WO2013018571A1 - 吸水性樹脂粒子、吸水性樹脂粒子を製造する方法、吸収体、吸収性物品及び止水材 - Google Patents

吸水性樹脂粒子、吸水性樹脂粒子を製造する方法、吸収体、吸収性物品及び止水材 Download PDF

Info

Publication number
WO2013018571A1
WO2013018571A1 PCT/JP2012/068615 JP2012068615W WO2013018571A1 WO 2013018571 A1 WO2013018571 A1 WO 2013018571A1 JP 2012068615 W JP2012068615 W JP 2012068615W WO 2013018571 A1 WO2013018571 A1 WO 2013018571A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
resin particles
mass
liquid
aqueous liquid
Prior art date
Application number
PCT/JP2012/068615
Other languages
English (en)
French (fr)
Inventor
昌良 半田
健二 谷村
篤 平郡
裕一 小野田
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47629098&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013018571(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CA2843678A priority Critical patent/CA2843678C/en
Priority to ES12819365.3T priority patent/ES2627533T3/es
Priority to EP15191225.0A priority patent/EP3023443B1/en
Priority to JP2013526820A priority patent/JP6293484B2/ja
Priority to US14/127,784 priority patent/US9199218B2/en
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to CN201280037074.1A priority patent/CN103703028B/zh
Priority to KR1020147001912A priority patent/KR101832549B1/ko
Priority to EP18177630.3A priority patent/EP3398974B1/en
Priority to SG2013095260A priority patent/SG2013095260A/en
Priority to BR112014002637-8A priority patent/BR112014002637B1/pt
Priority to EP12819365.3A priority patent/EP2740747B1/en
Publication of WO2013018571A1 publication Critical patent/WO2013018571A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/26Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/48Surfactants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/14Organic medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to water-absorbing resin particles, a method for producing water-absorbing resin particles, an absorbent body, an absorbent article, and a waterstop material.
  • Water-absorbing resin particles have been used for sanitary materials such as disposable diapers and sanitary products, agricultural and horticultural materials such as water retention materials and soil improvement materials, and water-proofing materials for cables and industrial materials such as anti-condensation materials.
  • animal excrement treatment materials such as pet sheets, dog or cat toilet compositions, simple toilets, fragrances, meat drip absorption sheets, formulations for moisturizing cosmetics, etc.
  • water absorbent resin particles The field where is applied is expanding further. Examples of the performance required for the water-absorbent resin particles used in such applications include a high water absorption amount, an excellent water absorption rate, and an appropriate particle size according to the application.
  • Patent Document 1 a method of crosslinking the vicinity of the surface of a porous resin obtained in the presence of a foaming agent (see Patent Document 1) is disclosed.
  • an acrylic acid / acrylate aqueous solution is suspended in an alicyclic or aliphatic hydrocarbon solvent in the presence of a surfactant of HLB 8-12 to obtain an acrylic acid / acrylic acid.
  • a method for reverse-phase suspension polymerization of an acid salt see Patent Document 2
  • a method for polymerizing a water-soluble ethylenically unsaturated monomer in the presence of a water-absorbing resin having different water absorption rates see Patent Document 3
  • the water-absorbent resin particles disclosed in Patent Document 1 were not satisfactory in terms of both the performance of the particle diameter and the water absorption speed.
  • the water-absorbent resin particles disclosed in Patent Documents 2 and 3 have a relatively large particle diameter, excellent handling properties and water absorption speed, but are dispersed in hydrocarbons used during production.
  • the medium remains inside the particles as a volatile component, and for example, odor may be generated after water absorption.
  • the odor when using a product containing water-absorbent resin particles may impair the comfort of the user (wearer, etc.).
  • a small amount of residual volatile components is required.
  • the main object of the present invention is, in one aspect, water-absorbent resin particles that are excellent in handling properties, suppressed generation of odor after water absorption, and excellent in water absorption speed, an absorbent body, an absorbent article, and water stoppage. To provide materials.
  • the main object of the present invention is to provide a method that makes it possible to produce water-absorbing resin particles that are excellent in handling properties, excellent in water absorption speed, and have a small amount of residual volatile components.
  • the present invention provides water-absorbent resin particles having a physiological saline water absorption rate of 1 to 15 seconds, a median particle diameter of 100 to 600 ⁇ m, and a residual volatile component amount of 1.5% by mass or less. .
  • the water-absorbent resin particles have an appropriate particle size, so that they have excellent handling properties, the generation of odor after water absorption is suppressed, and the water absorption speed is excellent.
  • the water-absorbent resin particles may have a specific surface area of 0.08 m 2 / g or more. When the specific surface area is within the above range, the water absorption speed of the water absorbent resin particles can be further improved.
  • the water-absorbing resin particles may have a physiological saline water absorption of 30 to 90 g / g.
  • the present invention provides a method for producing water-absorbing resin particles.
  • the method according to the present invention includes an oily liquid containing a hydrocarbon dispersion medium, a first aqueous liquid containing an aqueous solvent, a water-soluble ethylenically unsaturated monomer and a radical polymerization initiator, and a surface activity having an HLB of 6 or more.
  • a suspension containing a water-containing gel-like polymer by polymerizing the water-soluble ethylenically unsaturated monomer in a suspension in which the first aqueous liquid is dispersed in the oily liquid.
  • a first polymerization step including obtaining a liquid, a suspension containing the hydrogel polymer at 45 ° C.
  • a second polymerization step comprising polymerizing the water-soluble ethylenically unsaturated monomer in a suspension in which the second aqueous liquid is mixed and the second aqueous liquid is further dispersed. You may prepare in this order.
  • the water absorbent resin particles obtained by the above method have an excellent water absorption rate. Furthermore, since the water-absorbent resin particles obtained by the above method have a moderately sized particle size, they are excellent in handling properties and have a small amount of residual volatile components, so that problems such as odor after water absorption can be reduced. .
  • the temperature of the suspension in which the second aqueous liquid is further dispersed is 35 ° C. or higher. Also good.
  • the amount of residual volatile components can be further reduced.
  • the oily liquid contains 50 to 650 parts by mass of the hydrocarbon dispersion medium with respect to 100 parts by mass of the water-soluble ethylenically unsaturated monomer contained in the first aqueous liquid. You may go out.
  • the present invention includes an oily liquid containing a hydrocarbon dispersion medium, an aqueous liquid containing an aqueous solvent and a water-soluble ethylenically unsaturated monomer, and the aqueous solvent containing water, and the aqueous liquid is contained in the oily liquid.
  • the present invention also relates to a method for producing water-absorbing resin particles, comprising a polymerization step including polymerizing the water-soluble ethylenically unsaturated monomer in a suspension dispersed in the water.
  • the aqueous liquid has a viscosity of 20 mPa ⁇ s or more at 20 ° C.
  • the suspension further contains a surfactant having an HLB of 6 or more.
  • the water absorbent resin particles obtained by the above method have an excellent water absorption rate. Furthermore, the water-absorbent resin particles obtained by the above method have a particle size of an appropriate size, so that the handling properties of the particles are excellent, and since the amount of residual volatile components is small, problems such as odor after water absorption can be reduced. it can.
  • the aqueous liquid may further contain a water-soluble thickener.
  • the water-soluble thickener may contain at least one compound selected from hydroxyalkyl cellulose, hydroxyalkylalkyl cellulose and carboxyalkylhydroxyalkyl cellulose.
  • the aqueous liquid contains the specific water-soluble thickener, the amount of residual volatile components of the obtained water-absorbent resin particles can be further reduced.
  • the present invention (1) The amount of saline absorbed is 30 to 90 g / g, (2) The median particle size is 100 to 600 ⁇ m, (3) The saline water absorption speed is 1 to 20 seconds, (4) The equilibrium swelling performance is 20 mm or more, (5) The amount of residual volatile components is 1.5% by mass or less, Water-absorbing resin particles obtainable by the above method are also provided.
  • the water-absorbent resin particles have an appropriate particle size, the particles have excellent handleability, the generation of odor after water absorption is suppressed, and the water absorption speed is excellent.
  • the present invention includes an oily liquid containing a hydrocarbon dispersion medium, an aqueous liquid containing an aqueous solvent and a water-soluble ethylenically unsaturated monomer, and the aqueous solvent containing water, and the aqueous liquid is contained in the oily liquid.
  • the present invention also relates to a method for producing water-absorbing resin particles, comprising a polymerization step including polymerizing the water-soluble ethylenically unsaturated monomer in a suspension dispersed in the water.
  • the aqueous liquid further contains a hydrophilic polymer dispersant.
  • the suspension further contains a surfactant having an HLB of 6 or more.
  • the water absorbent resin particles obtained by the above method have an excellent water absorption rate. Furthermore, since the water-absorbent resin particles obtained by the above method have an appropriate particle size, they are excellent in handling properties. In addition, since the amount of residual volatile components of the water-absorbent resin particles is small, problems such as odor after water absorption can be reduced.
  • the hydrophilic polymer dispersant may contain at least one compound selected from the group consisting of polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, polypropylene glycol and polyglycerin.
  • the aqueous liquid may contain 0.001 to 10 parts by mass of the hydrophilic polymer dispersant with respect to 100 parts by mass of the water-soluble ethylenically unsaturated monomer.
  • the present invention (1) The amount of saline absorbed is 30 to 90 g / g, (2) The median particle size is 100 to 600 ⁇ m, (3) The saline water absorption speed is 1 to 20 seconds, (4) The equilibrium swelling performance is 20 mm or more, (5) The amount of residual volatile components is 1.5% by mass or less, Water-absorbent resin particles that can be obtained by the above method are also provided.
  • the water-absorbent resin particles have an appropriate particle size, so that they have excellent handling properties, the generation of odor after water absorption is suppressed, and the water absorption speed is excellent.
  • the surfactant may contain at least one compound selected from the group consisting of sorbitan fatty acid ester, polyglycerin fatty acid ester and sucrose fatty acid ester.
  • the water-soluble ethylenically unsaturated monomer may contain at least one compound selected from the group consisting of acrylic acid and its salt, methacrylic acid and its salt, and acrylamide.
  • the hydrocarbon dispersion medium may contain at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms.
  • the present invention also provides an absorber comprising the water-absorbent resin particles and hydrophilic fibers.
  • the present invention further includes a liquid-permeable sheet, a liquid-impermeable sheet, and the absorber, and the absorber is disposed between the liquid-permeable sheet and the liquid-impermeable sheet disposed to face each other.
  • an absorbent article Provided is an absorbent article.
  • the present invention further includes the first liquid-permeable sheet, the second liquid-permeable sheet, and the water-absorbing resin particles, and the first liquid-permeable sheet and the second liquid that are disposed to face each other.
  • a waterstop material in which the water-absorbent resin particles are disposed between permeable sheets.
  • the water absorbent resin particles of the present invention can have an excellent water absorption rate. Furthermore, since the water-absorbent resin particles of the present invention have an appropriate particle size, they are excellent in handling properties as particles, and can reduce problems such as odor after water absorption.
  • the water absorbent resin particles obtained by the production method of the present invention can have an excellent water absorption rate. Furthermore, since the water-absorbent resin particles obtained by the method of the present invention have an appropriate particle size, they are excellent in handling properties as particles. In addition, since the amount of residual volatile components of the water absorbent resin particles obtained by the method of the present invention is small, problems such as odor after water absorption can be reduced.
  • the water absorption speed of the physiological saline of the water absorbent resin particles according to this embodiment may be 1 to 15 seconds or 1 to 20 seconds.
  • the water absorption rate is within the above range, in other words, when the water absorbent resin particles have such an excellent water absorption rate, the water absorbent resin particles are used in absorbent articles, water-stopping materials, and the like. Liquid leakage can be particularly effectively prevented.
  • the water absorption speed may be 1 to 12 seconds, 2 to 10 seconds, 2 to 8 seconds, or 2 to 6 seconds.
  • the median particle diameter of the water-absorbent resin particles according to this embodiment may be 100 to 600 ⁇ m. By setting the median particle diameter within this range, the handling property of the water-absorbent resin particles when producing the absorbent body can be kept particularly good, and the absorbent body can be made thin. From the same viewpoint, the median particle diameter of the water-absorbent resin particles may be 110 to 500 ⁇ m, 120 to 500 ⁇ m, 120 to 400 ⁇ m, 140 to 400 ⁇ m, 140 to 350 ⁇ m, or 150 to 350 ⁇ m.
  • the amount of residual volatile components of the water absorbent resin particles according to the present embodiment may be 1.5% by mass or less.
  • the water-absorbent resin particles have a small residual volatile component amount, for example, particularly effectively generating odor when the water-absorbent resin particles absorb water. It can suppress and can improve the comfort of the wearer of an absorptive article.
  • the amount of the remaining volatile components is 1.3% by mass or less, 1.2% by mass or less, 0.001 to 1.2% by mass, 0.001 to 1.0% by mass, 0.01 to It may be 1.0 mass%, 0.01 to 0.8 mass%, 0.01 to 0.6 mass%, or 0.01 to 0.45 mass%.
  • the specific surface area of the water-absorbent resin particles according to the present embodiment is not particularly limited, from the viewpoint of improving the water absorption speed, 0.08 m 2 / g or more, 0.1 ⁇ 2.0m 2 /g,0.12 ⁇ It may be 1.0 m 2 / g, or 0.14 to 0.5 m 2 / g.
  • the water absorption amount of the physiological saline of the water absorbent resin particles according to the present embodiment is not particularly limited, but from the viewpoint of improving the absorption capacity of the absorbent article, 30 to 90 g / g, 35 to 80 g / g, 45 to 75 g. / G, 50-70 g / g, or 55-65 g / g.
  • the equilibrium swelling performance (10-minute value) (it may only be called equilibrium swelling performance) of a water-absorbent resin particle. Since the water-absorbing resin particles have a high swelling performance in this way, when the water-absorbing resin particles are used as a waterproofing material for cables, after preventing initial water immersion due to cable cracking, the effect of preventing long-term water infiltration is achieved. An appropriate swelling pressure that can be maintained and does not promote deterioration of the base material of the cable can be exhibited. From the same viewpoint, the equilibrium swelling performance may be 21 to 40 mm, 22 to 35 mm, or 23 to 30 mm.
  • the ratio of the initial swelling performance (1 minute value) of the water absorbent resin particles to the equilibrium swelling performance may be 60 to 100%.
  • the initial swelling ratio may be 75 to 98%, or 90 to 95%.
  • physiological saline water absorption rate, median particle diameter, residual volatile component amount, specific surface area, physiological saline water absorption amount, equilibrium swelling performance and initial swelling ratio described above are all measured by the methods described later in the examples. Value.
  • the raw material of the water absorbent resin particles according to this embodiment is not particularly limited.
  • the resin constituting the water-absorbing resin particles can be selected so that the water absorption rate of physiological saline, the median particle diameter, and the amount of residual volatile components are within the above numerical range.
  • a resin obtained by polymerizing a water-soluble ethylenically unsaturated monomer (a polymer containing a water-soluble ethylenically unsaturated monomer as a monomer unit) can be used.
  • Examples of resins obtained by polymerizing water-soluble ethylenically unsaturated monomers include starch-acrylonitrile graft copolymer hydrolysates, starch-acrylic acid graft copolymer neutralized products, and vinyl acetate-acrylic acid esters. And a partially neutralized product of polyacrylic acid.
  • Examples of the method for polymerizing the water-soluble ethylenically unsaturated monomer include an aqueous solution polymerization method and a reverse phase suspension polymerization method performed in a hydrocarbon dispersion medium in the presence of a surfactant.
  • the water-absorbent resin particles may contain as a main component a polymer containing a water-soluble ethylenically unsaturated monomer as a monomer unit.
  • the proportion of the polymer may be 50 parts by mass or more with respect to 100 parts by mass of the water absorbent resin particles.
  • the obtained water-absorbing resin particles may contain a hydrophilic polymer dispersant.
  • the content of the hydrophilic polymer dispersant in the water absorbent resin particles is, for example, 0.001 to 10 parts by mass, 0.005 to 5 parts by mass, 0.01 to 10 parts by mass with respect to 100 parts by mass of the water absorbent resin particles. It may be 3 parts by mass, or 0.01 to 1.5 parts by mass.
  • the water-absorbing resin particles obtained may contain a water-soluble thickener.
  • the content of the water-soluble thickener in the water-absorbent resin particles is, for example, 0.05 to 20 parts by mass, 0.2 to 10 parts by mass with respect to 100 parts by mass of the water-absorbent resin particles (polymer solid content). 0.4 to 5 parts by mass or 0.6 to 3 parts by mass.
  • the content of the water-soluble thickener is the content (the amount used) of the water-soluble thickener relative to 100 parts by mass of the water-soluble ethylenically unsaturated monomer, as described later in the description of the method for producing water-absorbent resin particles. ).
  • the water-absorbent resin particles may contain additives such as a heat-resistant stabilizer, an antioxidant, and an antibacterial agent depending on the purpose.
  • additives such as a heat-resistant stabilizer, an antioxidant, and an antibacterial agent depending on the purpose.
  • the amount of these additives varies depending on the use of the water-absorbent resin particles, the type of additive, etc., but is 0.001 to 10 parts by mass, 0.01 parts per 100 parts by mass of the water-absorbent resin particles (polymer solid content). It may be ⁇ 5 parts by mass, or 0.1 to 2 parts by mass.
  • the water-absorbent resin particles according to the present embodiment include, for example, an oily liquid containing a surfactant, a hydrocarbon dispersion medium, and optionally a hydrophobic polymer dispersant, and an aqueous solution containing a water-soluble ethylenically unsaturated monomer.
  • a water-soluble ethylenically unsaturated monomer is subjected to reverse phase suspension polymerization using a radical polymerization initiator, Obtainable.
  • a method for example, at least one of the following production methods 1 to 3 can be employed.
  • a method of carrying out reverse phase suspension polymerization using a surfactant having an HLB of 6 or more and an aqueous liquid containing a hydrophilic polymer dispersant (Production Method 1), A method of carrying out reverse phase suspension polymerization using a surfactant having an HLB of 6 or more and an aqueous liquid having a viscosity of 20 mPa ⁇ s or more at 20 ° C. and / or containing a water-soluble thickener (production method) 2) or a suspension at 45 ° C.
  • Water-absorbing resin particles can be obtained by a method (Production Method 3) in which another aqueous liquid is added to carry out reverse phase suspension polymerization.
  • a W / O type reverse phase suspension formed by an oily liquid (O) as a continuous phase and an aqueous liquid (W) as a discontinuous phase. Since the turbid state can be maintained well, there is a tendency that a large number of fine irregularities can be formed uniformly on the surface of the water-absorbent resin particles. The degree of unevenness can be expressed by the specific surface area of the water absorbent resin particles. Water-absorbent resin particles with many irregularities on the surface have a large specific surface area and tend to increase the water absorption rate.
  • the water-absorbent resin particles according to the present embodiment which are excellent not only in the water absorption speed but also in the odor after water absorption, can be obtained.
  • these manufacturing methods are demonstrated in detail.
  • the production method 1 includes an oily liquid containing a hydrocarbon dispersion medium and an aqueous liquid containing an aqueous solvent and a water-soluble ethylenically unsaturated monomer, and the aqueous liquid is dispersed in the oily liquid. And a polymerization step including polymerizing a water-soluble ethylenically unsaturated monomer.
  • an oily liquid (O) containing a hydrocarbon dispersion medium is used as a continuous phase
  • an aqueous liquid (W) containing water is polymerized as a droplet-like discontinuous phase dispersed in the continuous phase.
  • Type reverse phase suspension polymerization is used to polymerization.
  • the above suspension further contains a surfactant having an HLB of 6 or more.
  • the aqueous liquid further contains a hydrophilic polymer dispersant.
  • the HLB of the surfactant may be 6 to 16, 7 to 16, 8 to 12, or 8.5 to 10.5.
  • the state of W / O type reverse phase suspension becomes better, and particles having a more preferable particle diameter and a better water absorption rate tend to be obtained. .
  • surfactant examples include sorbitan fatty acid ester and (poly) glycerin fatty acid ester (“(poly)” means both with and without the prefix “poly”. The same shall apply hereinafter. ), Sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene castor oil , Polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropylene
  • Nonionic surfactants such as kill ethers and polyethylene glycol fatty acid esters; fatty acid salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene al
  • the surfactant is a sorbitan fatty acid ester, It may be at least one compound selected from the group consisting of glycerin fatty acid ester and sucrose fatty acid ester, and is a sorbitan fatty acid ester from the viewpoint that the various performances of the water absorbent resin particles obtained are improved. Also good.
  • These surfactants may be used alone or in combination of two or more.
  • the amount of the surfactant used is based on 100 parts by weight of the aqueous liquid from the viewpoint of stabilizing the state of the W / O type reverse phase suspension and selecting an efficient amount of use capable of obtaining the suspension stabilization effect. 0.1 to 5 parts by mass, 0.2 to 3 parts by mass, or 0.4 to 2 parts by mass.
  • the total amount of the aqueous solvent, the water-soluble ethylenically unsaturated monomer, the hydrophilic polymer dispersant, and the water-soluble thickener described later is regarded as the mass of the aqueous liquid, and the ratio of each component is calculated. Can do. However, this does not mean that the hydrophilic polymer dispersant and the water-soluble thickener are always essential components of the aqueous liquid.
  • the aqueous liquid in Production Method 1 contains an aqueous solvent containing water, a water-soluble ethylenically unsaturated monomer, a hydrophilic polymer dispersant, and optionally various additives.
  • the aqueous solvent is mainly composed of water and may contain other hydrophilic solvent.
  • the hydrophilic polymer dispersant is, for example, a polymer dispersant that may be dissolved in 100 g of water at 25 ° C. in an amount of 0.001 to 200 g, 0.05 to 150 g, or 0.1 to 100 g.
  • hydrophilic polymer dispersant examples include polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), polyethylene glycol (PEG), polypropylene glycol, polyethylene glycol / polypropylene glycol block copolymer, polyglycerin, polyoxyethylene glycerin, It may be at least one polymer compound selected from the group consisting of polyoxypropylene glycerin, polyoxyethylene / polyoxypropylene glycerin copolymer, and polyoxyethylene sorbitan fatty acid ester.
  • PVA polyvinyl alcohol
  • PVP polyvinyl pyrrolidone
  • PEG polyethylene glycol
  • PEG polypropylene glycol
  • polyethylene glycol / polypropylene glycol block copolymer polyglycerin
  • polyglycerin polyoxyethylene glycerin
  • It may be at least one polymer compound selected from the group consisting of polyoxypropylene glycerin, polyoxyethylene
  • the hydrophilic polymer dispersant may be at least one compound selected from the group consisting of polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, polypropylene glycol and polyglycerin, and the effect of reducing the amount of residual volatile components From the viewpoint, polyvinyl pyrrolidone or polyvinyl alcohol may be used.
  • These hydrophilic polymer dispersants may be used alone or in combination of two or more.
  • Polyvinyl pyrrolidone, polyvinyl alcohol and the like mentioned as the hydrophilic polymer dispersant are generally used as a thickener, but in this embodiment, a small amount of the aqueous liquid is hardly increased. Even if it is content, the unexpected effect that the amount of residual volatile components is reduced is acquired.
  • the hydrophilic polymer dispersant is a W / O type reverse phase suspension.
  • One reason may be to stabilize the separation and coalescence of aqueous droplets in turbidity. More specifically, since the hydrophilic polymer dispersant efficiently protects the vicinity of the inner surface of the aqueous droplet, the hydrocarbon dispersion medium is included in the aqueous droplet when the aqueous droplets collide with each other. This is presumably because the frequency is reduced and the formation of the O / W / O type structure is suppressed.
  • the amount of the hydrophilic polymer dispersant used varies depending on the type and molecular weight and therefore cannot be determined unconditionally. For example, 0.001 per 100 parts by weight of the water-soluble ethylenically unsaturated monomer is used. It may be ⁇ 10 parts by mass, 0.005 to 5 parts by mass, 0.01 to 3 parts by mass, or 0.01 to 1.5 parts by mass.
  • the amount of the hydrophilic polymer dispersant used is 0.001 part by mass or more, the effect of reducing the amount of residual volatile components can be obtained to a higher degree, and when it is 10 parts by mass or less, the effect corresponding to the amount used is obtained. Tend to be obtainable and more economical.
  • the molecular weight and the like of the hydrophilic polymer dispersant are not particularly limited as long as the hydrophilic polymer dispersant can be uniformly dispersed in the aqueous liquid with affinity for the aqueous solvent (particularly water).
  • the weight average molecular weight of the hydrophilic polymer dispersant may be 2,000 to 5,000,000, 5,000 to 3,000,000, 10,000 to 2,000,000, 20,000 to 1500,000, or 30,000 to 1500,000.
  • the mass average molecular weight is measured by GPC (gel permeation chromatography) and is a value converted using polyethylene oxide as a standard substance.
  • the hydrophilic polymer dispersant is polyvinyl alcohol
  • the saponification degree and the like are not particularly limited.
  • the saponification degree of polyvinyl alcohol may be 65 to 100%, 75 to 98%, 80 to 95%, or 85 to 90% from the viewpoint of solubility in water and the effect of reducing the amount of residual volatile components.
  • water-soluble ethylenically unsaturated monomer examples include ethylenically unsaturated monomers containing at least one functional group selected from the group consisting of a carboxyl group, a sulfo group, an amide group, an amino group, and the like. .
  • water-soluble ethylenically unsaturated monomer examples include (meth) acrylic acid (hereinafter referred to as “(meth) acryl” together with “acryl” and “methacryl”) and salts thereof, 2- (meth) Acrylamide-2-methylpropanesulfonic acid and its salts, (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) It may be at least one selected from the group consisting of acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, and diethylaminopropyl (meth) acrylamide.
  • acrylic acid hereinafter referred to as “(meth) acryl” together with “acryl” and “methacryl”
  • the amino group may be quaternized.
  • the functional group such as a carboxyl group and an amino group of the monomer can function as a functional group that can be crosslinked in a post-crosslinking step described later.
  • These water-soluble ethylenically unsaturated monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the water-soluble ethylenically unsaturated monomer is selected from the group consisting of acrylic acid and its salt, methacrylic acid and its salt, acrylamide, methacrylamide and N, N-dimethylacrylamide from the viewpoint of industrial availability. It may be at least one compound, may be at least one compound selected from the group consisting of acrylic acid and its salt, methacrylic acid and its salt and acrylamide, and from the viewpoint of further improving safety, It may be at least one compound selected from the group consisting of acrylic acid and salts thereof, and methacrylic acid and salts thereof.
  • the concentration of the water-soluble ethylenically unsaturated monomer in the aqueous liquid is the sum of the aqueous liquid (aqueous solvent, water-soluble ethylenically unsaturated monomer, hydrophilic polymer dispersant, and water-soluble thickener described below.
  • the amount may range from 20% by mass to the saturation concentration or less.
  • the above concentration is 25 to 50 masses. %, 30-45 mass%, or 35-42 mass%.
  • the acid group is an alkaline medium such as an alkali metal salt.
  • the salt may be formed by neutralization with a hydrating agent.
  • the alkaline neutralizer include aqueous solutions such as sodium hydroxide, potassium hydroxide and ammonia. These alkaline neutralizers may be used alone or in combination of two or more.
  • the degree of neutralization with respect to all acid groups by the alkaline neutralizer increases the osmotic pressure of the resulting water-absorbent resin particles, thereby increasing the swelling capacity, and suppressing the remaining of the excess alkaline neutralizer to improve safety, etc. From the viewpoint of preventing the problem from occurring, it may be 10 to 100 mol%, 30 to 90 mol%, 50 to 80 mol%, or 60 to 78 mol%.
  • the aqueous liquid may contain a radical polymerization initiator.
  • the radical polymerization initiator may be water-soluble.
  • the radical polymerization initiator include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide , Peroxides such as t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, and hydrogen peroxide; and 2,2′-azobis (2-methylpropionamidine) 2 Hydrochloride, 2,2′-azobis [2- (N-phenylamidino) propane] dihydrochloride, 2,2′-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2′- Azobi
  • the amount of the radical polymerization initiator used may be usually 0.005 to 1 mol with respect to 100 mol of the water-soluble ethylenically unsaturated monomer.
  • the amount of the radical polymerization initiator used is 0.005 mol or more, the polymerization reaction does not require a long time and is efficient.
  • the amount used is 1 mol or less, there is a tendency that a rapid polymerization reaction does not occur.
  • the radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate and L-ascorbic acid.
  • a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate and L-ascorbic acid.
  • the aqueous liquid may contain a chain transfer agent in order to control the water absorption performance of the water absorbent resin particles.
  • chain transfer agent examples include hypophosphites, thiols, thiolic acids, secondary alcohols and amines.
  • the oily liquid is a hydrophobic liquid mainly composed of a hydrocarbon dispersion medium.
  • the hydrocarbon dispersion medium can be used as an aqueous liquid dispersion medium.
  • hydrocarbon dispersion medium examples include chain aliphatics such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, and n-octane.
  • hydrocarbons Hydrocarbons; cycloaliphatic groups such as cyclohexane, methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, and trans-1,3-dimethylcyclopentane Hydrocarbons; aromatic hydrocarbons such as benzene, toluene, and xylene.
  • hydrocarbon dispersion media may be used alone or in combination of two or more.
  • the hydrocarbon dispersion medium may be at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms.
  • the hydrocarbon dispersion medium may be n-heptane or cyclohexane.
  • the mixture of the hydrocarbon dispersion medium may be, for example, a commercially available Exol heptane (manufactured by ExxonMobil Corporation: containing n-heptane and 75 to 85% of an isomeric hydrocarbon). .
