WO2022239723A1 - ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体 - Google Patents

ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体 Download PDF

Info

Publication number
WO2022239723A1
WO2022239723A1 PCT/JP2022/019629 JP2022019629W WO2022239723A1 WO 2022239723 A1 WO2022239723 A1 WO 2022239723A1 JP 2022019629 W JP2022019629 W JP 2022019629W WO 2022239723 A1 WO2022239723 A1 WO 2022239723A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
absorbent resin
mass
water absorbent
polymerization
Prior art date
Application number
PCT/JP2022/019629
Other languages
English (en)
French (fr)
Inventor
加奈子 津留
智嗣 松本
幸恵 北畑
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021081231A external-priority patent/JP7100742B1/ja
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to KR1020237042152A priority Critical patent/KR20240005044A/ko
Priority to CN202280032779.8A priority patent/CN117241880A/zh
Priority to EP22807425.8A priority patent/EP4338832A1/en
Publication of WO2022239723A1 publication Critical patent/WO2022239723A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to water absorbent resins and absorbent bodies. More specifically, the present invention relates to a polyacrylic acid (salt)-based water absorbent resin and an absorbent body.
  • water-absorbing resins are widely used as water-absorbing agents.
  • water absorbent resins include hydrolysates of starch-acrylonitrile graft copolymers, neutralized starch-acrylic acid graft polymers, saponified vinyl acetate-acrylic acid ester copolymers, (meth ) Cross-linked products of partially neutralized acrylic acid polymers are known.
  • poly (meth) acrylic acid (salt) water absorbent resin using (meth) acrylic acid and / or its salt as a monomer is the most industrially produced. It is
  • the performance required for water-absorbent resins used in sanitary materials includes water absorption capacity and water absorption speed from the viewpoint of absorption of body fluids. These are parameters of absorption characteristics that are generally measured using a test solution that simulates urine (for example, 0.9% by mass sodium chloride aqueous solution) (Non-Patent Document 1). On the other hand, water-absorbing resins suitable for absorbing body fluids having higher viscosity than urine, such as blood and/or soft stool, have also been investigated (Patent Documents 1 to 3).
  • the problem to be solved by the present invention is to maintain the water absorption capacity of the water-absorbent resin and the water absorption rate near human body temperature, while maintaining low-viscosity body fluids (e.g., urine) to high-viscosity body fluids (e.g., urine and soft stool).
  • low-viscosity body fluids e.g., urine
  • high-viscosity body fluids e.g., urine and soft stool.
  • the water-absorbing resin according to one embodiment of the present invention is a polyacrylic acid (salt)-based water-absorbing resin having a free swelling rate (A) of 0.15 g ⁇ g ⁇ 1 ⁇ in a polyethylene oxide aqueous solution at 40°C. s -1 or more, free swelling rate (B) in physiological saline at 40 ° C. is 0.40 g ⁇ g -1 ⁇ s -1 or more, free swelling rate (A) / free swelling rate (B) is 0.20 or more.
  • A free swelling rate of 0.15 g ⁇ g ⁇ 1 ⁇ in a polyethylene oxide aqueous solution at 40°C. s -1 or more
  • free swelling rate (B) in physiological saline at 40 ° C. is 0.40 g ⁇ g -1 ⁇ s -1 or more
  • free swelling rate (A) / free swelling rate (B) is 0.20 or more.
  • the water-absorbent resin while maintaining the water absorption capacity of the water-absorbent resin and the water absorption rate near human body temperature, not only low-viscosity body fluids (e.g., urine) but also high-viscosity body fluids (e.g., urine) and loose stools) can provide a water-absorbing resin that is also excellent in water-absorbing speed.
  • low-viscosity body fluids e.g., urine
  • high-viscosity body fluids e.g., urine
  • water-absorbent resin in one embodiment of the present invention refers to a water-swellable and water-insoluble polymeric gelling agent that satisfies the following physical properties. That is, as “water swellability”, CRC defined by ERT441.2-02 is 5 g / g or more, and as “water insoluble”, Ext defined by ERT470.2-02 is a physical property of 50% by weight or less. It refers to a polymeric gelling agent that satisfies
  • the water-absorbing resin can be appropriately designed according to its use, and is not particularly limited, but is preferably a hydrophilic cross-linked polymer obtained by cross-linking an unsaturated monomer having a carboxyl group.
  • the water absorbent resin is not limited to a form in which the total amount (100% by weight) is a polymer, and a water absorbent resin composition containing additives etc. within the range satisfying the physical properties (CRC, Ext) may be in the form of
  • the water-absorbing resin in one embodiment of the present invention is not limited to the final product, and intermediates in the manufacturing process of the water-absorbing resin (e.g., water-containing gel-like crosslinked polymer after polymerization, dried polymer after drying, and water absorbent resin powder before surface cross-linking, etc.). Together with the water-absorbent resin composition, all of these are collectively referred to as "water-absorbent resin".
  • the shape of the water-absorbing resin includes sheet-like, fibrous, film-like, particulate, gel-like, etc., and a particulate water-absorbing resin is preferable in one embodiment of the present invention.
  • EDANA is an abbreviation for the European Disposables and Nonwovens Association.
  • ERT is an abbreviation for the European standard (almost a global standard) method for measuring water-absorbing resin (EDANA Recommended Test Methods). In the present invention, the physical properties of the water absorbent resin are measured according to the ERT original (2002 revision/publicly known document) unless otherwise specified.
  • ppm means “mass ppm” unless otherwise specified.
  • weight and weight% are treated as synonyms.
  • acid (salt) means “acid and/or its salt”.
  • (Meth)acryl means “acryl and/or methacryl”.
  • Polyacrylic acid (salt)-based water absorbent resin means a water absorbent resin containing repeating units derived from acrylic acid (salt) as a main component. agent), acrylic acid (salt) is preferably 50 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 90 to 100 mol%, particularly preferably substantially 100 mol%. Refers to resin.
  • the water-absorbing resin is preferably particulate, and specific examples thereof include amorphous pulverized, spherical, football-shaped, aggregate-shaped and the like.
  • the water-absorbent resin is more preferably aggregate particles of spherical particles (for example, spherical particles containing a polyacrylic acid (salt)-based water-absorbent resin).
  • the spherical shape includes not only a perfect sphere but also a substantially spherical shape having an aspect ratio of 1.0 to 1.2.
  • the water-absorbing resin may contain additives for exhibiting various functions.
  • the additive include organic powders such as surfactants, compounds having phosphorus atoms, oxidizing agents, organic reducing agents, inorganic reducing agents, water-insoluble inorganic fine particles, chelating agents, polyvalent metal salts, and metal soaps. , deodorants, antibacterial agents, pulp, and thermoplastic fibers.
  • the amount of the additive used is appropriately set according to the use of the water absorbent resin to be obtained. % by mass or less, more preferably 1% by mass or less.
  • the lower limit is 0.001% by mass or more, preferably 0.01% by mass or more, relative to the water absorbent resin (for example, water absorbent resin powder).
  • the water-insoluble inorganic fine particles a compound disclosed in "[5] Water-insoluble inorganic fine particles" of International Patent Publication No. 2011/040530 is applied to one embodiment of the present invention.
  • these water-insoluble inorganic fine particles by including particularly hydrophilic fine particles, for example, silica (silicon dioxide) and / or hydrotalcite, the liquid compatibility of the water-absorbing resin (for example, water-absorbing resin particles) is improved, and the absorption is improved. It is preferable because the water-absorbing resin can absorb the aqueous liquid in a short time when used for articles.
  • the polyvalent metal salt a water-soluble polyvalent metal salt is preferable, and a water-soluble aluminum salt is more preferable.
  • Water-soluble aluminum salts include, for example, aluminum sulfate.
  • the amount of the water-insoluble inorganic fine particles to be added is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the water-absorbent resin, from the viewpoint of improving the liquid compatibility of the water-absorbing resin (for example, water-absorbing resin particles). is 0.05 to 3 parts by mass, more preferably 0.1 to 1 part by mass, and particularly preferably 0.2 to 0.5 parts by mass.
  • CRC Centrifuge Retention Capacity
  • the CRC of the water absorbent resin according to one embodiment of the present invention is preferably 25 g/g or more, more preferably 28 g/g or more, and even more preferably 31 g/g or more.
  • the upper limit is not particularly limited, and a higher CRC is preferable, but from the viewpoint of balance with other physical properties, it is preferably 50 g/g or less, more preferably 45 g/g or less, and still more preferably 40 g/g. or less, and particularly preferably 35 g/g or less.
  • the CRC is 25 to 50 g/g, the absorption amount is sufficient, the rate of absorbing body fluids such as urine and/or blood is prevented from decreasing, and it is suitable for use in high water absorption rate type paper diapers and the like. Suitable.
  • the CRC value can be controlled by changing the type and/or amount of the internal cross-linking agent and/or surface cross-linking agent.
  • Ext is an abbreviation for Extractables (water-soluble matter), and means the amount of soluble matter extracted from the water absorbent resin.
  • the water-soluble content is measured in accordance with the EDANA method (ERT470.2-02), and may be measured by changing the extraction time from 16 hours to 1 hour. It is called “Ext (1hr)”.
  • the Ext of the water absorbent resin according to one embodiment of the present invention is preferably 33% by mass or less, more preferably 30% by mass or less, and still more preferably 27% by mass or less.
  • the lower limit is 0% by mass or more, but from the viewpoint of balance with other physical properties, it is preferably 2% by mass or more, more preferably 4% by mass or more.
  • Ext is 33% by mass or less, a decrease in the rate of absorption of body fluids such as urine and/or blood is prevented or reduced, and the water-absorbing resin is suitable for use in high water absorption rate type paper diapers and the like.
  • the value of Ext can be controlled by changing the types and/or amounts of the polymerization initiator, internal cross-linking agent, and/or surface cross-linking agent during production of the water absorbent resin.
  • the value of Ext can also be controlled by using a chain transfer agent in the polymerization process during production of the water absorbent resin.
  • Ext (1 hr) of the water absorbent resin according to one embodiment of the present invention is preferably 15% by mass or less, more preferably 10% by mass or less, and further 9% by mass or less, 8% by mass or less, 7% by mass % or less, 6 mass % or less, and 5 mass % or less, in that order.
  • the lower limit is 0% by mass or more, but from the viewpoint of balance with other physical properties, it is preferably 1% by mass or more, more preferably 2% by mass or more.
  • Ext (1 hr) exceeds 15% by mass, the polymer component extracted from the water-absorbent resin during water absorption may increase the viscosity of the absorbent.
  • the value of Ext (1 hr) is controlled by the composition of the aqueous solution of the surface cross-linking agent and/or the method of mixing with the water-absorbing resin, in addition to the control method of Ext.
  • AAP is an abbreviation for Absorption against Pressure, and means the water absorption capacity of a water absorbent resin under pressure.
  • AAP is measured according to the EDANA method (ERT442.2-02). Specifically, using a 0.9% by mass sodium chloride aqueous solution, 0.9 g of a water-absorbing resin is swollen for 1 hour under a pressure of 2.06 kPa (21 g/cm 2 , 0.3 psi), and then AAP ( Absorption capacity under pressure) (unit: g/g) is measured.
  • the AAP of the water absorbent resin according to one embodiment of the present invention is preferably 20 g/g or more, more preferably 25 g/g or more, from the viewpoint of water absorption characteristics when used in sanitary materials.
  • the upper limit of the AAP of the water absorbent resin is not particularly limited, but is preferably 45 g/g or less.
  • Water content “Moisture content” is measured according to the EDANA method (ERT430.2-02) except that the sample amount is changed to 1.0 g and the drying temperature is changed to 180°C.
  • the water content of the water absorbent resin according to one embodiment of the present invention is not particularly limited, but is preferably 1% by mass to 20% by mass, more preferably 1% by mass to 15% by mass, and still more preferably 2% by mass to 13% by mass. %, particularly preferably 2% to 10% by weight.
  • the rate of absorption of body fluids such as urine and/or blood is prevented from decreasing, making it suitable for use in high water absorption rate type paper diapers and the like.
  • Mass average particle size (D50) "Mass-average particle diameter (D50)” is described in “(3) Mass-Average Particle Diameter (D50) and Logarithmic Standard Deviation ( ⁇ ) of Particle Diameter Distribution” described in columns 27 and 28 of US Pat. No. 7,638,570. Measured in compliance.
  • the mass average particle diameter (D50) of the water absorbent resin according to one embodiment of the present invention is preferably 200 ⁇ m to 700 ⁇ m, more preferably 250 ⁇ m to 600 ⁇ m, still more preferably 250 ⁇ m to 500 ⁇ m, and particularly preferably 300 ⁇ m to 450 ⁇ m. Also, the proportion of particles having a particle diameter of less than 150 ⁇ m is preferably 20% by mass or less, more preferably 10% by mass or less, and even more preferably 5% by mass or less. When the mass average particle size is 200 ⁇ m or more, the water absorbent resin has little dust and is easy to handle.
  • the water absorbent resin can prevent or reduce the rate of absorption of body fluids such as urine and / or blood, so that the water absorbent resin has a high water absorption rate. Suitable for use with type paper diapers, etc.
  • Free swelling rate (A) in 3 wt% polyethylene oxide aqueous solution at 40°C "Free swelling rate (A) in a 3% by weight polyethylene oxide aqueous solution at 40°C” means that the water-absorbing resin absorbs 20 times its own weight in a 3% by weight aqueous polyethylene oxide solution at 40°C without pressure and without stirring. water absorption rate (unit: g ⁇ g ⁇ 1 ⁇ s ⁇ 1 ).
  • Free swelling rate (A) in a 3% by weight polyethylene oxide aqueous solution at 40°C may be referred to as free swelling rate (A).
  • the free swelling rate (A) of the water absorbent resin according to one embodiment of the present invention is preferably 0.15 g ⁇ g ⁇ 1 ⁇ s ⁇ 1 or more, more preferably 0.18 g ⁇ g ⁇ 1 ⁇ s ⁇ 1 or more. , more preferably 0.20 g ⁇ g ⁇ 1 ⁇ s ⁇ 1 or more, more preferably 0.25 g ⁇ g ⁇ 1 ⁇ s ⁇ 1 or more.
  • the upper limit of the free swelling speed (A) of the water absorbent resin is not particularly limited, but is preferably 0.50 g ⁇ g ⁇ 1 ⁇ s ⁇ 1 or less.
  • Free swelling rate (B) in physiological saline at 40°C is measured by applying a physiological saline (0.9% by mass aqueous solution of sodium chloride) at 40°C in which the water-absorbent resin is 20 times its own weight under no pressure and without stirring. It means the water absorption speed (unit: g ⁇ g ⁇ 1 ⁇ s ⁇ 1 ) when water is absorbed downward.
  • Free swelling rate (B) in physiological saline at 40°C may be referred to as free swelling rate (B).
  • the free swelling rate (B) of the water absorbent resin according to one embodiment of the present invention is preferably 0.40 g ⁇ g ⁇ 1 ⁇ s ⁇ 1 or more, more preferably 0.50 g ⁇ g ⁇ 1 ⁇ s ⁇ 1 or more. , and more preferably 0.60 g ⁇ g ⁇ 1 ⁇ s ⁇ 1 or more.
  • the upper limit of the free swelling speed (B) of the water absorbent resin is not particularly limited, but is preferably 2.00 g ⁇ g ⁇ 1 ⁇ s ⁇ 1 or less.
  • Ratio of free swelling rate The “ratio of free swelling speeds” is determined by free swelling speed (A) [g ⁇ g ⁇ 1 ⁇ s ⁇ 1 ]/free swelling speed (B) [g ⁇ g ⁇ 1 ⁇ s ⁇ 1 ].
  • the free swelling speed ratio of the water absorbent resin according to one embodiment of the present invention is preferably 0.20 or more, more preferably 0.25 or more, and still more preferably 0.30 or more.
  • the upper limit of the free swelling speed ratio of the water absorbent resin is not particularly limited, but is preferably 1.00 or less, more preferably 0.60 or less, and still more preferably 0.40 or less.
  • the bulk density of the water absorbent resin according to one embodiment of the present invention is preferably 0.40 g/cm 3 to 0.80 g/cm 3 , more preferably 0.50 g/cm 3 to 0.80 g/cm 3 , and further It is preferably 0.60 g/cm 3 to 0.75 g/cm 3 . If the bulk density is 0.40 g/cm 3 to 0.80 g/cm 3 , a decrease in the rate of absorption of body fluids such as urine and/or blood is prevented or reduced. Suitable for use in paper diapers, etc. that absorb water quickly.
  • the number average particle diameter of the primary particles of the water absorbent resin is preferably 5 ⁇ m to 1000 ⁇ m, more preferably 5 ⁇ m to 800 ⁇ m, still more preferably 8 ⁇ m to 500 ⁇ m, still more preferably 10 ⁇ m to 300 ⁇ m, and further More preferably 10 ⁇ m to 200 ⁇ m, particularly preferably 30 ⁇ m to 100 ⁇ m.
  • the surface tension of the water absorbent resin according to one embodiment of the present invention is preferably 60 mN/m or more, more preferably 65 mN/m or more, still more preferably 67 mN/m or more, particularly preferably 71 mN/m or more, and substantially There is no dramatic decrease in surface tension.
  • An upper limit of 75 mN/m is usually sufficient.
  • any of aqueous solution polymerization, reversed phase suspension polymerization, vapor phase droplet polymerization and other polymerization methods may be used as the method for producing the water absorbent resin according to one embodiment of the present invention.
  • reverse-phase suspension polymerization will be described below as an example.
  • gels obtained by reversed-phase suspension polymerization differ from typical reversed-phase suspension polymerizations, which involve an azeotropic dehydration step in a hydrophobic organic solvent after polymerization and/or a surface cross-linking step in the dispersion system.
  • a manufacturing method including a separation step, a gel granulation step, a drying step (preferably hot air drying), and a surface cross-linking step (preferably powder surface treatment) will be described as an example.
  • the polymerization method is reversed-phase suspension polymerization in which the monomer is polymerized in a state in which droplets containing the monomer are dispersed or suspended in a liquid phase made of a hydrophobic organic solvent.
  • Any polymerization method for obtaining a hydrous gel polymer may be used, and the polymerization method may be a batch system or a continuous system.
  • the batch type production method is a process in which an aqueous monomer solution is added or dropped into a hydrophobic organic solvent in a reactor and mixed to disperse or suspend the aqueous monomer solution, and then polymerize to obtain a water-containing It is a production method for obtaining a gel polymer.
  • an aqueous monomer solution is continuously fed to a hydrophobic organic solvent in a reactor, dispersed or suspended, and then polymerized to form a water-containing gel polymer through a polymerization reaction. and the hydrophobic organic solvent are continuously discharged from the reactor.
  • a preferred embodiment of the present invention is continuous reversed-phase suspension polymerization, more preferably continuous liquid-phase droplet polymerization in which an aqueous monomer solution is continuously dispersed in a hydrophobic organic solvent and polymerized. .
  • continuous reverse phase suspension polymerization is also preferable from the viewpoint of the physical properties of the water absorbent resin.
  • a separation step may be provided for separating the hydrous gel polymer obtained in the polymerization step from the hydrophobic organic solvent.
  • the aqueous monomer solution is continuously suspended or dispersed as droplets in a hydrophobic organic solvent in a dispersion device, and the dispersion and / or suspension is continuously supplied to the reactor. Since it is a form in which dispersion and polymerization are carried out in one apparatus (batch operation, batch type), it is clearly distinguished.
  • the operating time is preferably 1 hour or longer, more preferably 3 hours or longer, still more preferably 8 hours or longer, and even more preferably 24 hours or longer. In addition, it is usually one year or less.
  • a method for producing a water-absorbing resin according to one embodiment of the present invention includes an optional monomer aqueous solution preparation step; an optional dispersion step; a polymerization step; an optional separation step; an optional gel sizing step; .
  • a cooling step, a pulverizing step, a classification step, a surface cross-linking step, a rewetting step, a granulation step, a fine powder removal step, a granulation step, a fine powder recycling step, etc. can be included.
  • it may further include a transportation process, a storage process, a packing process, a storage process, and the like.
  • the aqueous monomer solution is an aqueous solution containing a monomer that is a raw material for the water-absorbing resin, and is a solution that is dispersed or suspended in a hydrophobic organic solvent in order to perform reversed-phase suspension polymerization.
  • the solvent for the aqueous monomer solution water or a mixture of water and a water-soluble organic solvent (eg, alcohol, etc.) is preferably used, and water is even more preferable.
  • the solvent is a mixture of water and a water-soluble organic solvent
  • the water-soluble organic solvent e.g., alcohol, etc.
  • the solvent is preferably 30% by mass or less, more preferably 5% by mass or less, of the mixture. .
  • a water-soluble ethylenically unsaturated monomer is preferably used as the monomer.
  • water-soluble ethylenically unsaturated monomers include (meth)acrylic acid, (anhydrous) maleic acid, itaconic acid, cinnamic acid, vinylsulfonic acid, allyltoluenesulfonic acid, vinyltoluenesulfonic acid, styrenesulfonic acid.
  • a polymerization inhibitor may be added to the aqueous monomer solution, if necessary.
  • the acid group is neutralized.
  • the salt of the acid group-containing unsaturated monomer is preferably a salt with a monovalent cation, and at least one selected from the group consisting of alkali metal salts, ammonium salts and amine salts. More preferably, it is an alkali metal salt, still more preferably at least one selected from the group consisting of sodium salt, lithium salt and potassium salt, and particularly preferably sodium salt.
  • the water-soluble ethylenically unsaturated monomer is preferably an acid group-containing unsaturated monomer and/or a salt thereof, more preferably (meta ) acrylic acid (salt), (anhydrous) maleic acid (salt), itaconic acid (salt), cinnamic acid (salt), more preferably (meth)acrylic acid (salt), particularly preferably acrylic acid (salt ).
  • an acid group-containing unsaturated monomer is used as a monomer, from the viewpoint of the water absorption performance of the resulting water absorbent resin, the acid group-containing unsaturated monomer and a neutralized salt of the acid group-containing unsaturated monomer It is preferable to use together with.
  • the number of moles of the neutralized salt with respect to the total number of moles of the acid group-containing unsaturated monomer and the neutralized salt of the acid group-containing unsaturated monomer is preferably 40 mol% or more, more preferably 40 mol% to 95 mol%, still more preferably 50 mol% to 90 mol%, even more preferably 55 mol% to 85 mol%, particularly preferably 60 mol% ⁇ 80 mol%.
  • any one of the exemplified monomers may be used alone, and any two or more monomers may be used as appropriate. You may mix and use it. Further, other monomers can be mixed and used as long as the object of the present invention is achieved.
  • the monomers used for polymerization include acrylic acid (salt) (e.g., (meth)acrylic acid ( salt)).
  • the ratio of acrylic acid (salt) to the total monomers used in the polymerization is usually 50 mol% or more, preferably 70 mol% or more, more preferably 70 mol% or more, from the viewpoint of the water absorption performance of the resulting water absorbent resin. 80 mol % or more, more preferably 90 mol % or more (the upper limit is 100 mol %).
  • an internal cross-linking agent can be used as necessary.
  • the internal cross-linking agent include conventionally known internal cross-linking agents having two or more polymerizable unsaturated groups and/or two or more reactive groups in one molecule.
  • Examples of internal cross-linking agents include N,N'-methylenebis(meth)acrylamide, (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, Trimethylolpropane di(meth)acrylate, glycerin tri(meth)acrylate, glycerin acrylate methacrylate, ethylene oxide-modified trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, tri allyl cyanurate, triallyl isocyanurate, triallyl phosphate, triallylamine, poly(meth)allyloxyalkane, (poly)ethylene glycol diglycidyl ether, glycerol diglycidyl ether, ethylene glycol, polyethylene glycol, prop
