JP7015197B2 - ループ型ヒートパイプ及びその製造方法 - Google Patents

ループ型ヒートパイプ及びその製造方法 Download PDF

Info

Publication number
JP7015197B2
JP7015197B2 JP2018058932A JP2018058932A JP7015197B2 JP 7015197 B2 JP7015197 B2 JP 7015197B2 JP 2018058932 A JP2018058932 A JP 2018058932A JP 2018058932 A JP2018058932 A JP 2018058932A JP 7015197 B2 JP7015197 B2 JP 7015197B2
Authority
JP
Japan
Prior art keywords
metal layer
bottomed
flow path
groove
type heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018058932A
Other languages
English (en)
Other versions
JP2019173978A (ja
Inventor
洋弘 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2018058932A priority Critical patent/JP7015197B2/ja
Priority to US16/299,530 priority patent/US10876799B2/en
Priority to CN201910211481.3A priority patent/CN110360859B/zh
Publication of JP2019173978A publication Critical patent/JP2019173978A/ja
Application granted granted Critical
Publication of JP7015197B2 publication Critical patent/JP7015197B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps

Description

本発明は、ループ型ヒートパイプ及びその製造方法に関する。
電子機器に搭載されるCPU(Central Processing Unit)等の発熱部品を冷却するデバイスとして、ヒートパイプが知られている。ヒートパイプは、作動流体の相変化を利用して熱を輸送するデバイスである。
例えば、複数の金属層を積層して流路を形成したヒートパイプが提案されている。このヒートパイプでは、製造工程で実施する複数の金属層に対するプレス処理等による流路の変形防止のため、流路内に複数の金属層が積層された支柱を設けている。
特許第6146484号
しかしながら、流路内に複数の金属層が積層された支柱を設ける場合、必ず所定箇所で管壁との接点をもたせるための釣り手を設ける必要がある。釣り手を設けることは、各金属層の設計自由度を阻害するばかりでなく、流路となる空間を減少させる。流路が狭くなると、流路内に作動流体が流れる際のエネルギー損失である圧力損失が大きくなり、この圧力損失が作動流体の流れを阻害し、ヒートパイプの熱輸送性能を大幅に劣化させてしまう。
本発明は、上記の点に鑑みてなされたものであり、熱輸送性能の劣化を抑制したヒートパイプを提供することを課題とする。
本ループ型ヒートパイプは、作動流体を気化させる蒸発器と、前記作動流体を液化する凝縮器と、前記蒸発器と前記凝縮器とを接続する液管と、前記蒸発器と前記凝縮器とを接続し、前記液管と共にループを形成する蒸気管と、を有し、前記液管は、最外層となる2層の金属層と、前記最外層の間に2層以上の金属層が積層されてなる内層と、を備え、前記内層には、前記作動流体が流れる1つ以上の流路と、前記流路と連通する多孔質体と、が設けられ、前記内層を構成する一の金属層には、前記一の金属層に隣接する他の金属層側に開口する第1の有底溝が形成され、前記内層を構成する前記他の金属層には、前記一の金属層側に開口する第2の有底溝が形成され、前記流路は、前記第1の有底溝と前記第2の有底溝とが厚さ方向に連通するように対向配置されて形成された流路を含むことを要件とする。
開示の技術によれば、熱輸送性能の劣化を抑制したヒートパイプを提供できる。
第1の実施の形態に係るループ型ヒートパイプを例示する平面模式図である。 第1の実施の形態に係るループ型ヒートパイプの蒸発器及びその周囲の断面図である。 第1の実施の形態に係るループ型ヒートパイプの液管を例示する図である。 第1の実施の形態に係るループ型ヒートパイプの製造工程を例示する図(その1)である。 第1の実施の形態に係るループ型ヒートパイプの製造工程を例示する図(その2)である。 比較例に係るループ型ヒートパイプの液管の構造を例示する図である。 第2の実施の形態に係るループ型ヒートパイプの液管を例示する図である。 第3の実施の形態に係るループ型ヒートパイプの液管を例示する図である。 第4の実施の形態に係るループ型ヒートパイプの液管を例示する図である。 第5の実施の形態に係るループ型ヒートパイプの液管を例示する図である。 第6の実施の形態に係るループ型ヒートパイプの液管を例示する図である。 1つの有底孔に対して複数の細孔を設ける例を示す図である。 1つの金属層に有底孔と溝を設ける例を示す図である。
以下、図面を参照して発明を実施するための形態について説明する。なお、各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
〈第1の実施の形態〉
[第1の実施の形態に係るループ型ヒートパイプの構造]
まず、第1の実施の形態に係るループ型ヒートパイプの構造について説明する。図1は、第1の実施の形態に係るループ型ヒートパイプを例示する平面模式図である。
図1を参照するに、ループ型ヒートパイプ1は、蒸発器10と、凝縮器20と、蒸気管30と、液管40とを有する。ループ型ヒートパイプ1は、例えば、スマートフォンやタブレット端末等のモバイル型の電子機器2に収容することができる。
なお、図1に示すX方向は凝縮器20の長手方向、Y方向は図1の平面内でX方向に直交する方向、Z方向は図1の平面の法線方向(ループ型ヒートパイプ1の厚さ方向)を示す。
ループ型ヒートパイプ1において、蒸発器10は、作動流体Cを気化させて蒸気Cvを生成する機能を有する。凝縮器20は、作動流体Cの蒸気Cvを液化させる機能を有する。蒸発器10と凝縮器20は、蒸気管30及び液管40により接続されており、蒸気管30及び液管40によって作動流体C又は蒸気Cvが流れるループである流路50が形成されている。なお、図1では、流路50として図示するが、流路50は流路の総称であり、実際には後述する様々な流路(例えば、流路51及び52等)が形成される。
図2は、第1の実施の形態に係るループ型ヒートパイプの蒸発器及びその周囲の断面図である。図1及び図2に示すように、蒸発器10には、例えば4つの貫通孔10xが形成されている。蒸発器10に形成された各貫通孔10xと回路基板100に形成された各貫通孔100xにボルト150を挿入し、回路基板100の下面側からナット160で止めることにより、蒸発器10と回路基板100とが固定される。
回路基板100には、例えば、CPU等の発熱部品120がバンプ110により実装され、発熱部品120の上面が蒸発器10の下面と密着する。蒸発器10内の作動流体Cは、発熱部品120で発生した熱により気化し、蒸気Cvが生成される。
