WO2015107693A1 - ガス絶縁開閉装置 - Google Patents

ガス絶縁開閉装置 Download PDF

Info

Publication number
WO2015107693A1
WO2015107693A1 PCT/JP2014/050966 JP2014050966W WO2015107693A1 WO 2015107693 A1 WO2015107693 A1 WO 2015107693A1 JP 2014050966 W JP2014050966 W JP 2014050966W WO 2015107693 A1 WO2015107693 A1 WO 2015107693A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable head
circuit breaker
line
cable
connection
Prior art date
Application number
PCT/JP2014/050966
Other languages
English (en)
French (fr)
Inventor
洋平 大野
中村 圭一朗
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/050966 priority Critical patent/WO2015107693A1/ja
Priority to EP14879197.3A priority patent/EP3098914B1/en
Priority to CN201480072684.4A priority patent/CN105900301B/zh
Priority to US15/034,154 priority patent/US9853424B2/en
Priority to JP2014519736A priority patent/JP5627821B1/ja
Publication of WO2015107693A1 publication Critical patent/WO2015107693A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/24Circuit arrangements for boards or switchyards
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B5/00Non-enclosed substations; Substations with enclosed and non-enclosed equipment
    • H02B5/06Non-enclosed substations; Substations with enclosed and non-enclosed equipment gas-insulated
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/0358Connections to in or out conductors