  • the amount of the internal cross-linking agent to be used is usually 0.0001 to 5 mol%, more preferably 0.001 to 3 mol%, relative to the monomer, although it may be appropriately determined depending on the desired physical properties of the water absorbent resin. , and still more preferably 0.005 to 1.5 mol %.
  • substances exemplified below can also be added to the aqueous monomer solution.
  • other substances include chain transfer agents such as thiols, thiolic acids, secondary alcohols, amines, and hypophosphites; foaming agents such as carbonates, bicarbonates, azo compounds, and air bubbles; chelating agents such as metal salts of ethylenediaminetetraacetic acid and metal salts of diethylenetriaminepentaacetic acid; polyacrylic acid (salts) and crosslinked products thereof, starch, cellulose, starch-cellulose derivatives, polyvinyl alcohol and the like.
  • chain transfer agents such as thiols, thiolic acids, secondary alcohols, amines, and hypophosphites
  • foaming agents such as carbonates, bicarbonates, azo compounds, and air bubbles
  • chelating agents such as metal salts of ethylenediaminetetraacetic acid and metal salts of diethylenetriaminepentaacetic acid
  • polyacrylic acid (salts) and crosslinked products thereof starch, cellulose, starch-cellulose derivatives, polyvin
  • the amount of other substances used is not particularly limited, but the total concentration of other substances is preferably 10% by mass or less, more preferably 1% by mass or less, and even more preferably 1% by mass or less relative to the monomer. is 0.1% by mass or less.
  • the total concentration of polyacrylic acid (salt) and crosslinked products thereof, starch, cellulose, starch-cellulose derivatives, and polyvinyl alcohol is preferably 30% by mass or less, more preferably 20% with respect to the monomer. % by mass or less, and more preferably 10% by mass or less.
  • the dissolved oxygen in the aqueous monomer solution may be reduced by raising the temperature or replacing it with an inert gas.
  • polymerization initiator A polymerization initiator may be used in the preparation of the aqueous monomer solution. When using a polymerization initiator to prepare the aqueous monomer solution, gelation and/or viscosity increase of the aqueous monomer solution may occur. It is preferable to perform the following (1), (2) and (3), etc.: (1) immediately before dispersing and/or suspending the aqueous monomer solution in the hydrophobic organic solvent; (2) monomer The aqueous solution is cooled and mixed with a polymerization initiator at a temperature lower than normal temperature (20° C.
  • the aqueous monomer solution and the polymerization initiator are subjected to a dispersion step while being line-mixed.
  • a thermal decomposition type polymerization initiator is preferably used.
  • the thermally decomposable polymerization initiator refers to a compound that decomposes by heat to generate radicals. is preferably 0° C. to 120° C., more preferably 30° C. to 100° C., still more preferably 50° C. to 80° C.
  • a water-soluble compound is preferably used as the polymerization initiator.
  • the polymerization initiator is preferably an azo compound, a persulfate, more preferably sodium persulfate, potassium persulfate, ammonium persulfate, More preferably sodium persulfate is used.
  • the amount of the thermal decomposition type polymerization initiator to be used is appropriately set according to the types of the monomer and the polymerization initiator, and is not particularly limited. From the viewpoint of production efficiency, the amount of the thermal decomposition type polymerization initiator used is preferably 0.001 g/mol or more, more preferably 0.005 g/mol or more, and still more preferably 0.010 g, relative to the monomer. / mol or more. From the viewpoint of improving the water absorption performance of the water absorbent resin, it is preferably 2 g/mol or less, more preferably 1 g/mol or less.
  • photolytic polymerization initiator examples include benzoin derivatives, benzyl derivatives, acetophenone derivatives, benzophenone derivatives and the like.
  • the thermal decomposition type polymerization initiator and the reducing agent can be used together to form a redox polymerization initiator.
  • the thermal decomposition type polymerization initiator functions as an oxidizing agent.
  • the reducing agent used is not particularly limited, but for example, sodium sulfite, sodium hydrogen sulfite and other (bi)sulfites; reducing metal salts such as ferrous salts; L-ascorbic acid (salts); amines, etc. is mentioned.
  • the concentration of the monomer in the aqueous monomer solution is selected depending on the selected monomer and the type of hydrophobic organic solvent.
  • the lower limit of the concentration of the monomer in the aqueous monomer solution (100% by mass) is preferably 10% by mass or more, more preferably 20% by mass or more, of the aqueous monomer solution, Still more preferably 30% by mass or more, and the upper limit is preferably 100% by mass or less, more preferably 90% by mass or less, still more preferably 80% by mass or less, and still more preferably 70% by mass. % by mass or less.
  • Additives such as an internal cross-linking agent, a surfactant, a density adjusting agent, a thickener, and a chelating agent can be added to the aqueous monomer solution as long as the object of one embodiment of the present invention is not hindered.
  • the type and amount of additive to be added can be appropriately selected depending on the combination of the monomer and hydrophobic organic solvent used.
  • the dispersing step is a step of dispersing or suspending droplets containing a monomer in a hydrophobic organic solvent.
  • the concept includes suspension. More specifically, the aqueous monomer solution is added to a hydrophobic organic solvent, mixed, and stirred to disperse in the hydrophobic organic solvent.
  • a stirrer equipped with stirring blades propeller blades, paddle blades, anchor blades, turbine blades, Faudler blades, ribbon blades, flat plate blades, etc. may be used.
  • the diameter of the dispersed droplets can be adjusted by adjusting the type, blade diameter, and number of rotations of the stirring blades, and is particularly suitable for batch-type reversed-phase suspension polymerization.
  • a dispersion liquid can be obtained by the method described in WO 2009/025235, WO 2013/018571, and the like.
  • the dispersing step includes continuously supplying a monomer aqueous solution and a hydrophobic organic solvent separately to a dispersing device, and dispersing the monomer dispersed in the hydrophobic organic solvent. It is preferable to make droplets comprising
  • the dispersing device used in the dispersing step includes a spray nozzle; Cylindrical nozzles such as needles; orifice plates in which a large number of holes are directly provided in a plate; centrifugal atomizers such as rotating wheels;
  • Hydrophobic organic solvents include at least one organic solvent selected from the group consisting of aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons and halogenated hydrocarbons. Specific examples include aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane and n-octane; alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, cyclooctane and decalin; benzene, toluene, xylene and the like.
  • the hydrophobic organic solvent is preferably one or more selected from the group consisting of n-hexane, n-heptane and cyclohexane from the viewpoint of availability and quality stability. It is also possible to use a mixed solvent in which two or more kinds are mixed.
  • a dispersing aid such as a surfactant and/or a polymer additive is optionally added to the hydrophobic organic solvent as long as the object of one embodiment of the present invention is not hindered.
  • a dispersing aid is appropriately selected depending on the combination of the hydrophobic organic solvent and the monomers used, and usable dispersing aids are exemplified by the following surfactants and polymeric additives.
  • the surfactant include sucrose fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, Polyoxyethylene Alkyl Ether, Polyoxyethylene Alkylphenyl Ether, Polyoxyethylene Castor Oil, Polyoxyethylene Hydrogenated Castor Oil, Alkyl Allyl Formaldehyde Condensed Polyoxyethylene Ether, Polyoxyethylene Polyoxypropylene Block Copolymer, Polyoxyethylene Polyoxypropyl Alkyl ethers, polyethylene glycol fatty acid esters, alkyl glucosides, N-alkyl gluconamides, polyoxyethylene fatty acid amides, polyoxyethylene alkylamines, polyoxyethylene alkyl ether phosphates, and polyoxyethylene alkyl allyl ether phosphates
  • R 1 and R 2 are each independently hydrogen, methyl or ethyl, and n is an integer of 3-20.
  • the HLB (hydrophilic-hydrophobic balance) of the surfactant used in one embodiment of the present invention is not particularly limited, but is preferably 1 to 20, more preferably 1 to 10, and still more preferably is in the range of 3-6.
  • polymer additive examples include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene-propylene copolymer, maleic anhydride-modified ethylene-propylene-diene terpolymer (EPDM), maleic anhydride-modified polybutadiene, maleic anhydride-ethylene copolymer, maleic anhydride-propylene copolymer, maleic anhydride-ethylene-propylene copolymer, maleic anhydride-butadiene copolymer, polyethylene, polypropylene , ethylene-propylene copolymer, oxidized polyethylene, oxidized polypropylene, oxidized ethylene-propylene copolymer, ethylene-acrylic acid copolymer, ethyl cellulose, hydroxyethyl cellulose and the like.
  • one type may be used alone, or two or more types may be used in combination. Further, these polymer additives and the surfactant may be used in combination.
  • the polymeric additive is used alone without a surfactant.
  • the amount of the dispersing aid used is appropriately set according to the type of polymerization, the types of the aqueous monomer solution and the hydrophobic organic solvent, and the like. Specifically, the concentration of the dispersing aid in the hydrophobic organic solvent is preferably 0.0001 to 2% by mass, more preferably 0.0005 to 1% by mass.
  • the polymerization step is a step of polymerizing droplets containing the monomer obtained in the dispersion step to obtain a hydrous gel polymer (hereinafter also simply referred to as hydrous gel).
  • the reactor used in the polymerization step may be the same dispersing device used in the dispersing step, or may be another device.
  • the apparatus used in the dispersing step can be used as it is as a reaction apparatus, which is preferable in terms of workability.
  • the reactor is a separate device from the dispersing device, the monomer dispersion liquid obtained in the dispersing step is supplied to the reactor.
  • the shape of the reactor in which the polymerization reaction is carried out is not particularly limited, and a known reactor can be used. As described above, a stirring device that can be suitably used in the dispersion step can also be suitably used in the polymerization reaction.
  • the shape of the reactor is preferably such that the monomer (aqueous solution) is dispersed as droplets in a hydrophobic organic solvent, which is a continuous phase formed in the reactor. It is a shape that allows polymerization reaction while moving.
  • a reactor includes, for example, a reactor in which tubular reaction tubes are arranged vertically, horizontally or spirally.
  • the reactor may be equipped with temperature control means so that the continuous phase inside the reactor can be heated and/or cooled from the outside, if necessary.
  • the polymerization temperature which is the reaction temperature in the polymerization step, may be appropriately set depending on the type and/or amount of the polymerization initiator used, but is preferably 20°C to 100°C, more preferably 40°C to 90°C. If the polymerization temperature is higher than 100°C, a rapid polymerization reaction will occur, which is not preferable.
  • the polymerization temperature means the temperature of the hydrophobic organic solvent as the dispersion medium (hereinafter referred to as "Td").
  • the temperature of the aqueous monomer solution rapidly rises due to heat transfer from the hydrophobic organic solvent.
  • the thermally decomposable polymerization initiator decomposes with the temperature rise to generate radicals.
  • a polymerization reaction is initiated by the generated radicals, and a water-containing gel is formed as the polymerization reaction progresses.
  • the formed hydrous gel moves inside the reactor with the moving continuous phase, and is discharged from the reactor together with the hydrophobic organic solvent forming the continuous phase.
  • the Td is preferably 70° C. or higher, more preferably 75° C. or higher, and still more preferably 80° C. or higher, from the viewpoint of the polymerization rate. be.
  • the upper limit of Td is not particularly limited, it is appropriately selected from the viewpoint of safety within a range not exceeding the boiling point of the hydrophobic organic solvent forming the continuous phase.
  • Multi-stage reversed-phase suspension polymerization In the production method according to one embodiment of the present invention, multi-stage polymerization may be performed from the viewpoint of obtaining an appropriate aggregate particle size. Specifically, multi-stage polymerization can be carried out by, for example, adding an aqueous monomer solution and carrying out a polymerization reaction after the completion of the first-stage polymerization step.
  • inorganic fine particles In the production method according to one embodiment of the present invention, inorganic fine particles may be added to the water-containing gel polymer during and/or after polymerization from the viewpoint of obtaining an appropriate aggregated particle size.
  • inorganic fine particles examples include silicon dioxide, amorphous silica, aluminum oxide, titanium dioxide, calcium phosphate, calcium carbonate, magnesium phosphate, calcium sulfate, diatomaceous earth, bentonite, zeolite, and other metals. oxides and the like. Silicon dioxide, aluminum oxide, and titanium dioxide are particularly preferable as the inorganic fine particles.
  • the inorganic fine particles are added in an amount of generally 0.001 to 1 part by weight, preferably 0.001 to 0.5 part by weight, relative to the water-containing gel polymer. Within this range, the effect of addition of the inorganic fine particles is efficiently exhibited, and the influence on the water absorption performance is small, which is preferable.
  • the separation step is a step of separating the hydrous gel polymer obtained in the polymerization step from the hydrophobic organic solvent.
  • the type and structure of the device used in the separation step are not particularly limited, but for example, known devices used for filtration, sedimentation, centrifugation, compression, etc. can be used.
  • the mixture of the hydrous gel polymer and the hydrophobic organic solvent is heated under normal pressure or reduced pressure using the stirring device having the stirring blade used in the polymerization step, and the hydrogel polymer and the hydrophobic organic solvent are distilled.
  • the solvent may be separated. Distillation under normal pressure or reduced pressure is preferably carried out in the batch-type reversed-phase suspension polymerization.
  • the solvent content of the hydrophobic organic solvent in the hydrous gel separated from the hydrophobic organic solvent through the separation step is not particularly limited.
  • the solvent content of the hydrophobic organic solvent (hereinafter simply referred to as the solvent content) is based on 100% by mass of the hydrogel including the solvent. , preferably 0.01 to 10% by mass, more preferably 0.01 to 9% by mass, still more preferably 0.01 to 5% by mass.
  • Solid content of water-containing gel polymer The solid content of the hydrous gel separated from the hydrophobic organic solvent is not particularly limited. However, from the viewpoint of drying cost in the subsequent drying step, the content is preferably 20% by mass or more, more preferably 30% by mass or more, and still more preferably 40% by mass or more.
  • the upper limit of the solid content of the hydrous gel polymer is preferably 90% by mass or less, more preferably 80% by mass or less, and still more preferably 70% by mass, from the viewpoint of water absorption performance and/or mechanical load. % or less, particularly preferably 60 mass % or less.
  • the gel polymerization rate of the obtained hydrogel is preferably 70% by mass or more, more preferably 80% by mass, from the viewpoint of suppressing aggregation during drying of the obtained hydrous gel and reducing residual monomers in the obtained water-absorbing resin. Above, more preferably 90% by mass or more, particularly preferably 95% by mass or more. The upper limit of the gel polymerization rate is ideally 100% by mass. When the polymerization rate is 70% by mass or more, it is possible to prevent the water-containing gel from strongly aggregating with each other during drying and forming agglomerates.
  • the gel sizing step In the gel sizing step, the hydrous gel polymer separated from the hydrophobic organic solvent in the separation step is sieved using a gel sizing apparatus having an extruder and a perforated plate. As a result, a granulated hydrogel polymer is obtained (hereinafter, the granulated hydrogel is referred to as a granulated gel).
  • the gel sizing step is an optional step. Having the gel sizing process makes it easier to control the water absorption rate of the high-viscosity liquid.
  • the water-containing gel polymer to be subjected to the gel sizing step is in the form of a single particle of spherical gel or in the form of an aggregate of spherical gels.
  • the lower limit of the average particle size of the hydrous gel polymer is not particularly limited, it is preferably 0.01 mm or more, more preferably 0.03 mm or more, still more preferably 0.05 mm or more, and still more preferably 0.1 mm or more.
  • the upper limit is not particularly limited, it is preferably 20 mm or less, more preferably 10 mm or less.
  • the particle size is referred to as the primary particle size
  • the particle size of each spherical gel constituting the aggregate is referred to as the primary particle size.
  • the average primary particle size is not particularly limited, but from the viewpoint of suppressing the generation of fine powder when controlling the particle size of the final product, it is preferably 5 ⁇ m to 2000 ⁇ m, more preferably 5 ⁇ m to It is 1000 ⁇ m, more preferably 5 ⁇ m to 800 ⁇ m, still more preferably 8 ⁇ m to 500 ⁇ m, still more preferably 10 ⁇ m to 300 ⁇ m, particularly preferably 10 ⁇ m to 200 ⁇ m.
  • a device having a cutter may be installed in front of the gel sizing device having the extrusion action part and the perforated plate to crush large aggregates.
  • Gel sizing device As used herein, the term “gel sizing” refers to the process of extruding a wet mass of powder (e.g., hydrous gel) through small holes in a perforated plate into a columnar shape to obtain a substantially uniform shape and size from the wet powder raw material. It is an operation to create grains with In other words, by using a perforated plate, the hydrous gel in the form of coarse aggregates that have excessively aggregated in the previous solvent separation step is crushed, and the small-diameter single-particle hydrous gel is moderately aggregated. be done. Therefore, by the gel sizing step, it is possible to obtain a granulated hydrous gel (granule-sized gel) having a relatively uniform particle size.
  • the granulated gel may contain monoparticulate hydrous gel.
  • the "gel sizing apparatus having an extrusion action part and a perforated plate” used in the gel sizing step includes an extrusion action part and a perforated plate (die or screen), and the extrusion action part is usually a perforated plate. It is not particularly limited as long as it has an extruding member that extrudes and supplies the contents toward the perforated plate and can produce grains of a certain size by extruding the material from the perforated plate (for example, an extruder). Alternatively, these devices may be used in series.
  • the shape of the holes of this perforated plate (die or screen) is not particularly limited, and any shape suitable for use, such as a perfect circle, an ellipse, a polygon such as a hexagon, or a triangle, can be selected. It is possible. From the viewpoint of sizing strength, the shape of the holes of the perforated plate (die or screen) is preferably circular or elliptical. Although the pore diameter is not particularly limited, it is preferably 1.5 mm or less, more preferably 1.0 mm or less, and even more preferably 0.8 mm or less.
  • the pore size is preferably 0.3 mm to 1.5 mm, more preferably 0.3 mm to 0.8 mm. If the hole diameter of the perforated plate is 0.3 mm or more, the extrusion can be performed efficiently.
  • the said hole diameter is defined as follows. First, when the hole is not a perfect circle, the geometric mean value of the short diameter and long diameter of the hole is adopted as the hole diameter.
  • the pore diameters of the pores of the perforated plate are different, the pore diameters of all the pores are calculated, and the arithmetic mean value thereof is adopted as the pore diameter of the perforated plate. Furthermore, when the pore diameter of the perforated plate changes from the extrusion acting portion side of the perforated plate to the opposite side (the pore diameter changes in the thickness direction of the perforated plate), the value that gives the smallest pore diameter is adopted. .
  • Additives may be added in the gel sizing process.
  • Additives that can be added in the gel sizing process include polymerization initiators, oxidizing agents, reducing agents, chelating agents, thickening agents, surfactants, cross-linking agents, acids, bases, foaming agents, organic or inorganic fine particles, and many other additives. and valence metal salts.
  • additives capable of controlling the degree of cohesion are preferably starch, cellulose, starch-cellulose derivatives, thickeners such as polyvinyl alcohol, surfactants, water-absorbing resin fine powder, cross-linking agents, polyvalent metal salts, and the like.
  • the polyvalent metal salt a water-soluble polyvalent metal salt is preferable, and a water-soluble aluminum salt is more preferable.
  • Water-soluble aluminum salts include, for example, aluminum sulfate.
  • a drying process is a process of drying a water-containing gel. As a result, the water contained in the hydrous gel and the hydrophobic organic solvent that could not be completely separated in the optional separation step are removed, and a particulate dry polymer having a desired solid content is obtained.
  • the solid content of the dry polymer is preferably 80% by weight or more, more preferably 85 to 99% by weight, still more preferably 90 to 98% by weight, particularly preferably 92 to 97% by weight.
  • the drying method is not particularly limited. Drying by boiling dehydration, high-humidity drying using high-temperature steam, or the like can be mentioned.
  • the drying temperature (hot air temperature) in the hot air drying is preferably 100 to 250°C, more preferably 100 to 180°C, from the viewpoint of the color tone and/or drying efficiency of the water absorbent resin.
  • the drying conditions other than the drying temperature such as the speed of hot air and / or the drying time, may be appropriately set according to the moisture content of the particulate hydrous gel to be dried, the total weight and the desired resin solid content. Often, when performing band drying, the conditions described in WO 2006/100300, WO 2011/025012, WO 2011/025013, WO 2011/111657, etc. are appropriately applied. .
  • the dried polymer composed of the particles obtained in the main drying process can be used as it is for various purposes as a water-absorbing resin. Moreover, when producing a water-absorbing resin in this production method, it is also possible to subject the dried polymer obtained in the drying step to the surface cross-linking step described below. In this case, the dry polymer to be subjected to the surface cross-linking step, which will be described later, is also referred to as "water absorbent resin powder" for convenience.
  • the drying step preferably includes a step of loosening the aggregates.
  • additives may be added to the hydrous gel as long as the effects of one embodiment of the present invention are not inhibited.
  • the addition may be performed during heating by the heating means, or may be performed before the drying step (before heating by the heating means).
  • additives may be added in any step prior to the drying step. The additive can reduce excessive adhesion of the hydrous gel to each other during drying, and a water absorbent resin having an excellent water absorption rate can be obtained.
  • the hydrophilization treatment step may be performed after the surface cross-linking step, which will be described later, or before the surface cross-linking step.
  • the hydrophilization step is a step of hydrophilizing the water absorbent resin with an organic solvent.
  • the specific hydrophilization method differs depending on the cause of the formation of the hydrophobic part on the surface of the water-absorbing resin.
  • the surfactant used as a dispersant during polymerization is the cause of hydrophobicity, so it is preferable to wash it using an organic solvent. Washing is more preferred.