  • the amount of the hydrocarbon dispersion medium contained in the oily liquid is 50 to 650 with respect to 100 parts by mass of the water-soluble ethylenically unsaturated monomer from the viewpoint of appropriately removing the heat of polymerization and easily controlling the polymerization temperature. It may be 70 parts by weight, 70 to 550 parts by weight, or 100 to 450 parts by weight. When the amount of the hydrocarbon dispersion medium used is 50 parts by mass or more, the polymerization temperature tends to be easily controlled. When the amount of the hydrocarbon dispersion medium used is 650 parts by mass or less, the productivity of polymerization tends to be improved, which is economical.
  • the oily liquid may contain a hydrophobic polymer dispersant.
  • a hydrophobic polymer dispersant include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene-propylene-diene-terpolymer), Maleic anhydride modified polybutadiene, ethylene-maleic anhydride copolymer, ethylene-propylene-maleic anhydride copolymer, butadiene-maleic anhydride copolymer, oxidized polyethylene, ethylene-acrylic acid copolymer, ethyl cellulose, and Examples thereof include ethyl hydroxyethyl cellulose.
  • maleic anhydride-modified polyethylene maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene-propylene copolymer, oxidized polyethylene, or ethylene-acrylic An acid copolymer can be used.
  • hydrophobic polymer dispersants may be used alone or in combination of two or more.
  • the amount of the hydrophobic polymer dispersant contained in the oily liquid is 100% aqueous liquid (total amount of aqueous solvent, water-soluble ethylenically unsaturated monomer, hydrophilic polymer dispersant, and water-soluble thickener). It may be 0.1 to 5 parts by mass, 0.2 to 3 parts by mass, or 0.4 to 2 parts by mass with respect to parts by mass.
  • an oily liquid and an aqueous liquid are usually prepared before polymerization.
  • the prepared aqueous liquid and oily liquid are mixed to prepare a suspension for polymerization.
  • the blending method of the hydrophilic polymer dispersant is not particularly limited as long as it can be uniformly dispersed in the aqueous liquid before polymerization.
  • the hydrophilic polymer dispersant is added to the aqueous water-soluble ethylenically unsaturated monomer solution.
  • a water-soluble ethylenically unsaturated monomer aqueous solution and an aqueous solution of a hydrophilic polymer dispersant are separately added to the oily liquid.
  • Surfactant can be added to the oily liquid.
  • the polymerization temperature (suspension temperature) at the time of reverse phase suspension polymerization varies depending on the type of radical polymerization initiator used, and thus cannot be determined in general.
  • the polymerization temperature is 20 to 110 ° C. or 40 to 90 from the viewpoint of shortening the polymerization time by allowing the polymerization to proceed rapidly, removing the heat of polymerization, and performing the reaction smoothly. It may be ° C.
  • the polymerization time is usually 0.5 to 4 hours.
  • hydrogel polymer As described above, a water-soluble ethylenically unsaturated monomer is polymerized to form a particulate hydrogel polymer.
  • the obtained polymer has various forms such as a spherical shape, a granular shape, a crushed shape, a confetti shape, and an aggregate thereof.
  • the hydrogel polymer may be granular, or may be granular having many protrusions on the surface.
  • the production method 1 may further include a post-crosslinking step of crosslinking the hydrated gel polymer.
  • the water in the hydrogel polymer is 100% by mass based on the water-soluble ethylenically unsaturated monomer-derived component (polymer solid content) constituting the hydrogel polymer.
  • a primary drying step for adjusting the mass percentage (water content of the hydrogel polymer) to be, for example, 20 to 130% by mass may be provided before the post-crosslinking step.
  • the post-crosslinking of the hydrogel polymer is performed, for example, by mixing and heating the hydrogel polymer and the postcrosslinking agent.
  • the post-crosslinking agent has a functional group that can react with a functional group contained in the water-soluble ethylenically unsaturated monomer (for example, a carboxyl group in the case of acrylic acid), and may be a water-soluble compound. .
  • post-crosslinking agents include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol diglycidyl Compounds having two or more epoxy groups such as ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether; haloepoxy compounds such as epichlorohydrin, epibromohydrin, and ⁇ -methylepichlorohydrin; Compounds having two or more isocyanate groups such as 4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-oxetanemethanol, 3-ethyl-3-o Oxetane compounds such as cetanemethanol, 3-butyl-3-oxetanemethanol, 3-methyl-3
  • the post-crosslinking agent may be a compound having two or more functional groups in the molecule that can react with the functional group of the water-soluble ethylenically unsaturated monomer.
  • Examples of such a compound include the above polyol, a compound having two or more epoxy groups, a haloepoxy compound, and a compound having two or more isocyanate groups.
  • These post-crosslinking agents may be used alone or in combination of two or more.
  • the post-crosslinking agent may be a compound having two or more epoxy groups from the viewpoint of excellent reactivity.
  • the post-crosslinking agent is ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, glycerin diglycidyl ether, polyethylene glycol diglycidyl ether.
  • the amount of the post-crosslinking agent is 0.0001 to 1 mol, 0.0005 to 0.5 mol with respect to 100 mol of the water-soluble ethylenically unsaturated monomer used to produce the hydrogel polymer. 0.001 to 0.1 mol, or 0.005 to 0.05 mol.
  • the amount of the post-crosslinking agent is 0.0001 mol or more, a crosslinking effect is exhibited, and the water absorption rate of the water absorbent resin particles can be further improved without the viscosity of the surface of the water absorbent resin particles during water absorption. There is a tendency to be able to.
  • the amount of the post-crosslinking agent is 1 mol or less, crosslinking does not become excessive, and the water absorption amount of the water absorbent resin particles tends to be further improved.
  • the mixing of the hydrogel polymer and the post-crosslinking agent can be performed after adjusting the moisture content of the hydrogel polymer to a specific range by a primary drying step or the like.
  • the postcrosslinking reaction can proceed more suitably.
  • the water content of the hydrogel polymer used in the post-crosslinking step may be 20 to 130% by mass, 25 to 110% by mass, 30 to 90% by mass, 35 to 80% by mass, or 40 to 70% by mass. Good. By setting the moisture content of the hydrogel polymer within these ranges, it is possible to further improve the water absorption performance by the post-crosslinking reaction while shortening the primary drying step and increasing the production efficiency.
  • the water content of the hydrogel polymer is determined by subtracting the amount of water extracted outside by the primary drying step from the amount of water contained in the aqueous liquid before polymerization (the amount of water in the primary dry gel).
  • the water-soluble ethylenically unsaturated monomer constituting the water-containing gel polymer is calculated after calculating the total amount of water used as necessary when mixing the crosslinking agent as the water content of the water-containing gel polymer. It can obtain
  • the mass of the component derived from the water-soluble ethylenically unsaturated monomer constituting the hydrogel polymer is calculated from the total mass of the water-soluble ethylenically unsaturated monomer used in the polymerization reaction as the theoretical polymer solid content. , Calculated.
  • water may be added as a solvent for dissolving the post-crosslinking agent in order to uniformly disperse the post-crosslinking agent.
  • the mass ratio between the amount of water in the primary dry gel (hydrogel polymer) and the amount of water added together with the post-crosslinking agent allows the post-crosslinking agent to be reduced while rationally shortening the drying step and improving the economics of the process. From the viewpoint of uniform dispersion, it may be 100: 0 to 60:40, 99: 1 to 70:30, 98: 2 to 80:20, or 98: 2 to 90:10.
  • a hydrophilic organic solvent may be used instead of or together with water.
  • hydrophilic organic solvent examples include lower alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol, ketones such as acetone and methyl ethyl ketone, ethers such as dioxane and tetrahydrofuran, amides such as N, N-dimethylformamide, And sulfoxides such as dimethyl sulfoxide. These solvents may be used alone or in combination of two or more as necessary.
  • the reaction temperature of the post-crosslinking reaction may be 60 ° C. or higher, 70 to 200 ° C., or 80 to 150 ° C.
  • the reaction temperature is 60 ° C. or higher, the post-crosslinking reaction is promoted, and the reaction tends not to require an excessive amount of time.
  • the reaction temperature is 200 ° C. or lower, there is a tendency that deterioration of water-absorbent resin particles obtained and deterioration of water absorption performance can be suppressed.
  • the reaction time of the post-crosslinking reaction varies depending on the reaction temperature, the type and amount of the post-crosslinking agent, and cannot be determined unconditionally, but may be, for example, 1 to 300 minutes or 5 to 200 minutes.
  • the production method 1 may include a secondary drying step in which water, a hydrocarbon dispersion medium, and the like are removed by distillation by applying energy such as heat from the outside after performing a post-crosslinking reaction. By performing this secondary drying, there is a tendency that water-absorbing resin particles having further excellent fluidity can be obtained.
  • the secondary drying method is not particularly limited.
  • a mixture of resin particles dispersed in an oily liquid (hydrocarbon dispersion medium) and then subjected to a crosslinking reaction is distilled to disperse moisture and hydrocarbons.
  • examples thereof include a method of simultaneously removing the medium, (b) a method of taking out resin particles by decantation and drying under reduced pressure, and (c) a method of filtering resin particles by a filter and drying under reduced pressure.
  • the method of (a) is employable from the simplicity in a manufacturing process.
  • the water-absorbent resin particles according to the above-described embodiment can be obtained.
  • the obtained water-absorbent resin particles have a low residual volatile component amount while having a moderately sized particle diameter and an excellent water absorption rate.
  • Production method 2 includes an oily liquid containing a hydrocarbon dispersion medium, an aqueous liquid containing an aqueous solvent and a water-soluble ethylenically unsaturated monomer, and the aqueous liquid is dispersed in an oily liquid. And a polymerization step including polymerizing a water-soluble ethylenically unsaturated monomer.
  • an oily liquid (O) containing a hydrocarbon dispersion medium is used as a continuous phase
  • an aqueous liquid (W) containing water is polymerized as a droplet-like discontinuous phase dispersed in the continuous phase.
  • Type reverse phase suspension polymerization The aqueous liquid has a viscosity of 20 mPa ⁇ s or more at 20 ° C.
  • the above suspension further contains a surfactant having an HLB of 6 or more.
  • the amount of surfactant used can be adjusted within the same range as in Production Method 1.
  • the amount of the surfactant used is usually the total amount of the aqueous solvent, the water-soluble ethylenically unsaturated monomer, and optionally the water-soluble thickener described later. It can be set by regarding the mass of
  • the aqueous liquid contains an aqueous solvent containing water, a water-soluble ethylenically unsaturated monomer, and optionally various additives such as a water-soluble thickener.
  • the aqueous solvent is mainly composed of water and may contain other hydrophilic solvent.
  • the viscosity at 20 ° C. of the aqueous liquid in Production Method 2 is 20 mPa ⁇ s or more.
  • This viscosity is 20 to 500000 mPa ⁇ s, 25 to 500000 mPa ⁇ s, 25 to 200000 mPa ⁇ s, 30 to 200000 mPa ⁇ s, 30 to 100000 mPa ⁇ s, 35 to 100000 mPa ⁇ s, 35 to 50000 mPa ⁇ s, 40 to 50000 mPa ⁇ s. s or 40 to 10,000 mPa ⁇ s.
  • the viscosity is 20 mPa ⁇ s or more, the amount of residual volatile components can be particularly significantly reduced.
  • the viscosity of the aqueous liquid is a value when measured at 20 ° C. and 60 rpm using a Brookfield rotational viscometer (LVDV-I).
  • the aqueous liquid may contain a water-soluble thickener for the purpose of obtaining an aqueous liquid having the above viscosity.
  • the amount that this water-soluble thickener dissolves in 100 g of water at 25 ° C. may be 1 to 300 g, 3 to 250 g, or 5 to 200 g.
  • water-soluble thickener examples include hydroxyalkyl celluloses such as hydroxyethyl cellulose (HEC) and hydroxypropyl cellulose (HPC); hydroxyalkylalkyl celluloses such as hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose and hydroxyethyl ethyl cellulose; carboxymethyl cellulose and the like Carboxyalkyl cellulose; carboxyalkyl hydroxyalkyl cellulose such as carboxymethyl hydroxyethyl cellulose.
  • HEC hydroxyethyl cellulose
  • HPC hydroxypropyl cellulose
  • carboxymethyl cellulose and the like Carboxyalkyl cellulose
  • carboxyalkyl hydroxyalkyl cellulose such as carboxymethyl hydroxyethyl cellulose.
  • the water-soluble thickener may be at least one compound selected from hydroxyalkylcellulose, hydroxyalkylalkylcellulose and carboxyalkylhydroxyalkylcellulose, and may be hydroxyethylcellulose and hydroxypropylcellulose. . Hydroxyethyl cellulose and hydroxypropyl cellulose have high solubility in an aqueous liquid, can easily develop the thickening effect of the aqueous liquid, and can further reduce the amount of residual volatile components of the water-absorbent resin particles.
  • a water-soluble thickener may be used independently, respectively, and may be used in combination of 2 or more type.
  • the amount of the water-soluble thickener when the aqueous liquid contains a water-soluble thickener is not particularly limited. For example, 0.05 to 20 parts by mass with respect to 100 parts by mass of the water-soluble ethylenically unsaturated monomer 0.2 to 10 parts by mass, 0.4 to 5 parts by mass, or 0.6 to 3 parts by mass.
  • the amount of the water-soluble thickener in the aqueous liquid is 0.05 parts by mass or more, a higher thickening effect tends to be obtained.
  • the amount of the water-soluble thickener is 20 parts by mass or less, an effect corresponding to the amount tends to be obtained, which is economical.
  • the viscosity of the aqueous liquid becomes more than a certain level, and the separation of the aqueous droplets in the W / O type reverse phase suspension is performed. It is thought that the unity is stabilized. More specifically, by applying a certain level of viscosity to the aqueous droplets using a water-soluble thickener, the frequency of inclusion of the hydrocarbon dispersion medium in the aqueous droplets when the aqueous droplets collide with each other is reduced. This is presumably because the formation of the O / W / O type structure is suppressed.
  • the concentration of the water-soluble ethylenically unsaturated monomer in the aqueous liquid is the sum of the aqueous liquid (eg, aqueous solvent, water-soluble ethylenically unsaturated monomer, hydrophilic polymer dispersant, and water-soluble thickener). ) Can be adjusted within the same range as in manufacturing method 1.
  • the hydrophilic polymer dispersant is not used, the total amount of the aqueous solvent, the water-soluble ethylenically unsaturated monomer, and optionally the water-soluble thickener is regarded as the mass of the aqueous liquid, and the water-soluble ethylenically unsaturated monomer is used.
  • the concentration of the mass can be set.
  • an aqueous solvent contained in the aqueous liquid, a water-soluble ethylenically unsaturated monomer and a radical polymerization initiator, a hydrocarbon dispersion medium contained in the oily liquid, a surfactant, and other various additives are The same types of compounds as described above in production method 1 can be used in amounts in the same range.
  • polymerization, post-crosslinking, drying and the like in production method 2 can be performed by the same method as in production method 1.
  • the water-absorbent resin particles according to the above-described embodiment can be obtained.
  • the water-absorbent resin particles have a low residual volatile component amount while having an appropriately sized particle diameter and an excellent water absorption rate.
  • Production method 3 includes the following first polymerization step and second polymerization step.
  • first polymerization step an oily liquid containing a hydrocarbon dispersion medium and a surfactant having an HLB of 6 or more, a first aqueous liquid containing an aqueous solvent, a water-soluble ethylenically unsaturated monomer, and a radical polymerization initiator
  • a suspension containing a water-containing gel-like polymer by polymerizing a water-soluble ethylenically unsaturated monomer in a suspension in which a droplet-like first aqueous liquid is dispersed in an oily liquid Obtain a liquid.
  • second polymerization step a suspension of 45 ° C.
  • the hydrogel polymer and a second aqueous liquid containing an aqueous solvent, a water-soluble ethylenically unsaturated monomer and a radical polymerization initiator are mixed.
  • the water-soluble ethylenically unsaturated monomer is polymerized in the suspension in which the droplet-shaped second aqueous liquid is dispersed.
  • the polymerization in the first polymerization step and the second polymerization step is a W / O type reverse phase in which an oily liquid (O) containing a hydrocarbon dispersion medium is used as a continuous phase and an aqueous liquid (W) containing water is used as a discontinuous phase. Suspension polymerization.
  • the first aqueous liquid contains an aqueous solvent containing water, a water-soluble ethylenically unsaturated monomer, a radical polymerization initiator, and optionally various additives.
  • the aqueous solvent is mainly composed of water and may contain other hydrophilic solvent.
  • the concentration of the water-soluble ethylenically unsaturated monomer in the first aqueous liquid is determined by the mass of the first aqueous liquid (aqueous solvent, water-soluble ethylenically unsaturated monomer, hydrophilic polymer dispersant, and water
  • the amount may be in the range of 20% by mass to a saturation concentration or less based on the total amount of the thickener.
  • the above concentration is 25 to 50% by mass, It may be 30 to 45% by mass, or 35 to 42% by mass.
  • an aqueous solvent contained in the first aqueous liquid a water-soluble ethylenically unsaturated monomer and a radical polymerization initiator, a hydrocarbon dispersion medium contained in the oily liquid, and a surfactant
  • the first aqueous liquid may contain a hydrophilic polymer dispersant, a water-soluble thickener, a chain transfer agent, and the like, similar to the aqueous liquid in the production methods 1 and 2.
  • the polymerization in the first polymerization step is performed by the same method as the polymerization in Production Method 1.
  • the production method 3 may further include an intermediate crosslinking step for crosslinking the hydrated gel polymer before the second polymerization step.
  • the intermediate crosslinking of the hydrated gel polymer is performed, for example, by mixing and heating the hydrated gel polymer and the intermediate crosslinking agent.
  • the intermediate crosslinking agent those similar to the post-crosslinking agent described in the production method 1 are used.
  • the amount of the intermediate crosslinking agent to be mixed is, for example, 0.0001 to 0.03 mol, 0.0005 to 100 mol of the water-soluble ethylenically unsaturated monomer used to form the hydrogel polymer. It may be 0.02 mol, 0.001 to 0.015 mol, or 0.001 to 0.01 mol.
  • the mixing amount of the intermediate crosslinking agent is 0.0001 mol or more, absorption of the water-soluble ethylenically unsaturated monomer in the second aqueous liquid into the hydrogel polymer after the intermediate crosslinking step is suppressed. There is a tendency that a decrease in water absorption rate and swelling performance can be suppressed.
  • the reaction temperature of the intermediate crosslinking reaction may be 60 ° C. or higher, or 70 ° C. to the boiling temperature of the hydrocarbon dispersion medium in the first polymerization.
  • the reaction time of the intermediate cross-linking reaction varies depending on the reaction temperature, the type and amount of the intermediate cross-linking agent, and cannot be determined unconditionally, but is usually 1 to 200 minutes, 5 to 100 minutes or 10 to 60 minutes. It may be.
  • the second polymerization may be performed a plurality of times.
  • the number of times when the second polymerization is performed a plurality of times may be two or more, and may be two or three times from the viewpoint of increasing productivity while reducing the amount of residual volatile components.
  • the suspension containing the hydrogel polymer obtained after the polymerization in the first polymerization step is cooled as necessary and adjusted to 45 ° C. or higher.
  • the suspension may be adjusted to 50-100 ° C, 55-90 ° C, 60-85 ° C, or 65-80 ° C.
  • the suspension containing the hydrogel polymer is mixed with an aqueous solvent, a second aqueous liquid containing a water-soluble ethylenically unsaturated monomer and a radical polymerization initiator, and the second aqueous liquid is mixed. Dispersed into droplets.
  • the temperature of the suspension at the time when mixing is completed may be 35 ° C. or higher, 40 to 90 ° C., 45 to 85 ° C., or 50 to 80 ° C.
  • Examples of the water-soluble ethylenically unsaturated monomer aqueous solution and the radical polymerization initiator contained in the second aqueous liquid include the same types of compounds as those described above in the description of the first aqueous liquid, in the same range. Can be used in quantities.
  • the first and second aqueous liquids may be composed of the same monomer or the like, or may be composed of different monomers or the like.
  • the water-soluble ethylenically unsaturated monomer is, for example, 20 to 250 parts by mass with respect to 100 parts by mass of the water-soluble ethylenically unsaturated monomer contained in the first aqueous liquid. It is contained in the second aqueous liquid in a proportion of 40 to 200 parts by mass or 60 to 150 parts by mass.
  • the amount of the water-soluble ethylenically unsaturated monomer used in the second aqueous liquid is 20 parts by mass or more, the amount of residual volatile components in the resulting water-absorbent resin particles tends to be further reduced. Is 250 parts by mass or less, there is a tendency that the particle diameter of the water-absorbent resin particles obtained can be suppressed from becoming excessive.
  • the concentration of the water-soluble ethylenically unsaturated monomer in the second aqueous liquid in the second polymerization step is determined from the mass of the second aqueous liquid (aqueous solvent, water-soluble ethylenically unsaturated monomer) from the viewpoint of improving productivity.
  • the total amount of the monomer, the hydrophilic polymer dispersant and the water-soluble thickener) is, for example, 1% by mass or more, 2 to 25% by mass, 3 to 20% by mass than the concentration in the first polymerization step. Or 4 to 15% by mass.
  • the water-soluble ethylenically unsaturated monomer and the radical polymerization initiator can be performed under the same conditions as the first polymerization.
  • the water-soluble ethylenically unsaturated monomer is polymerized to further produce a particulate hydrogel polymer.
  • the polymer (hydrogel polymer) obtained in the polymerization step can be obtained in various forms such as a spherical shape, a granular shape, a crushed shape, a confetti shape, and an aggregate thereof.
  • the hydrogel polymer may be granular or granular having many protrusions on the surface.
  • the production method 3 it is possible to improve the productivity of the water-absorbent resin particles by performing reverse phase suspension polymerization twice or more in one process. Surprisingly, it is possible to greatly reduce the amount of residual volatile components of the water-absorbent resin particles obtained.
  • the second polymerization is performed with the suspension subjected to the first polymerization, there is usually a concern about the adverse effect on the particle diameter and water absorption performance of the water-absorbent resin particles. According to the present invention, it has been found that it is possible to improve water absorption performance, productivity and reduce the amount of residual volatile components.
  • the mechanism for reducing the amount of residual volatile components by carrying out the second polymerization is not clear, the water-containing gel-like polymer obtained by the first polymerization is present when the second polymerization is carried out.
  • the frequency that the hydrocarbon dispersion medium is included in the aqueous droplets when the aqueous droplets collide with each other is reduced. This is presumably because the formation of the O / W / O type structure is suppressed.
  • the production method 3 may further include a post-crosslinking step of cross-linking the hydrogel polymer obtained in the final (second) polymerization step.
  • Production method 3 is a mass percentage of water in the water-containing gel-like polymer when the component (polymer solid content) derived from the water-soluble ethylenically unsaturated monomer in the water-containing gel-like polymer is 100% by mass (
  • a primary drying step in which the water content of the hydrogel polymer is adjusted to, for example, 20 to 130% by mass may be provided before the post-crosslinking step.
  • the post-crosslinking of the hydrogel polymer is performed, for example, by mixing and heating the hydrogel polymer and the postcrosslinking agent.
  • the post-crosslinking agent the same post-crosslinking agent as described in Production Method 1 is used.
  • the intermediate crosslinking agent and the postcrosslinking agent may be the same or different.
  • the amount of the post-crosslinking agent to be mixed is, for example, 0.0001 to 1 mol, 0.0005 to 0 with respect to 100 mol of the water-soluble ethylenically unsaturated monomer used to produce the hydrogel polymer. It may be 0.5 mol, 0.001 to 0.1 mol, or 0.005 to 0.05 mol.
  • the mixing amount of the post-crosslinking agent is 0.0001 mol or more, the effect of crosslinking is exhibited, and the water-absorbing resin particle surface at the time of water absorption does not become viscous, and the water absorption rate of the water-absorbing resin particles is further improved. There is a tendency to be able to. If the mixing amount of the post-crosslinking agent is 1 mol or less, crosslinking does not become excessive, and the water absorption performance of the water absorbent resin particles tends to be further improved.
  • the mixing of the hydrogel polymer and the post-crosslinking agent can be performed after adjusting the moisture content of the hydrogel polymer to a specific range (primary drying step).
  • the postcrosslinking reaction can be caused to proceed more suitably.
  • the water content of the hydrogel polymer used in the post-crosslinking step is, for example, 20 to 130% by mass, 25 to 110% by mass, 30 to 90% by mass, 35 to 80% by mass, or 40 to 70% by mass. There may be. By setting the moisture content of the hydrogel polymer within these ranges, it is possible to further improve the water absorption performance by the post-crosslinking reaction while shortening the primary drying step and increasing the production efficiency.
  • the water content of the hydrogel polymer is the amount obtained by subtracting the amount of water extracted externally by the primary drying step from the amount of water contained in the first and second aqueous liquids before polymerization (of the primary dry gel).
  • the water-containing gel polymer is calculated by calculating the water content of the water-containing polymer as the sum of the water content used as needed when mixing the intermediate crosslinking agent and post-crosslinking agent with the water content). It can obtain
  • the mass of the component derived from the water-soluble ethylenically unsaturated monomer constituting the hydrogel polymer is calculated from the total mass of the water-soluble ethylenically unsaturated monomer used in the polymerization reaction as the theoretical polymer solid content. , Calculated.
  • water may be added as a solvent for dissolving the post-crosslinking agent in order to uniformly disperse the post-crosslinking agent, and a hydrophilic solvent is added.
  • a hydrophilic solvent include lower alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol, ketones such as acetone and methyl ethyl ketone, ethers such as dioxane and tetrahydrofuran, amides such as N, N-dimethylformamide, and the like.
  • sulfoxides such as dimethyl sulfoxide.
  • the mass ratio between the amount of water in the primary dry gel and the amount of solvent added is, for example, 100 from the viewpoint of uniformly dispersing the postcrosslinker while rationally shortening the drying step and improving the economics of the process. It may be 0 to 60:40, 99: 1 to 70:30, 98: 2 to 80:20, or 98: 2 to 90:10.
  • the reaction temperature of the post-crosslinking reaction may be, for example, 60 ° C. or higher, 70 to 200 ° C., or 80 to 150 ° C.
  • the reaction temperature is 60 ° C. or higher, the crosslinking reaction is promoted, and there is a tendency that excessive time is not required for the reaction.
  • the reaction temperature is 200 ° C. or lower, deterioration of water-absorbent resin particles obtained, water absorption There is a tendency to suppress a decrease in performance.
  • the reaction time of the post-crosslinking reaction varies depending on the reaction temperature, the type and amount of the post-crosslinking agent, and cannot be determined unconditionally, but it may usually be 1 to 300 minutes or 5 to 200 minutes.
  • the production method 3 may include a secondary drying step of removing water, hydrocarbon dispersion medium, and the like by distillation by applying energy such as heat from the outside after the post-crosslinking reaction. By performing such secondary drying, there is a tendency that water-absorbing resin particles having further excellent fluidity can be obtained.
  • the method of secondary drying is not particularly limited.
  • a mixture of resin particles after being dispersed in a hydrocarbon dispersion medium and then subjected to a crosslinking reaction is distilled to simultaneously remove moisture and the hydrocarbon dispersion medium.
  • examples thereof include a method, (b) a method in which resin particles are taken out by decantation and dried under reduced pressure, and (c) a method in which resin particles are filtered off by a filter and dried under reduced pressure.
  • the method of (a) is employable from the simplicity in a manufacturing process.
  • the water absorbent resin particles according to the above-described embodiment can be obtained.
  • the water-absorbent resin particles have a low residual volatile component amount while having an appropriately sized particle diameter and an excellent water absorption rate.
  • the absorber, absorbent article, water-stopping material, and the like described below can be obtained.
  • the absorber according to the present embodiment includes the water-absorbing resin particles and hydrophilic fibers.
  • the hydrophilic fiber include cellulose fibers such as cotton-like pulp and chemical pulp, and artificial cellulose fibers such as rayon and acetate.
  • the absorbent body may further contain synthetic fibers made of a synthetic resin such as polyamide, polyester, or polyolefin as a reinforcing agent.
  • the structure of the absorber include a mixing structure in which water-absorbing resin particles and hydrophilic fibers are uniformly blended, a sandwich structure in which water-absorbing resin particles are held between a plurality of layers of hydrophilic fibers, and water-absorbing resin particles.
  • Examples include a structure in which hydrophilic fibers are wrapped with a water-permeable sheet such as tissue paper or nonwoven fabric.
  • the absorber of this embodiment is not limited only to this illustration.
  • the amount of the water-absorbent resin particles used in the absorber may be, for example, 5 to 80% by mass, 10 to 70% by mass, or 15 to 60% by mass based on the mass of the absorber.
  • the amount of the water-absorbent resin particles used is 5% by mass or more, there is a tendency that the absorption capacity of the absorber is increased and liquid leakage and reversion can be suppressed.
  • the amount of the water-absorbent resin particles used is 80% by mass or less, the cost of the absorbent body can be kept low, and the feel of the absorbent body can be suppressed from becoming hard.
  • FIG. 1 is a cross-sectional view showing an embodiment of an absorbent article.
  • the absorbent article 30 according to this embodiment includes a liquid permeable sheet 10, a liquid impermeable sheet 20, and an absorber 15.
  • the absorbent body 15 includes a hydrophilic fiber layer 13 formed of hydrophilic fibers and water-absorbing resin particles 5 arranged in the hydrophilic fiber layer 13.
  • the absorber 15 is disposed between the liquid permeable sheet 10 and the liquid impermeable sheet 20 that are disposed to face each other.
  • the thickness of the absorber 15 may be, for example, 0.1 to 10 mm.
  • absorbent articles include paper diapers, incontinence pads, sanitary napkins, pet sheets, food drip sheets, and the like.
  • the water-absorbent resin particles according to the present embodiment include specific sanitary materials such as big diapers for children, diapers for children, diapers for adults, incontinence pads, and many daily napkins, pet sheets, and simple toilets. Can be used for etc.
  • a liquid-permeable sheet is distribute
  • seat is distribute
  • liquid permeable sheet examples include a nonwoven fabric made of a synthetic resin such as polyethylene, polypropylene, polyester, and polyamide, and a porous synthetic resin sheet.