Definitions

  • the present invention relates to a gas insulated switchgear.
  • a gas-insulated switchgear used in a power plant or a substation is configured by combining a plurality of units such as a power transmission / reception line unit and a transformer line unit in accordance with the use form (for example, see Patent Document 1). ).
  • a power transmission / reception line unit generally includes a circuit breaker, a bus-side disconnector, a line-side disconnector, a cable head, and the like, and a power cable for power transmission / reception is connected to the cable head.
  • the transformer line unit generally includes a circuit breaker, a bus-side disconnector, a line-side disconnector, a cable head, and the like, and a power cable connected to the transformer is connected to the cable head.
  • a configuration in which a power transmission / reception line unit and a transformer line unit are arranged adjacent to each other is also common.
  • the power transmission / reception line unit and the transformer line unit are connected by a bus.
  • two power cables may be connected. That is, a configuration in which two cable heads are provided in the power transmission / reception line unit and a power cable is drawn from each cable head is also used.
  • the two cable heads are in a direction orthogonal to the unit arrangement direction (hereinafter referred to as “unit direction”) that is the extension direction of the bus. It is connected to the circuit breaker via a connection tank connected to, and arranged in the unit direction.
  • the present invention has been made in view of the above, and an object thereof is to provide a gas insulated switchgear having a reduced installation area.
  • a gas insulated switchgear includes a vertical first circuit breaker, and first and second cables connected to the first circuit breaker.
  • a power transmission / reception line unit in which the first and second cable heads are connected to the first and second power cables, respectively, and a horizontal direction orthogonal to the axis of the first circuit breaker.
  • a vertical second circuit breaker connected to the first circuit breaker by an extending busbar; and a third cable head connected to the second circuit breaker;
  • a transformer line unit disposed adjacently and wherein the third cable head is connected to a third power cable, wherein the first cable head is viewed from the first circuit breaker.
  • the first and second cable heads are arranged in the extension direction of the bus bar at intervals between units, and the second cable head is viewed from the second circuit breaker. And arranged behind the third cable head in the unit direction.
  • FIG. 1 is a single-line diagram showing a configuration of a gas-insulated switchgear according to Embodiment 1.
  • FIG. 2 is a top view showing the configuration of the gas insulated switchgear according to Embodiment 1.
  • FIG. 3 is an AA side view of the power transmission / reception line unit in FIG. 4 is a side view of the transformer line unit in FIG. 2 viewed from the same direction as FIG.
  • FIG. 5 is a BB side view in FIG.
  • FIG. 6 is a top view showing the configuration of the gas insulated switchgear according to the second embodiment.
  • FIG. 7 is an AA side view of the power transmission / reception line unit in FIG. 8 is a side view of the transformer line unit in FIG. 6 viewed from the same direction as FIG.
  • FIG. 9 is a BB side view in FIG.
  • FIG. 10 is a top view showing a configuration of a conventional gas insulated switchgear.
  • FIG. 11 is an AA side view of the power transmission / reception line unit in FIG. 12 is a side view of the transformer line unit in FIG. 10 viewed from the same direction as FIG. 13 is a BB side view in FIG.
  • FIG. FIG. 1 is a single-line diagram showing the configuration of a gas-insulated switchgear according to the present embodiment
  • FIG. 2 is a top view showing the configuration of the gas-insulated switchgear according to the present embodiment
  • FIG. 4 is a side view of the transformer line unit in FIG. 2 as viewed from the same direction as FIG. 3
  • FIG. 5 is a side view of BB in FIG. .
  • the gas insulated switchgear according to the present embodiment is, for example, a three-phase collective type in which a three-phase central conductor (not shown) through which a three-phase alternating current flows is housed in the same tank.
  • the gas insulated switchgear includes a transformer line unit 1 and a power transmission / reception line unit 2 disposed adjacent to the transformer line unit 1.
  • the transformer line unit 1 is a unit connected to a transformer (not shown).
  • the power transmission / reception line unit 2 is a unit connected to a power transmission line (not shown).
  • the gas insulated switchgear may be configured to include other units other than the transformer line unit 1 and the power transmission / reception line unit 2.
  • the transformer line unit 1 includes a circuit breaker 5, connection tanks 31 and 32, bus-side disconnectors 6 and 7 (second bus-side disconnector), an instrument current transformer 8 (second instrument current transformer). ), A line-side disconnector 9 (third line-side disconnector), an instrument transformer 10 (second instrument transformer), and a cable head 11.
  • the circuit breaker 5 (second circuit breaker) is a so-called vertical circuit breaker. That is, the circuit breaker 5 is arranged such that the opening / closing direction is the vertical direction, and the cylindrical circuit breaker tank is arranged with the axis line perpendicular to the installation surface 85.
  • the circuit breaker 5 is provided with three branch outlets on its side surface, two of the three being drawn out to the buses 3 and 4 side, and the other one being drawn out to the line side.
  • the line side is opposite to the buses 3 and 4 side.
  • connection tanks 31 and 32 are not provided.
  • the bus-side disconnector 7 is connected to the bus 4.
  • the busbar side disconnector 6 is connected to the busbar 3.
  • Each of the bus bars 3 and 4 extends in a horizontal direction perpendicular to the axis of the circuit breaker 5.
  • the buses 3 and 4 are connected to the adjacent power transmission / reception line unit 2.
  • the extending direction of the bus bars 3 and 4 is the unit arrangement direction.
  • the bus-side disconnector 7 is, for example, a disconnector with a ground switch.
  • the bus-side disconnector 7 is integrally provided with a ground switch in the disconnector tank.
  • the bus-side disconnector 7 may be configured not to include a grounding switch integrally.
  • the bus-side disconnector 6 is, for example, a disconnector with a ground switch.
  • a line side disconnector 9 is connected to a branch outlet on the line side of the circuit breaker 5 via a current transformer 8 for an instrument.
  • the line side disconnector 9 is, for example, a disconnector with a ground switch.
  • An instrument transformer 10 is disposed on the upper side of the line side disconnector 9.
  • the instrument current transformer 8 measures a current flowing through a center conductor (not shown).
  • the instrument transformer 10 measures the voltage of a center conductor (not shown).
  • the structure which does not provide the measuring instrument current transformer 8 and the measuring transformer 10 is also possible.
  • a cable head 11 (third cable head) is connected to the lower part of the line-side disconnector 9.
  • the cable head tank is disposed on the installation surface 85.
  • a power cable 61 (third power cable) is connected to the cable head 11.
  • the power cable 61 is connected to a transformer (not shown). In FIG. 4, only two phases of the three-phase power cable 61 are illustrated.
  • the power transmission / reception line unit 2 includes a circuit breaker 12, connection tanks 22 and 23, bus-side disconnectors 13 and 14 (first bus-side disconnector), an instrument current transformer 15 (first instrument current transformer). ), Connection tank 24, instrument transformer 16 (first instrument transformer), connection tanks 25 and 26, line-side disconnectors 17 and 19, and cable heads 18 and 20.
  • the circuit breaker 12 (first circuit breaker) is a so-called vertical circuit breaker.
  • the circuit breaker 12 is arranged such that the opening / closing direction is the vertical direction, and the cylindrical circuit breaker tank is arranged with its axis perpendicular to the installation surface 85. Further, the circuit breaker 12 is arranged to face the circuit breaker 5 in the extending direction of the bus bars 3 and 4.
  • the circuit breaker 12 has three branch outlets on its side surface, two of the three being drawn out to the buses 3 and 4 side, and the other one being drawn out to the line side.
  • the branch outlets on the busbars 3 and 4 side of the circuit breaker 12 are provided at intervals in the vertical direction, and the busbar side disconnector 14 is connected to the upper branch outlet through the connection tank 22, A bus-side disconnector 13 is connected to the branch outlet through a connection tank 23.
  • a configuration without the connection tanks 22 and 23 is also possible.
  • the bus-side disconnector 14 is connected to the bus 4.
  • the busbar side disconnector 13 is connected to the busbar 3. Accordingly, the bus-side disconnector 14 is connected to the bus-side disconnector 7 by the bus 4, and the bus-side disconnector 13 is connected to the bus-side disconnector 6 by the bus 3.
  • Each of the bus bars 3 and 4 extends in a horizontal direction perpendicular to the axis of the circuit breaker 12.
  • the bus-side disconnector 14 is, for example, a disconnector with a ground switch.
  • the bus-side disconnector 13 is, for example, a disconnector with a ground switch.
  • the bus is doubled.
  • Such a redundant configuration (buses 3 and 4) improves the reliability of the gas insulated switchgear.
  • This embodiment can also be applied to a single bus system.
  • connection tank 24 is connected to a branch outlet on the line side of the circuit breaker 12 via an instrument current transformer 15.
  • the connection tank 24 (third T-shaped connection tank) is, for example, T-shaped and includes three connection ports. That is, the connection tank 24 has two connection ports in the horizontal direction orthogonal to the extending direction of the bus bars 3 and 4 and has a connection port on the upper side.
  • An instrument current transformer 15 is connected to the connection port on the circuit breaker 12 side of the connection tank 24, an instrument transformer 16 is connected to the upper connection port, and a connection tank 25 is connected to the remaining connection port. It is connected.
  • the connection tank 24 is disposed to face the line-side disconnector 9 in the extending direction of the bus bars 3 and 4.
  • the structure which does not provide the measuring instrument current transformer 15, the measuring transformer 16, and the connection tank 24 is also possible.
