WO2015087451A1 - ループ型ヒートパイプとその製造方法、及び電子機器 - Google Patents

ループ型ヒートパイプとその製造方法、及び電子機器 Download PDF

Info

Publication number
WO2015087451A1
WO2015087451A1 PCT/JP2013/083504 JP2013083504W WO2015087451A1 WO 2015087451 A1 WO2015087451 A1 WO 2015087451A1 JP 2013083504 W JP2013083504 W JP 2013083504W WO 2015087451 A1 WO2015087451 A1 WO 2015087451A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
evaporator
liquid pipe
loop
porous body
Prior art date
Application number
PCT/JP2013/083504
Other languages
English (en)
French (fr)
Inventor
塩賀 健司
水野 義博
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2015552277A priority Critical patent/JP6146484B2/ja
Priority to PCT/JP2013/083504 priority patent/WO2015087451A1/ja
Priority to CN201380081515.2A priority patent/CN105814389B/zh
Publication of WO2015087451A1 publication Critical patent/WO2015087451A1/ja
Priority to US15/156,869 priority patent/US11009927B2/en
Priority to US17/231,205 priority patent/US11789505B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to a loop heat pipe, a manufacturing method thereof, and an electronic device.
  • the heat generating component As a method of cooling the heat generating component, for example, there is a method of transporting the heat of the heat generating component to the outside with a metal plate or a heat diffusion sheet having a good thermal conductivity.
  • the heat that can be transported is limited by the thermal conductivity of the metal plate or the thermal diffusion sheet.
  • the thermal conductivity of a graphite sheet used as a thermal diffusion sheet is about 500 W / mK to 1500 W / mK. With this level of thermal conductivity, the heat generating component is cooled when the heat generation amount of the heat generating component increases. It becomes difficult.
  • a heat pipe is being studied as a device that actively cools heat-generating components.
  • the heat pipe is a device that transports heat using the phase change of the working fluid, and has a higher thermal conductivity than the above thermal diffusion sheet.
  • a heat pipe having a diameter of 3 mm shows a large thermal conductivity of about 1500 W / mK to 2500 W / mK.
  • the loop heat pipe includes an evaporator that vaporizes the working fluid by the heat of the heat generating component, and a condenser that cools and vaporizes the vaporized working fluid.
  • the evaporator and the condenser are connected by a liquid pipe and a vapor pipe that form a loop-shaped flow path, and the working fluid flows through the path in one direction.
  • the direction of flow of the working fluid in the loop type heat pipe is one direction. Therefore, the resistance that the working fluid receives less compared to the heat pipe in which the liquid-phase working fluid and its vapor reciprocate in the pipe, and efficiently. Heat transport can be performed.
  • the disclosed technology has been made in view of the above, and provides a loop-type heat pipe that can be reduced in thickness without causing a decrease in heat transport performance due to a backflow of a working fluid, a manufacturing method thereof, and an electronic device The purpose is to do.
  • an evaporator that vaporizes a working fluid, a condenser that liquefies the working fluid, a liquid pipe that connects the evaporator and the condenser, and a liquid pipe that is provided in the liquid pipe are provided.
  • a loop heat pipe having a columnar porous body and a vapor pipe that connects the evaporator and the condenser and forms a loop with the liquid pipe.
  • the heating device includes a heat generating component and a loop heat pipe that cools the heat generating component, and the loop heat pipe vaporizes the working fluid by the heat of the heat generating component.
  • a condenser for liquefying the working fluid a liquid pipe connecting the evaporator and the condenser, a columnar porous body provided in the liquid pipe, the evaporator and the condenser And a vapor pipe that forms a loop with the liquid pipe.
  • a step of forming each of an evaporator, a condenser, a liquid pipe, and a vapor pipe by laminating a plurality of metal layers, and the portion corresponding to the liquid pipe Provided is a method for manufacturing a loop heat pipe having a step of forming a pillar-shaped porous body in the liquid pipe by forming a plurality of holes in the metal layer and a step of injecting a working fluid into the liquid pipe.
  • the working fluid in the liquid pipe is guided to the evaporator by the capillary force generated in the porous body, and the operation is performed from the evaporator to the liquid pipe.
  • the backflow of fluid can be suppressed.
  • the porous body can be prevented from being crushed by providing the porous body in a columnar shape.
  • FIG. 1 is a schematic diagram of a loop heat pipe used for the study.
  • FIG. 2 is an enlarged plan view of the evaporator of the loop heat pipe used for the study and the vicinity thereof.
  • FIG. 3 is a schematic plan view of the electronic apparatus according to the present embodiment.
  • FIG. 4 is a cross-sectional view of the evaporator of the loop heat pipe according to the present embodiment and its surroundings.
  • FIG. 5 is a cross-sectional view taken along the line II of FIG.
  • FIG. 6 is a schematic plan view of a loop heat pipe excluding the uppermost metal layer in the present embodiment.
  • FIG. 7 is a cross-sectional view of the liquid pipe of the loop heat pipe according to the present embodiment.
  • FIG. 8 is a plan view showing holes in the metal layers from the second layer to the fifth layer in the loop heat pipe according to the present embodiment.
  • FIG. 9 is a plan view schematically showing the positions of the holes when the metal layers are stacked in the present embodiment.
  • FIG. 10 is a plan view showing another example of the hole size in the present embodiment.
  • FIG. 11A is a schematic plan view showing an example of the size of the hole in the evaporator according to the present embodiment, and FIG. 11B is an example of the size of the hole in the liquid pipe according to the present embodiment. It is a schematic plan view which shows.
  • FIG. 12A is a schematic plan view of a loop heat pipe according to a comparative example
  • FIG. 12B is a schematic plan view of the loop heat pipe according to the present embodiment.
  • FIG. 12A is a schematic plan view of a loop heat pipe according to a comparative example
  • FIG. 13 is a graph obtained by measuring the temperature of the steam immediately after leaving the evaporator in each of the comparative example and the present embodiment.
  • FIG. 14 is a plan view (No. 1) of a metal layer used for manufacturing the loop heat pipe according to the present embodiment.
  • FIG. 15 is a plan view (No. 2) of a metal layer used for manufacturing the loop heat pipe according to the present embodiment.
  • FIG. 16 is a cross-sectional view of the loop-type heat pipe according to the present embodiment during manufacture.
  • FIG. 17 is a cross-sectional view drawn based on an SEM (Scanning Electron Microscope) image of a portion corresponding to a porous body in the loop heat pipe according to the present embodiment.
  • SEM Sccanning Electron Microscope
  • Fig. 1 is a schematic diagram of the loop heat pipe used in the study.
  • the loop heat pipe 1 is accommodated in a mobile electronic device 2 such as a smartphone, and has an evaporator 3 and a condenser 4.
  • a vapor pipe 5 and a liquid pipe 6 are connected to the evaporator 3 and the condenser 4, and a loop-like flow path through which the working fluid C flows is formed by these pipes 5 and 6.
  • a heat generating component 7 such as a CPU is fixed to the evaporator 3, and a vapor Cv of the working fluid C is generated by the heat of the heat generating component 7.
  • the steam Cv is led to the condenser 4 through the steam pipe 5 and is liquefied in the condenser 4. Thereby, the heat generated in the heat generating component 7 moves to the condenser 4.
  • FIG. 2 is an enlarged plan view of the evaporator 3 and the vicinity thereof.
  • a wick 10 is accommodated inside the evaporator 3.
  • the wick 10 is a porous sintered metal or sintered resin, and it is ideal that the liquid-phase working fluid permeates the wick 10 near the liquid pipe 6.
  • a capillary force acts on the liquid-phase working fluid C from the wick 10, and the capillary force counters the vapor Cv of the working fluid C. It can be expected to function as a check valve that prevents back flow from the steam pipe 5 to the liquid pipe 6.
  • FIG. 3 is a schematic plan view of the electronic apparatus according to the present embodiment.
  • the electronic device 20 is a mobile electronic device such as a smartphone or a tablet terminal, and includes a housing 21 and a loop heat pipe 22 accommodated therein.
  • the loop heat pipe 22 includes an evaporator 23 that generates the vapor Cv of the working fluid C, and a condenser 24 that liquefies the working fluid C.
  • a vapor pipe 25 and a liquid pipe 26 are connected to the evaporator 23 and the condenser 24, and a loop-like flow path through which the working fluid C flows is formed by these pipes 25 and 26.
  • FIG. 4 is a cross-sectional view of the evaporator 23 and its surroundings.
  • the evaporator 23 is fixed to the circuit board 31 with screws 33.
  • a heat generating component 32 such as a CPU is mounted on the circuit board 31.
  • the surface of the heat generating component 32 is in close contact with the evaporator 23, and the working fluid C in the evaporator 23 is vaporized by the heat generating component 32. it can.
  • the type of the working fluid C is not particularly limited, but it is preferable to use a fluid having a high vapor pressure and a large latent heat of vaporization as the working fluid C in order to efficiently cool the heat generating component 23 by latent heat of vaporization.
  • Such fluids include, for example, ammonia, water, freon, alcohol, and acetone.
  • FIG. 5 is a cross-sectional view taken along the line II of FIG. 3, and corresponds to a cross-sectional view of the steam pipe 25.
  • the steam pipe 25 is formed by stacking, for example, six metal layers 34.
  • Each metal layer 34 is, for example, a copper layer having excellent thermal conductivity, and is bonded to each other by diffusion bonding.
  • the thickness of each metal layer 34 is about 0.1 mm to 0.3 mm.
  • a stainless steel layer, a magnesium alloy layer, or the like may be used as the metal layer 34 instead of the copper layer.
  • the number of metal layers 34 is not limited to the above, and five or less metal layers 34 or seven or more metal layers 34 may be laminated.
