従って算出した。
 SolidD50(d1)=GelD50×(α/100)1/3 ・・・ (式14)
尚、ここで、
  GelD50:固形分率α(質量%)の粒子状含水ゲルの質量平均粒子径(μm)
  α:粒子状含水ゲルの固形分率(質量%)
  SolidD50(d1):含水ゲルの固形分に換算した質量平均粒子径(μm)である。
 (h)吸水性樹脂粉末のVortex(吸水時間)
 吸水性樹脂粉末のVortex(吸水時間)は、以下の手順にしたがって測定した。先ず、予め調整された生理食塩水(0.9質量%塩化ナトリウム水溶液)1000質量部に、食品添加物である食用青色1号(ブリリアントブルー)0.02質量部を添加した後、液温を30℃に調整した。
 続いて、容量100mlのビーカーに、上記生理食塩水50mlを量り取り、長さ40mm、直径8mmのスターラーチップを用いて600rpmで攪拌しながら、吸水性樹脂粉末2.0gを投入した。吸水性樹脂粉末の投入時を始点とし、その吸水性樹脂粉末が生理食塩水を吸液してスターラーチップを覆うまでの時間をVortex(吸水時間)(単位;秒)として、測定した。
 (i)吸水性樹脂粉末のAAP(加圧下吸水倍率)
 吸水性樹脂粉末のAAP(加圧下吸水倍率)を、EDANA法(ERT442.2-02)に準拠して測定した。なお、測定に当たり、荷重条件を4.83kPa(0.7psi)に変更した。
 (j)平均滞留時間
 以下の方法にしたがって、ゲル粉砕装置における含水ゲルの平均滞留時間(秒)を求めた。
 始めに、後述する製造例1において、モノマー溶液に青色1号を1質量%(対モノマー溶液)を添加した以外は同様にして重合をおこなって、青色に着色した含水ゲルを別途作成した。次に、着色していない含水ゲルを用いて所定の投入スピードでゲル粉砕装置に投入して安定稼働させた。含水ゲルの投入スピードを変えることなく、含水ゲルの代わりに、青色に着色した含水ゲルを2±5秒間投入した後、引き続き、着色していない含水ゲルを同一のスピードで投入してゲル粉砕を続行した。青色の含水ゲルの投入開始時を0秒として、5秒毎に、ゲル粉砕装置から排出される粒子状含水ゲルをサンプリングした。
 サンプリングした含水ゲル15gを、チャック付きポリエチレン袋サイズA(株式会社生産日本社製、縦70mm、横50mm、厚み0.04mm)に入れた後、この袋の上に、底面が縦横80mmの正方形である錘(15kg)を5秒間載置して、シート状に成形した。その際、袋内に空気が噛みこまないよう注意した。続いて、分光式色差計SZ-Σ80COLOR MEASURING SYSTEM(日本電色工業株式会社製)を使用して、反射測定/標準白板No.1/30φ投光パイプの測定条件にて、得られたシート状のサンプルのb値を測定した。1つのサンプルにつき5回測定をおこない、平均値を算出した。尚、測定毎に錘を載置してサンプルの形状を整えた。5秒毎にサンプリングした含水ゲルについて、同様にb値を算出した。含水ゲルの青みが強いほど、b値は小さい(0未満かつ絶対値が大きい)。青みが最も強い(b値が最小となる)含水ゲルのサンプリング時間を、平均滞留時間(min)とした。なお、ゲル粉砕工程を複数回実施する場合、各回の平均滞留時間を測定し、その合計を平均滞留時間(min)とした。
 [製造例1]
 アクリル酸300質量部、48質量%水酸化ナトリウム水溶液100質量部、ポリエチレングリコールジアクリレート(平均n数9)0.61質量部、0.1質量%ジエチレントリアミン5酢酸3ナトリウム水溶液16.4質量部、脱イオン水273.2質量部からなる単量体水溶液を作成した。
 次に、38℃に調温した上記単量体水溶液を定量ポンプで連続供給した後、更に48質量%水酸化ナトリウム水溶液150.6質量部をラインミキシングにて連続混合した。尚、この時、中和熱によって単量体水溶液の液温は87℃まで上昇した。
 更に、4質量%過硫酸ナトリウム水溶液14.6質量部をラインミキシングにて連続混合した後、両端に堰を備えた平面状の重合ベルトを有する連続重合機に、厚みが10mmとなるように連続的に供給した。その後、重合時間3分間で連続的に重合をおこなって、帯状(シート状)の含水ゲル状架橋重合体(1a)を得た。得られた帯状の含水ゲル(1a)を、後述するゲル粉砕装置での処理スピードと投入間隔に合わせて切断し、幅数cmの短冊状含水ゲル(1b)を得た。例えば、ゲル粉砕装置の処理スピードを0.64kg/minとし、短冊状含水ゲルを2.5秒間隔で投入する場合、短冊状含水ゲル1枚当たりの質量を0.0267kgとする。尚、短冊状含水ゲル(1b)の重合率は98.5質量%、固形分率は53質量%であった。