  • liquid impermeable sheet examples include a sheet made of a synthetic resin such as polyethylene, polypropylene, and polyvinyl chloride, and a sheet made of a composite material of these synthetic resins and a nonwoven fabric. Since the sizes of the liquid permeable sheet and the liquid impermeable sheet differ depending on the application of the absorbent article or the like, they cannot be determined unconditionally. Accordingly, the size is appropriately adjusted according to the use of the absorbent article.
  • FIG. 2 is a cross-sectional view showing an embodiment of a water blocking material.
  • the water blocking material 40 according to the present embodiment includes a first liquid permeable sheet 11, a second liquid permeable sheet 12, and water absorbent resin particles 5.
  • the water absorbent resin particles 5 are disposed between the first liquid permeable sheet 11 and the second liquid permeable sheet 12 that are disposed to face each other.
  • the water absorbent resin particles 5 may be sandwiched between the first liquid permeable sheet 11 and the second liquid permeable sheet 12 which are arranged to face each other.
  • the water blocking material may include three or more liquid permeable sheets. In this case, the water-absorbent resin particles may be disposed between at least one pair of liquid-permeable resin sheets disposed adjacent to each other.
  • the water absorbent resin particles 5 may be arranged at a rate of 30 to 500 g / m 2 or 100 to 300 g / m 2 when viewed from the thickness direction of the water blocking material 40.
  • the thickness of the first liquid permeable sheet 11 and the second liquid permeable sheet 12 may be, for example, 0.05 to 6 mm.
  • the waterstop material according to the present embodiment is obtained, for example, by disposing a plurality of water-absorbing resin particles between a first liquid-permeable sheet and a second liquid-permeable sheet that are disposed to face each other. It is done. Specifically, the water absorbent resin particles can be formed into a sheet by fixing the water absorbent resin particles to the liquid permeable sheet using an adhesive.
  • the water stop material according to the present embodiment is used, for example, to wind and protect the center portion of a power cable or an optical communication cable. The water stop material absorbs moisture leaked from the cracks that have occurred due to deterioration of external materials, and also prevents water from reaching the center of the cable by swelling and generating pressure in the cable. Can do.
  • the same one as in the case of the absorbent article is used.
  • the adhesive include rubber adhesives such as natural rubber, butyl rubber and polyisoprene; styrene elastomers such as styrene-isoprene block copolymer (SIS) and styrene-butadiene block copolymer (SBS).
  • Adhesive ethylene-vinyl acetate copolymer (EVA) adhesive; ethylene-acrylic acid derivative copolymer adhesive such as ethylene-ethyl acrylate copolymer (EEA); ethylene-acrylic acid copolymer (EAA) Adhesives; Polyamide adhesives such as copolymer nylon; Polyolefin adhesives such as polyethylene and polypropylene; Polyester adhesives such as polyethylene terephthalate (PET) and copolymerized polyester; and acrylic adhesives.
  • EVA ethylene-vinyl acetate copolymer
  • EAA ethylene-acrylic acid derivative copolymer adhesive
  • EAA ethylene-acrylic acid copolymer
  • Adhesives Adhesives
  • Polyamide adhesives such as copolymer nylon
  • Polyolefin adhesives such as polyethylene and polypropylene
  • Polyester adhesives such as polyethylene terephthalate (PET) and copolymerized polyester
  • acrylic adhesives such as polyethylene
  • Residual Volatile Component Amount The residual volatile component amount in the present invention is used when synthesizing the water-absorbent resin particles, and is calculated from the amount of the hydrocarbon dispersion medium taken into the particles.
  • the hydrocarbon dispersion medium taken into the interior at the time of synthesis is hardly released to the outside because it is firmly shielded inside the resin even in a dry state.
  • the resin particles absorb water and form a gel, a part of the residual volatile component amount is released.
  • the amount of residual volatile components derived from the hydrocarbon dispersion medium remaining in the water-absorbent resin particles was measured as follows.
  • the amount of the hydrocarbon dispersion medium in the gas volatilized when a mixed liquid of dimethylformamide (DMF) and 25% by mass phosphoric acid aqueous solution and water-absorbing resin particles was heated at 110 ° C. was measured, and the measured value was absorbed in water.
  • the value converted per 1 g of the conductive resin particles was defined as the residual volatile component amount. The specific procedure is shown below.
  • standard solution 3 is obtained by diluting standard solution 2 in half
  • standard solution 4 is obtained by diluting standard solution 3 in half
  • standard solution 4 is similarly diluted in half.
  • a standard solution 5 was obtained.
  • the amount of the hydrocarbon dispersion medium contained in the water-absorbent resin particles (0.10 g of a precisely measured value) was calculated.
  • a value obtained by converting the calculated value per 1 g of water-absorbent resin particles was defined as a residual volatile component amount (% by mass).
  • Device GC-2014 (manufactured by Shimadzu Corporation) Headspace autosampler: HT200H (manufactured by Hamilton Company) Filler: Squalane 25% Shimalite (NAW) (101) 80-100 mesh Column: 3.2mm ⁇ ⁇ 2.1m Column temperature: 80 ° C Inlet temperature: 180 ° C Detector temperature: 180 ° C Detector: FID Carrier gas: N 2 Vial heating temperature: 110 ° C Syringe set temperature: 130 ° C
  • Odor sensory test (6-level odor intensity display method)
  • the odor derived from the hydrocarbon dispersion medium during swelling of the water-absorbent resin particles was evaluated by the following method. 20.0 g of a 0.9 mass% sodium chloride aqueous solution (hereinafter referred to as physiological saline) at 25 ° C. was added to a glass container with a lid (mayonnaise bottle) having an internal volume of 140 mL, and a rotor having a length of 3 cm was added and stirred. 2.0 g of water absorbent resin particles was added to the glass container and sealed. The odor derived from the hydrocarbon dispersion medium in the glass container was determined by five analysts according to the evaluation criteria shown in Table 1, and the average value was taken as the odor evaluation result.
  • physiological saline 0.9 mass% sodium chloride aqueous solution
  • a JIS standard sieve has an opening of 850 ⁇ m, an opening of 600 ⁇ m, an opening of 500 ⁇ m, an opening of 425 ⁇ m, an opening of 300 ⁇ m, an opening of 250 ⁇ m, an opening of 150 ⁇ m. Combined in order of sieve and saucer.
  • the water-absorbing resin particles were put in a sieve located at the uppermost stage and classified by shaking for 20 minutes using a low-tap shaker. After classification, the mass of the water-absorbent resin particles remaining on each sieve is calculated as a percentage by mass with respect to the total amount, and by integrating in order from the larger particle diameter, the water-absorbent resin particles remaining on the sieve and the sieve The relationship between the mass percentage and the integrated value was plotted on a logarithmic probability paper. By connecting the plots on the probability paper with a straight line, the particle diameter corresponding to an integrated mass percentage of 50 mass% was defined as the median particle diameter.
  • krypton gas as an adsorption gas with a high-precision fully automatic gas adsorption device (trade name: BELSORP36, manufactured by Nippon Bell Co., Ltd.), and a specific surface area is obtained from a multipoint BET plot. Asked.
  • the powder handling property of the water-absorbent resin particles was visually evaluated by five analysts according to the following criteria. The evaluation selected by three or more analysts was defined as the powder handling property of the water-absorbent resin particles. Good: Less dusting. Fluidity is moderate, and operations such as weighing and cleaning are easy. Defect: Much powdered. Since the fluidity is low, operations such as weighing and cleaning are difficult.
  • the swelling performance is measured as follows using an apparatus for measuring the swelling performance.
  • a schematic diagram of an apparatus for measuring swelling performance is shown in FIG.
  • the apparatus X for measuring the swelling performance shown in FIG. 3 includes a moving distance measuring device 1, a concave circular cup 2, a plastic convex circular cylinder 3, and a nonwoven fabric 4 (liquid permeable nonwoven fabric having a basis weight of 12 g / m 2. ).
  • the swelling performance measuring device X has a sensor (lower part of the moving distance measuring device 1) that can measure the displacement of the distance by the laser beam 6 in units of 0.01 mm.
  • a predetermined amount of water-absorbent resin particles 5 can be uniformly dispersed in the concave circular cup 2.
  • the convex circular cylinder 3 can uniformly apply a load of 90 g to the water absorbent resin particles 5.
  • 0.2 g of the sample (water absorbent resin particles 5) was uniformly sprayed on the concave circular cup 2, and the nonwoven fabric 4 was laid thereon.
  • the convex circular cylinder 3 was placed gently on the nonwoven fabric 4 and installed so that the laser beam 6 of the sensor of the moving distance measuring device 1 was at the center of the convex portion of the convex circular cylinder 3.
  • 130 g of ion-exchanged water previously adjusted to 20 ° C. was put into the concave circular cup 2, and the distance at which the water-absorbent resin particles 5 swelled and pushed up the convex circular cylinder 3 was measured.
  • the moving distance of the convex circular cylinder 3 after 1 minute and 10 minutes from the start of water absorption was defined as initial swelling performance (1 minute value) and equilibrium swelling performance (10 minute value). And the ratio (initial swelling ratio) of the initial swelling performance (1 minute value) with respect to the equilibrium swelling performance (10 minute value) was calculated.
  • Viscosity of aqueous liquid The viscosity of the aqueous liquid is measured using a Brookfield rotational viscometer (LVDV-I) under the conditions of a spindle rotation speed of 60 rpm and 20 ° C., and is calculated as an average value of two measurements. Is done. Specifically, 150 mL of an aqueous liquid was added to a cylindrical viscosity measuring glass container having an internal volume of 170 mL, and immersed in a constant temperature water bath adjusted to 20 ° C. for 30 minutes or more, so that the temperature of the aqueous liquid was 20 ° C.
  • LVDV-I Brookfield rotational viscometer
  • the viscosity of the aqueous liquid was measured twice by reading the scale value after 5 minutes from the start of rotation at a spindle speed of 60 rpm.
  • the viscosity at 20 ° C. of the aqueous liquid was determined by multiplying the average value of the measurement results by a coefficient corresponding to the spindle type.
  • the spindle was appropriately selected according to the viscosity of the aqueous liquid to be measured.
  • Example 1 Round bottom cylindrical separable with an inner diameter of 100 mm equipped with a reflux condenser, a dropping funnel, a nitrogen gas inlet tube, and a stirring blade (coated with fluororesin on the surface) having two inclined paddle blades with a blade diameter of 50 mm in two stages A flask (hereinafter referred to as a round bottom flask) was prepared.
  • n-heptane a hydrocarbon dispersion medium
  • sorbitan monolaurate manufactured by NOF Corporation, trade name Nonion LP-20R; HLB8.6
  • the surfactant was dissolved in n-heptane.
  • aqueous liquid was prepared by adding 10 g (0.00037 mol) and dissolving. This aqueous liquid had a polymer solid content of 91 g and a water content of 148.6 g.
  • the whole amount of the aqueous liquid was added to the round bottom flask while stirring at a rotation speed of 700 rpm. After replacing the system with nitrogen for 30 minutes, the round bottom flask was immersed in a 70 ° C. water bath to raise the temperature of the system, and the polymerization reaction was carried out for 1 hour to obtain a hydrogel polymer.
  • n-heptane was evaporated at 120 ° C. and dried (secondary drying step) to obtain 89.2 g of granular water-absorbing resin particles.
  • Example 2 660 mL of n-heptane was added as a hydrocarbon dispersion medium to a round bottom flask having the same configuration as in Example 1, and sorbitan monolaurate (trade name Nonion LP-20R; HLB8.6, manufactured by NOF Corporation) as a surfactant 1 .10 g was added, the temperature was raised to 45 ° C., and the surfactant was dissolved in n-heptane.
  • sorbitan monolaurate trade name Nonion LP-20R; HLB8.6, manufactured by NOF Corporation
  • hydroxyethyl cellulose manufactured by Sumitomo Seika Co., Ltd., trade name AW-15F
  • 0.10 g (0.00037 mol) of potassium persulfate as a radical polymerization initiator are dissolved in a beaker.
  • An aqueous liquid was prepared. This aqueous liquid had a viscosity at 20 ° C. of 40 mPa ⁇ s, a polymer solid content of 91 g, and a water content of 148.6 g.
  • the whole amount of the aqueous liquid was added to the round bottom flask while stirring at a rotation speed of 700 rpm. After replacing the system with nitrogen for 30 minutes, the round bottom flask was immersed in a 70 ° C. water bath to raise the temperature of the system, and the polymerization reaction was carried out for 1 hour and 30 minutes to obtain a hydrogel polymer.
  • Example 3 580 mL of n-heptane as a hydrocarbon dispersion medium was added to a round bottom flask having the same configuration as in Example 1, and sorbitan monolaurate (trade name Nonion LP-20R; HLB8.6, manufactured by NOF Corporation) as a surfactant was used. .97 g was added, the temperature was raised to 45 ° C., and the surfactant was dissolved in n-heptane.
  • sorbitan monolaurate trade name Nonion LP-20R; HLB8.6, manufactured by NOF Corporation
  • the whole amount of the first aqueous liquid was added to the round bottom flask while stirring at a rotation speed of 700 rpm. After replacing the system with nitrogen for 30 minutes, the round bottom flask was immersed in a 70 ° C. water bath to raise the temperature of the system, and the polymerization reaction was carried out for 1 hour to obtain a hydrogel polymer (first) Polymerization step). After the polymerization, 0.36 g (0.000042 mol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added as an intermediate crosslinking agent, and a crosslinking reaction was performed at 75 ° C. for 30 minutes (intermediate crosslinking step).
  • the suspension after completion of the crosslinking reaction with the intermediate crosslinking agent was cooled to 70 ° C. with stirring at a rotation speed of 1000 rpm.
  • the inside of the system was replaced with nitrogen gas for 30 minutes while maintaining the inside temperature at the temperature (55 ° C.) when the dropping was completed.
  • the round bottom flask was immersed in a 70 ° C. water bath to raise the temperature of the system, and then polymerization was carried out for 1 hour (second polymerization step) to obtain a hydrogel polymer.
  • the moisture content of the hydrogel polymer after primary drying was 40% by mass. After preparing a mixture containing a post-crosslinking agent, the mixture was held at about 80 ° C. for 2 hours (post-crosslinking step).
  • n-heptane was evaporated at 120 ° C. and dried (secondary drying step) to obtain 161.3 g of granular water-absorbing resin particles.
  • Example 4 The same as in Example 3 except that 0.81 g of polyvinyl alcohol (trade name GH-20, manufactured by Nippon Synthetic Chemical Co., Ltd .; mass average molecular weight of about 1300000, saponification degree 88) was further added to the aqueous liquid in the first polymerization step. Operation was performed to obtain 160.8 g of granular water-absorbing resin particles. The moisture content of the hydrogel polymer after primary drying (during post-crosslinking) was 40% by mass.
  • polyvinyl alcohol trade name GH-20, manufactured by Nippon Synthetic Chemical Co., Ltd .; mass average molecular weight of about 1300000, saponification degree 88
  • Patent Document 2 conforming to Example 6 of JP-A-56-131608
  • sorbitan monolaurate manufactured by NOF Corporation, Nonion, Ltd.
  • the whole amount of the aqueous liquid was added to the four-necked round bottom flask while stirring at a rotation speed of 700 rpm. After sufficiently replacing the inside of the system with nitrogen, the four-necked round bottom flask was immersed in a water bath at 55 to 60 ° C. to raise the temperature in the system, and a polymerization reaction was carried out for 3 hours. After the polymerization, 0.1 g (0.00057 mol) of ethylene glycol diglycidyl ether was added as a post-crosslinking agent, and then water and cyclohexane were removed by distillation and dried to obtain 48.3 g of fine granular water-absorbent resin particles. Obtained.
  • Patent Document 3 based on Example 1 of JP-A-9-1512244
  • n-heptane was added as a hydrocarbon dispersion medium, and sorbitan monolaurate (trade name Nonion LP-20R, manufactured by NOF Corporation, HLB 8.6 as a surfactant). 0.97 g was added, the temperature was raised to 50 ° C., and the surfactant was dissolved in n-heptane. Thereafter, the internal temperature of the round bottom flask was cooled to 30 ° C.
  • the whole amount of the aqueous liquid in the Erlenmeyer flask is added to the four-necked flask and dispersed, and the system is replaced with nitrogen. Then, the four-necked flask is immersed in a 70 ° C. water bath and the system is elevated. The polymerization reaction was carried out for 3 hours. After the polymerization, water and n-heptane were removed by distillation and dried to obtain 115.7 g of water absorbent resin particles.
  • Carbonization was performed on a 5-liter cylindrical round bottom flask (hereinafter referred to as a round bottom flask) having an internal volume of 2 L equipped with a stirrer, thermometer, reflux condenser and nitrogen gas introduction tube equipped with a two-stage inclined paddle blade having a blade diameter of 50 mm.
  • 334 g of n-heptane was added as a hydrogen dispersion medium, and the mixture was heated to 61 ° C.
  • the whole amount of the first aqueous liquid was added at once with a funnel at a stirring speed of 500 rpm, and the aqueous liquid was dispersed by stirring at an internal temperature of 40 ° C. for 10 minutes.
  • sucrose fatty acid ester Mitsubishi Chemical Foods, Inc., trade name: S-370; HLB3.0
  • n-heptane a hydrocarbon dispersion medium
  • the system was sufficiently purged with nitrogen while maintaining the internal temperature of the round bottom flask at 40 ° C., and then heated for 1 hour using a 70 ° C. water bath to conduct a polymerization reaction (first polymerization step).
  • the stirring speed was 1000 rpm, and the internal temperature of the round bottom flask was cooled to around 21 ° C.
  • the whole amount of the second aqueous liquid is added to the cooled suspension after the first polymerization step with a dropping funnel, and the inside of the system is sufficiently purged with nitrogen, and then the round bottom flask is placed in a 70 ° C. water bath. Immersion was performed and the system was heated for 1 hour to carry out a polymerization reaction (second polymerization step).
  • the above round bottom flask is immersed in an oil bath at 120 ° C. to heat the suspension, and 260 g of water is removed from the system by refluxing n-heptane by azeotropic distillation. did.
  • a dehydrated polymer dispersed in n-heptane was obtained.
  • 8.2 g (0.00094 mol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added as a post-crosslinking agent, and a post-crosslinking reaction was performed at about 80 ° C. for 2 hours. .
  • the round bottom flask is immersed in an oil bath at 120 ° C., the suspension is heated, n-heptane and water are removed out of the system by distillation, and then dried under a nitrogen stream, whereby spherical particles are aggregated. 234 g of a water-absorbent resin particle was obtained.
  • the white water-containing gel-like polymer thus obtained contained a large number of fine bubbles uniformly.
  • the hydrogel polymer was cut to about 10 mm, spread on a 300 ⁇ m wire net, and dried with hot air at 150 ° C. for 60 minutes.
  • the dried product was pulverized using a metal blender and further classified with an 850 ⁇ m mesh to obtain a water absorbent resin precursor.
  • a round bottom cylindrical separable flask (hereinafter referred to as a round bottom flask) having an inner diameter of 100 mm equipped with a stirring blade, and while stirring the resin, 0.045 g of ethylene glycol diglycidyl ether and water
  • the aqueous crosslinking agent solution mixed with 1.2 g and ethyl alcohol 0.3 g was sprayed.
  • the obtained mixture was further heat-treated at 180 ° C. for 30 minutes in an oil bath to obtain water absorbent resin particles.
  • each of the water-absorbent resin particles obtained in Examples 1 to 4 has an appropriate particle size, a high water absorption rate, a small amount of residual volatile components, and an odor after water absorption. I understand that there are few. Further, the water-absorbent resin particles obtained in Examples 1 to 4 all had good handling properties. On the other hand, it can be seen that the water-absorbent resin particles obtained in Comparative Examples 1 to 4 cannot sufficiently satisfy these performances. It is due to the remaining surface cross-linking agent and the residue of the organic solvent used for dispersion that the resin particles (Comparative Example 4) of the aqueous solution polymerization that do not take up the hydrocarbon dispersion medium during the polymerization also feel a certain odor. Inferred.
  • Example 5 530 mL of n-heptane as a hydrocarbon dispersion medium was added to a round bottom flask having the same configuration as that of Example 1, and sorbitan monolaurate as a surfactant (trade name Nonion LP-20R manufactured by NOF Corp .; HLB 8.6). 1.65 g was added and the temperature was raised to 45 ° C. to dissolve the surfactant.
  • the whole amount of the first aqueous liquid was added to the round bottom flask while stirring at a rotation speed of 500 rpm. After replacing the system with nitrogen for 30 minutes, the round bottom flask was immersed in a 70 ° C. water bath to raise the temperature of the system, and the polymerization reaction was carried out for 1 hour to obtain a hydrogel polymer (first) Polymerization step). After the polymerization, 1.24 g (0.00014 mol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added as an intermediate crosslinking agent, and a crosslinking reaction was performed at 75 ° C. for 30 minutes (intermediate crosslinking step).
  • the suspension after the crosslinking reaction with the intermediate crosslinking agent was cooled to 65 ° C. while stirring at a rotation speed of a stirrer of 1000 rpm.
  • the inside of the system was replaced with nitrogen gas for 30 minutes while maintaining the inside temperature at the temperature (50 ° C.) when the dropping was completed.
  • the round bottom flask was immersed in a 70 ° C. water bath to raise the temperature of the system, and then the second polymerization was carried out for 1 hour (second polymerization step) to obtain a hydrogel polymer.
  • the water content in the round bottom flask at this time was 65.1 g, and the water content of the hydrogel polymer after primary drying (during post-crosslinking) was 36% by mass. After preparing a mixture containing a post-crosslinking agent, the mixture was held at about 80 ° C. for 2 hours (post-crosslinking step).
  • Example 6 In the first polymerization step, the cooling temperature of the suspension after completion of the crosslinking reaction with the intermediate crosslinking agent is 75 ° C., and in the second polymerization step, the system after the second aqueous liquid is dropped (suspension) Except that the internal temperature was 60 ° C., the same operation as in Example 3 was performed to obtain 161.8 g of granular water-absorbent resin particles.
  • the whole amount of the aqueous liquid was added to the round bottom flask while stirring at a rotation speed of 700 rpm. After replacing the system with nitrogen for 30 minutes, the round bottom flask was immersed in a 70 ° C. water bath to raise the temperature of the system, and the polymerization reaction was carried out for 1 hour to obtain a hydrogel polymer.
  • n-heptane as a hydrocarbon dispersion medium and sucrose fatty acid ester (trade name S-370, manufactured by Mitsubishi Chemical Foods Co., Ltd.) as a surfactant.
  • HLB3.0 sucrose fatty acid ester 0.92 g was added to dissolve the surfactant in n-heptane, and then the inside of the round bottom flask was brought to 35 ° C. Then, the whole quantity of the 1st aqueous liquid was added to the round bottom flask, and it maintained at 35 degreeC, suspended under stirring, and substituted the system inside with nitrogen gas.
  • the round bottom flask was immersed in a 70 ° C. water bath to raise the temperature, and the polymerization reaction was carried out for 2 hours (first polymerization step).
  • the polymerization slurry was cooled to 50 ° C. With the surfactant dissolved, the entire amount of the second aqueous liquid was dropped into the system. The system was thoroughly replaced with nitrogen gas while stirring for 30 minutes while maintaining the system at 50 ° C. Thereafter, the round bottom flask was immersed in a 70 ° C. water bath to raise the temperature, and the polymerization reaction was carried out for 1.5 hours (second polymerization step) to obtain a hydrogel polymer.
  • the round bottom flask was immersed in an oil bath at 120 ° C. to raise the temperature, and water and n-heptane were azeotroped to draw 250 g of water out of the system while refluxing n-heptane (1 Next drying step). Thereafter, 110 mg (0.00063 mol) of ethylene glycol diglycidyl ether as a crosslinking agent was added to the round bottom flask to obtain a mixture containing the post-crosslinking agent. The moisture content of the hydrogel polymer at the time of crosslinking was 25% by mass. After preparing a mixture containing a post-crosslinking agent, the mixture was held at about 80 ° C. for 2 hours (post-crosslinking step).
  • suspension A indicates the suspension after the first polymerization step and before the mixing of the second aqueous liquid.
  • Suspension B is after the mixing of the second aqueous liquid and indicates a suspension before polymerization in the second polymerization step.
  • the water-absorbent resin particles obtained in Examples 3, 5, and 6 are all excellent in water-absorbing performance such as water-absorbing speed while having an appropriate particle diameter, and the amount of residual volatile components. You can see that there is little.
  • the water-absorbent resin particles obtained in Comparative Examples 5 and 6 had a large amount of residual volatile components, and odor was recognized after water absorption.
  • the water-absorbent resin particles obtained in Comparative Example 7 had a small particle diameter and had a problem with powder handling properties.
  • Example 7 Except that the amount of hydroxyethyl cellulose added to the aqueous liquid was 1.10 g and the viscosity of the aqueous liquid at 20 ° C. was 260 mPa ⁇ s, the same operation as in Example 2 was performed, and the granular water-absorbing resin particles were obtained in 88. 0.1 g was obtained.
  • Example 8 In place of hydroxyethylcellulose, 0.74 g of hydroxypropylcellulose (trade name Celny H, manufactured by Nippon Soda Co., Ltd.) is added to the aqueous liquid, and the viscosity of the aqueous liquid at 20 ° C. is set to 60 mPa ⁇ s, and then the system in the primary drying step The amount of water to be discharged to the outside is 121.2 g, the amount of the 2% by mass ethylene glycol diglycidyl ether aqueous solution to be added is 5.06 g (0.00058 mol), and the water content during the post-crosslinking reaction is 35% by mass. Except that, the same operation as in Example 2 was performed to obtain 86.8 g of granular water-absorbent resin particles.
  • hydroxypropylcellulose trade name Celny H, manufactured by Nippon Soda Co., Ltd.
  • Comparative Example 9 The same operation as in Comparative Example 8 was carried out except that 0.27 g of hydroxyethyl cellulose (trade name AW-15F, manufactured by Sumitomo Seika Co., Ltd.) was added to the aqueous liquid, and the viscosity of the aqueous component at 20 ° C. was 18 mPa ⁇ s. 88.1 g of granular water-absorbing resin particles were obtained.
  • hydroxyethyl cellulose trade name AW-15F, manufactured by Sumitomo Seika Co., Ltd.
  • the water-absorbent resin particles obtained in Examples 2, 7, and 8 all have an appropriate particle diameter and excellent water absorption performance such as water absorption speed while having excellent handling properties. It can also be seen that the amount of residual volatile components is small. On the other hand, the water-absorbent resin particles obtained in Comparative Examples 8 and 9 had a large residual volatile component amount, and an odor after water absorption was observed.
  • Example 9 and 10 the same operation as in Example 1 was performed except that the amount of polyvinyl alcohol added to the aqueous liquid was 0.01 g and 0.67 g, respectively. 0.2g, 88.4g was obtained. The moisture content of the hydrogel polymer after primary drying (during post-crosslinking) was 45% by mass.
  • Example 11 In place of polyvinyl alcohol, 0.90 g of polyvinylpyrrolidone (product name K-90; mass-average molecular weight of about 1300000) is added to the aqueous liquid, and then water is extracted outside the system in the primary drying step. Except for the amount of 116.1 g and the water content of the hydrogel polymer during the post-crosslinking reaction to 40% by mass, the same operation as in Example 9 was performed to obtain 88.3 g of granular water-absorbing resin particles. It was.
  • polyvinylpyrrolidone product name K-90; mass-average molecular weight of about 1300000
  • Example 12 In place of polyvinylpyrrolidone, 0.90 g of polyethylene glycol (trade name PEG # 20000; mass average molecular weight of about 20000) is added to the aqueous liquid, and then water is withdrawn from the system in the primary drying step. 121.2 g, the amount of 2 mass% ethylene glycol diglycidyl ether aqueous solution to be added was 5.06 g (0.00058 mol), and the water content of the hydrogel polymer during the post-crosslinking reaction was 35 mass%. Except for the above, the same operation as in Example 11 was performed to obtain 88.8 g of granular water-absorbent resin particles.
  • polyethylene glycol trade name PEG # 20000; mass average molecular weight of about 20000
  • Example 10 The same operation as in Example 12 was performed except that polyethylene glycol was not added to the aqueous liquid, to obtain 87.4 g of granular water-absorbing resin particles.
  • n-heptane as a hydrocarbon dispersion medium was added to a 5-liter cylindrical round bottom flask having an internal volume of 2 L equipped with a stirrer, a two-stage paddle blade, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube.
  • a sucrose fatty acid ester product name: S-370; HLB3.0, manufactured by Mitsubishi Chemical Foods Co., Ltd.
  • the inside of the flask was brought to 35 ° C.
  • aqueous liquid (a) was added to the round bottom flask and maintained at 35 ° C., suspended under stirring, and the system was replaced with nitrogen gas.
  • the round bottom flask was immersed in a 70 ° C. water bath to raise the temperature, and the polymerization reaction was carried out for 2 hours.
  • the polymerization slurry was cooled to 50 ° C. With the surfactant dissolved, the aqueous liquid (b) was dropped into the system. The system was thoroughly replaced with nitrogen gas while stirring for 30 minutes while maintaining the system at 50 ° C. Thereafter, the round bottom flask was immersed in a 70 ° C. water bath to raise the temperature, and the polymerization reaction was carried out for 1.5 hours to obtain a hydrogel polymer.
  • the round bottom flask was immersed in an oil bath at 120 ° C. to raise the temperature, and water and n-heptane were azeotroped to draw 250 g of water out of the system while refluxing n-heptane (1 Next drying step).
  • the water content of the hydrogel polymer after the primary drying was 25% by mass.
  • 110 mg (0.00063 mol) of ethylene glycol diglycidyl ether was added as a post-crosslinking agent to the round bottom flask to obtain a mixture containing the post-crosslinking agent.
  • the mixture was held at about 80 ° C. for 2 hours (post-crosslinking step).
  • Water-absorbent resin particles according to the present embodiment are used for sanitary materials such as disposable diapers, sanitary products, pet sheets, agricultural and horticultural materials such as water retention materials and soil improvement materials, water-stop materials for power or communication cables, and anti-condensation materials. It can be used in various fields such as industrial materials such as adult diapers, incontinence pads, toilet training pants, specific sanitary materials such as many daily napkins, waterproofing materials for cables, pet sheets, simple It is suitably used in the field of toilets and the like.
  • the water-absorbent resin particles obtained by the production method according to the present embodiment are used for sanitary materials such as paper diapers, sanitary goods, pet sheets, water and water-resisting materials, soil improvement materials and other agricultural and horticultural materials, and power and communication cable waterstops. It can be used in various fields such as materials, industrial materials such as anti-condensation materials, especially diapers for adults, incontinence pads, toilet training pants, specific hygiene materials such as many daily napkins, waterproofing materials for cables It is suitably used in fields such as pet seats and simple toilets.
  • SYMBOLS 1 Movement distance measuring apparatus, 2 ... Concave circular cup, 3 ... Convex circular cylinder, 4 ... Nonwoven fabric, 5 ... Water-absorbing resin particle, 6 ... Laser beam, 7 ... Through-hole, X ... Swelling performance measuring apparatus, 10 ... Liquid permeable sheet, 11 ... first liquid permeable sheet, 12 ... second liquid permeable sheet, 13 ... hydrophilic fiber layer, 15 ... absorber, 20 ... liquid impermeable sheet, 30 ... absorbent article , 40 ... Water stop material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polymerisation Methods In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