  • These metal layers 34 define the bottom surface 34w, the ceiling surface 34v, and the tube wall 34x of the steam tube 25.
  • a support column 35 is provided near the center of the steam pipe 25.
  • the column 35 supports the ceiling surface 34v of the steam pipe 25 from below, and prevents the steam pipe 25 from being crushed by a pressing force when the metal layers 34 are stacked. Thereby, even if the loop heat pipe 22 is thinned, the flow path 34y through which the steam Cv flows in the steam pipe 25 is secured, and the steam Cv flows smoothly in the loop heat pipe 22.
  • the evaporator 23, the condenser 24, and the steam pipe 25 are also formed by laminating
  • FIG. 6 is a schematic plan view of the loop heat pipe 22 excluding the uppermost metal layer 34.
  • the dimensions of the loop heat pipe 22 are not particularly limited, but in this example, the width W1 of the steam pipe 25 is about 8 mm and the width W2 of the liquid pipe 26 is about 6 mm.
  • planar shape of the above-described support column 35 is a linear shape extending along the steam pipe 25. Thereby, the steam Cv flows smoothly in the steam pipe 25 along the support column 35.
  • the width W3 of the column 35 is about 1 mm.
  • the condenser 24 is provided with a flow path 24x for the working fluid C. Both ends of the flow path 24x are connected to the steam pipe 25 and the liquid pipe 26, respectively.
  • a column 35 is also provided in the channel 24x, and the column 35 can prevent the channel 24x from being crushed.
  • the liquid pipe 26 is provided with a porous body 36.
  • the porous body 36 extends along the liquid pipe 26 to the vicinity of the evaporator 23, and the liquid phase working fluid C in the liquid pipe 26 is guided to the evaporator 23 by the capillary force generated in the porous body 36. .
  • porous body 36 is also provided in the evaporator 23.
  • the liquid-phase working fluid C permeates into a portion near the liquid pipe 26.
  • the capillary force acting on the working fluid C from the porous body 36 becomes a pumping force for circulating the working fluid C in the loop heat pipe 22.
  • An inlet 34c for injecting the working fluid C is formed in the liquid pipe 26, but the inlet 34c is closed by a sealing member (not shown), and the inside of the loop heat pipe 22 is airtight. To be kept.
  • FIG. 7 is a cross-sectional view of the liquid pipe 26 and corresponds to a cross-sectional view taken along line II-II in FIG.
  • the entire porous body 36 is provided in a columnar shape in a sectional view. Thereby, the porous body 36 can prevent the liquid pipe 26 from being crushed by the pressing force when the metal layers 34 are laminated.
  • a plurality of holes 34 a are provided in each metal layer 34 corresponding to the porous body 36. Adjacent holes 34a communicate with each other, and fine holes are defined by these holes 34a.
  • the channel extends three-dimensionally within the porous body 36, and the working fluid C spreads three-dimensionally within the channel by capillary force.
  • porous body 36 is located in the liquid pipe 26 is not particularly limited, but it is preferable to provide the porous body 36 at a distance from the tube wall 34x of the liquid pipe 26 as shown in FIG. . As a result, a fine flow path 34 y through which the working fluid C flows is formed between the tube wall 34 x and the porous body 36, and the working fluid C easily flows through the liquid pipe 26.
  • FIG. 8 is a plan view showing the hole 34a of each metal layer 34 from the second layer to the fifth layer.
  • each hole 34a is circular, and these holes 34a are provided at the intersections of a plurality of virtual straight lines L orthogonal to each other.
  • the diameter R of the holes 34a and the distance D between adjacent holes 34a depend on the heat transport amount and heat transport distance required for the loop heat pipe 22, the respective heights of the steam pipe 25 and the liquid pipe 26, and the like. It can be optimized accordingly.
  • the shape of the hole 34a is not limited to a circle, and the hole 34a having an arbitrary shape such as an ellipse or a polygon can be formed.
  • the position of the hole 34a differs depending on each metal layer 34 from the first layer to the fourth layer.
  • FIG. 9 is a plan view schematically showing the positions of the holes 34a when the metal layers 34 are stacked.
  • the holes 34a overlap each other when viewed in plan as shown in FIG.
  • the holes 34a are stacked.
  • at least part of the hole 34 a of one metal layer 34 overlaps the hole 34 a of the other metal layer 34. If it does in this way, the working fluid C will distribute
  • FIG. 9 illustrates the case where all the holes 34a in all the metal layers 34 have the same size, but the size of the holes 34a is not limited to this.
  • FIG. 10 is a plan view showing another example of the size of the hole 34a.
  • the diameter R1 of the hole 34a of one metal layer 34 is made different from the diameter R2 of the hole 34a of the other metal layer 34.
  • the capillary force acting on the working fluid C from the porous body 36 can be adjusted by changing the size of the hole 34a between the metal layers 34 adjacent to each other in the vertical direction.
  • the porous body 36 is also provided in the evaporator 23.
  • the size of the hole 34a may be changed between the evaporator 23 and the liquid pipe 26 as follows.
  • FIG. 11A is a schematic plan view showing an example of the size of the hole 34a in the evaporator 23
  • FIG. 11B is a schematic plan view showing an example of the size of the hole 34a in the liquid pipe 26. is there.
  • the diameter R3 of the hole 34a in the evaporator 23 is made smaller than the diameter R4 in the liquid pipe 26.
  • the working fluid C can smoothly flow through the large hole 34a, and the working fluid C can be quickly moved to the evaporator 23.
  • the liquid-phase working fluid C can act as a check valve by the capillary force received from the small hole 34a, and the backflow of the steam Cv can be effectively suppressed as described above.
  • 12 (a) and 12 (b) are schematic plan views of the loop heat pipe used for the investigation.
  • FIG. 12 (a) is a schematic plan view of a loop heat pipe according to a comparative example.
  • the porous body 36 is not provided in the liquid pipe 26, and the column 35 is not provided in the steam pipe 25.
  • FIG. 12B is a schematic plan view of a loop heat pipe according to the present embodiment.
  • the porous body 36 is provided in the liquid pipe 26, and the column 35 is provided in the steam pipe 25.
  • a temperature measurement point P was provided in each of the loop heat pipes of the comparative example and this embodiment, and the temperature of the vapor Cv immediately after exiting the evaporator 23 was measured at the measurement point P.
  • the measurement results are shown in FIG.
  • the horizontal axis in FIG. 13 indicates the elapsed time after the evaporator 23 is heated by a heat source (not shown), and the vertical axis indicates the temperature at the measurement point P.
  • water was used as the working fluid C in both the present embodiment and the comparative example.
  • the measurement point P is always heated by the steam Cv without the steam Cv flowing back through the steam pipe 25. I understand.
  • 14 and 15 are plan views of the metal layer 34 used for manufacturing the loop heat pipe 22.
  • FIG. 14 is a plan view of the metal layer 34 used for the uppermost layer and the lowermost layer of the loop heat pipe 22.
  • FIG. 15 is a plan view of the metal layer 34 used between the uppermost layer and the lowermost layer.
  • the metal layer 34 shown in FIGS. 14 and 15 can be produced, for example, by patterning a copper layer having a thickness of about 0.1 mm into a predetermined shape by wet etching.
  • an opening 34z is formed in the metal layer 34 as shown in FIG.
  • the opening 34z has a shape corresponding to the evaporator 23, the condenser 24, the steam pipe 25, and the liquid pipe 26 of the loop heat pipe 22.
  • a part 36 a of the porous body 36 described above is provided on the metal layer 34 corresponding to the liquid pipe 26.
  • a plurality of holes 34a are formed in the part 36a and the evaporator 23 by the wet etching.
  • the metal layer 34 corresponding to the steam pipe 25 is provided with a part 35a of the support column 35 described above.
  • each said part 35a, 36a is connected with the metal layer 34 by the bridge
  • FIG. In order to prevent the vapor pipe 25 and the liquid pipe 26 from being blocked by the bridge 34y, it is preferable to change the position of the bridge 34y for each metal layer 34.
  • an injection port 34 c for injecting the working fluid C is provided in the metal layer 34 corresponding to the liquid pipe 26.
  • FIG. 16 is a cross-sectional view of a portion corresponding to the liquid pipe 26 after lamination.
  • the metal layers 34 shown in FIG. 14 are arranged in the uppermost layer and the lowermost layer, and a plurality of metal layers 34 shown in FIG. 15 are sandwiched therebetween.
  • each metal layer 34 is joined by diffusion joining by pressing each metal layer 34, heating each metal layer 34 at about 900 degreeC. At this time, since the porous body 36 functions as a support as described above, the liquid pipe 26 can be prevented from being crushed by pressing.
  • the inside of the liquid pipe 26 is exhausted from the inlet 34c (see FIG. 15) using a vacuum pump (not shown), and then water is injected as the working fluid C from the inlet 34c into the liquid pipe 26, and then the inlet 34c. Is sealed.
  • FIG. 17 is a cross-sectional view drawn based on an SEM (Scanning Electron Microscope) image of a portion corresponding to the porous body 36 in the loop heat pipe 22.
  • SEM Sccanning Electron Microscope
  • the metal layers 34 are integrated by diffusion bonding, and the interfaces of the metal layers 34 disappear.
  • the working fluid C in the liquid pipe 26 is evaporated by the capillary force generated in the porous body 36. It is possible to prevent the working fluid C from flowing backward from the evaporator 23 to the liquid pipe.
  • porous body 36 can be prevented from being crushed by providing the porous body 36 in a columnar shape.
  • the loop heat pipe 22 can be made thin enough to be accommodated in a smartphone, a tablet terminal, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】作動流体の逆流による熱輸送性能の低下を発生させることなく薄型化が可能なループ型ヒートパイプとその製造方法、及び電子機器を提供すること。 【解決手段】作動流体Cを気化させる蒸発器23と、作動流体Cを液化する凝縮器24と、蒸発器23と凝縮器24とを接続する液管26と、液管26内に設けられた支柱状の多孔質体36と、蒸発器23と凝縮器24とを接続し、液管26と共にループを形成する蒸気管25とを有するループ型ヒートパイプ22による。