図1に示すように、蒸発器10に生成された蒸気Cvは、蒸気管30を通って凝縮器20に導かれ、凝縮器20において液化する。これにより、発熱部品120で発生した熱が凝縮器20に移動し、発熱部品120の温度上昇が抑制される。凝縮器20で液化した作動流体Cは、液管40を通って蒸発器10に導かれる。蒸気管30の幅Wは、例えば、8mm程度とすることができる。又、液管40の幅Wは、例えば、6mm程度とすることができる。
作動流体Cの種類は特に限定されないが、蒸発潜熱によって発熱部品120を効率的に冷却するために、蒸気圧が高く、かつ蒸発潜熱が大きい流体を使用することが好ましい。そのような流体としては、例えば、アンモニア、水、フロン、アルコール、及びアセトンを挙げることができる。
蒸発器10、凝縮器20、蒸気管30、及び液管40は、例えば、金属層が複数積層された構造とすることができる。金属層は、例えば、熱伝導性に優れた銅層であって、固相接合等により互いに直接接合されている。金属層の各々の厚さは、例えば、50μm~200μm程度とすることができる。
なお、金属層は銅層には限定されず、ステンレス層やアルミニウム層、マグネシウム合金層等から形成してもよい。又、金属層の積層数は特に限定されない。
図3は、第1の実施の形態に係るループ型ヒートパイプの液管を例示する図であり、図3(a)は図1のA部の部分拡大平面図、図3(b)は図3(a)のB-B線に沿う断面図である。但し、図3(a)では、液管40内の多孔質体60の平面形状を示すため、一方の最外層となる金属層(図3(b)に示す金属層61)の図示が省略されている。
図3に示すように、液管40は、金属層61~64の4層が積層された構造である。液管40において、金属層61及び64が最外層であり、金属層62及び63が内層である。但し、液管は、最外層となる2層の金属層と、最外層の間に2層以上の金属層が積層されてなる内層とを備えていればよい。すなわち、内層は3層以上としても構わない。
金属層61~64は、例えば、熱伝導性に優れた銅層であって、固相接合等により互いに直接接合されている。金属層61~64の各々の厚さは、例えば、50μm~200μm程度とすることができる。なお、金属層61~64は銅層には限定されず、ステンレス層やアルミニウム層、マグネシウム合金層等から形成してもよい。又、金属層の積層数は限定されず、5層以上の金属層を積層してもよい。
液管40の内層(金属層62及び63)には、流路51及び52と、流路51及び52と連通する多孔質体60とが設けられている。流路51は多孔質体60のX方向の一端側に設けられ、流路52は多孔質体60のX方向の他端側に設けられている。言い換えれば、流路51及び52は、両側から多孔質体60を挟持するように設けられている。
多孔質体60を構成する有底孔の少なくとも一部は、流路51及び52と連通している。これにより、作動流体Cが多孔質体60内に浸透することができる。又、多孔質体60は、液管40の略中央部に設けられているため、支柱としても機能する。これにより、例えば固相接合時の加圧により液管40が潰れることを防止できる。
流路51は、有底溝51xと有底溝51yとが連通して形成されている。又、流路52は、有底溝52xと有底溝52yとが連通して形成されている。より詳しくは、金属層62には、金属層63側に開口する有底溝51x及び52xが形成されている。又、金属層63には、金属層62側に開口する有底溝51y及び52yが形成されている。有底溝51x及び52x、並びに有底溝51y及び52yは、例えば、内壁面が湾曲面からなるかまぼこ型の凹形状とすることができる。
有底溝51x及び52x、並びに有底溝51y及び52yのXZ平面に平行な断面形状は、例えば、略半円形や略半楕円形とすることができる。ここで、略半円形とは、真円を二等分した半円のみでなく、例えば、半円よりも円弧が長いものや短いものも含む。又、略半楕円形とは、楕円を二等分した半楕円のみでなく、例えば、半楕円よりも円弧が長いものや短いものも含む。
有底溝51xと有底溝51yとは最大開口部の幅が略同一であり、開口側同士を内側に向けて平面視で重複する位置に配置されている。そのため、有底溝51xと有底溝51yとは開口側同士が連通して流路51を形成している。同様に、有底溝52xと有底溝52yとは最大開口部の幅が略同一であり、開口側同士を内側に向けて平面視で重複する位置に配置されている。そのため、有底溝52xと有底溝52yとは開口側同士が連通して流路52を形成している。
すなわち、有底溝51xと有底溝51yとが厚さ方向(Z方向)に連通するように対向配置されて流路51が形成され、有底溝52xと有底溝52yとが厚さ方向に連通するように対向配置されて流路52が形成されている。流路51及び52のXZ平面に平行な断面形状は、例えば、略円形や略楕円形とすることができる。
多孔質体60において、1層目(一方の最外層)の金属層61及び4層目(他方の最外層)の金属層64には、孔や溝は形成されていない(つまり、最外層の金属層はべた状である)。これに対して、金属層62には、上面側から厚さ方向の略中央部にかけて窪む有底孔62xと、下面側から厚さ方向の略中央部にかけて窪む有底孔62yとが、それぞれ複数個形成されている。
有底孔62xと有底孔62yとは、平面視でX方向に交互に配置されている。又、有底孔62xと有底孔62yとは、平面視でY方向に交互に配置されている。X方向に交互に配置された有底孔62xと有底孔62yとは、平面視で部分的に重複しており、重複する部分は連通して細孔62zを形成している。又、Y方向に交互に配置された有底孔62xと有底孔62yとは、平面視で部分的に重複しており、重複する部分は連通して細孔62zを形成している。
有底孔62x及び62yの平面形状は、例えば、直径が100~300μm程度の円形とすることができるが、楕円形や多角形等の任意の形状として構わない。有底孔62x及び62yの深さは、例えば、金属層62の厚さの半分程度とすることができる。X方向に隣接する有底孔62xの間隔Lは、例えば、100~400μm程度とすることができる。Y方向に隣接する有底孔62xの間隔についても同様である。X方向隣接する有底孔62yの間隔Lは、例えば、100~400μm程度とすることができる。Y方向に隣接する有底孔62yの間隔についても同様である。
有底孔62x及び62yのXZ平面に平行な断面形状及びYZ平面に平行な断面形状は、例えば、略半円形や略半楕円形とすることができる。但し、有底孔62x及び62yのXZ平面に平行な断面形状及びYZ平面に平行な断面形状は、底面側から開口側に向かって拡幅するテーパ形状や、底面に対して垂直な形状であっても構わない。
細孔62zの短手方向の幅Wは、例えば、10~50μm程度とすることができる。又、細孔62zの長手方向の幅Wは、例えば、50~150μm程度とすることができる。
金属層63には、上面側から厚さ方向の略中央部にかけて窪む有底孔63xと、下面側から厚さ方向の略中央部にかけて窪む有底孔63yとが、それぞれ複数個形成されている。
有底孔63xと有底孔63yとは、平面視でX方向に交互に配置されている。又、有底孔63xと有底孔63yとは、平面視でY方向に交互に配置されている。X方向に交互に配置された有底孔63xと有底孔63yとは、平面視で部分的に重複しており、重複する部分は連通して細孔63zを形成している。又、Y方向に交互に配置された有底孔63xと有底孔63yとは、平面視で部分的に重複しており、重複する部分は連通して細孔63zを形成している。有底孔63x及び63y、細孔63zの形状等は、例えば、有底孔62x及び62y、細孔62zの形状等と同様とすることができる。
又、金属層62の有底孔62yと金属層63の有底孔63xとは、平面視で部分的に重複しており、重複する部分は連通して細孔67zを形成している。
各金属層に形成された細孔同士は互いに連通しており、互いに連通する細孔は多孔質体60内に三次元的に広がっている。そのため、作動流体Cは、毛細管力により、互いに連通する細孔内を三次元的に広がる。