  • the organic solvent is not particularly limited as long as it can wash the surfactant, but it is preferable to use one that does not swell the water-absorbent resin in order to enhance the washing effect.
  • the preferred swelling ratio of the water absorbent resin during treatment is less than 2 times.
  • the organic solvent not only hydrophilic organic solvents but also hydrophobic organic solvents can be used.
  • hydrophilic organic solvents include lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol and t-butyl alcohol; ketones such as acetone; ethers such as dioxane and tetrahydrofuran; amides such as N,N-dimethylformamide; sulfoxides such as dimethylsulfoxide; Aliphatic hydrocarbons such as n-octane; alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, cyclooctane, decalin; halogenated hydrocarbons such as chlorobenzene, brombenzene, carbon tetrachloride, 1,2-dichloroethane, etc.
  • ketones such as acetone
  • ethers such as dioxane and tetrahydrofuran
  • amides such as N
  • aromatic hydrocarbons such as benzene, toluene, xylene, and the like.
  • methyl alcohol, ethyl alcohol, isopropyl alcohol, n-heptane, n-hexane and cyclohexane are preferably used.
  • the absorption capacity and/or return amount under pressure are further improved by bringing the organic solvent into contact with the water absorbent resin in a heated state.
  • the heating temperature is preferably lower than the boiling point of the organic solvent, and generally about 40 to 120° C., depending on the type of organic solvent used.
  • Hydrophilization treatment is preferably carried out while the water absorbent resin is dry. Note that if hydrophilization is performed in a wet state with an organic solvent and/or water, the water absorption speed may decrease or the water absorption ratio may decrease rapidly when cross-linking near the surface is performed. requires. Therefore, it is preferable to filter and dry the water-absorbing resin obtained by the reversed-phase suspension polymerization or aqueous solution polymerization to remove the polymerization solvent and moisture before performing the hydrophilization treatment.
  • the water-absorbing resin for example, water-absorbing resin powder
  • a surface-crosslinking agent for example, water-absorbing resin powder
  • This surface cross-linking is a process of providing a portion with a high cross-linking density in the surface layer of the water-absorbent resin (e.g., water-absorbent resin powder) (a portion several tens of ⁇ m from the surface of the water-absorbent resin (e.g., water-absorbent resin powder) to the center).
  • Various water absorption properties can be improved by performing surface cross-linking treatment.
  • a known surface cross-linking technique is appropriately applied. Note that the surface cross-linking agent used in the surface cross-linking step is also indicated as a “post-crosslinking agent” in the known art in order to distinguish it from the internal cross-linking agent used in the aqueous monomer solution preparation step.
  • the surface cross-linking step may be performed after the drying step or during the drying step.
  • a surface cross-linking agent is mixed with a cross-linked polymer of a hydrous gel or a dried product thereof, and the mixture is heated to carry out a cross-linking reaction.
  • these steps may be separately provided after the drying step, or a surface cross-linking agent may be added in the drying step to simultaneously carry out the surface cross-linking reaction and drying.
  • the water-absorbent resin is produced by a batch-type reversed-phase suspension polymerization method
  • the solvent and the hydrous gel polymer can be separated by distillation in the separation step after the polymerization reaction.
  • the method for producing a water-absorbing resin according to one embodiment of the present invention includes, if necessary, a cooling step, a pulverizing step, a water content (re-wetting) step, a classification step, and other additive addition steps. , a sizing step, and a fines recycling step. In addition, it may further include a transportation process, a storage process, a packing process, a storage process, and the like.
  • the particulate dry polymer obtained in the drying step is cooled using a known cooling means to obtain a particulate dry polymer cooled to a desired temperature. be able to.
  • Pulverization process It is preferable to include a pulverization step of pulverizing the particulate dry polymer obtained in the drying step (and any subsequent cooling step). By carrying out the pulverization step, it is possible to obtain a water absorbent resin powder with a controlled particle size or particle size distribution.
  • pulverization means for example, high-speed rotary pulverizers such as roll mills, hammer mills, screw mills, and pin mills; vibration mills; knuckle-type pulverizers; cylindrical mixers, etc. are appropriately selected and used.
  • the water absorbent resin (eg, water absorbent resin particles) obtained in the surface cross-linking step is added with a cationic polymer, a chelating agent, an inorganic reducing agent, an ⁇ -hydroxycarboxylic acid compound, a polyhydric It is a step of adding at least one additive selected from the group consisting of metal salts.
  • a polyvalent metal salt a water-soluble polyvalent metal salt is preferable, and a water-soluble aluminum salt is more preferable.
  • Water-soluble aluminum salts include, for example, aluminum sulfate.
  • the additive is preferably added to the water absorbent resin (for example, water absorbent resin particles) in the form of an aqueous solution or dispersion (slurry).
  • the additive may be added to the water absorbent resin and mixed with the water absorbent resin at the same time as the surface cross-linking agent solution described above.
  • Specific examples of the re-wetting step include the method described in International Patent Publication No. 2015/053372 "(2-7) Re-wetting step", and the method is also applied to one embodiment of the present invention. can be
  • additives other than the additives described above can be added to the water absorbent resin to add various functions.
  • the additive include organic powders such as surfactants, compounds having phosphorus atoms, oxidizing agents, organic reducing agents, inorganic reducing agents, water-insoluble inorganic fine particles, chelating agents, polyvalent metal salts, and metal soaps. , deodorants, antibacterial agents, pulp and thermoplastic fibers, and the like.
  • organic powders such as surfactants, compounds having phosphorus atoms, oxidizing agents, organic reducing agents, inorganic reducing agents, water-insoluble inorganic fine particles, chelating agents, polyvalent metal salts, and metal soaps.
  • deodorants antibacterial agents, pulp and thermoplastic fibers, and the like.
  • water-insoluble inorganic fine particles compounds disclosed in "[5] Water-insoluble inorganic fine particles" of International Patent Publication No. 2011/040530 can be mentioned, and the compound is applied to one embodiment of the present invention.
  • water-insoluble inorganic fine particles particularly hydrophilic fine particles such as silica (silicon dioxide)
  • the liquid compatibility of the water-absorbing resin for example, water-absorbing resin particles
  • the absorbent article is improved. It is preferable because it can absorb an aqueous liquid in a short time when used.
  • the "granulation step” means a step of loosening loosely agglomerated water absorbent resin through the surface cross-linking step to adjust the particle size.
  • this granule regulating step includes a fine powder removing step and a classifying step after the surface cross-linking step.
  • the sizing step is preferably carried out from the viewpoint of regulating the particle size of the water-absorbing resin and obtaining stable water-absorbing properties.
  • the “fine powder recycling step” means a step of supplying the fine powder generated by sieving and the like in each of the above steps as it is or after granulating the fine powder to any of the steps.
  • the fine powder recycling step is preferably carried out from the viewpoint of reducing the production loss of the water absorbent resin.
  • water absorbent resin Applications of the water-absorbing resin according to one embodiment of the present invention are not particularly limited, but preferably include absorbent articles such as disposable diapers (for infants and adults), sanitary napkins, and incontinence pads. . In particular, it can be used as an absorber for high density paper diapers.
  • an absorbent material such as pulp fiber can be used together with the water absorbent resin.
  • the content (core concentration) of the water absorbent resin in the absorbent is preferably 30% by mass to 100% by mass, more preferably 40% by mass to 100% by mass, and still more preferably 50% by mass to 100% by mass. %, even more preferably 60% to 100% by weight, particularly preferably 70% to 100% by weight, most preferably 75% to 95% by weight.
  • the absorbent article can be kept white with a clean feeling. Furthermore, since the absorber is excellent in diffusing body fluids such as urine and/or blood, it is expected that the absorption amount will be improved by efficient liquid distribution.
  • the absorbent body described above contains the water absorbent resin according to one embodiment of the present invention and (i) does not contain hydrophilic fibers, or (ii) the weight of the water absorbent resin is
  • the absorber may be 50% by mass or more of the total mass of the water absorbent resin and the hydrophilic fibers.
  • the hydrophilic fiber is not particularly limited, and examples thereof include pulp fiber, cotton linter crosslinked cellulose fiber, rayon, cotton, wool, acetate and vinylon. Furthermore, those air-laid are preferable.
  • the mass of the water-absorbing resin is 50 mass% or more of the total mass of the water-absorbing resin and hydrophilic fibers, more specifically, the mass of the water-absorbing resin is 60 mass of the total mass of the water-absorbing resin and hydrophilic fibers. % or more, 70 mass % or more, 80 mass % or more, 90 mass % or more, or 100 mass %.
  • An embodiment of the present invention can also be configured as follows.
  • the water absorbent resin according to one embodiment of the present invention is a polyacrylic acid (salt)-based water absorbent resin having a free swelling rate (A) of 0.15 g g in a polyethylene oxide aqueous solution at 40 ° C. -1 ⁇ s -1 or more, free swelling rate (B) in physiological saline at 40 ° C. is 0.40 g ⁇ g -1 ⁇ s -1 or more, free swelling rate (A) / free swelling rate A water-absorbent resin, wherein (B) is 0.20 or more.
  • A free swelling rate of 0.15 g g in a polyethylene oxide aqueous solution at 40 ° C. -1 ⁇ s -1 or more
  • free swelling rate (B) in physiological saline at 40 ° C. is 0.40 g ⁇ g -1 ⁇ s -1 or more
  • free swelling rate (A) / free swelling rate A water-absorbent resin, wherein (B) is 0.20 or more
  • the water absorbent resin according to one embodiment of the present invention is the water absorbent resin according to [1], which has a CRC of 25 to 50 g/g.
  • the water-absorbing resin according to one embodiment of the present invention is the water-absorbing resin according to [1] or [2], which is aggregate particles of spherical particles.
  • the water absorbent resin according to one embodiment of the present invention is the water absorbent resin according to any one of [1] to [3], which has a bulk density of 0.40 to 0.80 g/cm 3 . .
  • the water absorbent resin according to one embodiment of the present invention has a free swelling rate (A) in an aqueous polyethylene oxide solution at 40 ° C. of 0.25 g ⁇ g -1 ⁇ s -1 or more [1] ⁇ [4]
  • the water-absorbing resin according to any one of [4].
  • the water absorbent resin according to one embodiment of the present invention is obtained by reverse phase suspension polymerization in a hydrophobic organic solvent, [1] to [5]. It is a flexible resin.
  • the water absorbent resin according to one embodiment of the present invention is obtained by extruding spherical particles with an extruder having a perforated plate, [1] to [6]. It is a flexible resin.
  • An absorbent body contains the water absorbent resin according to any one of [1] to [7], and (i) does not contain hydrophilic fibers, or ( ii) The absorbent body, wherein the weight of the water absorbent resin is 50% by weight or more of the total weight of the water absorbent resin and the hydrophilic fibers.
  • Examples and Comparative Examples used a power supply of 200 V or 100 V and 60 Hz unless otherwise noted. Further, the physical properties of the water-absorbing resins of Examples and Comparative Examples were measured under the conditions of room temperature (20 to 25° C.) and relative humidity of 50% RH, unless otherwise specified.
  • liter may be written as “l” or “L”, and “weight%” as “wt%” for convenience. Furthermore, in the measurement of trace components, below the detection limit is expressed as “N.D” (Non Detected).
  • CRC centrifuge retention capacity
  • Ext The Ext (water-soluble content) of the water-absorbing resins of Examples and Comparative Examples was measured according to the EDANA method (ERT470.2-02).
  • Ext (1hr) The Ext (1 hr) of the water-absorbent resins of Examples and Comparative Examples conformed to the EDANA method (ERT470.2-02). Note that the stirring time was changed to 1 hour.
  • AAP absorbency under pressure
  • Water content Moisture content was measured according to the EDANA method (ERT430.2-02).
  • the mass of the sample was changed to 1.0 g
  • the drying temperature was changed to 180° C.
  • the drying time was changed to 3 hours.
  • 1.0 g of water-absorbing resin was put into an aluminum cup with a bottom diameter of 50 mm, and then the total mass W1 (g) of the sample (water-absorbing resin and aluminum cup) was accurately weighed.
  • the sample (water absorbent resin and aluminum cup) was placed in an oven set at an ambient temperature of 180°C. After 3 hours, the sample was taken out from the oven and the total mass W2 (g) was accurately weighed.
  • Free swelling rate (A) in 3 wt% polyethylene oxide aqueous solution at 40°C Using polyethylene oxide (PEO-1, viscosity average molecular weight 150,000-400,000, manufactured by Sumitomo Seika Co., Ltd.), the concentration is 3% by weight, the liquid temperature is 40 ° C., and the viscosity under those conditions is 10.
  • a polyethylene oxide aqueous solution having a viscosity of ⁇ 1 mPa ⁇ s was prepared.
  • a vibrating viscometer (model: VM-10A) manufactured by SEKONIC Co., Ltd. was used to measure the viscosity. Below, 25 ml and 50 ml glass beakers were kept at 40° C. and used.
  • a glass funnel that can be charged with a 3 wt% polyethylene oxide aqueous solution at a flow rate of 5 to 6 g/sec was placed so that the tip of the funnel was at a height of 50 mm from the bottom of the beaker. was installed in Next, 10 g of a 3% by weight polyethylene oxide aqueous solution adjusted to 40° C. ⁇ 0.5° C. was weighed into a 50 ml glass beaker and carefully and quickly poured into a funnel.
  • Time measurement was started at the same time that the 3% by weight polyethylene oxide aqueous solution poured into the funnel came into contact with the water absorbent resin. After pouring the 3% by weight polyethylene oxide aqueous solution into the funnel, the funnel was removed when water droplets did not drop from the funnel for 5 seconds. Immediately after the start of time measurement, the upper surface of the water absorbent resin was below the liquid surface of the 3% by weight polyethylene oxide aqueous solution in the beaker.
  • the weight (W5, unit: g) of the 3% by weight polyethylene oxide aqueous solution poured into a 25 ml glass beaker was obtained by the following formula (a).
  • Free swelling rate (A) was calculated by the following formula (b).
  • Free swelling rate (B) in 0.9% by mass sodium chloride aqueous solution When the viscosity of a 0.9% by mass sodium chloride aqueous solution at 40° C. was measured using a vibration viscometer (model: VM-10A) manufactured by SEKONIC Co., Ltd., it was 0 to 1 mPa ⁇ s. Below, 25 ml and 50 ml glass beakers were kept at 40° C. and used.
  • Time measurement was started at the same time that the 0.9% by mass aqueous sodium chloride solution poured into the beaker came into contact with the water absorbent resin.
  • the upper surface of the water absorbent resin was below the liquid surface of the 0.9% by mass sodium chloride aqueous solution in the beaker.
  • the liquid surface of the 0.9% by mass sodium chloride aqueous solution in the beaker into which the 0.9% by mass sodium chloride aqueous solution was poured was visually observed at an angle of about 20 °, the liquid surface was the water absorbent resin that absorbed the liquid.
  • time measurement was terminated (unit: seconds) (tS2).
  • the weight (W8, unit: g) of the 0.9% by mass aqueous sodium chloride solution poured into a 25 ml glass beaker was determined by the following formula (c).
  • the free swelling rate (B) was calculated by the following formula (d).
  • Free swelling rate ratio Free swelling rate (A) [g ⁇ g ⁇ 1 ⁇ s ⁇ 1 ]/Free swelling rate (B) [g ⁇ g ⁇ 1 ⁇ s ⁇ 1 ].
  • the bulk density of the water absorbent resin was measured according to the EDANA method (ERT460.2-02).
  • Numberer average particle size A scanning electron micrograph (SEM) of the water absorbent resin or water absorbent resin powder was taken. Randomly select 50 primary particles in front of the aggregated particles from the photograph, measure the major axis and minor axis of each primary particle, and take the average value of the measured values as the primary particle diameter. . An average value of the primary particle sizes was calculated, and the average value was taken as the average primary particle size of the water absorbent resin.
  • viscosity The viscosity was measured using a vibration viscometer (model: VM-10A) manufactured by SEKONIC Co., Ltd. Specifically, 40 g to 45 g of the test liquid was added to a screw tube (No. 7, 50 ml, code 730-09) manufactured by Maruem Co., Ltd., the liquid temperature was adjusted to 40 ° C., and the liquid level was above the detector. Viscosity (mPa ⁇ s) was measured by adjusting the height so that the rod part was immersed by 2 mm to 3 mm.
  • the surface tension is the surface tension of an aqueous solution when the water-absorbent resin is dispersed in a 0.9% by mass sodium chloride aqueous solution, and was measured by the method described in W02015/129917.
  • Example 1 A hydrous gel polymer was produced according to the manufacturing process shown in FIG. 1 of WO2020/067310.
  • a two-fluid spray nozzle (external mixing type, spray nozzle inner diameter: 0.5 mm, model: SETO07507S303 + TS303, manufactured by Ikeuchi Co., Ltd.) shown in FIG. 9 of WO 2020/067310, and a PFA tube as a reaction device (inner diameter: 25 mm, total length: 10 m) arranged vertically were used.
  • the liquid feed pump was operated to start circulation of the organic solvent at a flow rate of 1000 ml/min.
  • the route of the circulated organic solvent was branched into a route for feeding into the reactor via a two-fluid spray nozzle and a route for feeding directly into the reactor.
  • the flow rate of the organic solvent introduced into the reactor via the two-fluid spray nozzle was 800 ml/min, and the flow rate of the organic solvent directly introduced into the reactor was 200 ml/min.
  • the flow velocity of the organic solvent at the tip of the two-fluid spray nozzle was 7.86 m/sec.
  • the heat exchanger was operated to heat the circulating organic solvent so that the set temperature was 85°C.
  • the monomer solution (1) and the sodium persulfate aqueous solution (1) obtained by the above operation are separately supplied to a mixing device and mixed to prepare the monomer aqueous solution (1).
  • the aqueous monomer solution (1) had a monomer concentration of 43 mass % and a neutralization rate of 70 mol %.
  • the internal cross-linking agent N,N'-methylenebisacrylamide is 0.015 mol% relative to the monomer
  • the chelating agent diethylenetriaminepentaacetic acid-trisodium is 100 ppm relative to the monomer
  • the polymerization initiator was 0.1 g/mol relative to monomer.
  • the monomer aqueous solution (1) prepared by the mixing device was quickly sent to the monomer aqueous solution channel (first supply pipe) of the two-fluid spray nozzle. Thereafter, using the two-fluid spray nozzle, together with the organic solvent, the aqueous monomer solution (1) was supplied to the reactor at a flow rate of 40 ml/min (23.6 g/min). The monomer aqueous solution (1) was supplied in the same direction (cocurrent flow) as the circulation direction of the organic solvent forming the continuous phase. The flow velocity of the aqueous monomer solution (1) at the tip of the two-fluid spray nozzle was 0.85 m/sec. Also, the liquid temperature of the monomer aqueous solution (1) was kept at 25° C. before being supplied to the two-fluid spray nozzle.
  • the aqueous monomer solution (1) supplied by the two-fluid spray nozzle was dispersed in droplets in the continuous phase.
  • the ratio (W/O ratio) between the aqueous monomer solution (1) and the organic solvent forming the continuous phase was 3.3% by volume.
  • the dispersion liquid obtained as described above was supplied to the reactor. Droplets of the aqueous monomer solution (1) are polymerized while falling in the reactor filled with the hydrophobic organic solvent, which is the continuous phase, and in the vicinity of the outlet of the reactor, water-containing microspheres are formed. A gel polymer (1) was confirmed.
  • the water-containing gel polymer (1) obtained by the series of operations is continuously supplied from the reaction device to the separation device through the joint together with the hydrophobic organic solvent, and in the separation device, the water-containing gel polymer is (1) and the organic solvent were separated.
  • the hydrous gel polymer (1) was aggregates of fine spherical particles, and the size of the aggregates was 5 to 10 mm.
  • the hydrous gel polymer (1) (gel temperature: 90° C.) is put into an extruder-type gel sizing device having a screw and a perforated plate with a hole diameter of 0.8 mm, and the hydrous gel polymer (1) is subjected to gelation.
  • a sizing gel (1) was obtained by discharging from the sizing device.
  • particulate hydrous gel polymer (1) was dried by blowing hot air at 105°C for 45 minutes to obtain a particulate dry polymer (1).
  • the dried polymer (1) is supplied to a roll mill (WML type roll grinder, manufactured by Inokuchi Giken Co., Ltd.) and pulverized to adjust the particle size, and further classified using a sieve with an opening particle size of 150 ⁇ m. to obtain a water absorbent resin powder (1).
  • a roll mill WML type roll grinder, manufactured by Inokuchi Giken Co., Ltd.
  • a surface cross-linking agent solution consisting of 0.015 parts by mass of ethylene glycol diglycidyl ether, 1.0 parts by mass of propylene glycol and 3.0 parts by mass of ion-exchanged water was sprayed on 100 parts by mass of the water absorbent resin powder (1). It was sprayed and uniformly mixed using a high speed continuous mixer.
  • the obtained mixture was introduced into a heat treatment machine adjusted to an ambient temperature of 195 ° C. ⁇ 2 ° C., and after heat treatment for 40 minutes, the powder temperature was forcibly cooled to 60 ° C. to surface-crosslink water absorption.
  • a flexible resin powder (1) was obtained.
  • the surface-crosslinked water absorbent resin powder is referred to as "water absorbent resin particles”.
  • the entire amount of the monomer aqueous solution for the first-stage polymerization is dispersed in the five-necked cylindrical round-bottom flask under stirring at a rotation speed of 500 rpm, and the inside of the system is sufficiently replaced with nitrogen. After that, the temperature was raised, and the bath temperature was kept at 70° C., and the polymerization reaction was carried out for 1 hour, and then the polymerization slurry liquid was cooled to room temperature.
  • the temperature of the aqueous monomer solution was adjusted to 18° C. under a nitrogen atmosphere, and then 0.16 parts of a 5% aqueous sodium persulfate solution and 0.16 parts of a 5% aqueous solution of 2,2′-azobis(2-amidinopropane) dihydrochloride were added. 16 parts, 0.15 parts of 0.5% L-ascorbic acid aqueous solution and 0.17 parts of 0.35% hydrogen peroxide aqueous solution were added dropwise in order while stirring. Polymerization started immediately after the dropwise addition of hydrogen peroxide. Stirring was then stopped and the temperature of the monomer reached the peak temperature after 10 minutes. The peak temperature was 85°C. Subsequently, the vat was immersed in a hot water bath at 80°C and aged for 10 minutes. The resulting transparent hydrous gel was crushed with a meat chopper and then dried at 180° C. for 30 minutes.
  • the dried product was pulverized with a pulverizer and classified into those that passed through a 500 ⁇ m sieve and remained on a 105 ⁇ m sieve to obtain a water absorbent resin powder.
  • a composition liquid consisting of 0.002 parts of diethylenetriaminepentaacetic acid, 0.05 parts of ethylene glycol diglycidyl ether, 1 part of propylene glycol, 3 parts of water and 1 part of isopropyl alcohol was mixed with 100 parts of water absorbent resin powder, and the mixture was heated at 180°C for 40 minutes. After heat treatment for 1 minute, comparative water absorbent resin particles (2) were obtained.
  • a comparative water absorbent resin (3) was obtained according to Example 2 of JP-A-2006-068731.
  • Table 1 shows various physical properties of the obtained comparative water absorbent resin (3).
  • An embodiment of the present invention can be used for absorbent articles such as disposable diapers (for infants and adults), sanitary napkins, and incontinence pads.