生理食塩水の吸水速度が1~15秒であり、中位粒子径が100~600μmであり、残存揮発成分量が1.5質量%以下である、吸水性樹脂粒子が開示される。

Description

吸水性樹脂粒子、吸水性樹脂粒子を製造する方法、吸収体、吸収性物品及び止水材
 本発明は、吸水性樹脂粒子、吸水性樹脂粒子を製造する方法、吸収体、吸収性物品及び止水材に関する。
 吸水性樹脂粒子は、紙おむつ、生理用品等の衛生材料用、保水材、土壌改良材等の農園芸材料用、ケーブル用止水材、結露防止材等の工業資材用等に用いられてきた。これらに加えて、近年では、ペットシート、犬又は猫のトイレ配合物等の動物排泄物処理材、簡易トイレ、芳香剤、肉類のドリップ吸収シート、保湿化粧品用の配合物等、吸水性樹脂粒子が応用される分野はさらに拡大している。このような用途に使用される吸水性樹脂粒子に求められる性能としては、高い吸水量、優れた吸水速度及び用途に応じた適切な粒子径等が挙げられる。
 これらのうち、大人用おむつ、失禁パッド、トイレトレーニングパンツ、多い日用ナプキンのような特定の衛生材料、ケーブル用止水材、ペットシート、簡易トイレ等の用途で用いられる吸水性樹脂粒子に対しては、比較的多量の体液等が勢いよく排出されることが想定される。このため、上記用途では、吸収容量と吸収速度の改良が重視されてきた。このうち、吸収容量に関しては、吸水性樹脂粒子の使用量の調整等でも対応可能であるが、吸収速度は、吸水性樹脂粒子が有する固有の特性に依存する傾向が強い。そのため、これまでにも吸水性樹脂粒子において優れた吸水速度を達成するために様々な検討がなされている。
 例えば、水溶液重合法に関連して、発泡剤の存在下で得られた多孔質の樹脂の表面近傍を架橋する方法(特許文献1参照)が開示されている。
 また、逆相懸濁重合に関連して、アクリル酸/アクリル酸塩水溶液をHLB8~12の界面活性剤の存在下で脂環族または脂肪族炭化水素溶媒中に懸濁させ、アクリル酸/アクリル酸塩を逆相懸濁重合させる方法(特許文献2参照)、異なる吸水速度を有する吸水性樹脂の存在下で水溶性エチレン性不飽和単量体を重合させる方法(特許文献3参照)が開示されている。
国際公開第97/3114号 特開昭56-131608号公報 特開平9-151224号公報
 この他、一般的に、吸水性樹脂粒子の吸水速度を向上させる方法としては、吸水性樹脂粒子の粒子径を小さくすることが挙げられる。しかし、吸水性樹脂粒子の粒子径を小さくすると、流動性が悪化して、粒子としてのハンドリングが困難になる傾向がある。よって、適度な粒子径を有しながら吸水性樹脂粒子の吸水速度を高める方法が求められる。
 ここで、本発明者らの検討によると、特許文献1に開示されている吸水性樹脂粒子は、粒子径と吸水速度の性能の両立において満足できるものではなかった。また、本発明者らの検討によると、特許文献2、3に開示されている吸水性樹脂粒子は、粒子径が比較的大きく、ハンドリング性及び吸水速度が優れるものの、製造時に用いられる炭化水素分散媒が揮発成分として粒子内部に残存し、例えば、吸水後に臭気が発生することがあった。その結果、吸水性樹脂粒子を含む製品を使用した際の臭気が、使用者(装着者等)の快適さを損なう可能性があった。また、製造プロセスの環境面への配慮と吸水性能向上の観点からも、残存揮発成分量が少ないことが求められる。
 そこで、本発明の主な目的は、一つの側面において、ハンドリング性に優れ、吸水後の臭気の発生が抑制され、かつ吸水速度に優れる吸水性樹脂粒子と、吸収体、吸収性物品及び止水材を提供することにある。
 さらに別の側面において、本発明の主な目的は、ハンドリング性に優れ、吸水速度に優れ、かつ残存揮発成分量の少ない吸水性樹脂粒子の製造を可能にする方法を提供することにある。
 本発明は、生理食塩水の吸水速度が1~15秒であり、中位粒子径が100~600μmであり、残存揮発成分量が1.5質量%以下である、吸水性樹脂粒子を提供する。
 上記吸水性樹脂粒子は、適度な大きさの粒子径を有するためハンドリング性に優れ、吸水後の臭気の発生が抑制され、かつ吸水速度に優れる。
 上記吸水性樹脂粒子は、比表面積が0.08m/g以上であってもよい。比表面積が上記範囲内にあることにより、吸水性樹脂粒子の吸水速度をより向上させることができる。
 上記吸水性樹脂粒子は、生理食塩水の吸水量が30~90g/gであってもよい。
 別の側面において、本発明は、吸水性樹脂粒子を製造する方法を提供する。本発明に係る方法は、炭化水素分散媒を含む油性液と、水性溶媒、水溶性エチレン性不飽和単量体及びラジカル重合開始剤を含む第一の水性液と、HLBが6以上の界面活性剤とを含有し、上記第一の水性液が上記油性液中に分散された懸濁液中で、上記水溶性エチレン性不飽和単量体を重合させ、含水ゲル状重合体を含む懸濁液を得ることを含む、第一重合工程と、45℃以上の上記含水ゲル状重合体を含む懸濁液と、水性溶媒、水溶性エチレン性不飽和単量体及びラジカル重合開始剤を含む第二の水性液とを混合して、上記第二の水性液をさらに分散させた懸濁液中で、上記水溶性エチレン性不飽和単量体を重合させることを含む第二重合工程とを、この順に備えていてもよい。
 上記方法により得られる吸水性樹脂粒子は、優れた吸水速度を有する。さらに、上記方法により得られる吸水性樹脂粒子は、適度な大きさの粒子径を有するため、ハンドリング性に優れ、かつ残存揮発成分量が少ないため吸水後の臭気等の問題を低減することができる。
 上記第二重合工程において、上記懸濁液を上記第二の水性液と混合し終えた時点の、上記第二の水性液をさらに分散させた懸濁液の温度は、35℃以上であってもよい。
 第二の水性液を混合し終えた時点の懸濁液の温度を上記範囲とすることにより、残存揮発成分量をさらに低減することができる。
 上記第一重合工程において、上記油性液は、上記第一の水性液に含まれる上記水溶性エチレン性不飽和単量体100質量部に対して50~650質量部の上記炭化水素分散媒を含んでいてもよい。
 本発明は、炭化水素分散媒を含む油性液と、水性溶媒及び水溶性エチレン性不飽和単量体を含み上記水性溶媒が水を含む水性液とを含有し、上記水性液が上記油性液中に分散された懸濁液中で、上記水溶性エチレン性不飽和単量体を重合させることを含む重合工程を備える、吸水性樹脂粒子を製造する方法にも関する。上記水性液は20℃において、20mPa・s以上の粘度を有する。上記懸濁液は、HLBが6以上の界面活性剤をさらに含有する。
 上記方法により得られる吸水性樹脂粒子は、優れた吸水速度を有する。さらに、上記方法により得られる吸水性樹脂粒子は、適度な大きさの粒子径を有するため粒子のハンドリング性に優れ、かつ残存揮発成分量が少ないため吸水後の臭気等の問題を低減することができる。
 上記水性液は水溶性増粘剤をさらに含んでいてもよい。該水溶性増粘剤はヒドロキシアルキルセルロース、ヒドロキシアルキルアルキルセルロース及びカルボキシアルキルヒドロキシアルキルセルロースより選ばれる少なくとも1種の化合物を含んでいてもよい。
 水性液が上記特定の水溶性増粘剤を含むことにより、得られる吸水性樹脂粒子の残存揮発成分量をより低減することができる。
 本発明は、
(1)生理食塩水の吸水量が30~90g/gであり、
(2)中位粒子径が100~600μmであり、
(3)生理食塩水の吸水速度が1~20秒であり、
(4)平衡膨潤性能が20mm以上であり、
(5)残存揮発成分量が1.5質量%以下であり、
上記方法により得ることのできる吸水性樹脂粒子も提供する。
 上記吸水性樹脂粒子は、適度な大きさの粒子径を有するため粒子のハンドリング性に優れ、吸水後の臭気の発生が抑制され、かつ吸水速度に優れる。
 本発明は、炭化水素分散媒を含む油性液と、水性溶媒及び水溶性エチレン性不飽和単量体を含み上記水性溶媒が水を含む水性液とを含有し、上記水性液が上記油性液中に分散された懸濁液中で、上記水溶性エチレン性不飽和単量体を重合させることを含む重合工程を備える、吸水性樹脂粒子を製造する方法にも関する。上記水性液は親水性高分子分散剤をさらに含んでいる。上記懸濁液は、HLBが6以上の界面活性剤をさらに含有している。
 上記方法により得られる吸水性樹脂粒子は、優れた吸水速度を有する。さらに、上記方法により得られる吸水性樹脂粒子は、適度な大きさの粒子径を有するためハンドリング性に優れる。加えて、吸水性樹脂粒子の残存揮発成分量が少ないため、吸水後の臭気等の問題を低減することができる。
 上記親水性高分子分散剤は、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール、ポリプロピレングリコール及びポリグリセリンからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。
 上記水性液は、上記水溶性エチレン性不飽和単量体100質量部に対して、0.001~10質量部の上記親水性高分子分散剤を含んでいてもよい。
 本発明は、
(1)生理食塩水の吸水量が30~90g/gであり、
(2)中位粒子径が100~600μmであり、
(3)生理食塩水の吸水速度が1~20秒であり、
(4)平衡膨潤性能が20mm以上であり、
(5)残存揮発成分量が1.5質量%以下であり、
上記方法により得ることのできる、吸水性樹脂粒子も提供する。
 上記吸水性樹脂粒子は、適度な大きさの粒子径を有するためハンドリング性に優れ、吸水後の臭気の発生が抑制され、かつ吸水速度に優れる。
 上記界面活性剤は、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル及びショ糖脂肪酸エステルからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。
 懸濁液が上記特定の界面活性剤を含むことにより、連続相である油性液(O)と不連続相である水性液(W)とにより形成されるW/O型逆相懸濁の状態がより良好で、好適な形態の吸水性樹脂粒子が好適な粒子径で得られやすくなる傾向がある。
 上記水溶性エチレン性不飽和単量体は、アクリル酸及びその塩、メタクリル酸及びその塩、並びにアクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。
 上記炭化水素分散媒は、炭素数6~8の鎖状脂肪族炭化水素、及び炭素数6~8の脂環族炭化水素からなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。
 本発明はまた、上記吸水性樹脂粒子と親水性繊維とを含む、吸収体を提供する。
 本発明はさらに、液体透過性シート、液体不透過性シート及び上記吸収体を備え、対向して配置された上記液体透過性シートと上記液体不透過性シートとの間に、上記吸収体が配置されている、吸収性物品を提供する。
 本発明はさらにまた、第一の液体透過性シート、第二の液体透過性シート及び上記吸水性樹脂粒子を備え、対向して配置された上記第一の液体透過性シートと上記第二の液体透過性シートの間に、上記吸水性樹脂粒子が配置されている、止水材を提供する。
 本発明の吸水性樹脂粒子は、優れた吸水速度を有し得る。さらに、本発明の吸水性樹脂粒子は、適度な大きさの粒子径を有するため粒子としてのハンドリング性に優れ、かつ吸水後の臭気等の問題を低減することができる。
 本発明の製造方法により得られる吸水性樹脂粒子は、優れた吸水速度を有し得る。さらに、本発明の方法により得られる吸水性樹脂粒子は、適度な大きさの粒子径を有するため粒子としてのハンドリング性に優れる。加えて、本発明の方法により得られる吸水性樹脂粒子の残存揮発成分量が少ないため、吸水後の臭気等の問題を低減することができる。
吸収性物品の一実施形態を示す断面図である。 止水材の一実施形態を示す断面図である。 膨潤性能を測定するための装置を示す概略図である。
 本発明の実施形態について、以下に説明する。ただし、本発明は以下の実施形態に限定されるものではない。本明細書に記載される全ての構成は、本発明の趣旨を逸脱しない範囲で任意に組み合わせることができる。例えば、本明細書に記載される数値範囲の上限値及び下限値、並びに実施例に記載される数値から任意に選択される数値を上限値又は下限値として用いて、各種特性に関する数値範囲を規定することができる。
 本実施形態にかかる吸水性樹脂粒子の生理食塩水の吸水速度は、1~15秒又は1~20秒であってもよい。吸水速度を上記範囲内とすることにより、言い換えると、吸水性樹脂粒子がこのように優れた吸水速度を有することにより、吸水性樹脂粒子が吸収性物品、止水材等に用いられた際に、液漏れを特に効果的に防止することができる。同様の観点から、上記吸水速度は、1~12秒、2~10秒、2~8秒、2~6秒であってもよい。
 本実施形態にかかる吸水性樹脂粒子の中位粒子径は、100~600μmであってもよい。中位粒子径をこの範囲内とすることにより、吸収体を製造する際の吸水性樹脂粒子のハンドリング性を特に良好に保ち、かつ、吸収体を薄くすることができる。同様の観点から、吸水性樹脂粒子の中位粒子径は、110~500μm、120~500μm、120~400μm、140~400μm、140~350μm又は150~350μmであってもよい。
 本実施形態にかかる吸水性樹脂粒子の残存揮発成分量は、1.5質量%以下であってもよい。残存揮発成分量を上記範囲内とすることで、言い換えると、吸水性樹脂粒子が少ない残存揮発成分量を有することで、例えば、吸水性樹脂粒子が吸水した際の臭気の発生を特に効果的に抑制して、吸収性物品の装着者の快適さを向上させることができる。同様の観点から、上記残存揮発成分量は、1.3質量%以下、1.2質量%以下、0.001~1.2質量%、0.001~1.0質量%、0.01~1.0質量%、0.01~0.8質量%、0.01~0.6質量%、又は0.01~0.45質量%であってもよい。
 本実施形態にかかる吸水性樹脂粒子の比表面積は、特に限定されないが、吸水速度を向上させる観点から、0.08m/g以上、0.1~2.0m/g、0.12~1.0m/g、又は0.14~0.5m/gであってもよい。
 本実施形態にかかる吸水性樹脂粒子の生理食塩水の吸水量は、特に限定されないが、吸収性物品の吸収容量を向上させる観点から、30~90g/g、35~80g/g、45~75g/g、50~70g/g、又は55~65g/gであってもよい。
 吸水性樹脂粒子の平衡膨潤性能(10分値)(単に、平衡膨潤性能ということがある)は、20mm以上であってもよい。このように吸水性樹脂粒子が高い膨潤性能を有することで、吸水性樹脂粒子がケーブル用止水材に用いられた際、ケーブルの亀裂による初期浸水を防止した後、長時間の浸水防止効果を維持し、かつケーブルの基材劣化を促進しない程度の適度な膨潤圧力を発揮することができる。同様の観点から、上記平衡膨潤性能は、21~40mm、22~35mm、又は23~30mmであってもよい。
 吸水性樹脂粒子の初期膨潤性能(1分値)の平衡膨潤性能に対する比率(初期膨潤比率)は、60~100%であってもよい。このように吸水性樹脂粒子が高い初期膨潤比率を有することで、吸水性樹脂粒子がケーブル用止水材に用いられた際、ケーブルの亀裂による初期浸水をより確実に防止できる。同様の観点から、上記初期膨潤比率は75~98%、又は90~95%であってもよい。
 以上説明した生理食塩水の吸水速度、中位粒子径、残存揮発成分量、比表面積、生理食塩水の吸水量、平衡膨潤性能及び初期膨潤比率は、いずれも実施例にて後述する方法によって測定された値である。
 本実施形態にかかる吸水性樹脂粒子の原料は特に限定されない。例えば、吸水性樹脂粒子を構成する樹脂を、生理食塩水の吸水速度、中位粒子径、残存揮発成分量が上述の数値範囲内となるように選択することができる。例えば、水溶性エチレン性不飽和単量体を重合させることによって得られる樹脂(水溶性エチレン不飽和単量体を単量体単位として含む重合体)が用いられ得る。水溶性エチレン性不飽和単量体を重合させた樹脂としては、例えば、澱粉-アクリロニトリルグラフト共重合体の加水分解物、澱粉-アクリル酸グラフト共重合体の中和物、酢酸ビニル-アクリル酸エステルのケン化物、及びポリアクリル酸部分中和物等が挙げられる。水溶性エチレン性不飽和単量体を重合させる方法としては、水溶液重合法、及び、界面活性剤の存在下、炭化水素分散媒中で行う逆相懸濁重合法等が挙げられる。吸水性樹脂粒子は、水溶性エチレン性不飽和単量体を単量体単位として含む重合体を主成分として含んでいてもよい。例えば、吸水性樹脂粒子100質量部に対して、上記重合体の割合が50質量部以上であってもよい。
 後述の親水性高分子分散剤を用いて吸水性樹脂粒子を製造する場合、得られる吸水性樹脂粒子は、親水性高分子分散剤を含み得る。吸水性樹脂粒子中の親水性高分子分散剤の含有量は、吸水性樹脂粒子100質量部に対して、例えば、0.001~10質量部、0.005~5質量部、0.01~3質量部、又は0.01~1.5質量部であってもよい。これら含有量は、吸水性樹脂粒子の製造方法の説明において後述するように、水溶性エチレン性不飽和単量体100質量部に対する親水性高分子分散剤の含有量(使用量)と同様にして導かれる。
 後述の水溶性増粘剤を用いて吸水性樹脂粒子を製造する場合、得られる吸水性樹脂粒子は、水溶性増粘剤を含み得る。吸水性樹脂粒子中の水溶性増粘剤の含有量は、吸水性樹脂粒子(ポリマー固形分)100質量部に対して、例えば、0.05~20質量部、0.2~10質量部、0.4~5質量部又は0.6~3質量部である。水溶性増粘剤の含有量は、吸水性樹脂粒子の製造方法の説明において後述するように、水溶性エチレン性不飽和単量体100質量部に対する、水溶性増粘剤の含有量(使用量)と同様にして導かれる。
 吸水性樹脂粒子には、目的に応じて、耐熱性安定剤、酸化防止剤、抗菌剤等の添加剤が含まれていてもよい。これら添加剤の量は、吸水性樹脂粒子の用途、添加剤の種類等によって異なるが、吸水性樹脂粒子(ポリマー固形分)100質量部に対して、0.001~10質量部、0.01~5質量部、又は0.1~2質量部であってもよい。
 以下、一例として、逆相懸濁重合法について詳細に説明する。本実施形態にかかる吸水性樹脂粒子は、例えば、界面活性剤、炭化水素分散媒及び必要に応じて疎水性高分子分散剤を含む油性液と、水溶性エチレン性不飽和単量体を含む水性液とを含有し、水性液が上記油性液中に分散された懸濁液中で、水溶性エチレン性不飽和単量体を、ラジカル重合開始剤を用いて逆相懸濁重合する方法により、得ることができる。係る方法として、例えば、以下の製造方法1~3のうち少なくとも1つを採用することができる。
 すなわち、HLBが6以上の界面活性剤と、親水性高分子分散剤を含む水性液とを用いて、逆相懸濁重合を行う方法(製造方法1)、
 HLBが6以上の界面活性剤と、20℃において20mPa・s以上の粘度を有する、及び/又は水溶性増粘剤を含む水性液とを用いて、逆相懸濁重合を行う方法(製造方法2)、又は
 HLBが6以上の界面活性剤及び水性液を含む懸濁液を用いて逆相懸濁重合することにより得られた含水ゲル状重合体を含む45℃以上の懸濁液に、別の水性液を加えてさらに逆相懸濁重合を行う方法(製造方法3)により、吸水性樹脂粒子を得ることができる。
 HLBが6以上の界面活性剤を用いた逆相懸濁重合では、連続相である油性液(O)と不連続相である水性液(W)とにより形成されるW/O型逆相懸濁の状態を良好に維持できるため、吸水性樹脂粒子の表面に微細な凹凸を均一且つ多数形成させることができる傾向がある。凹凸の程度は、吸水性樹脂粒子の比表面積で表すことができる。表面に凹凸の多い吸水性樹脂粒子は比表面積が大きく、吸水速度が速くなる傾向がある。その一方で、界面活性剤を用いた逆相懸濁重合では、水性液と油性液との界面が強く活性化される。このため、逆相懸濁重合時に水性液内部に油性液中の微細な炭化水素分散媒を取り込みやすくなるためか、吸水性樹脂粒子の残存揮発成分量が大きくなる傾向がある。このように、比表面積が大きい吸水性樹脂粒子は吸水速度が速くなる傾向があるものの、吸水後の臭気が強くなる傾向がある。
 ところが、上記製造方法1~3の少なくとも1つを採用することにより、吸水速度ばかりでなく吸水後の臭気の点でも優れる、本実施形態にかかる吸水性樹脂粒子を得ることができる。以下に、これら製造方法について詳細に説明する。
(製造方法1)
 製造方法1は、炭化水素分散媒を含む油性液と水性溶媒及び水溶性エチレン性不飽和単量体を含む水性液とを含有し、水性液が油性液中に分散された懸濁液中で、水溶性エチレン性不飽和単量体を重合させることを含む重合工程を備える。上記重合は、炭化水素分散媒を含む油性液(O)を連続相とし、水を含む水性液(W)を上記連続相中に分散される液滴状の不連続相として重合するW/O型逆相懸濁重合である。
 上記懸濁液はHLBが6以上の界面活性剤をさらに含む。また、上記水性液は親水性高分子分散剤をさらに含む。
 上記界面活性剤のHLBは6~16、7~16、8~12、又は8.5~10.5であってもよい。界面活性剤のHLBがこれら範囲内であることにより、W/O型逆相懸濁の状態がより良好となり、より好適な粒子径とより優れた吸水速度とを有する粒子が得られる傾向がある。
 界面活性剤としては、例えば、ソルビタン脂肪酸エステル、(ポリ)グリセリン脂肪酸エステル(「(ポリ)」とは「ポリ」の接頭語がある場合とない場合の双方を意味するものとする。以下同じ。)、ショ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、及びポリエチレングリコール脂肪酸エステル等のノニオン系界面活性剤;脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテルスルホン酸塩、ポリオキシエチレンアルキルエーテルのリン酸エステル、及びポリオキシエチレンアルキルアリルエーテルのリン酸エステル等のアニオン系界面活性剤等が挙げられる。W/O型逆相懸濁の状態が良好で、吸水性樹脂粒子が好適な粒子径で得られやすく、工業的に入手が容易であるという観点から、界面活性剤は、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル及びショ糖脂肪酸エステルからなる群より選ばれる少なくとも1種の化合物であってもよく、さらに、得られる吸水性樹脂粒子の上記諸性能が向上するという観点から、ソルビタン脂肪酸エステルであってもよい。これらの界面活性剤は、それぞれ単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
 界面活性剤の使用量は、W/O型逆相懸濁の状態を安定させ、かつ懸濁安定化効果が得られる効率的な使用量を選択する観点から、水性液100質量部に対して、0.1~5質量部、0.2~3質量部、又は0.4~2質量部であってもよい。通常、水性溶媒、水溶性エチレン性不飽和単量体、親水性高分子分散剤、及び後述の水溶性増粘剤の合計量を、水性液の質量とみなして各成分の比率を計算することができる。ただし、これは、親水性高分子分散剤及び水溶性増粘剤が、常に水性液の必須の成分であることを意味しない。
 製造方法1における水性液は、水を含む水性溶媒と、水溶性エチレン性不飽和単量体と、親水性高分子分散剤と、場合により各種添加剤とを含有する。水性溶媒は、主として水から構成され、他の親水性溶媒を含んでいてもよい。
 親水性高分子分散剤は、例えば、25℃の水100gに溶解する量が0.001~200g、0.05~150g、又は0.1~100gであってもよい高分子分散剤である。
 親水性高分子分散剤としては、例えば、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、ポリエチレングリコール(PEG)、ポリプロピレングリコール、ポリエチレングリコール・ポリプロピレングリコールブロック共重合体、ポリグリセリン、ポリオキシエチレングリセリン、ポリオキシプロピレングリセリン、ポリオキシエチレン・ポリオキシプロピレングリセリン共重合体、及びポリオキシエチレンソルビタン脂肪酸エステルからなる群より選ばれる少なくとも1種の高分子化合物であってもよい。親水性高分子分散剤は、これらの中でも、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール、ポリプロピレングリコール及びポリグリセリンからなる群より選ばれる少なくとも1種の化合物であってもよく、残存揮発成分量の低減効果の観点から、ポリビニルピロリドン又はポリビニルアルコールであってもよい。これら親水性高分子分散剤は、それぞれ単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 上記親水性高分子分散剤として挙げられるポリビニルピロリドン及びポリビニルアルコール等は、一般的には増粘剤としても用いられるが、本実施形態では水性液の粘度の上昇がほとんど認められない程度の少量の含有量であっても、残存揮発成分量が低減されるという、予想外の効果が得られる。
 逆相懸濁重合に供される水性液が親水性高分子分散剤を含むことによる、残存揮発成分量の低減メカニズムは明確ではないが、親水性高分子分散剤がW/O型逆相懸濁における水性液滴の分離及び合一を安定化することが一つの理由と考えられる。より詳細には、親水性高分子分散剤が、水性液滴の内側の表面近傍を効率的に保護しているため、水性液滴同士の衝突時に炭化水素分散媒が水性液滴に内包される頻度が低減され、O/W/O型構造の形成が抑制されるためであると推察される。
 親水性高分子分散剤の使用量は、その種類及び分子量によって好適な量が異なるため、一概には決定できないが、例えば、水溶性エチレン性不飽和単量体100質量部に対し、0.001~10質量部、0.005~5質量部、0.01~3質量部、又は0.01~1.5質量部であってもよい。親水性高分子分散剤の使用量が0.001質量部以上の場合、残存揮発成分量の低減効果をより高度に得ることができ、また10質量部以下の場合、使用量に応じた効果を得ることができる傾向があり、より経済的である。
 上記親水性高分子分散剤の分子量等は特に限定されず、親水性高分子分散剤が水性溶媒(特に水)に親和して水性液中に均一に分散できる範囲であればよい。親水性高分子分散剤の質量平均分子量は、2000~5000000、5000~3000000、10000~2000000、20000~1500000、又は30000~1500000であってもよい。親水性高分子分散剤の分子量をこれらの範囲とすることにより、得られる吸水性樹脂粒子が適度な粒子径を達成しつつ、残存揮発成分量の低減効果を特に顕著に高めることができる傾向がある。上記質量平均分子量はGPC(ゲルパーミエーションクロマトグラフィ)により測定され、ポリエチレンオキサイドを標準物質として換算された値である。親水性高分子分散剤がポリビニルアルコールである場合、そのけん化度等は特に限定はされない。ポリビニルアルコールのけん化度は、水への溶解性と残存揮発成分量の低減効果の観点から、65~100%、75~98%、80~95%、又は85~90%であってもよい。
 上記水溶性エチレン性不飽和単量体としては、カルボキシル基、スルホ基、アミド基及びアミノ基等からなる群から選ばれる少なくとも1種の官能基を含有するエチレン性不飽和単量体が挙げられる。水溶性エチレン性不飽和単量体は、例えば、(メタ)アクリル酸(以下、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する)とその塩、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸とその塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、及びジエチルアミノプロピル(メタ)アクリルアミドからなる群より選ばれる少なくとも1種であってもよい。水溶性エチレン性不飽和単量体がアミノ基を含有する場合には、当該アミノ基は4級化されていてもよい。上記単量体が有するカルボキシル基及びアミノ基等の官能基は、後述する後架橋工程において架橋が可能な官能基として機能しうる。これらの水溶性エチレン性不飽和単量体は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 水溶性エチレン性不飽和単量体は、工業的に入手が容易という観点から、アクリル酸及びその塩、メタクリル酸及びその塩、アクリルアミド、メタクリルアミド並びにN,N-ジメチルアクリルアミドからなる群より選ばれる少なくとも1種の化合物であってもよく、アクリル酸及びその塩、メタクリル酸及びその塩並びにアクリルアミドからなる群より選ばれる少なくとも1種の化合物であってもよく、さらに安全性をより高める観点から、アクリル酸及びその塩、並びにメタクリル酸及びその塩からなる群より選ばれる少なくとも1種の化合物であってもよい。