  • unit direction the horizontal direction orthogonal to the extending direction of the bus bars 3 and 4 is referred to as “unit direction”.
  • the unit direction is a direction orthogonal to the unit arrangement direction.
  • the length of the gas insulated switchgear in the unit direction is referred to as “unit length”.
  • connection tank 25 (first T-shaped connection tank) is, for example, a T-shape, is arranged in a horizontal plane, and includes three connection ports. That is, the connection tank 25 includes connection ports 25a and 25b opened in the unit direction and connection ports 25c opened in the extending direction of the bus bars 3 and 4.
  • connection port 25 a opens to the circuit breaker 12 side and is connected to the connection tank 24. Accordingly, the connection port 25a (first connection port) is connected to the side surface of the circuit breaker 12 via the connection tank 24 and the instrument current transformer 15.
  • connection port 25b (second connection port) is disposed to face the connection port 25a in the unit direction, opens to the opposite side of the connection port 25a, and the line-side disconnector 17 (first line-side disconnector) is provided. It is connected.
  • the line side disconnector 17 is, for example, a disconnector with a ground switch.
  • a cable head 18 (first cable head) is connected to the lower part of the line side disconnector 17.
  • the cable head tank is disposed on the installation surface 85.
  • a power cable 60 (first power cable) is connected to the cable head 18.
  • the power cable 60 is connected to a power transmission line (not shown). In FIG. 3, only two phases of the three-phase power cable 60 are illustrated.
  • the connection port 25 b is connected to the cable head 18 via the line-side disconnector 17.
  • connection port 25c (fourth connection port) opens to the transformer line unit 1 side.
  • the connection port 25 c is connected to the connection tank 26. That is, the connection tank 25 is connected to the connection tank 26.
  • connection tank 26 (second T-shaped connection tank) is, for example, a T-shape and is arranged in a horizontal plane and includes three connection ports. That is, the connection tank 26 includes connection ports 26a and 26b opened in the extending direction of the bus bars 3 and 4, and a connection port 26c opened in the unit direction.
  • the connection port 26b (sixth connection port) is closed with a cover plate.
  • connection tank 26 is arranged behind the transformer line unit 1. That is, in the unit direction connecting the circuit breaker 5 and the line-side disconnector 9, the connection tank 26 is disposed behind the line-side disconnector 9 when viewed from the circuit breaker 5.
  • connection tank 25 is arrange
  • connection port 26a (fifth connection port) is connected to the connection port 25c.
  • the connection port 26c (third connection port) opens in the same direction as the connection port 25b.
  • the connection ports 26c and 25b are arranged at intervals between the units in the extending direction of the bus bars 3 and 4. The interval between the units is an interval in the extending direction of the buses 3 and 4 between the transformer line unit 1 and the power transmission / reception line unit 2.
  • a line side disconnector 19 (second line side disconnector) is connected to the connection port 26c.
  • the track side disconnector 19 is, for example, a disconnector with a ground switch.
  • the line side disconnectors 19 are arranged to face each other in the extending direction of the buses 3 and 4 and are arranged at intervals between the units.
  • a cable head 20 (second cable head) is connected to the lower part of the line side disconnector 19 (FIG. 2).
  • the cable head tank is disposed on the installation surface 85.
  • a power cable (second power cable) (not shown) is connected to the cable head 20, and the power cable is connected to a power transmission line (not shown).
  • the cable heads 18 and 20 are arranged at intervals between the units in the extending direction of the bus bars 3 and 4.
  • the cable head 18 is arranged in the unit direction as viewed from the circuit breaker 12.
  • the cable head 20 is disposed behind the cable head 11 in the unit direction when viewed from the circuit breaker 5.
  • the circuit breaker 5, the cable head 11, and the cable head 20 are arranged in the unit direction including the circuit breaker 5.
  • a connection tank 26 is disposed between the cable head 11 and the cable head 20 in the unit direction.
  • connection tank 26 can have the same shape as the connection tanks 24 and 25. Thereby, manufacturing cost can be reduced.
  • connection tanks 25 and 26 may be integrated connection tanks having a bifurcated structure without being separated.
  • FIG. 10 is a top view showing the configuration of a conventional gas-insulated switchgear
  • FIG. 11 is an AA side view of the power transmission / reception line unit in FIG. 10
  • FIG. 12 is a view of FIG.
  • FIG. 13 is a side view of the transformer line unit in FIG. 10
  • FIG. 13 is a BB side view in FIG.
  • the single-line diagram of the conventional gas-insulated switchgear is the same as FIG.
  • the conventional gas insulated switchgear includes a transformer line unit 101 and a power transmission / reception line unit 102 arranged adjacent to the transformer line unit 101. .
  • the transformer line unit 101 and the power transmission / reception line unit 102 are connected by buses 103 and 104.
  • the transformer line unit 101 includes a circuit breaker 105, connection tanks 131 and 132, bus-side disconnectors 106 and 107, an instrument current transformer 108, a connection tank 133, an instrument transformer 110, a line-side disconnector 109, and A cable head 111 is provided, and the cable head 111 is connected to the power cable 162.
  • the power transmission / reception line unit 102 includes a circuit breaker 112, connection tanks 122 and 123, bus-side disconnectors 113 and 114, an instrument current transformer 115, a connection tank 124, an instrument transformer 116, connection tanks 140 to 142, a line Side disconnectors 117 and 119 and cable heads 118 and 120 are provided, the cable head 118 is connected to the power cable 160, and the cable head 120 is connected to the power cable 161.
  • the cable heads 118, 120 are arranged in the unit direction via the connection tanks 140-142. Therefore, the unit length of the power transmission / reception line unit 102 increases, and the installation area of the gas insulated switchgear also increases. On the other hand, a rear space 90 is formed behind the transformer line unit 101, and no equipment is arranged and effectively used.
  • the cable heads 18 and 20 are arranged at intervals between the units in the extending direction of the buses 3 and 4, and the cable head 20 is arranged behind the transformer line unit 1. Therefore, the unit length of the power transmission / reception line unit 2 is reduced, and a common rear space 50 is formed behind the transformer line unit 1 and the power transmission / reception line unit 2. The installation area of the switchgear is reduced.
  • a line-side disconnector 117 is provided above the cable head 118 and a line-side disconnector 119 is provided above the cable head 120.
  • the connection tank 141 is provided on the upper side of the line side disconnector 117 and arrange the connection tank 142 on the upper side of the line side disconnector 119.
  • the height of the power transmission / reception line unit 102 is increased by the amount of the connection tanks 141 and 142.
  • the height of the transformer line unit 101 is increased in accordance with the height of the power transmission / reception line unit 102. Therefore, the height of the conventional gas insulated switchgear is increased as a whole.
  • the cable heads 18 and 20 are arranged in the extending direction of the buses 3 and 4 by using the bifurcated connection tanks 25 and 26 as a whole arranged horizontally. Since it is not necessary to provide a connection tank above the disconnectors 17 and 19, the height of the power transmission / reception line unit 2 is lower than that of the conventional gas-insulated switchgear, and the transformer line unit is accordingly adjusted. Accordingly, the height of the gas insulated switchgear is also lowered. Therefore, a stable structure can be realized and the earthquake resistance is improved. Further, the number of connection tanks required can be reduced.
  • the part which height reduced compared with FIG. 3 the power cable indicated by a dotted line below the power cable 60 indicates the positions of the power cables 160 and 161 in FIG. 11 for comparison.
  • the lower spaces 53 and 54 represent the amount of reduction in height compared to FIG. 12.
  • the power cable indicated by a dotted line below the power cable 61 indicates the position of the power cable 162 in FIG. 12 for comparison.
  • FIG. 6 is a top view showing the configuration of the gas insulated switchgear according to the present embodiment
  • FIG. 7 is a side view of the AA side of the power transmission / reception line unit in FIG. 6, and
  • FIG. 8 is from the same direction as FIG. 6 is a side view of the transformer line unit shown in FIG. 6, and
  • FIG. 9 is a BB side view of FIG.
  • the single line connection diagram of the present embodiment is the same as FIG. 6 to 9, the same components as those in FIGS. 1 to 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the line side disconnector 17 and the cable head 18 of the first embodiment are both housed in the cable head tank 35 of the cable head 18, and the first embodiment Both the line-side disconnector 19 and the cable head 20 are accommodated in a cable head tank 36 of the cable head 20.
  • the track side disconnector 9 and the cable head 11 of the first embodiment are both housed in the cable head tank 37 of the cable head 11. That is, in this embodiment, the line side disconnector 17 and the cable head 18 are integrated, the line side disconnector 19 and the cable head 20 are integrated, and the line side disconnector 9 and the cable head 11 are integrated. It has become.
  • the height of the gas insulated switchgear can be made lower than that of the first embodiment.
  • the lower spaces 55 and 56 represent the amount of height reduction compared to FIG. 3.
  • the power cable indicated by a dotted line below the power cable 60 indicates the positions of the power cables 160 and 161 in FIG. 11 for comparison.
  • the amount of reduced height compared to FIG. 4 is represented by lower spaces 57 and 58.
  • the power cable indicated by a dotted line below the power cable 61 indicates the position of the power cable 162 in FIG. 12 for comparison.
  • Other effects of the present embodiment are the same as those of the first embodiment.
  • the present invention is useful as a gas insulated switchgear.