 [実験例1]
 <ゲル粉砕>
 ゲル粉砕装置として、同方向に回転する2本の回転軸を内蔵する本体(バレル)を備えた2軸混練機を使用して、短冊状含水ゲル(1b)のゲル粉砕をおこなった。それぞれの回転軸には、主に粉砕手段である円板状ディスクが設けられている。バレルはジャケット構造であり、このジャケットを貫通し、本体内部に水蒸気を投入するガス投入口を有するものであった。
 始めに、ジャケットの内部に60℃の熱媒を循環させ、本体(バレル)内部の温度を60℃に保持した。その後、回転数40rpmに設定して、60℃に加温した短冊状含水ゲル(1b)を0.64kg/minの速度で、2軸混練機の投入口に投入した。その際、含水ゲル(1b)と同時に、60℃の水を投入口から供給し、さらに、0.6MPaの水蒸気をガス投入口から供給した。60℃の水の供給量は、短冊状含水ゲル(1b)の固形分に対して11.8質量%であった。0.6MPaの水蒸気の投入量は、短冊状含水ゲル(1b)の固形分に対して9.7質量%であった。ゲル粉砕に使用したディスクの直径Dはいずれも表1に記載のとおりであり、バレルとディスクとの間の最小クリアランスは6mm(ディスク直径Dの15%)であった。ゲル粉砕条件を表1に示す。粉砕して得られる粒子状含水ゲル(A)の特性を表2に示す。なお、ゲル粉砕時のGGEは19J/gであった。
 <乾燥/表面処理>
 得られた粒子状含水ゲル(A)を、熱風乾燥機を用いて乾燥した。この乾燥機は、目開き1.2mmの金網からなる籠(底面のサイズ30cm×20cm)を備えている。粒子状含水ゲル(A)500gを、この籠の底面に略均一になるように広げ、下方から190℃の熱風を30分間送風することにより、乾燥物を得た。その後、冷却した乾燥物をロールミルに供給して粉砕し、目開き850μm及び150μmのJIS標準篩を用いて分級した。850μmの篩を通過し、150μmの篩を通過しない成分を採取して、吸水性樹脂粉末(AP1)を得た。
 次に、吸水性樹脂粉末(AP1)100質量部に、エチレングリコールジグリシジルエーテル0.025質量部、エチレンカーボネート0.3質量部、プロピレングリコール0.5質量部及び脱イオン水2.0質量部からなる表面架橋剤溶液を噴霧して混合した。この混合物を200℃で35分間加熱処理することにより、表面架橋された吸水性樹脂粉末(AP2)を得た。表面架橋された吸水性樹脂粉末(AP2)の物性を表3に示す。
 [実験例2]
 バレルとディスクとの間の最小クリアランスを2mm(ディスク直径Dの4.16%)に変更した以外は、実験例1と同様にして、粒子状含水ゲル(B)を得た。ディスク配置パターンは実験例1と同様にしたが、ゲル粉砕時のGGEは41J/gであった。ゲル粉砕条件を表1に示す。粉砕して得られる粒子状含水ゲル(B)の特性を表2に示す。
 上記の粒子状含水ゲル(B)について、実験例1と同様にして乾燥/表面処理を行い、吸水性樹脂粉末(BP1)及び表面架橋された吸水性樹脂粉末(BP2)を得た。物性を表3に示す。
 [実験例3]
 短冊状含水ゲル(1b)の加温温度(ゲル粉砕装置の投入口に投入されるゲル温度T1)を80℃に変更し、短冊状含水ゲル(1b)と同時に、10質量%ラウリルジメチルアミノ酢酸ベタイン水溶液を投入口から供給し、供給する水の温度を90℃に変更し、回転軸の回転数を100rpmに変更し、ジャケットの熱媒温度を105℃に変更し(すなわち、本体内部の温度を105℃に保持し)、バレルとディスクとの間の最小クリアランスを1mm(ディスク直径Dの2%)に変更した以外は実験例1と同様にして、粒子状含水ゲル(C)を得た。なお、ラウリルジメチルアミノ酢酸ベタインの固形分としての供給量は、短冊状含水ゲル(1b)の固形分に対して0.15質量%であった。ゲル粉砕条件を表1に示す。粉砕して得られた粒子状含水ゲル(C)の特性を表2に示す。なお、ゲル粉砕時のGGEは125J/gであった。
 上記の粒子状含水ゲル(C)について、実験例1と同様にして乾燥/表面処理を行い、吸水性樹脂粉末(CP1)及び表面架橋された吸水性樹脂粉末(CP2)を得た。物性を表3に示す。