Description

ループ型ヒートパイプとその製造方法、及び電子機器
 本発明は、ループ型ヒートパイプとその製造方法、及び電子機器に関する。
 高度情報化社会の到来に伴い、スマートフォンやタブレット端末等のようなモバイル型の電子機器が普及しつつある。モバイル型の電子機器は、持ち運びが容易となるように薄型化されているため、CPU(Central Processing Unit)等の発熱部品を冷却するための送風ファンを設けるのが難しい。
 発熱部品を冷却する方法としては、例えば、熱伝導率が良好な金属板や熱拡散シートで発熱部品の熱を外部に輸送する方法がある。但し、この方法では、輸送できる熱が金属板や熱拡散シートの熱伝導率によって制限されてしまう。例えば、熱拡散シートとして使用されるグラファイトシートの熱伝導率は500W/mK~1500W/mK程度であり、この程度の熱伝導率では発熱部品の発熱量が多くなったときに発熱部品を冷却するのが難しくなってしまう。
 そこで、発熱部品を積極的に冷却するデバイスとしてヒートパイプが検討されている。
 ヒートパイプは、作動流体の相変化を利用して熱を輸送するデバイスであって、上記の熱拡散シートよりも高い熱伝導率を有する。例えば、直径が3mmのヒートパイプでは熱伝導率が1500W/mK~2500W/mK程度と大きな値を示す。
 ヒートパイプには幾つかの種類がある。ループ型ヒートパイプは、発熱部品の熱により作動流体を気化させる蒸発器と、気化した作動流体を冷却して液化する凝縮器とを備える。そして、蒸発器と凝縮器は、ループ状の流路を形成する液管と蒸気管で接続されており、作動流体はその経路を一方向に流れる。
 このようにループ型ヒートパイプは作動流体が流れる方向が一方向となるため、液相の作動流体とその蒸気が管内を往復するヒートパイプと比較して作動流体が受ける抵抗が少なく、効率的に熱輸送を行うことができる。
特表2011-530059号公報 特開2004-3816号公報 実開平5-25164号公報
 しかしながら、スマートフォン等のように薄型化された電子機器にループ型ヒートパイプを搭載する場合、電子機器の厚さに合わせて前述の液管や蒸気管の直径も小さくしなければない。その結果、液管や蒸気管の中を作動流体が流れ難くなり、ループ型ヒートパイプの熱輸送の性能が低下するおそれがある。
 開示の技術は、上記に鑑みてなされたものであって、作動流体の逆流による熱輸送性能の低下を発生させることなく薄型化が可能なループ型ヒートパイプとその製造方法、及び電子機器を提供することを目的とする。
 以下の開示の一観点によれば、作動流体を気化させる蒸発器と、前記作動流体を液化する凝縮器と、前記蒸発器と前記凝縮器とを接続する液管と、前記液管内に設けられた支柱状の多孔質体と、前記蒸発器と前記凝縮器とを接続し、前記液管と共にループを形成する蒸気管とを有するループ型ヒートパイプが提供される。
 また、その開示の他の観点によれば、発熱部品と、前記発熱部品を冷却するループ型ヒートパイプとを有し、前記ループ型ヒートパイプが、前記発熱部品の熱で作動流体を気化させる蒸発器と、前記作動流体を液化する凝縮器と、前記蒸発器と前記凝縮器とを接続する液管と、前記液管内に設けられた支柱状の多孔質体と、前記蒸発器と前記凝縮器とを接続し、前記液管と共にループを形成する蒸気管とを有する電子機器が提供される。
 更に、その開示の別の観点によれば、金属層を複数積層することにより、蒸発器、凝縮器、液管、及び蒸気管の各々を形成する工程と、前記液管に対応する部分の前記金属層に複数の孔を形成することにより前記液管内に支柱状の多孔質体を形成する工程と、前記液管内に作動流体を注入する工程とを有するループ型ヒートパイプの製造方法が提供される。
 以下の開示によれば、ループ型ヒートパイプの液管内に多孔質体を設けることで、多孔質体に生じる毛細管力で液管内の作動流体を蒸発器に誘導し、蒸発器から液管に作動流体が逆流するのを抑制できる。更に、その多孔質体を支柱状に設けることで、液管が潰れるのを多孔質体で防止できる。
図1は、検討に使用したループ型ヒートパイプの模式図である。 図2は、検討に使用したループ型ヒートパイプの蒸発器とその近傍の拡大平面図である。 図3は、本実施形態に係る電子機器の模式平面図である。 図4は、本実施形態に係るループ型ヒートパイプの蒸発器とその周囲の断面図である。 図5は、図3のI-I線に沿う断面図である。 図6は、本実施形態において、最上層の金属層を除いたループ型ヒートパイプの模式平面図である。 図7は、本実施形態に係るループ型ヒートパイプの液管の断面図である。 図8は、本実施形態に係るループ型ヒートパイプにおいて、二層目から五層目までの各金属層の孔を示す平面図である。 図9は、本実施形態において、各金属層を積層したときの各孔の位置を模式的に示す平面図である。 図10は、本実施形態において、孔の大きさの他の例を示す平面図である。 図11(a)は、本実施形態に係る蒸発器における孔の大きさの一例を示す模式平面図であり、図11(b)は、本実施形態に係る液管における孔の大きさの一例を示す模式平面図である。 図12(a)は、比較例に係るループ型ヒートパイプの模式平面図であり、図12(b)は、本実施形態に係るループ型ヒートパイプの模式平面図である。 図13は、比較例と本実施形態の各々において、蒸発器を出た直後の蒸気の温度を測定して得られたグラフである。 図14は、本実施形態に係るループ型ヒートパイプを製造するのに使用する金属層の平面図(その1)である。 図15は、本実施形態に係るループ型ヒートパイプを製造するのに使用する金属層の平面図(その2)である。 図16は、本実施形態に係るループ型ヒートパイプの製造途中の断面図である。 図17は、本実施形態に係るループ型ヒートパイプにおいて、多孔質体に相当する部分のSEM(Scanning Electron Microscope)像を元にして描いた断面図である。
 本実施形態の説明に先立ち、本願発明者が行った検討事項について説明する。
 図1は、検討に使用したループ型ヒートパイプの模式図である。
 このループ型ヒートパイプ1は、スマートフォン等のモバイル型の電子機器2に収容されるものであり、蒸発器3と凝縮器4とを有する。
 蒸発器3と凝縮器4には蒸気管5と液管6とが接続されており、これらの管5、6によって作動流体Cが流れるループ状の流路が形成される。また、蒸発器3にはCPU等の発熱部品7が固着されており、その発熱部品7の熱により作動流体Cの蒸気Cvが生成される。蒸気Cvは、蒸気管5を通って凝縮器4に導かれ、凝縮器4において液化する。これにより、発熱部品7で発生した熱が凝縮器4に移動することになる。
 図2は、蒸発器3とその近傍の拡大平面図である。
 図2に示すように、蒸発器3の内部にはウィック10が収容される。ウィック10は、多孔質性の焼結金属や焼結樹脂であって、液管6寄りのウィック10に液相の作動流体が浸透している状態が理想的である。
 このような状態が継続すれば、液相の作動流体Cにウィック10から毛細管力が作用し、その毛細管力が作動流体Cの蒸気Cvに対抗するので、液相の作動流体Cは蒸気Cvが蒸気管5から液管6に逆流するのを防止する逆止弁として機能すると期待できる。
 しかしながら、本願発明者の調査によれば、ループ型ヒートパイプ1を薄型化すると蒸発器3内を蒸気Cvが逆流してしまうことが明らかとなった。
 これは、薄型化によって蒸気管5の圧力損失が増大するため、蒸気管5内における蒸気Cvの流れが停滞し、蒸気Cvにより凝縮器4(図1参照)内の液相の作動流体Cを液管6側に押し出せなくなるためと考えられる。
 また、発熱部品7により液管6が加熱されることで液管6においても作動流体Cの一部が気化し、これによっても上記のような蒸気Cvの逆流が生じると考えられる。なお、このように発熱部品7により液管6が加熱される現象はヒートリークとも呼ばれる。
 上記のように蒸気Cvが逆流すると、ループ型ヒートパイプの熱輸送性能が著しく低下し、発熱部品7を冷却するのが困難となる。
 以下に、薄型化しても作動流体の逆流を防止することが可能な本実施形態について説明する。
 (本実施形態)
 図3は、本実施形態に係る電子機器の模式平面図である。
 この電子機器20は、スマートフォンやタブレット端末等のモバイル型の電子機器であって、筐体21とその内部に収容されたループ型ヒートパイプ22とを有する。
 ループ型ヒートパイプ22は、作動流体Cの蒸気Cvを生成する蒸発器23と、作動流体Cを液化させる凝縮器24とを備える。そして、蒸発器23と凝縮器24には蒸気管25と液管26とが接続されており、これらの管25、26によって作動流体Cが流れるループ状の流路が形成される。
 図4は、蒸発器23とその周囲の断面図である。
 図4に示すように、蒸発器23は、ネジ33により回路基板31に固定される。回路基板31の上にはCPU等の発熱部品32が搭載されており、その発熱部品32の表面が蒸発器23と密着し、発熱部品32により蒸発器23内の作動流体Cを気化することができる。
 作動流体Cの種類は特に限定されないが、蒸発潜熱によって発熱部品23を効率的に冷却するために、なるべく蒸気圧が高く、蒸発潜熱が大きい流体を作動流体Cとして使用するのが好ましい。そのような流体としては、例えば、アンモニア、水、フロン、アルコール、及びアセトンがある。
 図5は、図3のI-I線に沿う断面図であり、蒸気管25の断面図に相当する。
 図5に示すように、蒸気管25は、例えば6層の金属層34を積層してなる。各金属層34は、例えば熱伝導性に優れた銅層であって、拡散接合により互いに接合される。また、各金属層34の厚さは0.1mm~0.3mm程度である。
 なお、銅層に代えてステンレス層や及びマグネシウム合金層等を金属層34として用いてもよい。但し、拡散接合によって各金属層34同士を良好に接合できるように、全ての金属層34の材料を同一にするのが好ましい。
 更に、金属層34の積層数も上記に限定されず、5層以下や7層以上の金属層34を積層してもよい。
 そして、これらの金属層34により、蒸気管25の底面34w、天井面34v、及び管壁34xが画定される。
 また、蒸気管25の中央付近には支柱35が設けられる。支柱35は、蒸気管25の天井面34vを下から支え、各金属層34を積層するときのプレス力で蒸気管25が潰れるのを防止する。これにより、ループ型ヒートパイプ22が薄型化されても、蒸気管25内に蒸気Cvが流れる流路34yが確保され、蒸気Cvがループ型ヒートパイプ22内をスムーズに流れるようになる。
 なお、蒸発器23、凝縮器24、及び蒸気管25もこのように金属層34を積層することで形成される。