但し、図3では、有底孔62xと有底孔63x、及び有底孔62yと有底孔63yが平面視で重複する形態を例示しているが、これには限定されない。すなわち、互いに連通する細孔が多孔質体60内に三次元的に広がる形態であれば、有底孔62xと有底孔63xとは必ずしも平面視で重複しなくてもよく、有底孔62yと有底孔63yとは必ずしも平面視で重複しなくてもよい。
このように、液管40には多孔質体60が設けられており、多孔質体60は液管40に沿って蒸発器10の近傍まで延びている。これにより、多孔質体60に生じる毛細管力によって、液管40内の液相の作動流体Cが蒸発器10まで誘導される。
その結果、蒸発器10からのヒートリーク等によって液管40内を蒸気Cvが逆流しようとしても、多孔質体60から液相の作動流体Cに作用する毛細管力で蒸気Cvを押し戻すことができ、蒸気Cvの逆流を防止することが可能となる。
更に、多孔質体60は蒸発器10内にも設けられている。蒸発器10内の多孔質体60のうち、液管40寄りの部分には液相の作動流体Cが浸透する。この際、多孔質体60から作動流体Cに作用する毛細管力が、ループ型ヒートパイプ1内で作動流体Cを循環させるポンピング力となる。
しかも、この毛細管力は蒸発器10内の蒸気Cvに対抗するため、蒸気Cvが液管40に逆流するのを抑制することが可能となる。
なお、液管40には作動流体Cを注入するための注入口(図示せず)が形成されているが、注入口は封止部材により塞がれており、ループ型ヒートパイプ1内は気密に保たれる。
[第1の実施の形態に係るループ型ヒートパイプの製造方法]
次に、第1の実施の形態に係るループ型ヒートパイプの製造方法について、流路及び多孔質体の製造工程を中心に説明する。図4及び図5は、第1の実施の形態に係るループ型ヒートパイプの製造工程を例示する図であり、図3(b)に対応する断面を示している。
まず、図4(a)に示す工程では、図1の平面形状に形成された金属シート620を準備する。そして、金属シート620の上面にレジスト層310を形成し、金属シート620の下面にレジスト層320を形成する。金属シート620は、最終的に金属層62となる部材であり、例えば、銅、ステンレス、アルミニウム、マグネシウム合金等から形成することができる。金属シート620の厚さは、例えば、50μm~200μm程度とすることができる。レジスト層310及び320としては、例えば、感光性のドライフィルムレジスト等を用いることができる。
次に、図4(b)に示す工程では、金属シート620の流路51、流路52、及び多孔質体60を形成する領域において、レジスト層310を露光及び現像して、金属シート620の上面を選択的に露出する開口部310xを形成する。又、レジスト層320を露光及び現像して、金属シート620の下面を選択的に露出する開口部320xを形成する。開口部310xの形状及び配置は、図3に示した有底孔62xの形状及び配置に対応するように形成する。又、開口部320xの形状及び配置は、図3に示した有底溝51x及び52x並びに有底孔62yの形状及び配置に対応するように形成する。
次に、図4(c)に示す工程では、開口部310x内に露出する金属シート620を金属シート620の上面側からハーフエッチングすると共に、開口部320x内に露出する金属シート620を金属シート620の下面側からハーフエッチングする。これにより、金属シート620の上面側に有底孔62xが形成され、下面側に有底溝51x及び52x並びに有底孔62yが形成される。又、表裏でX方向に交互に配置された開口部310xと開口部320xとは、平面視で部分的に重複しているため、重複する部分が連通して細孔62zが形成される。金属シート620のハーフエッチングには、例えば、塩化第二鉄溶液を用いることができる。
次に、図4(d)に示す工程では、レジスト層310及び320を剥離液により剥離する。これにより、金属層62が完成する。
次に、図5(a)に示す工程では、孔や溝が形成されていないベタ状の金属層61及び64を準備する。又、金属層62と同様の方法により、金属層63を形成する。金属層63に形成される有底溝、有底孔、及び細孔の位置は、例えば、図3に示した通りである。
次に、図5(b)に示す工程では、図5(a)に示す順番で各金属層を積層し、加圧及び加熱により固相接合を行う。これにより、隣接する金属層同士が直接接合され、蒸発器10、凝縮器20、蒸気管30、及び液管40を有するループ型ヒートパイプ1が完成し、液管40に流路51及び52並びに多孔質体60が形成される。その後、真空ポンプ等を用いて液管40内を排気した後、図示しない注入口から液管40内に作動流体Cを注入し、その後注入口を封止する。
ここで、固相接合とは、接合対象物同士を溶融させることなく固相(固体)状態のまま加熱して軟化させ、更に加圧して塑性変形を与えて接合する方法である。なお、固相接合によって隣接する金属層同士を良好に接合できるように、金属層61~64の全ての材料を同一にすることが好ましい。
このように、各金属層の両面側から形成した有底孔を部分的に連通させて各金属層内に細孔を設ける構造とすることで、貫通孔が形成された金属層同士を貫通孔が部分的に重複するように積層する従来の細孔の形成方法の問題点を解消できる。すなわち、金属層同士を積層する際の位置ずれや、金属層を複数積層する際の加熱処理の際の金属層の膨張及び収縮による位置ずれが生じることがなく、一定の大きさの細孔を金属層内に形成できる。
これにより、細孔の大きさがばらついて細孔により発現する毛細管力が低下することを防止可能となり、蒸発器10から液管40に蒸気Cvが逆流することを抑制する効果を安定的に得ることができる。
又、金属層同士を積層する部分では、隣接する有底孔全体を重複させる構造とすることで、金属層同士が接する面積を大きくできるため、強固な接合が可能となる。
又、最外層の金属層はべた状であり孔や溝を形成しないので、最外層の金属層により液管40の剛性を確保できる(液管40の変形を抑制できる)。
ここで、比較例を交えながら、液管40に形成された流路51及び52の有する効果について説明する。
図6は、比較例に係るループ型ヒートパイプの液管の構造を例示する図であり、図6(a)は比較例に係る液管の部分平面図である。又、図6(b)は図6(a)のC-C線に沿う断面図であり、図6(c)は図6(a)のD-D線に沿う断面図である。なお、図6(a)では、金属層91の図示を省略している。又、図6(a)では、作動流体Cの流れを矢印で模式的に示している。
図6に示すように、液管90は、例えば、金属層91~94の4層が順次積層された構造とされている。
金属層91及び94は、液管90を構成する金属層の積層構造の厚さ方向の両外側に位置し、金属層92及び93は金属層91と金属層94との間に積層されている。金属層91及び94は、孔や溝が形成されていないベタ状とされており、液管90の外壁の一部を構成している。
金属層92は、X方向に離間して配置された対向する壁部921及び922、支柱構成部923、並びに釣り手924を備えている。金属層93は、X方向に離間して配置された対向する壁部931及び932、支柱構成部933、並びに釣り手934を備えている。なお、釣り手は、支柱構成部を壁部に対して位置決め及び保持する部材であり、最外層以外の各金属層において、必要な位置に必要な個数設けられるものである。
壁部921及び931の積層部は、液管90の一方の管壁97(側壁)を構成している。又、壁部922及び932の積層部は、液管90の他方の管壁98(側壁)を構成している。又、支柱構成部923及び933の積層部は、液管90の管壁97と管壁98との間の隔壁となる支柱99を構成している。
そして、X方向に対向する管壁97及び支柱99と、Z方向に対向する金属層91及び94により、流路81が画定されている。又、X方向に対向する管壁98及び支柱99と、Z方向に対向する金属層91及び94により、流路82が画定されている。