Abstract

 ガス絶縁開閉装置は、隣接する変圧器回線用ユニット1および送受電回線用ユニット2を備える。送受電回線用ユニット2は2台のケーブルヘッド18,20を備える。ケーブルヘッド18,20は、母線の延伸方向にユニット間の間隔で配列され、ケーブルヘッド20は、変圧器回線用ユニット1の後方スペースに配置される。

Description

ガス絶縁開閉装置
 本発明は、ガス絶縁開閉装置に関する。
 発電所または変電所等で使用されるガス絶縁開閉装置は、送受電回線用ユニットおよび変圧器回線用ユニット等の複数のユニットを利用形態に応じて組合せて構成される(例えば、特許文献1参照)。
 送受電回線用ユニットは、一般に、遮断器、母線側断路器、線路側断路器およびケーブルヘッド等を備えており、ケーブルヘッドには送受電用の電力ケーブルが接続される。変圧器回線用ユニットは、一般に、遮断器、母線側断路器、線路側断路器、およびケーブルヘッド等を備えており、ケーブルヘッドには変圧器に接続される電力ケーブルが接続される。また、送受電回線用ユニットと変圧器回線用ユニットとが隣接して配置される構成も一般的である。なお、送受電回線用ユニットと変圧器回線用ユニットとは母線で接続される。
 また、送受電回線用ユニットは、その構成により、電力ケーブルが2条接続される場合がある。すなわち、送受電回線用ユニットに2台のケーブルヘッドが設けられ、各ケーブルヘッドからそれぞれ電力ケーブルが引き出される構成も利用される。
 送受電回線用ユニットが電力ケーブルを2条有する従来のガス絶縁開閉装置では、2台のケーブルヘッドは、母線の延伸方向であるユニット配列方向に直交する方向(以下、「ユニット方向」という。)に接続された接続タンクを介して遮断器に接続され、ユニット方向に配列される。
特許第4902736号公報
 しかしながら、上記従来のガス絶縁開閉装置では、2台のケーブルヘッドがユニット方向に配列されることから、送受電回線用ユニットのユニット長が増大し、ガス絶縁開閉装置の据付面積も増大してしまう。
 本発明は、上記に鑑みてなされたものであって、据付面積が縮小されたガス絶縁開閉装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るガス絶縁開閉装置は、縦形の第1の遮断器と、当該第1の遮断器に接続される第1および第2のケーブルヘッドとを有し、前記第1および第2のケーブルヘッドがそれぞれ第1および第2の電力ケーブルに接続される送受電回線用ユニットと、前記第1の遮断器の軸線と直交する水平方向に延伸する母線により前記第1の遮断器と接続される縦形の第2の遮断器と、当該第2の遮断器に接続される第3のケーブルヘッドとを有し、前記送受電回線用ユニットに隣接して配置されると共に前記第3のケーブルヘッドが第3の電力ケーブルに接続される変圧器回線用ユニットと、を備え、前記第1のケーブルヘッドは、前記第1の遮断器から見て、前記母線の延伸方向と直交する水平方向であるユニット方向に配置され、前記第1および第2のケーブルヘッドは、ユニット間の間隔で前記母線の延伸方向に配列され、前記第2のケーブルヘッドは、前記第2の遮断器から見て、前記ユニット方向における前記第3のケーブルヘッドの後方に配置されていることを特徴とする。
 本発明によれば、据付面積が縮小されたガス絶縁開閉装置を提供することができる、という効果を奏する。
図1は、実施の形態1に係るガス絶縁開閉装置の構成を示す単線結線図である。 図2は、実施の形態1に係るガス絶縁開閉装置の構成を示す上面図である。 図3は、図2における送受電回線用ユニットのA-A側面図である。 図4は、図3と同方向から見た図2における変圧器回線用ユニットの側面図である。 図5は、図2におけるB-B側面図である。 図6は、実施の形態2に係るガス絶縁開閉装置の構成を示す上面図である。 図7は、図6における送受電回線用ユニットのA-A側面図である。 図8は、図7と同方向から見た図6における変圧器回線用ユニットの側面図である。 図9は、図6におけるB-B側面図である。 図10は、従来のガス絶縁開閉装置の構成を示す上面図である。 図11は、図10における送受電回線用ユニットのA-A側面図である。 図12は、図11と同方向から見た図10における変圧器回線用ユニットの側面図である。 図13は、図10におけるB-B側面図である。
 以下に、本発明の実施の形態に係るガス絶縁開閉装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本実施の形態に係るガス絶縁開閉装置の構成を示す単線結線図、図2は、本実施の形態に係るガス絶縁開閉装置の構成を示す上面図、図3は、図2における送受電回線用ユニットのA-A側面図、図4は、図3と同方向から見た図2における変圧器回線用ユニットの側面図、図5は、図2におけるB-B側面図である。以下、図1~図5を参照して、本実施の形態に係るガス絶縁開閉装置の構成について説明する。本実施の形態のガス絶縁開閉装置は、例えば、三相交流電流が流れる三相の中心導体(図示せず)が同一のタンク内に収納された三相一括型である。
 本実施の形態のガス絶縁開閉装置は、変圧器回線用ユニット1と、変圧器回線用ユニット1に隣接して配置された送受電回線用ユニット2とを備えている。ここで、変圧器回線用ユニット1は、図示しない変圧器に接続されるユニットである。また、送受電回線用ユニット2は、図示しない送電線に接続されるユニットである。なお、ガス絶縁開閉装置は、変圧器回線用ユニット1および送受電回線用ユニット2以外のその他のユニットを備えて構成されていてもよい。
 まず、変圧器回線用ユニット1の構成について説明する。変圧器回線用ユニット1は、遮断器5、接続タンク31,32、母線側断路器6,7(第2の母線側断路器)、計器用変流器8(第2の計器用変流器)、線路側断路器9(第3の線路側断路器)、計器用変圧器10(第2の計器用変圧器)、およびケーブルヘッド11を備えている。
 遮断器5(第2の遮断器)は、いわゆる縦形の遮断器である。すなわち、遮断器5は、開閉方向が上下方向であり、円筒状の遮断器タンクが軸線を据付面85に対して垂直にして配置されている。遮断器5は、その側面に3個の分岐引出口を備えており、3個のうちの2個は母線3,4側に引出され、残りの1個は線路側に引出されている。なお、線路側は、母線3,4側と反対側である。
 遮断器5の母線3,4側の分岐引出口は上下に間隔を隔てて設けられており、上側の分岐引出口には接続タンク31を介して母線側断路器7が接続され、下側の分岐引出口には接続タンク32を介して母線側断路器6が接続されている。なお、接続タンク31,32を設けない構成も可能である。
 母線側断路器7は、母線4に接続されている。また、母線側断路器6は、母線3に接続されている。母線3,4は、それぞれ、遮断器5の軸線に垂直な水平方向に延伸している。また、母線3,4は、隣接する送受電回線用ユニット2に接続されている。母線3,4の延伸方向はユニット配列方向である。
 母線側断路器7は、例えば接地開閉器付の断路器である。すなわち、母線側断路器7は、断路器タンク内に接地開閉器を一体に備えている。なお、母線側断路器7が、接地開閉器を一体に備えない構成でもよい。同様に、母線側断路器6は、例えば接地開閉器付の断路器である。