Abstract

吸吸水倍率と吸水速度とを維持しつつ、低粘度の体液から高粘度の体液までの幅広い粘度の体液を吸収できる吸水性樹脂を提供することを課題とする。40℃のポリエチレンオキサイド水溶液での自由膨潤速度(A)が0.15g・g-1・s-1以上、40℃の生理食塩水での自由膨潤速度(B)が0.40g・g-1・s-1以上、自由膨潤速度(A)/自由膨潤速度(B)が0.20以上のポリアクリル酸(塩)系吸水性樹脂を用いる。

Description

ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
 本発明は、吸水性樹脂、及び吸収体に関する。より具体的に、本発明は、ポリアクリル酸(塩)系吸水性樹脂、及び吸収体に関する。
 近年、紙オムツ、生理用ナプキン、失禁パット等の衛生材料には、体液吸収の観点から、その構成材としての吸水性樹脂が、吸水剤として幅広く利用されている。このような吸水性樹脂としては、例えば、澱粉-アクリロニトリルグラフト共重合体の加水分解物、澱粉-アクリル酸グラフト重合体の中和物、酢酸ビニル-アクリル酸エステル共重合体のケン化物、(メタ)アクリル酸部分中和物重合体の架橋物等が知られている。吸水性能の観点から、吸水性樹脂としては、(メタ)アクリル酸及び/又はその塩を単量体として用いたポリ(メタ)アクリル酸(塩)系吸水性樹脂が、工業的に最も多く生産されている。
 衛生材料に使用される吸水性樹脂に求められる性能としては、体液吸収の観点から、吸水倍率と吸水速度とが挙げられる。これらは、一般的に尿を模した試験液(例えば0.9質量%塩化ナトリウム水溶液)を用いて測定される、吸収特性のパラメータである(非特許文献1)。一方、血液及び/又は軟便など、尿よりも高粘度の体液の吸収に適した吸水性樹脂も検討されてきた(特許文献1~3)。
国際公開第2020/137241号パンフレット 国際公開第2002/085959号パンフレット 国際公開第2011/023572号パンフレット
Modern Superabsorbent Polymer Technology (1998年発行 Fredric L. Buchholz、Andrew T. Graham著 発行元:WILEY-VCH)
 衛生材料(特に紙オムツ)において吸収されるべき体液の粘度は、軟便とともに尿が排出された場合などにおいて一定しない。従来の吸水性樹脂では、低粘度の体液(例えば、尿)に対する吸水性能と、高粘度の体液(例えば、尿と軟便との混合物)に対する吸水性能の両立はできていなかった。
 本発明が解決しようとする課題は、吸水性樹脂の吸水倍率とヒトの体温付近における吸水速度とを維持しつつ、低粘度の体液(例えば、尿)から高粘度の体液(例えば、尿と軟便との混合物)までの幅広い粘度の体液を吸収できる吸水性樹脂を提供することにある。
 本発明の一実施形態に係る吸水性樹脂は、ポリアクリル酸(塩)系吸水性樹脂であって、40℃のポリエチレンオキサイド水溶液での自由膨潤速度(A)が0.15g・g-1・s-1以上であり、40℃の生理食塩水での自由膨潤速度(B)が0.40g・g-1・s-1以上であり、自由膨潤速度(A)/自由膨潤速度(B)が0.20以上である、吸水性樹脂、である。
 本発明の一態様によれば、吸水性樹脂の吸水倍率とヒトの体温付近における吸水速度とを維持しつつ、低粘度の体液(例えば、尿)だけでなく、高粘度の体液(例えば、尿と軟便との混合物)の吸水速度にも優れた吸水性樹脂を提供することができる。
 以下、本発明を最良の形態を示しながら説明する。本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語及び科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。本発明は、下記の実施形態に限定されるものではなく、請求の範囲内で種々改変することができる。
 〔1.用語の定義〕
 [1-1.吸水性樹脂]
 本発明の一実施形態における「吸水性樹脂」とは、水膨潤性及び水不溶性の高分子ゲル化剤を指し、以下の物性を満たすものをいう。即ち、「水膨潤性」として、ERT441.2-02で規定されるCRCが5g/g以上、かつ、「水不溶性」として、ERT470.2-02で規定されるExtが50重量%以下の物性を満たす高分子ゲル化剤を指す。
 前記吸水性樹脂は、その用途に応じて適宜、設計が可能であり、特に限定されないが、カルボキシル基を有する不飽和単量体を架橋重合させた親水性架橋重合体であることが好ましい。また、前記吸水性樹脂は、全量(100重量%)が重合体である形態に限定されず、前記物性(CRC、Ext)を満足する範囲内で、添加剤等を含んだ吸水性樹脂組成物の形態であってもよい。
 更に、本発明の一実施形態における吸水性樹脂は、最終製品に限らず、吸水性樹脂の製造工程における中間体(例えば、重合後の含水ゲル状架橋重合体、乾燥後の乾燥重合体、及び表面架橋前の吸水性樹脂粉末等)を指す場合もある。前記吸水性樹脂組成物と合わせて、これら全てを包括して「吸水性樹脂」と総称する。なお、吸水性樹脂の形状として、シート状、繊維状、フィルム状、粒子状、ゲル状等が挙げられるが、本発明の一実施形態では粒子状の吸水性樹脂が好ましい。
 [1-2.「EDANA」及び「ERT」]
 「EDANA」は、欧州不織布工業会(European Disposables and Nonwovens Associations)の略称である。「ERT」は、欧州標準(ほぼ世界標準)の吸水性樹脂の測定法(EDANA Recommended Test Methods)の略称である。本発明では、特に断りのない限り、ERT原本(2002年改定/公知文献)に準拠して、吸水性樹脂の物性を測定する。
 [1-3.その他]
 本明細書において、範囲を示す「X~Y」は「X以上、Y以下」を意味する。
 本明細書において、特記しない限り、「ppm」は、「質量ppm」を意味する。
 本明細書においては、体積の単位「リットル」を「l」又は「L」と表記する場合がある。
 本明細書においては、「重量」と「質量」、「重量%」と「質量%」、「重量部」と「質量部」は同義語として扱う。
 本明細書において、「~酸(塩)」は「~酸及び/又はその塩」を意味する。「(メタ)アクリル」は「アクリル及び/又はメタクリル」を意味する。「ポリアクリル酸(塩)系吸水性樹脂」は、アクリル酸(塩)に由来する繰り返し単位を主成分として含む吸水性樹脂を意味し、具体的には重合に用いられる総単量体(架橋剤を除く)のうち、アクリル酸(塩)を好ましくは50~100モル%、より好ましくは70~100モル%、さらに好ましくは90~100モル%、特に好ましくは実質100モル%を含む吸水性樹脂をいう。
 〔2.吸水性樹脂の物性〕
 「吸水性樹脂の形状」
 本発明の一実施形態において、吸水性樹脂は、好ましくは粒子状であり、具体的には、不定形破砕状、球状、フットボール状、凝集体状等が挙げられる。中でも粒子形状が球状であることで嵩密度が大きく、凝集体状であることで吸水速度が向上する。そのため、吸水性樹脂は、球状粒子(例えば、ポリアクリル酸(塩)系吸水性樹脂を含む球状粒子)の凝集体状粒子であることがより好ましい。ここで、球状とは、真球だけでなく、アスペクト比が1.0~1.2である略球状のものも含む。
 「含有する添加剤」
 本発明の一実施形態においては、吸水性樹脂が種々の機能を発現するための添加剤を含むこともできる。該添加剤として、具体的には、界面活性剤、リン原子を有する化合物、酸化剤、有機還元剤、無機還元剤、水不溶性無機微粒子、キレート剤、多価金属塩、金属石鹸等の有機粉末、消臭剤、抗菌剤、パルプ、及び熱可塑性繊維等が挙げられる。前記添加剤の使用量(添加量)は、得られる吸水性樹脂の用途に応じて適宜設定されるが、吸水性樹脂(例えば、吸水性樹脂粉末)に対して5質量%以下、好ましくは3質量%以下、より好ましくは1質量%以下である。下限は、吸水性樹脂(例えば、吸水性樹脂粉末)に対して0.001質量%以上、好ましくは0.01質量%以上である。なお、前記水不溶性無機微粒子は、国際特許公開第2011/040530号の「〔5〕水不溶性無機微粒子」に開示された化合物が本発明の一実施形態に適用される。これら水不溶性無機微粒子のうち、特に親水性微粒子、例えば、シリカ(二酸化珪素)及び/又はハイドロタルサイトを含むことで、吸水性樹脂(例えば吸水性樹脂粒子)の液なじみが良くなり、吸収性物品に使用した場合に吸水性樹脂が短時間で水性液体を吸収できるため好ましい。また、前記多価金属塩としては、水溶性多価金属塩が好ましく、水溶性アルミニウム塩がより好ましい。水溶性アルミニウム塩としては、例えば、硫酸アルミニウムが挙げられる。
 水不溶性無機微粒子の添加量は、吸水性樹脂(例えば吸水性樹脂粒子)の液なじみを良くする観点から、吸水性樹脂100質量部に対して、0.01~5質量部であり、より好ましくは0.05~3質量部であり、さらに好ましくは0.1~1質量部であり、特に好ましくは0.2~0.5質量部である。
 「CRC」
 「CRC」は、Centrifuge Retention Capacity(遠心分離機保持容量)の略称であり、吸水性樹脂の無加圧下での吸水倍率を意味する。
 本発明の一実施形態に係る吸水性樹脂のCRCは、好ましくは25g/g以上であり、より好ましくは28g/g以上、さらに好ましくは31g/g以上である。上限については特に限定されず、より高いCRCが好ましいが、他の物性とのバランスの観点から、好ましくは50g/g以下であり、より好ましくは45g/g以下であり、さらに好ましくは40g/g以下であり、特に好ましくは35g/g以下である。
 前記CRCが25~50g/gであれば、吸収量が十分であり、尿及び/又は血液等の体液等を吸収する速度の低下が防止され、高吸水速度タイプの紙オムツ等への使用に適する。なお、CRCの値は、内部架橋剤及び/又は表面架橋剤等の種類及び/又は量を変更することで制御することができる。
 「Ext」
 「Ext」は、Extractables(水可溶分)の略称であり、吸水性樹脂から抽出される可溶分量を意味する。水可溶分は、EDANA法(ERT470.2-02)に準拠して測定される他、抽出時間を16時間から1時間に変更して測定する場合があり、このときの水可溶分は「Ext(1hr)」と称する。
 本発明の一実施形態に係る吸水性樹脂のExtは、好ましくは33質量%以下であり、より好ましくは30質量%以下であり、さらに好ましくは27質量%以下である。下限については0質量%以上であるが、他の物性とのバランスの観点から、好ましくは2質量%以上であり、より好ましくは4質量%以上である。
 前記Extが33質量%以下であれば、尿及び/又は血液等の体液等を吸収する速度の低下が防止または低減され、吸水性樹脂は、高吸水速度タイプの紙オムツ等への使用に適する。なお、Extの値は、吸水性樹脂製造時の重合開始剤、内部架橋剤、及び/又は表面架橋剤等の種類及び/又は量を変更することで制御することができる。Extの値は、吸水性樹脂製造時の重合工程で連鎖移動剤を使用することでも制御できる。
 本発明の一実施形態に係る吸水性樹脂のExt(1hr)は、好ましくは15質量%以下であり、より好ましくは10質量%以下であり、さらに9質量%以下、8質量%以下、7質量%以下、6質量%以下、5質量%以下の順に好ましい。下限については0質量%以上であるが、他の物性とのバランスの観点から、好ましくは1質量%以上であり、より好ましくは2質量%以上である。
 前記Ext(1hr)が15質量%を超えると、吸水時に吸水性樹脂から抽出されたポリマー成分が吸収液の粘度を増加させる原因となりうる。なお、Ext(1hr)の値は、前記Extの制御方法に加え、表面架橋剤水溶液の組成、及び/又は、吸水性樹脂との混合方法によっても制御される。
 「AAP」
 「AAP」は、Absorption Against Pressureの略称であり、吸水性樹脂の加圧下における吸水倍率を意味する。AAPは、EDANA法(ERT442.2-02)に準拠して測定される。具体的には、0.9質量%塩化ナトリウム水溶液を用い、吸水性樹脂0.9gを1時間、2.06kPa(21g/cm、0.3psi)の加圧下で膨潤させた後、AAP(加圧下吸収倍率)(単位:g/g)を測定する。
 本発明の一実施形態に係る吸水性樹脂のAAPは、衛生材料に用いた際の吸水特性の観点から、好ましくは20g/g以上、より好ましくは25g/g以上である。また、前記吸水性樹脂のAAPの上限は、特に制限されないが、好ましくは45g/g以下である。
 「含水率」
 「含水率」は、試料量を1.0g、乾燥温度を180℃にそれぞれ変更する以外は、EDANA法(ERT430.2-02)に準拠して測定される。
 本発明の一実施形態に係る吸水性樹脂の含水率は特に制限されないが、好ましくは1質量%~20質量%、より好ましくは1質量%~15質量%、さらに好ましくは2質量%~13質量%、特に好ましくは2質量%~10質量%である。前記含水率が1質量%~20質量%であれば、尿及び/又は血液等の体液等を吸収する速度の低下が防止され、高吸水速度タイプの紙オムツ等への使用に適する。
 「質量平均粒子径(D50)」
 「質量平均粒子径(D50)」は、米国特許第7638570号のカラム27及び28に記載された「(3)Mass-Average Particle Diameter (D50) and Logarithmic Standard Deviation (σζ) of Particle Diameter Distribution」に準拠して測定される。
 本発明の一実施形態に係る吸水性樹脂の質量平均粒子径(D50)は、好ましくは200μm~700μm、より好ましくは250μm~600μm、更に好ましくは250μm~500μm、特に好ましくは300μm~450μmである。また、粒子径150μm未満の粒子の割合は、好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。前記質量平均粒子径が200μm以上であれば、吸水性樹脂は、粉じんが少なく取り扱い性がよい。また、前記質量平均粒子径が700μm以下であれば、吸水性樹脂における、尿及び/又は血液等の体液等を吸収する速度の低下が防止または低減されるため、吸水性樹脂は、高吸水速度タイプの紙オムツ等への使用に適する。
 「40℃の3重量%ポリエチレンオキサイド水溶液での自由膨潤速度(A)」
 「40℃の3重量%ポリエチレンオキサイド水溶液での自由膨潤速度(A)」は、吸水性樹脂が自重の20倍の40℃の3質量%ポリエチレンオキサイド水溶液を無加圧下、無攪拌下に吸水する際の吸水速度(単位:g・g-1・s-1)を意味する。「40℃の3重量%ポリエチレンオキサイド水溶液での自由膨潤速度(A)」を自由膨潤速度(A)と称する場合がある。
 本発明の一実施形態に係る吸水性樹脂の自由膨潤速度(A)は、好ましくは0.15g・g-1・s-1以上、より好ましくは0.18g・g-1・s-1以上、さらに好ましくは0.20g・g-1・s-1以上、さらに好ましくは0.25g・g-1・s-1以上である。また、前記吸水性樹脂の自由膨潤速度(A)の上限は、特に制限されないが、好ましくは0.50g・g-1・s-1以下である。
 「40℃の生理食塩水での自由膨潤速度(B)」
 「40℃の生理食塩水での自由膨潤速度(B)」は、吸水性樹脂が自重の20倍の40℃の生理食塩水(0.9質量%塩化ナトリウム水溶液)を無加圧下、無攪拌下に吸水する際の吸水速度(単位:g・g-1・s-1)を意味する。「40℃の生理食塩水での自由膨潤速度(B)」を自由膨潤速度(B)と称する場合がある。
 本発明の一実施形態に係る吸水性樹脂の自由膨潤速度(B)は、好ましくは0.40g・g-1・s-1以上、より好ましくは0.50g・g-1・s-1以上、さらに好ましくは0.60g・g-1・s-1以上である。また、前記吸水性樹脂の自由膨潤速度(B)の上限は、特に制限されないが、好ましくは2.00g・g-1・s-1以下である。
 「自由膨潤速度の比」
 「自由膨潤速度の比」は、自由膨潤速度(A)[g・g-1・s-1]/自由膨潤速度(B)[g・g-1・s-1]で求められる。
 本発明の一実施形態に係る吸水性樹脂の自由膨潤速度の比は、好ましくは0.20以上、より好ましくは0.25以上、さらに好ましくは0.30以上である。また、前記吸水性樹脂の自由膨潤速度の比の上限は、特に制限されないが、好ましくは1.00以下、より好ましくは0.60以下、さらに好ましくは0.40以下である。
 「嵩密度」
 「嵩密度」は、EDANA法(ERT460.2-02)に準拠して測定される。
 本発明の一実施形態に係る吸水性樹脂の嵩密度は、好ましくは0.40g/cm~0.80g/cm、より好ましくは0.50g/cm~0.80g/cm、さらに好ましくは0.60g/cm~0.75g/cmである。前記嵩密度が0.40g/cm~0.80g/cmであれば、尿及び/又は血液等の体液等を吸収する速度の低下が防止または低減されるため、吸水性樹脂は、高吸水速度タイプの紙オムツ等への使用に適する。
 「数平均粒子径」
 吸水性樹脂が凝集体状である場合、凝集体を構成する一次粒子の数平均粒子径は電子顕微鏡を用いて測定する。吸水性樹脂の一次粒子の数平均粒子径は、好ましくは5μm~1000μmであり、より好ましくは5μm~800μmであり、さらに好ましくは8μm~500μmであり、より一層好ましくは10μm~300μmであり、さらにより一層好ましくは10μm~200μmであり、特に好ましくは30μm~100μmである。
 「表面張力」
 本発明の一実施形態に係る吸水性樹脂の表面張力は、好ましくは60mN/m以上、より好ましくは65mN/m以上、更に好ましくは67mN/m以上、特に好ましくは71mN/m以上であり、実質的な表面張力の低下もない。上限は通常75mN/mで十分である。
 〔3.吸水性樹脂の製造方法〕
 本発明の一実施形態に係る吸水性樹脂の製造方法は水溶液重合、逆相懸濁重合、気相液滴重合及びその他の重合方法等のうち、何れを用いてもよい。本発明の一実施形態に係る吸水性樹脂の物性を制御しやすい点から、以下、逆相懸濁重合を一例として説明する。特に、重合後の疎水性有機溶媒中での共沸脱水工程及び/又は分散系での表面架橋工程を含む一般的な逆相懸濁重合とは異なり、逆相懸濁重合で得られたゲルの分離工程、ゲル整粒工程、乾燥工程(好ましくは熱風乾燥)、及び表面架橋工程(好ましくは粉体表面処理)を含む製法を一例として説明する。
 本発明の一実施形態において、重合方法としては、疎水性有機溶媒からなる液相に単量体を含む液滴が分散又は懸濁した状態で前記単量体を重合する逆相懸濁重合により含水ゲル重合体を得る重合方法であれば良く、その重合方法としては、バッチ式でも連続式でも良い。
 バッチ式製造方法とは、反応装置中で疎水性有機溶媒中に単量体水溶液を添加又は滴下して混合することにより、単量体水溶液を分散又は懸濁させたのち、重合を行い、含水ゲル重合体を得る製造方法である。
 一方、連続式製造方法とは、単量体水溶液を連続的に反応装置中の疎水性有機溶媒に送液し、分散又は懸濁させたのち重合させ、重合反応により形成される含水ゲル重合体と疎水性有機溶媒とを連続的に反応装置から排出する方法である。
 本発明の好ましい実施形態は、連続式の逆相懸濁重合であり、さらに好ましくは、単量体水溶液を連続的に疎水性有機溶媒中に分散させ重合を行う液相液滴連続重合である。このような連続式の製造プロセスの場合、各工程内及び工程間におけるそれぞれの操作を連続的に実施でき、長時間の運転により大量生産が可能となる点で好ましい。また、吸水性樹脂の物性の点からも連続式の逆相懸濁重合は好ましい形態である。
 本発明の一実施形態に係る吸水性樹脂の製造方法においては、重合工程で得られた含水ゲル重合体と疎水性有機溶媒とを分離する分離工程を設けてもよい。連続式の製造プロセスにおいては、分離工程において含水ゲル重合体から分離された疎水性有機溶媒を回収し、重合工程の疎水性有機溶媒として再利用することが好ましい。このような循環型の製造プロセスとすることにより、有機溶媒の使用量を削減できるため、製造コスト及び廃液処理の点で好ましい。
 なお、連続重合は、分散装置において連続的に単量体水溶液が疎水性有機溶媒中に液滴として懸濁又は分散し、当該分散液及び/又は懸濁液が反応装置へと連続的に供給される形態であるため、分散と重合とが一の装置で行われる形態(回分操作、バッチ式)とは明確に区別される。また、連続的に操作を行う場合、その運転時間としては、1時間以上であることが好ましく、3時間以上であることがより好ましく、さらに好ましくは8時間以上、さらには24時間以上が好ましい。また、通常1年以下である。