このように、比較例に係る液管90では、図6に示すように、支柱構成部を壁部に対して位置決め及び保持するために最外層以外の金属層に釣り手が必要となる。
釣り手を設けることは、最外層以外の各金属層の設計自由度を阻害するばかりでなく、流路となる空間を減少させる。流路が狭くなると、流路内に作動流体Cが流れる際のエネルギー損失である圧力損失が大きくなり、この圧力損失が作動流体Cの流れを阻害し、ループ型ヒートパイプの熱輸送性能を大幅に劣化させてしまう。
一方、本実施の形態では、隣接する金属層にハーフエッチングにより形成された有底溝同士を厚さ方向に連通させて流路を形成するため、釣り手を設ける必要がない。その結果、釣り手がない分流路が広くなり、流路内の圧力損失が抑制されるため、作動流体Cの流れが阻害されず、ループ型ヒートパイプ1の熱輸送性能の劣化を抑制することができる。
〈第2の実施の形態〉
第2の実施の形態では、第1の実施の形態とは断面形状の異なる流路を有する液管の例を示す。なお、第2の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
図7は、第2の実施の形態に係るループ型ヒートパイプの液管を例示する図であり、図7(a)は図3(a)に対応する部分拡大平面図、図7(b)は図7(a)のE-E線に沿う断面図である。但し、図7(a)では、液管40A内の多孔質体60Aの平面形状を示すため、一方の最外層となる金属層(図7(b)に示す金属層61)の図示が省略されている。
図7に示すように、液管40A内には流路51A及び52A並びに多孔質体60Aが設けられている。流路51Aは多孔質体60AのX方向の一端側に設けられ、流路52Aは多孔質体60AのX方向の他端側に設けられている。言い換えれば、流路51A及び52Aは、両側から多孔質体60Aを挟持するように設けられている。なお、多孔質体60Aは、便宜上別符号としているが、多孔質体60と同一構造であるため、説明は省略する。
多孔質体60Aを構成する有底孔の少なくとも一部は、流路51A及び52Aと連通している。これにより、作動流体Cが多孔質体60A内に浸透することができる。又、多孔質体60Aは、液管40Aの略中央部に設けられているため、支柱としても機能する。これにより、例えば固相接合時の加圧により液管40Aが潰れることを防止できる。
流路51Aは、有底溝51x、51x、及び51xと、有底溝51y、51y、及び51yとが連通して形成されている。又、流路52Aは、有底溝52x、52x、及び52xと、有底溝52y、52y、及び52yとが連通して形成されている。
より詳しくは、金属層62内において、有底溝51x、51x、及び51xは、長手方向をY方向に向けてX方向に配列され、金属層63側に開口して平面方向(X方向)に連通している。又、金属層62内において、有底溝52x、52x、及び52xは、長手方向をY方向に向けてX方向に配列され、金属層63側に開口して平面方向(X方向)に連通している。
金属層63内において、有底溝51y、51y、及び51yは、長手方向をY方向に向けてX方向に配列され、金属層62側に開口して平面方向(X方向)に連通している。又、金属層63内において、有底溝52y、52y、及び52yは、長手方向をY方向に向けてX方向に配列され、金属層62側に開口して平面方向(X方向)に連通している。
有底溝51x、51x、51x、52x、52x、及び52x3、並びに有底溝51y、51y、51y、52y、52y、及び52yは、例えば、内壁面が湾曲面からなるかまぼこ型の凹形状とすることができる。
有底溝51x、51x、51x、52x、52x、及び52x3、並びに有底溝51y、51y、51y、52y、52y、及び52yのXZ平面に平行な断面形状は、例えば、略半円形や略半楕円形とすることができる。
X方向に連通する有底溝51x、51x、及び51xとX方向に連通する有底溝51y、51y、及び51yとは、最大開口部の幅が略同一であり、開口側同士を内側に向けて平面視で重複する位置に配置されている。そのため、X方向に連通する有底溝51x、51x、及び51xとX方向に連通する有底溝51y、51y、及び51yとは、開口側同士が連通して流路51Aを形成している。
同様に、X方向に連通する有底溝52x、52x、及び52xとX方向に連通する有底溝52y、52y、及び52yとは、最大開口部の幅が略同一であり、開口側同士を内側に向けて平面視で重複する位置に配置されている。そのため、X方向に連通する有底溝52x、52x、及び52xとX方向に連通する有底溝52y、52y、及び52yとは、開口側同士が連通して流路52Aを形成している。
すなわち、51x、51x、及び51xと有底溝51y、51y、及び51yとが厚さ方向に連通するように対向配置されて流路51Aが形成されている。同様に、有底溝52x、52x、及び52xと有底溝52y、52y、及び52yとが厚さ方向に連通するように対向配置されて流路52Aが形成されている。流路51A及び52AのXZ平面に平行な断面形状は、例えば、略円形や略楕円形が互いに連通しながらX方向に配列された形状とすることができる。
このように、流路のXZ平面に平行な断面形状は、1つの略円形や略楕円形としてもよいし、略円形や略楕円形が互いに連通しながらX方向に複数個配列された形状としてもよい。
但し、1つの略円形や略楕円形の流路を形成する場合には、隣接する金属層に各々1つの略半円形や略半楕円形の有底溝をハーフエッチングにより形成する必要がある。1つの略半円形や略半楕円形の有底溝をハーフエッチングにより形成する場合、深さ方向と幅方向とが同時にエッチングされるため、金属層の厚さに対して有底溝の幅が制限される。そのため、X方向に幅広の流路を形成することは困難である。
これに対して、略円形や略楕円形が互いに連通しながらX方向に複数個配列された形状の流路を形成する場合には、ハーフエッチングにより形成する略半円形や略半楕円形の1つの有底溝の幅が制限されたとしても問題とはならない。ハーフエッチングにより1つの有底溝の幅が制限されたとしても、複数の有底溝を互いに連通しながらX方向に配列することで、X方向に幅広の流路を容易に形成できるからである。すなわち、1つの有底溝の幅が制限されたとしても、連通させる有底溝の数を変えることで、流路のX方向の幅を容易に調整することができる。
なお、図7の例では、流路のXZ平面に平行な断面形状を略円形や略楕円形が互いに連通しながらX方向に3個配列された形状としたが、これには限定されず、流路のXZ平面に平行な断面形状を略円形や略楕円形が互いに連通しながらX方向に2個配列された形状としてもよいし、4個以上配列された形状としてもよい。
〈第3の実施の形態〉
第3の実施の形態では、第2の実施の形態とは流路を形成する位置が異なる液管の例を示す。なお、第3の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
図8は、第3の実施の形態に係るループ型ヒートパイプの液管を例示する図であり、図8(a)は図3(a)に対応する部分拡大平面図、図8(b)は図8(a)のF-F線に沿う断面図である。但し、図8(a)では、液管40B内の多孔質体60B及びBの平面形状を示すため、一方の最外層となる金属層(図8(b)に示す金属層61)の図示が省略されている。
図8に示すように、液管40B内には流路51A並びに多孔質体60B及びBが設けられている。多孔質体60Bは、流路51AのX方向の一端側に設けられ、多孔質体60Bは流路51AのX方向の他端側に設けられている。言い換えれば、多孔質体60B及びBは、両側から流路51Aを挟持するように設けられている。
なお、流路51Aの構造については図7で説明した通りである。又、多孔質体60B及びBは、便宜上別符号としているが、多孔質体60と同一構造であるため、説明は省略する。