 水性液中の水溶性エチレン性不飽和単量体の濃度は、水性液(水性溶媒、水溶性エチレン性不飽和単量体、親水性高分子分散剤、及び後述の水溶性増粘剤の合計量)を基準として、20質量%~飽和濃度以下の範囲であってもよい。また、W/O型逆相懸濁の状態が良好で好適な粒子径の吸水性樹脂粒子を得やすく、得られる吸水性樹脂粒子の膨潤性能が向上する観点から、上記濃度は25~50質量%、30~45質量%、又は35~42質量%であってもよい。
 水溶性エチレン性不飽和単量体は、(メタ)アクリル酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸のように酸基を有する場合、当該酸基がアルカリ金属塩等のアルカリ性中和剤によって中和され、塩を形成してもよい。アルカリ性中和剤としては、水酸化ナトリウム、水酸化カリウム及びアンモニア等の水溶液等が挙げられる。これらアルカリ性中和剤は、それぞれ単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 アルカリ性中和剤による全酸基に対する中和度は、得られる吸水性樹脂粒子の浸透圧を高めることで膨潤能力を高め、かつ、余剰のアルカリ性中和剤の残存を抑制して安全性等に問題がより生じないようにする観点から、10~100モル%、30~90モル%、50~80モル%、又は60~78モル%であってもよい。
 上記水性液はラジカル重合開始剤を含んでいてもよい。この場合、ラジカル重合開始剤は水溶性であってもよい。ラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、及び過硫酸ナトリウム等の過硫酸塩;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、及び過酸化水素等の過酸化物;並びに2,2’-アゾビス(2-メチルプロピオンアミジン)2塩酸塩、2,2’-アゾビス[2-(N-フェニルアミジノ)プロパン]2塩酸塩、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]2塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}2塩酸塩、2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]、及び4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物等が挙げられる。これらラジカル重合開始剤は、それぞれ単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 ラジカル重合開始剤の使用量は、通常、水溶性エチレン性不飽和単量体100モルに対して0.005~1モルであってもよい。ラジカル重合開始剤の使用量が0.005モル以上であると、重合反応に長時間を要さず、効率的である。使用量が1モル以下であると、急激な重合反応が起こらない傾向がある。
 ラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄及びL-アスコルビン酸等の還元剤と併用して、レドックス重合開始剤として用いることもできる。
 水性液は、吸水性樹脂粒子の吸水性能を制御するために、連鎖移動剤を含んでいてもよい。連鎖移動剤としては、例えば、次亜リン酸塩類、チオール類、チオール酸類、第2級アルコール類及びアミン類等が挙げられる。
 油性液は、主として炭化水素分散媒から構成される疎水性の液体である。逆相懸濁重合においては、上記炭化水素分散媒を水性液の分散媒とすることができる。
 上記炭化水素分散媒としては、例えば、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、及びn-オクタン等の鎖状脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、及びtrans-1,3-ジメチルシクロペンタン等の脂環族炭化水素;ベンゼン、トルエン、及びキシレン等の芳香族炭化水素等が挙げられる。これらの炭化水素分散媒は、それぞれ単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。炭化水素分散媒は、炭素数6~8の鎖状脂肪族炭化水素、及び炭素数6~8の脂環族炭化水素からなる群より選ばれる少なくとも1種の化合物であってもよい。W/O型逆相懸濁の状態が良好で、優れた吸水速度の吸水性樹脂粒子が好適な粒子径で得られやすく、工業的に入手が容易であり、かつ品質が安定している観点から、炭化水素分散媒は、n-ヘプタン又はシクロヘキサンであってもよい。また、同観点から、上記炭化水素分散媒の混合物は、例えば、市販されているエクソールヘプタン(エクソンモービル社製:n-ヘプタン及び異性体の炭化水素75~85%含有)であってもよい。
 油性液に含まれる炭化水素分散媒の量は、重合熱を適度に除去し、重合温度を制御しやすくする観点から、水溶性エチレン性不飽和単量体100質量部に対して、50~650質量部、70~550質量部、又は100~450質量部であってもよい。炭化水素分散媒の使用量が50質量部以上であることにより、重合温度の制御が容易となる傾向がある。炭化水素分散媒の使用量が650質量部以下であることにより、重合の生産性が向上する傾向があり、経済的である。
 油性液は、疎水性高分子分散剤を含んでいてもよい。界面活性剤と疎水性高分子分散剤とを併用することにより、W/O型逆相懸濁の状態をより安定させることができる。疎水性高分子分散剤としては、例えば、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン-プロピレン-ジエン-ターポリマー)、無水マレイン酸変性ポリブタジエン、エチレン-無水マレイン酸共重合体、エチレン-プロピレン-無水マレイン酸共重合体、ブタジエン-無水マレイン酸共重合体、酸化型ポリエチレン、エチレン-アクリル酸共重合体、エチルセルロース、及びエチルヒドロキシエチルセルロース等が挙げられる。これらの中でも、W/O型逆相懸濁の安定性の面から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン-プロピレン共重合体、酸化型ポリエチレン、又はエチレン-アクリル酸共重合体を用いることができる。これらの疎水性高分子分散剤は、それぞれ単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
 油性液中に含まれる疎水性高分子分散剤の量は、水性液(水性溶媒、水溶性エチレン性不飽和単量体、親水性高分子分散剤、および水溶性増粘剤の合計量)100質量部に対して、0.1~5質量部、0.2~3質量部、又は0.4~2質量部であってもよい。
 逆相懸濁重合では、通常、重合前に油性液及び水性液が各々調製される。調製された水性液と油性液とを混合して、重合用の懸濁液が調製される。
 親水性高分子分散剤の配合方法は、特に限定されないが、重合前の水性液に均一に分散できればよく、例えば(a)水溶性エチレン性不飽和単量体水溶液に親水性高分子分散剤を混合、溶解して水性液を得て、これを油性液中に分散する方法、(b)油性液に水溶性エチレン性不飽和単量体水溶液と親水性高分子分散剤の水溶液とを別々に添加して分散する方法、(c)油性液に水溶性エチレン性不飽和単量体水溶液を分散した後、重合前に親水性高分子分散剤の水溶液を添加して分散する方法等が挙げられる。これらの中でも、残存揮発成分量がより効果的に低減される観点から、(a)の方法を採用することができる。
 界面活性剤は、油性液に加えることができる。
 逆相懸濁重合を行う際の重合温度(懸濁液の温度)は、使用するラジカル重合開始剤の種類によって異なるので、一概には決定することができない。通常、該重合温度は、重合を迅速に進行させることで重合時間を短くし、かつ重合熱を除去することが簡単で、かつ円滑に反応を行う観点から、20~110℃、又は40~90℃であってもよい。重合時間は、通常、0.5~4時間である。
 上述のようにして、水溶性エチレン性不飽和単量体が重合することにより、粒子状の含水ゲル状重合体が生成する。通常、得られる重合体(含水ゲル状重合体)は、球状、顆粒状、破砕状、金平糖状及びそれらの凝集物等の様々な形態を有する。本実施形態においては、比表面積及び吸水速度が向上する観点から、含水ゲル状重合体は顆粒状であってもよく、表面に多くの突起を有する顆粒状であってもよい。
 製造方法1は、上記含水ゲル状重合体を架橋する後架橋工程をさらに備えていてもよい。製造方法1はまた、上記含水ゲル状重合体を構成する水溶性エチレン性不飽和単量体由来の成分(ポリマー固形分)を100質量%としたときの、含水ゲル状重合体中の水の質量百分率(含水ゲル状重合体の水分率)が例えば20~130質量%となるように調整する1次乾燥工程を後架橋工程の前に備えていてもよい。
 1次乾燥工程の乾燥方法としては、特に限定されないが、例えば(a)上記含水ゲル状重合体を油性液(炭化水素分散媒)に分散した状態で、外部から加熱することにより共沸蒸留により炭化水素分散媒を還流させて水分を除去する方法、(b)デカンテーションにより含水ゲル状重合体を取り出し、減圧乾燥する方法、(c)フィルターにより含水ゲル状重合体をろ別し、減圧乾燥する方法等が挙げられる。中でも、製造工程における簡便さから、(a)の方法を採用することができる。
 上記のようにして、含水ゲル状重合体の水分率が例えば20~130質量%であるように調整された含水ゲル状重合体を架橋させることにより、より優れた吸水性能を有する吸水性樹脂粒子が得られる。
 含水ゲル状重合体の後架橋は、例えば、含水ゲル状重合体と後架橋剤とを混合し、加熱することにより行われる。後架橋剤は、水溶性エチレン性不飽和単量体中に含まれる官能基(例えば、アクリル酸の場合はカルボキシル基)と反応しうる官能基を有し、水溶性の化合物であってもよい。後架橋剤としては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び(ポリ)グリセリンジグリシジルエーテル等の2個以上のエポキシ基を有する化合物;エピクロルヒドリン、エピブロムヒドリン、及びα-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、及びヘキサメチレンジイソシアネート等の2個以上のイソシアネート基を有する化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、及び3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物等が挙げられる。後架橋剤は、水溶性エチレン性不飽和単量体が有する官能基と反応しうる官能基を分子内に2個以上有する化合物であってもよい。このような化合物としては、上記ポリオール、2個以上のエポキシ基を有する化合物、ハロエポキシ化合物、及び2個以上のイソシアネート基を有する化合物等が挙げられる。これら後架橋剤は、それぞれ単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 後架橋剤は、反応性に優れている観点から、2個以上のエポキシ基を有する化合物であってもよい。なかでも水への溶解性が高く、後架橋剤としてのハンドリング性がよいという観点から、後架橋剤は、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、及びポリグリセロールグリシジルエーテルからなる群より選ばれる少なくとも1種の化合物であってもよく、得られる吸水性樹脂粒子の上記諸性能を向上する観点から、エチレングリコールジグリシジルエーテル、又はプロピレングリコールジグリシジルエーテルであってもよい。
 後架橋剤の量は、含水ゲル状重合体を生成するために用いられた水溶性エチレン性不飽和単量体100モルに対して、0.0001~1モル、0.0005~0.5モル、0.001~0.1モル、又は0.005~0.05モルであってもよい。後架橋剤の量が0.0001モル以上であると、架橋の効果が発現し、吸水時の吸水性樹脂粒子表面が粘性を帯びることなく、吸水性樹脂粒子の吸水速度をより向上させることができる傾向がある。後架橋剤の量が1モル以下であると、架橋が過度とならず、吸水性樹脂粒子の吸水量をより向上させることができる傾向がある。
 含水ゲル状重合体と後架橋剤との混合は、1次乾燥工程等により、含水ゲル状重合体の水分率を特定の範囲に調整した後に行うことができる。このように、含水ゲル状重合体と後架橋剤との混合時における含水ゲル状重合体の水分率を制御することにより、より好適に後架橋反応を進行させることができる。
 後架橋工程に供される含水ゲル状重合体の水分率は、20~130質量%、25~110質量%、30~90質量%、35~80質量、又は40~70質量%であってもよい。含水ゲル状重合体の水分率をこれらの範囲内とすることで、1次乾燥工程を短くして製造効率を高めつつ、後架橋反応により吸水性能をさらに向上させることが可能となる。
 含水ゲル状重合体の水分率は、重合前の水性液に含まれる水分量から、1次乾燥工程により外部に抽出された水分量を差し引いた量(1次乾燥ゲルの水分量)に、後架橋剤を混合する際に必要に応じて用いられる水分量を合計した値を含水ゲル状重合体の水分量として算出した後、含水ゲル状重合体を構成する水溶性エチレン性不飽和単量体成分の質量に対する上記含水ゲル状重合体の水分量の割合を算出することによって求めることができる。
 含水ゲル状重合体を構成する水溶性エチレン性不飽和単量体由来の成分の質量は、重合反応に用いた水溶性エチレン性不飽和単量体の総質量から、理論上のポリマー固形分として、計算により求められる。
 含水ゲル状重合体と後架橋剤との混合の際には、後架橋剤を均一に分散させるため、後架橋剤を溶解する溶媒として、水を加えてもよい。1次乾燥ゲル(含水ゲル重合体)の水分量と、後架橋剤と共に加えられる水分量との質量比率は、乾燥工程を合理的に短縮してプロセスの経済性を高めつつ、後架橋剤を均一に分散させる観点から、100:0~60:40、99:1~70:30、98:2~80:20、又は98:2~90:10であってもよい。水に代えて、又は水と共に、親水性有機溶媒を用いてもよい。親水性有機溶媒としては、例えば、メチルアルコール、エチルアルコール及びイソプロピルアルコール等の低級アルコール類、アセトン及びメチルエチルケトン等のケトン類、ジオキサン及びテトラヒドロフラン等のエーテル類、N,N-ジメチルホルムアミド等のアミド類、並びにジメチルスルホキシド等のスルホキシド類等が挙げられる。これらの溶媒は、それぞれ単独で用いられてもよく、必要に応じて、2種以上を組み合わせて用いられてもよい。
 後架橋反応の反応温度は、60℃以上、70~200℃、又は80~150℃であってもよい。反応温度が60℃以上であることにより、後架橋反応が促進され、反応に過大な時間を要しない傾向がある。反応温度が200℃以下であることにより、得られる吸水性樹脂粒子の劣化、吸水性能の低下を抑制できる傾向がある。
 後架橋反応の反応時間は、反応温度、後架橋剤の種類及び量等によって異なるので一概には決定することができないが、例えば、1~300分間、又は5~200分間であってもよい。
 製造方法1は、後架橋反応を行った後、熱等のエネルギーを外部から加えることにより、水、炭化水素分散媒等を蒸留により除去する、2次乾燥工程を備えていてもよい。この2次乾燥を行うことで、流動性にさらに優れる吸水性樹脂粒子が得られる傾向がある。
 上記2次乾燥の方法としては、特に限定されず、例えば、(a)油性液(炭化水素分散媒)に分散した後架橋反応後の樹脂粒子の混合物を、蒸留することにより水分と炭化水素分散媒等を同時に除去する方法、(b)デカンテーションにより樹脂粒子を取り出し、減圧乾燥する方法、(c)フィルターにより樹脂粒子をろ別し、減圧乾燥する方法等が挙げられる。これらの中でも、製造工程における簡便さから、(a)の方法を採用することができる。
 製造方法1によれば、上述の実施形態にかかる吸水性樹脂粒子を得ることができる。得られる吸水性樹脂粒子は、適度な大きさの粒子径、優れた吸水速度を有しながら、低い残存揮発成分量を有する。
(製造方法2)
 製造方法2は、炭化水素分散媒を含む油性液と水性溶媒及び水溶性エチレン性不飽和単量体を含む水性液とを含有し、水性液が油性液中に分散された懸濁液中で、水溶性エチレン性不飽和単量体を重合させることを含む重合工程を備える。上記重合は、炭化水素分散媒を含む油性液(O)を連続相とし、水を含む水性液(W)を上記連続相中に分散される液滴状の不連続相として重合するW/O型逆相懸濁重合である。前記水性液は20℃において、20mPa・s以上の粘度を有する。
 上記懸濁液はHLBが6以上の界面活性剤をさらに含む。
 界面活性剤の使用量は、製造方法1と同様の範囲内で調整することができる。親水性高分子分散剤を用いない場合、界面活性剤の上記使用量は、通常、水性溶媒、水溶性エチレン性不飽和単量体及び場合により後述の水溶性増粘剤の合計量を水性液の質量とみなして、設定することができる。
 製造方法2において、水性液は、水を含む水性溶媒と、水溶性エチレン性不飽和単量体と、場合により水溶性増粘剤等の各種添加剤とを含有する。水性溶媒は、主として水から構成され、他の親水性溶媒を含んでいてもよい。
 製造方法2における水性液の20℃における粘度は20mPa・s以上である。この粘度は、20~500000mPa・s、25~500000mPa・s、25~200000mPa・s、30~200000mPa・s、30~100000mPa・s、35~100000mPa・s、35~50000mPa・s、40~50000mPa・s又は40~10000mPa・sであってもよい。上記粘度が20mPa・s以上であることにより、残存揮発成分量を特に顕著に低減することができる。また、上記粘度が500000mPa・s以下であることにより、水性液の移送がしやすくなる傾向がある。水性液の上記粘度は、ブルックフィールド回転粘度計(LVDV-I)を用いて、20℃、60rpmで測定したときの値である。
 上記粘度を有する水性液を得ること等を目的として、水性液は水溶性増粘剤を含んでいてもよい。この水溶性増粘剤が25℃において水100gに対して溶解する量は、1~300g、3~250g、又は5~200gであってもよい。水溶性増粘剤としては、例えば、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース(HPC)等のヒドロキシアルキルセルロース;ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルエチルセルロース等のヒドロキシアルキルアルキルセルロース;カルボキシメチルセルロース等のカルボキシアルキルセルロース;カルボキシメチルヒドロキシエチルセルロース等のカルボキシアルキルヒドロキシアルキルセルロース等が挙げられる。水溶性増粘剤は、これらの中でも、ヒドロキシアルキルセルロース、ヒドロキシアルキルアルキルセルロース及びカルボキシアルキルヒドロキシアルキルセルロースより選ばれる少なくとも1種の化合物であってもよく、ヒドロキシエチルセルロース及びヒドロキシプロピルセルロースであってもよい。ヒドロキシエチルセルロース及びヒドロキシプロピルセルロースは、水性液への溶解性が高く、水性液の増粘効果がより発現しやすく、また吸水性樹脂粒子の残存揮発成分量をより低減することができる。水溶性増粘剤は、それぞれ単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 水性液が水溶性増粘剤を含む場合の水溶性増粘剤の量は、特に限定されないが、例えば、水溶性エチレン性不飽和単量体100質量部に対し、0.05~20質量部、0.2~10質量部、0.4~5質量部又は0.6~3質量部であってもよい。水性液中の水溶性増粘剤の量が0.05質量部以上である場合、より高い増粘効果を得ることができる傾向がある。水溶性増粘剤の量が20質量部以下である場合、量に応じた効果を得ることができる傾向があり、経済的である。
 水性液の20℃における粘度が20mPa・s以上若しくは20~500000mPa・sであることによる残存揮発成分量の低減メカニズムは明確ではないが、W/O型逆相懸濁における水性液滴の分離及び合一が安定化されるためと考えられる。より詳細には、水溶性増粘剤等を用いて水性液滴に一定以上の粘度を付与することにより、水性液滴同士の衝突時に炭化水素分散媒が水性液滴に内包される頻度が低減され、O/W/O型構造の形成が抑制されるためであると推察される。
 上記水性液が水溶性増粘剤を含むことによる、残存揮発成分量の低減メカニズムは明確ではないが、水性液の粘度が一定以上となり、W/O型逆相懸濁における水性液滴の分離及び合一を安定化されるためと考えられる。より詳細には、水溶性増粘剤を用いて水性液滴に一定以上の粘度を付与することにより、水性液滴同士の衝突時に炭化水素分散媒が水性液滴に内包される頻度が低減され、O/W/O型構造の形成が抑制されるためであると推察される。
 水性液中の水溶性エチレン性不飽和単量体の濃度は、水性液(例えば、水性溶媒、水溶性エチレン性不飽和単量体、親水性高分子分散剤、及び水溶性増粘剤の合計)の質量を基準として、製造方法1と同様の範囲で調整することができる。親水性高分子分散剤を用いない場合、水性溶媒、水溶性エチレン性不飽和単量体、及び場合により水溶性増粘剤の合計を水性液の質量とみなして、水溶性エチレン性不飽和単量体の濃度を設定することができる。
 製造方法2において、水性液に含まれる水性溶媒、水溶性エチレン性不飽和単量体及びラジカル重合開始剤、油性液に含まれる炭化水素分散媒、並びに界面活性剤、その他の各種添加剤は、製造方法1において上述したものと同様の種類の化合物を、同様の範囲の量で用いることができる。また、製造方法2における重合、後架橋、乾燥等は、製造方法1と同様の方法により行うことができる。
 製造方法2によれば、上述の実施形態にかかる吸水性樹脂粒子を得ることができる。吸水性樹脂粒子は、適度な大きさの粒子径、優れた吸水速度を有しながら、低い残存揮発成分量を有する。
(製造方法3)
 製造方法3は、下記第一重合工程及び第二重合工程を備える。第一重合工程では、炭化水素分散媒とHLBが6以上の界面活性剤とを含む油性液と、水性溶媒、水溶性エチレン性不飽和単量体及びラジカル重合開始剤を含む第一の水性液とを含有し、液滴状の第一の水性液が油性液中に分散された懸濁液中で、水溶性エチレン性不飽和単量体を重合させ、含水ゲル状重合体を含む懸濁液を得る。第二重合工程では、含水ゲル状重合体を含む45℃以上の懸濁液と、水性溶媒、水溶性エチレン性不飽和単量体及びラジカル重合開始剤を含む第二の水性液とを混合し、液滴状の第二の水性液を分散させた懸濁液中で、水溶性エチレン性不飽和単量体を重合させる。第一重合工程及び第二重合工程における重合は、炭化水素分散媒を含む油性液(O)を連続相とし、水を含む水性液(W)を不連続相として重合するW/O型逆相懸濁重合である。
 第一の水性液は、水を含む水性溶媒と、水溶性エチレン性不飽和単量体と、ラジカル重合開始剤と、場合により各種添加剤とを含有する。水性溶媒は、主として水から構成され、他の親水性溶媒を含んでいてもよい。
 第一の水性液中の水溶性エチレン性不飽和単量体の濃度は、第一の水性液の質量(水性溶媒、水溶性エチレン性不飽和単量体、親水性高分子分散剤、及び水溶性増粘剤の合計量)を基準として、例えば20質量%~飽和濃度以下の範囲であってもよい。W/O型逆相懸濁の状態が良好で好適な粒子径の吸水性樹脂粒子を得やすく、得られる吸水性樹脂粒子の膨潤性能が向上する観点から、上記濃度は25~50質量%、30~45質量%、又は35~42質量%であってもよい。
 製造方法3の第一重合工程において、第一の水性液に含まれる水性溶媒、水溶性エチレン性不飽和単量体及びラジカル重合開始剤、油性液に含まれる炭化水素分散媒、並びに界面活性剤、その他任意の材料は、製造方法1、2において上述したものと同様の種類の化合物を、同様の範囲の量で用いることができる。例えば、第一の水性液は、製造方法1、2における水性液と同様に、親水性高分子分散剤、水溶性増粘剤、連鎖移動剤等を含んでいてもよい。また、第一重合工程における重合は、製造方法1の重合と同様の方法により行われる。
 第一重合工程において、水溶性エチレン性不飽和単量体を重合することにより、粒子状の含水ゲル状重合体が生成する。製造方法3は、第二重合工程の前に、上記含水ゲル状重合体を架橋する中間架橋工程をさらに備えていてもよい。含水ゲル状重合体の中間架橋は、例えば、含水ゲル状重合体と中間架橋剤とを混合し、加熱することにより行われる。中間架橋剤としては、製造方法1で述べた後架橋剤と同様のものが用いられる。
 中間架橋剤の混合量は含水ゲル状重合体を生成するために用いられた水溶性エチレン性不飽和単量体100モルに対して、例えば、0.0001~0.03モル、0.0005~0.02モル、0.001~0.015モル又は0.001~0.01モルであってもよい。中間架橋剤の混合量が0.0001モル以上であると、第二の水性液中の水溶性エチレン性不飽和単量体の、中間架橋工程後の含水ゲル状重合体への吸収が抑制され、吸水速度及び膨潤性能の低下を抑制できる傾向がある。中間架橋剤の混合量が0.03モル以下であると、過度な架橋による吸水性樹脂粒子の吸水性能の低下を抑制できる傾向がある。上記中間架橋反応の反応温度は60℃以上、又は70℃~第一重合における炭化水素分散媒の沸点温度であってもよい。中間架橋反応の反応時間は、反応温度、中間架橋剤の種類及び混合量等によって異なるので一概には決定することができないが、通常、1~200分間、5~100分間、又は10~60分間であってもよい。
 続いて、製造方法3の第二重合工程について詳細に説明する。第二重合は複数回行われてもよい。第二重合を複数回行う場合の回数は、2回以上であればよく、残存揮発成分量を低減しつつ、生産性を高める観点から、2又は3回であってもよい。
 第一重合工程で重合後に得られる含水ゲル状重合体を含む懸濁液は、必要により冷却して、45℃以上に調整される。懸濁液は、50~100℃、55~90℃、60~85℃、又は65~80℃に調整されてもよい。その後、上記含水ゲル状重合体を含む懸濁液と、水性溶媒、水溶性エチレン性不飽和単量体及びラジカル重合開始剤を含む第二の水性液とを混合し、第二の水性液が液滴状に分散される。第二重合工程において、含水ゲル状重合体を含む懸濁液と第二の水性液の全量とが混合された時点(含水ゲル状重合体を含む懸濁液と第二の水性液の全量とを混合し終えた時点)の懸濁液の温度は、35℃以上、40~90℃、45~85℃、又は50~80℃であってもよい。含水ゲル状重合体を含む懸濁液と第二の水性液とを混合する前後の懸濁液の温度を上記範囲とすることにより、得られる吸水性樹脂粒子の残存揮発成分量を効率よく低減することが可能となる。
 第二の水性液に含まれる水溶性エチレン性不飽和単量体水溶液及びラジカル重合開始剤は、例えば、第一の水性液の説明において上述したものと同様の種類の化合物を、同様な範囲の量で用いることができる。第一及び第二の水性液は同じ単量体等から構成されていてもよく、異なる単量体等から構成されていてもよい。
 第二重合工程において、上記水溶性エチレン性不飽和単量体は、第一の水性液に含まれる水溶性エチレン性不飽和単量体100質量部に対して、例えば、20~250質量部、40~200質量部、又は60~150質量部の割合で第二の水性液に含まれる。第二の水性液中の水溶性エチレン性不飽和単量体の使用量が20質量部以上であることにより、得られる吸水性樹脂粒子の残存揮発成分量がより低減する傾向があり、使用量が250質量部以下であることにより、得られる吸水性樹脂粒子の粒子径が過大となることを抑制できる傾向がある。
 第二重合工程における第二の水性液中の水溶性エチレン性不飽和単量体の濃度は、生産性向上の観点から、第二の水性液の質量(水性溶媒、水溶性エチレン性不飽和単量体、親水性高分子分散剤及び水溶性増粘剤の合計量)を基準として、第一重合工程における濃度よりも、例えば、1質量%以上、2~25質量%、3~20質量%、又は4~15質量%高くてもよい。
 第一重合によって重合後に得られた含水ゲル状重合体を含む懸濁液と、水性溶媒、水溶性エチレン性不飽和単量体及びラジカル重合開始剤を含む第二の水性液とを混合した後に行う重合は、第一重合と同様の条件で行うことができる。上述のようにして、水溶性エチレン性不飽和単量体が重合することにより、粒子状の含水ゲル状重合体がさらに生成する。通常、重合工程で得られる重合体(含水ゲル状重合体)は、球状、顆粒状、破砕状、金平糖状及びそれらの凝集物等の様々な形態で得られうる。本実施形態においては、比表面積及び吸水速度が向上する観点から、含水ゲル状重合体は、顆粒状、又は表面に多くの突起を有する顆粒状であってもよい。