 [実験例4]
 短冊状含水ゲル(1b)の加温温度(ゲル粉砕装置の投入口に投入されるゲル温度T1)を70℃に変更し、水及び水蒸気を供給せず、回転軸の回転数を100rpmに変更し、ジャケットの熱媒温度を80℃に変更し(すなわち、本体内部の温度を80℃に保持し)、バレルとディスク間の最小クリアランスを1mm(ディスク直径Dの2%)に変更した以外は実験例1と同様にして、粒子状含水ゲル(D)を得た。ゲル粉砕条件を表1に示す。粉砕して得られた粒子状含水ゲル(D)の特性を表2に示す。なお、ゲル粉砕時のGGEは54J/gであった。
 上記の粒子状含水ゲル(D)について、実験例1と同様にして乾燥/表面処理を行い、吸水性樹脂粉末(DP1)及び表面架橋された吸水性樹脂粉末(DP2)を得た。物性を表3に示す。
 [実験例5]
 短冊状含水ゲル(1b)の加温温度(ゲル粉砕装置の投入口に投入されるゲル温度T1)を80℃に変更し、短冊状含水ゲル(1b)を0.45kg/minの速度に変更し、供給する水の温度を90℃に変更し、バレルとディスク間の最小クリアランスを1mm(ディスク直径Dの2%)に変更し、回転軸の回転数を70rpmに変更し、ジャケットの熱媒温度を105℃に変更した以外は実験例1と同様にして、粒子状含水ゲル(E)を得た。ゲル粉砕条件を表1に示す。粉砕して得られた粒子状含水ゲル(E)の特性を表2に示す。なお、ゲル粉砕時のGGEは10J/gであった。
 上記の粒子状含水ゲル(E)について、実験例1と同様にして乾燥処理を行ったところ、粒子状含水ゲル(E)中に存在した10mm程度の粗大ゲルの乾燥が不十分となり、後工程のロールミル粉砕に供しうる乾燥物とはならなかった。
 [実験例6]
 短冊状含水ゲル(1b)の温度を室温(20℃)に変更し、水及び水蒸気を供給せず、ジャケットの熱媒温度を室温(20℃)に変更した(すなわち、本体内部の温度を室温(20℃)に保持した)こと以外は実験例4と同様の操作をおこなった。その結果、過負荷のため装置が停止した。停止後に、バレルを開いて内容物を確認したところ、含水ゲル(F)は餅状に一体化しており、以降の製造工程に供しうるものではなかった。
 [実験例7]
 短冊状含水ゲル(1b)と同時に、90℃の水を投入口から供給とする以外は、実験例4と同様にして、粒子状含水ゲル(G)を得た。ディスクのパターンは実験例4と同じであるが、ゲル粉砕時のGGEは48J/gとなった。ゲル粉砕条件を表1に示す。粉砕して得られた粒子状含水ゲル(G)の特性を表2に示す。
 上記の粒子状含水ゲル(G)について、実験例1と同様にして乾燥/表面処理を行い、吸水性樹脂粉末(GP1)及び表面架橋された吸水性樹脂粉末(GP2)を得た。物性を表3に示す。
 [実験例8]
 0.6MPa水蒸気の供給を行わなかったこと以外は、実験例3と同様にして、粒子状含水ゲル(H)を得た。ディスクのパターンは実験例3と同じであるが、ゲル粉砕時のGGEは157J/gとなった。ゲル粉砕条件を表1に示す。粉砕して得られた粒子状含水ゲル(H)の特性を表2に示す。
 上記の粒子状含水ゲル(H)について、実験例1と同様にして乾燥/表面処理を行い、吸水性樹脂粉末(HP1)及び表面架橋された吸水性樹脂粉末(HP2)を得た。物性を表3に示す。
 [実験例9]
 ジャケットの熱媒温度を60℃に変更した(すなわち、本体内部の温度を60℃に保持した)こと以外は実験例3と同様にして、粒子状含水ゲル(I)を得た。ディスクのパターンは実験例3と同じであるが、ゲル粉砕時のGGEは135J/gとなった。ゲル粉砕条件を表1に示す。粉砕して得られた粒子状含水ゲル(I)の特性を表2に示す。
 上記の粒子状含水ゲル(I)について、実験例1と同様にして乾燥/表面処理を行い、吸水性樹脂粉末(IP1)及び表面架橋された吸水性樹脂粉末(IP2)を得た。物性を表3に示す。
 [実験例10]
 短冊状含水ゲル(1b)と同時に、ポリエチレングリコール2000(東京化成工業株式会社製、重量平均分子量2,000)の10質量%水溶液を投入口から供給した以外は、実験例2と同様にして、粒子状含水ゲル(J)を得た。なお、ポリエチレングリコール2000の固形分としての供給量は、短冊状含水ゲル(1b)の固形分に対して0.8質量%であった。ゲル粉砕条件を表1に示す。粉砕して得られる粒子状含水ゲル(J)の特性を表2に示す。なお、ゲル粉砕時のGGEは38J/gであった。