多孔質体60B及びBを構成する有底孔の少なくとも一部は、流路51Aと連通している。これにより、作動流体Cが多孔質体60B及びB内に浸透することができる。
このように、流路と多孔質体とは、互いに連通していれば、任意の配置とすることができる。なお、第1の実施の形態を第3の実施の形態のように変形することも可能である。
〈第4の実施の形態〉
第4の実施の形態では、5層の金属層が積層されてなる液管の例を示す。なお、第4の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
図9は、第4の実施の形態に係るループ型ヒートパイプの液管を例示する図であり、図9(a)は図3(a)に対応する部分拡大平面図、図9(b)は図9(a)のG-G線に沿う断面図である。但し、図9(a)では、液管40C内の多孔質体60Cの平面形状を示すため、一方の最外層となる金属層(図9(b)に示す金属層61)の図示が省略されている。
図9に示すように、液管40Cは5層の金属層61~65が積層された構造であり、液管40C内には流路51、52、及び53、並びに多孔質体60C、C、及びCが設けられている。
液管40Cの金属層62及び63には、流路51及び52並びに多孔質体60Cが設けられている。流路51は多孔質体60CのX方向の一端側に設けられ、流路52は多孔質体60CのX方向の他端側に設けられている。言い換えれば、流路51及び52は、両側から多孔質体60Cを挟持するように設けられている。
なお、流路51及び52の構造については図3で説明した通りである。但し、有底溝51y及び52yは、各々別々の有底孔63yと連通している。又、多孔質体60Cは、有底孔の個数を変更し便宜上別符号としているが、基本的に多孔質体60と同一構造であるため、説明は省略する。
液管40Cの金属層63及び64には、流路53並びに多孔質体60C及び60Cが設けられている。多孔質体60Cは、流路53のX方向の一端側に設けられ、多孔質体60Cは流路53のX方向の他端側に設けられている。言い換えれば、多孔質体60C及びCは、両側から流路53を挟持するように設けられている。
流路53は、有底溝53xと有底溝53yとが連通して形成されている。より詳しくは、金属層63には、金属層64側に開口する有底溝53xが形成されている。有底溝53xは、有底孔63xと連通している。又、金属層64には、金属層63側に開口する有底溝53yが形成されている。有底溝53x及び有底溝53yは、例えば、内壁面が湾曲面からなるかまぼこ型の凹形状とすることができる。
有底溝53x及び53yのXZ平面に平行な断面形状は、例えば、略半円形や略半楕円形とすることができる。有底溝53xと有底溝53yとは最大開口部の幅が略同一であり、開口側同士を内側に向けて平面視で重複する位置に配置されている。そのため、有底溝53xと有底溝53yとは開口側同士が連通して流路53を形成している。
すなわち、有底溝53xと有底溝53yとが厚さ方向に連通するように対向配置されて流路53が形成されている。流路53のXZ平面に平行な断面形状は、例えば、略円形や略楕円形とすることができる。
多孔質体60C及びCは、有底孔63x、63y、64x、及び64yを備えている。金属層64には、上面側から厚さ方向の略中央部にかけて窪む有底孔64xと、下面側から厚さ方向の略中央部にかけて窪む有底孔64yとが、それぞれ複数個形成されている。
有底孔64xと有底孔64yとは、平面視でX方向に交互に配置されている。又、有底孔64xと有底孔64yとは、平面視でY方向に交互に配置されている。X方向に交互に配置された有底孔64xと有底孔64yとは、平面視で部分的に重複しており、重複する部分は連通して細孔64zを形成している。又、Y方向に交互に配置された有底孔64xと有底孔64yとは、平面視で部分的に重複しており、重複する部分は連通して細孔64zを形成している。有底孔64x及び64y、細孔64zの形状等は、例えば、有底孔62x及び62y、細孔62zの形状等と同様とすることができる。
又、金属層63の有底孔63yと金属層64の有底孔64xとは、平面視で部分的に重複しており、重複する部分は連通して細孔68zを形成している。
多孔質体Cを構成する有底孔の少なくとも一部は、流路51、52、及び53と連通している。又、多孔質体Cを構成する有底孔の少なくとも一部は、流路51及び53と連通している。又、多孔質体Cを構成する有底孔の少なくとも一部は、流路52及び53と連通している。これにより、作動流体Cが多孔質体C、C、及びC内に浸透することができる。
このように、液管は、必ずしも4層の金属層を積層して形成する必要はなく、例えば、5層の金属層を積層して形成することができる。5層の金属層を積層して液管を形成する場合、流路及び多孔質体は、内層となる金属層62~64の任意の位置に任意の個数形成することができる。
〈第5の実施の形態〉
第5の実施の形態では、6層の金属層が積層されてなる液管の例を示す。なお、第5の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
図10は、第5の実施の形態に係るループ型ヒートパイプの液管を例示する図であり、図10(a)は図3(a)に対応する部分拡大平面図、図10(b)は図10(a)のH-H線に沿う断面図である。但し、図10(a)では、液管40D内の多孔質体60Dの平面形状を示すため、一方の最外層となる金属層(図10(b)に示す金属層61)の図示が省略されている。
図10に示すように、液管40Dは6層の金属層61~66が積層された構造であり、液管40D内には流路51、52、53、54、及び55、並びに多孔質体60D、D、D、及びDが設けられている。
液管40Dの金属層62及び63には、流路51及び52並びに多孔質体60Dが設けられている。流路51は多孔質体60DのX方向の一端側に設けられ、流路52は多孔質体60DのX方向の他端側に設けられている。言い換えれば、流路51及び52は、両側から多孔質体60Dを挟持するように設けられている。
なお、流路51及び52の構造については図3で説明した通りである。但し、有底溝51y及び52yは、各々別々の有底孔63yと連通している。又、多孔質体60Dは、有底孔の個数を変更し便宜上別符号としているが、基本的に多孔質体60と同一構造であるため、説明は省略する。
液管40Dの金属層63及び64には、流路53並びに多孔質体60D及び60Dが設けられている。多孔質体60Dは、流路53のX方向の一端側に設けられ、多孔質体60Dは流路53のX方向の他端側に設けられている。言い換えれば、多孔質体60D及びDは、両側から流路53を挟持するように設けられている。
なお、流路53の構造については図9で説明した通りである。但し、有底溝53yは、有底孔64yと連通している。又、多孔質体60D及びDは、便宜上別符号としているが、多孔質体60C及び60Cと同一構造であるため、説明は省略する。
液管40Dの金属層64及び65には、流路54及び55並びに多孔質体60Dが設けられている。流路54は多孔質体60DのX方向の一端側に設けられ、流路55は多孔質体60DのX方向の他端側に設けられている。言い換えれば、流路54及び55は、両側から多孔質体60Dを挟持するように設けられている。
流路54は、有底溝54xと有底溝54yとが連通して形成されている。又、流路55は、有底溝55xと有底溝55yとが連通して形成されている。より詳しくは、金属層64には、金属層65側に開口する有底溝54x及び55xが形成されている。又、金属層65には、金属層64側に開口する有底溝54y及び55yが形成されている。有底溝54x及び55x、並びに有底溝54y及び55yは、例えば、内壁面が湾曲面からなるかまぼこ型の凹形状とすることができる。