 図6は、最上層の金属層34を除いたループ型ヒートパイプ22の模式平面図である。
 ループ型ヒートパイプ22の寸法は特に限定されないが、この例では蒸気管25の幅W1を約8mmとし、液管26の幅W2を約6mmとする。
 また、前述の支柱35の平面形状は、蒸気管25に沿って延びる線状である。これにより、蒸気Cvが支柱35に沿って蒸気管25内をスムーズに流れるようになる。なお、その支柱35の幅W3は約1mmである。
 凝縮器24には作動流体Cの流路24xが設けられる。流路24xは、その両端がそれぞれ蒸気管25と液管26に接続される。流路24xにも支柱35が設けられており、流路24xが潰れるのを支柱35で防止できる。
 また、液管26には多孔質体36が設けられる。多孔質体36は液管26に沿って蒸発器23の近傍まで延びており、その多孔質体36に生じる毛細管力によって液管26内の液相の作動流体Cが蒸発器23まで誘導される。
 その結果、蒸発器23からのヒートリーク等によって液管26内を蒸気Cvが逆流しようとしても、多孔質体36から液相の作動流体Cに作用する上記の毛細管力で蒸気Cvを押し戻すことができ、蒸気Cvの逆流を防止することが可能となる。
 更に、この多孔質体36は蒸発器23内にも設けられる。
 蒸発器23内の多孔質体36のうち、液管26寄りの部分には液相の作動流体Cが浸透する。この際に多孔質体36から作動流体Cに作用する毛細管力が、ループ型ヒートパイプ22内で作動流体Cを循環させるポンピング力となる。
 しかも、この毛細管力は蒸発器23内の蒸気Cvに対抗するため、当該蒸気Cvが液管26に逆流するのを抑制することが可能となる。
 なお、液管26には作動流体Cを注入するための注入口34cが形成されているが、注入口34cは不図示の封止部材により塞がれており、ループ型ヒートパイプ22内は気密に保たれる。
 図7は、液管26の断面図であって、図6のII-II線に沿う断面図に相当する。
 図7に示すように、多孔質体36の全体は、断面視で支柱状に設けられている。これにより、各金属層34を積層するときのプレス力で液管26が潰れるのを多孔質体36で防止することができる。
 また、多孔質体36に対応する部分の各金属層34には複数の孔34aが設けられる。隣接する孔34a同士は互いに連通しており、これらの孔34aによって微細なチャネルが画定される。そのチャネルは多孔質体36内に三次元的に延びており、作動流体Cは毛細管力でそのチャネル内を三次元的に広がる。
 なお、液管26内のどの部位に多孔質体36を位置させるかは特に限定されないが、図7のように液管26の管壁34xから間隔をおいて多孔質体36を設けるのが好ましい。これにより、管壁34xと多孔質体36との間に作動流体Cが流れる微細な流路34yが形成され、作動流体Cが液管26内を流れ易くなる。
 図8は、二層目から五層目までの各金属層34の孔34aを示す平面図である。
 図8の例では各孔34aの形状を円形にすると共に、互いに直交する複数の仮想直線Lの交点にこれらの孔34aを設ける。
 なお、孔34aの直径Rや、隣接する孔34aの間隔Dは、ループ型ヒートパイプ22に要求される熱輸送量と熱輸送距離や、蒸気管25と液管26のそれぞれの高さ等によって適宜最適化され得る。
 更に、孔34aの形状は円形に限定されず、楕円や多角形等の任意の形状の孔34aを形成し得る。
 また、孔34aの位置は、一層目から四層目の各々の金属層34によって異なる。
 図9は、各金属層34を積層したときの各孔34aの位置を模式的に示す平面図である。
 上記のように孔34aの位置を金属層34によって異なるようにしたため、図9のように平面視したときに孔34a同士が重なるようになる。
 各孔34aをどのように重ねるかは特に限定されない。この例では、上下に隣接する二つの金属層34において、一方の金属層34の孔34aの少なくとも一部が、他方の金属層34の孔34aに重なるようにする。このようにすると、作動流体Cは、上下に隣接する金属層34の孔34aを伝って三次元的に流通することになる。
 なお、図9は、全ての金属層34における全ての孔34aが同じ大きさの場合を例示しているが、孔34aの大きさはこれに限定されない。
 図10は、孔34aの大きさの他の例を示す平面図である。
 図10の例では、上下に隣接する二つの金属層34において、一方の金属層34の孔34aの直径R1を、他方の金属層34の孔34aの直径R2と異なるようにする。
 このように上下に隣接する金属層34で孔34aの大きさを変えることで、多孔質体36から作動流体Cに作用する毛細管力を調節することができる。
 また、前述のように多孔質体36は蒸発器23内にも設けられるが、以下のように蒸発器23内と液管26内とで孔34aの大きさを変えてもよい。
 図11(a)は、蒸発器23における孔34aの大きさの一例を示す模式平面図であり、図11(b)は、液管26における孔34aの大きさの一例を示す模式平面図である。
 図11(a)、(b)の例では、蒸発器23内における孔34aの直径R3を、液管26内における直径R4よりも小さくする。
 これにより、液管26内においては大きな孔34a内を作動流体Cがスムーズに流通し、蒸発器23に作動流体Cを速やかに移動させることができる。そして、蒸発器23内においては、小さな孔34aから受ける毛細管力で液相の作動流体Cを逆止弁として作用させ、前述のように蒸気Cvの逆流を効果的に抑制することができる。
 次に、本願発明者が行った調査について説明する。
 図12(a)、(b)は、その調査に使用したループ型ヒートパイプの模式平面図である。
 図12(a)は、比較例に係るループ型ヒートパイプの模式平面図である。この比較例においては、液管26内に多孔質体36を設けず、かつ、蒸気管25内に支柱35を設けていない。
 一方、図12(b)は、本実施形態に係るループ型ヒートパイプの模式平面図である。本実施形態においては、前述のように液管26内に多孔質体36を設け、かつ、蒸気管25内に支柱35を設けている。
 この調査では、比較例と本実施形態の各々のループ型ヒートパイプに温度の測定点Pを設け、蒸発器23を出た直後の蒸気Cvの温度をその測定点Pで測定した。
 その測定結果を図13に示す。図13の横軸は、不図示の熱源により蒸発器23を加熱してからの経過時間を示し、縦軸は測定点Pの温度を示す。また、本実施形態と比較例のいずれにおいても作動流体Cとして水を用いた。
 図13に示すように、比較例においては経過時間が0秒~600秒の期間で温度が順調に上昇しているものの、経過時間が800秒を過ぎると温度が急激に低下している。これは、0秒~600秒の期間では蒸発器23で生成された作動流体Cの蒸気Cvが測定点Pを通過して温度が上昇したのに対し、時刻が800秒を経過すると蒸気管25を蒸気Cvが逆流し、蒸気Cvで測定点Pが加熱されなくなったためと考えられる。
 これに対し、本実施形態においては、比較例におけるような温度低下が発生していないことから、蒸気Cvが蒸気管25を逆流せずに、測定点Pが常に蒸気Cvで加熱されていることが分かる。
 この結果から、本実施形態のように液管26内に多孔質体36を設けることで、蒸気Cvの逆流を抑制できることが確認できた。
 次に、本実施形態に係るループ型ヒートパイプ22の製造方法について説明する。
 図14及び図15は、ループ型ヒートパイプ22を製造するのに使用する金属層34の平面図である。
 このうち、図14は、ループ型ヒートパイプ22の最上層と最下層に使用する金属層34の平面図である。そして、図15は、最上層と最下層との間に使用する金属層34の平面図である。
 図14と図15に示す金属層34は、例えば、厚さが約0.1mmの銅層をウエットエッチングにより所定の形状にパターニングすることで作製され得る。
 また、そのウエットエッチングにおいては、図15に示すように金属層34に開口34zが形成される。開口34zは、ループ型ヒートパイプ22の蒸発器23、凝縮器24、蒸気管25、及び液管26に対応する形状を有する。
 また、液管26に対応する部分の金属層34には、前述の多孔質体36の一部36aが設けられる。そして、当該一部36aと蒸発器23内には、上記のウエットエッチングにより孔34aが複数形成される。
 一方、蒸気管25に対応する部分の金属層34には、前述の支柱35の一部35aが設けられる。
 なお、上記の各部35a、36aは、ブリッジ34yにより金属層34と連結されており、各部35a、36aが金属層34から脱離するのが防止される。そのブリッジ34yで蒸気管25や液管26が閉塞されるのを防止するために、金属層34ごとにブリッジ34yの位置を変えるのが好ましい。
 また、液管26に対応する部分の金属層34には作動流体Cを注入するための注入口34cが設けられる。
 次いで、図16に示すように、上記の金属層34を複数積層する。図16は、積層後の液管26に対応する部分の断面図である。
 積層にあたっては、図14に示した金属層34を最上層と最下層に配しつつ、これらの間に図15に示した複数の金属層34を挟む。
 そして、各金属層34を約900℃に加熱しながら各金属層34同士をプレスすることにより、拡散接合により各金属層34同士を接合する。このとき、前述のように多孔質体36が支柱として機能するため、プレスにより液管26が潰れるのを防止できる。
 その後、不図示の真空ポンプを用いて注入口34c(図15参照)から液管26内を排気した後、注入口34cから液管26内に作動流体Cとして水を注入し、その後注入口34cを封止する。
 以上により、本実施形態に係るループ型ヒートパイプ22が完成する。
 図17は、そのループ型ヒートパイプ22において、多孔質体36に相当する部分のSEM(Scanning Electron Microscope)像を元にして描いた断面図である。
 図17に示すように、各金属層34は拡散接合により一体化しており、各金属層34の界面は消失している。
 以上説明したように、本実施形態によれば、液管26内に支柱状の多孔質体36を設けることで、多孔質体36に生じる毛細管力で液管26内の作動流体Cを蒸発器23に誘導し、蒸発器23から液管に作動流体Cが逆流するのを抑制できる。
 更に、多孔質体36を支柱状に設けることで、液管26が潰れるのを多孔質体36で防止できる。
 また、複数の金属層34を積層してループ型ヒートパイプ22を製造することで、スマートフォンやタブレット端末等に収容可能な程度にループ型ヒートパイプ22を薄型化することができる。
                                                                                