 本発明の一実施形態に係る吸水性樹脂の製造方法としては、任意の単量体水溶液調製工程;任意の分散工程;重合工程;任意の分離工程;任意のゲル整粒工程;乾燥工程を含む。また、乾燥工程の後に、任意に、冷却工程、粉砕工程、分級工程、表面架橋工程、再湿潤工程、整粒工程、微粉除去工程、造粒工程及び微粉再利用工程などを含むことができる。また、輸送工程、貯蔵工程、梱包工程、保管工程等をさらに含んでもよい。
 以下、各工程について説明する。
 [3-1:単量体水溶液調製工程]
 単量体水溶液は、吸水性樹脂の原料となる単量体を含む水溶液であり、逆相懸濁重合を行うため、疎水性有機溶媒に分散又は懸濁させる溶液である。
 単量体水溶液の溶媒としては、水、又は、水及び水溶性有機溶媒(例えば、アルコール等)の混合物が好適に用いられ、水であることがさらにより好ましい。前記溶媒が水と水溶性有機溶媒との混合物である場合、水溶性有機溶媒(例えば、アルコール等)は、混合物の30質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 単量体としては、水溶性エチレン性不飽和単量体が好ましく用いられる。水溶性エチレン性不飽和単量体の例としては、(メタ)アクリル酸、(無水)マレイン酸、イタコン酸、ケイ皮酸、ビニルスルホン酸、アリルトルエンスルホン酸、ビニルトルエンスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸、2-(メタ)アクリロイルプロパンスルホン酸、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリロイルフォスフェート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等の酸基含有不飽和単量体;(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、ビニルピリジン、N-ビニルピロリドン、N-アクリロイルピペリジン、N-アクリロイルピロリジン、N-ビニルアセトアミド等のアミド基含有不飽和単量体;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチルアミノエチル(メタ)アクリレート等のアミノ基含有不飽和単量体;メルカプト基含有不飽和単量体;フェノール性水酸基含有不飽和単量体;N-ビニルピロリドン等のラクタム基含有不飽和単量体等が挙げられる。
 なお、前記水溶性エチレン性不飽和単量体の安定性を考慮して、単量体水溶液に、必要に応じて重合禁止剤を添加してもよい。
 前記水溶性エチレン性不飽和単量体の中で、カルボキシル基等の酸基を有する酸基含有不飽和単量体を用いて吸水性樹脂を製造する場合には、当該酸基が中和された中和塩を用いることができる。この場合、酸基含有不飽和単量体の塩としては一価のカチオンとの塩であることが好ましく、アルカリ金属塩、アンモニウム塩及びアミン塩からなる群から選ばれる少なくとも1種であることがより好ましく、アルカリ金属塩であることがさらに好ましく、ナトリウム塩、リチウム塩及びカリウム塩からなる群から選ばれる少なくとも1種であることがよりさらに好ましく、ナトリウム塩が特に好ましい。
 これらの中でも、得られる吸水性樹脂の吸水性能の観点から、水溶性エチレン性不飽和単量体は、好ましくは酸基含有不飽和単量体及び/又はその塩であり、より好ましくは(メタ)アクリル酸(塩)、(無水)マレイン酸(塩)、イタコン酸(塩)、ケイ皮酸(塩)、さらに好ましくは(メタ)アクリル酸(塩)であり、特に好ましくはアクリル酸(塩)である。
 単量体として酸基含有不飽和単量体を用いる場合、得られる吸水性樹脂の吸水性能の観点から、酸基含有不飽和単量体と当該酸基含有不飽和単量体の中和塩とを併用することが好ましい。吸水性能の観点から、酸基含有不飽和単量体と当該酸基含有不飽和単量体の中和塩の合計モル数に対する前記中和塩のモル数(以下、「中和率」と称する)は、好ましくは40モル%以上、より好ましくは40モル%~95モル%、さらに好ましくは50モル%~90モル%、さらにより好ましくは55モル%~85モル%、特に好ましくは60モル%~80モル%である。
 本発明の一実施形態に係る製造方法では、前記単量体水溶液の調製において、前記例示した単量体のいずれかを単独で使用してもよく、任意の2種以上の単量体を適宜混合して使用してもよい。また、本発明の目的が達成される限り、さらに他の単量体を混合して使用することもできる。
 前記単量体水溶液の調製において、2種以上の単量体を組み合わせて使用する場合、重合に用いられる単量体は、主成分として、アクリル酸(塩)(例えば、(メタ)アクリル酸(塩))を含むことが好ましい。この場合、重合に用いられる単量体全体に対するアクリル酸(塩)の割合は、得られる吸水性樹脂の吸水性能の観点から、通常は50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上(上限は100モル%)である。
 前記単量体水溶液の調製においては、必要に応じて、内部架橋剤を用いることができる。内部架橋剤としては、1分子内に2個以上の重合性不飽和基及び/又は2個以上の反応性基を有する従来公知の内部架橋剤が挙げられる。内部架橋剤としては、例えば、N,N’-メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェート、トリアリルアミン、ポリ(メタ)アリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、1,4-ブタンジオール、ペンタエリスリトール、エチレンジアミン、エチレンカーボネート、プロピレンカーボネート、ポリエチレンイミン、グリシジル(メタ)アクリレート等を挙げることができる。これらの内部架橋剤は1種のみを単独で用いてもよいし、2種以上を組み合わせて使用してもよい。
 所望する吸水性樹脂の物性により適宜決定されればよいが、通常、内部架橋剤の使用量は、単量体に対して0.0001~5モル%、より好ましくは0.001~3モル%、さらにより好ましくは0.005~1.5モル%である。
 また、以下に例示する物質(以下、「その他の物質」と称する)を単量体水溶液に添加することもできる。
 その他の物質の具体例としては、チオール類、チオール酸類、2級アルコール類、アミン類、次亜リン酸塩類等の連鎖移動剤;炭酸塩、重炭酸塩、アゾ化合物、気泡等の発泡剤;エチレンジアミン4酢酸の金属塩、ジエチレントリアミン5酢酸の金属塩等のキレート剤;ポリアクリル酸(塩)及びこれらの架橋体、澱粉、セルロース、澱粉-セルロース誘導体、ポリビニルアルコール等が挙げられる。その他の物質は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 その他の物質の使用量は、特に限定されないが、その他の物質の全濃度としては、好ましくは単量体に対して10質量%以下であり、より好ましくは1質量%以下であり、さらにより好ましくは0.1質量%以下である。ただし、ポリアクリル酸(塩)及びこれらの架橋体、澱粉、セルロース、澱粉-セルロース誘導体、ポリビニルアルコールの全濃度としては、好ましくは単量体に対して30質量%以下であり、より好ましくは20質量%以下であり、さらにより好ましくは10質量%以下である。
 また、単量体水溶液中の溶存酸素を、昇温又は不活性ガスとの置換により低減させてもよい。
 「重合開始剤」
 前記単量体水溶液の調製において、重合開始剤を用いてもよい。なお、単量体水溶液の調製に重合開始剤を使用する場合は、単量体水溶液のゲル化及び/又は粘度増大が起こる恐れがあるため、単量体水溶液への重合開始剤の添加は、次の(1)、(2)及び(3)等を行うことが好ましい:(1)単量体水溶液を疎水性有機溶媒に分散及び/又は懸濁させる直前に行う;(2)単量体水溶液を冷却し常温より低温(20℃以下、好ましくは0℃付近)で重合開始剤と混合する;(3)単量体水溶液と重合開始剤とをラインミキシングしながら分散工程に供する。重合開始剤としては、熱分解型重合開始剤が好ましく用いられる。該熱分解型重合開始剤は、熱によって分解しラジカルを発生する化合物を指すが、熱分解型重合開始剤の貯蔵安定性及び/又は吸水性樹脂の生産効率の観点から、10時間半減期温度が好ましくは0℃~120℃、より好ましくは30℃~100℃、さらに好ましくは50℃~80℃である水溶性の化合物が重合開始剤として好ましく用いられる。
 熱分解型重合開始剤の取扱性及び/又は吸水性樹脂の物性の観点から、重合開始剤としては、好ましくはアゾ化合物、過硫酸塩、より好ましくは過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、さらに好ましくは過硫酸ナトリウムが使用される。
 前記熱分解型重合開始剤の使用量は、単量体及び重合開始剤の種類等に応じて適宜設定され、特に限定されない。生産効率の観点から、前記熱分解型重合開始剤の使用量は、単量体に対して、好ましくは0.001g/モル以上、より好ましくは0.005g/モル以上、さらに好ましくは0.010g/モル以上である。また、吸水性樹脂の吸水性能向上の観点から、好ましくは2g/モル以下、より好ましくは1g/モル以下である。
 また、必要に応じて、光分解型重合開始剤等、他の重合開始剤と併用することもできる。該光分解型重合開始剤として、具体的には、ベンゾイン誘導体、ベンジル誘導体、アセトフェノン誘導体、ベンゾフェノン誘導体等が挙げられる。
 また、前記熱分解型重合開始剤と還元剤とを併用してレドックス系重合開始剤とすることもできる。前記レドックス系重合開始剤では、熱分解型重合開始剤が酸化剤として機能する。用いられる還元剤としては、特に限定されないが、例えば、亜硫酸ナトリウム、亜硫酸水素ナトリウム等の(重)亜硫酸塩;第一鉄塩等の還元性金属塩;L-アスコルビン酸(塩);アミン類等が挙げられる。
 「単量体水溶液における単量体の濃度」
 本発明の一実施形態において、単量体水溶液中の単量体の濃度は、選択された単量体及び疎水性有機溶媒の種類等に応じて選択される。生産効率上、単量体水溶液(100質量%)中の単量体の濃度は、下限は、単量体水溶液の、好ましくは10質量%以上であり、より好ましくは20質量%以上であり、さらにより好ましくは30質量%以上であり、また、上限は、好ましくは100質量%以下であり、より好ましくは90質量%以下であり、さらに好ましくは80質量%以下であり、さらにより好ましくは70質量%以下である。
 本発明の一実施形態の目的が阻害されない限り、単量体水溶液に、内部架橋剤、界面活性剤、密度調整剤、増粘剤、キレート剤等の添加物を配合することも可能である。なお、添加物の種類及び添加量は、用いられる単量体及び疎水性有機溶媒の組合せにより、適宜選択されうる。
 [3-2:分散工程]
 分散工程は、疎水性有機溶媒に単量体を含む液滴を分散又は懸濁する工程である。なお、以下、単に「分散」と記載した場合には、懸濁も含む概念とする。より具体的には、前記単量体水溶液を、疎水性有機溶媒に添加して混合、及び攪拌することにより疎水性有機溶媒中に分散させる。例えば、攪拌翼(プロペラ翼、パドル翼、アンカー翼、タービン翼、ファウドラー翼、リボン翼、平板翼等)を備えた攪拌装置を用いてもよい。このような攪拌翼を有する攪拌装置を用いる場合、分散液滴径は、攪拌翼の種類、翼径、回転数当により調節することができ、バッチ式逆相懸濁重合を行う場合に特に好適に使用できる。また国際公開第2009/025235号、第2013/018571号等に記載された方法で分散液を得ることができる。連続式逆相懸濁重合を行う場合には、分散工程は、単量体水溶液及び疎水性有機溶媒を、分散装置に別々に連続的に供給し、疎水性有機溶媒中に分散する単量体を含む液滴を作製することが好ましい。
 連続式逆相懸濁重合を行う場合に、分散工程において用いられる分散装置としては、スプレーノズル;高速回転せん断型撹拌機(ロータリーミキサー型、ターボミキサー型、ディスク型、二重円筒型等);ニードル等の円筒ノズル;プレートに多数の孔を直接設けたオリフィスプレート;回転ホイール等の遠心アトマイザーなどが挙げられるが特に制限はない。
 「疎水性有機溶媒」
 好ましい疎水性有機溶媒としては、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種類の有機溶媒が挙げられる。具体例には、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン等の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロオクタン、デカリン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;クロルベンゼン、ブロムベンゼン、四塩化炭素、1,2-ジクロロエタン等のハロゲン化炭化水素が例示される。これらの中でも、入手容易性及び品質安定性の観点から、疎水性有機溶媒は、n-ヘキサン、n-ヘプタン、シクロヘキサンからなる群から選ばれる1種以上であることが好ましい。2種以上を混合した混合溶媒として用いることも可能である。
 本発明の一実施形態においては、本発明の一実施形態の目的が阻害されない限り、必要に応じて、疎水性有機溶媒に、界面活性剤及び/又は高分子添加剤等の分散助剤を添加してもよい。分散助剤の種類は、用いられる疎水性有機溶媒及び単量体の組合せにより、適宜選択されるが、使用できる分散助剤としては、以下の界面活性剤及び高分子添加剤が例示される。
 前記界面活性剤として、具体的には、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル、アルキルグルコシド、N-アルキルグルコンアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルエーテルのリン酸エステル、及びポリオキシエチレンアルキルアリルエーテルのリン酸エステル等が挙げられる。これらのうち、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、重合性を有する重合性界面活性剤を使用することもできる。重合性界面活性剤として、具体的には下記の構造を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 なお、式中、R及びRは、互いに独立して、水素、メチル又はエチルであり、nは、3~20の整数を意味する。前記の界面活性剤の中では、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリエチレングリコール脂肪酸エステル等の脂肪酸エステル類が好ましく、中でもショ糖脂肪酸エステルが好ましい。また、本発明の一実施形態で使用される界面活性剤のHLB(親水性-疎水性バランス)は特に限定されるものではないが、好ましくは1~20、より好ましくは1~10、さらに好ましくは3~6の範囲である。
 前記高分子添加剤として、具体的には、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン-プロピレン共重合体、無水マレイン酸変性エチレン-プロピレン-ジエン三元共重合体(EPDM)、無水マレイン酸変性ポリブタジエン、無水マレイン酸-エチレン共重合体、無水マレイン酸-プロピレン共重合体、無水マレイン酸-エチレン-プロピレン共重合体、無水マレイン酸-ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン-プロピレン共重合体、エチレン-アクリル酸共重合体、エチルセルロース、ヒドロキシエチルセルロース等が挙げられる。中でも、単量体水溶液の分散安定性の観点から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン-プロピレン共重合体、無水マレイン酸-エチレン共重合体、無水マレイン酸-プロピレン共重合体、無水マレイン酸-エチレン-プロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、及び酸化型エチレン-プロピレン共重合体が好ましい。これらのうち、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、これらの高分子添加剤と前記界面活性剤とを併用してもよい。中でも、高分子添加剤を用いることが好ましく、無水マレイン酸変性エチレン-プロピレン共重合体を用いることがより好ましい。また、他の好適な実施形態では、界面活性剤を用いずに高分子添加剤を単独で用いる。
 前記分散助剤の使用量は、重合形態、単量体水溶液及び疎水性有機溶媒の種類等に応じて適宜設定される。具体的には、疎水性有機溶媒中の分散助剤の濃度として、好ましくは0.0001~2質量%であり、より好ましくは0.0005~1質量%である。
 [3-3.重合工程]
 重合工程は、前記分散工程において得られた単量体を含む液滴を重合して、含水ゲル重合体(以下、単に含水ゲルとも称する)を得る工程である。
 「反応装置」
 重合工程で用いられる反応装置は、前記分散工程で用いられた分散装置をそのまま用いてもよいし、別の装置であってもよい。バッチ式逆相懸濁重合の場合、分散工程で用いた装置をそのまま反応装置として用いることができ、作業性の面で好適である。反応装置が分散装置と別の装置である場合、分散工程で得られた単量体の分散液が反応装置に供給される。
 また、重合反応が行われる反応装置の形状は特に限定されず、公知の反応装置を用いることができる。上述したように、分散工程で好適に使用できる攪拌装置が重合反応においても好適に使用できる。連続式製造方法の場合、反応装置の形状は、好ましくは、この反応装置内に形成された連続相である疎水性有機溶媒中を、前記単量体(水溶液)が液滴状の分散相として移動しながら重合反応しうる形状である。このような反応装置として、例えば、管状の反応管を、縦型、横型又は螺旋型に配置した反応装置が挙げられる。この態様では、単量体(水溶液)が、反応部内を移動する疎水性有機溶媒中に供給されるため、単量体水溶液からなる液滴が滞留することなく、疎水性有機溶媒と共に移動する。これにより、重合率の異なる単量体反応物同士の接触が抑制される。
 また、前記反応装置には、必要に応じて、外部から反応装置内部の連続相を加熱及び/又は冷却できるように、温度調整手段が備えられていてもよい。
 「重合温度」
 重合工程における反応温度である重合温度としては、使用する重合開始剤の種類及び/又は量によって適宜設定すればよいが、好ましくは20℃~100℃、より好ましくは40℃~90℃である。重合温度が100℃より高い場合は急激な重合反応が起こるため好ましくない。なお重合温度とは、分散媒である疎水性有機溶媒の温度(以下、「Td」と称する)を意味する。
 重合工程においては、前記単量体(水溶液)が液滴状で疎水性有機溶媒に分散していることから、単量体水溶液の温度は、疎水性有機溶媒からの熱移動によって速やかに上昇する。液滴に含まれる重合開始剤が熱分解型重合開始剤である場合には、前記昇温に伴って熱分解型重合開始剤が分解してラジカルが発生する。そして、発生したラジカルによって重合反応が開始し、重合反応の進行に伴って含水ゲルが形成される。
 連続式製造方法の場合、形成された含水ゲルは、移動する連続相によって反応装置の内部を移動し、連続相をなす疎水性有機溶媒とともに反応装置から排出される。
 前記単量体水溶液が熱分解型重合開始剤を含む場合、前記Tdは、重合率の観点から、好ましくは70℃以上であり、より好ましくは75℃以上であり、さらに好ましくは80℃以上である。Tdの上限は特に限定されないが、安全性の観点から、連続相をなす疎水性有機溶媒の沸点を超えない範囲内で、適宜選択される。
 「多段逆相懸濁重合」
 本発明の一実施形態に係る製造方法において、適度な凝集粒径を得る観点から、多段重合を行ってもよい。具体的には、一段目の重合工程の終了後に、さらに単量体水溶液を添加し重合反応を行う等により、多段重合を行うことができる。
 「無機微粒子」
 本発明の一実施形態に係る製造方法において、重合中、及び/又は、重合終了後の含水ゲル重合体に対して、適度な凝集粒径を得る観点から無機微粒子を添加してもよい。
 本発明の一実施形態で使用できる無機微粒子としては、例えば二酸化珪素、非晶質シリカ、酸化アルミニウム、二酸化チタン、リン酸カルシウム、炭酸カルシウム、リン酸マグネシウム、硫酸カルシウム、珪藻土、ベントナイト、ゼオライト、その他の金属酸化物などがあげられる。無機微粒子としては、特に二酸化珪素、酸化アルミニウム、二酸化チタンが好ましい。
 無機微粒子の添加量は、含水ゲル重合体に対して一般に0.001~1重量部、好ましくは0.001~0.5重量部の割合で使用すると好結果が得られる。この範囲にあることで、無機微粒子の添加効果が効率的に発現し、また吸水性能に与える影響も少ないので好ましい。
 [3-4.分離工程]