 遮断器5の線路側の分岐引出口には、計器用変流器8を介して、線路側断路器9が接続されている。線路側断路器9は、例えば接地開閉器付の断路器である。線路側断路器9の上部には、計器用変圧器10が配置されている。計器用変流器8は、図示しない中心導体に流れる電流を計測する。計器用変圧器10は、図示しない中心導体の電圧を計測する。なお、計器用変流器8、計器用変圧器10を設けない構成も可能である。
 線路側断路器9の下部には、ケーブルヘッド11(第3のケーブルヘッド)が接続されている。ケーブルヘッド11は、ケーブルヘッドタンクが据付面85上に配置される。ケーブルヘッド11には、電力ケーブル61(第3の電力ケーブル)が接続されている。電力ケーブル61は、図示しない変圧器に接続される。なお、図4では、三相の電力ケーブル61のうち二相分のみが図示されている。
 次に、送受電回線用ユニット2の構成について説明する。送受電回線用ユニット2は、遮断器12、接続タンク22,23、母線側断路器13,14(第1の母線側断路器)、計器用変流器15(第1の計器用変流器)、接続タンク24、計器用変圧器16(第1の計器用変圧器)、接続タンク25,26、線路側断路器17,19、およびケーブルヘッド18,20を備えている。
 遮断器12(第1の遮断器)は、いわゆる縦形の遮断器である。すなわち、遮断器12は、開閉方向が上下方向であり、円筒状の遮断器タンクが軸線を据付面85に対して垂直にして配置されている。また、遮断器12は、母線3,4の延伸方向において、遮断器5と対向して配置されている。遮断器12は、その側面に3個の分岐引出口を備えており、3個のうちの2個は母線3,4側に引出され、残りの1個は線路側に引出されている。
 遮断器12の母線3,4側の分岐引出口は上下に間隔を隔てて設けられており、上側の分岐引出口には接続タンク22を介して母線側断路器14が接続され、下側の分岐引出口には接続タンク23を介して母線側断路器13が接続されている。なお、接続タンク22,23を設けない構成も可能である。
 母線側断路器14は、母線4に接続されている。また、母線側断路器13は、母線3に接続されている。従って、母線側断路器14は、母線4により、母線側断路器7と接続され、母線側断路器13は、母線3により、母線側断路器6と接続されている。母線3,4は、それぞれ、遮断器12の軸線に垂直な水平方向に延伸している。
 母線側断路器14は、例えば接地開閉器付の断路器である。同様に、母線側断路器13は、例えば接地開閉器付の断路器である。
 このように、本実施の形態では、母線は二重化されている。このような冗長構成(母線3,4)により、ガス絶縁開閉装置の信頼性が向上する。なお、本実施の形態は、単母線方式にも適用することができる。
 遮断器12の線路側の分岐引出口には、計器用変流器15を介して、接続タンク24が接続されている。接続タンク24(第3のT字型接続タンク)は、例えばT字型であり、三つの接続口を備えている。すなわち、接続タンク24は、母線3,4の延伸方向と直交する水平方向に二つの接続口を有すると共に上方に接続口を有している。そして、接続タンク24の遮断器12側の接続口には計器用変流器15が接続され、上部の接続口には計器用変圧器16が接続され、残りの接続口には接続タンク25が接続されている。また、接続タンク24は、母線3,4の延伸方向において、線路側断路器9と対向して配置されている。なお、計器用変流器15、計器用変圧器16、接続タンク24を設けない構成も可能である。
 また、以下では、母線3,4の延伸方向と直交する水平方向を「ユニット方向」という。ユニット方向は、ユニット配列方向と直交する方向である。また、ガス絶縁開閉装置のユニット方向の長さを「ユニット長」という。
 接続タンク25(第1のT字型接続タンク)は、例えばT字型であり、水平面内に配置され、三つの接続口を備えている。すなわち、接続タンク25は、ユニット方向に開口した接続口25a,25bと、母線3,4の延伸方向に開口した接続口25cとを備えている。
 接続口25aは、遮断器12側に開口し、接続タンク24に接続される。従って、接続口25a(第1の接続口)は、接続タンク24および計器用変流器15を介して遮断器12の側面に接続される。
 接続口25b(第2の接続口)は、ユニット方向において接続口25aと対向して配置され、接続口25aと反対側に開口し、線路側断路器17(第1の線路側断路器)が接続されている。
 線路側断路器17は、例えば接地開閉器付の断路器である。線路側断路器17の下部には、ケーブルヘッド18(第1のケーブルヘッド)が接続されている。ケーブルヘッド18は、ケーブルヘッドタンクが据付面85上に配置される。ケーブルヘッド18には、電力ケーブル60(第1の電力ケーブル)が接続されている。電力ケーブル60は、図示しない送電線に接続される。なお、図3では、三相の電力ケーブル60のうち二相分のみが図示されている。このように、接続口25bは、線路側断路器17を介してケーブルヘッド18に接続されている。
 接続口25c(第4の接続口)は、変圧器回線用ユニット1側に開口している。接続口25cは、接続タンク26に接続されている。すなわち、接続タンク25は、接続タンク26に接続されている。
 接続タンク26(第2のT字型接続タンク)は、例えばT字型であり、水平面内に配置され、三つの接続口を備えている。すなわち、接続タンク26は、母線3,4の延伸方向に開口した接続口26a,26bと、ユニット方向に開口した接続口26cとを備えている。接続口26b(第6の接続口)は、蓋板で閉塞されている。
 接続タンク26は、変圧器回線用ユニット1の後方に配置される。すなわち、遮断器5と線路側断路器9とを結ぶユニット方向において、接続タンク26は、遮断器5から見て線路側断路器9の後方に配置される。これに対し、接続タンク25は、遮断器12と線路側断路器17との間に配置され、遮断器12と接続タンク25と線路側断路器17とがユニット方向に配置される。
 接続口26a(第5の接続口)は、接続口25cと接続されている。接続口26c(第3の接続口)は、接続口25bと同方向に開口している。また、接続口26c,25bは、母線3,4の延伸方向にユニット間の間隔で配置されている。ユニット間の間隔は、変圧器回線用ユニット1と送受電回線用ユニット2との間の、母線3,4の延伸方向における間隔である。接続口26cには、線路側断路器19(第2の線路側断路器)が接続されている。
 線路側断路器19は、例えば接地開閉器付の断路器である。線路側断路器19は、母線3,4の延伸方向に互いに対向して配置され、ユニット間の間隔で配置されている。線路側断路器19の下部には、ケーブルヘッド20(第2のケーブルヘッド)が接続されている(図2)。ケーブルヘッド20は、ケーブルヘッドタンクが据付面85上に配置される。ケーブルヘッド20には、図示しない電力ケーブル(第2の電力ケーブル)が接続され、当該電力ケーブルは、図示しない送電線に接続される。
 ケーブルヘッド18,20は、母線3,4の延伸方向にユニット間の間隔で配列されている。なお、ケーブルヘッド18は、遮断器12から見て、ユニット方向に配置される。そして、ケーブルヘッド20は、遮断器5から見て、ユニット方向においてケーブルヘッド11の後方に配置される。換言すれば、遮断器5、ケーブルヘッド11、およびケーブルヘッド20は、遮断器5を含むユニット方向に配列される。また、ユニット方向におけるケーブルヘッド11とケーブルヘッド20との間には、接続タンク26が配置される。
