WO2015059942A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2015059942A1
WO2015059942A1 PCT/JP2014/059255 JP2014059255W WO2015059942A1 WO 2015059942 A1 WO2015059942 A1 WO 2015059942A1 JP 2014059255 W JP2014059255 W JP 2014059255W WO 2015059942 A1 WO2015059942 A1 WO 2015059942A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
tire
shaped
shaped transverse
transverse groove
Prior art date
Application number
PCT/JP2014/059255
Other languages
English (en)
French (fr)
Inventor
雅章 三好
啓 甲田
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to EP14855548.5A priority Critical patent/EP3047983B1/en
Priority to RU2016119742A priority patent/RU2640917C2/ru
Priority to CN201480057990.0A priority patent/CN105682945B/zh
Priority to US15/031,698 priority patent/US10131188B2/en
Publication of WO2015059942A1 publication Critical patent/WO2015059942A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/0332Tread patterns characterised by special properties of the tread pattern by the footprint-ground contacting area of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C2011/0334Stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0346Circumferential grooves with zigzag shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0353Circumferential grooves characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0355Circumferential grooves characterised by depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0372Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane with particular inclination angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0374Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1213Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface

Definitions

  • the present invention relates to a pneumatic tire, and more particularly to a pneumatic tire capable of improving snow braking performance and wet performance.
  • An object of the present invention is to provide a pneumatic tire capable of improving snow braking performance and wet performance.
  • a pneumatic tire according to the present invention has a V-shape that is convex in the tire circumferential direction and crosses the tread portion in the tire width direction and opens at the left and right tread ends.
  • a pneumatic tire including a plurality of V-shaped transverse grooves arranged at predetermined intervals in the tire circumferential direction while aligning the V-shaped direction, and adjacent to the tire circumferential direction in a tread portion shoulder region The V-shaped groove of the pair of V-shaped crossing grooves is disposed between the pair of V-shaped crossing grooves and extends from the tread end portion toward the tire equator plane in the tread portion center region.
  • a communicating lateral groove that communicates with one V-shaped transverse groove on the convex side and that does not communicate with the other V-shaped transverse groove, and is disposed in the shoulder region of the tread portion, and extends in the tire circumferential direction and extends in the tire circumferential direction.
  • the communication lateral groove communicates only with one V-shaped transverse groove on the convex side of the V-shaped of the pair of V-shaped transverse grooves, and does not communicate with the other V-shaped transverse groove.
  • the rigidity of the block between the communication lateral groove and the other V-shaped transverse groove is ensured. Accordingly, there is an advantage that the snow braking performance and the wet performance of the tire are improved as compared with the configuration in which the communication lateral groove communicates with both of the pair of V-shaped transverse grooves.
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a tread surface of the pneumatic tire depicted in FIG. 1.
  • FIG. 3 is an enlarged view showing a tread surface of the pneumatic tire shown in FIG. 2.
  • FIG. 4 is an explanatory diagram showing a tread pattern of the pneumatic tire depicted in FIG. 2.
  • FIG. 5 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 6 is a plan view of a tread showing a conventional pneumatic tire.
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention. This figure shows one side region in the tire radial direction. The figure shows a radial tire for a passenger car as an example of a pneumatic tire.
  • Reference sign CL is a tire equator plane.
  • the tire width direction means a direction parallel to a tire rotation axis (not shown), and the tire radial direction means a direction perpendicular to the tire rotation axis.
  • the pneumatic tire 1 has an annular structure centered on the tire rotation axis, and includes a pair of bead cores 11, a pair of bead fillers 12, 12, a carcass layer 13, a belt layer 14, and a tread rubber 15. And a pair of sidewall rubbers 16 and 16 and a pair of rim cushion rubbers 17 and 17 (see FIG. 1).
  • the pair of bead cores 11 and 11 has an annular structure and constitutes the core of the left and right bead portions.
  • the pair of bead fillers 12 and 12 are disposed on the outer periphery in the tire radial direction of the pair of bead cores 11 and 11 to reinforce the bead portion.
  • the carcass layer 13 is bridged in a toroidal shape between the left and right bead cores 11 and 11 to form a tire skeleton. Further, both end portions of the carcass layer 13 are wound and locked outward in the tire width direction so as to wrap the bead core 11 and the bead filler 12.
  • the carcass layer 13 is formed by rolling a plurality of carcass cords made of steel or an organic fiber material (for example, aramid, nylon, polyester, rayon, etc.) with a coat rubber and having an absolute value of 85 [deg].
  • a carcass angle of 95 [deg] or less inclination angle in the fiber direction of the carcass cord with respect to the tire circumferential direction).
  • the belt layer 14 is formed by laminating a pair of cross belts 141 and 142 and a belt cover 143, and is arranged around the outer periphery of the carcass layer 13.
  • the pair of cross belts 141 and 142 is formed by rolling a plurality of belt cords made of steel or organic fiber material with a coating rubber, and having a belt angle of 10 [deg] or more and 30 [deg] or less in absolute value.
  • the pair of cross belts 141 and 142 have belt angles with different signs from each other (inclination angle of the fiber direction of the belt cord with respect to the tire circumferential direction), and are laminated so that the fiber directions of the belt cords cross each other. (Cross ply structure).
  • the belt cover 143 is formed by rolling a plurality of belt cords made of steel or organic fiber material coated with a coat rubber, and has a belt angle of 10 [deg] or more and 45 [deg] or less in absolute value. Further, the belt cover 143 is disposed so as to be laminated on the outer side in the tire radial direction of the cross belts 141 and 142.
  • the tread rubber 15 is disposed on the outer circumference in the tire radial direction of the carcass layer 13 and the belt layer 14 to constitute a tread portion of the tire.
  • the pair of side wall rubbers 16 and 16 are respectively arranged on the outer side in the tire width direction of the carcass layer 13 to constitute left and right side wall portions.
  • the pair of rim cushion rubbers 17 and 17 are arranged on the outer sides in the tire width direction of the left and right bead cores 11 and 11 and the bead fillers 12 and 12, respectively, and constitute left and right bead portions.
  • FIG. 2 is a plan view showing a tread surface of the pneumatic tire depicted in FIG. 1.
  • the figure shows a tread pattern of a winter tire.
  • the tire circumferential direction refers to the direction around the tire rotation axis.
  • this pneumatic tire 1 employs the following configuration in which the arrangement and shape of the grooves are devised in order to improve snow braking performance and wet performance.
  • the region divided into the left and right tire ground contact ends T is equally divided into three in the tire width direction, the central region is referred to as the tread portion center region, and the left and right regions are referred to as the tread portion shoulder region.
  • the tire ground contact end T is a tire and a flat plate when the tire is mounted on a specified rim and applied with a specified internal pressure and is placed perpendicular to the flat plate in a stationary state and applied with a load corresponding to the specified load.
  • the specified rim means “applicable rim” specified in JATMA, “Design Rim” specified in TRA, or “Measuring Rim” specified in ETRTO.
  • the specified internal pressure refers to the “maximum air pressure” specified by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified by TRA, or “INFLATION PRESSURES” specified by ETRTO.
  • the specified load is the “maximum load capacity” specified in JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified in TRA, or “LOAD CAPACITY” specified in ETRTO.
  • the specified internal pressure is air pressure 180 [kPa]
  • the specified load is 88 [%] of the maximum load capacity.
  • the pneumatic tire 1 includes a plurality of V-shaped transverse grooves 2, a plurality of communication lateral grooves 3, and a pair of left and right circumferential grooves 4 (see FIG. 2).
  • the V-shaped transverse groove 2 and the communication transverse groove 3 are main grooves and have a duty to display a slip sign as defined in JATMA. Specifically, (1) among grooves having a groove width of 3.0 [mm] or more, (2) among grooves having a groove width of 3.0 [mm] or more (2) 1) a groove having a groove depth deeper than a value obtained by subtracting 1.7 [mm] from the groove depth of the groove, (3) a groove width wider than the groove of (1) and the groove of (2). A groove having a groove depth deeper than the value obtained by subtracting 4.0 [mm] from the groove depth of (1) is applicable.
  • the groove width is measured as a maximum value of the groove width on the tread surface in a cross-sectional view with the groove center line as a normal line. Further, the groove width is measured by excluding the chamfered part and the notch part of the groove opening.
  • the groove depth is measured as the maximum value of the distance from the tread profile to the groove bottom.
  • the groove depth is measured by excluding a partial bottom upper part formed at the groove bottom.
  • the V-shaped transverse groove 2 is a main groove having a V-shape that is convex in the tire circumferential direction, and opens to the left and right tread end portions across the tread portion in the tire width direction. That is, the V-shaped crossing groove 2 has a single top portion 21 protruding in one direction of the tire circumferential direction with reference to the left and right openings with respect to the tread end portion. For this reason, the V-shaped crossing groove 2 is separated from the tire equatorial plane CL from the V-shaped top portion 21 toward the tire circumferential direction, and extends in the tire width direction toward the left and right tread ends.
  • a plurality of V-shaped transverse grooves 2 are arranged at predetermined intervals in the tire circumferential direction while aligning the V-shaped direction.
  • the tread end portion refers to both end portions of the tread pattern portion of the tire when the tire is mounted on a specified rim to apply a specified internal pressure and is in an unloaded state.
  • the communication lateral groove 3 (for example, the communication lateral groove 3a in FIG. 2) is disposed between the pair of V-shaped lateral grooves 2a and 2b adjacent in the tire circumferential direction in the tread portion shoulder region, and extends from the tread end to the tire equator. It extends toward the surface CL.
  • one communication lateral groove 3a (3b) is formed in one V-shaped transverse groove 2b (2a) on the convex side of the V-shaped one of the pair of V-shaped transverse grooves 2a and 2b in the center region of the tread portion. It communicates but does not communicate with the other V-shaped transverse groove 2a (2b).
  • the communication lateral groove 3a (3b) is a V-shaped transverse groove 2a (with the V-shaped peak side facing the communication lateral groove 3a (3b) of the pair of V-shaped transverse grooves 2a and 2b in the center region of the tread portion. 2b) spaced apart.
  • the communication lateral groove 3a (3b) and the V-shaped transverse groove 2a (2b) are not communicated with each other between the communication lateral groove 3a (3b) and the V-shaped transverse groove 2a (2b). This means that a long block 51 described later is formed.
  • the circumferential groove 4 (for example, the circumferential groove 4a in FIG. 2) is disposed in the shoulder region of the tread portion, extends in the tire circumferential direction, and extends in the V-shaped transverse groove 2 (2a, 2b) and the communication lateral groove 3 (3a). Communicate with.
  • the groove width of the circumferential groove 4 is preferably 3 [mm] or more. Moreover, it is preferable that the groove depth of the circumferential groove
  • the V-shaped transverse groove 2, the communication transverse groove 3, and the circumferential groove 4 are arranged as follows to constitute a tread pattern.
  • two types of symmetrical V-shaped crossing grooves 2a and 2b are alternately arranged at predetermined intervals in the tire circumferential direction while aligning the V-shaped direction.
  • One communication lateral groove 3a (3b) is disposed between a pair of adjacent V-shaped transverse grooves 2a and 2b. Further, the communication lateral grooves 3a disposed in one region having the tire equator plane CL as a boundary and the communication lateral grooves 3b disposed in the other region are alternately disposed in the tire circumferential direction.
  • a unit composed of a pair of V-shaped transverse grooves 2a, 2b and one communication lateral groove 3a (3b) is repeatedly arranged in the tire circumferential direction.
  • the communication lateral grooves 3a and 3b are arranged in a staggered manner in the tire circumferential direction in the left and right regions with the tire equatorial plane CL as a boundary.
  • a pair of left and right circumferential grooves 4a and 4b are disposed in the left and right shoulder regions of the tire, respectively.
  • the V-shaped crossing groove 2 has a V-shaped top portion 21 in the center region of the tread portion, and extends from the top portion 21 asymmetrically to the left and right tread ends. Further, the bending angle of the apex portion 21 of the V-shaped transverse groove 2 is in the range of 90 [deg] or more and 150 [deg] or less.
  • the pair of V-shaped transverse grooves 2a and 2b adjacent to each other across the communication lateral groove 3a (3b) has the same groove width and the same groove depth, and has a bilaterally symmetric structure with the tire equatorial plane CL as an axis. Have.