 上記の粒子状含水ゲル(J)について、実験例1と同様にして乾燥/表面処理を行い、吸水性樹脂粉末(JP1)及び表面架橋された吸水性樹脂粉末(JP2)を得た。物性を表3に示す。
 [実験例11]
 短冊状含水ゲル(1b)と同時に、KF-354L(信越化学工業株式会社製、側鎖ポリエーテル変性ポリシロキサン)の10質量%水溶液を投入口から供給した以外は、実験例2と同様にして、粒子状含水ゲル(K)を得た。なお、KF-354Lの固形分としての供給量は、短冊状含水ゲル(1b)の固形分に対して0.05質量%であった。ゲル粉砕条件を表1に示す。粉砕して得られる粒子状含水ゲル(K)の特性を表2に示す。なお、ゲル粉砕時のGGEは36J/gであった。
 上記の粒子状含水ゲル(K)について、実験例1と同様にして乾燥/表面処理を行い、吸水性樹脂粉末(KP1)及び表面架橋された吸水性樹脂粉末(KP2)を得た。物性を表3に示す。
 [実験例12]
 短冊状含水ゲル(1b)の加温温度(ゲル粉砕装置の投入口に投入されるゲル温度T1)を80℃に変更し、短冊状含水ゲル(1b)の処理スピードを0.36kg/minの速度に変更し、短冊状含水ゲル(1b)と同時に、タピオカ酢酸デンプンBK-V(東海澱粉株式会社製)の粉体を投入口から供給し、回転軸の回転数を50rpmとし、水の供給量を短冊状含水ゲル(1b)の固形分に対して52.2質量%とし、ジャケットの熱媒温度を90℃に変更した(すなわち、本体内部の温度を90℃に保持した)こと以外は、実験例7と同様にして、粒子状含水ゲル(L)を得た。なお、タピオカ酢酸デンプンBK-Vの固形分としての供給量は、短冊状含水ゲル(1b)の固形分に対して25質量%であった。ゲル粉砕条件を表1に示す。粉砕して得られた粒子状含水ゲル(L)の特性を表2に示す。なお、ゲル粉砕時のGGEは30J/gであった。
 上記の粒子状含水ゲル(L)について、実験例1と同様にして乾燥/表面処理を行い、吸水性樹脂粉末(LP1)及び表面架橋された吸水性樹脂粉末(LP2)を得た。物性を表3に示す。
 表1中、ゲル温度T1は、ゲル粉砕装置の投入口におけるゲル温度を、ゲル温度T2は、ゲル粉砕装置の排出口におけるゲル温度を、それぞれ表す。表2中、d1は、粒子状含水ゲルの固形分換算の質量平均粒子径を表す。表3中、d3は、吸水性樹脂粉末の質量平均粒子径を表す。なお、すべての実施例において、粉砕手段により含水ゲル状架橋重合体は50℃以上で連続的に粉砕されていた。また、すべての実施例において、含水ゲルを投入する前に、本体内部は50℃以上に加熱されていた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明に係る製造方法では、重合工程で得られた含水ゲル状架橋重合体を、複数軸を有する混練機を用いたゲル粉砕し、後工程に供しうるゲル粉砕物を得られた。さらに、得られる吸水性樹脂粉末も優れた吸収速度を示した(実験例1~4、7~12)。
 実験例1および2の対比から、バレルとディスクとの間のクリアランスを小さくすることで、粒子状含水ゲルの粒径が減少し、さらに吸水性樹脂粉末の吸水速度が向上することが確認された。
 実験例4および7の対比から、本体内部に水を供給しながらゲル粉砕を行うことで、粒子状含水ゲルの粒径は増大するものの、吸水性樹脂粉末の吸水速度が向上することが確認された。
 実験例3、8および9の対比から、本体内部に水蒸気を供給しながら、高温(100℃以上)でゲル粉砕を行うことで、吸水性樹脂粉末の吸水速度が向上することが確認された。
 実験例2、10および11の対比から、ゲル流動化剤を含水ゲルと同時に投入してゲル粉砕を行うことで、粒子状含水ゲルの粒径は増大するものの、吸水性樹脂粉末の吸水速度が向上することが確認された。
 本発明によって得られる吸水性樹脂粉末は、紙オムツ等の衛生用品の吸収体用途に適している。
 本出願は、2020年9月25日に出願された、日本特許出願 特願2020-161054号に基づいており、その開示内容は、その全体が参照により本明細書に組みこまれる。
 200・・・ゲル粉砕装置
 204・・・投入口
 206・・・回転軸
 208・・・本体(バレル)
 210・・・排出口
 212・・・粉砕手段
 214・・・駆動装置
 216・・・ガス投入口