 分離工程は、前記重合工程において得られた含水ゲル重合体と疎水性有機溶媒とを分離する工程である。分離工程で用いる装置の種類及び構造については特に限定されないが、例えば、ろ過、沈降、遠心分離、圧搾等に用いられる公知の装置を利用することができる。また、重合工程で用いた攪拌羽を有する攪拌装置を用いて常圧又は減圧下で含水ゲル重合体と疎水性有機溶媒との混合物を加熱し、蒸留することにより含水ゲル重合体と疎水性有機溶媒とを分離してもよい。バッチ式逆相懸濁重合においては常圧又は減圧下での蒸留が好適に行われる。
 「含水ゲルの疎水性有機溶媒の溶媒含有率」
 分離工程を経て疎水性有機溶媒から分離された含水ゲルにおける疎水性有機溶媒の溶媒含有率は特に制限されない。ただし、乾燥時の負荷及び/又は有機溶媒のコストという観点から、疎水性有機溶媒の溶媒含有率(以下、単に溶媒含有率とも称する)は、当該溶媒も含めた含水ゲル100質量%に対して、好ましくは0.01~10質量%であり、より好ましくは0.01~9質量%であり、さらに好ましくは0.01~5質量%である。
 「含水ゲル重合体の固形分率」
 疎水性有機溶媒から分離された含水ゲルの固形分率は特に制限されない。ただし、後工程の乾燥工程での乾燥コストの観点から、好ましくは20質量%以上であり、より好ましくは30質量%以上であり、さらに好ましくは40質量%以上である。また、含水ゲル重合体の固形分率の上限は、吸水性能及び/又は機械的負荷という観点から、好ましくは90質量%以下であり、より好ましくは80質量%以下であり、さらに好ましくは70質量%以下であり、特に好ましくは60質量%以下である。
 「ゲル重合率」
 得られた含水ゲルのゲル重合率は、得られる含水ゲルの乾燥時の凝集抑制や、得られる吸水性樹脂中の残存モノマー低減の観点から、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上、特に好ましくは95質量%以上である。ゲル重合率の上限値は、100質量%が理想的である。該重合率が70質量%以上であることで、乾燥中に含水ゲル同士が強く凝集し、塊状化することを抑制することができる。
 [3-5.ゲル整粒工程]
 ゲル整粒工程では、前記分離工程で疎水性有機溶媒から分離された含水ゲル重合体を、押出作用部及び多孔板を有するゲル整粒装置を用いて含水ゲル重合体を整粒する。これにより、整粒された含水ゲル重合体(以後、ゲル整粒後の含水ゲルを整粒ゲルと表す)が得られる。ゲル整粒工程は任意の工程である。ゲル整粒工程を有することで、高粘度液の吸水速度を制御しやすくなる。
 ゲル整粒工程に供される含水ゲル重合体は、球形ゲルの単粒子形状又は球形ゲルの集合体形状である。当該含水ゲル重合体の平均粒径の下限は特に制限されないが、好ましくは0.01mm以上、より好ましくは0.03mm以上、さらに好ましくは0.05mm以上、一層好ましくは0.1mm以上である。上限に関しても特に制限されないが、好ましくは20mm以下、より好ましくは10mm以下である。また、単粒子形状である場合はその粒子径を、集合体形状である場合は当該集合体を構成する各球形ゲルの粒子径を、一次粒子径と称する。本発明の一実施形態において、平均一次粒子径は特に制限されないが、最終製品の粒度に制御する際に微粉の発生を抑制できるという観点から、好ましくは5μm~2000μmであり、より好ましくは5μm~1000μmであり、さらに好ましくは5μm~800μmであり、一層好ましくは8μm~500μm、さらに一層好ましくは10μm~300μmであり、特に好ましくは10μm~200μmである。
 なお、前記押出作用部及び多孔板を有するゲル整粒装置の前にカッターを有する装置を設置して大きい凝集物を解砕してもよい。
 「ゲル整粒装置」
 本明細書において、「ゲル整粒」とは、粉体の湿塊(例えば含水ゲル)を多孔板の小孔から円柱状に押し出すことにより、湿粉状の原料からほぼ均一な形状及びサイズを有する粒を作製する操作である。つまり、多孔板を用いることにより、前工程の溶媒分離工程で過度に凝集した粗大凝集物の形状になっている含水ゲルは解砕され、小粒径の単粒子状の含水ゲルは適度に凝集される。したがって、ゲル整粒工程によって、比較的粒子径の均一な造粒形状の含水ゲル(整粒ゲル)を得ることができる。なお、整粒ゲルは単粒子状の含水ゲルを含んでいてもよい。
 ゲル整粒工程において使用される「押出作用部及び多孔板を有するゲル整粒装置」としては、押出作用部と、多孔板(ダイ又はスクリーン)とを有し、押出作用部が通常は多孔板に向かって内容物を押出し供給する押出し部材を有し、多孔板から材料を押し出すことにより一定サイズの粒を作製可能な装置(例えば押出機)であれば特に限定されない。また、これらの装置を直列に並べて使用してもよい。
 さらに、この多孔板(ダイ又はスクリーン)の孔の形は特に限定されず、真円状、楕円状、六角形等の多角形、三角形状等、使用に適した形状を任意に選択することが可能である。整粒強度の観点から、多孔板(ダイ又はスクリーン)の孔の形は、真円状、楕円状が好ましい。孔径についても特に制限されないが、1.5mm以下であることが好ましく、1.0mm以下であることがより好ましく、0.8mm以下であることがさらにより好ましい。かような上限以下であることで、得られる整粒ゲルのサイズが必要以上に増大することが防止または低減され、最終製品の粒度に制御する際に発生する微粉量を低減させることができる。孔径は、好ましくは0.3mm~1.5mmであり、より好ましくは0.3mm~0.8mmである。多孔板の孔径が0.3mm以上であれば、押出し操作を実施する際に効率よく押出すことができる。なお、前記孔径については以下のように定義する。まず、孔が真円でない場合は孔の短径と長径の相乗平均値を孔径として採用する。また、多孔板の孔の各孔径が異なる場合は、全ての孔の孔径を算出し、その相加平均値を多孔板の孔の孔径として採用する。さらに多孔板の押出し作用部側からその反対側までの間で多孔板の孔径が変化する(多孔板の厚み方向において孔径が変化する)場合は、その中で孔径が最少となる値を採用する。
 ゲル整粒工程において、さらに添加剤を添加してもよい。ゲル整粒工程で添加できる添加剤としては、重合開始剤、酸化剤、還元剤、キレート剤、増粘剤、界面活性剤、架橋剤、酸、塩基、発泡剤、有機又は無機の微粒子、多価金属塩等が挙げられる。中でも凝集度を制御できる添加剤として、例えば、澱粉、セルロース、澱粉-セルロース誘導体、ポリビニルアルコール等の増粘剤、界面活性剤、吸水性樹脂の微粉、架橋剤、多価金属塩等が好ましい。前記多価金属塩としては、水溶性多価金属塩が好ましく、水溶性アルミニウム塩がより好ましい。水溶性アルミニウム塩としては、例えば、硫酸アルミニウムが挙げられる。
 [3-6.乾燥工程]
 乾燥工程は、含水ゲルを乾燥する工程である。これにより、含水ゲルに含まれる水分と、任意の分離工程において分離しきれなかった疎水性有機溶媒が除去され、所望の固形分率を有する粒子状の乾燥重合体が得られる。乾燥重合体の固形分率は、好ましくは80重量%以上、より好ましくは85~99重量%、更に好ましくは90~98重量%、特に好ましくは92~97重量%である。
 本発明の一実施形態において、乾燥方法は、特に限定されないが、例えば、加熱乾燥、熱風乾燥、減圧乾燥、流動層乾燥、赤外線乾燥、マイクロ波乾燥、ドラムドライヤー乾燥、疎水性有機溶媒との共沸脱水による乾燥、又は、高温の水蒸気を利用した高湿乾燥等が挙げられる。
 前記熱風乾燥における乾燥温度(熱風の温度)としては、吸水性樹脂の色調及び/又は乾燥効率の観点から、好ましくは100~250℃、より好ましくは100~180℃である。なお、熱風の風速及び/又は乾燥時間等、前記乾燥温度以外の乾燥条件については、乾燥に供する粒子状含水ゲルの含水率、総重量及び目的とする樹脂固形分に応じて、適宜設定すればよく、バンド乾燥を行う際には、国際公開第2006/100300号、同第2011/025012号、同第2011/025013号、同第2011/111657号等に記載される諸条件が適宜適用される。
 本乾燥工程で得られる粒子からなる乾燥重合体を、そのまま吸水性樹脂として各用途に供することもできる。また、この製造方法において吸水性樹脂を製造する場合には、乾燥工程で得られる乾燥重合体を後述する表面架橋工程に供することも可能である。この場合、後述する表面架橋工程に供される乾燥重合体を、便宜上「吸水性樹脂粉末」とも称する。乾燥工程で整粒ゲル同士が凝集した乾燥物が得られる場合は、その凝集体をほぐす工程が乾燥工程に包含されることが好ましい。
 「添加剤」
 本発明の一実施形態の効果が阻害されない限り、含水ゲルに添加剤を添加してもよい。添加は、加熱手段による加熱中に行ってもよいし、乾燥工程前(加熱手段による加熱前)に行ってもよい。さらには、添加剤は、乾燥工程以前の任意の工程で添加してもよい。添加剤によって乾燥時の含水ゲル同士の過度の付着が低減でき、吸水速度に優れた吸水性樹脂を得ることができる。
 [3-7.親水化処理工程]
 本発明の一実施形態において親水化処理工程は、後述する表面架橋工程の後に行ってもよいし、表面架橋工程の前に行ってもよい。親水化処理工程は、吸水性樹脂を有機溶剤により親水化処理する工程である。これにより、表面架橋処理の効果(吸水性樹脂の加圧下の吸収倍率を高め、戻り量を低減する)を高めることができる。また、吸水性樹脂の表面の親水性が高くなるため吸水速度も上昇する。
 具体的な親水化処理の方法は、吸水性樹脂の表面に疎水性の部分を形成している原因によって異なる。例えば、逆相懸濁重合によって吸水性樹脂を製造した場合には、重合時に分散剤として用いられる界面活性剤が疎水性の原因であるため、これを洗浄することが好ましく、有機溶剤を用いて洗浄することがより好ましい。
 有機溶剤としては、界面活性剤を洗浄できるものであれば特に限定されないが、洗浄効果を高めるためには、吸水性樹脂が膨潤しないようなものを用いることが好ましい。処理中における吸水性樹脂の好ましい膨潤倍率は2倍未満である。有機溶剤としては、親水性の有機溶剤だけでなく疎水性の有機溶剤も使用可能である。親水性有機溶剤としては、具体的には、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、t-ブチルアルコール等の低級アルコール類;アセトン等のケトン類;ジオキサン、テトラヒドロフラン等のエーテル類;N,N-ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;等が、疎水性有機溶剤としては、n-ペンタン、n-ヘプタン、n-ヘキサン、n-オクタン等の如き脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロオクタン、デカリン等の如き脂環式炭化水素;クロルベンゼン、ブロムベンゼン、四塩化炭素、1,2-ジクロロエタン等の如きハロゲン化炭化水素;ベンゼン、トルエン、キシレン等の如き芳香族炭化水素、等を挙げることができる。これらの中でもメチルアルコール、エチルアルコール、イソプロピルアルコール、n-ヘプタン、n-ヘキサン、シクロヘキサンが好ましく用いられる。
 本発明の一実施形態では、吸水性樹脂を有機溶剤により親水化処理する場合、有機溶剤を加熱した状態で吸水性樹脂と接触させることにより、加圧下の吸収倍率及び/又は戻り量が一層向上する場合があり好ましい。加熱の温度は有機溶剤の沸点以下であることが好ましく、用いる有機溶剤の種類にもよるが一般に40~120℃程度である。親水化処理は、吸水性樹脂が乾燥した状態で行うことが好ましい。有機溶媒及び/又は水で湿潤した状態で親水化処理を行うと、表面近傍の架橋処理を行った場合に、逆に吸水速度が低下したり、吸水倍率が急激に低下する場合があるので注意を要する。したがって、逆相懸濁重合又は水溶液重合により得られた吸水性樹脂をろ過及び乾燥して、重合の溶媒及び水分をなくした状態で親水化処理を行うことが好ましい。
 [3-8.表面架橋工程]
 前記乾燥工程(及びその後の任意の工程)を経て得られる吸水性樹脂(例えば吸水性樹脂粉末)は、表面架橋剤によって表面架橋されることが好ましい。この表面架橋は、吸水性樹脂(例えば吸水性樹脂粉末)の表面層(吸水性樹脂(例えば吸水性樹脂粉末)の表面から中心へ数10μmの部分)に架橋密度の高い部分を設ける処理である。表面架橋処理を行うことで各種吸水特性を向上させることができる。なお、本発明の一実施形態においては、公知の表面架橋技術が適宜適用される。なお、表面架橋工程で用いられる表面架橋剤は、単量体水溶液調製工程で使用される内部架橋剤と区別するため、公知技術では「後架橋剤」としても示されるものである。
 本発明の一実施形態において表面架橋工程は、前記の乾燥工程後であってもよいし、乾燥工程中に行ってもよい。公知の表面架橋工程では、一般的に、含水ゲル架橋重合体又はその乾燥物の架橋重合体に表面架橋剤を混合し、その混合物を加熱して架橋反応を行う。本発明の一実施形態においては、これらの工程を前記の乾燥工程後に別途設けてもよいし、乾燥工程において表面架橋剤を添加し表面架橋反応と乾燥とを同時に行ってもよい。また、バッチ式の逆相懸濁重合法で吸水性樹脂の製造を行う場合は、重合反応後の分離工程において蒸留を行うことにより、溶媒と含水ゲル重合体を分離することができる。当該分離工程の途中においても表面架橋剤を添加することにより表面架橋した吸水性樹脂(例えば吸水性樹脂粒子)を得ることができる。
 [3-9.その他の工程]
 本発明の一実施形態に係る吸水性樹脂の製造方法は、上述した各工程以外に、必要に応じて、冷却工程、粉砕工程、含水(再湿潤)工程、分級工程、その他の添加剤添加工程、整粒工程、及び微粉再利用工程を含むことができる。また、輸送工程、貯蔵工程、梱包工程、保管工程等をさらに含んでもよい。
 (冷却工程)
 任意に実施される冷却工程では、乾燥工程において得られた粒子状の乾燥重合体を、公知の冷却手段を用いて冷却することにより、所望の温度まで冷却された粒子状の乾燥重合体を得ることができる。
 (粉砕工程)
 前記乾燥工程(及びその後の任意の冷却工程)で得られた粒子状の乾燥重合体を粉砕する粉砕工程を含むことが好ましい。粉砕工程を実施することによって、粒子径又は粒度分布が制御された吸水性樹脂粉末を得ることができる。
 前記粉砕工程では、粉砕手段として、例えば、ロールミル、ハンマーミル、スクリューミル、ピンミル等の高速回転式粉砕機;振動ミル;ナックルタイプ粉砕機;円筒型ミキサー等が適宜選択されて用いられる。
 (再湿潤工程)
 任意に実施される再湿潤工程は、前記表面架橋工程で得られた吸水性樹脂(例えば吸水性樹脂粒子)に、カチオン性ポリマー、キレート剤、無機還元剤、α-ヒドロキシカルボン酸化合物、多価金属塩からなる群から選ばれる少なくとも1種の添加剤を添加する工程である。前記多価金属塩としては、水溶性多価金属塩が好ましく、水溶性アルミニウム塩がより好ましい。水溶性アルミニウム塩としては、例えば、硫酸アルミニウムが挙げられる。
 再湿潤工程において、前記の添加剤は、水溶液又は分散液(スラリー)で吸水性樹脂(例えば吸水性樹脂粒子)に添加することが好ましい。なお、当該添加剤は上述した表面架橋剤溶液と同時に、吸水性樹脂に添加し、吸水性樹脂と混合してもよい。再湿潤工程としては、具体的には、国際特許公開第2015/053372号「(2-7)再湿潤工程」記載の方法を挙げることができ、当該方法が本発明の一実施形態にも適用され得る。
 (その他の添加剤添加工程)
 本発明の一実施形態においては、上述した添加剤以外の添加剤を、吸水性樹脂に種々の機能を付加させるため添加することもできる。該添加剤として、具体的には、界面活性剤、リン原子を有する化合物、酸化剤、有機還元剤、無機還元剤、水不溶性無機微粒子、キレート剤、多価金属塩、金属石鹸等の有機粉末、消臭剤、抗菌剤、パルプ及び熱可塑性繊維等が挙げられる。なお、前記水不溶性無機微粒子としては、国際特許公開第2011/040530号の「〔5〕水不溶性無機微粒子」に開示された化合物を挙げることができ、当該化合物が本発明の一実施形態に適用され得る。これら添加剤のうち、水不溶性無機微粒子、特に親水性微粒子、例えば、シリカ(二酸化珪素)を添加することで、吸水性樹脂(例えば吸水性樹脂粒子)の液なじみが良くなり、吸収性物品に使用した場合に短時間で水性液体を吸収できるため好ましい。
 (整粒工程)
 「整粒工程」とは、前記表面架橋工程を経て緩く凝集した吸水性樹脂をほぐして粒子径を整える工程を意味する。なお、この整粒工程は、表面架橋工程以降の微粉除去工程及び分級工程を含むものとする。整粒工程は吸水性樹脂の粒子径を整え、安定した吸水物性を得る観点から、実施されることが好ましい。
 (微粉再利用工程)
 「微粉再利用工程」とは、前記各工程で篩分級等により発生した微粉をそのまま、又は微粉を造粒した後にいずれかの工程に供給する工程を意味する。微粉再利用工程は吸水性樹脂の生産ロスを低減する観点から、実施されることが好ましい。
 〔4.吸水性樹脂の用途〕
 本発明の一実施形態に係る吸水性樹脂の用途は、特に限定されないが、好ましくは紙オムツ(幼児用、成人用)、生理用ナプキン、失禁パッド等の吸収性物品の吸収体用途が挙げられる。特に、高濃度紙オムツの吸収体として使用することができる。
 また、前記吸収体の原料として、前記吸水性樹脂とともにパルプ繊維等の吸収性材料を使用することもできる。この場合、吸収体中の吸水性樹脂の含有量(コア濃度)としては、好ましくは30質量%~100質量%、より好ましくは40質量%~100質量%、さらに好ましくは50質量%~100質量%、さらにより好ましくは60質量%~100質量%、特に好ましくは70質量%~100質量%、最も好ましくは75質量%~95質量%である。
 前記コア濃度を前記範囲とすることで、吸収体を吸収性物品の上層部に使用した場合に、この吸収性物品を清浄感のある白色状態に保つことができる。さらに、吸収体は尿及び/又は血液等の体液等の拡散性に優れるため、効率的な液分配がなされることにより、吸収量の向上が見込める。
 より具合的に、上述した吸収体は、本発明の一実施形態に係る吸水性樹脂を含有し、かつ、(i)親水性繊維を含有しない、又は、(ii)前記吸水性樹脂の質量が当該吸水性樹脂と親水性繊維との合計質量の50質量%以上である、吸収体であってもよい。
 親水性繊維としては、特に限定されず、例えば、パルプ繊維、コットンリンター架橋セルロース繊維、レーヨン、綿、羊毛、アセテート及びビニロン等を挙げることができる。さらに、それらをエアレイドしたものが好ましい。
 吸水性樹脂の質量が当該吸水性樹脂と親水性繊維との合計質量の50質量%以上、より具体的に、吸水性樹脂の質量が当該吸水性樹脂と親水性繊維との合計質量の60質量%以上、70質量%以上、80質量%以上、90質量%以上、又は100質量%であってもよい。
 本発明の一実施形態は、以下のように構成することもできる。
 〔1〕本発明の一実施形態に係る吸水性樹脂は、ポリアクリル酸(塩)系吸水性樹脂であって、40℃のポリエチレンオキサイド水溶液での自由膨潤速度(A)が0.15g・g-1・s-1以上であり、40℃の生理食塩水での自由膨潤速度(B)が0.40g・g-1・s-1以上であり、自由膨潤速度(A)/自由膨潤速度(B)が0.20以上である、吸水性樹脂、である。
 〔2〕本発明の一実施形態に係る吸水性樹脂は、CRCが25~50g/gである、〔1〕に記載の吸水性樹脂である。
 〔3〕本発明の一実施形態に係る吸水性樹脂は、球状粒子の凝集体状粒子である、〔1〕または〔2〕に記載の吸水性樹脂である。
 〔4〕本発明の一実施形態に係る吸水性樹脂は、嵩密度が0.40~0.80g/cmである、〔1〕~〔3〕のいずれかに記載の吸水性樹脂である。
 〔5〕本発明の一実施形態に係る吸水性樹脂は、40℃のポリエチレンオキサイド水溶液での自由膨潤速度(A)が0.25g・g-1・s-1以上である、〔1〕~〔4〕のいずれかに記載の吸水性樹脂である。
 〔6〕本発明の一実施形態に係る吸水性樹脂は、疎水性有機溶媒中で逆相懸濁重合することによって得られるものである、〔1〕~〔5〕のいずれかに記載の吸水性樹脂である。
 〔7〕本発明の一実施形態に係る吸水性樹脂は、球状粒子を、多孔板を有する押出機によって押し出すことにより得られるものである、〔1〕~〔6〕のいずれかに記載の吸水性樹脂である。
 〔8〕本発明の一実施形態に係る吸収体は、〔1〕~〔7〕のいずれかに記載の吸水性樹脂を含有し、かつ、(i)親水性繊維を含有しない、又は、(ii)前記吸水性樹脂の質量が当該吸水性樹脂と親水性繊維との合計質量の50質量%以上である、吸収体である。
 以下の実施例及び比較例に従って本発明の一実施形態をより具体的に説明するが、本発明はこれらに限定解釈されるものではなく、各実施例に開示された技術的手段を適宜組み合わせて得られる実施例も、本発明の範囲に含まれるものとする。