 製造方法3によれば、1つのプロセス中において、2回以上の逆相懸濁重合を実施することにより、吸水性樹脂粒子の生産性を向上することが可能となる。さらに驚くべきことに、得られる吸水性樹脂粒子の残存揮発成分量を大幅に低減させることが可能となる。また、第一重合を行った懸濁液で第二重合を行えば、通常は吸水性樹脂粒子の粒子径や吸水性能への悪影響も懸念されるが、本発明者らは、製造方法3によれば、吸水性能、生産性の向上及び残存揮発成分量の低減の両立が可能であることを見出した。
 第二重合を実施することによって残存揮発成分量を低減するメカニズムは明確ではないが、第二重合を実施する際に、第一重合で得られた含水ゲル状重合体が存在していることで、W/O型逆相懸濁系における水性液滴の分離及び合一を安定化する、すなわち、水性液滴同士の衝突時に炭化水素分散媒が水性液滴に内包される頻度が低減されて、O/W/O型構造の形成が抑制されるためであると推察される。
 製造方法3は、上記最終(第二)の重合工程において得られた含水ゲル状重合体を架橋する後架橋工程をさらに備えていてもよい。製造方法3は、含水ゲル状重合体中の水溶性エチレン性不飽和単量体由来の成分(ポリマー固形分)を100質量%としたときの、含水ゲル状重合体中の水の質量百分率(含水ゲル状重合体の水分率)が例えば20~130質量%となるように調整する1次乾燥工程を後架橋工程の前に備えていてもよい。
 1次乾燥工程の乾燥方法としては、特に限定されないが、例えば(a)上記含水ゲル状重合体を油性液(炭化水素分散媒)に分散した状態で、外部から加熱することにより共沸蒸留により炭化水素分散媒を還流させて水分を除去する方法、(b)デカンテーションにより含水ゲル状重合体を取り出し、減圧乾燥する方法、(c)フィルターにより含水ゲル状重合体をろ別し、減圧乾燥する方法等が挙げられる。中でも、製造工程における簡便さから、(a)の方法を採用することができる。
 上記のようにして、含水ゲル状重合体の水分率が例えば20~130質量%であるように調整された含水ゲル状重合体を架橋させることにより、より優れた吸水性能を有する吸水性樹脂粒子が得られる。
 含水ゲル状重合体の後架橋は、例えば、含水ゲル状重合体と後架橋剤とを混合し、加熱することにより行われる。後架橋剤は、製造方法1で述べた後架橋剤と同様のものが用いられる。中間架橋剤と後架橋剤は同じであっても異なっていてもよい。
 後架橋剤の混合量は、含水ゲル状重合体を生成するために用いられた水溶性エチレン性不飽和単量体100モルに対して、例えば、0.0001~1モル、0.0005~0.5モル、0.001~0.1モル、又は0.005~0.05モルであってもよい。後架橋剤の混合量が0.0001モル以上であると、架橋の効果が発現し、吸水時の吸水性樹脂粒子表面が粘性を帯びることなく、吸水性樹脂粒子の吸水速度をより向上させることができる傾向がある。後架橋剤の混合量が1モル以下であると、架橋が過度とならず、吸水性樹脂粒子の吸水性能をより向上させることができる傾向がある。
 含水ゲル状重合体と後架橋剤との混合は、含水ゲル状重合体の水分率を特定の範囲に調整(1次乾燥工程)した後に行うことができる。含水ゲル状重合体と後架橋剤との混合時における含水ゲル状重合体の水分率を制御することにより、より好適に後架橋反応を進行させることができる。
 後架橋工程に供される含水ゲル状重合体の水分率は、例えば、20~130質量%、25~110質量%、30~90質量%、35~80質量%、又は40~70質量%であってもよい。含水ゲル状重合体の水分率をこれらの範囲内とすることで、1次乾燥工程を短くして製造効率を高めつつ、後架橋反応により吸水性能をさらに向上させることが可能となる。
 含水ゲル状重合体の水分率は、重合前の第一及び第二の水性液に含まれる水分量から、1次乾燥工程により外部に抽出された水分量を差し引いた量(1次乾燥ゲルの水分量)に、中間架橋剤や後架橋剤を混合する際に必要に応じて用いられる水分量を合計した値を含水ゲル状重合体の水分量として算出した後、含水ゲル状重合体を構成する水溶性エチレン性不飽和単量体由来の成分の質量に対する上記含水ゲル状重合体の水分量の割合を算出することによって求めることができる。
 含水ゲル状重合体を構成する水溶性エチレン性不飽和単量体由来の成分の質量は、重合反応に用いた水溶性エチレン性不飽和単量体の総質量から、理論上のポリマー固形分として、計算により求められる。
 含水ゲル状重合体と後架橋剤との混合の際には、後架橋剤を均一に分散させるため、後架橋剤を溶解する溶媒として、水が加えられてもよく、親水性溶媒が加えられてもよい。親水性溶媒としては、例えば、メチルアルコール、エチルアルコール及びイソプロピルアルコール等の低級アルコール類、アセトン及びメチルエチルケトン等のケトン類、ジオキサン及びテトラヒドロフラン等のエーテル類、N,N-ジメチルホルムアミド等のアミド類、並びにジメチルスルホキシド等のスルホキシド類等が挙げられる。これらの溶媒は、それぞれ単独で用いられてもよく、必要に応じて、2種以上を組み合わせて用いられてもよい。
 1次乾燥ゲルの水分量と加えられる溶媒量との質量比率は、乾燥工程を合理的に短縮してプロセスの経済性を高めつつ、後架橋剤を均一に分散させる観点から、例えば、100:0~60:40、99:1~70:30、98:2~80:20、又は98:2~90:10であってもよい。
 後架橋反応の反応温度は、例えば、60℃以上、70~200℃、又は80~150℃であってもよい。反応温度が60℃以上であることにより、架橋反応が促進され、反応に過大な時間を要しない傾向があり、反応温度が200℃以下であることにより、得られる吸水性樹脂粒子の劣化、吸水性能の低下を抑制できる傾向がある。
 後架橋反応の反応時間は、反応温度、後架橋剤の種類及び量等によって異なるので一概には決定することができないが、通常、1~300分間、又は5~200分間であってもよい。
 製造方法3は、上記後架橋反応を行った後、熱等のエネルギーを外部から加えることにより、水、炭化水素分散媒等を蒸留により除去する、2次乾燥工程を備えていてもよい。このような2次乾燥を行うことで、更に優れた流動性を有する吸水性樹脂粒子が得られる傾向がある。
 2次乾燥の方法としては、特に限定されず、例えば、(a)炭化水素分散媒に分散した後架橋反応後の樹脂粒子の混合物を、蒸留することにより水分と炭化水素分散媒を同時に除去する方法、(b)デカンテーションにより樹脂粒子を取り出し、減圧乾燥する方法、(c)フィルターにより樹脂粒子をろ別し、減圧乾燥する方法等が挙げられる。これらの中でも、製造工程における簡便さから、(a)の方法を採用することができる。
 製造方法3によれば、上述の実施形態にかかる吸水性樹脂粒子を得ることができる。吸水性樹脂粒子は、適度な大きさの粒子径、優れた吸水速度を有しながら、低い残存揮発成分量を有する。
 以上のようにして得られる吸水性樹脂粒子を用いることにより、以下に記載する吸収体、吸収性物品及び止水材等を得ることができる。
 本実施形態にかかる吸収体は、上記吸水性樹脂粒子と親水性繊維とを含む。親水性繊維としては、綿状パルプ、ケミカルパルプ等のセルロース繊維、レーヨン、アセテート等の人工セルロース繊維等が挙げられる。吸収体は、補強剤として、ポリアミド、ポリエステル、ポリオレフィン等の合成樹脂からなる合成繊維をさらに含んでいてもよい。吸収体の構造としては、例えば、吸水性樹脂粒子と親水性繊維を均一にブレンドしたミキシング構造、親水性繊維の複数の層の間に吸水性樹脂粒子を保持したサンドイッチ構造、吸水性樹脂粒子と親水性繊維とをティッシュペーパー又は不織布等の透水性シートで包んだ構造等が挙げられる。ただし、本実施形態の吸収体はかかる例示のみに限定されるものではない。
 吸収体における吸水性樹脂粒子の使用量は、吸収体の質量を基準として、例えば、5~80質量%、10~70質量%、又は15~60質量%であってもよい。吸水性樹脂粒子の使用量が5質量%以上であることにより、吸収体の吸収容量が大きくなり、液モレ及び逆戻りを抑制できる傾向がある。吸水性樹脂粒子の使用量が80質量%以下であることにより、吸収体のコストを低く抑えることができ、吸収体の感触が硬くなることを抑制できる傾向がある。
 図1は、吸収性物品の一実施形態を示す断面図である。本実施形態にかかる吸収性物品30は、液体透過性シート10、液体不透過性シート20及び吸収体15を備える。吸収体15は、親水性繊維によって形成された親水性繊維層13と、親水性繊維層13内に配置された吸水性樹脂粒子5とを含む。対向して配置された液体透過性シート10及び液体不透過性シート20の間に、吸収体15が配置されている。吸収体15の厚みは、例えば、0.1~10mmであってもよい。
 吸収性物品としては、例えば、紙おむつ、失禁パッド、生理用ナプキン、ペットシート、食品用ドリップシート等が挙げられる。これらの中でも、本実施形態にかかる吸水性樹脂粒子は子供用ビッグサイズのおむつ、子供用おねしょパンツ、大人用おむつ、失禁パッド、多い日用ナプキンのような特定の衛生材料、ペットシート、簡易トイレ等に使用できる。上記吸収性物品を身体に接触する製品に用いる場合は、液体透過性シートは、身体と接触する側に配され、液体不透過性シートは、身体と接触する側の反対側に配される。
 上記液体透過性シートとしては、例えば、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等の合成樹脂からなる不織布、多孔質の合成樹脂シート等が挙げられる。上記液体不透過性シートとしては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の合成樹脂からなるシート、これらの合成樹脂と不織布との複合材料からなるシート等が挙げられる。液体透過性シート及び液体不透過性シートの大きさは、吸収性物品等の用途によって異なるので一概に決定することができない。したがって、かかる大きさは、吸収性物品の用途等に応じて適宜調整される。
 図2は、止水材の一実施形態を示す断面図である。本実施形態にかかる止水材40は、第一の液体透過性シート11、第二の液体透過性シート12及び吸水性樹脂粒子5を備える。対向して配置された第一の液体透過性シート11と第二の液体透過性シート12との間に、吸水性樹脂粒子5が配置されている。吸水性樹脂粒子5は、対向して配置された第一の液体透過性シート11と第二の液体透過性シート12との間に挟持されていてもよい。止水材は、液体透過性シートを3枚以上備えていてもよい。この場合、吸水性樹脂粒子は、隣り合って配置された少なくとも1組の液体透過性樹脂シートの間に配置されていればよい。吸水性樹脂粒子5は、止水材40の厚み方向から見たときに、30~500g/mの割合で配置、又は100~300g/mの割合で配置されていてもよい。第一の液体透過性シート11及び第二の液体透過性シート12の厚みは、例えば、0.05~6mmであってもよい。
 本実施形態にかかる止水材は、例えば、対向して配置された第一の液体透過性シートと第二の液体透過性シートとの間に、複数の吸水性樹脂粒子を配置することにより得られる。具体的には、粘着剤を用いて液体透過性シートに吸水性樹脂粒子を固定して、吸水性樹脂粒子をシート化することができる。本実施形態にかかる止水材は、例えば、電力ケーブル又は光通信ケーブルの中心部を巻いて保護するために用いられる。止水材は、外部素材が劣化し、発生した亀裂から漏れこんだ水分を吸収するとともに、膨潤してケーブル内に圧力を発生させることで、ケーブル中心部に水が到達するのを防止することができる。
 止水材の液体透過性シートとしては、上記吸収性物品の場合と同様のものが用いられる。上記粘着剤としては、例えば、天然ゴム系、ブチルゴム系、ポリイソプレン等のゴム系接着剤;スチレン-イソプレンブロック共重合体(SIS)、スチレン-ブタジエンブロック共重合体(SBS)等のスチレン系エラストマー接着剤;エチレン-酢酸ビニル共重合体(EVA)接着剤;エチレン-アクリル酸エチル共重合体(EEA)等のエチレン-アクリル酸誘導体共重合体系接着剤;エチレン-アクリル酸共重合体(EAA)接着剤;共重合ナイロン等のポリアミド系接着剤;ポリエチレン、ポリプロピレン等のポリオレフィン系接着剤;ポリエチレンテレフタレート(PET)、共重合ポリエステル等のポリエステル系接着剤等、及びアクリル系接着剤が用いられる。
 以下に実施例を掲げて本発明をさらに詳しく説明する。ただし、本発明はこれら実施例のみに限定されるものではない。
<評価方法>
(1)残存揮発成分量
 本発明における残存揮発成分量は、吸水性樹脂粒子の合成時に用いられ、粒子の内部に取り込まれた炭化水素分散媒の量から算出される。合成時に内部に取り込まれた炭化水素分散媒は、実際には、乾燥状態であっても樹脂内部に強固に遮蔽されているため、外部に放出されることはほとんどない。樹脂粒子が吸水してゲルを形成した際、残存揮発成分量の一部が放出される。
 吸水性樹脂粒子に残存する炭化水素分散媒に由来する残存揮発成分の量を、以下の要領で測定した。すなわち、ジメチルホルムアミド(DMF)及び25質量%リン酸水溶液と吸水性樹脂粒子との混合液を110℃で加熱したときに揮発した気体中の炭化水素分散媒の量を測定し、測定値を吸水性樹脂粒子1gあたりに換算した値を、残存揮発成分量とした。具体的な手順を以下に示す。
(a)検量線の作成
 実施例及び比較例で使用した炭化水素分散媒、ジメチルホルムアミド(DMF)、25質量%リン酸水溶液を、栓のできるガラス容器内に用意した。これらは測定中の揮発による誤差を抑えるため、必要に応じて冷却して用いた。
 まず、内容積200mLのメスフラスコに上記炭化水素分散媒を0.15g精秤したのち、合計200mLとなるようにDMFを加え、これを標準液1とした。次いで、内容積20mLのメスフラスコに標準液1を10mLホールピペットで精密に量りとり、合計20mLとなるようにDMFを加え、標準液1を半分に希釈し、これを標準液2とした。
 同様に、標準液2を半分に希釈することで標準液3を得て、標準液3を同様に半分に希釈することで標準液4を得て、標準液4を同様に半分に希釈することで標準液5を得た。
 内容積20mLのバイアル瓶(SMI-Lab Ltd.社製、VZH-20CR-100)に標準液1を4mL加え、さらに25質量%リン酸水溶液5mLを加えた。セプタムゴムとアルミキャップを用いてバイアル瓶を速やかに密栓し、バイアル瓶を1分間振とう攪拌し混合した。標準液2~5に対しても同様の操作を行い、検量線溶液を調製した。
 上記バイアル瓶を振とう撹拌しながら、110℃で2時間加温した後、1mLの気相部をガスクロマトグラフに注入し、各検量線溶液に対するクロマトグラムを得た。検量線溶液を調製する際に精密に秤量した炭化水素分散媒の質量と、クロマトグラムのピーク面積とを用いて、検量線を作成した。炭化水素分散媒由来のピークが複数認められた場合、それらピーク面積の総和を用いて検量線を作成した。
(b)残存揮発成分量の測定
 DMFと25質量%リン酸水溶液を用意した。内容積20mLのバイアル瓶に、実施例及び比較例で得られた吸水性樹脂粒子0.10gをそれぞれ精秤した。このバイアル瓶に、DMFを4mL、25質量%リン酸水溶液5mLを加えた。セプタムゴムとアルミキャップを用いてバイアル瓶を速やかに密栓し、バイアル瓶を1分間振とう混合した。上記バイアル瓶を振とう混合しながら、110℃で2時間加温した後、1mLの気相部をガスクロマトグラフに注入し、クロマトグラムを得た。
 得られたクロマトグラムのピーク面積と先に作成した検量線から、吸水性樹脂粒子(0.10gの精秤値)に含まれる炭化水素分散媒量を算出した。算出された値を吸水性樹脂粒子1gあたりに換算した値を残存揮発成分量(質量%)とした。
 以下は、ガスクロマトグラフの条件である。
  装置:GC-2014(島津製作所製)
  ヘッドスペースオートサンプラ:HT200H(Hamilton Company製)
  充填剤:Squalane 25% Shimalite(NAW)(101)
      80-100mesh
  カラム:3.2mmφ×2.1m
  カラム温度:80℃
  注入口温度:180℃
  検出器温度:180℃
  検出器:FID
  キャリアガス:N
  バイアル瓶加熱温度:110℃
  シリンジ設定温度:130℃
(2)臭気官能試験(6段階臭気強度表示法)
 吸水性樹脂粒子の膨潤時の炭化水素分散媒由来の臭気を次の方法にて評価した。内容積140mLの蓋付ガラス容器(マヨネーズ瓶)に、25℃の0.9質量%塩化ナトリウム水溶液(以下、生理食塩水)20.0gを加え、長さ3cmの回転子を入れて攪拌した。吸水性樹脂粒子2.0gを上記ガラス容器に添加し密閉した。当該ガラス容器中の炭化水素分散媒由来の臭気を、表1に示す評価基準に従って、5名の分析者が判定し、その平均値を臭気の評価結果とした。
Figure JPOXMLDOC01-appb-T000001
(3)生理食塩水の吸水量(g/g)
 生理食塩水吸収量は、以下の方法により評価した。生理食塩水500gと吸水性樹脂粒子2.0gとを混合し、室温で60分間攪拌した。質量Wa(g)を有する、目開き75μmのJIS Z 8801-1標準篩を用いて、上記混合液をろ過した。篩を水平に対して約30度の傾斜角となるように傾けた状態で、ろ物を篩上で30分間放置した。吸水した吸水性樹脂粒子と篩の質量の合計Wb(g)を測定し、以下の式により、吸水量を求めた。
   生理食塩水の吸水量=(Wb-Wa)/2.0
(4)生理食塩水の吸水速度(秒)
 吸水速度の測定は、25℃±1℃に調節された室内で行われた。恒温水槽にて25±0.2℃の温度に調整した生理食塩水50±0.1gをマグネチックスターラーバー(8mmφ×30mmのリング無し)で攪拌して、回転数600rpmで渦を発生させた。吸水性樹脂粒子2.0±0.002gを、上記生理食塩水中に一度に添加し、吸水性樹脂粒子の添加後から液面の渦が収束する時点までの時間(秒)を測定し、当該時間を吸水性樹脂粒子の吸水速度とした。
(5)中位粒子径
 吸水性樹脂粒子50gに、滑剤として非晶質シリカ(デグサジャパン株式会社製、商品名:Sipernat 200)0.25gを混合した。滑剤と混合された吸水性樹脂粒子を、JIS Z 8801-1標準篩の目開き250μmの篩に通過させた。全量に対して篩上に残る量が50質量%以上の場合には、下記(A)の篩の組み合わせを、50質量%未満の場合には、下記(B)の篩の組み合わせを用いて中位粒子径を測定した。
(A)JIS標準篩を上から、目開き850μmの篩、目開き600μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き150μmの篩及び受け皿の順に組み合わせた。
(B)JIS標準篩を上から、目開き425μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、目開き106μmの篩、目開き75μmの篩、目開き45μmの篩及び受け皿の順に組み合わせた。
 最上段に位置する篩に、上記吸水性樹脂粒子を入れ、ロータップ式振とう器を用いて20分間振とうさせて分級した。
 分級後、各篩上に残った吸水性樹脂粒子の質量を全量に対する質量百分率として計算し、粒子径の大きい方から順に積算することにより、篩の目開きと篩上に残った吸水性樹脂粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径とした。
(6)比表面積(m/g)
 比表面積の測定に用いられる吸水性樹脂粒子を、42メッシュ(目開き355μm)のJIS Z 8801-1標準篩を通過させ、80メッシュ(目開き180μm)の標準篩上に保持される粒子径に調節した。次に、この試料を、真空乾燥器によって、約1Paの減圧下において100℃の温度で16時間かけて乾燥した。その後、高精度全自動ガス吸着装置(商品名:BELSORP36、日本ベル株式会社製)により、吸着ガスとしてクリプトンガスを用いて-196℃における吸着等温線を測定し、多点BETプロットから比表面積を求めた。
(7)ハンドリング性
 吸水性樹脂粒子の粉体ハンドリング性は、5名の分析者により、以下基準に従って目視により評価された。3名以上の分析者が選択した評価を、その吸水性樹脂粒子の粉体ハンドリング性とした。
 良好:粉立ちが少ない。流動性が適度にあり、計量や清掃等の操作が容易。
 不良:粉立ちが多い。流動性が低いので、計量や清掃等の操作が難しい。
(8)膨潤性能(mm)
 凹型円形カップ(高さ30mm、内径80.5mm)の底部の全面に吸水性樹脂粒子0.2gを略均等に広げ、凸型円形シリンダー(外径80mm、吸水性樹脂粒子との接触面に直径2mmの貫通孔7が均等に60個配設されている)により吸水性樹脂粒子上に90gの荷重が加えられた状態で、凹型円形カップに20℃の水130gを加えたときの1分後及び10分後における、凹型円形カップ底部の面に対して垂直方向の凸型円形シリンダーの変位(移動距離)をそれぞれ、初期膨潤性能(1分値)及び平衡膨潤性能(10分値)とした。
 膨潤性能は、膨潤性能を測定するための装置を用いて以下のように測定される。膨潤性能を測定するための装置の概略図を図3に示す。図3に示した膨潤性能を測定するための装置Xは、移動距離測定装置1と凹型円形カップ2、プラスチック製の凸型円形シリンダー3及び不織布4(目付量12g/mの液体透過性不織布)から構成される。膨潤性能測定装置Xは、レーザー光6により距離の変位を0.01mm単位で測定することが可能なセンサー(移動距離測定装置1の下部)を有する。凹型円形カップ2内に、所定量の吸水性樹脂粒子5が均一に散布することができるようになっている。凸型円形シリンダー3は、吸水性樹脂粒子5に対して90gの荷重を均一に加えることができるようになっている。
 凹型円形カップ2に試料(吸水性樹脂粒子5)0.2gを均一に散布し、その上に不織布4を敷いた。凸型円形シリンダー3を不織布4の上に静かにのせ、移動距離測定装置1のセンサーのレーザー光6が凸型円形シリンダー3の凸部の中央部にくるように設置した。あらかじめ20℃に調節したイオン交換水130gを凹型円形カップ2内に投入し、吸水性樹脂粒子5が膨潤して凸型円形シリンダー3を押し上げた距離を測定した。吸水開始から1分後及び10分後における凸型円形シリンダー3の移動距離を初期膨潤性能(1分値)及び平衡膨潤性能(10分値)とした。そして、平衡膨潤性能(10分値)に対する初期膨潤性能(1分値)の比率(初期膨潤比率)を算出した。
(9)水性液の粘度
 水性液の粘度は、スピンドル回転数60rpm、20℃の条件で、ブルックフィールド回転粘度計(LVDV-I)を用いて測定され、2回の測定値の平均値として算出される。具体的には、内容積170mLの円筒形粘度測定用ガラス容器に水性液を150mL加え、20℃に調整した恒温水槽に30分間以上浸漬し、水性液の温度を20℃とした。ブルックフィールド回転粘度計(LVDV-I)を用いて、スピンドル回転数60rpmで回転開始から5分後の目盛り値を読み取ることにより、水性液の粘度を2回測定した。測定結果の平均値にスピンドル種類に応じた係数を乗算することで、水性液の20℃における粘度を求めた。スピンドルは測定する水性液の粘度によって適宜選択した。
<検討1>
[実施例1]
 還流冷却器、滴下ロート、窒素ガス導入管、翼径50mmの4枚傾斜パドル翼を2段で有する撹拌翼(フッ素樹脂を表面にコートしたもの)を備えた内径100mmの丸底円筒型セパラブルフラスコ(以下、丸底フラスコという)を準備した。丸底フラスコに炭化水素分散媒としてn-ヘプタン660mLを加え、界面活性剤としてソルビタンモノラウレート(日油社製、商品名ノニオンLP-20R;HLB8.6)1.10gを添加し、45℃まで昇温して界面活性剤をn-ヘプタンに溶解した。
 一方、内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92g(1.03モル)を加えた。アクリル酸水溶液を氷水冷しながら、ビーカーに20.9質量%水酸化ナトリウム水溶液147.7gを滴下して、アクリル酸のうち75モル%の中和を行った。その後、ビーカーに親水性高分子分散剤としてポリビニルアルコール(日本合成化学社製、商品名GH-20;質量平均分子量約1300000、けん化度88)1.10g、ラジカル重合開始剤として過硫酸カリウム0.10g(0.00037モル)を加えて溶解し、水性液を調製した。この水性液のポリマー固形分量は91g、水分量は148.6gであった。
 撹拌機の回転数を700rpmとして撹拌しながら、上記水性液の全量を上記丸底フラスコに添加した。系内を窒素で30分間置換した後、丸底フラスコを70℃の水浴に浸漬して系内を昇温し、重合反応を1時間行うことにより、含水ゲル状重合体を得た。
 次いで、120℃の油浴を使用して系内を昇温し、水とn-ヘプタンを共沸させることにより、n-ヘプタンを還流しながら、111.7gの水を系外へ抜き出した(1次乾燥工程)。その後、丸底フラスコに後架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.14g(0.00048モル)を添加し、後架橋剤を含む混合物を得た。この時の丸底フラスコ内の水分量は40.9gであり、1次乾燥後(後架橋時)の含水ゲル状重合体の水分率は、45質量%であった。後架橋剤を含む混合物を調製後、約80℃で2時間保持した(後架橋工程)。
 その後、n-へプタンを120℃にて蒸発させて乾燥させること(2次乾燥工程)によって、顆粒状の吸水性樹脂粒子を89.2g得た。
[実施例2]
 実施例1と同様の構成の丸底フラスコに炭化水素分散媒としてn-ヘプタン660mLを加え、界面活性剤としてソルビタンモノラウレート(日油社製、商品名ノニオンLP-20R;HLB8.6)1.10gを添加し、45℃まで昇温して界面活性剤をn-ヘプタンに溶解した。
 一方、内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92g(1.03モル)を加えた。アクリル酸水溶液を氷水冷しながら、ビーカーに20.9質量%水酸化ナトリウム水溶液147.7gを滴下して、アクリル酸のうち75モル%の中和を行った。その後、ビーカーに水溶性増粘剤としてヒドロキシエチルセルロース(住友精化社製、商品名AW-15F)0.46g、ラジカル重合開始剤として過硫酸カリウム0.10g(0.00037モル)を加えて溶解し、水性液を調製した。この水性液の20℃における粘度は40mPa・sであり、ポリマー固形分量は91g、水分量は148.6gであった。
 撹拌機の回転数を700rpmとして撹拌しながら、上記水性液の全量を上記丸底フラスコに添加した。系内を窒素で30分間置換した後、丸底フラスコを70℃の水浴に浸漬して系内を昇温し、重合反応を1時間30分行うことにより、含水ゲル状重合体を得た。
 次いで、120℃の油浴を使用して系内を昇温し、水とn-ヘプタンを共沸させることにより、n-ヘプタンを還流しながら、111.7gの水を系外へ抜き出した(1次乾燥工程)。その後、丸底フラスコに後架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.14g(0.00048モル)を添加し、後架橋剤を含む混合物を得た。この時の丸底フラスコ内の水分量は40.9gであり、1次乾燥後(後架橋時)の含水ゲル状重合体の水分率は、45質量%であった。後架橋剤を含む混合物を調製後、約80℃で2時間保持した(後架橋工程)。
 その後、n-へプタンを120℃にて蒸発させて乾燥させること(2次乾燥工程)によって、顆粒状の吸水性樹脂粒子を87.1g得た。
[実施例3]
 実施例1と同様の構成の丸底フラスコに炭化水素分散媒としてn-ヘプタン580mLを加え、界面活性剤としてソルビタンモノラウレート(日油社製、商品名ノニオンLP-20R;HLB8.6)0.97gを添加し、45℃まで昇温して界面活性剤をn-ヘプタンに溶解した。
 一方、内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液81.0g(0.91モル)を加えた。アクリル酸水溶液を氷水冷しながら、ビーカーに20.9質量%水酸化ナトリウム水溶液130.0gを滴下して、アクリル酸のうち75モル%の中和を行った。その後、ビーカーに水溶性ラジカル重合開始剤として過硫酸カリウム0.09g(0.00033モル)を加えて溶解し、第一の水性液を調製した。この第一の水性液のポリマー固形分量は80.1g、水分量は130.8gであった。