有底溝54x及び55x、並びに有底溝54y及び55yのXZ平面に平行な断面形状は、例えば、略半円形や略半楕円形とすることができる。有底溝54xと有底溝54yとは最大開口部の幅が略同一であり、開口側同士を内側に向けて平面視で重複する位置に配置されている。そのため、有底溝54xと有底溝54yとは開口側同士が連通して流路54を形成している。同様に、有底溝55xと有底溝55yとは最大開口部の幅が略同一であり、開口側同士を内側に向けて平面視で重複する位置に配置されている。そのため、有底溝55xと有底溝55yとは開口側同士が連通して流路55を形成している。
すなわち、有底溝54xと有底溝54yとが厚さ方向に連通するように対向配置されて流路54が形成され、有底溝55xと有底溝55yとが厚さ方向に連通するように対向配置されて流路55が形成されている。流路54及び55のXZ平面に平行な断面形状は、例えば、略円形や略楕円形とすることができる。
多孔質体60Dは、有底孔64x、64y、65x、及び65yを備えている。金属層65には、上面側から厚さ方向の略中央部にかけて窪む有底孔65xと、下面側から厚さ方向の略中央部にかけて窪む有底孔65yとが、それぞれ複数個形成されている。
有底孔65xと有底孔65yとは、平面視でX方向に交互に配置されている。又、有底孔65xと有底孔65yとは、平面視でY方向に交互に配置されている。X方向に交互に配置された有底孔65xと有底孔65yとは、平面視で部分的に重複しており、重複する部分は連通して細孔65zを形成している。又、Y方向に交互に配置された有底孔65xと有底孔65yとは、平面視で部分的に重複しており、重複する部分は連通して細孔65zを形成している。有底孔65x及び65y、細孔65zの形状等は、例えば、有底孔62x及び62y、細孔62zの形状等と同様とすることができる。
又、金属層64の有底孔64yと金属層65の有底孔65xとは、平面視で部分的に重複しており、重複する部分は連通して細孔69zを形成している。
多孔質体Dを構成する有底孔の少なくとも一部は、流路51、52、及び53と連通している。又、多孔質体Dを構成する有底孔の少なくとも一部は、流路51、53、及び54と連通している。又、多孔質体Dを構成する有底孔の少なくとも一部は、流路52、53、及び55と連通している。又、多孔質体Dを構成する有底孔の少なくとも一部は、流路53、54、及び55と連通している。これにより、作動流体Cが多孔質体D、D、D、及びD内に浸透することができる。
このように、液管は、必ずしも4層の金属層を積層して形成する必要はなく、例えば、6層の金属層を積層して形成することができる。6層の金属層を積層して液管を形成する場合、流路及び多孔質体は、内層となる金属層62~65の任意の位置に任意の個数形成することができる。
〈第6の実施の形態〉
第6の実施の形態では、6層の金属層が積層されてなる液管の他の例を示す。なお、第6の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
図11は、第6の実施の形態に係るループ型ヒートパイプの液管を例示する図であり、図11(a)は図3(a)に対応する部分拡大平面図、図11(b)は図11(a)のI-I線に沿う断面図である。但し、図11(a)では、液管40E内の多孔質体60Eの平面形状を示すため、一方の最外層となる金属層(図11(b)に示す金属層61)の図示が省略されている。
図11に示すように、液管40Eは6層の金属層61~66が積層された構造であり、液管40E内には流路51及び52、並びに多孔質体60Eが設けられている。
液管40Eの金属層62~65には、多孔質体60Eが設けられている。多孔質体60Eは、金属層62に設けられた有底孔62x及び62y、金属層63に設けられた有底孔63x及び63y、金属層64に設けられた有底孔64x及び64y、並びに金属層65に設けられた有底孔65x及び65yを備えている。金属層62~65における各有底孔の配置については液管40~40Dで説明した通りである。
液管40Eの金属層63及び64には、流路51及び52が設けられている。流路51及び52の構造については図3で説明した通りである。
多孔質体60Eを構成する有底孔の少なくとも一部は、流路51及び52と連通している。これにより、作動流体Cが多孔質体60E内に浸透することができる。又、多孔質体60Eは、液管40Eの略中央部にも設けられているため、支柱としても機能する。これにより、例えば固相接合時の加圧により液管40Eが潰れることを防止できる。
このように、液管は、必ずしも4層の金属層を積層して形成する必要はなく、例えば、6層の金属層を積層して形成することができる。6層の金属層を積層して液管を形成する場合、流路及び多孔質体は、内層となる金属層62~65の任意の位置に任意の個数形成することができる。
〈変形例1〉
変形例1では、1つの有底孔に対して複数の細孔を設ける例を示す。なお、変形例1において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
図12は、1つの有底孔に対して複数の細孔を設ける例を示す図である。図12に示すように、例えば、金属層62において、有底孔62xの大きさを有底孔62yの大きさよりも大きくし、複数の有底孔62yを平面視で有底孔62xの周囲に配置してもよい。
このように、一部の有底孔のサイズを大型化することで、空間体積が広くなるため、有底孔内を流れる作動流体Cの圧力損失を低減できる。
以上は、金属層62を例にして説明したが、金属層63~65についても図12を参照して説明した金属層62と同様の構造とすることができる。
又、変形例1は、第1~第6の各実施の形態について適用することができる。
〈変形例2〉
変形例2では、多孔質体が有底孔に加えて溝を有する例を示す。なお、変形例2において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
図13は、1つの金属層に有底孔と溝を設ける例を示す図である。図13に示すように、例えば、金属層62において、上面側から中央部側に窪む溝82xと、下面側から中央部側に窪む溝82yとを設けてもよい。図13において、1つの溝82xにより隣接する有底孔62x同士が連通し、1つの溝82yにより隣接する有底孔62y同士が連通する。溝82x及び82yは、有底孔と同様にハーフエッチングにより形成することができる。なお、溝82xと溝82yとは連通していない。
このように、隣接する有底孔同士を溝を介して連通させることにより、作動流体Cの浸透性を補助することができる。なお、溝82xと溝82yのうち何れか一方のみを設けた場合にも、一定の効果を得ることができる。
以上は、金属層62を例にして説明したが、金属層63~65についても図13を参照して説明した金属層62と同様の構造とすることができる。
又、変形例2は、第1~第6の各実施の形態について適用することができる。
以上、好ましい実施の形態について詳説したが、上述した実施の形態に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態に種々の変形及び置換を加えることができる。
例えば、有底孔の配置は、上述した実施の形態(平面図)に限定されず、様々に変形・変更することが可能である。
1 ループ型ヒートパイプ
10 蒸発器
10x 貫通孔
20 凝縮器
30 蒸気管
40、40A、40B、40C、40D、40E 液管
50、51、51A、52、53、54、55 流路
51x~55x、51y~55y 有底溝
60、60A、60B1、60B2、60C1~60C3、60D1~60D4 多孔質体
61~66 金属層
62x~65x、62y~65y 有底孔
62z~65z、67z~69z 細孔
82x、82y 溝