Claims (16)

  1.  単量体水溶液を重合して、含水ゲル状架橋重合体を得る重合工程と、
     上記重合工程後に、上記含水ゲル状架橋重合体をゲル粉砕装置を用いて粉砕して、粒子状含水ゲル状架橋重合体を得るゲル粉砕工程と、
     上記粒子状含水ゲル状架橋重合体を乾燥して、乾燥物を得る乾燥工程と、を含んでおり、
     上記ゲル粉砕装置は、投入口と、排出口と、複数の回転軸を内蔵する本体と、を備え、上記回転軸は、それぞれ粉砕手段を有しており、
     上記ゲル粉砕工程において、上記含水ゲル状架橋重合体を上記投入口から連続的に投入し、上記含水ゲル状架橋重合体を50℃以上で上記粉砕手段により連続的に粉砕し、上記排出口から粒子状含水ゲル状架橋重合体を連続的に取り出し、
     上記投入口に投入する上記含水ゲル状架橋重合体の重合率が90質量%以上であり、
     上記排出口から排出される粒子状含水ゲル状架橋重合体の固形分換算の質量平均粒子径d1が3mm以下である、吸水性樹脂粉末の製造方法。
  2.  上記投入口に投入される上記含水ゲル状架橋重合体のゲル温度T1が50℃以上である、請求項1に記載の製造方法。
  3.  上記ゲル粉砕装置が連続式の複軸型混練機である、請求項1又は2に記載の製造方法。
  4.  上記ゲル粉砕装置が加熱及び/又は保温手段を有する、請求項1~3の何れか1項に記載の製造方法。
  5.  上記ゲル粉砕装置の排出口におけるゲル温度T2が上記投入口におけるゲル温度T1よりも高い、請求項1~4の何れか1項に記載の製造方法。
  6.  上記単量体水溶液は、酸基含有不飽和単量体を主成分として含む、請求項1~5の何れか1項に記載の製造方法。
  7.  上記ゲル粉砕装置の最小クリアランスCは、ディスクの最大径Dに対して0.2~20%である、請求項1~6の何れか1項に記載の製造方法。
  8.  上記ゲル粉砕装置の排出口におけるゲル温度T2が60~140℃である、請求項1~7の何れか1項に記載の製造方法。
  9.  上記含水ゲル状架橋重合体を上記投入口から投入する前に、上記本体の内部を50℃以上に加熱する、請求項1~8の何れか1項に記載の製造方法。
  10.  上記重合工程後に得られる含水ゲル状架橋重合体がシート状であり、上記ゲル粉砕工程前に、シート状の含水ゲル状架橋重合体を細断する細断工程をさらに含む、請求項1~9の何れか1項に記載の製造方法。
  11.  上記ゲル粉砕工程において、上記本体の内部に水及び/又は水蒸気が供給される、請求項1~10の何れか1項に記載の製造方法。
  12.  上記本体の内部に供給される水及び/又は水蒸気の温度が50~120℃である、請求項11に記載の製造方法。
  13.  上記本体の内部に供給される水蒸気の圧力が0.2~0.8MPaである、請求項11に記載の製造方法。
  14.  上記投入口に投入される含水ゲル状架橋重合体の固形分率が25~75質量%である、請求項1~13の何れか1項に記載の製造方法。
  15.  上記排出口から排出される粒子状含水ゲル状架橋重合体の固形分率が25~75質量%である、請求項1~14の何れか1項に記載の製造方法。
  16.  上記含水ゲル状架橋重合体が、ポリ(メタ)アクリル酸(塩)を主成分とする架橋体である、請求項1~15の何れか1項に記載の製造方法。
PCT/JP2021/034800 2020-09-25 2021-09-22 吸水性樹脂粉末の製造方法 WO2022065365A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180065434.8A CN116323688A (zh) 2020-09-25 2021-09-22 吸水性树脂粉末的制造方法
JP2022552033A JPWO2022065365A1 (ja) 2020-09-25 2021-09-22
EP21872494.6A EP4219568A1 (en) 2020-09-25 2021-09-22 Method for producing water-absorbing resin powder
KR1020237009834A KR20230057408A (ko) 2020-09-25 2021-09-22 흡수성 수지 분말의 제조 방법
US18/028,310 US20230372896A1 (en) 2020-09-25 2021-09-22 Method for producing water-absorbing resin powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-161054 2020-09-25
JP2020161054 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022065365A1 true WO2022065365A1 (ja) 2022-03-31