 撹拌機の回転数を700rpmとして撹拌しながら、上記第一の水性液の全量を上記丸底フラスコに添加した。系内を窒素で30分間置換した後、丸底フラスコを70℃の水浴に浸漬して系内を昇温し、重合反応を1時間行うことにより、含水ゲル状重合体を得た(第一重合工程)。重合後、中間架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液0.36g(0.000042モル)を加えて、75℃で30分間架橋反応を行った(中間架橋工程)。
 次に、上記第一重合工程とは別に、300mLビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液81.0g(0.91モル)を加えた。アクリル酸水溶液を氷水冷しながら、ビーカーに26.9質量%水酸化ナトリウム水溶液101.0gを滴下して、アクリル酸のうち75モル%の中和を行った。その後、ビーカーに水溶性ラジカル重合開始剤として過硫酸カリウム0.09g(0.00033モル)を加えて溶解し、第二の水性液を調製した。この第二の水性液のポリマー固形分量は80.1g、水分量は102.0gであった。
 中間架橋剤による架橋反応の終了後の懸濁液を、撹拌機の回転数を1000rpmとして攪拌しながら70℃に冷却した。冷却した丸底フラスコ内に上記第二の水性液の全量を滴下した後、系内温度を滴下が終了したときの温度(55℃)に保ちながら、系内を窒素ガスで30分間置換した。丸底フラスコを70℃の水浴に浸漬して系内を昇温し、その後重合を1時間行い(第二重合工程)、含水ゲル状重合体を得た。
 丸底フラスコを120℃の油浴に浸漬して、第二重合工程を経て得られた含水ゲル状重合体を含有する懸濁液を昇温し、水とn-ヘプタンとを共沸させることにより、n-ヘプタンを還流しながら、175.6gの水を系外へ抜き出した(1次乾燥工程)。その後、丸底フラスコに後架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液7.29g(0.00084モル)を添加し、後架橋剤を含む混合物を得た。この時の丸底フラスコ内の水分量は64.7gであった。1次乾燥後(後架橋時)の含水ゲル状重合体の水分率は、40質量%であった。後架橋剤を含む混合物を調製後、約80℃で2時間保持した(後架橋工程)。
 その後、n-へプタンを120℃にて蒸発させて乾燥すること(2次乾燥工程)によって、顆粒状の吸水性樹脂粒子を161.3g得た。
[実施例4]
 第一重合工程の水性液中にさらにポリビニルアルコール(日本合成化学社製、商品名GH-20;質量平均分子量約1300000、けん化度88)0.81gを添加した以外は、実施例3と同様の操作を行い、顆粒状の吸水性樹脂粒子を160.8g得た。1次乾燥後(後架橋時)の含水ゲル状重合体の水分率は、40質量%であった。
[比較例1](特許文献2:特開昭56-131608号公報の実施例6に準拠)
 攪拌機、還流冷却器、滴下ロート、窒素ガス導入管を装着した500mLの四つ口丸底フラスコに炭化水素分散媒としてシクロヘキサン213gを加え、界面活性剤としてソルビタンモノラウレート(日油社製、ノニオンLP-20R;HLB8.6)1.9gを添加した。攪拌下室温にて界面活性剤をシクロヘキサンに溶解させたのち、窒素ガスを吹き込んで溶存酸素を除去した。
 一方、内容積200mLの三角フラスコに、水溶性エチレン性不飽和単量体として80質量%のアクリル酸水溶液48.8g(0.542モル)を加えた。外部よりアクリル酸水溶液を氷水冷しながら、三角フラスコに25.9質量%の水酸化ナトリウム水溶液67.0gを滴下して、アクリル酸のうち80モル%の中和を行った。その後、三角フラスコにラジカル重合開始剤として過硫酸カリウム0.13g(0.00048モル)を加えて溶解し、水性液を調製した。この水性液のポリマー固形分量は48.6g、水分量は67.1gであった。
 撹拌機の回転数を700rpmとして撹拌しながら、上記水性液の全量を上記四つ口丸底フラスコに添加した。系内を窒素で充分に置換した後、四つ口丸底フラスコを55~60℃の水浴に浸漬して系内を昇温し、3時間重合反応を行った。重合後、後架橋剤としてエチレングリコールジグリシジルエーテル0.1g(0.00057モル)を加えた後、水及びシクロヘキサンを蒸留で除去、乾燥することによって微顆粒状の吸水性樹脂粒子48.3gを得た。
[比較例2](特許文献3:特開平9-151224号公報の実施例1に準拠)
 実施例1と同様の構成の丸底フラスコに、炭化水素分散媒としてn-ヘプタン580mLを加え、界面活性剤としてソルビタンモノラウレート(日油株式会社製、商品名ノニオンLP-20R;HLB8.6)0.97gを添加し、50℃まで昇温して界面活性剤をn-ヘプタンに溶解した。その後丸底フラスコの内温を30℃まで冷却した。
 一方、内容積500mLの三角フラスコに、水溶性エチレン性不飽和単量体として80質量%のアクリル酸水溶液92g(1.02モル)を加えた。アクリル酸水溶液を氷水冷しながら、三角フラスコに20.1質量%の水酸化ナトリウム水溶液152.6gを滴下して、アクリル酸のうち75モル%の中和を行った。その後、三角フラスコにラジカル重合開始剤として過硫酸カリウム0.11g(0.00041モル)を加えて溶解し、水性液を調製した。この水性液に吸水速度が42秒の吸水性樹脂粒子(住友精化株式会社製のアクアキープSA60S)18.4gを添加した。
 次に、三角フラスコ中の上記水性液の全量を上記四つ口フラスコに加えて分散させ、系内を窒素で置換した後、四つ口フラスコを70℃の水浴に浸漬して系内を昇温し、3時間重合反応を行った。重合後、水及びn-ヘプタンを蒸留により除去して乾燥し、吸水性樹脂粒子115.7gを得た。
[比較例3]
 内容積500mLの三角フラスコに、水溶性エチレン性不飽和単量体として80質量%アクリル酸水溶液92.0g(1.02モル)を加えた。アクリル酸水溶液を冷却し、攪拌しながら、三角フラスコに30質量%水酸化ナトリウム水溶液102.2gを滴下して、アクリル酸のうち75モル%の中和を行った。その後、三角フラスコにラジカル重合開始剤として過硫酸カリウム0.11g(0.00041モル)、架橋剤としてエチレングリコールジグリシジルエーテル8.3mg(0.048ミリモル)、イオン交換水43.6gを加え、第一の水性液を調製した。
 翼径50mmの2段傾斜パドル翼を備える攪拌機、温度計、還流冷却器及び窒素ガス導入管を備えた内容積2Lの五ツ口円筒形丸底フラスコ(以下、丸底フラスコという)に、炭化水素分散媒としてn-ヘプタン334gを加え、61℃まで加温した。そこに、500rpmの攪拌速度下で上記第一の水性液の全量をロートを用いて一括添加し、内温40℃にて10分間攪拌し水性液を分散させた。
 次に、界面活性剤としてショ糖脂肪酸エステル(三菱化学フーズ株式会社、商品名:S-370;HLB3.0)0.92gを、炭化水素分散媒としてのn-ヘプタン8.28gと混合し、加温溶解させて油性液を得た。上記丸底フラスコ内にこの油性液の全量をロートを用いて添加し、第一の水性液をさらに分散させ懸濁液を得た。
 次に丸底フラスコの内温を40℃に保持しながら系内を充分に窒素置換した後、70℃の水浴を用いて1時間加温し、重合反応を行なった(第一重合工程)。第一重合工程終了後、撹拌速度を1000rpmとし、丸底フラスコの内温を21℃付近まで冷却した。
 別の内容積500mLの三角フラスコに、水溶性エチレン性不飽和単量体として80質量%アクリル酸128.8g(1.43モル)を加えた。アクリル酸水溶液を外部から冷却し、攪拌しながら、30質量%水酸化ナトリウム水溶液142.9gを滴下して、アクリル酸75モル%の中和を行った。その後、三角フラスコにラジカル重合開始剤として過硫酸カリウム0.15g(0.00055モル)、架橋剤としてエチレングリコールジグリシジルエーテル11.6mg(0.067ミリモル)、蒸留水16.7gを加えて、第二の水性液を調製した。
 次に、冷却した第一重合工程後の懸濁液に上記第二の水性液の全量を滴下ロートにて添加し、系内を充分窒素置換した後、70℃の水浴に上記丸底フラスコを浸漬して系内を1時間加温し、重合反応を行った(第二重合工程)。
 第二重合工程の重合反応後、上記丸底フラスコを120℃の油浴に浸漬して懸濁液を加熱し、共沸蒸留により、n-ヘプタンを還流しながら260gの水を系外に除去した。これによりn-ヘプタンに分散された脱水重合体を得た。得られたヘプタン分散脱水重合体に、後架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液8.2g(0.00094モル)を添加し、約80℃で2時間、後架橋反応を行なった。
 その後、上記丸底フラスコを120℃の油浴に浸漬して懸濁液を加熱し、n-ヘプタンと水を蒸留により系外へ除去後、窒素気流下で乾燥し、球状粒子が凝集した形状の吸水性樹脂粒子234gを得た。
[比較例4](特許文献1:国際公開第97/3114号の比較例3に準拠)
 撹拌機を備えた500mL円筒型セパラブルフラスコに10質量%濃度の2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩水溶液288gを加え、液温を20℃に保ち、1200rpmで撹拌しながら、37質量%アクリル酸ナトリウム水溶液53.6gを添加した。数秒後に混合溶液が白濁し、10μm程度の白色微粒子状固体が上記混合溶液から生成した。この白濁液を濾過することにより白色微粒子状固体を単離し、水洗して精製した。
 次いで、重合に用いる単量体として75モル%の中和率を有するアクリル酸ナトリウム塩の単量体水溶液711g(単量体濃度38%)、架橋剤としてトリメチロールプロパントリアクリレート溶液0.45g(0.05モル%)、発泡剤として上記白色微粒子状固体として得られた2,2’-アゾビス(2-メチルプロピオンアミジン)二アクリル酸塩錯体0.52gを内容積2LのSUS容器に加えて、均一分散させ、液高さを約5cmとした。SUS容器内を窒素置換後、ラジカル重合開始剤として10質量%過硫酸アンモニウム水溶液3.1gと1質量%L-アスコルビン酸水溶液1.56gを添加し、撹拌して均一分散させたところ、1分後に重合が開始した。
 得られた白色の含水ゲル状重合体には、微細な気泡が多数均一に含まれていた。上記含水ゲル重合体を約10mmに裁断して300μmの金網上に広げ、150℃で60分間熱風乾燥した。乾燥物を金属製ブレンダーを用いて粉砕し、さらに850μmメッシュで分級して吸水性樹脂前駆体を得た。
 攪拌翼を備えた内径100mmの丸底円筒型セパラブルフラスコ(以下、丸底フラスコという)に吸水性樹脂前駆体30gを量りとり、樹脂を撹拌しながら、エチレングリコールジグリシジルエーテル0.045g、水1.2g、エチルアルコール0.3gを混合した架橋剤水溶液を噴霧した。得られた混合物を、さらに油浴にて180℃で30分間加熱処理することにより、吸水性樹脂粒子を得た。
<評価>
 実施例1~4及び比較例1~4で得られた吸水性樹脂粒子について、生理食塩水の吸水量、生理食塩水の吸収速度、中位粒子径、残存揮発成分量、臭気及び比表面積の評価を行った。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1~4で得られた吸水性樹脂粒子は、いずれも粒子径が適度でありながらも吸水速度が速く、かつ残存揮発成分量が少なく、吸水後の臭気が少ないことがわかる。また、実施例1~4で得られた吸水性樹脂粒子は、いずれもハンドリング性が良好であった。一方、比較例1~4で得られた吸水性樹脂粒子は、これらの性能を充分に両立できていないことがわかる。重合中に炭化水素分散媒を取り込むことがない水溶液重合の樹脂粒子(比較例4)にも一定以上の臭気が感じられるのは、残存する表面架橋剤とその分散に用いる有機溶剤の残存物によるものと推察される。
<検討2>
[実施例5]
 実施例1と同様の構成の丸底フラスコに炭化水素分散媒としてn-ヘプタン530mLを加え、界面活性剤としてのソルビタンモノラウレート(日油社製、商品名ノニオンLP-20R;HLB8.6)1.65gを添加し、45℃まで昇温して界面活性剤を溶解した。
 一方、内容積300mLビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92g(1.03モル)を加えた。アクリル酸水溶液を氷水冷しながら、ビーカーに20.9質量%水酸化ナトリウム水溶液147.6gを滴下して、アクリル酸のうち75モル%の中和を行った。その後、ビーカーにラジカル重合開始剤として過硫酸カリウム0.10g(0.0037モル)を加えて溶解し、第一の水性液を調製した。この第一の水性液のポリマー固形分量は91.0g、水分量は148.5gであった。
 撹拌機の回転数を500rpmとして撹拌しながら、第一の水性液の全量を上記丸底フラスコに添加した。系内を窒素で30分間置換した後、丸底フラスコを70℃の水浴に浸漬して系内を昇温し、重合反応を1時間行うことにより、含水ゲル状重合体を得た(第一重合工程)。重合後、中間架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液1.24g(0.00014モル)を添加して、75℃で30分間架橋反応を行った(中間架橋工程)。
 次に、上記第一重合工程とは別に、300mLビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92g(1.03モル)を加えた。アクリル酸水溶液を氷水冷しながら、ビーカーに26.9質量%水酸化ナトリウム水溶液114.7gを滴下して、アクリル酸のうち75モル%の中和を行った。その後、ビーカーにラジカル重合開始剤として過硫酸カリウム0.10g(0.0037モル)を加えて溶解し、第二の水性液を調製した。この第二の水性液のポリマー固形分量は91.0g、水分量は115.9gであった。
 中間架橋剤による架橋反応終了後の懸濁液を、撹拌機の回転数を1000rpmとして攪拌しながら65℃に冷却した。冷却した丸底フラスコ内に上記第二の水性液の全量を滴下した後、系内温度を滴下が終了したときの温度(50℃)に保ちながら、系内を窒素ガスで30分間置換した。丸底フラスコを70℃の水浴に浸漬して系内を昇温し、その後第二重合を1時間行い(第二重合工程)、含水ゲル状重合体を得た。
 丸底フラスコを120℃の油浴に浸漬して、第二重合工程で得られた含水ゲル状重合体を含有する懸濁液を昇温し、水とn-ヘプタンとを共沸させることにより、n-ヘプタンを還流しながら、208.6gの水を系外へ抜き出した(1次乾燥工程)。その後、丸底フラスコに後架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液8.28g(0.00095モル)を添加し、後架橋剤を含む混合物を得た。この時の丸底フラスコ内の水分量は65.1gであり、1次乾燥後(後架橋時)の含水ゲル状重合体の水分率は、36質量%であった。後架橋剤を含む混合物を調製後、約80℃で2時間保持した(後架橋工程)。
 その後、n-へプタンを120℃にて蒸発させて乾燥させること(2次乾燥工程)によって、顆粒状の吸水性樹脂粒子を190.6g得た。
[実施例6]
 第一重合工程において、中間架橋剤による架橋反応終了後の懸濁液の冷却温度を75℃とし、さらに、第二重合工程において、第二の水性液を滴下した後の系(懸濁液)内温度を60℃とした以外は、実施例3と同様の操作を行い、顆粒状の吸水性樹脂粒子を161.8g得た。
[比較例5]
 実施例1と同様の構成の丸底フラスコに炭化水素分散媒としてn-ヘプタン660mLを加え、界面活性剤としてソルビタンモノラウレート(日油社製、商品名ノニオンLP-20R;HLB8.6)1.10gを添加し、45℃まで昇温して界面活性剤を溶解した。
 一方、内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92g(1.03モル)を加えた。アクリル酸水溶液を氷水冷しながら、ビーカーに20.9質量%水酸化ナトリウム水溶液147.7gを滴下して、アクリル酸のうち75モル%の中和を行った。その後、ビーカーにラジカル重合開始剤として過硫酸カリウム0.10g(0.0037モル)を加えて溶解し、水性液を調製した。この水性液のポリマー固形分量は91g、水分量は148.6gであった。
 撹拌機の回転数を700rpmとして撹拌しながら、上記水性液の全量を上記丸底フラスコに添加した。系内を窒素で30分間置換した後、丸底フラスコを70℃の水浴に浸漬して系内を昇温し、重合反応を1時間行うことにより、含水ゲル状重合体を得た。
 次いで、120℃の油浴を使用して系内を昇温し、水とn-ヘプタンを共沸させることにより、n-ヘプタンを還流しながら、127.6gの水を系外へ抜き出した(1次乾燥工程)。その後、丸底フラスコに後架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液5.52g(0.00063モル)を添加し、後架橋剤を含む混合物を得た。この時の丸底フラスコ内の水分量は26.3gであり、1次乾燥後(後架橋時)の含水ゲル状重合体の水分率は29質量%であった。後架橋剤を含む混合物を調製後、約80℃で2時間保持した(後架橋工程)。
 その後、n-へプタンを120℃にて蒸発させて乾燥させること(2次乾燥工程)によって、顆粒状の吸水性樹脂粒子を87.4g得た。
[比較例6]
 第一重合工程後における、中間架橋剤による架橋反応終了後の懸濁液の冷却温度を40℃とし、さらに、第二重合工程において、第二の水性液を滴下した後の系内温度を34℃とした以外は、実施例5と同様の操作を行い、顆粒状の吸水性樹脂粒子を189.3g得た。
[比較例7]
 内容積500mLの三角フラスコに、80質量%のアクリル酸水溶液92g(1.02モル)を加えた。アクリル酸水溶液を氷水冷しながら、三角フラスコに21.0質量%水酸化ナトリウム水溶液146.0gを滴下して、アクリル酸のうち75モル%の中和を行い、濃度38質量%の水溶性エチレン性不飽和単量体水溶液を調製した。得られた水溶性エチレン性不飽和単量体水溶液に、架橋剤としてエチレングリコールジグリシジルエーテル18.4mg(106μモル)及びラジカル重合開始剤として過硫酸カリウム92mg(0.00034モル)を添加し、これを第一の水性液とした。また、上記と同様の操作を行い、上記とは別の水性液を調製し、これを第二の水性液とした。
 次に、実施例1と同様の構成の丸底フラスコに、炭化水素分散媒としてn-ヘプタン340g(500mL)と、界面活性剤としてショ糖脂肪酸エステル(三菱化学フーズ社製、商品名S-370;HLB3.0)0.92gとを加えて、界面活性剤をn-ヘプタンに溶解させた後、丸底フラスコ内を35℃にした。その後、丸底フラスコに第一の水性液の全量を加えて35℃に保ち、攪拌下で懸濁し、系内を窒素ガスで置換した。丸底フラスコを70℃の水浴に浸漬して昇温し、重合反応を2時間行った(第一重合工程)。
 第一重合終了後、重合スラリーを50℃に冷却した。界面活性剤が溶解している状態で、第二の水性液の全量を系内に滴下した。系内を50℃に保ちながら30分間攪拌しながら系内を窒素ガスで充分に置換した。その後、丸底フラスコを70℃の水浴に浸漬して昇温し、重合反応を1.5時間行う(第二重合工程)ことにより、含水ゲル状重合体を得た。
 次いで、丸底フラスコを120℃の油浴に浸漬して昇温し、水とn-ヘプタンを共沸させることにより、n-ヘプタンを還流しながら、250gの水を系外へ抜き出した(1次乾燥工程)。その後、丸底フラスコに架橋剤としてエチレングリコールジグリシジルエーテル110mg(0.00063モル)を添加し、後架橋剤を含む混合物を得た。架橋時の含水ゲル状重合体の水分率は、25質量%であった。後架橋剤を含む混合物を調製後、約80℃で2時間保持した(後架橋工程)。
 その後、n-へプタンを120℃にて蒸発させて乾燥させること(2次乾燥工程)によって、球状の吸水性樹脂粒子を188.3g得た。
評価
 実施例3、5、6及び比較例5~7で得られた吸水性樹脂粒子について、残存揮発成分量、臭気、生理食塩水の吸水量、生理食塩水の吸水速度、中位粒子径及びハンドリング性の評価を行った。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3中の、懸濁液Aとは、第一重合工程後であり第二の水性液の混合前の懸濁液を示す。懸濁液Bとは、第二の水性液の混合後であり、第二重合工程の重合前の懸濁液を示す。
 表3に示すように、実施例3、5、6で得られた吸水性樹脂粒子は、いずれも、粒子径が適度でありながらも吸水速度等の吸水性能にも優れ、かつ残存揮発成分量の少ないことがわかる。一方、比較例5及び6で得られた吸水性樹脂粒子は、残存揮発成分量が大きく吸水後に臭気が認められた。比較例7で得られた吸水性樹脂粒子は、粒子径が小さく、粉体ハンドリング性に問題があった。
<検討3>
[実施例7]
 水性液に加えるヒドロキシエチルセルロースの量を、1.10gとし、水性液の20℃における粘度を260mPa・sとした以外は、実施例2と同様の操作を行い、顆粒状の吸水性樹脂粒子を88.1g得た。
[実施例8]
 水性液に、ヒドロキシエチルセルロースに代えて、ヒドロキシプロピルセルロース(日本曹達社製、商品名セルニーH)0.74gを加え、水性液の20℃における粘度を60mPa・sとし、次いで1次乾燥工程における系外への水の抜き出し量を121.2g、添加する2質量%のエチレングリコールジグリシジルエーテル水溶液の量を5.06g(0.00058モル)として、後架橋反応時の水分率を35質量%とした以外は、実施例2と同様の操作を行い、顆粒状の吸水性樹脂粒子を86.8g得た。
[比較例8]
 水性液に、ヒドロキシプロピルセルロースを添加せず、水性液の20℃における粘度を8mPa・sとした以外は、実施例8と同様の操作を行い、顆粒状の吸水性樹脂粒子を87.4g得た。
[比較例9]
 水性液に、ヒドロキシエチルセルロース(住友精化社製、商品名AW-15F)0.27gを加え、水性成分の20℃における粘度を18mPa・sとした以外は、比較例8と同様の操作を行い、顆粒状の吸水性樹脂粒子を88.1g得た。
評価
 実施例2、7、8及び比較例8、9で得られた吸水性樹脂粒子について、水性液の残存揮発成分量、臭気、生理食塩水の吸水量、生理食塩水の吸水速度、中位粒子径、膨潤性能、及びハンドリング性の評価を行った。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例2、7、8で得られた吸水性樹脂粒子は、いずれも、粒子径が適度であり、ハンドリング性に優れながらも吸水速度等の吸水性能にも優れ、かつ残存揮発成分量の少ないことがわかる。一方、比較例8及び9で得られた吸水性樹脂粒子は、残存揮発成分量が大きく吸水後の臭気が認められた。
<検討4>
[実施例9、10]
 実施例9、10では、水性液に加えるポリビニルアルコールの量を、それぞれ0.01g、0.67gとした以外は、実施例1と同様の操作を行い、顆粒状の吸水性樹脂粒子をそれぞれ88.2g、88.4g得た。1次乾燥後(後架橋時)の含水ゲル状重合体の水分率は、ともに45質量%であった。
[実施例11]
 水性液に、ポリビニルアルコールに代えて、ポリビニルピロリドン(アイエスピージャパン社製、商品名K-90;質量平均分子量約1300000)0.90gを加え、次いで1次乾燥工程における系外への水の抜き出し量を116.1g、後架橋反応時の含水ゲル状重合体の水分率を40質量%とした以外は、実施例9と同様の操作を行い、顆粒状の吸水性樹脂粒子を88.3g得た。
[実施例12]
 水性液に、ポリビニルピロリドンに代えて、ポリエチレングリコール(日油社製、商品名PEG#20000;質量平均分子量約20000)0.90gを加え、次いで1次乾燥工程における系外への水の抜き出し量を121.2g、添加する2質量%のエチレングリコールジグリシジルエーテル水溶液の量を5.06g(0.00058モル)として、後架橋反応時の含水ゲル状重合体の水分率を35質量%とした以外は、実施例11と同様の操作を行い、顆粒状の吸水性樹脂粒子を88.8g得た。
[比較例10]
 水性液に、ポリエチレングリコールを加えない以外は、実施例12と同様の操作を行い、顆粒状の吸水性樹脂粒子を87.4g得た。
[比較例11]
 内容積500mLの三角フラスコに、80質量%のアクリル酸水溶液92g(1.02モル)を加えた。アクリル酸水溶液を氷水冷しながら、三角フラスコに21.0質量%水酸化ナトリウム水溶液146.0gを滴下して、アクリル酸のうち75モル%の中和を行い、濃度38質量%の水溶性エチレン性不飽和単量体水溶液を調製した。得られた水溶性エチレン性不飽和単量体水溶液に、架橋剤としてエチレングリコールジグリシジエーテル18.4mg(106μモル)及びラジカル重合開始剤として過硫酸カリウム92mg(0.00034モル)を添加し、これを第1段目の逆相懸濁重合用の水性液(a)とした。また、上記と同様の操作を行い、上記とは別の水性液を調製し、これを第2段目の逆相懸濁重合用の水性液(b)とした。
 次に、攪拌機、2段パドル翼、還流冷却器、滴下ロート及び窒素ガス導入管を備えた内容積2Lの五つ口円筒型丸底フラスコに、炭化水素分散媒としてn-ヘプタン340g(500mL)と、界面活性剤としてショ糖脂肪酸エステル(三菱化学フーズ社製、商品名S-370;HLB3.0)0.92gとを加えて、界面活性剤をn-ヘプタンに溶解させた後、丸底フラスコ内を35℃にした。その後、上記丸底フラスコに水性液(a)を加えて35℃に保ち、攪拌下で懸濁し、系内を窒素ガスで置換した。丸底フラスコを70℃の水浴に浸漬して昇温し、重合反応を2時間行った。
 第1段目の逆相懸濁重合終了後、重合スラリーを50℃に冷却した。界面活性剤が溶解している状態で、水性液(b)を系内に滴下した。系内を50℃に保ちながら30分間攪拌しながら系内を窒素ガスで充分に置換した。その後、丸底フラスコを70℃の水浴に浸漬して昇温し、重合反応を1.5時間行うことにより、含水ゲル状重合体を得た。
 次いで、丸底フラスコを120℃の油浴に浸漬して昇温し、水とn-ヘプタンを共沸させることにより、n-ヘプタンを還流しながら、250gの水を系外へ抜き出した(1次乾燥工程)。1次乾燥後の含水ゲル状重合体の水分率は、25質量%であった。その後、丸底フラスコに後架橋剤としてエチレングリコールジグリシジルエーテル110mg(0.00063モル)を添加し、後架橋剤を含む混合物を得た。後架橋剤を含む混合物を調製後、約80℃で2時間保持した(後架橋工程)。
 その後、n-へプタンを120℃にて蒸発させて乾燥させること(2次乾燥工程)によって、球状の吸水性樹脂粒子を188.3g得た。
評価
 実施例1、9~12及び比較例10、11で得られた吸水性樹脂粒子について、残存揮発成分量、臭気、生理食塩水の吸水量、生理食塩水の吸水速度、中位粒子径、膨潤性能、及びハンドリング性の評価を行った。評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、実施例1、9~12で得られた吸水性樹脂粒子は、いずれも、粒子径が適度であり、ハンドリング性に優れながらも吸水速度等の吸水性能にも優れ、かつ残存揮発成分量の少ないことがわかる。一方、比較例10で得られた吸水性樹脂粒子は、残存揮発成分量が大きく吸水後の臭気が認められた。また、比較例11で得られた吸水性樹脂粒子は、粒子径が小さく、ハンドリング性に問題があった。
 本実施形態にかかる吸水性樹脂粒子は、紙おむつ、生理用品、ペットシート等の衛生材料用、保水材、土壌改良材等の農園芸材料用、電力又は通信用ケーブル用止水材、結露防止材等の工業資材用等種々の分野で使用することができ、特に大人用おむつ、失禁パッド、トイレトレーニングパンツ、多い日用ナプキンのような特定の衛生材料、ケーブル用止水材、ペットシート、簡易トイレ等の分野に好適に用いられる。
 本実施形態にかかる製造方法により得られる吸水性樹脂粒子は、紙おむつ、生理用品、ペットシート等の衛生材料用、保水材、土壌改良材等の農園芸材料用、電力及び通信用ケーブル用止水材、結露防止材等の工業資材用等種々の分野で使用することができ、特に大人用おむつ、失禁パッド、トイレトレーニングパンツ、多い日用ナプキンのような特定の衛生材料、ケーブル用止水材、ペットシート、簡易トイレ等の分野に好適に用いられる。
 1…移動距離測定装置、2…凹型円形カップ、3…凸型円形シリンダー、4…不織布、5…吸水性樹脂粒子、6…レーザー光、7…貫通孔、X…膨潤性能測定装置、10…液体透過性シート、11…第一の液体透過性シート、12…第2の液体透過性シート、13…親水性繊維層、15…吸収体、20…液体不透過性シート、30…吸収性物品、40…止水材。