Claims (12)

  1.  作動流体を気化させる蒸発器と、
     前記作動流体を液化する凝縮器と、
     前記蒸発器と前記凝縮器とを接続する液管と、
     前記液管内に設けられた支柱状の多孔質体と、
     前記蒸発器と前記凝縮器とを接続し、前記液管と共にループを形成する蒸気管と、
     を有することを特徴とするループ型ヒートパイプ。
  2.  前記多孔質体は、前記液管に沿って延びることを特徴とする請求項1に記載のループ型ヒートパイプ。
  3.  前記多孔質体は、前記液管の管壁から間隔をおいて設けられたことを特徴とする請求項2に記載のループ型ヒートパイプ。
  4.  前記蒸発器、前記凝縮器、前記液管、前記蒸気管、及び前記多孔質体の各々は複数の金属層を積層してなり、
     前記多孔質体に対応する部分の複数の前記金属層の各々に複数の孔が形成されたことを特徴とする請求項1乃至請求項3のいずれか1項に記載のループ型ヒートパイプ。
  5.  上下に隣接する二つの前記金属層において、一方の前記金属層の前記孔の少なくとも一部が、他方の前記金属層の前記孔に重なることを特徴とする請求項4に記載のループ型ヒートパイプ。
  6.  上下に隣接する二つの前記金属層において、一方の前記金属層の前記孔の大きさが、他方の前記金属層の前記孔の大きさと異なることを特徴とする請求項4に記載のループ型ヒートパイプ。
  7.  前記多孔質体が前記蒸発器内にも設けられ、
     前記蒸発器内における前記多孔質体の前記孔の大きさが、前記液管内における前記多孔質体の前記孔の大きさよりも小さいことを特徴とする請求項4に記載のループ型ヒートパイプ。
  8.  前記蒸気管内に支柱が設けられたことを特徴とする請求項1乃至請求項7のいずれか1項に記載のループ型ヒートパイプ。
  9.  前記支柱の平面形状は、前記蒸気管に沿って延びる線状であることを特徴とする請求項8に記載のループ型ヒートパイプ。
  10.  前記凝縮器は、前記液管と前記蒸気管の各々に繋がる流路を有し、
     前記支柱が前記流路内にも設けられたことを特徴とする請求項8又は請求項9に記載のループ型ヒートパイプ。
  11.  発熱部品と、
     前記発熱部品を冷却するループ型ヒートパイプとを有し、
     前記ループ型ヒートパイプが、
     前記発熱部品の熱で作動流体を気化させる蒸発器と、
     前記作動流体を液化する凝縮器と、
     前記蒸発器と前記凝縮器とを接続する液管と、
     前記液管内に設けられた支柱状の多孔質体と、
     前記蒸発器と前記凝縮器とを接続し、前記液管と共にループを形成する蒸気管とを有することを特徴とする電子機器。
  12.  金属層を複数積層することにより、蒸発器、凝縮器、液管、及び蒸気管の各々を形成する工程と、
     前記液管に対応する部分の前記金属層に複数の孔を形成することにより前記液管内に支柱状の多孔質体を形成する工程と、
     前記液管内に作動流体を注入する工程と、
     を有することを特徴とするループ型ヒートパイプの製造方法。
                                                                                    