Family

ID=80846515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034800 WO2022065365A1 (ja) 2020-09-25 2021-09-22 吸水性樹脂粉末の製造方法

Country Status (6)

Country Link
US (1) US20230372896A1 (ja)
EP (1) EP4219568A1 (ja)
JP (1) JPWO2022065365A1 (ja)
KR (1) KR20230057408A (ja)
CN (1) CN116323688A (ja)
WO (1) WO2022065365A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190494A1 (ja) * 2022-03-30 2023-10-05 株式会社日本触媒 吸水性樹脂粉末の製造方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734101A (en) 1980-08-11 1982-02-24 Nippon Shokubai Kagaku Kogyo Co Ltd Novel polymerization process
JPS6055002A (ja) 1983-09-07 1985-03-29 Nippon Shokubai Kagaku Kogyo Co Ltd 新規連続重合方法
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
JPH05112654A (ja) 1991-04-10 1993-05-07 Nippon Shokubai Co Ltd 粒子状含水ゲル状重合体および吸水性樹脂の製造方法
JPH11188727A (ja) * 1997-12-25 1999-07-13 Nippon Shokubai Co Ltd 親水性樹脂の製造方法
WO2001038402A1 (de) 1999-11-20 2001-05-31 Basf Aktiengesellschaft Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
JP2004002562A (ja) * 2002-05-31 2004-01-08 Nippon Shokubai Co Ltd (メタ)アクリル酸系水溶性重合体含水ゲルの解砕方法
JP2005035212A (ja) 2003-07-17 2005-02-10 Japan Steel Works Ltd:The ニーディングディスク、ディスクおよび混練方法
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
US7265190B2 (en) 2002-11-07 2007-09-04 Nippon Shokubai Co., Ltd. Process and apparatus for production of water-absorbent resin
US7638570B2 (en) 2003-02-10 2009-12-29 Nippon Shokubai Co., Ltd. Water-absorbing agent
WO2011126079A1 (ja) 2010-04-07 2011-10-13 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
WO2013002387A1 (ja) * 2011-06-29 2013-01-03 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末及びその製造方法
JP2014524956A (ja) * 2011-07-14 2014-09-25 ビーエーエスエフ ソシエタス・ヨーロピア 高い膨潤速度を有する吸水性ポリマー粒子の製造法
WO2015129917A1 (ja) 2014-02-28 2015-09-03 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
WO2016204302A1 (ja) 2015-06-19 2016-12-22 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
JP2020161054A (ja) 2019-03-28 2020-10-01 株式会社エヌエスアイテクス 畳込み演算装置