Claims (19)

  1.  生理食塩水の吸水速度が1~15秒であり、中位粒子径が100~600μmであり、残存揮発成分量が1.5質量%以下である、吸水性樹脂粒子。
  2.  比表面積が0.08m/g以上である、請求項1に記載の吸水性樹脂粒子。
  3.  生理食塩水の吸水量が30~90g/gである、請求項1又は2に記載の吸水性樹脂粒子。
  4.  炭化水素分散媒を含む油性液と、水性溶媒、水溶性エチレン性不飽和単量体及びラジカル重合開始剤を含む第一の水性液と、HLBが6以上の界面活性剤とを含有し、前記第一の水性液が前記油性液中に分散された懸濁液中で、前記水溶性エチレン性不飽和単量体を重合させ、含水ゲル状重合体を含む懸濁液を得ることを含む、第一重合工程と、
     45℃以上の前記含水ゲル状重合体を含む懸濁液を、水性溶媒、水溶性エチレン性不飽和単量体及びラジカル重合開始剤を含む第二の水性液と混合して、前記第二の水性液をさらに分散させた懸濁液中で、前記水溶性エチレン性不飽和単量体を重合させることを含む、第二重合工程と、
    をこの順に備える、吸水性樹脂粒子を製造する方法。
  5.  前記第二重合工程において、前記懸濁液を前記第二の水性液と混合し終わった時点の、前記第二の水性液をさらに分散させた懸濁液の温度が35℃以上である、請求項4に記載の方法。
  6.  前記第一重合工程において、前記油性液が、前記第一の水性液に含まれる前記水溶性エチレン性不飽和単量体100質量部に対して50~650質量部の前記炭化水素分散媒を含む、請求項4又は5に記載の方法。
  7.  炭化水素分散媒を含む油性液と、水性溶媒及び水溶性エチレン性不飽和単量体を含み前記水性溶媒が水を含む水性液とを含有し、前記水性液が前記油性液中に分散された懸濁液中で、前記水溶性エチレン性不飽和単量体を重合させることを含む重合工程を備え、
     前記水性液が20℃において、20mPa・s以上の粘度を有し、
     前記懸濁液が、HLBが6以上の界面活性剤をさらに含有する、
    吸水性樹脂粒子を製造する方法。
  8.  前記水性液が水溶性増粘剤をさらに含み、該水溶性増粘剤がヒドロキシアルキルセルロース、ヒドロキシアルキルアルキルセルロース及びカルボキシアルキルヒドロキシアルキルセルロースより選ばれる少なくとも1種の化合物を含む、請求項7に記載の方法。
  9. (1)生理食塩水の吸水量が30~90g/gであり、
    (2)中位粒子径が100~600μmであり、
    (3)生理食塩水の吸水速度が1~20秒であり、
    (4)平衡膨潤性能が20mm以上であり、
    (5)残存揮発成分量が1.5質量%以下であり、
     請求項7又は8に記載の方法により得ることのできる、吸水性樹脂粒子。
  10.  炭化水素分散媒を含む油性液と、水性溶媒及び水溶性エチレン性不飽和単量体を含み前記水性溶媒が水を含む水性液とを含有し、前記水性液が前記油性液中に分散された懸濁液中で、前記水溶性エチレン性不飽和単量体を重合させることを含む重合工程を備え、
     前記水性液が親水性高分子分散剤をさらに含み、
     前記懸濁液が、HLBが6以上の界面活性剤をさらに含有する、
    吸水性樹脂粒子を製造する方法。
  11.  前記親水性高分子分散剤が、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール、ポリプロピレングリコール及びポリグリセリンからなる群より選ばれる少なくとも1種の化合物を含む、請求項10に記載の方法。
  12.  前記水性液が、前記水溶性エチレン性不飽和単量体100質量部に対して、0.001~10質量部の前記親水性高分子分散剤を含む、請求項10又は11に記載の方法。
  13. (1)生理食塩水の吸水量が30~90g/gであり、
    (2)中位粒子径が100~600μmであり、
    (3)生理食塩水の吸水速度が1~20秒であり、
    (4)平衡膨潤性能が20mm以上であり、
    (5)残存揮発成分量が1.5質量%以下であり、
     請求項10~12のいずれか一項に記載の方法により得ることのできる、吸水性樹脂粒子。
  14.  前記界面活性剤が、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル及びショ糖脂肪酸エステルからなる群より選ばれる少なくとも1種の化合物を含む、請求項4~8、10~12のいずれか一項に記載の方法。
  15.  前記水溶性エチレン性不飽和単量体が、アクリル酸及びその塩、メタクリル酸及びその塩、並びにアクリルアミドからなる群より選ばれる少なくとも1種の化合物を含む、請求項4~8、10~12、14のいずれか一項に記載の方法。
  16.  前記炭化水素分散媒が、炭素数6~8の鎖状脂肪族炭化水素、及び炭素数6~8の脂環族炭化水素からなる群より選ばれる少なくとも1種の化合物を含む、請求項4~8、10~12、14、15のいずれか1項に記載の方法。
  17.  請求項1~3、9、13のいずれか一項に記載の吸水性樹脂粒子と親水性繊維とを含む、吸収体。
  18.  液体透過性シート、液体不透過性シート及び請求項17に記載の吸収体を備え、
     対向して配置された前記液体透過性シートと前記液体不透過性シートとの間に、前記吸収体が配置されている、吸収性物品。
  19.  第一の液体透過性シート、第二の液体透過性シート及び請求項1~3、9、13のいずれか一項に記載の吸水性樹脂粒子を備え、
     対向して配置された前記第一の液体透過性シートと前記第二の液体透過性シートとの間に、前記吸水性樹脂粒子が配置されている、止水材。
PCT/JP2012/068615 2011-08-03 2012-07-23 吸水性樹脂粒子、吸水性樹脂粒子を製造する方法、吸収体、吸収性物品及び止水材 WO2013018571A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP12819365.3A EP2740747B1 (en) 2011-08-03 2012-07-23 Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
ES12819365.3T ES2627533T3 (es) 2011-08-03 2012-07-23 Partículas de resina hidroabsorbentes, método para fabricar partículas de resina hidroabsorbentes, cuerpo de absorción, artículo de absorción y material estanco al agua
EP15191225.0A EP3023443B1 (en) 2011-08-03 2012-07-23 Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
JP2013526820A JP6293484B2 (ja) 2011-08-03 2012-07-23 吸水性樹脂粒子、吸水性樹脂粒子を製造する方法、吸収体、吸収性物品及び止水材
US14/127,784 US9199218B2 (en) 2011-08-03 2012-07-23 Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
CA2843678A CA2843678C (en) 2011-08-03 2012-07-23 Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
CN201280037074.1A CN103703028B (zh) 2011-08-03 2012-07-23 吸水性树脂粒子、吸水性树脂粒子的制备方法
KR1020147001912A KR101832549B1 (ko) 2011-08-03 2012-07-23 흡수성 수지 입자, 흡수성 수지 입자를 제조하는 방법, 흡수체, 흡수성 물품 및 지수재
EP18177630.3A EP3398974B1 (en) 2011-08-03 2012-07-23 Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
SG2013095260A SG2013095260A (en) 2011-08-03 2012-07-23 Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
BR112014002637-8A BR112014002637B1 (pt) 2011-08-03 2012-07-23 Partícula de resina de absorção de água, método para a produção de partícula de resina de absorção de água, corpo de absorção, artigo de absorção, e material de vedação de água

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2011170471 2011-08-03
JP2011-170466 2011-08-03
JP2011-170462 2011-08-03
JP2011170466 2011-08-03
JP2011170462 2011-08-03
JP2011-170467 2011-08-03
JP2011-170477 2011-08-03
JP2011170473 2011-08-03
JP2011-170471 2011-08-03
JP2011-170473 2011-08-03
JP2011170477 2011-08-03
JP2011170467 2011-08-03
JP2011218018 2011-09-30
JP2011218028 2011-09-30
JP2011-218028 2011-09-30
JP2011-218018 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013018571A1 true WO2013018571A1 (ja) 2013-02-07

Family

ID=47629098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068615 WO2013018571A1 (ja) 2011-08-03 2012-07-23 吸水性樹脂粒子、吸水性樹脂粒子を製造する方法、吸収体、吸収性物品及び止水材

Country Status (12)

Country Link
US (1) US9199218B2 (ja)
EP (5) EP3023443B1 (ja)
JP (2) JP6293484B2 (ja)
KR (1) KR101832549B1 (ja)
CN (2) CN106046224B (ja)
AR (1) AR087394A1 (ja)
BR (1) BR112014002637B1 (ja)
CA (2) CA3050763C (ja)
ES (2) ES2627533T3 (ja)
SG (1) SG2013095260A (ja)
TW (1) TWI534158B (ja)
WO (1) WO2013018571A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765144A4 (en) * 2011-10-06 2015-05-27 Sumitomo Seika Chemicals METHOD FOR MANUFACTURING WATER ABSORBING RESIN PARTICLES
JP2018021133A (ja) * 2016-08-04 2018-02-08 Sdpグローバル株式会社 吸収性樹脂組成物粒子及びその製造方法
CN109125781A (zh) * 2018-11-16 2019-01-04 南阳市中心医院 一种肝胆外科抗菌敷料
CN109453418A (zh) * 2018-11-16 2019-03-12 南阳市中心医院 一种血管外科用止血抗菌敷料
WO2019142872A1 (ja) 2018-01-18 2019-07-25 住友精化株式会社 吸水性樹脂
WO2020145384A1 (ja) 2019-01-11 2020-07-16 株式会社日本触媒 吸水性樹脂を主成分とする吸水剤及びその製造方法
WO2020203723A1 (ja) * 2019-03-29 2020-10-08 住友精化株式会社 吸水性樹脂及び止水材
US10835887B2 (en) 2016-03-02 2020-11-17 Sumitomo Seika Chemicals Co., Ltd Process for producing water-absorbing resin particles
WO2021039714A1 (ja) * 2019-08-26 2021-03-04 住友精化株式会社 吸収性物品及び補助シート
WO2021039715A1 (ja) * 2019-08-26 2021-03-04 住友精化株式会社 吸水シート及び吸収性物品
KR20220027061A (ko) 2019-06-28 2022-03-07 유니 참 코포레이션 흡수체 및 흡수성 물품
WO2022145239A1 (ja) 2020-12-29 2022-07-07 ユニ・チャーム株式会社 複合吸収体及び衛生用品
WO2022145242A1 (ja) 2020-12-29 2022-07-07 ユニ・チャーム株式会社 複合吸収体及び衛生用品
WO2022145240A1 (ja) 2020-12-29 2022-07-07 ユニ・チャーム株式会社 複合吸収体及び衛生用品
WO2022181771A1 (ja) 2021-02-26 2022-09-01 株式会社日本触媒 粒子状吸水剤、該吸水剤を含む吸収体及び該吸収体を用いた吸収性物品
WO2022239628A1 (ja) 2021-05-12 2022-11-17 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
WO2022239723A1 (ja) 2021-05-12 2022-11-17 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
DE112021005745T5 (de) 2020-12-29 2023-08-17 Organo Corporation Absorbierender Verbundkörper und Polymer-Absorptionsmittel

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101752384B1 (ko) 2014-11-27 2017-06-30 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이를 통해 제조된 고흡수성 수지
KR101871968B1 (ko) 2015-06-01 2018-06-27 주식회사 엘지화학 고흡수성 수지
WO2016195376A1 (ko) * 2015-06-01 2016-12-08 주식회사 엘지화학 고흡수성 수지
KR101949454B1 (ko) 2015-06-15 2019-02-18 주식회사 엘지화학 고흡수성 수지
KR101918285B1 (ko) * 2015-06-17 2018-11-13 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR101949995B1 (ko) 2015-07-06 2019-02-19 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이로부터 제조된 고흡수성 수지
KR101855351B1 (ko) 2015-08-13 2018-05-04 주식회사 엘지화학 고흡수성 수지의 제조 방법
US11325101B2 (en) 2016-02-25 2022-05-10 Lg Chem, Ltd. Super absorbent polymer and method for preparing the same
JP7288399B2 (ja) * 2017-03-02 2023-06-07 住友精化株式会社 吸水性樹脂、土壌保水材、及び農園芸材料
WO2019023065A1 (en) * 2017-07-28 2019-01-31 Kimberly-Clark Worldwide, Inc. ABSORBENT FEMALE HYGIENE ARTICLE CONTAINING NANOPOROUS SUPERABSORBENT PARTICLES
CN111971181A (zh) * 2018-03-27 2020-11-20 精工爱普生株式会社 油墨吸收材料、油墨吸收器以及液滴喷出装置
WO2019189445A1 (ja) * 2018-03-28 2019-10-03 住友精化株式会社 吸収性物品
US11931718B2 (en) 2018-03-28 2024-03-19 Sumitomo Seika Chemicals Co., Ltd. Water-absorbing resin particles
US11596924B2 (en) 2018-06-27 2023-03-07 Kimberly-Clark Worldwide, Inc. Nanoporous superabsorbent particles
JP7192442B2 (ja) * 2018-11-29 2022-12-20 セイコーエプソン株式会社 吸収性複合体
CN113166439B (zh) * 2018-12-04 2024-03-19 三大雅株式会社 吸水性树脂颗粒及其制造方法
CN109503768B (zh) * 2018-12-05 2021-05-18 福州大学 一种高强韧粘性耐候聚乙烯醇基双网络水凝胶的制备方法
CN113166438A (zh) * 2018-12-12 2021-07-23 住友精化株式会社 吸水性树脂颗粒、其漏液性的评价方法及其制造方法、以及吸收性物品
JP6991389B2 (ja) * 2019-03-08 2022-01-12 住友精化株式会社 吸水性樹脂粒子及びその製造方法
CN111688355B (zh) * 2019-03-15 2022-04-12 精工爱普生株式会社 液体吸收体、液体吸收器以及液体喷出装置
CN113631589A (zh) * 2019-03-29 2021-11-09 住友精化株式会社 吸水性树脂和阻水材料
WO2021075506A1 (ja) * 2019-10-18 2021-04-22 住友精化株式会社 吸水性樹脂粒子の再生方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251309A (ja) * 1997-03-14 1998-09-22 Nippon Shokubai Co Ltd 高吸水速度吸水性樹脂の製造方法
JPH11267500A (ja) * 1998-03-23 1999-10-05 Nippon Shokubai Co Ltd 吸水剤及びそれを用いた吸収性物品
WO2011078298A1 (ja) * 2009-12-24 2011-06-30 株式会社日本触媒 ポリアクリル酸系吸水性樹脂粉末及びその製造方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025045B2 (ja) 1980-03-19 1985-06-15 製鉄化学工業株式会社 塩水吸収能のすぐれたアクリル酸重合体の製造方法
TW201758B (ja) * 1988-06-28 1993-03-11 Catalyst co ltd
JPH0678390B2 (ja) * 1988-12-23 1994-10-05 東亞合成化学工業株式会社 吸水性ポリマーの製造方法
JP2722695B2 (ja) * 1989-08-01 1998-03-04 東亞合成株式会社 吸水性ポリマーの製造方法
JPH03195713A (ja) 1989-12-25 1991-08-27 Mitsubishi Petrochem Co Ltd 高吸水性ポリマーの製造法
JPH03195709A (ja) 1989-12-25 1991-08-27 Mitsubishi Petrochem Co Ltd 高吸水性ポリマーの製造法
JP2938920B2 (ja) * 1990-01-31 1999-08-25 住友精化株式会社 吸水性樹脂の製造方法
CA2038779A1 (en) * 1990-04-02 1991-10-03 Takumi Hatsuda Method for production of fluid stable aggregate
US5981070A (en) 1995-07-07 1999-11-09 Nippon Shokubai Co., Ltd Water-absorbent agent powders and manufacturing method of the same
JP4072833B2 (ja) 1995-11-30 2008-04-09 住友精化株式会社 吸水性樹脂の製造方法および吸水性樹脂
FR2755693B1 (fr) 1996-11-14 1998-12-18 Atochem Elf Sa Procede pour l'obtention de polymeres hydrophiles a grande vitesse de dissolution ou de gonflement dans l'eau
DE19882553T1 (de) * 1997-07-18 2000-07-27 Sanyo Chemical Ind Ltd Absorbierende Zusammensetzung, Verfahren zu deren Herstellung und absorbierende Produkte
CN1310974C (zh) 2001-04-16 2007-04-18 住友精化株式会社 适于吸收含有高分子量物质的粘性液的吸水性树脂、以及使用该吸水性树脂的吸收体和吸收性物品
JP2003088551A (ja) * 2001-09-19 2003-03-25 Sumitomo Seika Chem Co Ltd 吸収体およびそれを用いた吸収性物品
US6939914B2 (en) * 2002-11-08 2005-09-06 Kimberly-Clark Worldwide, Inc. High stiffness absorbent polymers having improved absorbency rates and method for making the same
US7193006B2 (en) * 2002-12-06 2007-03-20 Nippon Shokubai Co., Ltd. Process for continuous production of water-absorbent resin product
KR101092278B1 (ko) * 2003-03-17 2011-12-13 스미또모 세이까 가부시키가이샤 흡수성 수지 입자의 제조방법
US7163966B2 (en) * 2003-12-19 2007-01-16 Stockhausen, Inc. Superabsorbent polymer having increased rate of water absorption
US20070179261A1 (en) * 2003-12-25 2007-08-02 Shinichi Uda Method for producing water-absorbing resin
JP2005255967A (ja) * 2004-03-09 2005-09-22 Tatsuo Kaneko 表面反応性金平糖型高分子微粒子およびその製造方法
WO2006014031A1 (en) * 2004-08-06 2006-02-09 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent with water-absorbing resin as main component, method for production of the same, and absorbing article
KR100944467B1 (ko) * 2004-09-02 2010-03-03 니폰 쇼쿠바이 컴파니 리미티드 흡수성 물질, 표면 가교된 흡수성 수지의 제조 방법, 및흡수성 물질의 평가 방법
AU2005285763A1 (en) * 2004-09-24 2006-03-30 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent containing water-absorbent resin as a main component
JP2006169385A (ja) * 2004-12-16 2006-06-29 Asahi Kasei Chemicals Corp 多孔性吸水性樹脂の製造方法
WO2007004529A1 (ja) * 2005-07-04 2007-01-11 Sumitomo Seika Chemicals Co., Ltd. 吸水性樹脂の製造方法
BRPI0710942B1 (pt) * 2006-04-27 2018-05-02 Sumitomo Seika Chemicals Co., Ltd. Resina absorvente de água e seu processo de produção
BRPI0815730B1 (pt) 2007-08-23 2020-10-20 Sumitomo Seika Chemicals Co., Ltd. método para a produção de uma resina absorvente de água
EP2505594A4 (en) * 2009-11-27 2013-11-06 Sumitomo Seika Chemicals PROCESS FOR PRODUCING WATER-ABSORBING RESIN PARTICLES, WATER ABSORBING RESIN PARTICLES, WATER-STOPPING MATERIAL, AND ABSORBENT ARTICLE
CA2814797C (en) * 2010-10-18 2017-07-18 Sumitomo Seika Chemicals Co., Ltd. Method for producing water-absorbent resin particles and water-absorbent resin particles
JP2011080069A (ja) * 2010-11-04 2011-04-21 Sumitomo Seika Chem Co Ltd 吸水性樹脂

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251309A (ja) * 1997-03-14 1998-09-22 Nippon Shokubai Co Ltd 高吸水速度吸水性樹脂の製造方法
JPH11267500A (ja) * 1998-03-23 1999-10-05 Nippon Shokubai Co Ltd 吸水剤及びそれを用いた吸収性物品
WO2011078298A1 (ja) * 2009-12-24 2011-06-30 株式会社日本触媒 ポリアクリル酸系吸水性樹脂粉末及びその製造方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9605094B2 (en) 2011-10-06 2017-03-28 Sumitomo Seika Chemicals Co., Ltd. Method for producing water absorbent resin particles
EP2765144A4 (en) * 2011-10-06 2015-05-27 Sumitomo Seika Chemicals METHOD FOR MANUFACTURING WATER ABSORBING RESIN PARTICLES
US10835887B2 (en) 2016-03-02 2020-11-17 Sumitomo Seika Chemicals Co., Ltd Process for producing water-absorbing resin particles
JP2018021133A (ja) * 2016-08-04 2018-02-08 Sdpグローバル株式会社 吸収性樹脂組成物粒子及びその製造方法
JP7120739B2 (ja) 2016-08-04 2022-08-17 Sdpグローバル株式会社 吸収性樹脂組成物粒子及びその製造方法
WO2019142872A1 (ja) 2018-01-18 2019-07-25 住友精化株式会社 吸水性樹脂
CN109125781A (zh) * 2018-11-16 2019-01-04 南阳市中心医院 一种肝胆外科抗菌敷料
CN109453418A (zh) * 2018-11-16 2019-03-12 南阳市中心医院 一种血管外科用止血抗菌敷料
WO2020145384A1 (ja) 2019-01-11 2020-07-16 株式会社日本触媒 吸水性樹脂を主成分とする吸水剤及びその製造方法
KR20210110350A (ko) 2019-01-11 2021-09-07 가부시키가이샤 닛폰 쇼쿠바이 흡수성 수지를 주성분으로 하는 흡수제 및 그의 제조 방법
WO2020203723A1 (ja) * 2019-03-29 2020-10-08 住友精化株式会社 吸水性樹脂及び止水材
KR20220027061A (ko) 2019-06-28 2022-03-07 유니 참 코포레이션 흡수체 및 흡수성 물품
WO2021039715A1 (ja) * 2019-08-26 2021-03-04 住友精化株式会社 吸水シート及び吸収性物品
WO2021039714A1 (ja) * 2019-08-26 2021-03-04 住友精化株式会社 吸収性物品及び補助シート
JP7457718B2 (ja) 2019-08-26 2024-03-28 住友精化株式会社 吸収性物品及び補助シート
WO2022145239A1 (ja) 2020-12-29 2022-07-07 ユニ・チャーム株式会社 複合吸収体及び衛生用品
WO2022145242A1 (ja) 2020-12-29 2022-07-07 ユニ・チャーム株式会社 複合吸収体及び衛生用品
WO2022145240A1 (ja) 2020-12-29 2022-07-07 ユニ・チャーム株式会社 複合吸収体及び衛生用品
DE112021005745T5 (de) 2020-12-29 2023-08-17 Organo Corporation Absorbierender Verbundkörper und Polymer-Absorptionsmittel
KR20230127215A (ko) 2020-12-29 2023-08-31 유니 참 코포레이션 복합 흡수체 및 위생용품
WO2022181771A1 (ja) 2021-02-26 2022-09-01 株式会社日本触媒 粒子状吸水剤、該吸水剤を含む吸収体及び該吸収体を用いた吸収性物品
WO2022239628A1 (ja) 2021-05-12 2022-11-17 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
WO2022239723A1 (ja) 2021-05-12 2022-11-17 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体

Also Published As

Publication number Publication date
EP3023443B1 (en) 2018-07-25
TW201313752A (zh) 2013-04-01
EP2740747A4 (en) 2015-03-18
US9199218B2 (en) 2015-12-01
BR112014002637A2 (pt) 2017-06-13
CA2843678A1 (en) 2013-02-07
EP3398974B1 (en) 2022-08-24
JP2018103183A (ja) 2018-07-05
KR101832549B1 (ko) 2018-02-26
KR20140056225A (ko) 2014-05-09
EP3009458A1 (en) 2016-04-20
EP3023442A1 (en) 2016-05-25
EP3398974A1 (en) 2018-11-07
US20140127510A1 (en) 2014-05-08
CA2843678C (en) 2020-12-29
JP6872503B2 (ja) 2021-05-19
EP3023442B1 (en) 2017-11-22
ES2627533T3 (es) 2017-07-28
EP3009458B1 (en) 2017-11-22
BR112014002637B1 (pt) 2022-05-03
BR112014002637A8 (pt) 2017-06-20
CN106046224B (zh) 2021-08-24
EP2740747B1 (en) 2017-03-15
CA3050763C (en) 2021-05-25
CN103703028A (zh) 2014-04-02
EP3023443A1 (en) 2016-05-25
EP2740747A1 (en) 2014-06-11
JP6293484B2 (ja) 2018-03-14
AR087394A1 (es) 2014-03-19
ES2689550T3 (es) 2018-11-14
TWI534158B (zh) 2016-05-21
CN103703028B (zh) 2017-04-05
CA3050763A1 (en) 2013-02-07
SG2013095260A (en) 2014-03-28
CN106046224A (zh) 2016-10-26
JPWO2013018571A1 (ja) 2015-03-05

Similar Documents

Publication Publication Date Title
JP6872503B2 (ja) 吸水性樹脂粒子、吸収体、吸収性物品及び止水材
JP6126655B2 (ja) 吸水性樹脂粒子の製造方法
US11001692B2 (en) Superabsorbent polymers with rapid absorption properties and process for producing same
JP2006068731A (ja) 吸水性樹脂を主成分とする粒子状吸水剤、その製造方法及び吸収性物品
WO2012108253A1 (ja) 吸水性樹脂の製造方法
JP5927289B2 (ja) 吸水性樹脂粒子の製造方法
JP6063440B2 (ja) 吸水性樹脂粒子の製造方法
WO2013051417A1 (ja) 吸水性樹脂粒子の製造方法
JP2023130154A (ja) 吸水性樹脂粒子、吸収体、吸水シート及び吸収性物品
JP2023084518A (ja) 吸収性物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013526820

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012819365

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012819365

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14127784

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147001912

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2843678

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014002637

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014002637

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140203