Claims (11)

  1. 作動流体を気化させる蒸発器と、前記作動流体を液化する凝縮器と、前記蒸発器と前記凝縮器とを接続する液管と、前記蒸発器と前記凝縮器とを接続し、前記液管と共にループを形成する蒸気管と、を有し、
    前記液管は、最外層となる2層の金属層と、前記最外層の間に2層以上の金属層が積層されてなる内層と、を備え、
    前記内層には、前記作動流体が流れる1つ以上の流路と、前記流路と連通する多孔質体と、が設けられ、
    前記内層を構成する一の金属層には、前記一の金属層に隣接する他の金属層側に開口する第1の有底溝が形成され、
    前記内層を構成する前記他の金属層には、前記一の金属層側に開口する第2の有底溝が形成され、
    前記流路は、前記第1の有底溝と前記第2の有底溝とが厚さ方向に連通するように対向配置されて形成された流路を含むループ型ヒートパイプ。
  2. 前記第1の有底溝は、前記一の金属層内に配列され、前記他の金属層側に開口して平面方向に連通する複数の有底溝を含み、
    前記第2の有底溝は、前記他の金属層内に配列され、前記一の金属層側に開口して平面方向に連通する複数の有底溝を含み、
    前記流路は、前記一の金属層内に配列された複数の有底溝と、前記他の金属層内に配列された複数の有底溝とが厚さ方向に連通するように対向配置されて形成された流路を含む請求項1に記載のループ型ヒートパイプ。
  3. 前記流路は、前記一の金属層及び前記他の金属層内において前記多孔質体の両側に配置された2つの流路を含む請求項1又は2に記載のループ型ヒートパイプ。
  4. 前記内層は、前記他の金属層に隣接する第3の金属層を含み、
    前記他の金属層には、前記第3の金属層側に開口する第3の有底溝が形成され、
    前記第3の金属層には、前記他の金属層側に開口する第4の有底溝が形成され、
    前記流路は、前記第3の有底溝と前記第4の有底溝とが厚さ方向に連通するように対向配置されて形成された流路を含む請求項1乃至3の何れか一項に記載のループ型ヒートパイプ。
  5. 前記多孔質体は、前記一の金属層、前記他の金属層、及び前記第3の金属層に設けられている請求項4に記載のループ型ヒートパイプ。
  6. 前記内層は、前記第3の金属層に隣接する第4の金属層を含み、
    前記第3の金属層には、前記第4の金属層側に開口する第5の有底溝が形成され、
    前記第4の金属層には、前記第3の金属層側に開口する第6の有底溝が形成され、
    前記流路は、前記第5の有底溝と前記第6の有底溝とが厚さ方向に連通するように対向配置されて形成された流路を含む請求項4又は5に記載のループ型ヒートパイプ。
  7. 前記多孔質体は、前記一の金属層、前記他の金属層、前記第3の金属層、及び前記第4の金属層に設けられている請求項6に記載のループ型ヒートパイプ。
  8. 前記流路を構成する有底溝は、内壁面が湾曲面からなる凹形状である請求項1乃至7の何れか一項に記載のループ型ヒートパイプ。
  9. 前記多孔質体は、前記内層を構成する少なくとも1層の金属層に形成され、
    前記少なくとも1層の金属層の一方の面側から窪む第1の有底孔と、他方の面側から窪む第2の有底孔と、前記第1の有底孔と前記第2の有底孔とが部分的に連通して形成された細孔と、を備えている請求項1乃至8の何れか一項に記載のループ型ヒートパイプ。
  10. 前記最外層の金属層はべた状であることを特徴とする請求項1乃至9の何れか一項に記載のループ型ヒートパイプ。
  11. 作動流体を気化させる蒸発器と、前記作動流体を液化する凝縮器と、前記蒸発器と前記凝縮器とを接続する液管と、を有し、前記液管は、最外層となる2層の金属層と、前記最外層の間に2層以上の金属層が積層されてなる内層と、を備え、前記内層に、前記作動流体が流れる1つ以上の流路と、前記流路と連通する多孔質体と、が設けられたループ型ヒートパイプの製造方法であって、
    前記内層に前記流路を形成する工程を有し、
    前記流路を形成する工程は、
    前記内層となる一の金属シートをハーフエッチングして第1の有底溝を形成する工程と、
    前記内層となる他の金属シートをハーフエッチングして、第2の有底溝を形成する工程と、
    前記一の金属シートと前記他の金属シートとを、前記第1の有底溝の開口側と前記第2の有底溝の開口側とが対向するように積層し、前記第1の有底溝と前記第2の有底溝とが厚さ方向に連通する流路を形成する工程と、を含むループ型ヒートパイプの製造方法。
JP2018058932A 2018-03-26 2018-03-26 ループ型ヒートパイプ及びその製造方法 Active JP7015197B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018058932A JP7015197B2 (ja) 2018-03-26 2018-03-26 ループ型ヒートパイプ及びその製造方法
US16/299,530 US10876799B2 (en) 2018-03-26 2019-03-12 Loop heat pipe
CN201910211481.3A CN110360859B (zh) 2018-03-26 2019-03-19 环路热管及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018058932A JP7015197B2 (ja) 2018-03-26 2018-03-26 ループ型ヒートパイプ及びその製造方法