 なお、接続タンク26は、接続タンク24,25と同形状とすることができる。これにより、製造コストを低減することができる。
 また、接続タンク25,26は、別体とせずに、二股構造を備えた一体の接続タンクとすることもできる。
 次に、本実施の形態の効果を、従来のガス絶縁開閉装置の構成と対比して説明する。図10は、従来のガス絶縁開閉装置の構成を示す上面図、図11は、図10における送受電回線用ユニットのA-A側面図、図12は、図11と同方向から見た図10における変圧器回線用ユニットの側面図、図13は、図10におけるB-B側面図である。なお、従来のガス絶縁開閉装置の単線結線図は符号を除き図1と同じなので省略する。
 図10~図13に示すように、従来のガス絶縁開閉装置は、変圧器回線用ユニット101と、変圧器回線用ユニット101に隣接して配置された送受電回線用ユニット102とを備えている。変圧器回線用ユニット101と送受電回線用ユニット102とは、母線103,104により接続されている。
 変圧器回線用ユニット101は、遮断器105、接続タンク131,132、母線側断路器106,107、計器用変流器108、接続タンク133、計器用変圧器110、線路側断路器109、およびケーブルヘッド111を備え、ケーブルヘッド111は電力ケーブル162に接続されている。
 送受電回線用ユニット102は、遮断器112、接続タンク122,123、母線側断路器113,114、計器用変流器115、接続タンク124、計器用変圧器116、接続タンク140~142、線路側断路器117,119、およびケーブルヘッド118,120を備え、ケーブルヘッド118は電力ケーブル160に接続され、ケーブルヘッド120は電力ケーブル161に接続されている。
 従来の送受電回線用ユニット102では、ケーブルヘッド118,120は、接続タンク140~142を介して、ユニット方向に配列されている。そのため、送受電回線用ユニット102のユニット長が増大し、ガス絶縁開閉装置の据付面積も増大する。その一方で、変圧器回線用ユニット101の後方には、後方スペース90が形成され、機器は配置されず、有効活用されていない。
 これに対し、本実施の形態では、ケーブルヘッド18,20は、母線3,4の延伸方向にユニット間の間隔で配列され、ケーブルヘッド20は変圧器回線用ユニット1の後方に配置するようにしたので、送受電回線用ユニット2のユニット長が縮小され、変圧器回線用ユニット1および送受電回線用ユニット2の後方に共通の後方スペース50が形成され、この後方スペース50の分、ガス絶縁開閉装置の据付面積が縮小される。
 また、上記従来のガス絶縁開閉装置では、ケーブルヘッド118の上部に線路側断路器117が設けられると共にケーブルヘッド120の上部に線路側断路器119が設けられているが、この場合は、2条構造を実現するために、線路側断路器117の上部に接続タンク141を配置すると共に線路側断路器119の上部に接続タンク142を配置する必要がある。しかしながら、この場合は、接続タンク141,142の分、送受電回線用ユニット102の高さが高くなる。また、送受電回線用ユニット102の高さに合わせて変圧器回線用ユニット101の高さも高くなる。従って、上記従来のガス絶縁開閉装置は、その高さが全体として高くなる。
 これに対し、本実施の形態では、水平に配置された全体として二股の接続タンク25,26を用いてケーブルヘッド18,20を母線3,4の延伸方向に配列するようにしたので、線路側断路器17,19の上部に接続タンクを設ける必要がないので、上記従来のガス絶縁開閉装置に比べて、送受電回線用ユニット2の高さが低くなり、これに合わせて変圧器回線用ユニット1の高さも低くなり、従って、ガス絶縁開閉装置の高さも低くなる。そのため、安定な構造が実現でき、耐震性も向上する。また、必要な接続タンク数も少なくすることができる。
 なお、図3では、図11に比べて高さが減少した分を、下方スペース51,52で表している。また、図3において、電力ケーブル60の下方に点線で示した電力ケーブルは、比較のため、図11の電力ケーブル160,161の位置を示したものである。同様に、図4では、図12に比べて高さが減少した分を、下方スペース53,54で表している。また、図4において、電力ケーブル61の下方に点線で示した電力ケーブルは、比較のため、図12の電力ケーブル162の位置を示したものである。
実施の形態2.
 図6は、本実施の形態に係るガス絶縁開閉装置の構成を示す上面図、図7は、図6における送受電回線用ユニットのA-A側面図、図8は、図7と同方向から見た図6における変圧器回線用ユニットの側面図、図9は、図6におけるB-B側面図である。本実施の形態の単線結線図は図1と同じである。また、図6~図9では、図1~図5と同一の構成要素には同一の符号を付してその詳細な説明を省略する。
 図6~図9に示すように、本実施の形態では、実施の形態1の線路側断路器17とケーブルヘッド18とが共にケーブルヘッド18のケーブルヘッドタンク35内に収納され、実施の形態1の線路側断路器19とケーブルヘッド20とが共にケーブルヘッド20のケーブルヘッドタンク36内に収納されている。同様に、実施の形態1の線路側断路器9とケーブルヘッド11とが共にケーブルヘッド11のケーブルヘッドタンク37内に収納されている。つまり、本実施の形態では、線路側断路器17とケーブルヘッド18とを一体化し、線路側断路器19とケーブルヘッド20とを一体化し、かつ、線路側断路器9とケーブルヘッド11とを一体化している。
 本実施の形態によれば、ガス絶縁開閉装置の高さを、実施の形態1よりもさらに低くすることができる。図7では、図3に比べて高さが減少した分を、下方スペース55,56で表している。また、図7において、電力ケーブル60の下方に点線で示した電力ケーブルは、比較のため、図11の電力ケーブル160,161の位置を示したものである。同様に、図8では、図4に比べて高さが減少した分を、下方スペース57,58で表している。また、図8において、電力ケーブル61の下方に点線で示した電力ケーブルは、比較のため、図12の電力ケーブル162の位置を示したものである。本実施の形態のその他の効果は、実施の形態1と同じである。
 以上のように、本発明は、ガス絶縁開閉装置として有用である。
 1,101 変圧器回線用ユニット、2,102 送受電回線用ユニット、3,4,103,104 母線、5,12,105,112 遮断器、6,7,13,14,106,107,113,114 母線側断路器、8,15,108,115 計器用変流器、9,17,19,109,117,119 線路側断路器、10,16,110,116 計器用変圧器、11,18,20,111,118,120 ケーブルヘッド、22~26,31,32,122~124,131,132,133,140~142 接続タンク、25a,25b,25c,26a,26b,26c 接続口、50 後方スペース、51~54 下方スペース、60,61,160~162 電力ケーブル、85 据付面。