PCT/JP2013/083504 2013-12-13 2013-12-13 ループ型ヒートパイプとその製造方法、及び電子機器 WO2015087451A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015552277A JP6146484B2 (ja) 2013-12-13 2013-12-13 ループ型ヒートパイプとその製造方法、及び電子機器
PCT/JP2013/083504 WO2015087451A1 (ja) 2013-12-13 2013-12-13 ループ型ヒートパイプとその製造方法、及び電子機器
CN201380081515.2A CN105814389B (zh) 2013-12-13 2013-12-13 环型热管及其制造方法、以及电子设备
US15/156,869 US11009927B2 (en) 2013-12-13 2016-05-17 Loop heat pipe, method of manufacturing the same, and electronic device
US17/231,205 US11789505B2 (en) 2013-12-13 2021-04-15 Loop heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/083504 WO2015087451A1 (ja) 2013-12-13 2013-12-13 ループ型ヒートパイプとその製造方法、及び電子機器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/156,869 Continuation US11009927B2 (en) 2013-12-13 2016-05-17 Loop heat pipe, method of manufacturing the same, and electronic device

Publications (1)

Publication Number Publication Date
WO2015087451A1 true WO2015087451A1 (ja) 2015-06-18

Family

ID=53370792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083504 WO2015087451A1 (ja) 2013-12-13 2013-12-13 ループ型ヒートパイプとその製造方法、及び電子機器

Country Status (4)

Country Link
US (2) US11009927B2 (ja)
JP (1) JP6146484B2 (ja)
CN (1) CN105814389B (ja)
WO (1) WO2015087451A1 (ja)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183880A (ja) * 2014-03-20 2015-10-22 富士通株式会社 ループ型ヒートパイプとその製造方法、及び電子機器
CN105764305A (zh) * 2016-03-28 2016-07-13 努比亚技术有限公司 散热装置、移动终端和散热系统
WO2017203574A1 (ja) * 2016-05-23 2017-11-30 富士通株式会社 ループヒートパイプ及びその製造方法並びに電子機器
US20180058767A1 (en) * 2016-09-01 2018-03-01 Shinko Electric Industries Co., Ltd. Loop heat pipe
JP2018080901A (ja) * 2016-11-18 2018-05-24 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JPWO2017037921A1 (ja) * 2015-09-03 2018-05-31 富士通株式会社 ループヒートパイプ及びその製造方法並びに電子機器
JP6400240B1 (ja) * 2018-02-05 2018-10-03 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
KR20180117861A (ko) * 2017-04-20 2018-10-30 한온시스템 주식회사 차량용 열관리 시스템 및 방법
JP2018179471A (ja) * 2017-04-21 2018-11-15 新光電気工業株式会社 ヒートパイプ及びその製造方法
EP3428565A1 (en) 2017-07-12 2019-01-16 Shinko Electric Industries Co. Ltd. Loop heat pipe and method of manufacturing loop heat pipe
EP3477237A1 (en) 2017-10-27 2019-05-01 Shinko Electric Industries Co., Ltd. Loop type heat pipe
JP2019078507A (ja) * 2017-10-26 2019-05-23 新光電気工業株式会社 ヒートパイプ、ヒートパイプの製造方法
JP2019082309A (ja) * 2017-10-27 2019-05-30 新光電気工業株式会社 ループ型ヒートパイプ、及びループ型ヒートパイプ製造方法
EP3492856A1 (en) 2017-11-29 2019-06-05 Shinko Electric Industries Co., Ltd. Heat pipe and method of manufacturing heat pipe
WO2019106762A1 (ja) * 2017-11-29 2019-06-06 富士通株式会社 ループヒートパイプ及び電子機器
EP3505858A1 (en) 2017-12-28 2019-07-03 Shinko Electric Industries Co., Ltd. Loop heat pipe, electronic device, and method of manufacturing loop heat pipe
EP3521743A1 (en) 2018-02-05 2019-08-07 Shinko Electric Industries Co., Ltd. Loop heat pipe and method of manufacturing loop heat pipe
JP2019132486A (ja) * 2018-01-30 2019-08-08 新光電気工業株式会社 ループ型ヒートパイプ、ループ型ヒートパイプの製造方法
JP2019138491A (ja) * 2018-02-06 2019-08-22 新光電気工業株式会社 ループ型ヒートパイプ
EP3531056A1 (en) 2018-02-27 2019-08-28 Shinko Electric Industries Co., Ltd. Loop type heat pipe
EP3531054A1 (en) 2018-02-27 2019-08-28 Shinko Electric Industries Co., Ltd. Flat loop heat pipe
US20190293362A1 (en) * 2018-03-26 2019-09-26 Shinko Electric Industries Co., Ltd. Loop heat pipe
JP2019184219A (ja) * 2018-04-16 2019-10-24 泰碩電子股▲分▼有限公司 液体弾管路を有する還流ヒートパイプ
JP2019207083A (ja) * 2018-05-30 2019-12-05 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP2020008249A (ja) * 2018-07-11 2020-01-16 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP2020020566A (ja) * 2018-07-23 2020-02-06 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP2020026930A (ja) * 2018-08-13 2020-02-20 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
EP3671094A1 (en) 2018-12-19 2020-06-24 Shinko Electric Industries Co., Ltd. Loop-type heat pipe
JP2020197331A (ja) * 2019-05-31 2020-12-10 新光電気工業株式会社 ループ型ヒートパイプ
EP3882553A1 (en) * 2020-03-17 2021-09-22 Shinko Electric Industries Co., Ltd. Loop heat pipe and method for manufacturing loop heat pipe
JP2022044418A (ja) * 2020-09-07 2022-03-17 新光電気工業株式会社 電子機器

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11859914B2 (en) * 2015-01-22 2024-01-02 Pimems, Inc. High performance two-phase cooling apparatus
TWI590751B (zh) * 2016-08-26 2017-07-01 宏碁股份有限公司 可攜式電子裝置
CN107801353B (zh) * 2016-09-07 2019-08-06 宏碁股份有限公司 便携式电子装置
US10413990B2 (en) * 2016-12-01 2019-09-17 Michael Hacikyan Welding purge dam with apertured purge plates
JP6886904B2 (ja) * 2017-09-20 2021-06-16 新光電気工業株式会社 ループ型ヒートパイプ、ループ型ヒートパイプの製造方法、電子機器
CN109714931B (zh) * 2017-10-26 2020-08-18 深圳富泰宏精密工业有限公司 应用散热结构的电子设备
JP6951267B2 (ja) * 2018-01-22 2021-10-20 新光電気工業株式会社 ヒートパイプ及びその製造方法
JP6995673B2 (ja) 2018-03-16 2022-01-14 新光電気工業株式会社 ループ型ヒートパイプ
TWI672478B (zh) * 2018-05-04 2019-09-21 泰碩電子股份有限公司 迴路式均溫板
US10932395B2 (en) * 2018-06-04 2021-02-23 GM Global Technology Operations LLC Thermal management device for use on electronics in a transportation vehicle
US10962301B2 (en) 2018-07-23 2021-03-30 Shinko Electric Industries Co., Ltd. Loop heat pipe
JP7146524B2 (ja) * 2018-08-13 2022-10-04 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP7161343B2 (ja) * 2018-08-27 2022-10-26 新光電気工業株式会社 冷却器
JP6801698B2 (ja) * 2018-09-04 2020-12-16 セイコーエプソン株式会社 冷却装置及びプロジェクター
JP7153515B2 (ja) 2018-09-25 2022-10-14 新光電気工業株式会社 ループ型ヒートパイプ
JP7184594B2 (ja) 2018-10-23 2022-12-06 新光電気工業株式会社 ループ型ヒートパイプ
CN110160384B (zh) * 2019-01-11 2020-04-24 青岛海尔空调器有限总公司 芯片换热器及变频空调器
JP7305512B2 (ja) * 2019-10-17 2023-07-10 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP7353132B2 (ja) * 2019-10-31 2023-09-29 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
CN110779368A (zh) * 2019-11-20 2020-02-11 张俊霞 一种用于手机芯片散热的微热管
JP7508312B2 (ja) * 2020-08-27 2024-07-01 新光電気工業株式会社 ループ型ヒートパイプ
JP2023012839A (ja) * 2021-07-14 2023-01-26 新光電気工業株式会社 ループ型ヒートパイプ
JP2023167569A (ja) 2022-05-12 2023-11-24 新光電気工業株式会社 ヒートパイプ
FR3138941A1 (fr) * 2022-08-17 2024-02-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Caloduc de type à pompage capillaire, à rainures réentrantes transversales à l’axe longitudinal du caloduc.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327993A (ja) * 2001-05-01 2002-11-15 Fujitsu Ltd 薄型ヒートパイプ、薄型ヒートシンク、熱制御システムおよび薄型ヒートパイプの製造方法
JP2007113864A (ja) * 2005-10-21 2007-05-10 Sony Corp 熱輸送装置及び電子機器
JP2012198019A (ja) * 2012-06-18 2012-10-18 Fujitsu Ltd ループ型ヒートパイプおよび電子機器
JP2013011363A (ja) * 2011-06-28 2013-01-17 Fujikura Ltd 扁平型ヒートパイプ