  • the V-shaped top portion 21 of the V-shaped crossing groove 2 is arranged in the center region. Further, the V-shaped top portion 21 of the V-shaped crossing groove 2 and the tire equatorial plane CL are arranged at a predetermined interval. That is, the top portion 21 of the V-shaped crossing groove 2 is located away from the tire equatorial plane CL. Further, the apexes 21 and 21 of the V-shaped crossing grooves 2a and 2b adjacent in the tire circumferential direction are alternately arranged on the left and right sides in the tire circumferential direction. Thereby, the drainage performance of the tire at the time of vehicle turning is improved.
  • the V-shaped crossing groove 2 has a shape in which an inclination angle (0 [deg] to 90 [deg]) with respect to the tire circumferential direction is increased from the V-shaped top portion 21 toward the tread end portion. Thereby, the V-shaped crossing groove 2 is separated from the tire equatorial plane CL from the V-shaped top portion 21 toward the tire circumferential direction, and extends in the tire width direction toward the left and right tread ends. .
  • the inclination angle of the V-shaped transverse grooves 2a and 2b in the shoulder region with respect to the tire width direction is preferably in the range of ⁇ 10 [deg] or more and +20 [deg] or less with the V-shaped convex side being positive. That is, the V-shaped crossing groove 2 is preferably substantially parallel to the tire width direction in the shoulder region. Further, when the inclination angle of the V-shaped crossing groove 2 is ⁇ 10 [deg] or more (not shown), the V-shaped crossing groove 2 portion in the shoulder region is V-shaped outward in the tire width direction. Inclined to the convex side.
  • the V-shaped transverse groove 2 has a bent portion 22 that is bent on the convex side of the V-shape toward the tire equatorial plane CL on the circumferential groove 4. That is, the V-shaped crossing groove 2 has a bent portion 22 at a communication portion with the circumferential groove 4. Further, the bent portion 22 is in the tread portion shoulder region. Thereby, the edge component of the block in this bending part 22 increases, and the performance on snow of a tire is improved. Further, by arranging the bent portions 22 in a staggered manner in the left and right shoulder regions of the tire, a plurality of bent portions 22 are arranged in the tire circumferential direction to improve snow braking performance.
  • the bending angle ⁇ of the bent portion 22 of the V-shaped transverse groove 2 at the communicating portion with the circumferential groove 4 is in a range of 120 [deg] ⁇ ⁇ ⁇ 160 [deg] (see FIG. 3). . This effectively improves the snow braking performance of the tire. Note that the bending angle ⁇ is measured with reference to the groove center line of the V-shaped transverse groove 2 in the communication portion with the circumferential groove 4.
  • adjacent V-shaped crossing grooves 2 and 2 are arranged so as to wrap in the tire circumferential direction.
  • the V-shaped convex portions of one V-shaped crossing groove 2 are adjacent to each other by being inserted into the V-shaped concave portions of the other V-shaped crossing groove 2 so as to be closely spaced.
  • V-shaped crossing grooves 2 and 2 are arranged so as to overlap each other in the tire circumferential direction. As a result, the arrangement density of the V-shaped crossing grooves 2 and 2 in the tire circumferential direction is increased.
  • one communication lateral groove 3 communicates with the two V-shaped transverse grooves 2 and 2.
  • the communication lateral groove 3 communicates with at least two V-shaped transverse grooves 2.
  • one communication lateral groove 3a (3b) is disposed between a pair of V-shaped transverse grooves 2a, 2b (2b, 2a) adjacent in the tire circumferential direction.
  • a unit composed of a pair of these V-shaped transverse grooves 2a, 2b and one communication transverse groove 3a (3b) is repeatedly formed in the tire circumferential direction. It is arranged.
  • the communication lateral groove 3a (3b) extends in parallel to the pair of V-shaped transverse grooves 2a, 2b from the tread end portion toward the tire equatorial plane CL in the tread portion shoulder region, and the tread portion center region. And bent to the V-shaped convex side of the V-shaped transverse groove 2 and extending in the tire circumferential direction.
  • the communication lateral groove 3a (3b) penetrates in the tire circumferential direction one V-shaped transverse groove 2b on the convex side of the V-shape among the pair of V-shaped transverse grooves 2a and 2b sandwiching the communication lateral groove 3a (3b). Furthermore, it extends to the adjacent unit and communicates with the V-shaped transverse groove 2a of the adjacent unit.
  • one communication lateral groove 3a connects the two V-shaped transverse grooves 2b and 2a, and the communication lateral groove 3a opens at the tread end portion, so that the V-shaped transverse groove 2b and 2a are opened to the tread end portion.
  • the drainage performance of the tire is improved by ensuring the drainage route to
  • the communication lateral groove 3 only needs to communicate with at least one V-shaped transverse groove 2. Further, the communication lateral groove 3 may be terminated at the V-shaped transverse groove 2 as shown in FIG. 2 or may be terminated within the block (not shown).
  • the communication lateral groove 3 opens to the tread end at one end and terminates inside the tread at the other end. Thereby, the edge component of a tread part increases and the snow braking performance of a tire is improved.
  • the communication lateral groove 3 has a bent portion 32 that is bent on the convex side of the V shape toward the tire equatorial plane CL on the circumferential groove 4. That is, the communication lateral groove 3 has the bent portion 32 at the communication portion with the circumferential groove 4.
  • the bending part 32 exists in a tread part shoulder region. Thereby, the edge component of the block in this bending part 32 increases, and the on-snow performance of a tire is improved. Further, by arranging the bent portions 32 in a staggered manner in the left and right shoulder regions of the tire, the plurality of bent portions 32 are distributed in the tire circumferential direction, and snow braking performance is enhanced.
  • FIG. 3 is an enlarged view showing a tread surface of the pneumatic tire shown in FIG. This figure shows a one-sided region with the tire equatorial plane CL as a boundary.
  • one communication lateral groove 3 has two bent portions 31 and 32. Further, the communication lateral groove 3 is bent at these bent portions 31 and 32 to change the inclination angle (0 [deg] to 90 [deg]) with respect to the tire circumferential direction. As a result, the inclination angle of the communication lateral groove 3 with respect to the tire circumferential direction increases stepwise from the tire equatorial plane CL side toward the tread end side.
  • the inclination angle of the communication lateral groove 3 with respect to the tire axial direction is -10 [deg] or more and +20 [deg] or less with the V-shaped convex side of the V-shaped transverse groove 2 being positive. It is preferable to be within the range. That is, it is preferable that the communication lateral groove 3 is substantially parallel to the tire width direction in the shoulder region.
  • the communication lateral groove 3 communicates with the two V-shaped transverse grooves 2 and 2 in the vicinity of the tire equatorial plane CL.
  • the inclination angle ⁇ of the communication lateral groove 3 is the smallest at the portion closest to the tire equatorial plane CL, and gradually increases at the two bent portions 31 and 32 from the tire equatorial plane CL toward the tread end.
  • the tread has the largest shoulder area. Thereby, the drainage performance in the tread portion center region is enhanced, and the wet performance is enhanced.
  • crossing angles ⁇ 1, ⁇ 2 between the communication lateral groove 3 and the two V-shaped transverse grooves 2, 2 are in the range of 20 [deg] ⁇ ⁇ 1 ⁇ 60 [deg] and 20 [deg] ⁇ ⁇ 2 ⁇ 60 [deg]. Is in. Thereby, the edge component of the block in the center region is enhanced.
  • the crossing angles ⁇ 1 and ⁇ 2 are measured as angles formed by the groove center line at the communication position between the communication lateral groove 3 and the V-shaped crossing groove 2.
  • one circumferential groove 4 is composed of a plurality of inclined groove portions 41 connected in the tire circumferential direction.
  • the inclined groove portion 41 is inclined in a range of ⁇ 15 [deg] or less with respect to the tire equatorial plane CL. Further, the inclined groove portion 41 is disposed in the shoulder region of the tread portion, and connects the pair of V-shaped cross grooves 2 and 2 adjacent in the tire circumferential direction, or communicates with the V-shaped cross groove 2 adjacent in the tire circumferential direction.
  • the horizontal groove 3 is connected. And the opening part of the inclined groove part 41 adjacent to a tire circumferential direction is arrange
  • the circumferential groove 4 has a zigzag shape that is slightly bent at the communicating portion with the V-shaped transverse groove 2 and the communicating lateral groove 3. Thereby, an edge component increases and the wet performance of a tire is improved.
  • the offset amount g of the opening portions of the adjacent inclined groove portions 41 and 41 is in the range of 1 [mm] ⁇ g ⁇ 3 [mm].
  • the offset amount g is measured with reference to the groove center line of the adjacent inclined groove portions 41 and 41.
  • the pneumatic tire 1 includes a plurality of tilt assist grooves 6 as shown in the enlarged view of FIG. 3. These inclined auxiliary grooves 6 increase the edge component and enhance the wet performance of the tire.
  • the inclination auxiliary groove 6 is an auxiliary groove inclined at an inclination angle of 10 [deg] or more and 90 [deg] or less with respect to the tire equatorial plane CL. Further, the inclined auxiliary groove 6 has a groove width of 3.0 [mm] or less and a groove depth of 5.0 [mm] or less. For this reason, the inclined auxiliary groove 6 does not substantially divide the blocks 51 to 53 defined by the V-shaped transverse groove 2, the communicating transverse groove 3, and the circumferential groove 4, and is required to display a slip sign as defined in JATMA. Does not have.
  • the inclined auxiliary groove 6 is disposed so as to open in at least one of the V-shaped transverse groove 2 and the communication transverse groove 3.
  • the inclined auxiliary groove 6 connects the adjacent V-shaped transverse grooves 2, 2 or the adjacent V-shaped transverse grooves 2 and the communication lateral groove 3.
  • the present invention is not limited to this, and the inclined auxiliary groove 6 may terminate in the blocks 51 to 53 at one end (not shown).
  • the tilt assist grooves 6 whose tilt angle with respect to the tire equatorial plane CL is on the tire equatorial plane CL side, as shown in FIG. It is preferable that it is larger (approaching parallel to the tire rotation axis). Thereby, the edge component by the inclination auxiliary groove 6 is further optimized.
  • the pneumatic tire 1 includes a plurality of sipes 7 as shown in the enlarged view of FIG. 3. With these sipes 7, snow braking performance is enhanced.
  • the sipe 7 has a zigzag shape in plan view of the tread, and has a branch portion 71 at the bending point of the zigzag shape. Further, the branch portion 71 extends from the zigzag-shaped bending point in a direction perpendicular to the extending direction of the sipe 7 and in one side direction, and does not communicate with the other sipe, and does not communicate with the other sipe. It is terminated.
  • Such a sipe effectively improves the snow braking performance.
  • FIG. 4 is an explanatory view showing a tread pattern of the pneumatic tire shown in FIG. This figure shows a block sequence of unit patterns constituting a tread pattern.
  • the tread pattern in FIG. 2 is configured by repeatedly arranging the block rows in FIG. 4 in the tire circumferential direction.
  • the illustration of the auxiliary tilt groove 6 and the sipe 7 is omitted.
  • the pneumatic tire 1 has a block pattern in which three types of blocks 51 to 53 are arranged.
  • the first block 51 is a long block extending continuously from the circumferential groove 4 to at least the tire equatorial plane CL.
  • one communication lateral groove 3 a (3 b) is formed as a pair of adjacent V-shaped transverse grooves 2 a, 2 b (2 b, 2 a) in one side region with the tire equatorial plane CL as a boundary. ). Further, the communication lateral groove 3 has a bent portion 31 in the center region of the tread portion, and is bent toward the V-shaped convex side of the V-shaped transverse groove 2 toward the tire equatorial plane CL. Further, the communication lateral groove 3a (3b) communicates with one V-shaped transverse groove 2b (2a) and does not communicate with the other V-shaped transverse groove 2a (2b).
  • one long block 51 includes a V-shaped mountain side surface of the other V-shaped transverse groove 2a (2b), a bent back side surface of the communication lateral groove 3a (3b), and a circumferential groove 4a (4b). ) In the width direction. And the elongate block 51 is continuously extended in the tire width direction from the circumferential groove
  • one long block 51 is continuous as long as it is not divided by a groove (main groove) having an obligation to display a slip sign defined in JATMA. Therefore, the long block 51 may have the above-described inclined auxiliary groove 6, sipe 7, kerf (not shown), and the like.
  • the second block 52 is a short block extending continuously from the circumferential groove 4 to the front of the tire equatorial plane CL.
  • one short block 52 is formed in one side region with the tire equatorial plane CL as a boundary, and the bent side surface of the bent lateral groove 3a (3b) and the V-shaped groove 2b (2a) V It is divided into a letter-shaped valley side surface and an inner side surface in the tire width direction of the circumferential groove 4a (4b).
  • one short block 52 is partitioned into a pair of adjacent V-shaped transverse grooves 2b, 2a (2a, 2b), a communication lateral groove 3a (3b), and a circumferential groove 4a (4b).
  • the communication lateral groove 3a (3b) has a bent portion 31 in the center region of the tread portion, and extends in the tire circumferential direction without intersecting the tire equatorial plane CL.
  • the short block 52 is spaced apart from the tire equator plane CL without intersecting the tire equator plane CL.
  • the third block 53 is a shoulder block arranged on the outer side in the tire width direction of the circumferential groove 4.
  • a plurality of shoulder blocks 53 are partitioned into a plurality of V-shaped crossing grooves 2, a communication lateral groove 3, and a circumferential width groove 4 outer side surface in the tire width direction.
  • one block row composed of a plurality of shoulder blocks 53 is formed on the tire ground contact ends T, T on the left and right sides of the tire.
  • the number of long blocks 51 arranged on the tire equatorial plane CL is smaller than the number of shoulder blocks 53 arranged on the tire ground contact edge T.
  • the ratio between the number of long blocks 51 arranged on the tire equator plane CL and the number of arranged shoulder blocks 53 on the tire ground contact edge T is 2: 3.
  • the snow traction index STI (so-called 90 [deg] snow traction index) in the tire width direction over the entire circumference of the tire is in the range of 160 ⁇ STI ⁇ 240.
  • Snow traction index STI is a uni-royal experimental formula proposed by SAE (Society of Automotive Engineers) and is defined by the following formula (1).
  • Pg is the groove density [1 / mm], the groove length of all the grooves projected in the tire width direction on the tire contact surface (all grooves except sipes), and the tire contact area (tire contact width). And the product of the tire circumference).
  • ⁇ s is a sipe density [1 / mm], and is calculated as a ratio of the sipe length of all sipes projected in the tire width direction on the tire contact surface and the tire contact area.
  • Dg is the average value of the groove depths of all the grooves projected in the tire width direction on the tire contact surface.
  • STI ⁇ 6.8 + 2202 ⁇ Pg + 672 ⁇ ⁇ s + 7.6 ⁇ Dg (1)
  • the tread rubber 15 is composed of a cap tread rubber and an under tread rubber (not shown), and the JIS-A hardness of the cap tread rubber at 20 [° C.] is in the range of 50 to 70. It is in. Rubber hardness refers to JIS-A hardness in accordance with JIS-K6253.
  • this pneumatic tire 1 has designation
  • the tire rotation direction refers to a rotation direction that is frequently used when the tire is used, for example, a rotation direction when the vehicle moves forward.
  • the designation of the rotation direction is displayed by, for example, marks or irregularities attached to the sidewall portion of the tire.
  • the pneumatic tire 1 has a V-shape that is convex in the tire circumferential direction, and has V-shaped transverse grooves 2 that cross the tread portion in the tire width direction and open at the left and right tread ends.
  • a plurality of V-shaped transverse grooves 2 are arranged at predetermined intervals in the tire circumferential direction while aligning the V-shaped direction.
  • the pneumatic tire 1 includes a communication lateral groove 3 and a circumferential groove 4.
  • One communication lateral groove 3a (3b) is disposed between a pair of V-shaped transverse grooves 2a, 2b (2b, 2a) adjacent to each other in the tire circumferential direction in the tread portion shoulder region, and from the end of the tread to the tire.
  • V-shaped transverse groove 2b (2a) extending toward the equator plane CL and located on the convex side of the V-shaped one of the pair of V-shaped transverse grooves 2a, 2b (2b, 2a) in the center region of the tread portion.
  • the circumferential groove 4 is disposed in the tread portion shoulder region, extends in the tire circumferential direction, and communicates with the V-shaped transverse groove 2 and the communication transverse groove 3.
  • the pneumatic tire 1 is mounted on the vehicle with the V-shaped top portion 21 of the V-shaped crossing grooves 2 set in the tire rotation direction. 2 (see FIG. 2), the V-shaped transverse groove 2 serves as a drainage path, and there is an advantage that the wet performance (wet braking performance and wet steering stability performance) of the tire is improved.
  • the communication lateral groove 3a (3b) communicates with one of the V-shaped transverse grooves 2b (2a) and extends from the center region of the tread portion to the shoulder region, so that the communication transverse groove extends from the V-shaped transverse groove 2b (2a).
  • the drainage route to 3a (3b) is formed, and there is an advantage that the wet performance of the tire is further improved.
  • V-shaped transverse groove 2 and the communicating transverse groove 3 have the advantage that the edge component of the tread portion is increased and the snow braking performance of the tire is improved.
  • the communication lateral groove 3a (3b) communicates only with one V-shaped transverse groove 2b (2a) on the V-shaped convex side of the pair of V-shaped transverse grooves 2a, 2b (2b, 2a). Since the other V-shaped transverse groove 2a (2b) is not communicated, the rigidity of the long block 51 between the communication transverse groove 3a (3b) and the other V-shaped transverse groove 2a (2b) is ensured. Thereby, there exists an advantage which the wet performance of a tire improves compared with the structure (illustration omitted) which a communicating horizontal groove communicates with respect to both of a pair of V-shaped transverse groove.
  • the pneumatic tire 1 is divided into a V-shaped transverse groove 2a (2b), a communication lateral groove 3a (3b), and a circumferential groove 4a (4b), and the tire equatorial plane CL is formed from the circumferential groove 4a (4b).
  • a long block 51 that continuously extends to a position beyond it is provided (see FIG. 2).
  • the pneumatic tire 1 has a circumferential main groove (a circumferential groove having a duty of displaying a slip sign defined in JATMA) continuously extending in the tire circumferential direction in the tire width direction than the circumferential groove 4. Not in the inner area (see FIG. 2).
  • a hydro action occurs.
  • the number of the long blocks 51 arranged on the tire equatorial plane CL is smaller than the number of the shoulder blocks 53 arranged on the tire ground contact edge T (see FIG. 2).
  • the V-shaped crossing groove 2 has a bent portion 22 that bends on the circumferential groove 4 toward the V-shaped convex side of the V-shaped crossing groove 2 toward the tire equatorial plane CL. (See FIG. 2).
  • the edge components of the blocks 51 to 53 defined by the bent portion 22 of the V-shaped crossing groove 2 are secured, there is an advantage that the snow braking performance of the tire is improved.
  • the communication lateral groove 3 has a bent portion 31 that is bent in the V-shaped convex side of the V-shaped transverse groove 2 toward the tire equatorial plane CL side in the tread portion center region (see FIG. 2).
  • the communication lateral groove 3 has the bent portion 31, whereby the inclination angle of the communication lateral groove 3 changes before and after the bent portion 31.
  • the communication lateral groove 3 has a bent portion 32 that bends on the circumferential groove 4 to the V-shaped convex side of the V-shaped transverse groove 2 toward the tire equatorial plane CL side ( (See FIG. 2).
  • the edge components of the blocks 51 to 53 defined by the bent portion 32 of the communication lateral groove 3 are secured, there is an advantage that the snow braking performance of the tire is improved.
  • the groove width of the circumferential groove 4 is 3 [mm] or more. Therefore, the groove width of the circumferential groove 4 is ensured, and there is an advantage that the wet performance of the tire is improved.
  • the groove depth of the circumferential groove 4 is in the range of 50% to 80% with respect to the groove depth of the V-shaped transverse groove 2.
  • the circumferential groove 4 includes a plurality of inclined groove portions 41 connected in the tire circumferential direction, and the inclination angle of the inclined groove portion 41 with respect to the tire equatorial plane CL is ⁇ 15 [deg]. Is in range. Thereby, the inclination angle of the inclined groove portion 41 is optimized, and there is an advantage that the on-snow braking performance of the tire is improved.
  • the pneumatic tire 1 includes a first V-shaped crossing groove 2a and one region (for example, a figure) having a V-shaped convex side of the first V-shaped crossing groove 2a and the tire equatorial plane CL as a boundary.
  • the second V-shaped transverse groove 2b disposed between the first communicating lateral groove 3a and the first V-shaped transverse groove 2a.
  • the second communication lateral groove 3b disposed in the other region (for example, the left region in FIG. 2) having the V-shaped convex side of the second V-shaped transverse groove 2b and the tire equatorial plane CL as a boundary,
  • a tread pattern is provided which is repeatedly arranged in the tire circumferential direction (see FIG. 2).
  • one region for example, the right region in FIG. 2 that is partitioned into the first V-shaped transverse groove 2a and the first communication lateral groove 3a and that has the tire equatorial plane CL as a boundary.
  • a first long block (block in the right region in FIG. 2) 51 extending continuously from the tread shoulder region (circumferential groove 4a in FIG. 2) to a position beyond the tire equatorial plane CL;
  • a tread shoulder region (in FIG. 2) is divided into a second V-shaped transverse groove 2 b and a second communication transverse groove 3 b and the other region (for example, the left region in FIG. 2) with the tire equatorial plane CL as a boundary.
  • a second long block block in the left region of FIG.
  • the snow traction index STI with respect to the tire width direction over the entire circumference of the tire is in a range of 160 ⁇ STI ⁇ 240.
  • the JIS-A hardness of the cap tread rubber at 20 [° C.] is in the range of 50 or more and 70 or less.
  • the V-shaped top portion 21 of the V-shaped crossing groove 2 and the tire equatorial plane CL are arranged at a predetermined interval (see FIG. 2).
  • the V-shaped top portion 21 of the V-shaped crossing groove 2 is disposed in the tread portion center region (see FIG. 2).
  • the V-shaped transverse groove 2 has a shape in which the inclination angle with respect to the tire circumferential direction is increased from the V-shaped top portion 21 toward the tread end portion (see FIG. 2).
  • the V-shaped crossing groove 2 has bent portions 22, 22 between the V-shaped top portion 21 and the left and right tread ends, and the left and right bent portions 22, 22 are arranged at predetermined intervals in the tire circumferential direction (see FIG. 2).
  • the edge component by the bending parts 22 and 22 is disperse
  • adjacent V-shaped crossing grooves 2a and 2b are arranged so as to wrap in the tire circumferential direction (see FIG. 2).
  • the V-shaped crossing grooves 2a and 2b are densely arranged, and there is an advantage that the wet performance and the snow braking performance of the tire are improved.
  • the inclination angle ⁇ of the communication lateral groove 3 with respect to the tire equatorial plane CL at the position closest to the tire equatorial plane CL is within the range of 0 [deg] ⁇ ⁇ ⁇ 30 [deg] (FIG. 3).
  • the crossing angle ⁇ ( ⁇ 1, ⁇ 2) between the communication lateral groove 3 and the V-shaped transverse groove 2 is in the range of 20 [deg] ⁇ ⁇ ⁇ 60 [deg] (see FIG. 3). ).
  • the rigidity balance of the block 52 partitioned into the communication horizontal groove 3 and the V-shaped crossing groove 2 becomes appropriate, and there is an advantage that wet steering stability performance is improved.
  • the communication lateral groove 3 and the V-shaped transverse groove 2 communicate with each other in the center region of the tread portion (see FIG. 2).
  • the communication lateral groove 3 communicates with the V-shaped top portion 21 of at least one V-shaped transverse groove 2 (see FIG. 2).
  • the pneumatic tire 1 also includes blocks 51 to 53 that are divided into a V-shaped transverse groove 2 and a communication transverse groove 3 (see FIG. 3).
  • Each of the blocks 51 to 53 has an auxiliary groove (for example, the inclined auxiliary groove 6 in FIG. 3) opened in at least one of the V-shaped transverse groove 2 and the communication transverse groove 3.
  • the pneumatic tire 1 includes an inclination direction with respect to the tire circumferential direction of the V-shaped transverse groove 2 or the communication lateral groove 3 at the opening position of the auxiliary groove (for example, the inclined auxiliary groove 6 in FIG. 3), and the inclination direction of the auxiliary groove.
  • the auxiliary groove for example, the inclined auxiliary groove 6 in FIG. 3
  • the inclination direction of the auxiliary groove are opposite to each other (see FIG. 3).
  • the blocks 51 to 53 have a plurality of sipes 7 (see FIG. 3).
  • the pneumatic tire 1 includes a mark or an unevenness that designates the V-shaped convex side of the V-shaped crossing groove 2 as the tire rotation direction (see FIG. 2).
  • the tire rotation direction refers to a rotation direction that is frequently used when the tire is used, for example, a rotation direction when the vehicle moves forward.
  • the designation of the rotation direction is given, for example, on the sidewall portion of the tire.
  • FIG. 5 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 6 is a plan view of a tread showing a conventional pneumatic tire.
  • the test vehicle travels on the snow road surface of the snow road test site, and the braking distance from the traveling speed of 40 [km / h] is measured. Then, based on this measurement result, index evaluation using the conventional example as a reference (100) is performed. This evaluation is preferable as the numerical value increases.
  • test vehicle runs on an asphalt road sprinkled at a water depth of 1 [mm] at a speed of 100 [km / h], and the test driver performs a sensory evaluation on the steering stability.
  • This evaluation is performed by index evaluation using the conventional example as a reference (100), and the larger the value, the better.
  • the pneumatic tire of the conventional example has the tread pattern shown in FIG. 6, has two circumferential main grooves in the tread portion center region, and has two circumferential narrow grooves in the tread portion shoulder region. ing.
  • the conventional pneumatic tire has a plurality of V-shaped transverse grooves and lug grooves that communicate with the circumferential main grooves but do not communicate with the V-shaped transverse grooves.
  • the pneumatic tire 1 of Examples 1 to 7 has a configuration in which a part thereof is changed based on the tread pattern shown in FIGS. Moreover, the V-shaped transverse groove 2 and the communication lateral groove 3 have a groove width of 5.0 [mm] and a groove depth of 8.5 [mm], respectively. Further, the bending angle of the top portion 21 of the V-shaped transverse groove 2 is set to 100 [deg]. In addition, the inclination angle ⁇ of the V-shaped transverse groove 2 is 8 [deg], and the intersection angles ⁇ 1, ⁇ 2 between the communication transverse groove 3 and the V-shaped transverse groove 2 are 40 [deg]. The number of the long blocks 51 arranged on the tire equatorial plane CL is 44 to 54, and the number of the shoulder blocks 53 arranged on the tire ground contact end T is 66 to 81.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

この空気入りタイヤ(1)では、連通横溝(3、3a、3b)と、周方向溝(4)とを備える。1本の連通横溝(3a)は、トレッド部ショルダー領域にて、タイヤ周方向に隣り合う一対のV字横断溝(2a、2b)の間に配置されると共にトレッド端部からタイヤ赤道面(CL)に向かって延在し、トレッド部センター領域にて、一対のV字横断溝(2a、2b)のうちV字形状の凸側にある一方のV字横断溝(2b)に連通すると共に他方のV字横断溝(2a)に連通しない。周方向溝(4)は、トレッド部ショルダー領域に配置されると共に、タイヤ周方向に延在してV字横断溝(2)および連通横溝(3)に連通する。

Description

空気入りタイヤ
 この発明は、空気入りタイヤに関し、さらに詳しくは、スノー制動性能およびウェット性能を向上できる空気入りタイヤに関する。
 近年のウインタータイヤでは、スノー制動性能に加えて、高いウェット性能(ウェット制動性能およびウェット操安性能)が要求されている。この点において、複数のV字横断溝をタイヤ周方向に配列して成るトレッドパターンが開発されている。かかる構成を採用する従来の空気入りタイヤとして、特許文献1~5に記載される技術が知られている。
特表2010-513117号公報 特開平10-324116号公報 特開平9-058218号公報 特開2003-182312号公報 特開2012-096784号公報
 この発明は、スノー制動性能およびウェット性能を向上できる空気入りタイヤを提供することを目的とする。
 上記目的を達成するため、この発明にかかる空気入りタイヤは、タイヤ周方向に凸となるV字形状を有すると共にタイヤ幅方向にトレッド部を横断して左右のトレッド端部に開口するV字横断溝を備え、複数の前記V字横断溝がV字形状の向きを揃えつつタイヤ周方向に所定間隔で配列された空気入りタイヤであって、トレッド部ショルダー領域にて、タイヤ周方向に隣り合う一対の前記V字横断溝の間に配置されると共に前記トレッド端部からタイヤ赤道面に向かって延在し、トレッド部センター領域にて、前記一対のV字横断溝のうち前記V字形状の凸側にある一方のV字横断溝に連通すると共に他方のV字横断溝に連通しない連通横溝と、前記トレッド部ショルダー領域に配置されると共に、タイヤ周方向に延在して前記V字横断溝および前記連通横溝に連通する周方向溝とを備えることを特徴とする。
 この発明にかかる空気入りタイヤでは、連通横溝が一対のV字横断溝のうちV字形状の凸側にある一方のV字横断溝にのみ連通して、他方のV字横断溝に連通しないので、連通横溝と他方のV字横断溝との間のブロックの剛性が確保される。これにより、連通横溝が一対のV字横断溝の双方に対して連通する構成と比較して、タイヤのスノー制動性能およびウェット性能が向上する利点がある。
図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。 図2は、図1に記載した空気入りタイヤのトレッド面を示す平面図である。 図3は、図2に記載した空気入りタイヤのトレッド面を示す拡大図である。 図4は、図2に記載した空気入りタイヤのトレッドパターンを示す説明図である。 図5は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。 図6は、従来例の空気入りタイヤを示すトレッド平面図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。
[空気入りタイヤ]
 図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。同図は、タイヤ径方向の片側領域を示している。また、同図は、空気入りタイヤの一例として、乗用車用ラジアルタイヤを示している。なお、符号CLは、タイヤ赤道面である。また、タイヤ幅方向とは、タイヤ回転軸(図示省略)に平行な方向をいい、タイヤ径方向とは、タイヤ回転軸に垂直な方向をいう。
 この空気入りタイヤ1は、タイヤ回転軸を中心とする環状構造を有し、一対のビードコア11、11と、一対のビードフィラー12、12と、カーカス層13と、ベルト層14と、トレッドゴム15と、一対のサイドウォールゴム16、16と、一対のリムクッションゴム17、17とを備える(図1参照)。
 一対のビードコア11、11は、環状構造を有し、左右のビード部のコアを構成する。一対のビードフィラー12、12は、一対のビードコア11、11のタイヤ径方向外周にそれぞれ配置されてビード部を補強する。
 カーカス層13は、左右のビードコア11、11間にトロイダル状に架け渡されてタイヤの骨格を構成する。また、カーカス層13の両端部は、ビードコア11およびビードフィラー12を包み込むようにタイヤ幅方向外側に巻き返されて係止される。また、カーカス層13は、スチールあるいは有機繊維材(例えば、アラミド、ナイロン、ポリエステル、レーヨンなど)から成る複数のカーカスコードをコートゴムで被覆して圧延加工して構成され、絶対値で85[deg]以上95[deg]以下のカーカス角度(タイヤ周方向に対するカーカスコードの繊維方向の傾斜角)を有する。
 ベルト層14は、一対の交差ベルト141、142と、ベルトカバー143とを積層して成り、カーカス層13の外周に掛け廻されて配置される。一対の交差ベルト141、142は、スチールあるいは有機繊維材から成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、絶対値で10[deg]以上30[deg]以下のベルト角度を有する。また、一対の交差ベルト141、142は、相互に異符号のベルト角度(タイヤ周方向に対するベルトコードの繊維方向の傾斜角)を有し、ベルトコードの繊維方向を相互に交差させて積層される(クロスプライ構造)。ベルトカバー143は、コートゴムで被覆されたスチールあるいは有機繊維材から成る複数のベルトコードを圧延加工して構成され、絶対値で10[deg]以上45[deg]以下のベルト角度を有する。また、ベルトカバー143は、交差ベルト141、142のタイヤ径方向外側に積層されて配置される。
 トレッドゴム15は、カーカス層13およびベルト層14のタイヤ径方向外周に配置されてタイヤのトレッド部を構成する。一対のサイドウォールゴム16、16は、カーカス層13のタイヤ幅方向外側にそれぞれ配置されて左右のサイドウォール部を構成する。一対のリムクッションゴム17、17は、左右のビードコア11、11およびビードフィラー12、12のタイヤ幅方向外側にそれぞれ配置されて、左右のビード部を構成する。
[トレッドパターン]
 図2は、図1に記載した空気入りタイヤのトレッド面を示す平面図である。同図は、ウインタータイヤのトレッドパターンを示している。なお、タイヤ周方向とは、タイヤ回転軸周りの方向をいう。
 特に、ウインタータイヤでは、スノー制動性能に加えて、高いウェット性能(排水性能)が要求される。そこで、この空気入りタイヤ1は、スノー制動性能およびウェット性能を向上するために、溝の配置および形状を工夫した以下の構成を採用している。
 ここで、左右のタイヤ接地端Tに区画された領域をタイヤ幅方向に3等分して、その中央領域をトレッド部センター領域と呼び、左右の領域をトレッド部ショルダー領域と呼ぶ。
 タイヤ接地端Tとは、タイヤが規定リムに装着されて規定内圧を付与されると共に静止状態にて平板に対して垂直に置かれて規定荷重に対応する負荷を加えられたときのタイヤと平板との接触面におけるタイヤ軸方向の最大幅位置をいう。
 また、規定リムとは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、規定内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、規定荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。ただし、JATMAにおいて、乗用車用タイヤの場合には、規定内圧が空気圧180[kPa]であり、規定荷重が最大負荷能力の88[%]である。
 この空気入りタイヤ1は、複数のV字横断溝2と、複数の連通横溝3と、左右一対の周方向溝4とを備える(図2参照)。
 V字横断溝2および連通横溝3は、主溝であり、JATMAに規定するスリップサインの表示義務を有する溝をいう。具体的には、(1)3.0[mm]以上の溝幅を有する溝のうち最大溝深さを有する溝、(2)3.0[mm]以上の溝幅を有する溝のうち(1)の溝の溝深さから1.7[mm]を差し引いた値よりも深い溝深さを有する溝、(3)前記(1)の溝および前記(2)の溝よりも広い溝幅を有する溝のうち前記(1)の溝深さから4.0[mm]を差し引いた値よりも深い溝深さを有する溝が該当する。
 溝幅は、溝中心線を法線とする断面視にて、トレッド踏面での溝幅の最大値として測定される。また、溝幅は、溝開口部の面取部や切欠部を除外して測定される。
 溝深さは、トレッドプロファイルから溝底までの距離の最大値として測定される。また、溝深さは、溝底に形成された部分的な底上部を除外して測定される。
 V字横断溝2は、タイヤ周方向に凸となるV字形状を有する主溝であり、トレッド部をタイヤ幅方向に横断して左右のトレッド端部にそれぞれ開口する。すなわち、V字横断溝2は、トレッド端部に対する左右の開口部を基準として、タイヤ周方向の一方向に突出した単一の頂部21を有する。このため、V字横断溝2は、V字形状の頂部21からタイヤ周方向に向かうに連れてタイヤ赤道面CLから離間し、左右のトレッド端部に向かってタイヤ幅方向に延在する。また、複数のV字横断溝2が、V字形状の向きを揃えつつタイヤ周方向に所定間隔で配列される。
 トレッド端部とは、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態としたときのタイヤのトレッド模様部分の両端部をいう。
 連通横溝3(例えば、図2における連通横溝3a)は、トレッド部ショルダー領域にて、タイヤ周方向に隣り合う一対のV字横断溝2a、2bの間に配置されて、トレッド端部からタイヤ赤道面CLに向かって延在する。また、1本の連通横溝3a(3b)は、トレッド部センター領域にて、一対のV字横断溝2a、2bのうちV字形状の凸側にある一方のV字横断溝2b(2a)に連通するが、他方のV字横断溝2a(2b)には連通しない。すなわち、連通横溝3a(3b)は、トレッド部センター領域にて、一対のV字横断溝2a、2bのうち連通横溝3a(3b)に対してV字形状の山側を向けるV字横断溝2a(2b)から離隔して配置される。
 なお、トレッド部センター領域にて、連通横溝3a(3b)とV字横断溝2a(2b)とが連通しないことは、連通横溝3a(3b)とV字横断溝2a(2b)との間に、後述する長尺ブロック51が形成されることを意味する。
 周方向溝4(例えば、図2における周方向溝4a)は、トレッド部ショルダー領域に配置され、タイヤ周方向に延在してV字横断溝2(2a、2b)および連通横溝3(3a)に連通する。
 周方向溝4の溝幅は、3[mm]以上であることが好ましい。また、周方向溝4の溝深さは、V字横断溝2の溝深さに対して50[%]以上80[%]以下の範囲内にあることが好ましく、60[%]以上70[%]以下の範囲内にあることがより好ましい。
 例えば、図2の構成では、V字横断溝2、連通横溝3および周方向溝4が以下のように配置されて、トレッドパターンが構成されている。
 まず、左右対称な2種類のV字横断溝2a、2bが、V字形状の向きを揃えつつタイヤ周方向に所定間隔で交互に配置されている。また、隣り合う一対のV字横断溝2a、2bの間に、1本の連通横溝3a(3b)が配置されている。また、タイヤ赤道面CLを境界とする一方の領域に配置される連通横溝3aと、他方の領域に配置される連通横溝3bとが、タイヤ周方向に交互に配置されている。このため、タイヤ赤道面CLを境界とする片側領域に着目すると、一対のV字横断溝2a、2bと1本の連通横溝3a(3b)とを一組としたユニットがタイヤ周方向に繰り返し配列されている。また、連通横溝3a、3bが、タイヤ赤道面CLを境界とする左右の領域に、タイヤ周方向に向かって千鳥状に配列されている。また、左右一対の周方向溝4a、4bが、タイヤ左右のショルダー領域にそれぞれ配置されている。これにより、方向性を有する左右非対称なトレッドパターンが形成されている。
 また、V字横断溝2が、トレッド部のセンター領域にV字形状の頂部21を有し、この頂部21から左右非対称に延在して、左右のトレッド端部に開口している。また、V字横断溝2の頂部21の屈曲角が、90[deg]以上150[deg]以下の範囲内にある。また、連通横溝3a(3b)を挟んで隣り合う一対のV字横断溝2a、2bは、同一の溝幅および同一の溝深さを有し、タイヤ赤道面CLを軸として左右対称な構造を有している。
 また、V字横断溝2のV字形状の頂部21が、センター領域に配置されている。また、V字横断溝2のV字形状の頂部21と、タイヤ赤道面CLとが所定間隔をあけて配置されている。すなわち、V字横断溝2の頂部21が、タイヤ赤道面CLから外れた位置にある。また、タイヤ周方向に隣り合うV字横断溝2a、2bの頂部21、21が、タイヤ周方向に向かって左右交互に配置されている。これにより、車両旋回時におけるタイヤの排水性能が高められている。
 また、V字横断溝2が、V字形状の頂部21からトレッド端部に向かってタイヤ周方向に対する傾斜角(0[deg]~90[deg])を増加させた形状を有している。これにより、V字横断溝2が、V字形状の頂部21からタイヤ周方向に向かうに連れてタイヤ赤道面CLから離間し、左右のトレッド端部に向かってタイヤ幅方向に延在している。
 また、ショルダー領域におけるV字横断溝2a、2bのタイヤ幅方向に対する傾斜角が、V字形状の凸側を正として-10[deg]以上+20[deg]以下の範囲内にあることが好ましい。すなわち、V字横断溝2は、ショルダー領域にてタイヤ幅方向に略平行となることが好ましい。また、V字横断溝2の傾斜角が-10[deg]以上である場合(図示省略)には、ショルダー領域におけるV字横断溝2の部分が、タイヤ幅方向外側に向かってV字形状の凸側に傾斜する。
 また、V字横断溝2が、周方向溝4上に、タイヤ赤道面CL側に向かってV字形状の凸側に屈曲する屈曲部22を有している。すなわち、V字横断溝2が、周方向溝4との連通部に屈曲部22を有する。また、屈曲部22が、トレッド部ショルダー領域にある。これにより、この屈曲部22におけるブロックのエッジ成分が増加して、タイヤの雪上性能が高められている。また、屈曲部22がタイヤ左右のショルダー領域に千鳥状に配置されることにより、複数の屈曲部22がタイヤ周方向に分散して配置されて、スノー制動性能が高められている。
 また、周方向溝4との連通部におけるV字横断溝2の屈曲部22の屈曲角γが、120[deg]≦γ≦160[deg]の範囲内にあることが好ましい(図3参照)。これにより、タイヤのスノー制動性能が効果的に向上する。なお、屈曲角γは、周方向溝4との連通部におけるV字横断溝2の溝中心線を基準として測定される。
 また、隣り合うV字横断溝2、2が、タイヤ周方向に相互にラップして配置されている。具体的には、一方のV字横断溝2のV字形状の凸部が、他方のV字横断溝2のV字形状の凹部に挿入されて間隔を詰めて配置されることにより、隣り合うV字横断溝2、2がタイヤ周方向に相互に重なり合って配置されている。これにより、タイヤ周方向にかかるV字横断溝2、2の配置密度が高められている。
 また、1本の連通横溝3が、2本のV字横断溝2、2に連通している。このように、連通横溝3は、少なくとも2本のV字横断溝2に連通することが好ましい。例えば、図2の構成では、上記のように、1本の連通横溝3a(3b)が、タイヤ周方向に隣り合う一対のV字横断溝2a、2b(2b、2a)の間に配置されている。また、タイヤ赤道面CLを境界とする片側領域にて、これらの一対のV字横断溝2a、2bと1本の連通横溝3a(3b)とを一組としたユニットが、タイヤ周方向に繰り返し配列されている。また、連通横溝3a(3b)が、トレッド部ショルダー領域にて、トレッド端部からタイヤ赤道面CLに向かって一対のV字横断溝2a、2bに対して平行に延在し、トレッド部センター領域にて、V字横断溝2のV字形状の凸側に屈曲してタイヤ周方向に延在している。そして、連通横溝3a(3b)が、連通横溝3a(3b)を挟み込む一対のV字横断溝2a、2bのうちV字形状の凸側にある一方のV字横断溝2bをタイヤ周方向に貫通し、さらに、隣のユニットまで延在して隣のユニットのV字横断溝2aに連通している。これにより、1本の連通横溝3aが2本のV字横断溝2b、2aを接続し、また、連通横溝3aがトレッド端部に開口することにより、V字横断溝2b、2aからトレッド端部への排水経路が確保されて、タイヤの排水性能が高められている。
 なお、連通横溝3は、少なくとも1本のV字横断溝2に連通すれば良い。また、連通横溝3は、図2のようにV字横断溝2で終端しても良いし、ブロック内で終端しても良い(図示省略)。
 また、連通横溝3が、一方の端部にてトレッド端部に開口し、他方の端部にてトレッド内部で終端している。これにより、トレッド部のエッジ成分が増加して、タイヤのスノー制動性能が高められている。
 また、連通横溝3が、周方向溝4上に、タイヤ赤道面CL側に向かってV字形状の凸側に屈曲する屈曲部32を有している。すなわち、連通横溝3が、周方向溝4との連通部に屈曲部32を有する。また、屈曲部32が、トレッド部ショルダー領域にある。これにより、この屈曲部32におけるブロックのエッジ成分が増加して、タイヤの雪上性能が高められている。また、屈曲部32がタイヤ左右のショルダー領域に千鳥状に配置されることにより、複数の屈曲部32がタイヤ周方向に分散して配置されて、スノー制動性能が高められている。
 図3は、図2に記載した空気入りタイヤのトレッド面を示す拡大図である。同図は、タイヤ赤道面CLを境界とする片側領域を示している。
 図2の構成では、図3に示すように、1本の連通横溝3が、2つの屈曲部31、32を有している。また、連通横溝3が、これらの屈曲部31、32にて屈曲することにより、タイヤ周方向に対する傾斜角(0[deg]~90[deg])を変化させている。これにより、連通横溝3のタイヤ周方向に対する傾斜角が、タイヤ赤道面CL側からトレッド端部側に向かうに連れて段階的に増加している。
 また、このとき、左右のショルダー領域では、連通横溝3のタイヤ軸方向に対する傾斜角が、V字横断溝2のV字形状の凸側を正として-10[deg]以上+20[deg]以下の範囲内にあることが好ましい。すなわち、連通横溝3は、ショルダー領域にてタイヤ幅方向に略平行となることが好ましい。
 また、タイヤ赤道面CLに最も近い位置における連通横溝3のタイヤ赤道面CLに対する傾斜角αが、0[deg]≦α≦30[deg]の範囲内にあることが好ましい。すなわち、連通横溝3は、タイヤ赤道面CLの近傍にて、タイヤ周方向に延在することが好ましい。また、連通横溝3の傾斜角αが、部分的にタイヤ赤道面CLに平行(α=0[deg])となっても良い。なお、傾斜角αは、タイヤ赤道面CLと、連通横溝3の溝中心線とのなす角として測定される。
 例えば、図3の構成では、連通横溝3が、タイヤ赤道面CLの近傍にて2本のV字横断溝2、2に連通している。また、連通横溝3の傾斜角αが、タイヤ赤道面CLに最も近い部分で最も小さく、タイヤ赤道面CLからトレッド端部に向かうに連れて2つの屈曲部31、32で段階的に増加して、トレッド部ショルダー領域で最も大きくなっている。これにより、トレッド部センター領域での排水性能が高められ、また、ウェット性能が高められている。
 また、連通横溝3と2本のV字横断溝2、2との交差角β1、β2が、20[deg]≦β1≦60[deg]および20[deg]≦β2≦60[deg]の範囲内にある。これにより、センター領域におけるブロックのエッジ成分が高められている。なお、交差角β1、β2は、連通横溝3とV字横断溝2との連通位置における溝中心線のなす角として測定される。
 また、図2の構成では、図3の拡大図が示すように、1本の周方向溝4が、タイヤ周方向に連結された複数の傾斜溝部41から構成されている。
 傾斜溝部41は、タイヤ赤道面CLに対して±15[deg]以下の範囲で傾斜する。また、傾斜溝部41は、トレッド部ショルダー領域に配置されて、タイヤ周方向に隣り合う一対のV字横断溝2、2を連結し、あるいは、タイヤ周方向に隣り合うV字横断溝2と連通横溝3とを連結する。そして、タイヤ周方向に隣り合う傾斜溝部41の開口部が、相互に位置を揃えて配置されることにより、タイヤ周方向に連続する1本の周方向溝4が形成される。
 また、上記のように、傾斜溝部41がタイヤ周方向に対して傾斜するため、タイヤ周方向に隣り合う傾斜溝部41、41の開口部が若干オフセットして配置される。このため、周方向溝4が、V字横断溝2および連通横溝3との連通部にて小さく屈曲するジグザグ形状を有している。これにより、エッジ成分が増加して、タイヤのウェット性能が高められている。
 このとき、隣り合う傾斜溝部41、41の開口部のオフセット量gが、1[mm]≦g≦3[mm]の範囲内にあることが好ましい。オフセット量gは、隣り合う傾斜溝部41、41の溝中心線を基準として測定される。
 また、図2の構成では、図3の拡大図が示すように、空気入りタイヤ1が、複数の傾斜補助溝6を備えている。これらの傾斜補助溝6により、エッジ成分が増加して、タイヤのウェット性能が高められている。
 傾斜補助溝6は、タイヤ赤道面CLに対して10[deg]以上90[deg]以下の傾斜角をもって傾斜する補助溝である。また、傾斜補助溝6は、3.0[mm]以下の溝幅と、5.0[mm]以下の溝深さとを有する。このため、傾斜補助溝6は、V字横断溝2、連通横溝3および周方向溝4に区画されたブロック51~53を実質的に分断せず、また、JATMAに規定するスリップサインの表示義務を有さない。
 また、傾斜補助溝6は、V字横断溝2および連通横溝3の少なくとも一方に開口して配置される。図2の構成では、傾斜補助溝6が、隣り合うV字横断溝2、2同士あるいは隣り合うV字横断溝2と連通横溝3とを連結している。しかし、これに限らず、傾斜補助溝6が、一方の端部にてブロック51~53内で終端しても良い(図示省略)。
 なお、1つのブロック51が複数の傾斜補助溝6を有する構成では、図3に示すように、傾斜補助溝6のタイヤ赤道面CLに対する傾斜角が、タイヤ赤道面CL側にある傾斜補助溝6ほど大きい(タイヤ回転軸に平行に近づく)ことが好ましい。これにより、傾斜補助溝6によるエッジ成分がさらに適正化される。
 また、図2の構成では、図3の拡大図が示すように、空気入りタイヤ1が、複数のサイプ7を備えている。これらのサイプ7により、スノー制動性能が高められている。
 なお、図3の構成では、サイプ7が、トレッド平面視にてジグザグ形状を有し、且つ、ジグザグ形状の屈曲点に枝部71を有している。また、枝部71が、ジグザグ形状の屈曲点からサイプ7の延在方向に対して直交する方向かつ片側方向に延在して、他のサイプに連通することなく、ブロック51~53の内部で終端している。かかるサイプにより、スノー制動性能が効果的に高められている。
 図4は、図2に記載した空気入りタイヤのトレッドパターンを示す説明図である。同図は、トレッドパターンを構成する単位パターンのブロック列を示している。図2のトレッドパターンは、図4のブロック列をタイヤ周方向に繰り返し配置して構成される。なお、図4では、ブロック51~53の平面形状を見易くするために、傾斜補助溝6およびサイプ7の記載が省略されている。
 図2の構成では、図4に示すように、空気入りタイヤ1が、3種類のブロック51~53を配列して成るブロックパターンを有する。
 第一のブロック51は、周方向溝4から少なくともタイヤ赤道面CLまで連続的に延在する長尺ブロックである。
 図4の構成では、上記のように、タイヤ赤道面CLを境界とする片側領域にて、1本の連通横溝3a(3b)が、隣り合う一対のV字横断溝2a、2b(2b、2a)の間に配置されている。また、連通横溝3が、トレッド部センター領域に屈曲部31を有し、タイヤ赤道面CL側に向かってV字横断溝2のV字形状の凸側に屈曲している。また、連通横溝3a(3b)が、一方のV字横断溝2b(2a)に連通し、他方のV字横断溝2a(2b)には連通しない。このため、1つの長尺ブロック51が、他方のV字横断溝2a(2b)のV字形状の山側面と、連通横溝3a(3b)の屈曲形状の背側面と、周方向溝4a(4b)の幅方向内側面とに区画されている。そして、長尺ブロック51が、周方向溝4a(4b)からタイヤ赤道面CLを越える位置までタイヤ幅方向に連続的に延在している。また、複数の長尺ブロック51がタイヤ赤道面CLを境界とする左右の領域からタイヤ赤道面CLに向かって交互に延在している。これにより、タイヤ赤道面CL上に、複数の長尺ブロック51から成る1列のブロック列が形成されている。
 なお、1つの長尺ブロック51は、JATMAに規定するスリップサインの表示義務を有する溝(主溝)により分断されない限り、連続しているといえる。したがって、長尺ブロック51は、上記した傾斜補助溝6、サイプ7、カーフ(図示省略)などを有しても良い。
 第二のブロック52は、周方向溝4からタイヤ赤道面CLの手前まで連続的に延在する短尺ブロックである。
 図4の構成では、タイヤ赤道面CLを境界とする片側領域にて、1つの短尺ブロック52が、連通横溝3a(3b)の屈曲形状の腹側面と、V字横断溝2b(2a)のV字形状の谷側面と、周方向溝4a(4b)のタイヤ幅方向内側面とに区画されている。あるいは、1つの短尺ブロック52が、隣り合う一対のV字横断溝2b、2a(2a、2b)と、連通横溝3a(3b)と、周方向溝4a(4b)とに区画されている。また、連通横溝3a(3b)が、トレッド部センター領域に屈曲部31を有し、タイヤ赤道面CLに交差することなくタイヤ周方向に延在している。これにより、短尺ブロック52が、タイヤ赤道面CLに交差することなく、タイヤ赤道面CLから離間して配置されている。
 第三のブロック53は、周方向溝4のタイヤ幅方向外側に配置されるショルダーブロックである。
 図4の構成では、複数のショルダーブロック53が、複数のV字横断溝2と、連通横溝3と、周方向溝4のタイヤ幅方向外側面とに区画されている。これにより、タイヤ左右のタイヤ接地端T、T上に、複数のショルダーブロック53から成る1列のブロック列がそれぞれ形成されている。
 また、図4の構成では、タイヤ赤道面CLにおける長尺ブロック51の配置数が、タイヤ接地端Tにおけるショルダーブロック53の配置数よりも少ない。具体的には、タイヤ赤道面CLにおける長尺ブロック51の配置数と、タイヤ接地端Tにおけるショルダーブロック53の配置数との比が、2:3となっている。
 なお、この空気入りタイヤ1では、タイヤ全周にかかるタイヤ幅方向に対するスノートラクションインデックスSTI(いわゆる90[deg]スノートラクションインデックス)が、160≦STI≦240の範囲にある。
 スノートラクションインデックスSTIは、SAE(Society of Automotive Engineers)にて提案されたユニロイヤル社の実験式であり、以下の数式(1)により定義される。同式において、Pgは、溝密度[1/mm]であり、タイヤ接地面におけるタイヤ幅方向に投影したすべての溝(サイプを除くすべての溝)の溝長さと、タイヤ接地面積(タイヤ接地幅とタイヤ周長との積)との比として算出される。また、ρsは、サイプ密度[1/mm]であり、タイヤ接地面におけるタイヤ幅方向に投影したすべてのサイプのサイプ長さと、タイヤ接地面積との比として算出される。また、Dgは、タイヤ接地面におけるタイヤ幅方向に投影したすべての溝の溝深さの平均値である。
 STI=-6.8+2202×Pg+672×ρs+7.6×Dg  ・・・(1)
 また、この空気入りタイヤ1では、トレッドゴム15が、キャップトレッドゴムおよびアンダートレッドゴムから成り(図示省略)、20[℃]におけるキャップトレッドゴムのJIS-A硬度が、50以上70以下の範囲内にある。ゴム硬度とは、JIS-K6253に準拠したJIS-A硬度をいう。
[回転方向の指定]
 また、この空気入りタイヤ1は、V字横断溝2のV字形状の凸側をタイヤ回転方向(図2参照)とする指定を有する。タイヤ回転方向とは、タイヤ使用時にて使用頻度が高い回転方向をいい、例えば、車両前進時における回転方向をいう。この回転方向の指定は、例えば、タイヤのサイドウォール部に付されたマークや凹凸によって表示される。
[効果]
 以上説明したように、この空気入りタイヤ1は、タイヤ周方向に凸となるV字形状を有すると共にタイヤ幅方向にトレッド部を横断して左右のトレッド端部に開口するV字横断溝2を備える(図2参照)。また、複数のV字横断溝2がV字形状の向きを揃えつつタイヤ周方向に所定間隔で配列される。また、空気入りタイヤ1は、連通横溝3と、周方向溝4とを備える。1本の連通横溝3a(3b)は、トレッド部ショルダー領域にて、タイヤ周方向に隣り合う一対のV字横断溝2a、2b(2b、2a)の間に配置されると共にトレッド端部からタイヤ赤道面CLに向かって延在し、トレッド部センター領域にて、一対のV字横断溝2a、2b(2b、2a)のうちV字形状の凸側にある一方のV字横断溝2b(2a)に連通すると共に他方のV字横断溝2a(2b)に連通しない。周方向溝4は、トレッド部ショルダー領域に配置されると共に、タイヤ周方向に延在してV字横断溝2および連通横溝3に連通する。
 かかる構成では、(1)複数のV字横断溝2が配置されることにより、空気入りタイヤ1がV字横断溝2のV字形状の頂部21をタイヤ回転方向にして車両に装着されたときに(図2参照)、V字横断溝2が排水経路となって、タイヤのウェット性能(ウェット制動性能およびウェット操縦安定性能)が向上する利点がある。
 また、(2)連通横溝3a(3b)が一方のV字横断溝2b(2a)に連通してトレッド部センター領域からショルダー領域まで延在するので、V字横断溝2b(2a)から連通横溝3a(3b)への排水経路が形成されて、タイヤのウェット性能がさらに向上する利点がある。
 また、(3)V字横断溝2および連通横溝3により、トレッド部のエッジ成分が増加して、タイヤのスノー制動性能が向上する利点がある。
 また、(4)連通横溝3a(3b)が一対のV字横断溝2a、2b(2b、2a)のうちV字形状の凸側にある一方のV字横断溝2b(2a)にのみ連通して、他方のV字横断溝2a(2b)に連通しないので、連通横溝3a(3b)と他方のV字横断溝2a(2b)との間の長尺ブロック51の剛性が確保される。これにより、連通横溝が一対のV字横断溝の双方に対して連通する構成(図示省略)と比較して、タイヤのウェット性能が向上する利点がある。
 また、この空気入りタイヤ1は、V字横断溝2a(2b)、連通横溝3a(3b)および周方向溝4a(4b)に区画されると共に周方向溝4a(4b)からタイヤ赤道面CLを越える位置まで連続して延在する長尺ブロック51を備える(図2参照)。かかる構成では、周方向溝4a(4b)からタイヤ赤道面CLまで連続する長尺ブロック51が配置されることにより、ブロック剛性が確保されて、タイヤのドライ性能が向上する利点がある。
 また、この空気入りタイヤ1は、タイヤ周方向に連続して延在する周方向主溝(JATMAに規定するスリップサインの表示義務を有する周方向溝)を、周方向溝4よりもタイヤ幅方向内側の領域に有さない(図2参照)。かかる構成では、ハイドロ作用する。これにより、周方向溝よりもタイヤ幅方向内側の領域に配置された構成(例えば、後述する図6の従来例)と比較して、タイヤのウェット性能が向上する利点がある。
 また、この空気入りタイヤ1では、タイヤ赤道面CLにおける長尺ブロック51の配置数が、タイヤ接地端Tにおけるショルダーブロック53の配置数よりも少ない(図2参照)。かかる構成では、ブロック剛性が確保されて、タイヤのドライ性能が向上する利点がある。
 また、この空気入りタイヤ1では、V字横断溝2が、周方向溝4上に、タイヤ赤道面CL側に向かってV字横断溝2のV字形状の凸側に屈曲する屈曲部22を有する(図2参照)。かかる構成では、V字横断溝2の屈曲部22により区画されたブロック51~53のエッジ成分が確保されるので、タイヤのスノー制動性能が向上する利点がある。
 また、この空気入りタイヤ1では、連通横溝3が、トレッド部センター領域に、タイヤ赤道面CL側に向かってV字横断溝2のV字形状の凸側に屈曲する屈曲部31を有する(図2参照)。かかる構成では、連通横溝3が屈曲部31を有することにより、連通横溝3の傾斜角が屈曲部31の前後で変化する。これにより、連通横溝3の排水性が向上して、タイヤのウェット性能が向上する利点がある。
 また、この空気入りタイヤ1では、連通横溝3が、周方向溝4上に、タイヤ赤道面CL側に向かってV字横断溝2のV字形状の凸側に屈曲する屈曲部32を有する(図2参照)。かかる構成では、連通横溝3の屈曲部32により区画されたブロック51~53のエッジ成分が確保されるので、タイヤのスノー制動性能が向上する利点がある。
 また、この空気入りタイヤ1では、周方向溝4の溝幅が、3[mm]以上である。これにより、周方向溝4の溝幅が確保されて、タイヤのウェット性能が向上する利点がある。
 また、この空気入りタイヤ1では、周方向溝4の溝深さが、V字横断溝2の溝深さに対して50[%]以上80[%]以下の範囲内にある。これにより、ブロック51~53の剛性が確保されて、タイヤのウェット性能が向上する利点がある。具体的には、周方向溝4の溝深さが50[%]以上であることにより、タイヤのスノー制動性能が確保され、周方向溝4の溝深さが80[%]以下であることにより、タイヤのウェット性能が向上する。
 また、この空気入りタイヤ1では、周方向溝4が、タイヤ周方向に連結された複数の傾斜溝部41から成ると共に、傾斜溝部41のタイヤ赤道面CLに対する傾斜角が、±15[deg]の範囲内にある。これにより、傾斜溝部41の傾斜角が適正化されて、タイヤの雪上制動性能が向上する利点がある。
 また、この空気入りタイヤ1は、第一のV字横断溝2aと、第一のV字横断溝2aのV字形状の凸側かつタイヤ赤道面CLを境界とする一方の領域(例えば、図2の右側領域)に配置される第一の連通横溝3aと、第一のV字横断溝2aとの間に第一の連通横溝3aを挟んで配置される第二のV字横断溝2bと、第二のV字横断溝2bのV字形状の凸側かつタイヤ赤道面CLを境界とする他方の領域(例えば、図2の左側領域)に配置される第二の連通横溝3bとを、タイヤ周方向に繰り返し配置して成るトレッドパターンを備える(図2参照)。これにより、V字横断溝2a、2bおよび連通横溝3a、3bの配置構造が適正化されて、タイヤのウェット性能およびスノー制動性能が向上する利点がある。
 また、この空気入りタイヤ1では、第一のV字横断溝2aと第一の連通横溝3aとに区画されると共にタイヤ赤道面CLを境界とする一方の領域(例えば、図2の右側領域)にてトレッド部ショルダー領域(図2では、周方向溝4a)からタイヤ赤道面CLを越える位置まで連続して延在する第一の長尺ブロック(図2の右側領域のブロック)51と、第二のV字横断溝2bと第二の連通横溝3bとに区画されると共にタイヤ赤道面CLを境界とする他方の領域(例えば、図2の左側領域)にてトレッド部ショルダー領域(図2では、周方向溝4b)からタイヤ赤道面CLを越える位置まで連続して延在する第二の長尺ブロック(図2の左側領域のブロック)51とを備え、且つ、第一の長尺ブロック51と第二の長尺ブロック51とが、タイヤ赤道面CL上にてタイヤ周方向に交互に配置される(図2および図4参照)。これにより、長尺ブロック51の配列が適正化されて、タイヤのウェット性能およびスノー制動性能が向上する利点がある。
 また、この空気入りタイヤ1では、タイヤ全周にかかるタイヤ幅方向に対するスノートラクションインデックスSTIが、160≦STI≦240の範囲にある。これにより、スノートラクションインデックスSTIが適正化される利点がある。すなわち、160≦STIであることにより、タイヤのスノー制動性能が確保され、STI≦240であることにより、タイヤのウェット性能が確保される。
 また、この空気入りタイヤ1では、20[℃]におけるキャップトレッドゴムのJIS-A硬度が、50以上70以下の範囲内にある。これにより、キャップトレッドの硬度が適正化される利点がある。すなわち、キャップトレッドの硬度が50以上であることにより、ブロック剛性が確保されて、タイヤのスノー制動性能が確保される。また、キャップトレッドの硬度が70以下であることにより、タイヤのウェット性能が確保される。
 また、この空気入りタイヤ1では、少なくとも2本の連通横溝3a、3bが、1本のV字横断溝2a(2b)に対して連通する(図2参照)。これにより、V字横断溝2a(2b)と連通横溝3a、3bとの連通部が増加して、タイヤの排水性能がより向上する利点がある。
 また、この空気入りタイヤ1では、V字横断溝2のV字形状の頂部21と、タイヤ赤道面CLとが所定間隔をあけて配置される(図2参照)。これにより、車両旋回時におけるタイヤの排水性能が向上する利点がある。
 また、この空気入りタイヤ1では、V字横断溝2のV字形状の頂部21が、トレッド部センター領域に配置される(図2参照)。これにより、センター領域からトレッド端部への排水経路が確保されて、タイヤの排水性能が向上する利点がある。
 また、この空気入りタイヤ1では、V字横断溝2が、V字形状の頂部21からトレッド端部に向かってタイヤ周方向に対する傾斜角を増加させた形状を有する(図2参照)。これにより、タイヤの排水性能が向上する利点がある。
 また、この空気入りタイヤ1では、V字横断溝2が、V字形状の頂部21から左右のトレッド端部までの間に屈曲部22、22をそれぞれ有し、且つ、左右の屈曲部22、22が、タイヤ周方向に相互に所定間隔をあけて配置される(図2参照)。これにより、屈曲部22、22によるエッジ成分がタイヤ周方向に分散されて、タイヤのスノー制動性能が向上する利点がある。
 また、この空気入りタイヤ1では、隣り合うV字横断溝2a、2bが、タイヤ周方向に相互にラップして配置される(図2参照)。これにより、V字横断溝2a、2bが密に配置されて、タイヤのウェット性能およびスノー制動性能が向上する利点がある。
 また、この空気入りタイヤ1では、タイヤ赤道面CLに最も近い位置における連通横溝3のタイヤ赤道面CLに対する傾斜角αが、0[deg]≦α≦30[deg]の範囲内にある(図3参照)。これにより、タイヤの排水性能が向上する利点がある。
 また、この空気入りタイヤ1では、連通横溝3とV字横断溝2との交差角β(β1、β2)が、20[deg]≦β≦60[deg]の範囲内にある(図3参照)。これにより、連通横溝3とV字横断溝2とに区画されたブロック52の剛性バランスが適正となり、ウェット操縦安定性能が向上する利点がある。
 また、この空気入りタイヤ1では、連通横溝3とV字横断溝2とが、トレッド部センター領域にて連通する(図2参照)。これにより、タイヤの排水性能が向上する利点がある。
 また、この空気入りタイヤ1では、連通横溝3が、少なくとも1本のV字横断溝2のV字形状の頂部21に連通する(図2参照)。これにより、複数の排水経路が確保されて、タイヤの排水性能が向上する利点がある。
 また、この空気入りタイヤ1は、V字横断溝2と、連通横溝3とに区画されて成るブロック51~53を備える(図3参照)。また、ブロック51~53が、V字横断溝2および連通横溝3の少なくとも1本に開口する補助溝(例えば、図3の傾斜補助溝6)を有する。これにより、タイヤのウェット性能およびスノー制動性能が向上する利点がある。
 また、この空気入りタイヤ1は、補助溝(例えば、図3の傾斜補助溝6)の開口位置におけるV字横断溝2あるいは連通横溝3のタイヤ周方向に対する傾斜方向と、補助溝の傾斜方向とが、相互に逆方向である(図3参照)。これにより、タイヤのウェット性能およびスノー制動性能が向上する利点がある。
 また、この空気入りタイヤ1では、ブロック51~53が、複数のサイプ7を有する(図3参照)。これにより、タイヤのスノー制動性能が向上する利点がある。
[回転方向の指定]
 また、この空気入りタイヤ1は、V字横断溝2のV字形状の凸側をタイヤ回転方向(図2参照)として指定するマークあるいは凹凸を備える。タイヤ回転方向とは、タイヤ使用時にて使用頻度が高い回転方向をいい、例えば、車両前進時における回転方向をいう。この回転方向の指定は、例えば、タイヤのサイドウォール部に付される。空気入りタイヤ1が上記のタイヤ回転方向の指定に従って車両に装着されることにより、上記したタイヤのウェット性能およびスノー制動性能が向上する利点がある。
 図5は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。図6は、従来例の空気入りタイヤを示すトレッド平面図である。
 この性能試験では、相互に異なる複数の空気入りタイヤについて、(1)スノー制動性能、(2)ウェット制動性能および(3)ウェット操安性能に関する評価が行われた。この性能試験では、タイヤサイズ195/65R15の空気入りタイヤがリムサイズ15×6Jのリムに組み付けられ、この空気入りタイヤに空気圧220[kPa]およびJATMA規定の最大負荷が付与される。また、空気入りタイヤが、試験車両である排気量1500[cc]クラスのFF(front engine front drive)車両に装着される。
 (1)スノー制動性能に関する評価では、試験車両が雪路試験場のスノー路面を走行し、走行速度40[km/h]からの制動距離が測定される。そして、この測定結果に基づいて従来例を基準(100)とした指数評価が行われる。この評価は、数値が大きいほど好ましい。
 (2)ウェット制動性能に関する評価では、試験車両が水深1[mm]で散水したアスファルト路を走行し、走行速度100[km/h]からの制動距離が測定される。そして、この測定結果に基づいて、従来例を基準(100)とした指数評価が行われる。この評価は、数値が大きいほど好ましい。
 (3)ウェット操安性能に関する評価では、試験車両が水深1[mm]で散水したアスファルト路を速度100[km/h]で走行し、テストドライバーが操縦安定性に関する官能評価を行う。この評価は、従来例を基準(100)とした指数評価により行われ、その数値が大きいほど好ましい。
 従来例の空気入りタイヤは、図6に示すトレッドパターンを備え、トレッド部センター領域に2本の周方向主溝を備え、また、トレッド部ショルダー領域に、2本の周方向細溝を有している。また、従来例の空気入りタイヤは、複数のV字横断溝と、周方向主溝に連通する一方でV字横断溝には連通しないラグ溝を有している。
 実施例1~7の空気入りタイヤ1は、図2および図3に示すトレッドパターンを基調として、一部を変更した構成を有している。また、V字横断溝2および連通横溝3が、溝幅5.0[mm]および溝深さ8.5[mm]をそれぞれ有している。また、V字横断溝2の頂部21の屈曲角が100[deg]に設定されている。また、V字横断溝2の傾斜角αが、8[deg]であり、連通横溝3とV字横断溝2との交差角β1、β2が、40[deg]である。また、タイヤ赤道面CLにおける長尺ブロック51の配置数が、44個~54個であり、タイヤ接地端Tにおけるショルダーブロック53の配置数が、66個~81個である。
 試験結果に示すように、実施例1~7の空気入りタイヤ1では、従来例の空気入りタイヤと比較して、タイヤのスノー制動性能、ウェット制動性能およびウェット操安性能が向上することが分かる。
 1:空気入りタイヤ、2、2a、2b:V字横断溝、22:屈曲部、3、3a、3b:連通横溝、31、32:屈曲部、4、4a、4b:周方向溝、41:傾斜溝部、51:長尺ブロック、52:短尺ブロック、53:ショルダーブロック、6:傾斜補助溝、7:サイプ、11:ビードコア、12:ビードフィラー、13:カーカス層、14:ベルト層、141、142:交差ベルト、143:ベルトカバー、15:トレッドゴム、16:サイドウォールゴム、17:リムクッションゴム

Claims (28)

  1.  タイヤ周方向に凸となるV字形状を有すると共にタイヤ幅方向にトレッド部を横断して左右のトレッド端部に開口するV字横断溝を備え、複数の前記V字横断溝がV字形状の向きを揃えつつタイヤ周方向に所定間隔で配列された空気入りタイヤであって、
     トレッド部ショルダー領域にて、タイヤ周方向に隣り合う一対の前記V字横断溝の間に配置されると共に前記トレッド端部からタイヤ赤道面に向かって延在し、トレッド部センター領域にて、前記一対のV字横断溝のうち前記V字形状の凸側にある一方の前記V字横断溝に連通すると共に他方の前記V字横断溝に連通しない連通横溝と、
     前記トレッド部ショルダー領域に配置されると共に、タイヤ周方向に延在して前記V字横断溝および前記連通横溝に連通する周方向溝とを備えることを特徴とする空気入りタイヤ。
  2.  前記V字横断溝、前記連通横溝および前記周方向溝に区画されると共に前記周方向溝からタイヤ赤道面を越える位置まで連続して延在する長尺ブロックを備える請求項1に記載の空気入りタイヤ。
  3.  タイヤ周方向に連続して延在する周方向主溝を、前記周方向溝よりもタイヤ幅方向内側の領域に有さない請求項1または2に記載の空気入りタイヤ。
  4.  タイヤ赤道面におけるブロックの配置数が、タイヤ接地端におけるブロックの配置数よりも少ない請求項1~3のいずれか一つに記載の空気入りタイヤ。
  5.  前記V字横断溝が、前記周方向溝上に、タイヤ赤道面側に向かって前記V字横断溝のV字形状の凸側に屈曲する屈曲部を有する請求項1~4のいずれか一つに記載の空気入りタイヤ。
  6.  前記連通横溝が、トレッド部センター領域に、タイヤ赤道面側に向かって前記V字横断溝のV字形状の凸側に屈曲する屈曲部を有する請求項1~5のいずれか一つに記載の空気入りタイヤ。
  7.  前記連通横溝が、前記周方向溝上に、タイヤ赤道面側に向かって前記V字横断溝のV字形状の凸側に屈曲する屈曲部を有する請求項1~6のいずれか一つに記載の空気入りタイヤ。
  8.  前記周方向溝の溝幅が、3[mm]以上である請求項1~5のいずれか一つに記載の空気入りタイヤ。
  9.  前記周方向溝の溝深さが、前記V字横断溝の溝深さに対して50[%]以上80[%]以下の範囲内にある請求項1~8のいずれか一つに記載の空気入りタイヤ。
  10.  前記周方向溝が、タイヤ周方向に連結された複数の傾斜溝部から成ると共に、前記傾斜溝部のタイヤ赤道面に対する傾斜角が、±15[deg]の範囲内にある請求項1~9のいずれか一つに記載の空気入りタイヤ。
  11.  第一の前記V字横断溝と、
     前記第一のV字横断溝のV字形状の凸側かつタイヤ赤道面を境界とする一方の領域に配置される第一の前記連通横溝と、
     前記第一のV字横断溝との間に前記第一の連通横溝を挟んで配置される第二の前記V字横断溝と、
     前記第二のV字横断溝のV字形状の凸側かつタイヤ赤道面を境界とする他方の領域に配置される第二の前記連通横溝とを、タイヤ周方向に繰り返し配置して成るトレッドパターンを備える請求項1~10のいずれか一つに記載の空気入りタイヤ。
  12.  前記第一のV字横断溝と前記第一の連通横溝とに区画されると共にタイヤ赤道面を境界とする前記一方の領域にてトレッド部ショルダー領域からタイヤ赤道面を越える位置まで連続して延在する第一の長尺ブロックと、
     前記第二のV字横断溝と前記第二の連通横溝とに区画されると共にタイヤ赤道面を境界とする前記他方の領域にてトレッド部ショルダー領域からタイヤ赤道面を越える位置まで連続して延在する第二の長尺ブロックとを備え、且つ、
     前記第一の長尺ブロックと前記第二の長尺ブロックとが、タイヤ赤道面上にてタイヤ周方向に交互に配置される請求項11に記載の空気入りタイヤ。
  13.  タイヤ全周にかかるタイヤ幅方向に対するスノートラクションインデックスSTIが、160≦STI≦240の範囲にある請求項1~12のいずれか一つに記載の空気入りタイヤ。
  14.  20[℃]におけるキャップトレッドゴムのJIS-A硬度が、50以上70以下の範囲内にある請求項1~13のいずれか一つに記載の空気入りタイヤ。
  15.  少なくとも2本の前記連通横溝が、1本の前記V字横断溝に対して連通する請求項1~14のいずれか一つに記載の空気入りタイヤ。
  16.  前記V字横断溝のV字形状の頂部と、タイヤ赤道面とが所定間隔をあけて配置される請求項1~15のいずれか一つに記載の空気入りタイヤ。
  17.  前記V字横断溝のV字形状の頂部が、トレッド部センター領域に配置される請求項1~16のいずれか一つに記載の空気入りタイヤ。
  18.  前記V字横断溝が、V字形状の頂部からトレッド端部に向かってタイヤ周方向に対する傾斜角を増加させた形状を有する請求項1~17のいずれか一つに記載の空気入りタイヤ。
  19.  前記V字横断溝が、V字形状の頂部から左右のトレッド端部までの間に屈曲部をそれぞれ有し、且つ、左右の前記屈曲部が、タイヤ周方向に相互に所定間隔をあけて配置される請求項1~18のいずれか一つに記載の空気入りタイヤ。
  20.  隣り合う前記V字横断溝が、タイヤ周方向に相互にラップして配置される請求項1~19のいずれか一つに記載の空気入りタイヤ。
  21.  タイヤ赤道面に最も近い位置における前記連通横溝のタイヤ赤道面に対する傾斜角αが、0[deg]≦α≦30[deg]の範囲内にある請求項1~20のいずれか一つに記載の空気入りタイヤ。
  22.  前記連通横溝と前記V字横断溝との交差角βが、20[deg]≦β≦60[deg]の範囲内にある請求項1~21のいずれか一つに記載の空気入りタイヤ。
  23.  前記連通横溝と前記V字横断溝とが、トレッド部センター領域にて連通する請求項1~22のいずれか一つに記載の空気入りタイヤ。
  24.  前記連通横溝が、少なくとも1本の前記V字横断溝のV字形状の頂部に連通する請求項1~23のいずれか一つに記載の空気入りタイヤ。
  25.  前記V字横断溝と、前記連通横溝とに区画されて成るブロックを備え、且つ、
     前記ブロックが、前記V字横断溝および前記連通横溝の少なくとも1本に開口する補助溝を有する請求項1~24のいずれか一つに記載の空気入りタイヤ。
  26.  前記補助溝の開口位置における前記V字横断溝あるいは前記連通横溝のタイヤ周方向に対する傾斜方向と、前記補助溝の傾斜方向とが、相互に逆方向である請求項1~25のいずれか一つに記載の空気入りタイヤ。
  27.  前記V字横断溝と、前記連通横溝とに区画されて成るブロックを備え、且つ、
     前記ブロックが、複数のサイプを有する請求項1~26のいずれか一つに記載の空気入りタイヤ。
  28.  前記V字横断溝のV字形状の凸側をタイヤ回転方向として指定するマークあるいは凹凸を備える請求項1~27のいずれか一つに記載の空気入りタイヤ。
PCT/JP2014/059255 2013-10-24 2014-03-28 空気入りタイヤ WO2015059942A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14855548.5A EP3047983B1 (en) 2013-10-24 2014-03-28 Pneumatic tire
RU2016119742A RU2640917C2 (ru) 2013-10-24 2014-03-28 Пневматическая шина
CN201480057990.0A CN105682945B (zh) 2013-10-24 2014-03-28 充气轮胎
US15/031,698 US10131188B2 (en) 2013-10-24 2014-03-28 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-221462 2013-10-24
JP2013221462A JP6248537B2 (ja) 2013-10-24 2013-10-24 空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2015059942A1 true WO2015059942A1 (ja) 2015-04-30

Family

ID=52992554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059255 WO2015059942A1 (ja) 2013-10-24 2014-03-28 空気入りタイヤ

Country Status (6)

Country Link
US (1) US10131188B2 (ja)
EP (1) EP3047983B1 (ja)
JP (1) JP6248537B2 (ja)
CN (2) CN107933202B (ja)
RU (1) RU2640917C2 (ja)
WO (1) WO2015059942A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128217A (ja) * 2016-01-20 2017-07-27 住友ゴム工業株式会社 空気入りタイヤ
WO2019159892A1 (ja) * 2018-02-14 2019-08-22 横浜ゴム株式会社 空気入りタイヤ
US10427466B2 (en) * 2013-12-20 2019-10-01 Sumitomo Rubber Industries, Ltd. Tire for winter
CN110341385A (zh) * 2018-04-06 2019-10-18 住友橡胶工业株式会社 轮胎
WO2020170466A1 (ja) * 2019-02-20 2020-08-27 横浜ゴム株式会社 空気入りタイヤ
US11760133B2 (en) 2018-02-09 2023-09-19 The Yokohama Rubber Co., Ltd. Pneumatic tire

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107107676B (zh) * 2014-10-07 2019-11-22 横滨橡胶株式会社 充气轮胎
JP6360459B2 (ja) * 2015-05-26 2018-07-18 住友ゴム工業株式会社 冬用タイヤ
JP6579895B2 (ja) * 2015-10-06 2019-09-25 Toyo Tire株式会社 空気入りタイヤ
JP6891572B2 (ja) * 2016-04-12 2021-06-18 住友ゴム工業株式会社 空気入りタイヤ
CN106142998B (zh) * 2016-08-02 2018-03-23 正新橡胶(中国)有限公司 一种轮胎
JP6819133B2 (ja) * 2016-08-23 2021-01-27 住友ゴム工業株式会社 タイヤ
CN106166924B (zh) * 2016-08-26 2023-10-27 四川远星橡胶有限责任公司 一种摩托车用轮胎
JP6299823B2 (ja) * 2016-08-31 2018-03-28 横浜ゴム株式会社 空気入りタイヤ
JP6737112B2 (ja) * 2016-09-30 2020-08-05 住友ゴム工業株式会社 空気入りタイヤ
JP6790722B2 (ja) * 2016-10-26 2020-11-25 住友ゴム工業株式会社 タイヤ
FI127150B (en) * 2017-01-18 2017-12-15 Nokian Renkaat Oyj Pattern block arrangement for pneumatic tire or tread band
JP6885170B2 (ja) * 2017-04-10 2021-06-09 住友ゴム工業株式会社 空気入りタイヤ
JP6848641B2 (ja) * 2017-04-17 2021-03-24 住友ゴム工業株式会社 空気入りタイヤ
JP6880971B2 (ja) * 2017-04-18 2021-06-02 住友ゴム工業株式会社 タイヤ
JP7024512B2 (ja) * 2018-03-09 2022-02-24 住友ゴム工業株式会社 タイヤ
CN108725101B (zh) * 2017-04-18 2021-12-03 住友橡胶工业株式会社 轮胎
CN108482019B (zh) * 2018-05-30 2023-10-17 万达集团股份有限公司 一种高排水性的花纹轮胎
CN109927489B (zh) * 2019-04-04 2022-03-29 万达集团股份有限公司 全天候轮胎胎面结构
JP7120146B2 (ja) 2019-04-26 2022-08-17 横浜ゴム株式会社 空気入りタイヤ
JP7159968B2 (ja) * 2019-04-26 2022-10-25 横浜ゴム株式会社 空気入りタイヤ
CN110217052A (zh) * 2019-07-11 2019-09-10 青岛双星轮胎工业有限公司 载重子午线轮胎
JP7372550B2 (ja) 2020-04-14 2023-11-01 横浜ゴム株式会社 タイヤ
JP2023066211A (ja) * 2021-10-28 2023-05-15 住友ゴム工業株式会社 タイヤ

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283001A (ja) * 1985-04-02 1987-12-08 Bridgestone Corp 空気入りタイヤ
JPH0443105A (ja) * 1990-06-07 1992-02-13 Bridgestone Corp 空気入りラジアルタイヤ
JPH0450006A (ja) * 1990-06-18 1992-02-19 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JPH0593909U (ja) * 1992-05-29 1993-12-21 住友ゴム工業株式会社 重荷重用空気入りタイヤ
JPH08156528A (ja) * 1994-12-01 1996-06-18 Bridgestone Corp 雪上走行および氷上走行に適した空気入りタイヤ
JPH0958218A (ja) 1995-08-28 1997-03-04 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JPH10324116A (ja) 1997-03-26 1998-12-08 Bridgestone Corp 操縦安定性に優れる空気入りタイヤ
JP2000108615A (ja) * 1998-10-07 2000-04-18 Bridgestone Corp 方向性傾斜溝を備えた乗用車用空気入りラジアル・タイヤ
JP2003182312A (ja) 2001-12-20 2003-07-03 Bridgestone Corp 空気入りタイヤ
JP2010513117A (ja) 2006-12-21 2010-04-30 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ 改良トレッドパターンを有する車両ホイール用タイヤ
JP2012096784A (ja) 2010-10-29 2012-05-24 Goodyear Tire & Rubber Co:The スタッドレスタイヤの中央トレッドパターン
JP2013119306A (ja) * 2011-12-07 2013-06-17 Yokohama Rubber Co Ltd:The 空気入りタイヤ

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3703480A1 (de) * 1986-02-05 1987-08-06 Bridgestone Corp Luftreifen
JPH0657485B2 (ja) * 1989-03-27 1994-08-03 株式会社ブリヂストン ラジアルタイヤ対
JP2855916B2 (ja) 1991-10-03 1999-02-10 松下電器産業株式会社 表示装置
DE4300695A1 (de) * 1993-01-13 1994-07-14 Sp Reifenwerke Gmbh Lauffläche für Fahrzeugluftreifen
JP3351894B2 (ja) * 1994-02-07 2002-12-03 株式会社ブリヂストン 重荷重用空気入りタイヤ
JP3388902B2 (ja) * 1994-09-20 2003-03-24 株式会社ブリヂストン 空気入りラジアルタイヤ
JPH08310205A (ja) * 1995-05-22 1996-11-26 Bridgestone Corp V字型方向性低傾斜溝を有する空気入りタイヤ
JP3515232B2 (ja) * 1995-07-11 2004-04-05 横浜ゴム株式会社 空気入りタイヤ及びその使用方法
DE19604727A1 (de) * 1996-02-09 1997-08-14 Continental Ag Fahrzeugluftreifen
JP3623601B2 (ja) * 1996-07-10 2005-02-23 株式会社ブリヂストン 非対称v字型溝を備えた空気入りタイヤ
DE69701838T2 (de) * 1996-07-11 2000-10-12 Bridgestone Corp., Tokio/Tokyo Luftreifen
USD397066S (en) * 1996-09-13 1998-08-18 Michelin Recherche Et Technique S.A. Tire tread
USD450293S1 (en) * 2000-07-26 2001-11-13 Michelin Recherche Et Technique S.A. Tire tread
ES2291461T3 (es) * 2001-02-28 2008-03-01 Pirelli Tyre S.P.A. Neumaticos para vehiculos a motor, en particular para su utilizacion sobre terrenos cubiertos con nieve.
US7270163B2 (en) * 2001-02-28 2007-09-18 Pirelli Pneumatici S.P.A. Tyre for a vehicle wheel including specific tread patterns
EP1238827B1 (de) * 2001-03-06 2004-11-03 Continental Aktiengesellschaft Reifenprofil
EP1637355B1 (en) * 2004-09-17 2007-05-30 Bridgestone Corporation Pneumatic tire
JP5436954B2 (ja) * 2009-06-30 2014-03-05 東洋ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
JP4934175B2 (ja) * 2009-08-21 2012-05-16 住友ゴム工業株式会社 空気入りタイヤ
CN201552983U (zh) * 2009-11-08 2010-08-18 青岛黄海橡胶股份有限公司 轿车子午线轮胎胎面花纹
US9604506B2 (en) * 2010-08-05 2017-03-28 Bridgestone Corporation Tire
JP5285739B2 (ja) * 2011-04-28 2013-09-11 住友ゴム工業株式会社 空気入りタイヤ
US20140116591A1 (en) * 2011-06-24 2014-05-01 Bridgestone Corporation Motorcycle pneumatic tire
JP5698622B2 (ja) * 2011-08-04 2015-04-08 株式会社ブリヂストン タイヤ
JP2013057041A (ja) * 2011-09-09 2013-03-28 Sumitomo Rubber Ind Ltd スタッドレスタイヤ用ベーストレッドゴム組成物及びスタッドレスタイヤ
USD780673S1 (en) * 2016-01-08 2017-03-07 Sumitomo Rubber Industries, Ltd. Tire for automobile
USD786779S1 (en) * 2016-02-17 2017-05-16 Bridgestone Americas Tire Operations, Llc Tire tread

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283001A (ja) * 1985-04-02 1987-12-08 Bridgestone Corp 空気入りタイヤ
JPH0443105A (ja) * 1990-06-07 1992-02-13 Bridgestone Corp 空気入りラジアルタイヤ
JPH0450006A (ja) * 1990-06-18 1992-02-19 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JPH0593909U (ja) * 1992-05-29 1993-12-21 住友ゴム工業株式会社 重荷重用空気入りタイヤ
JPH08156528A (ja) * 1994-12-01 1996-06-18 Bridgestone Corp 雪上走行および氷上走行に適した空気入りタイヤ
JPH0958218A (ja) 1995-08-28 1997-03-04 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JPH10324116A (ja) 1997-03-26 1998-12-08 Bridgestone Corp 操縦安定性に優れる空気入りタイヤ
JP2000108615A (ja) * 1998-10-07 2000-04-18 Bridgestone Corp 方向性傾斜溝を備えた乗用車用空気入りラジアル・タイヤ
JP2003182312A (ja) 2001-12-20 2003-07-03 Bridgestone Corp 空気入りタイヤ
JP2010513117A (ja) 2006-12-21 2010-04-30 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ 改良トレッドパターンを有する車両ホイール用タイヤ
JP2012096784A (ja) 2010-10-29 2012-05-24 Goodyear Tire & Rubber Co:The スタッドレスタイヤの中央トレッドパターン
JP2013119306A (ja) * 2011-12-07 2013-06-17 Yokohama Rubber Co Ltd:The 空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3047983A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10427466B2 (en) * 2013-12-20 2019-10-01 Sumitomo Rubber Industries, Ltd. Tire for winter
JP2017128217A (ja) * 2016-01-20 2017-07-27 住友ゴム工業株式会社 空気入りタイヤ
US11760133B2 (en) 2018-02-09 2023-09-19 The Yokohama Rubber Co., Ltd. Pneumatic tire
WO2019159892A1 (ja) * 2018-02-14 2019-08-22 横浜ゴム株式会社 空気入りタイヤ
JP2019137328A (ja) * 2018-02-14 2019-08-22 横浜ゴム株式会社 空気入りタイヤ
RU2742063C1 (ru) * 2018-02-14 2021-02-02 Дзе Йокогама Раббер Ко., Лтд. Пневматическая шина
JP7031348B2 (ja) 2018-02-14 2022-03-08 横浜ゴム株式会社 空気入りタイヤ
CN110341385A (zh) * 2018-04-06 2019-10-18 住友橡胶工业株式会社 轮胎
WO2020170466A1 (ja) * 2019-02-20 2020-08-27 横浜ゴム株式会社 空気入りタイヤ
JP2020131944A (ja) * 2019-02-20 2020-08-31 横浜ゴム株式会社 空気入りタイヤ

Also Published As

Publication number Publication date
US20160243899A1 (en) 2016-08-25
RU2016119742A (ru) 2017-11-29
CN105682945A (zh) 2016-06-15
CN107933202B (zh) 2019-12-03
CN107933202A (zh) 2018-04-20
JP2015081076A (ja) 2015-04-27
EP3047983A4 (en) 2017-05-10
CN105682945B (zh) 2018-03-09
EP3047983A1 (en) 2016-07-27
US10131188B2 (en) 2018-11-20
EP3047983B1 (en) 2019-12-25
JP6248537B2 (ja) 2017-12-20
RU2640917C2 (ru) 2018-01-12

Similar Documents

Publication Publication Date Title
JP6248537B2 (ja) 空気入りタイヤ
US10668774B2 (en) Pneumatic tire
JP5835112B2 (ja) 空気入りタイヤ
US10500903B2 (en) Pneumatic tire
WO2018016302A1 (ja) 空気入りタイヤ
AU2015329071B2 (en) Pneumatic tire
US9346323B2 (en) Pneumatic tire
JP5920532B2 (ja) 空気入りタイヤ
WO2016117695A1 (ja) 空気入りタイヤ
WO2016117696A1 (ja) 空気入りタイヤ
JP2013249018A (ja) 空気入りタイヤ
WO2018116512A1 (ja) 空気入りタイヤ
JP2013189137A (ja) 空気入りタイヤ
WO2018117083A1 (ja) 空気入りタイヤ
WO2016017543A1 (ja) 空気入りタイヤ
WO2019159544A1 (ja) 空気入りタイヤ
WO2017043227A1 (ja) 空気入りタイヤ
JP2015178337A (ja) 空気入りタイヤ
JP2018099955A (ja) 空気入りタイヤ
JP2020006878A (ja) 空気入りタイヤ
JP2019194038A (ja) 空気入りタイヤ
JP2018099957A (ja) 空気入りタイヤ
JP6825252B2 (ja) 空気入りタイヤ
JP2023115554A (ja) タイヤ
JP2021008162A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855548

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014855548

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15031698

Country of ref document: US

Ref document number: 2014855548

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016119742

Country of ref document: RU

Kind code of ref document: A