 なお、実施例及び比較例で使用する電気機器(吸水性樹脂の物性測定も含む)は、特に注釈のない限り、200V又は100Vで60Hzの電源を使用した。また、本実施例及び比較例の吸水性樹脂の諸物性は、特に注釈のない限り、室温(20~25℃)、相対湿度50%RHの条件下で測定した。
 また、「リットル」を「l」又は「L」、「重量%」を「wt%」と便宜上、表記する場合がある。更に微量成分の測定において、検出限界以下を「N.D」(Non Detected)と表記する。
 [吸水性樹脂の物性測定]
 「CRC」
 CRC(遠心分離機保持容量)は、EDANA法(ERT441.2-02)に準拠して測定した。具体的には、吸水性樹脂0.2gを不織布製の袋に入れた後、大過剰の0.9質量%塩化ナトリウム水溶液中に30分間浸漬して自由膨潤させ、その後、遠心分離機(250G)で3分間、水切りした後の吸水倍率(単位;g/g)を求めた。
 「Ext」
 本実施例及び比較例の吸水性樹脂のExt(水可溶分)は、EDANA法(ERT470.2-02)に準拠して測定した。
 「Ext(1hr)」
 本実施例及び比較例の吸水性樹脂のExt(1hr)は、EDANA法(ERT470.2-02)に準拠した。なお、攪拌時間を1時間に変更した。
 「AAP」
 AAP(加圧下吸収倍率)は、EDANA法(ERT442.2-02)に準拠して測定した。
 「含水率」
 含水率をEDANA法(ERT430.2-02)に準拠して測定した。なお、測定に際し、試料(吸水性樹脂)の質量を1.0gに、乾燥温度を180℃に、乾燥時間を3時間にそれぞれ変更した。具体的には、底面の直径が50mmのアルミカップに吸水性樹脂1.0gを投入した後、試料(吸水性樹脂及びアルミカップ)の総質量W1(g)を正確に秤量した。次に、前記試料(吸水性樹脂及びアルミカップ)を、雰囲気温度180℃に設定されたオーブン内に静置した。3時間経過後、該試料を前記オーブンから取り出し、総質量W2(g)を正確に秤量した。本測定に供された試料(吸水性樹脂)の質量をM(1.0g)としたときに、下記(式1)にしたがって、該試料の含水率α(質量%)を求めた:
 含水率α(質量%)={(W1-W2)/M}×100    式(1)。
 「質量平均粒子径(D50)」
 質量平均粒子径(D50)は、米国特許第7638570号のカラム27、28に記載された「(3)Mass-Average Particle Diameter(D50) and Logarithmic Standard Deviation(σζ) of Particle Diameter Distribution」に記載の方法に従って測定した。具体的には、吸水性樹脂10.0gを、室温(20~25℃)、湿度50RH%の条件下で、目開き850μm、710μm、600μm、500μm、425μm、300μm、212μm、150μm、45μmのJIS標準篩(THE IIDA TESTING SIEVE:径8cm)に仕込み、振動分級器(IIDA SIEVE SHAKER、TYPE:ES-65型、SER.No.0501)により、5分間、分級を行った。その後、各篩上の残留百分率Rを対数確率紙にプロットした。これにより、R=50質量%に相当する粒径を質量平均粒子径(D50)として読み取った。
 「40℃の3重量%ポリエチレンオキサイド水溶液での自由膨潤速度(A)」
 ポリエチレンオキサイド(PEO-1、粘度平均分子量150,000-400,000 住友精化株式会社製)を用いて、濃度が3重量%、液温が40℃であって、その条件での粘度が10±1mPa・sであるポリエチレンオキサイド水溶液を調製した。なお、粘度の測定には、株式会社SEKONIC製の振動式粘度計(型式:VM-10A)を用いた。以下、25ml、及び、50mlのガラス製ビーカーは40℃に保温して使用した。
 吸水性樹脂0.50gを25mlガラス製ビーカー(内径32~34mm、高さ50mm)に入れ、重量を測定した(W3)。この際、ビーカーに入れた吸水性樹脂の上面が水平となるようにした。必要に応じて、慎重にビーカーをたたくなどの処置を行うことで、吸水性樹脂の上面を水平にした。
 吸水性樹脂の入ったビーカーの中央に、流速5~6g/秒で3重量%ポリエチレンオキサイド水溶液の投入が可能なガラス製漏斗を、ビーカーの底から高さ50mmのところに漏斗の先端がくるように設置した。次に、40℃±0.5℃に調温した3重量%ポリエチレンオキサイド水溶液10gを50mlのガラス製ビーカーに量り取り、漏斗に丁寧に素早く注いだ。
 漏斗に注ぎ込んだ3重量%ポリエチレンオキサイド水溶液が吸水性樹脂と接触すると同時に、時間測定を開始した。3重量%ポリエチレンオキサイド水溶液を漏斗に注ぎ込んだ後、漏斗から水滴が5秒間落ちてこない時点で漏斗を除いた。時間測定の開始直後には、ビーカー中の3重量%ポリエチレンオキサイド水溶液の液面よりも下に、吸水性樹脂の上面が存在した。
 そして、3重量%ポリエチレンオキサイド水溶液を注ぎ込んだビーカー中の3重量%ポリエチレンオキサイド水溶液の液面を約20゜の角度で目視した際、該液面が、吸液した吸水性樹脂の上面に置き換わる時点(吸水性樹脂の上面のゲル粒子の形が認識でき、吸水性樹脂の上面の中央に液が残っていない時点)で、時間測定を終了した(単位:秒)(tS1)。
 次に、3重量%ポリエチレンオキサイド水溶液を注ぎ込んだ後の25mlガラス製ビーカーの重さ(単位:g)を測定した(W4)。
 25mlガラス製ビーカーに注ぎ込んだ3重量%ポリエチレンオキサイド水溶液の重さ(W5、単位:g)を下記式(a)により求めた。自由膨潤速度(A)は、下記式(b)によって計算した。
 式(a):W5(g)=W4(g)-W3(g)、
 式(b):自由膨潤速度(A)[g・g-1・s-1]=W5/(tS1×吸水性樹脂の質量(g))。
 「0.9質量%塩化ナトリウム水溶液での自由膨潤速度(B)」
 40℃の0.9質量%塩化ナトリウム水溶液の粘度を株式会社SEKONIC製の振動式粘度計(型式:VM-10A)を用いて測定したところ、0~1mPa・sであった。以下、25ml、及び、50mlのガラス製ビーカーは40℃に保温して使用した。
 吸水性樹脂1.00gを25mlガラス製ビーカー(内径32~34mm、高さ50mm)に入れた。この際、ビーカーに入れた吸水性樹脂の上面が水平となるようにした。必要に応じて、慎重にビーカーをたたくなどの処置を行うことで、吸水性樹脂の上面を水平にした。
 次に、40℃±0.5℃に調温した0.9質量%塩化ナトリウム水溶液20gを50mlのガラス製ビーカーに量り取り、0.9質量%塩化ナトリウム水溶液とガラス製ビーカーとの合計重さ(単位:g)を測定した(W6)。量り取った0.9質量%塩化ナトリウム水溶液の全量を、吸水性樹脂の入った25mlビーカーに丁寧に素早く注いだ。
 ビーカーに注ぎ込んだ0.9質量%塩化ナトリウム水溶液が吸水性樹脂と接触すると同時に、時間測定を開始した。時間測定の開始直後には、ビーカー中の0.9質量%塩化ナトリウム水溶液の液面よりも下に、吸水性樹脂の上面が存在した。そして、0.9質量%塩化ナトリウム水溶液を注ぎ込んだビーカー中の0.9質量%塩化ナトリウム水溶液の液面を約20゜の角度で目視した際、該液面が、吸液した吸水性樹脂の上面に置き換わる時点(吸水性樹脂の上面のゲル粒子の形が認識でき、吸水性樹脂の上面の中央に液が残っていない時点)で、時間測定を終了した(単位:秒)(tS2)。
 次に、0.9質量%塩化ナトリウム水溶液を注ぎ込んだ後の50mlガラス製ビーカーの重さ(単位:g)を測定した(W7)。
 25mlガラス製ビーカーに注ぎ込んだ0.9質量%塩化ナトリウム水溶液の重さ(W8、単位:g)を下記式(c)により求めた。
 自由膨潤速度(B)は、下記式(d)によって計算した。
 式(c):W8(g)=W6(g)-W7(g)、
 式(d):自由膨潤速度(B)[g・g-1・s-1]=W8/(tS2×吸水性樹脂の質量(g))。
 「自由膨潤速度の比」
 自由膨潤速度の比は、下記式にしたがって算出した:
 自由膨潤速度の比=自由膨潤速度(A)[g・g-1・s-1]/自由膨潤速度(B)[g・g-1・s-1]。
 「嵩密度」
 吸水性樹脂の嵩密度は、EDANA法(ERT460.2-02)に準拠して測定した。
 「数平均粒子径」
 吸水性樹脂又は吸水性樹脂粉末の走査型電子顕微鏡写真(SEM)を撮影した。写真の中から凝集体状粒子の正面にある50個の一次粒子を無作為に選択し、各一次粒子について、長径と短径とを測定し、該測定値の平均値を一次粒子径とした。一次粒子径の平均値を算出し、その平均値を当該吸水性樹脂の平均一次粒子径とした。
 「粘度」
 粘度は、株式会社SEKONIC製の振動式粘度計(型式:VM-10A)を用いて測定した。具体的には、株式会社マルエム製のスクリュー管(No.7、50ml、コード730-09)に40g~45gの試験液を投入し、液温を40℃に調整し、液面が検出器上部の棒部分に2mm~3mm浸るように高さを調整して粘度(mPa・s)を測定した。
 「表面張力」
 表面張力とは、吸水性樹脂を0.9質量%塩化ナトリウム水溶液中に分散させた際の、水溶液の表面張力であり、W02015/129917に記載の方法で測定した。
 [実施例1]
 国際公開第2020/067310号の図1に示した製造プロセスに従って含水ゲル重合体を作製した。
 分散装置として、国際公開第2020/067310号の図9に示される2流体スプレーノズル(外部混合型、スプレーノズル内径:0.5mm、形式:SETO07507S303+TS303、株式会社いけうち製)、反応装置としてPFA製チューブ(内径:25mm、全長:10m)を縦に配置したものを、それぞれ使用した。
 重合反応の準備段階として、疎水性有機溶媒としてn-ヘプタン(密度:0.68g/ml)にショ糖脂肪酸エステル(商品名:DKエステル(登録商標)F-50/第一工業製薬株式会社製、HLB=6)を0.005質量%添加した溶液を、前記2流体スプレーノズルの補助流体用流路(第2供給管)、前記反応装置、前記分離装置及びこれらを接続する配管内に投入した。前記2流体スプレーノズルの位置を、2流体スプレーノズルの先端が、反応装置に収容された疎水性有機溶媒からなる連続相に浸るように調整した。
 続いて、送液ポンプを稼働させて、流量1000ml/分で、有機溶媒の循環を開始した。この製造方法では、循環させた有機溶媒の経路を、2流体スプレーノズルを介して反応装置に投入する経路と、直接反応装置に投入する経路とに分岐させた。2流体スプレーノズルを介して反応装置に投入される有機溶媒の流量を800ml/分とし、直接反応装置に投入される有機溶媒の流量を200ml/分とした。また、該2流体スプレーノズルの先端部での前記有機溶媒の流速は、7.86m/秒であった。また、熱交換器を稼働させて、設定温度が85℃となるように、前記循環する有機溶媒を加熱した。
 次に、アクリル酸、48.5質量%の水酸化ナトリウム水溶液及びイオン交換水を混合し、更に、N,N’-メチレンビスアクリルアミド及びジエチレントリアミン5酢酸-3ナトリウムを配合することで、単量体溶液(1)を作製した。また、別途、過硫酸ナトリウム及びイオン交換水を混合することで、10質量%の過硫酸ナトリウム水溶液(1)を作製した。
 続いて、前記操作で得られた単量体溶液(1)と過硫酸ナトリウム水溶液(1)とを、それぞれ別個に混合装置に供給して混合することで、単量体水溶液(1)を調製した。該単量体水溶液(1)のモノマー濃度は43質量%、中和率は70モル%であった。また、内部架橋剤であるN,N’-メチレンビスアクリルアミドは単量体に対して0.015モル%、キレート剤であるジエチレントリアミン5酢酸-3ナトリウムは単量体に対して100ppm、重合開始剤である過硫酸ナトリウムは単量体に対して0.1g/モルであった。
 次に、前記混合装置で調製した単量体水溶液(1)を、速やかに前記2流体スプレーノズルの単量体水溶液用流路(第一供給管)に送液した。その後、前記2流体スプレーノズルを用いて、前記有機溶媒とともに、流量40ml/分(23.6g/分)で、単量体水溶液(1)を反応装置に供給した。該単量体水溶液(1)は、連続相をなす有機溶媒の循環方向と同じ方向(並流)となるように供給した。なお、該2流体スプレーノズルの先端部での前記単量体水溶液(1)の流速は、0.85m/秒であった。また、該2流体スプレーノズルに供給する前の単量体水溶液(1)の液温を25℃に保持した。
 前記2流体スプレーノズルによって供給された前記単量体水溶液(1)は、前記連続相中で液滴状に分散した。前記単量体水溶液(1)と前記連続相をなす有機溶媒との比(W/O比)は、3.3容積%であった。
 次いで、前記のようにして得られた分散液を、反応装置に供給した。前記単量体水溶液(1)からなる液滴は、前記連続相である疎水性有機溶媒が満たされた反応装置内を落下しながら重合し、反応装置の排出口付近において、微小な球形の含水ゲル重合体(1)が確認された。
 前記一連の操作で得られた含水ゲル重合体(1)は、前記疎水性有機溶媒とともに連続的に反応装置から接合部を介して分離装置に供給され、該分離装置において、該含水ゲル重合体(1)と有機溶媒とを分離した。分離装置において含水ゲル重合体(1)は微小な球形の粒子が凝集したものであり、その凝集物の大きさは5~10mmであった。
 スクリューと孔径0.8mmの多孔板とを有する押し出し機型のゲル整粒装置に、含水ゲル重合体(1)(ゲル温度:90℃)を投入し、該含水ゲル重合体(1)をゲル整粒装置から排出させることで整粒ゲル(1)を得た。
 続いて、105℃の熱風を45分間通気させることで当該粒子状の含水ゲル重合体(1)を乾燥し、粒子状の乾燥重合体(1)を得た。
 続いて、乾燥重合体(1)をロールミル(WML型ロール粉砕機、有限会社井ノ口技研社製)に供給して粉砕することにより粒度を調節し、さらに目開き粒子径150μmの篩を用いて分級し、吸水性樹脂粉末(1)を得た。
 前記吸水性樹脂粉末(1)20gを60℃に加熱したメタノール1000mlに加え、1時間攪拌した後ろ過、乾燥することにより親水化処理を行った。
 吸水性樹脂粉末(1)100質量部に対して、エチレングリコールジグリシジルエーテル0.015質量部、プロピレングリコール1.0質量部及びイオン交換水3.0質量部からなる表面架橋剤溶液をスプレーで噴霧して、高速連続混合機を用いて均一に混合した。
 得られた混合物を雰囲気温度195℃±2℃に調温した熱処理機に導入して、40分間加熱処理を行った後、粉温を60℃まで強制的に冷却することで表面架橋された吸水性樹脂粉末(1)を得た。以下、表面架橋された吸水性樹脂粉末を、「吸水性樹脂粒子」と称する。
 吸水性樹脂粒子(1)100質量部に、27.5重量%の硫酸アルミニウム水溶液(酸化アルミニウム換算で8重量%)0.40質量部、乳酸ナトリウム60質量%水溶液0.134質量部、及びプロピレングリコール0.002質量部からなる混合液を添加した。添加後、無風条件下、60℃で30分間乾燥し、さらに、吸水性樹脂粒子(1)の含水率が10質量%になるように水を添加し、目開き1000μmのJIS標準篩に通過させることで整粒し、吸水性樹脂(1)を得た。得られた吸水性樹脂(1)の諸物性を表1に示す。
 [実施例2]
 実施例1において、(i)分散助剤のショ糖脂肪酸エステル(商品名:DKエステル(登録商標)F-50/第一工業製薬株式会社製、HLB=6)の0.005質量%添加を、無水マレイン酸変性エチレン-プロピレン共重合体(商品名:ハイワックス(登録商標)1105A/三井化学株式会社製)の0.005質量%添加に変更したこと、及び、(ii)内部架橋剤のN,N’-メチレンビスアクリルアミドを単量体に対して0.015モル%を、ポリエチレングリコールジアクリレート(平均重合度:9)を単量体に対して0.008モル%、に変更した以外は、実施例1と同様の操作を行い、吸水性樹脂(2)を得た。得られた吸水性樹脂(2)の諸物性を表1に示す。
 [比較例1]
 撹拌機、還流冷却器、滴下ロート、温度計及び窒素ガス導入管を備えた1000ml容量の五つ口円筒型丸底フラスコにn-ヘプタンを500ml加えた。これにHLBが3.0のショ糖脂肪酸エステル(界面活性剤:三菱化学株式会社製のS-370)を0.92g添加して分散させ、昇温して界面活性剤を溶解後、55℃まで冷却した。
 前記とは別に、500ml容量の三角フラスコに、80重量%アクリル酸水溶液92gを加えた。これに、外部から冷却しつつ、30重量%水酸化ナトリウム水溶液102.2gを滴下して、アクリル酸の75モル%を中和し、アクリル酸の部分中和物水溶液を調製した。さらに、水50.2gと、重合開始剤の過硫酸カリウム0.11gと、架橋剤のエチレングリコールジグリシジルエーテル9.2mgとを添加し、1段目重合用の単量体水溶液を調製した。
 この1段目重合用の単量体水溶液を、前記の五つ口円筒型丸底フラスコに、撹拌機の回転数を500rpmの撹拌下で全量加えて分散させ、系内を窒素で十分に置換した後に昇温し、浴温を70℃に保持して、重合反応を1時間行った後、重合スラリー液を室温まで冷却した。
 さらに別の500ml容量の三角フラスコに、80重量%アクリル酸水溶液119.1gを加え、冷却しつつ30重量%水酸化ナトリウム水溶液132.2gを滴下して、アクリル酸の75モル%を中和し、さらに水27.4g、過硫酸カリウム0.14g、及びエチレングリコールジグリシジルエーテル35.7mgを添加し、2段目重合用の単量体水溶液を調製し、氷水浴内で冷却した。
 撹拌機の回転数を1000rpmとして攪拌しながら、この2段目重合用の単量体水溶液を、前記重合スラリー液に全量添加後、再び系内を窒素で十分に置換した後に昇温し、浴温を70℃に保持して、2段目の重合反応を2時間行った。重合終了後、n-ヘプタンに分散した含水ゲル状物に、アミノカルボン酸系金属キレート剤として40重量%ジエチレントリアミン5酢酸5ナトリウム水溶液0.53gを撹拌下で添加した。その後、含水ゲル状物から、共沸脱水により、266gの水分を系外に抜き出した。得られたゲル状物に2重量%エチレングリコールジグリシジルエーテル水溶液8.44gを添加し、さらに水分及びn-ヘプタンを蒸留により除去して乾燥し、乾燥重合体を得た。この乾燥重合体を目開き850μmの篩に通過させ、乾燥重合体の質量に対して0.1質量%の非晶質シリカ(オリエンタルシリカズコーポレーション製、トクシール(登録商標)NP-S)を乾燥重合体と混合することにより、非晶質シリカを含む比較吸水性樹脂(1)を得た。得られた比較吸水性樹脂(1)の諸物性を表1に示す。
 [比較例2]
 37%アクリル酸ナトリウム水溶液67.0部、アクリル酸10.2部、ポリエチレングリコールジアクリレート(平均エチレンオキサイドユニット数8)0.079部及び水22.0部を混合し、モノマー水溶液を調製した。バット中で前記モノマー水溶液に窒素を吹き込み、溶液中の溶存酸素を0.1ppm以下とした。
 引き続き窒素雰囲気下にて前記モノマー水溶液の温度を18℃に調整し、次いで5%過硫酸ナトリウム水溶液0.16部、5%2,2’-アゾビス(2-アミジノプロパン)2塩酸塩水溶液0.16部、0.5%L-アスコルビン酸水溶液0.15部及び0.35%過酸化水素水溶液0.17部を順番に撹拌下滴下した。過酸化水素滴下後、直ちに重合が開始した。その後、撹拌を停止し、10分後にモノマーの温度はピーク温度に達した。ピーク温度は85℃であった。引き続きバットを80℃の湯浴に浸し、10分間熟成した。得られた透明の含水ゲルをミートチョッパーで砕き、次いで180℃で30分間乾燥した。
 乾燥物を粉砕機で粉砕し、500μmの篩を通過し105μmの篩上に残るものに分級し、吸水性樹脂粉末を得た。吸水性樹脂粉末100部にジエチレントリアミン5酢酸0.002部、エチレングリコールジグリシジルエーテル0.05部、プロピレングリコール1部、水3部及びイソプロピルアルコール1部からなる組成液を混合し、180℃で40分間加熱処理して、比較吸水性樹脂粒子(2)を得た。
 続いて、前記比較吸水性樹脂粒子(2)100部に対し、無機粉末として二酸化珪素(日本アエロジル社製;アエロジル(登録商標)200)を0.3質量%添加し、比較吸水性樹脂(2)を得た。この比較吸水性樹脂(2)の各物性について測定した結果を表1に示す。
 [比較例3]
 特開2006-068731号の実施例2に準拠して、比較吸水性樹脂(3)を得た。得られた比較吸水性樹脂(3)の諸物性を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1から、実施例は比較例に比べて自由膨潤速度(A)と自由膨潤速度(B)とが両立できていることが分かる。
 本発明の一実施形態は、紙オムツ(幼児用、成人用)、生理用ナプキン、失禁パッド等の吸収性物品の吸収体に利用することができる。