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016928A (en) * 1973-12-26 1977-04-12 General Electric Company Heat exchanger core having expanded metal heat transfer surfaces
US4170262A (en) * 1975-05-27 1979-10-09 Trw Inc. Graded pore size heat pipe wick
US4109680A (en) * 1977-01-03 1978-08-29 Lavender Ardis R Plate type fluid distributing device
US4899810A (en) * 1987-10-22 1990-02-13 General Electric Company Low pressure drop condenser/heat pipe heat exchanger
ES2131506T3 (es) 1990-09-21 1999-08-01 Rohm & Haas Dihidropiridacinonas y piridacinonas como fungicidas.
JPH0525164U (ja) 1991-08-20 1993-04-02 三菱電機株式会社 ヒートパイプ
US6843308B1 (en) * 2000-12-01 2005-01-18 Atmostat Etudes Et Recherches Heat exchanger device using a two-phase active fluid, and a method of manufacturing such a device
US6880625B2 (en) * 2001-03-30 2005-04-19 Samsung Electronics Co., Ltd. Capillary pumped loop system
JP4123017B2 (ja) 2002-04-02 2008-07-23 三菱電機株式会社 熱輸送素子および熱輸送素子を用いた半導体装置および熱輸送素子を用いた大気圏外移動体
US20030192674A1 (en) 2002-04-02 2003-10-16 Mitsubishi Denki Kabushiki Kaisha Heat transport device
JP4823994B2 (ja) * 2002-05-08 2011-11-24 古河電気工業株式会社 薄型シート状ヒートパイプ
JP2004353902A (ja) * 2003-05-27 2004-12-16 Sony Corp 冷却装置
KR100505279B1 (ko) * 2003-05-31 2005-07-29 아이큐리랩 홀딩스 리미티드 드라이 아웃이 방지된 박판형 냉각장치
JP4459783B2 (ja) * 2004-10-29 2010-04-28 株式会社フジクラ 車両用冷却装置
CN101248327B (zh) * 2005-01-07 2012-11-14 库利吉公司 高表面容积比结构及其与微型热交换器的结合
CN2874398Y (zh) * 2005-05-10 2007-02-28 苏子欣 一体化热导管散热结构
CN100480611C (zh) * 2005-11-17 2009-04-22 富准精密工业(深圳)有限公司 热管
US20080078530A1 (en) * 2006-10-02 2008-04-03 Foxconn Technology Co., Ltd. Loop heat pipe with flexible artery mesh
JP2008134043A (ja) * 2006-10-27 2008-06-12 Canon Inc 伝熱制御機構および伝熱制御機構を搭載した燃料電池システム
JP2008281275A (ja) * 2007-05-10 2008-11-20 Toshiba Corp ループヒートパイプ、冷却装置、電子機器
TWI318679B (en) * 2007-05-16 2009-12-21 Ind Tech Res Inst Heat dissipation system with an plate evaporator
FR2919923B1 (fr) * 2007-08-08 2009-10-30 Astrium Sas Soc Par Actions Si Dispositif passif a micro boucle fluide a pompage capillaire
JP5178274B2 (ja) * 2008-03-26 2013-04-10 日本モレックス株式会社 ヒートパイプ、ヒートパイプの製造方法およびヒートパイプ機能付き回路基板
EP2321605B1 (en) 2008-07-31 2018-09-12 Georgia Tech Research Corporation Microscale heat or heat and mass transfer system
CN101655328A (zh) * 2008-08-19 2010-02-24 何昆耀 平板式回路热导装置及其制造方法
CN101929816B (zh) * 2009-06-24 2012-06-27 扬光绿能股份有限公司 回路式热管及其制作方法
CN201463680U (zh) * 2009-09-04 2010-05-12 苏州聚力电机有限公司 管体式回路型热管
US20120048516A1 (en) * 2010-08-27 2012-03-01 Forcecon Technology Co., Ltd. Flat heat pipe with composite capillary structure
TWI398616B (zh) * 2011-01-26 2013-06-11 Asia Vital Components Co Ltd Micro - temperature plate structure improvement
JP3175221U (ja) * 2012-02-14 2012-04-26 奇▲こう▼科技股▲ふん▼有限公司 ヒートパイプ構造
CN103335550B (zh) * 2013-06-08 2014-12-31 华南理工大学 一种热柱阵列蒸汽干道复合吸液芯及其制造方法
CN103322843A (zh) * 2013-06-27 2013-09-25 华南理工大学 一种抗重力环路热管及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327993A (ja) * 2001-05-01 2002-11-15 Fujitsu Ltd 薄型ヒートパイプ、薄型ヒートシンク、熱制御システムおよび薄型ヒートパイプの製造方法
JP2007113864A (ja) * 2005-10-21 2007-05-10 Sony Corp 熱輸送装置及び電子機器
JP2013011363A (ja) * 2011-06-28 2013-01-17 Fujikura Ltd 扁平型ヒートパイプ
JP2012198019A (ja) * 2012-06-18 2012-10-18 Fujitsu Ltd ループ型ヒートパイプおよび電子機器