Claims (6)

  1.  縦形の第1の遮断器と、当該第1の遮断器に接続される第1および第2のケーブルヘッドとを有し、前記第1および第2のケーブルヘッドがそれぞれ第1および第2の電力ケーブルに接続される送受電回線用ユニットと、
     前記第1の遮断器の軸線と直交する水平方向に延伸する母線により前記第1の遮断器と接続される縦形の第2の遮断器と、当該第2の遮断器に接続される第3のケーブルヘッドとを有し、前記送受電回線用ユニットに隣接して配置されると共に前記第3のケーブルヘッドが第3の電力ケーブルに接続される変圧器回線用ユニットと、
     を備え、
     前記第1のケーブルヘッドは、前記第1の遮断器から見て、前記母線の延伸方向と直交する水平方向であるユニット方向に配置され、
     前記第1および第2のケーブルヘッドは、ユニット間の間隔で前記母線の延伸方向に配列され、
     前記第2のケーブルヘッドは、前記第2の遮断器から見て、前記ユニット方向における前記第3のケーブルヘッドの後方に配置されていることを特徴とするガス絶縁開閉装置。
  2.  前記送受電回線用ユニットは、前記ユニット方向に開口し前記第1の遮断器の側面に接続される第1の接続口と、前記ユニット方向において前記第1の接続口と対向して配置され前記第1の接続口と反対側に開口して前記第1のケーブルヘッドに接続される第2の接続口と、前記第2の接続口に対して前記母線の延伸方向にユニット間の間隔で配置され前記第2の接続口と同方向に開口して前記第2のケーブルヘッドに接続される第3の接続口とが設けられた接続タンクを有し、
     前記ユニット方向における前記第3のケーブルヘッドと前記第2のケーブルヘッドとの間には、前記第3の接続口を含む前記接続タンクの一部が配置されることを特徴とする請求項1に記載のガス絶縁開閉装置。
  3.  前記送受電回線用ユニットは、
     前記接続タンクが接続された側と反対側で前記第1の遮断器の側面に接続され、前記母線に接続される第1の母線側断路器と、
     前記第2の接続口と前記第1のケーブルヘッドとの間に接続され、前記第1のケーブルヘッドが下部に配置された第1の線路側断路器と、
     前記第3の接続口と前記第2のケーブルヘッドとの間に接続され、前記第2のケーブルヘッドが下部に配置された第2の線路側断路器とを有し、
     前記変圧器回線用ユニットは、
     前記第2の遮断器の側面に接続され、前記母線に接続される第2の母線側断路器と、
     前記第2の母線側断路器が接続された側と反対側で前記第2の遮断器の側面に接続され、前記第3のケーブルヘッドが下部に接続された第3の線路側断路器とを有する
     ことを特徴とする請求項2に記載のガス絶縁開閉装置。
  4.  前記第1の線路側断路器と前記第1のケーブルヘッドとが共に第1のケーブルヘッドタンク内に収納され、
     前記第2の線路側断路器と前記第2のケーブルヘッドとが共に第2のケーブルヘッドタンク内に収納され、
     前記第3の線路側断路器と前記第3のケーブルヘッドとが共に第3のケーブルヘッドタンク内に収納されている
     ことを特徴とする請求項3に記載のガス絶縁開閉装置。
  5.  前記接続タンクは、それぞれ同形の第1および第2のT字型接続タンクを接続して構成され、
     前記第1のT字型接続タンクは、前記第1および第2の接続口ならびに前記母線の延伸方向に開口した第4の接続口を有し、
     前記第2のT字型接続タンクは、前記第4の接続口に接続される第5の接続口および前記第3の接続口を有する
     ことを特徴とする請求項3または4に記載のガス絶縁開閉装置。
  6.  前記送受電回線用ユニットは、
     前記第1の遮断器と前記第1の接続口との間に順に配置される第1の計器用変流器および第3のT字型接続タンクと、
     前記第3のT字型接続タンクの上部に配置される第1の計器用変圧器とを有し、
     前記変圧器回線用ユニットは、
     前記第2の遮断器と前記第3の線路側断路器との間に配置される第2の計器用変流器と、
     前記第3の線路側断路器の上部に配置される第2の計器用変圧器とを有する
     ことを特徴とする請求項3または4に記載のガス絶縁開閉装置。
     
PCT/JP2014/050966 2014-01-20 2014-01-20 ガス絶縁開閉装置 WO2015107693A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/050966 WO2015107693A1 (ja) 2014-01-20 2014-01-20 ガス絶縁開閉装置
EP14879197.3A EP3098914B1 (en) 2014-01-20 2014-01-20 Gas-insulated switching device
CN201480072684.4A CN105900301B (zh) 2014-01-20 2014-01-20 气体绝缘开关装置
US15/034,154 US9853424B2 (en) 2014-01-20 2014-01-20 Gas insulated switching apparatus
JP2014519736A JP5627821B1 (ja) 2014-01-20 2014-01-20 ガス絶縁開閉装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050966 WO2015107693A1 (ja) 2014-01-20 2014-01-20 ガス絶縁開閉装置

Publications (1)

Publication Number Publication Date
WO2015107693A1 true WO2015107693A1 (ja) 2015-07-23

Family

ID=52136357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050966 WO2015107693A1 (ja) 2014-01-20 2014-01-20 ガス絶縁開閉装置

Country Status (5)

Country Link
US (1) US9853424B2 (ja)
EP (1) EP3098914B1 (ja)
JP (1) JP5627821B1 (ja)
CN (1) CN105900301B (ja)
WO (1) WO2015107693A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021754A1 (ja) * 2018-07-24 2020-01-30 三菱電機株式会社 ガス絶縁スイッチギヤ
DE102018213934A1 (de) * 2018-08-17 2020-02-20 Siemens Aktiengesellschaft Mehrphasige Schaltanlage
DE102019207926A1 (de) * 2019-05-29 2020-12-03 Siemens Aktiengesellschaft Schaltanordnung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227604A (ja) * 1988-03-08 1989-09-11 Hitachi Ltd ガス絶縁開閉装置
JPH01143215U (ja) * 1988-03-22 1989-10-02
JP4902736B2 (ja) 2007-05-11 2012-03-21 三菱電機株式会社 ガス絶縁開閉装置
JP2013143845A (ja) * 2012-01-11 2013-07-22 Toshiba Corp ケーブルヘッドおよびガス絶縁開閉装置