Publications (2)

Publication Number Publication Date
JP2019173978A JP2019173978A (ja) 2019-10-10
JP7015197B2 true JP7015197B2 (ja) 2022-02-02

Family

ID=67983530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018058932A Active JP7015197B2 (ja) 2018-03-26 2018-03-26 ループ型ヒートパイプ及びその製造方法

Country Status (3)

Country Link
US (1) US10876799B2 (ja)
JP (1) JP7015197B2 (ja)
CN (1) CN110360859B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10976111B2 (en) * 2017-10-27 2021-04-13 Shinko Electric Industries Co., Ltd. Loop type heat pipe
JP6943786B2 (ja) * 2018-02-05 2021-10-06 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP7027253B2 (ja) * 2018-05-30 2022-03-01 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
US10962301B2 (en) * 2018-07-23 2021-03-30 Shinko Electric Industries Co., Ltd. Loop heat pipe
JP7422600B2 (ja) * 2020-04-17 2024-01-26 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP2022123727A (ja) * 2021-02-12 2022-08-24 新光電気工業株式会社 ループ型ヒートパイプ
JP2022168514A (ja) * 2021-04-26 2022-11-08 新光電気工業株式会社 ループ型ヒートパイプ
FR3128281B1 (fr) * 2021-10-18 2023-10-06 Commissariat Energie Atomique Caloduc de type à pompage capillaire avec rainures réentrantes à gestion de liquide améliorée.
FR3128279B1 (fr) * 2021-10-18 2023-10-06 Commissariat Energie Atomique Caloduc de type à pompage capillaire avec rainures réentrantes à limites d’ébullition et capillaire augmentées.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087451A1 (ja) 2013-12-13 2015-06-18 富士通株式会社 ループ型ヒートパイプとその製造方法、及び電子機器
US20160320142A1 (en) 2015-04-30 2016-11-03 Fukui Precision Component (Shenzhen) Co., Ltd. Thin heat dissipation foil and method for manufacturing same
JP2018036012A (ja) 2016-09-01 2018-03-08 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL80122C (ja) * 1948-07-24
DE1913424A1 (de) * 1969-03-17 1970-09-24 Graphit Appbau Dipl Ing Hans N Apparat zum gleichzeitigen intensiven Stoff- und Waermeausgleich
JPS57165294A (en) * 1981-04-06 1982-10-12 Morohoshi Ink Kk Composition of water overcoating liquid
ZA824373B (en) 1981-07-20 1984-02-29 Ppg Industries Inc Ungelled polyepoxide-polyoxyalkylenepolyamine resins,aqueous dispersions thereof,and their use in cationic electrodeposition
DE4238191C2 (de) * 1992-11-12 1994-09-08 Hoechst Ceram Tec Ag Durchlässige Strukturen
FR2701554B1 (fr) * 1993-02-12 1995-05-12 Transcal Echangeur de chaleur pour composants électroniques et appareillages électro-techniques.
JP2544701B2 (ja) * 1993-08-24 1996-10-16 アクトロニクス株式会社 プレ―ト形ヒ―トパイプ
JPH10170177A (ja) * 1996-08-31 1998-06-26 Behr Gmbh & Co プレートパイル構造を有する熱交換器とその製造方法
US6843308B1 (en) * 2000-12-01 2005-01-18 Atmostat Etudes Et Recherches Heat exchanger device using a two-phase active fluid, and a method of manufacturing such a device
JP2002327993A (ja) * 2001-05-01 2002-11-15 Fujitsu Ltd 薄型ヒートパイプ、薄型ヒートシンク、熱制御システムおよび薄型ヒートパイプの製造方法
JP2003161594A (ja) * 2001-09-14 2003-06-06 Denso Corp 沸騰冷却装置
KR100505279B1 (ko) * 2003-05-31 2005-07-29 아이큐리랩 홀딩스 리미티드 드라이 아웃이 방지된 박판형 냉각장치
JP2007100992A (ja) * 2005-09-30 2007-04-19 Matsushita Electric Ind Co Ltd フレキシブルヒートパイプおよびその製造方法
JP2009024933A (ja) * 2007-07-19 2009-02-05 Sony Corp 熱拡散装置及びその製造方法
JP2009076650A (ja) * 2007-09-20 2009-04-09 Sony Corp 相変化型ヒートスプレッダ、流路構造体、電子機器及び相変化型ヒートスプレッダの製造方法
JP4557055B2 (ja) * 2008-06-25 2010-10-06 ソニー株式会社 熱輸送デバイス及び電子機器
JP2010121867A (ja) * 2008-11-20 2010-06-03 Sony Corp 熱輸送装置、電子機器及び熱輸送装置の製造方法
DE102009038019B4 (de) * 2009-08-12 2011-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. 3D Mikro-Strukturierung zur Erzeugung von Misch- und Kanalstrukturen in Multilayertechnologie zur Verwendung in oder zum Aufbau von Reaktoren
JP5556897B2 (ja) * 2010-11-01 2014-07-23 富士通株式会社 ループ型ヒートパイプ及びこれを用いた電子機器
US20120181005A1 (en) * 2011-01-14 2012-07-19 Robert Scott Downing Compact high performance condenser
CN103907233B (zh) * 2011-11-02 2016-05-04 日本特殊陶业株式会社 燃料电池
JP6190349B2 (ja) * 2013-12-05 2017-08-30 株式会社神戸製鋼所 熱交換器
JP6485075B2 (ja) * 2015-01-29 2019-03-20 富士通株式会社 ループヒートパイプ及びループヒートパイプの製造方法
EP3352216B1 (en) * 2015-09-18 2021-11-10 T.RAD Co., Ltd. Laminated type heat sink
US10288330B2 (en) * 2016-04-18 2019-05-14 Qcip Holdings, Llc Microchannel evaporators with reduced pressure drop
JP6893925B2 (ja) * 2016-07-11 2021-06-23 株式会社ティラド 積層型ヒートシンクのコア
US10139168B2 (en) * 2016-09-26 2018-11-27 International Business Machines Corporation Cold plate with radial expanding channels for two-phase cooling
JP6691467B2 (ja) * 2016-11-18 2020-04-28 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
US10352626B2 (en) * 2016-12-14 2019-07-16 Shinko Electric Industries Co., Ltd. Heat pipe
EP3343161B1 (en) * 2016-12-28 2023-07-12 Ricoh Company, Ltd. Loop heat pipe wick, loop heat pipe, cooling device, and electronic device, and method for manufacturing porous rubber and method for manufacturing loop heat pipe wick
CN113237368B (zh) * 2017-02-24 2023-10-10 大日本印刷株式会社 蒸汽室、电子设备、蒸汽室用金属片以及蒸汽室的制造方法
JP6767303B2 (ja) * 2017-04-21 2020-10-14 新光電気工業株式会社 ヒートパイプ及びその製造方法
JP6889093B2 (ja) * 2017-11-29 2021-06-18 新光電気工業株式会社 ヒートパイプ及びその製造方法
JP6860086B2 (ja) * 2017-11-29 2021-04-14 富士通株式会社 ループヒートパイプ及び電子機器
JP6951267B2 (ja) * 2018-01-22 2021-10-20 新光電気工業株式会社 ヒートパイプ及びその製造方法
US10820454B2 (en) * 2018-01-31 2020-10-27 Toyota Motor Engineering & Manufacturing North America, Inc. Vapor chamber heat spreaders with engineered vapor and liquid flow paths
JP6943786B2 (ja) * 2018-02-05 2021-10-06 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP6400240B1 (ja) * 2018-02-05 2018-10-03 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP6920231B2 (ja) * 2018-02-06 2021-08-18 新光電気工業株式会社 ループ型ヒートパイプ
JP6991892B2 (ja) * 2018-02-27 2022-01-13 新光電気工業株式会社 ループ型ヒートパイプ
JP6995673B2 (ja) * 2018-03-16 2022-01-14 新光電気工業株式会社 ループ型ヒートパイプ
JP7236825B2 (ja) * 2018-07-11 2023-03-10 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP7204374B2 (ja) * 2018-08-13 2023-01-16 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP7146524B2 (ja) * 2018-08-13 2022-10-04 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
JP7153515B2 (ja) * 2018-09-25 2022-10-14 新光電気工業株式会社 ループ型ヒートパイプ
JP7184594B2 (ja) * 2018-10-23 2022-12-06 新光電気工業株式会社 ループ型ヒートパイプ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087451A1 (ja) 2013-12-13 2015-06-18 富士通株式会社 ループ型ヒートパイプとその製造方法、及び電子機器
US20160320142A1 (en) 2015-04-30 2016-11-03 Fukui Precision Component (Shenzhen) Co., Ltd. Thin heat dissipation foil and method for manufacturing same
JP2018036012A (ja) 2016-09-01 2018-03-08 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法

Also Published As

Publication number Publication date
US10876799B2 (en) 2020-12-29
US20190293362A1 (en) 2019-09-26
CN110360859A (zh) 2019-10-22
JP2019173978A (ja) 2019-10-10
CN110360859B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
JP7015197B2 (ja) ループ型ヒートパイプ及びその製造方法
CN110118499B (zh) 环路热管及其制造方法
JP6691467B2 (ja) ループ型ヒートパイプ及びその製造方法
JP6889093B2 (ja) ヒートパイプ及びその製造方法
JP7146524B2 (ja) ループ型ヒートパイプ及びその製造方法
JP2018036012A (ja) ループ型ヒートパイプ及びその製造方法
JP7204374B2 (ja) ループ型ヒートパイプ及びその製造方法
JP7027253B2 (ja) ループ型ヒートパイプ及びその製造方法
JP6951267B2 (ja) ヒートパイプ及びその製造方法
JP6943786B2 (ja) ループ型ヒートパイプ及びその製造方法
JP6886877B2 (ja) ループ型ヒートパイプ及びその製造方法
JP7305512B2 (ja) ループ型ヒートパイプ及びその製造方法
JP7236825B2 (ja) ループ型ヒートパイプ及びその製造方法
US11719490B2 (en) Loop heat pipe with recessed outer wall surface
JP2020101296A (ja) ループ型ヒートパイプ
JP7372185B2 (ja) ループ型ヒートパイプ及びその製造方法
JP7422600B2 (ja) ループ型ヒートパイプ及びその製造方法
JP7336416B2 (ja) ループ型ヒートパイプ
JP2021196151A (ja) ループ型ヒートパイプ
JP2022123727A (ja) ループ型ヒートパイプ
JP2021179267A (ja) ループ型ヒートパイプ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220121