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183880A (ja) * 2014-03-20 2015-10-22 富士通株式会社 ループ型ヒートパイプとその製造方法、及び電子機器
US11536518B2 (en) 2015-09-03 2022-12-27 Fujitsu Limited Fabrication method for loop heat pipe
US10881021B2 (en) 2015-09-03 2020-12-29 Fujitsu Limited Loop heat pipe and fabrication method therefor, and electronic device
JPWO2017037921A1 (ja) * 2015-09-03 2018-05-31 富士通株式会社 ループヒートパイプ及びその製造方法並びに電子機器
CN105764305A (zh) * 2016-03-28 2016-07-13 努比亚技术有限公司 散热装置、移动终端和散热系统
CN105764305B (zh) * 2016-03-28 2019-03-22 努比亚技术有限公司 散热装置、移动终端和散热系统
JPWO2017203574A1 (ja) * 2016-05-23 2019-02-28 富士通株式会社 ループヒートパイプ及びその製造方法並びに電子機器
WO2017203574A1 (ja) * 2016-05-23 2017-11-30 富士通株式会社 ループヒートパイプ及びその製造方法並びに電子機器
US10624238B2 (en) 2016-05-23 2020-04-14 Fujitsu Limited Loop heat pipe and manufacturing method for loop heat pipe and electronic device
CN107796251B (zh) * 2016-09-01 2020-09-25 新光电气工业株式会社 环路热管及环路热管的制造方法
US10704838B2 (en) 2016-09-01 2020-07-07 Shinko Electric Industries Co., Ltd. Loop heat pipe
CN107796251A (zh) * 2016-09-01 2018-03-13 新光电气工业株式会社 环路热管及环路热管的制造方法
JP2018036012A (ja) * 2016-09-01 2018-03-08 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
US20180058767A1 (en) * 2016-09-01 2018-03-01 Shinko Electric Industries Co., Ltd. Loop heat pipe
JP2018080901A (ja) * 2016-11-18 2018-05-24 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
US10408546B2 (en) 2016-11-18 2019-09-10 Shinko Electric Industries Co., Ltd. Loop heat pipe
KR20180117861A (ko) * 2017-04-20 2018-10-30 한온시스템 주식회사 차량용 열관리 시스템 및 방법
KR102303482B1 (ko) * 2017-04-20 2021-09-23 한온시스템 주식회사 차량용 열관리 시스템 및 방법
JP2018179471A (ja) * 2017-04-21 2018-11-15 新光電気工業株式会社 ヒートパイプ及びその製造方法
EP3428565A1 (en) 2017-07-12 2019-01-16 Shinko Electric Industries Co. Ltd. Loop heat pipe and method of manufacturing loop heat pipe
US10712098B2 (en) 2017-07-12 2020-07-14 Shinko Electric Industries Co., Ltd. Loop heat pipe and method of manufacturing loop heat pipe
JP2019078507A (ja) * 2017-10-26 2019-05-23 新光電気工業株式会社 ヒートパイプ、ヒートパイプの製造方法
JP2019082309A (ja) * 2017-10-27 2019-05-30 新光電気工業株式会社 ループ型ヒートパイプ、及びループ型ヒートパイプ製造方法
EP3477237A1 (en) 2017-10-27 2019-05-01 Shinko Electric Industries Co., Ltd. Loop type heat pipe
US10976111B2 (en) 2017-10-27 2021-04-13 Shinko Electric Industries Co., Ltd. Loop type heat pipe
JP6999452B2 (ja) 2017-10-27 2022-01-18 新光電気工業株式会社 ループ型ヒートパイプ、及びループ型ヒートパイプ製造方法
EP3492856A1 (en) 2017-11-29 2019-06-05 Shinko Electric Industries Co., Ltd. Heat pipe and method of manufacturing heat pipe
US11044830B2 (en) 2017-11-29 2021-06-22 Fujitsu Limited Loop heat pipe and electronic device
JPWO2019106762A1 (ja) * 2017-11-29 2020-11-19 富士通株式会社 ループヒートパイプ及び電子機器
WO2019106762A1 (ja) * 2017-11-29 2019-06-06 富士通株式会社 ループヒートパイプ及び電子機器
JP2019100582A (ja) * 2017-11-29 2019-06-24 新光電気工業株式会社 ヒートパイプ及びその製造方法
JP2019120445A (ja) * 2017-12-28 2019-07-22 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP7011938B2 (ja) 2017-12-28 2022-01-27 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
US10495386B2 (en) 2017-12-28 2019-12-03 Shinko Electric Industries Co., Ltd. Loop heat pipe and electronic device
EP3505858A1 (en) 2017-12-28 2019-07-03 Shinko Electric Industries Co., Ltd. Loop heat pipe, electronic device, and method of manufacturing loop heat pipe
JP7028659B2 (ja) 2018-01-30 2022-03-02 新光電気工業株式会社 ループ型ヒートパイプ、ループ型ヒートパイプの製造方法
JP2019132486A (ja) * 2018-01-30 2019-08-08 新光電気工業株式会社 ループ型ヒートパイプ、ループ型ヒートパイプの製造方法
US11193717B2 (en) 2018-01-30 2021-12-07 Shinko Electric Industries Co., Ltd. Loop heat pipe
US10859319B2 (en) 2018-02-05 2020-12-08 Shinko Electric Industries Co., Ltd. Loop heat pipe
EP3521743A1 (en) 2018-02-05 2019-08-07 Shinko Electric Industries Co., Ltd. Loop heat pipe and method of manufacturing loop heat pipe
US11131509B2 (en) 2018-02-05 2021-09-28 Shinko Electric Industries Co., Ltd. Loop heat pipe
JP6400240B1 (ja) * 2018-02-05 2018-10-03 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
EP3524911A1 (en) 2018-02-05 2019-08-14 Shinko Electric Industries Co., Ltd. Loop heat pipe and method of manufacturing loop heat pipe
JP2019135434A (ja) * 2018-02-05 2019-08-15 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP2019135435A (ja) * 2018-02-05 2019-08-15 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP2019138491A (ja) * 2018-02-06 2019-08-22 新光電気工業株式会社 ループ型ヒートパイプ
JP2019148369A (ja) * 2018-02-27 2019-09-05 新光電気工業株式会社 ループ型ヒートパイプ
EP3531056A1 (en) 2018-02-27 2019-08-28 Shinko Electric Industries Co., Ltd. Loop type heat pipe
EP3531054A1 (en) 2018-02-27 2019-08-28 Shinko Electric Industries Co., Ltd. Flat loop heat pipe
US10883770B2 (en) 2018-02-27 2021-01-05 Shinko Electric Industries Co., Ltd. Loop type heat pipe
US11143461B2 (en) 2018-02-27 2021-10-12 Shinko Electric Industries Co., Ltd. Flat loop heat pipe
JP6991892B2 (ja) 2018-02-27 2022-01-13 新光電気工業株式会社 ループ型ヒートパイプ
US10876799B2 (en) * 2018-03-26 2020-12-29 Shinko Electric Industries Co., Ltd. Loop heat pipe
JP7015197B2 (ja) 2018-03-26 2022-02-02 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
US20190293362A1 (en) * 2018-03-26 2019-09-26 Shinko Electric Industries Co., Ltd. Loop heat pipe
JP2019173978A (ja) * 2018-03-26 2019-10-10 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP2019184219A (ja) * 2018-04-16 2019-10-24 泰碩電子股▲分▼有限公司 液体弾管路を有する還流ヒートパイプ
JP2019207083A (ja) * 2018-05-30 2019-12-05 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
US11262137B2 (en) 2018-05-30 2022-03-01 Shinko Electric Industries Co., Ltd. Loop-type heat pipe
JP7027253B2 (ja) 2018-05-30 2022-03-01 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP2020008249A (ja) * 2018-07-11 2020-01-16 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP7236825B2 (ja) 2018-07-11 2023-03-10 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP2020020566A (ja) * 2018-07-23 2020-02-06 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP2020026930A (ja) * 2018-08-13 2020-02-20 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP7204374B2 (ja) 2018-08-13 2023-01-16 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
EP3671094A1 (en) 2018-12-19 2020-06-24 Shinko Electric Industries Co., Ltd. Loop-type heat pipe
US11105562B2 (en) 2018-12-19 2021-08-31 Shinko Electric Industries Co., Ltd. Loop-type heat pipe
JP2020197331A (ja) * 2019-05-31 2020-12-10 新光電気工業株式会社 ループ型ヒートパイプ
JP7210379B2 (ja) 2019-05-31 2023-01-23 新光電気工業株式会社 ループ型ヒートパイプ
EP3882553A1 (en) * 2020-03-17 2021-09-22 Shinko Electric Industries Co., Ltd. Loop heat pipe and method for manufacturing loop heat pipe
US11808521B2 (en) 2020-03-17 2023-11-07 Shinko Electric Industries Co., Ltd. Loop heat pipe
JP2022044418A (ja) * 2020-09-07 2022-03-17 新光電気工業株式会社 電子機器
JP7427564B2 (ja) 2020-09-07 2024-02-05 新光電気工業株式会社 電子機器

Also Published As

Publication number Publication date
US20160259383A1 (en) 2016-09-08
JP6146484B2 (ja) 2017-06-14
US11789505B2 (en) 2023-10-17
CN105814389A (zh) 2016-07-27
US11009927B2 (en) 2021-05-18
CN105814389B (zh) 2019-04-19
US20210232189A1 (en) 2021-07-29
JPWO2015087451A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6146484B2 (ja) ループ型ヒートパイプとその製造方法、及び電子機器
JP6233125B2 (ja) ループ型ヒートパイプとその製造方法、及び電子機器
US10704838B2 (en) Loop heat pipe
US11536518B2 (en) Fabrication method for loop heat pipe
JP6648824B2 (ja) ループヒートパイプ及びその製造方法並びに電子機器
Oshman et al. The development of polymer-based flat heat pipes
US8243449B2 (en) Heat-transporting device and electronic apparatus
JP2009076650A (ja) 相変化型ヒートスプレッダ、流路構造体、電子機器及び相変化型ヒートスプレッダの製造方法
JP4706754B2 (ja) 熱輸送デバイス及び電子機器
JP6597892B2 (ja) ループヒートパイプ及びその製造方法並びに電子機器
US10502496B2 (en) Micro vapor chamber
US20100122798A1 (en) Heat transport device, electronic apparatus, and heat transport device manufacturing method
US20190017749A1 (en) Loop heat pipe and method of manufacturing loop heat pipe
JP2015200465A (ja) ヒートパイプ内蔵フレーム板及び電子機器
JP2021067370A (ja) ループ型ヒートパイプ及びその製造方法
JP2016090204A (ja) ループ型ヒートパイプ及び電子機器
JP6999452B2 (ja) ループ型ヒートパイプ、及びループ型ヒートパイプ製造方法
JP6852352B2 (ja) ループヒートパイプ及び電子機器
JP2010060243A (ja) ヒートパイプおよび電子機器
JP2011086753A (ja) 熱輸送デバイス及び電子機器
US12050063B2 (en) Loop heat pipe
JP7200607B2 (ja) ベーパーチャンバ、電子機器、及びベーパーチャンバ用シート
JP2016048340A (ja) メガネ型端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552277

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898975

Country of ref document: EP

Kind code of ref document: A1