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734101A (en) 1980-08-11 1982-02-24 Nippon Shokubai Kagaku Kogyo Co Ltd Novel polymerization process
JPS6055002A (ja) 1983-09-07 1985-03-29 Nippon Shokubai Kagaku Kogyo Co Ltd 新規連続重合方法
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
JPH05112654A (ja) 1991-04-10 1993-05-07 Nippon Shokubai Co Ltd 粒子状含水ゲル状重合体および吸水性樹脂の製造方法
JPH11188727A (ja) * 1997-12-25 1999-07-13 Nippon Shokubai Co Ltd 親水性樹脂の製造方法
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
US6710141B1 (en) 1999-11-20 2004-03-23 Basf Aktiengesellschaft Method for continuously producing cross-linked fine-particle geleous polymerizates
WO2001038402A1 (de) 1999-11-20 2001-05-31 Basf Aktiengesellschaft Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
JP2004002562A (ja) * 2002-05-31 2004-01-08 Nippon Shokubai Co Ltd (メタ)アクリル酸系水溶性重合体含水ゲルの解砕方法
US7265190B2 (en) 2002-11-07 2007-09-04 Nippon Shokubai Co., Ltd. Process and apparatus for production of water-absorbent resin
US7638570B2 (en) 2003-02-10 2009-12-29 Nippon Shokubai Co., Ltd. Water-absorbing agent
JP2005035212A (ja) 2003-07-17 2005-02-10 Japan Steel Works Ltd:The ニーディングディスク、ディスクおよび混練方法
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
WO2011126079A1 (ja) 2010-04-07 2011-10-13 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
US20130026412A1 (en) 2010-04-07 2013-01-31 Nippon Shokubai Co. Ltd Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder
US20160332141A1 (en) 2010-04-07 2016-11-17 Nippon Shokubai Co., Ltd. Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder
WO2013002387A1 (ja) * 2011-06-29 2013-01-03 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末及びその製造方法
JP2014524956A (ja) * 2011-07-14 2014-09-25 ビーエーエスエフ ソシエタス・ヨーロピア 高い膨潤速度を有する吸水性ポリマー粒子の製造法
WO2015129917A1 (ja) 2014-02-28 2015-09-03 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
WO2016204302A1 (ja) 2015-06-19 2016-12-22 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
JP2020161054A (ja) 2019-03-28 2020-10-01 株式会社エヌエスアイテクス 畳込み演算装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190494A1 (ja) * 2022-03-30 2023-10-05 株式会社日本触媒 吸水性樹脂粉末の製造方法

Also Published As

Publication number Publication date
CN116323688A (zh) 2023-06-23
EP4219568A1 (en) 2023-08-02
KR20230057408A (ko) 2023-04-28
JPWO2022065365A1 (ja) 2022-03-31
US20230372896A1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
JP6913107B2 (ja) 吸水性樹脂粉末の製造方法及びその製造装置
JP7083020B2 (ja) 吸水性樹脂粉末、及びその製造方法
JP5718817B2 (ja) 吸水性樹脂粉末の製造方法
CN107936189B (zh) 聚丙烯酸(盐)系吸水性树脂粉末及其制品
CN109608661B (zh) 凝胶粉碎装置、及聚丙烯酸(盐)系吸水性树脂粉末的制造方法、以及吸水性树脂粉末
JP4564284B2 (ja) 吸水材の製造方法
KR102105733B1 (ko) 흡수제 및 그의 제조 방법
KR102629476B1 (ko) 흡수성 수지 입자의 제조 방법
WO2011126079A1 (ja) ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
JP2013034942A (ja) 粒子状吸水剤の製造方法
WO2022065365A1 (ja) 吸水性樹脂粉末の製造方法
JP2016113465A (ja) ポリアクリル酸(塩)系吸水性樹脂及びその製造方法
JPWO2019124536A1 (ja) 発熱体組成物用吸水性樹脂粉末、及び発熱体組成物
JP6722507B2 (ja) 吸水性樹脂の製造方法
KR20160006189A (ko) 폴리아크릴산(염)계 흡수성 수지의 제조 방법
WO2023190494A1 (ja) 吸水性樹脂粉末の製造方法
WO2022163849A1 (ja) 吸水性樹脂の製造方法
JP2023088497A (ja) 表面架橋された(メタ)アクリル酸(塩)系吸水性樹脂を含む吸水剤および(メタ)アクリル酸(塩)系吸水性樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552033

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237009834

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021872494

Country of ref document: EP

Effective date: 20230425