Claims (8)

  1.  ポリアクリル酸(塩)系吸水性樹脂であって、
     40℃のポリエチレンオキサイド水溶液での自由膨潤速度(A)が0.15g・g-1・s-1以上であり、
     40℃の生理食塩水での自由膨潤速度(B)が0.40g・g-1・s-1以上であり、
     自由膨潤速度(A)/自由膨潤速度(B)が0.20以上である、吸水性樹脂。
  2.  CRCが25~50g/gである、請求項1に記載の吸水性樹脂。
  3.  球状粒子の凝集体状粒子である、請求項1又は2に記載の吸水性樹脂。
  4.  嵩密度が0.40~0.80g/cmである、請求項1~3のいずれか1項に記載の吸水性樹脂。
  5.  40℃のポリエチレンオキサイド水溶液での自由膨潤速度(A)が0.25g・g-1・s-1以上である、請求項1~4のいずれか1項に記載の吸水性樹脂。
  6.  疎水性有機溶媒中で逆相懸濁重合することによって得られる、請求項1~5のいずれか1項に記載の吸水性樹脂。
  7.  球状粒子を、多孔板を有する押出機によって押し出すことにより得られる、請求項1~6のいずれか1項に記載の吸水性樹脂。
  8.  請求項1~7のいずれか1項に記載の吸水性樹脂を含有し、かつ、(i)親水性繊維を含有しない、又は、(ii)前記吸水性樹脂の質量が当該吸水性樹脂と親水性繊維との合計質量の50質量%以上である、吸収体。
PCT/JP2022/019629 2021-05-12 2022-05-09 ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体 WO2022239723A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237042152A KR20240005044A (ko) 2021-05-12 2022-05-09 폴리(메트)아크릴산(염)계 흡수성 수지 및 흡수체
CN202280032779.8A CN117241880A (zh) 2021-05-12 2022-05-09 聚(甲基)丙烯酸(盐)系吸水性树脂及吸收体
EP22807425.8A EP4338832A1 (en) 2021-05-12 2022-05-09 Poly(meth)acrylic acid (salt) water-absorbing resin and absorbent article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021081231A JP7100742B1 (ja) 2021-05-12 2021-05-12 ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
JP2021-081231 2021-05-12
JP2021207381A JP2022176054A (ja) 2021-05-12 2021-12-21 ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
JP2021-207381 2021-12-21

Publications (1)

Publication Number Publication Date
WO2022239723A1 true WO2022239723A1 (ja) 2022-11-17

Family

ID=84029630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019629 WO2022239723A1 (ja) 2021-05-12 2022-05-09 ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体

Country Status (3)

Country Link
EP (1) EP4338832A1 (ja)
KR (1) KR20240005044A (ja)
WO (1) WO2022239723A1 (ja)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085959A1 (fr) 2001-04-16 2002-10-31 Sumitomo Seika Chemicals Co., Ltd. Resine d'absorption d'eau appropriee a l'absorption de liquide visqueux contenant un compose a poids moleculaire eleve, et absorbant et article absorbant les contenant
JP2003235889A (ja) * 2002-02-19 2003-08-26 San-Dia Polymer Ltd 吸収性物品
JP2005186015A (ja) * 2003-12-26 2005-07-14 San-Dia Polymer Ltd 吸収剤、これを含有してなる吸収体及び吸収性物品
JP2006068731A (ja) 2004-08-06 2006-03-16 Nippon Shokubai Co Ltd 吸水性樹脂を主成分とする粒子状吸水剤、その製造方法及び吸収性物品
WO2006100300A1 (de) 2005-03-24 2006-09-28 Basf Aktiengesellschaft Verfahren zur herstellung wasserabsorbierender polymere
WO2009025235A1 (ja) 2007-08-23 2009-02-26 Sumitomo Seika Chemicals Co., Ltd. 衛生材用途に適した吸水性樹脂
US7638570B2 (en) 2003-02-10 2009-12-29 Nippon Shokubai Co., Ltd. Water-absorbing agent
WO2011025013A1 (ja) 2009-08-28 2011-03-03 株式会社日本触媒 吸水性樹脂の製造方法
WO2011023572A1 (de) 2009-08-25 2011-03-03 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbesserter blutabsorption durch polymerisation von tropfen einer monomerlösung
WO2011040530A1 (ja) 2009-09-30 2011-04-07 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2011111657A1 (ja) 2010-03-08 2011-09-15 株式会社日本触媒 粒子状含水ゲル状架橋重合体の乾燥方法
WO2013018571A1 (ja) 2011-08-03 2013-02-07 住友精化株式会社 吸水性樹脂粒子、吸水性樹脂粒子を製造する方法、吸収体、吸収性物品及び止水材
WO2015053372A1 (ja) 2013-10-09 2015-04-16 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤及びその製造方法
WO2015129917A1 (ja) 2014-02-28 2015-09-03 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
JP2016506981A (ja) * 2013-01-29 2016-03-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 膨潤したゲル床の高い透過性と同時に、速い膨潤速度、かつ高い遠心分離保持容量を有する吸水性ポリマー粒子の製造方法
WO2018092864A1 (ja) * 2016-11-16 2018-05-24 株式会社日本触媒 吸水性樹脂粉末の製造方法及びその製造装置
WO2020067310A1 (ja) 2018-09-27 2020-04-02 株式会社日本触媒 吸水性樹脂の製造方法
WO2020137241A1 (ja) 2018-12-26 2020-07-02 Sdpグローバル株式会社 吸水性樹脂粒子及びその製造方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085959A1 (fr) 2001-04-16 2002-10-31 Sumitomo Seika Chemicals Co., Ltd. Resine d'absorption d'eau appropriee a l'absorption de liquide visqueux contenant un compose a poids moleculaire eleve, et absorbant et article absorbant les contenant
JP2003235889A (ja) * 2002-02-19 2003-08-26 San-Dia Polymer Ltd 吸収性物品
US7638570B2 (en) 2003-02-10 2009-12-29 Nippon Shokubai Co., Ltd. Water-absorbing agent
JP2005186015A (ja) * 2003-12-26 2005-07-14 San-Dia Polymer Ltd 吸収剤、これを含有してなる吸収体及び吸収性物品
JP2006068731A (ja) 2004-08-06 2006-03-16 Nippon Shokubai Co Ltd 吸水性樹脂を主成分とする粒子状吸水剤、その製造方法及び吸収性物品
WO2006100300A1 (de) 2005-03-24 2006-09-28 Basf Aktiengesellschaft Verfahren zur herstellung wasserabsorbierender polymere
WO2009025235A1 (ja) 2007-08-23 2009-02-26 Sumitomo Seika Chemicals Co., Ltd. 衛生材用途に適した吸水性樹脂
WO2011023572A1 (de) 2009-08-25 2011-03-03 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbesserter blutabsorption durch polymerisation von tropfen einer monomerlösung
WO2011025012A1 (ja) 2009-08-28 2011-03-03 株式会社日本触媒 吸水性樹脂の製造方法
WO2011025013A1 (ja) 2009-08-28 2011-03-03 株式会社日本触媒 吸水性樹脂の製造方法
WO2011040530A1 (ja) 2009-09-30 2011-04-07 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2011111657A1 (ja) 2010-03-08 2011-09-15 株式会社日本触媒 粒子状含水ゲル状架橋重合体の乾燥方法
WO2013018571A1 (ja) 2011-08-03 2013-02-07 住友精化株式会社 吸水性樹脂粒子、吸水性樹脂粒子を製造する方法、吸収体、吸収性物品及び止水材
JP2016506981A (ja) * 2013-01-29 2016-03-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 膨潤したゲル床の高い透過性と同時に、速い膨潤速度、かつ高い遠心分離保持容量を有する吸水性ポリマー粒子の製造方法
WO2015053372A1 (ja) 2013-10-09 2015-04-16 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤及びその製造方法
WO2015129917A1 (ja) 2014-02-28 2015-09-03 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
WO2018092864A1 (ja) * 2016-11-16 2018-05-24 株式会社日本触媒 吸水性樹脂粉末の製造方法及びその製造装置
WO2020067310A1 (ja) 2018-09-27 2020-04-02 株式会社日本触媒 吸水性樹脂の製造方法
WO2020137241A1 (ja) 2018-12-26 2020-07-02 Sdpグローバル株式会社 吸水性樹脂粒子及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FREDRIC L. BUCHHOLZANDREW T. GRAHAM: "Modern Superabsorbent Polymer Technology", 1998, WILEY-VCH

Also Published As

Publication number Publication date
KR20240005044A (ko) 2024-01-11
EP4338832A1 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
JP5889349B2 (ja) ポリアクリル酸系吸水性樹脂粉末及びその製造方法
JP6157853B2 (ja) ポリアクリル酸系吸水性樹脂及びその製造方法
JP5064032B2 (ja) 吸水性樹脂造粒物の製造方法および吸水性樹脂造粒物
JP5591448B2 (ja) 吸水剤およびその製造方法
JP5442204B2 (ja) 吸水性樹脂粒子の製造方法
JP6685926B2 (ja) 吸水性樹脂の製造方法
JP6577572B2 (ja) ポリアクリル酸(塩)系吸水性樹脂を主成分とする粒子状吸水剤の製造方法
KR20150091363A (ko) 폴리아크릴산(염)계 흡수성 수지 및 그의 제조 방법
WO2020067311A1 (ja) 吸水性樹脂の製造方法および吸水性樹脂
CN111116947A (zh) 聚丙烯酸系吸水性树脂的制造方法
JP6990888B1 (ja) ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
JP7100742B1 (ja) ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
WO2022239723A1 (ja) ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
JP7058787B1 (ja) ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
WO2022239628A1 (ja) ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
JP7032593B1 (ja) ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
JP2023084518A (ja) 吸収性物品
JP7078778B1 (ja) ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
CN117241880A (zh) 聚(甲基)丙烯酸(盐)系吸水性树脂及吸收体
WO2023106205A1 (ja) 吸収性物品
JP2023092252A (ja) ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
KR20200030047A (ko) 고흡수성 중합체 입자 제조 방법
JP2023085897A (ja) 吸収性物品
JP2023082544A (ja) 吸収性物品
JP2022132183A (ja) 吸水性樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237042152

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237042152

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022807425

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022807425

Country of ref document: EP

Effective date: 20231212