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1540491B2 (de) * 1965-07-28 1971-11-04 Siemens AG, 1000 Berlin u. 8000 München Druckgasisolierte hochspannungsschaltanlage mit vorrichtung zur aufnahme von waermedehnungen der kapselung
FR1485325A (fr) * 1966-07-01 1967-06-16 Siemens Schueckertwerke Ag Poste de distribution à haute tension isolé à l'aide d'un gaz comprimé
DE2157102A1 (de) * 1971-11-12 1973-05-17 Siemens Ag Vollisolierte hochspannungsschaltanlage
DE2203102A1 (de) * 1972-01-20 1973-07-26 Siemens Ag Druckgasisolierte schaltanlage
DE3271824D1 (en) * 1981-05-20 1986-07-31 Hitachi Ltd Gas insulated switchgear equipment
JPS602005A (ja) * 1983-06-15 1985-01-08 株式会社日立製作所 ガス絶縁開閉装置
JPH06106003B2 (ja) * 1984-08-28 1994-12-21 日新電機株式会社 ガス絶縁開閉装置
JPS62201005A (ja) 1986-02-27 1987-09-04 株式会社東芝 ガス絶縁開閉装置
JPS62233007A (ja) * 1986-04-01 1987-10-13 株式会社日立製作所 縮小形ガス絶縁開閉装置
JPS6387108A (ja) * 1986-09-29 1988-04-18 三菱電機株式会社 ガス絶縁開閉装置
JPH0623130Y2 (ja) * 1986-10-07 1994-06-15 三菱電機株式会社 ガス絶縁開閉装置
JPS6390912U (ja) * 1986-11-28 1988-06-13
JPS63310305A (ja) 1987-06-11 1988-12-19 Hitachi Ltd ガス絶縁開閉装置
JPH0767214B2 (ja) * 1987-10-26 1995-07-19 三菱電機株式会社 ガス絶縁開閉器
JP3020499B2 (ja) * 1988-01-11 2000-03-15 株式会社日立製作所 ガス絶縁開閉装置
FR2633110B1 (fr) * 1988-06-20 1990-10-05 Merlin Gerin Poste blinde pour reseau a haute tension
JPH02164210A (ja) * 1988-12-14 1990-06-25 Mitsubishi Electric Corp ガス絶縁開閉装置
JPH0799890B2 (ja) * 1989-09-18 1995-10-25 株式会社日立製作所 ガス絶縁開閉装置
JPH0793774B2 (ja) 1990-10-09 1995-10-09 三菱電機株式会社 ガス絶縁開閉装置
JPH0515020A (ja) 1991-06-28 1993-01-22 Mitsubishi Electric Corp ガス絶縁開閉装置
JPH0678422A (ja) 1992-08-24 1994-03-18 Hitachi Ltd ガス絶縁開閉装置
JPH07107628A (ja) 1993-09-30 1995-04-21 Mitsubishi Electric Corp 変電所
JPH09322336A (ja) * 1996-05-30 1997-12-12 Mitsubishi Electric Corp ガス絶縁開閉装置
US5898565A (en) * 1996-06-27 1999-04-27 Mitsubishi Denki Kabushiki Kaisha Gas insulated switchgear apparatus
JPH10108327A (ja) 1996-09-27 1998-04-24 Hitachi Ltd ガス絶縁開閉装置
JPH10271625A (ja) 1997-03-21 1998-10-09 Toshiba Corp ガス絶縁開閉装置
JP2000050437A (ja) * 1998-08-03 2000-02-18 Hitachi Ltd ガス絶縁開閉装置
JP3644264B2 (ja) * 1998-08-03 2005-04-27 株式会社日立製作所 ガス絶縁開閉装置及びその解体方法
CN1697275A (zh) 1998-10-13 2005-11-16 株式会社日立制作所 气体绝缘开关装置
JP2000134732A (ja) 1998-10-20 2000-05-12 Toshiba Corp ガス絶縁開閉装置
WO2000025401A1 (fr) * 1998-10-27 2000-05-04 Hitachi, Ltd. Appareillage de commutation avec gaz isolant
JP2000341814A (ja) 1999-05-25 2000-12-08 Mitsubishi Electric Corp ガス絶縁開閉装置
JP2001045621A (ja) 1999-08-03 2001-02-16 Nissin Electric Co Ltd ガス絶縁開閉装置
JP3663090B2 (ja) * 1999-10-14 2005-06-22 株式会社日立製作所 ガス遮断器及びそれを備えたガス絶縁開閉装置
JP2001157332A (ja) 1999-11-26 2001-06-08 Toshiba Corp ガス絶縁開閉装置
US20020149904A1 (en) * 2000-03-13 2002-10-17 Masaki Hachida Gas-insulated switch
JP2002186124A (ja) 2000-12-11 2002-06-28 Toshiba Corp ガス絶縁開閉装置
DE10119530A1 (de) * 2001-04-12 2002-11-07 Siemens Ag Hochspannungs-Leistungsschalter für eine druckgasisolierte Schaltanlage
JP2003111221A (ja) 2001-09-27 2003-04-11 Mitsubishi Electric Corp ガス絶縁開閉装置
EP1569310A1 (de) * 2004-02-27 2005-08-31 ABB Technology AG Einphasig gekapselte, gasisolierte Schaltanlage
JP4559887B2 (ja) 2005-03-22 2010-10-13 株式会社東芝 ガス絶縁開閉装置
CN2796202Y (zh) * 2005-06-06 2006-07-12 正泰电气股份有限公司 一种气体绝缘金属封闭开关设备
WO2007116479A1 (ja) * 2006-03-31 2007-10-18 Mitsubishi Denki Kabushiki Kaisha ガス絶縁電力機器
US7835140B2 (en) * 2006-06-19 2010-11-16 Mitsubishi Electric Corporation Gas-insulated electric power apparatus
WO2009057218A1 (ja) * 2007-11-01 2009-05-07 Mitsubishi Electric Corporation ガス絶縁開閉装置
US8000087B2 (en) * 2007-11-29 2011-08-16 Mitsubishi Electric Corporation Gas insulated switchgear
JP5306034B2 (ja) * 2009-04-16 2013-10-02 株式会社東芝 ガス絶縁開閉装置
CN202268645U (zh) * 2011-07-13 2012-06-06 平高集团有限公司 一种气体绝缘金属封闭开关设备
JP5547694B2 (ja) 2011-07-15 2014-07-16 株式会社日立製作所 ガス絶縁開閉装置
KR101489939B1 (ko) * 2011-07-19 2015-02-04 현대중공업 주식회사 가스절연 개폐장치
CN202353080U (zh) * 2011-11-28 2012-07-25 中国西电电气股份有限公司 小型化气体绝缘金属封闭开关设备
CN202997073U (zh) * 2012-12-07 2013-06-12 益和电气集团股份有限公司 一种新型导体接头
EP2947733B1 (en) * 2013-01-15 2021-07-07 Mitsubishi Electric Corporation Gas-insulated switch gear

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227604A (ja) * 1988-03-08 1989-09-11 Hitachi Ltd ガス絶縁開閉装置
JPH01143215U (ja) * 1988-03-22 1989-10-02
JP4902736B2 (ja) 2007-05-11 2012-03-21 三菱電機株式会社 ガス絶縁開閉装置
JP2013143845A (ja) * 2012-01-11 2013-07-22 Toshiba Corp ケーブルヘッドおよびガス絶縁開閉装置

Also Published As

Publication number Publication date
CN105900301A (zh) 2016-08-24
JPWO2015107693A1 (ja) 2017-03-23
EP3098914A1 (en) 2016-11-30
EP3098914A4 (en) 2017-08-30
EP3098914B1 (en) 2018-05-16
JP5627821B1 (ja) 2014-11-19
US20160301195A1 (en) 2016-10-13
US9853424B2 (en) 2017-12-26
CN105900301B (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
JP4969657B2 (ja) ガス絶縁開閉装置
JP5484638B2 (ja) ガス絶縁開閉装置
JPWO2008075436A1 (ja) ガス絶縁開閉装置
JP4837782B2 (ja) ガス絶縁開閉装置
JP4902736B2 (ja) ガス絶縁開閉装置
JP2007259681A (ja) ガス絶縁開閉装置
JP5627821B1 (ja) ガス絶縁開閉装置
KR100382027B1 (ko) 가스절연개폐장치
JP4272088B2 (ja) ガス絶縁開閉装置
JPH0670416A (ja) ガス絶縁開閉装置
JP4836770B2 (ja) ガス絶縁開閉装置
JP6538588B2 (ja) ガス絶縁開閉装置
JPS5915445B2 (ja) ガス絶縁開閉装置
JP5546425B2 (ja) ガス絶縁開閉装置
JP4969696B2 (ja) ガス絶縁開閉装置
JPH0413925B2 (ja)
JP2017005838A (ja) ガス絶縁開閉装置
JP4966163B2 (ja) ガス絶縁開閉装置
JP4749517B1 (ja) ガス絶縁開閉装置
JPS6135772B2 (ja)
JPH0213525B2 (ja)
JPH05199625A (ja) ガス絶縁開閉装置
JP2016187268A (ja) ガス絶縁開閉装置
JPS6135773B2 (ja)
JPS6135771B2 (ja)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014519736

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879197

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014879197

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014879197

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15034154

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE