WO2015049736A1 - Crスナバ回路 - Google Patents

Crスナバ回路 Download PDF

Info

Publication number
WO2015049736A1
WO2015049736A1 PCT/JP2013/076822 JP2013076822W WO2015049736A1 WO 2015049736 A1 WO2015049736 A1 WO 2015049736A1 JP 2013076822 W JP2013076822 W JP 2013076822W WO 2015049736 A1 WO2015049736 A1 WO 2015049736A1
Authority
WO
WIPO (PCT)
Prior art keywords
snubber circuit
substrate
capacitor
current path
circuit according
Prior art date
Application number
PCT/JP2013/076822
Other languages
English (en)
French (fr)
Inventor
光彦 神田
静里 田村
彰 畑井
安泰 関本
祐二 野尻
良知 林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020147021051A priority Critical patent/KR101534453B1/ko
Priority to CN201380007824.5A priority patent/CN104704729B/zh
Priority to US14/364,363 priority patent/US9570972B2/en
Priority to JP2014505454A priority patent/JP5558645B1/ja
Priority to PCT/JP2013/076822 priority patent/WO2015049736A1/ja
Priority to TW103101115A priority patent/TWI495237B/zh
Publication of WO2015049736A1 publication Critical patent/WO2015049736A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1225Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to internal faults, e.g. shoot-through
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/045Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/346Passive non-dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/348Passive dissipative snubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a CR snubber circuit.
  • the switching element such as a power semiconductor module
  • a spike-like surge voltage is generated.
  • this surge voltage is large, there is a risk of causing a short circuit breakdown of the switching element.
  • the impedance component between the snubber capacitor and the semiconductor module is reduced by connecting the snubber capacitor and the semiconductor module via a metal bar having a relatively high conductivity and the wiring on the substrate, thereby reducing the switching element.
  • the impedance components for each semiconductor module are made approximately equal.
  • a technique for equalizing the surge voltage protection effect in each semiconductor module is disclosed (for example, Patent Document 1).
  • the above prior art shows a configuration in which currents having opposite polarities are supplied to adjacent conductor plates via an insulating material.
  • the mutual inductance component between the conductor plates increases, the effective impedance component of the wiring can be reduced, and surge voltage protection by the snubber capacitor is facilitated.
  • the symmetry of the current path including the arrangement of components is not mentioned, and there has been a problem that a sufficient effect of reducing the effective inductance component may not be obtained.
  • a ringing component that vibrates at a higher frequency is generated following the spike-like surge voltage.
  • This ringing component becomes a noise source to the power supply and the load.
  • the above-mentioned conventional technology alleviates the spike-like surge voltage that flows when the switching element having a frequency lower than that of the ringing component is turned off. There is a problem that it is difficult to reduce the ringing component that vibrates at a high frequency.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a CR snubber circuit capable of enhancing the effect of reducing the effective inductance component and suppressing the ringing component generated at the time of switching of the switching element. To do.
  • a CR snubber circuit includes a capacitor and a resistor connected in series between DC terminals for applying a DC voltage to a power semiconductor module including a switching element.
  • a CR snubber circuit formed on the substrate, the first current path formed on one side of the substrate and the second current path formed on the other side of the back surface of the one side of the substrate.
  • the capacitor and the resistor are arranged so that current flows in opposite directions in the first current path and the second current path, with the substrate facing each other and the first current path and the second current path.
  • An effective inductance component obtained by combining an inductance component included in the current path and an inductance component included in the second current path, and the capacitor and the resistor And forming a pass elimination filter.
  • FIG. 1 is a diagram illustrating a configuration example of a power semiconductor module to which the CR snubber circuit according to the first embodiment is applied.
  • FIG. 2 is a diagram illustrating an example of an output voltage waveform to the load before and after the switching element is turned off.
  • FIG. 3 is a diagram illustrating an example of frequency characteristics of the CR snubber circuit according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of mounting the CR snubber circuit according to the first embodiment on a substrate.
  • FIG. 5 is a diagram showing an example of mounting a substrate on which the CR snubber circuit shown in FIG. 4 is mounted on a power semiconductor module.
  • FIG. 6 is a diagram illustrating an example of mounting the CR snubber circuit according to the first embodiment on the substrate, which is different from FIG. 4.
  • FIG. 7 is a diagram showing an example of mounting a substrate on which the CR snubber circuit shown in FIG. 6 is mounted on a power semiconductor module.
  • FIG. 8 is a diagram showing an equivalent circuit of the CR snubber circuit shown in FIGS. 4 and 6.
  • FIG. 9 is a diagram illustrating an example of mounting the CR snubber circuit according to the second embodiment on a substrate.
  • FIG. 10 is a diagram showing an example of mounting the CR snubber circuit according to the second embodiment on the substrate different from FIG. FIG.
  • FIG. 11 is a diagram illustrating an equivalent circuit of the CR snubber circuit illustrated in FIGS. 9 and 10.
  • FIG. 12 is a diagram illustrating an example of mounting the CR snubber circuit according to the third embodiment on a substrate.
  • FIG. 13 is a diagram showing an equivalent circuit of the CR snubber circuit shown in FIG.
  • FIG. 14 is a diagram illustrating an example of frequency characteristics of the CR snubber circuit according to the third embodiment.
  • FIG. 15 is a diagram illustrating an example of mounting the CR snubber circuit according to the fourth embodiment on a substrate.
  • FIG. 16 is a diagram showing an equivalent circuit of the CR snubber circuit shown in FIG. FIG.
  • FIG. 17 is a diagram illustrating an example of mounting the CR snubber circuit according to the fifth embodiment on a substrate.
  • FIG. 18 is a diagram illustrating an example of mounting the CR snubber circuit according to the fifth embodiment on a substrate different from FIG.
  • FIG. 19 is a diagram showing an example of mounting the CR snubber circuit according to the fifth embodiment on the substrate, which is different from FIGS. 17 and 18.
  • 20 is a diagram showing an equivalent circuit of the CR snubber circuit shown in FIG.
  • FIG. 21 is a diagram illustrating an example of mounting the CR snubber circuit according to the sixth embodiment on a substrate.
  • FIG. 22 is a diagram showing an equivalent circuit of the CR snubber circuit shown in FIG. FIG.
  • FIG. 23 is a diagram showing an example of mounting the CR snubber circuit according to the sixth embodiment on the substrate different from FIG.
  • FIG. 24 is a diagram illustrating an example of mounting the CR snubber circuit according to the seventh embodiment on a substrate.
  • FIG. 25 is a diagram showing an equivalent circuit of the CR snubber circuit shown in FIG.
  • FIG. 26 is a diagram of an example of mounting the CR snubber circuit according to the eighth embodiment on a substrate.
  • FIG. 1 is a diagram illustrating a configuration example of a power semiconductor module to which the CR snubber circuit according to the first embodiment is applied.
  • a power semiconductor module 100 is formed by full-bridge connection of a plurality of switching elements 7a to 7f, and DC power is supplied from a DC power source 1 connected between DC terminals PN to output terminals.
  • the structure which supplies three-phase alternating current power to the load which is not shown in figure connected to U, V, and W is shown.
  • the configuration of the power semiconductor module 100 is not limited to this.
  • the power semiconductor module 100 may be formed by full-bridge connection of four switching elements, or formed by one or two switching elements, 1 may be configured such that the DC power supplied from 1 is stepped down or boosted and supplied to the load, or instead of the DC power supply 1, AC power may be supplied from an AC power supply. That is, the power semiconductor module 100 may be configured to include one or more switching elements, and the present invention is not limited by the configuration of the power semiconductor module 100. Further, a circuit configuration in which an AC power source is rectified with a diode instead of the DC power source 1 may be used.
  • the smoothing capacitor 2 Between the DC terminals PN of the power semiconductor module 100, the smoothing capacitor 2, the snubber capacitor 3, and the CR snubber circuit 4 according to the first embodiment are connected.
  • the smoothing capacitor 2 mainly has a function of smoothing the DC power source 1, and the snubber capacitor 3 has a function of suppressing spike-like surge voltage generated when the switching elements 7a to 7f constituting the power semiconductor module 100 are turned off. is doing.
  • the CR snubber circuit 4 includes a capacitor 5 and a resistor 6 connected in series, and oscillates at a higher frequency generated following a spiked surge voltage after the switching elements 7a to 7f are turned off. It has a function of suppressing ringing components. This ringing component is generated due to a parasitic inductance component included in the power semiconductor module 100.
  • FIG. 2 is a diagram showing an example of an output voltage waveform to the load before and after the switching element is turned off.
  • 2A shows an output voltage waveform when the CR snubber circuit according to the first embodiment is not mounted
  • FIG. 2B shows an output voltage when the CR snubber circuit according to the first embodiment is mounted.
  • the waveform is shown.
  • FIG. 3 is a diagram illustrating an example of frequency characteristics of the CR snubber circuit according to the first embodiment.
  • the snubber capacitor 3 is, for example, about 0.1 ⁇ F to 1 ⁇ F
  • the capacitor 5 constituting the CR snubber circuit 4 is, for example, about several nF to several tens of nF
  • the inductance included in the current path of the CR snubber circuit 4 Together with the components, a BEF (Band Elimination Filter) that attenuates ringing components having a frequency higher than the surge voltage generated when the switching elements 7a to 7f are turned off is formed (see FIG. 3).
  • a BEF Band Elimination Filter
  • a resistor 6 of about several ⁇ is connected in series with the capacitor 5 to increase the attenuation effect of the ringing component.
  • FIG. 4 is a diagram illustrating an example of mounting the CR snubber circuit according to the first embodiment on a substrate.
  • FIG. 5 is a diagram showing an example of mounting a substrate on which the CR snubber circuit shown in FIG. 4 is mounted on a power semiconductor module.
  • FIG. 6 is a diagram showing an example of mounting the CR snubber circuit according to the first embodiment, which is different from FIG. 4 on the substrate.
  • FIG. 7 is a diagram showing an example of mounting a substrate on which the CR snubber circuit shown in FIG. 6 is mounted on a power semiconductor module.
  • FIG. 8 is a diagram showing an equivalent circuit of the CR snubber circuit shown in FIGS. 4 and 6.
  • the surface mount type capacitor 5 and the resistor 6a are mounted on one side of the double-sided substrate 9 (the left side in FIG. 4, the top in FIG. 6) (FIG. 8A).
  • the first current path formed including the capacitor 5 and the resistor 6a is formed by a wiring pattern formed on the other surface of the double-sided substrate 9 (the right side surface in FIG. 4 and the bottom surface in FIG. 6).
  • the two-sided substrate 9 is opposed to the current path.
  • the inductance component included in the current path 2 is combined to increase the mutual inductance component, so that the effective inductance component of the entire current path of the CR snubber circuit 4 can be reduced. Since it can be reduced, the ringing component can be easily suppressed.
  • a plurality of mounting positions of the resistor 6 shown in FIG. 1 are provided, and in the examples shown in FIGS. 4 and 6, the resistor 6a is mounted.
  • the resistor 6b or the resistor 6c is mounted instead of the resistor 6a.
  • a plurality of resistors 6a to 6c may be mounted in parallel (see FIG. 8B). In this way, by changing the mounting position and the number of mounting of the resistor 6, the inductance component and BEF characteristics included in the current path can be easily changed, and the attenuation effect of the ringing component can be optimized. Become.
  • the CR snubber circuit is provided between the DC terminals PN of the power semiconductor module, and together with the inductance component included in the current path of the CR snubber circuit, the switching element
  • a surface mount type capacitor and a resistor are mounted on one side of the double-sided board.
  • the first current path including the second current path formed by the wiring pattern on the other side of the double-sided substrate is arranged to face the second current path with the double-sided board interposed therebetween, the first current path and the second current path In the current path, currents in opposite directions flow, and the inductance component included in the first current path and the inductor included in the second current path And the mutual inductance component increase, the effective inductance component of the entire current path of the CR snubber circuit can be reduced, and the capacitance value of the capacitor can be reduced. Can be easily suppressed.
  • the inductance component and the BEF characteristics included in the current path can be easily changed by changing the resistor mounting position and the number of mounted resistors. Optimization can be achieved.
  • FIG. 9 is a diagram illustrating an example of mounting the CR snubber circuit according to the second embodiment on a substrate.
  • FIG. 10 is a diagram showing an example of mounting the CR snubber circuit according to the second embodiment on the substrate different from FIG.
  • FIG. 11 is a diagram showing an equivalent circuit of the CR snubber circuit shown in FIGS. 9 and 10.
  • the mounting example of the substrate on which the CR snubber circuit shown in FIG. 9 is mounted on the power semiconductor module is the same as that in FIG. 5 described in the first embodiment, and the CR snubber circuit shown in FIG. 10 is mounted.
  • An example of mounting the substrate on the power semiconductor module is the same as that in FIG. 7 described in the first embodiment, and thus description thereof is omitted here.
  • FIGS. 9 and 10 In the first embodiment, the example in which the surface mounting type capacitor and the resistor are mounted on one surface of the double-sided board has been described. However, in the example shown in FIGS. 9 and 10, one side of the double-sided board 9 (in FIG. 9) A surface mount type capacitor 5-1 and a resistor 6a-1 are mounted on the left side (upper surface in FIG. 10), and the other side of the double-sided substrate 9 (right side in FIG. 9, lower surface in FIG. 10). A mounting type capacitor 5-2 and a resistor 6a-2 are mounted (see FIG.
  • the capacitor 5-1 and the capacitor 5-2 are arranged opposite to each other with the double-sided board 9 interposed therebetween, and the resistor 6a-1 And the resistor 6a-2 are disposed opposite to each other with the double-sided board 9 interposed therebetween, and a first current path formed on one side of the double-sided board 9 and a second current path formed on the other side of the double-sided board 9 are provided.
  • the two-sided substrates 9 are opposed to each other.
  • the capacitors 5-1 and 5-2 are connected in series, and the resistors 6a-1 and 6a-2 are connected in series, which is lower than in the first embodiment. It can be configured using a pressure-resistant component.
  • the same number of mounting positions of the resistor 6 shown in FIG. 1 are provided on the one surface and the other surface of the double-sided substrate 9, and the resistors 6a-1 and 6a-2 are mounted in the examples shown in FIGS.
  • the resistors 6a-1 and 6a-2 instead of the resistors 6a-1 and 6a-2, the resistors 6b-1 and 6b-2 or the resistors 6c-1 and 6c-2 may be mounted.
  • a plurality of combinations of the series circuits of the resistors 6a-1, 6a-2, the resistors 6b-1, 6b-2, and the resistors 6c-1, 6c-2 may be mounted in parallel (FIG. 11). (See (b)). In this way, by changing the mounting position and the number of mounting of the resistor 6, the inductance component and BEF characteristics included in the current path can be easily changed, and the attenuation effect of the ringing component can be optimized. Become.
  • the surface mount type capacitor and the resistor are arranged opposite to each other on one side and the other side of the double-sided board, with the double-sided board interposed therebetween. Since the first current path formed in the direction and the second current path formed on the other surface of the double-sided substrate are opposed to each other across the double-sided substrate, the first current path is the same as in the first embodiment. Currents in opposite directions flow through the current path and the second current path, and the inductance component included in the first current path and the inductance component included in the second current path are combined to increase the mutual inductance component. In addition, the effective inductance component of the entire current path of the CR snubber circuit can be reduced, and the capacitance value of each capacitor can be reduced. .
  • the capacitor on one side and the capacitor on the other side are connected in series, and the resistance on one side and the resistance on the other side are connected in series. Also, it can be configured using low breakdown voltage components. Further, in the case of using a capacitor having a withstand voltage equivalent to that of the first embodiment, it can be applied to a higher voltage circuit.
  • the inductance component and the BEF characteristics included in the current path can be easily changed by changing the resistor mounting position and the number of mounted resistors. Optimization can be achieved.
  • FIG. 12 is a diagram illustrating an example of mounting the CR snubber circuit according to the third embodiment on a substrate.
  • FIG. 13 is a diagram showing an equivalent circuit of the CR snubber circuit shown in FIG.
  • FIG. 14 is a diagram illustrating an example of frequency characteristics of the CR snubber circuit according to the third embodiment. Note that an example of mounting the substrate on which the CR snubber circuit shown in FIG. 12 is mounted on the power semiconductor module is the same as in FIG. 5 described in the first embodiment, and thus the description thereof is omitted here.
  • Capacitor 5a, 5b, 5c can be mounted, and a surface mount type resistor 6 is mounted, and a first current path formed including these capacitors 5a, 5b, 5c and resistor 6 is formed on the double-sided substrate 9.
  • the second current path formed by the wiring pattern on the other side is opposed to the double-sided board 9 therebetween.
  • BEFs having different resonance frequencies are formed (for example, BEF characteristics 1 and BEF characteristics in FIG. 14).
  • the BEF characteristic of the CR snubber circuit 4 is a composite characteristic of the plurality of BEF characteristics (the composite BEF characteristic in FIG. 14). As shown in FIG. 14, the frequency range in which the attenuation effect is large with respect to the frequency of the ringing component Can be enlarged.
  • the inductance value can be varied according to the capacitor mounting position, and the BEF resonance frequency is changed. be able to.
  • BEFs having different resonance frequencies are formed, so that it is possible to expand the frequency range in which the damping effect is large with respect to the frequency of the ringing component.
  • FIG. 15 is a diagram illustrating an example of mounting the CR snubber circuit according to the fourth embodiment on a substrate.
  • FIG. 16 is a diagram showing an equivalent circuit of the CR snubber circuit shown in FIG. Note that an example of mounting the substrate on which the CR snubber circuit shown in FIG. 15 is mounted on the power semiconductor module is the same as that in FIG. 5 described in the first embodiment, and thus description thereof is omitted here.
  • the example in which the surface mount type capacitor and the resistor are mounted on one surface of the double-sided board is described.
  • a plurality of surface mount capacitors 5a-1, 5b-1, 5c-1 can be mounted on the left side surface in FIG. 15, and a surface mount resistor 6-1 is mounted.
  • a plurality of surface mount type capacitors 5a-2, 5b-2, 5c-2 can be mounted on the other side (right side in FIG. 15), and a surface mount type resistor 6-2 is mounted.
  • each of the capacitors 5a-1, 5a-2, capacitors 5b-1, 5b-2, capacitors 5c-1, 5c-2 can be arranged opposite to each other with the double-sided board 9 interposed therebetween, and resistors 6-1 and 6-2 Are arranged opposite to each other with the double-sided substrate 9 interposed therebetween, and the first formed on one side of the double-sided substrate 9 And a second current path formed on the other surface of the current path and the double-sided substrate 9 are opposite to each other at a two-sided substrate 9.
  • each of the capacitors 5a-1, 5a-2, the capacitors 5b-1, 5b-2, and the combinations of the capacitors 5c-1, 5c-2 can be selected and mounted.
  • the inductance value can be varied according to the mounting position of each combination, and the resonance frequency of the BEF can be changed as in the third embodiment.
  • capacitors 5a-1, 5a-2, capacitors 5b-1, 5b-2, capacitors 5c-1, 5c-2 are connected in series, and resistors 6- Since 1 and 6-2 are connected in series, it can be configured using parts having a lower breakdown voltage than those of the first and third embodiments. Further, when configured using a capacitor having a breakdown voltage equivalent to that of the first and third embodiments, it can be applied to a higher voltage circuit.
  • the CR snubber circuit of the fourth embodiment since a plurality of capacitor mounting positions are provided as in the third embodiment, it is possible to vary the inductance value according to the capacitor mounting position.
  • the resonance frequency of the BEF can be changed.
  • BEFs having different resonance frequencies are formed, so that the frequency has a large attenuation effect with respect to the frequency of the ringing component.
  • the range can be expanded.
  • the capacitor on one side and the capacitor on the other side are connected in series, and the resistance on one side and the resistance on the other side are connected in series. Therefore, it can be configured using parts having a lower withstand voltage than those of the first and third embodiments.
  • FIG. 17 is a diagram illustrating an example of mounting the CR snubber circuit according to the fifth embodiment on a substrate.
  • the equivalent circuit of the CR snubber circuit shown in FIG. 17 is the same as that shown in FIG.
  • an example of mounting the substrate on which the CR snubber circuit shown in FIG. 17 is mounted on the power semiconductor module is the same as that in FIG. 5 described in the first embodiment, and thus description thereof is omitted here.
  • capacitor 5 is formed of discrete components.
  • FIG. 18 is a diagram illustrating a mounting example different from FIG. 17 on the substrate of the CR snubber circuit according to the fifth embodiment. Note that an equivalent circuit of the CR snubber circuit shown in FIG. 18 is the same as that of FIG. 13 described in the third embodiment, and thus description thereof is omitted here. An example of mounting the substrate on which the CR snubber circuit shown in FIG. 18 is mounted on the power semiconductor module is the same as that in FIG. 5 described in the first embodiment, and thus description thereof is omitted here.
  • each capacitor 5a, 5b, 5c is formed of discrete type components.
  • FIG. 19 is a diagram showing an example of implementation different from FIGS. 17 and 18 on the substrate of the CR snubber circuit according to the fifth embodiment.
  • FIG. 20 is a diagram showing an equivalent circuit of the CR snubber circuit shown in FIG.
  • An example of mounting the substrate on which the CR snubber circuit shown in FIG. 19 is mounted on the power semiconductor module is the same as that in FIG. 5 described in the first embodiment, and thus description thereof is omitted here.
  • FIG. 19 shows an example in which the capacitors 5a and 5b are configured by connecting two discrete parts in series to the example shown in FIG.
  • capacitors have low withstand voltage.
  • the capacitor 5 constituting the CR snubber circuit 4 is a discrete component, so that a high breakdown voltage can be achieved.
  • the CR snubber circuit of the fifth embodiment it is possible to obtain the same effects as those of the first to fourth embodiments described above. Further, by configuring the capacitor with discrete components, a high breakdown voltage can be obtained. Can be achieved.
  • FIG. 21 is a diagram illustrating an example of mounting the CR snubber circuit according to the sixth embodiment on a substrate.
  • FIG. 22 is a diagram showing an equivalent circuit of the CR snubber circuit shown in FIG.
  • An example of mounting the substrate on which the CR snubber circuit shown in FIG. 21 is mounted on the power semiconductor module is the same as that in FIG. 5 described in the first embodiment, and thus the description thereof is omitted here.
  • FIG. 21 shows an example in which the capacitor 5 constituting the CR snubber circuit 4 is formed by a substrate pattern (copper foil) of the double-sided substrate 9.
  • the first current path formed on one surface of the double-sided board 9 and the second current path formed on the other side are opposed to each other with the double-sided board 9 interposed therebetween. By doing so, currents in opposite directions flow in the first current path and the second current path, and the inductance component included in the first current path and the inductance component included in the second current path are combined.
  • the capacitor 5 can be formed with the substrate pattern of the double-sided substrate 9.
  • the capacitor 5 is formed with a substrate pattern, the same effects as those of the first to fourth embodiments can be obtained, and the number of parts can be reduced.
  • FIG. 23 is a diagram illustrating a mounting example different from FIG. 21 on the substrate of the CR snubber circuit according to the sixth embodiment. Note that an example of mounting the substrate on which the CR snubber circuit shown in FIG. 23 is mounted on the power semiconductor module is the same as that in FIG. 5 described in Embodiment 1, and thus description thereof is omitted here.
  • a four-layer substrate 9a is used instead of the double-sided substrate 9 shown in FIG. 23.
  • the area of the capacitor 5 on the substrate surface can be reduced.
  • the same effects as those of the first to fourth embodiments described above can be obtained, and the number of components can be increased by forming a capacitor with a substrate pattern. Can be reduced.
  • the area of the capacitor on the substrate surface can be reduced.
  • FIG. 24 is a diagram illustrating an example of mounting the CR snubber circuit according to the seventh embodiment on a substrate.
  • FIG. 25 is a diagram showing an equivalent circuit of the CR snubber circuit shown in FIG. Note that an example of mounting the substrate on which the CR snubber circuit shown in FIG. 24 is mounted on the power semiconductor module is the same as in FIG. 5 described in the first embodiment, and thus the description thereof is omitted here.
  • the surface mount type capacitor 5 and the resistor 6a are mounted on one side (left side in FIG. 24) of the double-sided board 9 (see FIG. 25).
  • the first current path formed including the capacitor 5 and the resistor 6a sandwiches the double-sided board 9 between the second current path formed by the wiring pattern on the other side (the right side in FIG. 24) of the double-sided board 9. They are facing each other. With this configuration, currents in opposite directions flow in the first current path and the second current path (see the front view in FIG.
  • the inductance component included in the current path 2 is combined to increase the mutual inductance component, so that the effective inductance component of the entire current path of the CR snubber circuit 4 can be reduced. Since it can be reduced, the ringing component can be easily suppressed.
  • a plurality of mounting positions of the resistor 6 shown in FIG. 1 are provided, and in the example shown in FIG. 24, the resistor 6a is mounted.
  • the resistor 6b or resistor 6c may be mounted, or a plurality of resistors 6a to 6c may be mounted in parallel. In this way, by changing the mounting position and the number of mounting of the resistor 6, the inductance component and BEF characteristics included in the current path can be easily changed, and the attenuation effect of the ringing component can be optimized. Become.
  • a pattern fuse 10 formed of a substrate pattern is provided on the other side (right side in FIG. 24) of the double-sided substrate 9 (see FIG. 25).
  • an overcurrent may flow between the DC terminals PN of the power semiconductor module 100.
  • the pattern fuse 10 described above is provided, When an overcurrent flows due to a component short circuit or the like, the pattern fuse 10 is blown to protect the DC power source 1 and externally connected devices.
  • the configuration example in which the pattern fuse 10 is provided in the configuration described in the first embodiment is shown.
  • the pattern fuse 10 is added to the configuration described in the second to sixth embodiments. Needless to say, it is also possible to adopt a provided configuration.
  • the CR snubber circuit of the seventh embodiment it is possible to obtain the same effects as those of the first to fourth embodiments described above, and further, by forming a pattern fuse with a substrate pattern, When an overcurrent is about to flow due to a short circuit or the like, the pattern fuse is blown to protect a DC power supply, an external connection device, or the like.
  • FIG. 26 is a diagram of an example of mounting the CR snubber circuit according to the eighth embodiment on a substrate. Note that an equivalent circuit of the CR snubber circuit shown in FIG. 26 is the same as that of FIG. 11 described in the second embodiment, and thus description thereof is omitted here. In addition, an example of mounting the substrate on which the CR snubber circuit shown in FIG. 26 is mounted on the power semiconductor module is the same as that in FIG. 5 described in the first embodiment, and thus description thereof is omitted here.
  • a surface-mount type capacitor 5-1 and a resistor 6a-1 are mounted on one side (the left side in FIG. 26) of the double-sided board 9, and the double-sided board A surface mount type capacitor 5-2 and a resistor 6a-2 are mounted on the other side (the right side surface in FIG. 26), and the capacitor 5-1 and the capacitor 5-2 are disposed opposite to each other with the double-sided board 9 interposed therebetween. Then, the resistor 6a-1 and the resistor 6a-2 are disposed opposite to each other with the double-sided substrate 9 interposed therebetween, and the first current path formed on one side of the double-sided substrate 9 and the first current path formed on the other side of the double-sided substrate 9 are arranged.
  • the two current paths are opposed to each other with the double-sided substrate 9 interposed therebetween.
  • currents in opposite directions flow in the first current path and the second current path, and the inductance component included in the first current path and the second current path.
  • the mutual inductance component is increased by combining with the inductance component included in the current path, and the effective inductance component of the entire current path of the CR snubber circuit 4 can be reduced. Since the capacitance value of ⁇ 2 can be reduced, the ringing component can be easily suppressed.
  • the capacitors 5-1 and 5-2 are connected in series, and the resistors 6a-1 and 6a-2 are connected in series. Also, it can be configured using low breakdown voltage components. Further, in the case of using a capacitor having a withstand voltage equivalent to that of the first embodiment, it can be applied to a higher voltage circuit.
  • each resistor 6a-1, 6a is provided on one side and the other side of the double-sided substrate 9, and in the example shown in FIG. 26, each resistor 6a-1, 6a is provided.
  • -2 has been shown, but instead of the resistors 6a-1 and 6a-2, the resistors 6b-1 and 6b-2 or the resistors 6c-1 and 6c-2 may be mounted.
  • a plurality of combinations of series circuits of the resistors 6a-1, 6a-2, the resistors 6b-1, 6b-2, and the resistors 6c-1, 6c-2 are mounted in parallel. Also good.
  • the inductance component and the characteristics of BEF included in the current path can be easily changed as in the second embodiment, and the attenuation effect of the ringing component can be reduced. Optimization can be achieved.
  • the capacitor 5-1 mounted on one surface of the double-sided board 9 is a ceramic capacitor
  • the capacitor 5-2 mounted on the other surface is a film capacitor (see FIG. 26).
  • the capacitor 5-1 mounted on one surface of the double-sided substrate 9 is a ceramic capacitor
  • the capacitor 5-2 mounted on the other surface is a film capacitor, so that the capacitor is a ceramic capacitor.
  • the capacitor 5-1 mounted on one surface of the double-sided board 9 is a ceramic capacitor
  • the capacitor 5-2 mounted on the other surface is a film capacitor
  • the capacitor 5-1 mounted on one surface of the double-sided board 9 may be a film capacitor
  • the capacitor 5-2 mounted on the other surface may be a ceramic capacitor.
  • the configuration described in the fifth embodiment is used. As shown in FIG. 19, in the configuration in which a plurality of capacitors are connected in series to form the capacitor 5, one is a ceramic capacitor and the other is a film capacitor, which is the same as the configuration of FIG. 26 described in the present embodiment. It goes without saying that the effect of can be obtained.
  • the same effects as those of the first to fourth embodiments described above can be obtained, and any of a plurality of capacitors connected in series can be obtained.
  • the film capacitor opens and breaks, protecting the DC power supply and external devices. be able to.
  • the configuration shown in the above embodiment is an example of the configuration of the present invention, and can be combined with another known technique, and a part thereof is omitted without departing from the gist of the present invention. Needless to say, it is possible to change the configuration.
  • the present invention is useful as a technique for enhancing the effect of reducing the effective inductance component of the CR snubber circuit, and particularly suitable for suppressing the ringing component generated when switching the switching element included in the power semiconductor module. ing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 実効インダクタンス成分の低減効果を高め、スイッチング素子のスイッチング時に発生するリンギング成分を抑制することが可能なCRスナバ回路を得る。基板の一方面に形成される第1の電流経路と基板の一方面の裏面の他方面に形成される第2の電流経路とが前記基板を挟み対向し、且つ、第1の電流経路と第2の電流経路とで互いに逆向きに電流が流れるように、コンデンサ5と抵抗6とが配置され、第1の電流経路に含まれるインダクタンス成分と第2の電流経路に含まれるインダクタンス成分とが結合して得られる実効インダクタンス成分と、コンデンサ5および抵抗6とにより帯域除去フィルタを形成する。

Description

CRスナバ回路
 本発明は、CRスナバ回路に関する。
 パワー半導体モジュールなどのスイッチング素子のオフ時には、スパイク状のサージ電圧が発生する。このサージ電圧が大きいと、スイッチング素子の短絡破壊を招く虞がある。従来、スナバコンデンサと半導体モジュールとの間を比較的導電性の高い金属バーおよび基板上の配線を介して接続することで、スナバコンデンサと半導体モジュールとの間のインピーダンス成分を低下させ、スイッチング素子をオフしたときに流れるスパイク状のサージ電圧を緩和すると共に、隣り合う半導体モジュールに対してスナバコンデンサとの間の配線長を均一にすることで、それぞれの半導体モジュールに対するインピーダンス成分をほぼ等しくすることにより、それぞれの半導体モジュールにおけるサージ電圧保護効果を均等にする技術が開示されている(例えば、特許文献1)。
特開2003-219661号公報
 上記従来技術では、絶縁材料を介して隣り合う導体板にそれぞれ相反する極性の電流が供給される構成が示されている。これにより、導体板間の相互インダクタンス成分が増加し、配線の実効インピーダンス成分を小さくすることができ、スナバコンデンサによるサージ電圧保護が容易となる。しかしながら、部品の配置を含めた電流経路の対称性については言及されておらず、十分な実効インダクタンス成分の低減効果を得ることができない場合がある、という問題があった。
 また、スイッチング素子のオフ後には、スパイク状のサージ電圧に続き、より高い周波数で振動するリンギング成分が発生する。このリンギング成分は、電源や負荷へのノイズ源となるが、上記従来技術は、このリンギング成分よりも低い周波数のスイッチング素子をオフしたときに流れるスパイク状のサージ電圧を緩和するものであり、より高い周波数で振動するリンギング成分をも低減するのは難しい、という問題があった。
 本発明は、上記に鑑みてなされたものであって、実効インダクタンス成分の低減効果を高め、スイッチング素子のスイッチング時に発生するリンギング成分を抑制することが可能なCRスナバ回路を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明にかかるCRスナバ回路は、スイッチング素子を含み形成されたパワー半導体モジュールに直流電圧を印加する直流端子間に直列接続されたコンデンサと抵抗とを含み、基板上に形成されるCRスナバ回路であって、前記基板の一方面に形成される第1の電流経路と前記基板の一方面の裏面の他方面に形成される第2の電流経路とが前記基板を挟み対向し、且つ、前記第1の電流経路と前記第2の電流経路とで互いに逆向きに電流が流れるように、前記コンデンサと前記抵抗とが配置され、前記第1の電流経路に含まれるインダクタンス成分と前記第2の電流経路に含まれるインダクタンス成分とが結合して得られる実効インダクタンス成分と、前記コンデンサおよび前記抵抗とにより帯域除去フィルタを形成することを特徴とする。
 本発明によれば、実効インダクタンス成分の低減効果を高め、スイッチング素子のスイッチング時に発生するリンギング成分を抑制することが可能となる、という効果を奏する。
図1は、実施の形態1にかかるCRスナバ回路を適用したパワー半導体モジュールの一構成例を示す図である。 図2は、スイッチング素子オフ前後における負荷への出力電圧波形の一例を示す図である。 図3は、実施の形態1にかかるCRスナバ回路の周波数特性例を示す図である。 図4は、実施の形態1にかかるCRスナバ回路の基板への一実装例を示す図である。 図5は、図4に示すCRスナバ回路を実装した基板のパワー半導体モジュールへの実装例を示す図である。 図6は、実施の形態1にかかるCRスナバ回路の基板への図4とは異なる一実装例を示す図である。 図7は、図6に示すCRスナバ回路を実装した基板のパワー半導体モジュールへの実装例を示す図である。 図8は、図4および図6に示すCRスナバ回路の等価回路を示す図である。 図9は、実施の形態2にかかるCRスナバ回路の基板への一実装例を示す図である。 図10は、実施の形態2にかかるCRスナバ回路の基板への図9とは異なる一実装例を示す図である。 図11は、図9および図10に示すCRスナバ回路の等価回路を示す図である。 図12は、実施の形態3にかかるCRスナバ回路の基板への一実装例を示す図である。 図13は、図12に示すCRスナバ回路の等価回路を示す図である。 図14は、実施の形態3にかかるCRスナバ回路の周波数特性例を示す図である。 図15は、実施の形態4にかかるCRスナバ回路の基板への一実装例を示す図である。 図16は、図15に示すCRスナバ回路の等価回路を示す図である。 図17は、実施の形態5にかかるCRスナバ回路の基板への一実装例を示す図である。 図18は、実施の形態5にかかるCRスナバ回路の基板への図17とは異なる一実装例を示す図である。 図19は、実施の形態5にかかるCRスナバ回路の基板への図17、図18とは異なる一実装例を示す図である。 図20は、図19に示すCRスナバ回路の等価回路を示す図である。 図21は、実施の形態6にかかるCRスナバ回路の基板への一実装例を示す図である。 図22は、図21に示すCRスナバ回路の等価回路を示す図である。 図23は、実施の形態6にかかるCRスナバ回路の基板への図21とは異なる一実装例を示す図である。 図24は、実施の形態7にかかるCRスナバ回路の基板への一実装例を示す図である。 図25は、図24に示すCRスナバ回路の等価回路を示す図である。 図26は、実施の形態8にかかるCRスナバ回路の基板への一実装例を示す図である。
 以下に添付図面を参照し、本発明の実施の形態にかかるCRスナバ回路について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1にかかるCRスナバ回路を適用したパワー半導体モジュールの一構成例を示す図である。図1に示す例では、複数のスイッチング素子7a~7fがフルブリッジ接続されてパワー半導体モジュール100が形成され、直流端子P-N間に接続された直流電源1から直流電力を供給されて出力端子U,V,Wに接続される図示しない負荷に三相交流電力を供給する構成を示している。なお、パワー半導体モジュール100の構成はこれに限らず、例えば、4つのスイッチング素子がフルブリッジ接続されて形成されたものであってもよいし、1つあるいは2つのスイッチング素子で形成され、直流電源1から供給される直流電力を降圧あるいは昇圧して負荷に供給する構成であってもよいし、あるいは、直流電源1に代えて、交流電源から交流電力を供給される構成であってもよい。つまり、パワー半導体モジュール100としては、1つ以上のスイッチング素子を含む構成であればよく、このパワー半導体モジュール100の構成により本発明が限定されるものではない。また、直流電源1の代わりに交流電源をダイオードで整流した回路構成であってもよい。
 パワー半導体モジュール100の直流端子P-N間には、平滑コンデンサ2、スナバコンデンサ3、および実施の形態1にかかるCRスナバ回路4が接続されている。
 平滑コンデンサ2は、主として直流電源1を平滑する機能を有し、スナバコンデンサ3は、パワー半導体モジュール100を構成するスイッチング素子7a~7fのオフ時に発生するスパイク状のサージ電圧を抑制する機能を有している。
 実施の形態1にかかるCRスナバ回路4は、直列接続されたコンデンサ5と抵抗6とを含み構成され、スイッチング素子7a~7fのオフ後にスパイク状のサージ電圧に続き発生するより高い周波数で振動するリンギング成分を抑制する機能を有している。このリンギング成分は、パワー半導体モジュール100に含まれる寄生インダクタンス成分を要因として発生するものである。
 図2は、スイッチング素子オフ前後における負荷への出力電圧波形の一例を示す図である。図2(a)は、実施の形態1にかかるCRスナバ回路を実装しない場合の出力電圧波形を示し、図2(b)は、実施の形態1にかかるCRスナバ回路を実装した場合の出力電圧波形を示している。また、図3は、実施の形態1にかかるCRスナバ回路の周波数特性例を示す図である。
 スナバコンデンサ3が例えば0.1μF~1μF程度であるのに対し、CRスナバ回路4を構成するコンデンサ5は、例えば数nF~数十nF程度であり、CRスナバ回路4の電流経路に含まれるインダクタンス成分と共に、スイッチング素子7a~7fのオフ時に発生するサージ電圧より高い周波数のリンギング成分を減衰させるBEF(Band Elimination Filter:帯域除去フィルタ)を形成する(図3参照)。このBPFにより、パワー半導体モジュール100に含まれる寄生インダクタンス成分を要因として発生するリンギング成分を減衰させることが可能である。また、本実施の形態では、例えば数Ω程度の抵抗6をコンデンサ5に直列接続して構成することにより、リンギング成分の減衰効果を大きくしている。
 実施の形態1にかかるCRスナバ回路を実装しない場合には、図2(a)に示すように、スイッチング素子のオフ以降に波高値が最大約130Vp-pのリンギングが発生するが、実施の形態1にかかるCRスナバ回路4を実装した場合には、図2(b)に示すように、スイッチング素子のオフ以降に発生するリンギングの波高値が約30Vp-pに抑制される。
 図4は、実施の形態1にかかるCRスナバ回路の基板への一実装例を示す図である。また、図5は、図4に示すCRスナバ回路を実装した基板のパワー半導体モジュールへの実装例を示す図である。また、図6は、実施の形態1にかかるCRスナバ回路の基板への図4とは異なる一実装例を示す図である。また、図7は、図6に示すCRスナバ回路を実装した基板のパワー半導体モジュールへの実装例を示す図である。また、図8は、図4および図6に示すCRスナバ回路の等価回路を示す図である。
 図4、図6に示す例では、両面基板9の一方面(図4中の左側面、図6中の上面)に面実装型のコンデンサ5と抵抗6aとを実装し(図8(a)参照)、これらコンデンサ5および抵抗6aを含み形成される第1の電流経路が、両面基板9の他方面(図4中の右側面、図6中の下面)の配線パターンにより形成される第2の電流経路に両面基板9を挟んで対向するようにしている。このように構成することにより、第1の電流経路と第2の電流経路とで互いに逆向きの電流が流れ(図4中の正面図参照)、第1の電流経路に含まれるインダクタンス成分と第2の電流経路に含まれるインダクタンス成分とが結合して相互インダクタンス成分が増加し、CRスナバ回路4の電流経路全体の実効インダクタンス成分を低減することができ、延いては、コンデンサ5の容量値を小さくすることができるので、リンギング成分の抑制が容易となる。
 また、図1に示す抵抗6の実装位置を複数設け、図4、図6に示す例では抵抗6aを実装する例を示したが、抵抗6aに代えて、抵抗6bあるいは抵抗6cを実装するようにしてもよいし、さらに、抵抗6a~6cを複数並列に実装するようにしてもよい(図8(b)参照)。このように抵抗6の実装位置や実装数を変えることにより、電流経路に含まれるインダクタンス成分やBEFの特性を容易に変更することができ、リンギング成分の減衰効果の最適化を図ることが可能となる。
 以上説明したように、実施の形態1のCRスナバ回路によれば、パワー半導体モジュールの直流端子P-N間にCRスナバ回路を設け、CRスナバ回路の電流経路に含まれるインダクタンス成分と共に、スイッチング素子のオフ時に発生するサージ電圧より高い周波数のリンギング成分を含む周波数帯域を減衰させるBEFを形成する際に、両面基板の一方面に面実装型のコンデンサと抵抗とを実装し、これらコンデンサおよび抵抗を含み形成される第1の電流経路が、両面基板の他方面の配線パターンにより形成される第2の電流経路に両面基板を挟んで対向するように構成したので、第1の電流経路と第2の電流経路とで互いに逆向きの電流が流れ、第1の電流経路に含まれるインダクタンス成分と第2の電流経路に含まれるインダクタンス成分とが結合して相互インダクタンス成分が増加し、CRスナバ回路の電流経路全体の実効インダクタンス成分を低減することができ、延いては、コンデンサの容量値を小さくすることができるので、リンギング成分の抑制が容易となる。
 また、抵抗の実装位置を複数設けたので、抵抗の実装位置や実装数を変えることにより、電流経路に含まれるインダクタンス成分やBEFの特性を容易に変更することができ、リンギング成分の減衰効果の最適化を図ることが可能となる。
実施の形態2.
 図9は、実施の形態2にかかるCRスナバ回路の基板への一実装例を示す図である。また、図10は、実施の形態2にかかるCRスナバ回路の基板への図9とは異なる一実装例を示す図である。また、図11は、図9および図10に示すCRスナバ回路の等価回路を示す図である。なお、図9に示すCRスナバ回路を実装した基板のパワー半導体モジュールへの実装例については、実施の形態1において説明した図5と同様であり、また、図10に示すCRスナバ回路を実装した基板のパワー半導体モジュールへの実装例については、実施の形態1において説明した図7と同様であるので、ここでは説明を省略する。
 実施の形態1では、両面基板の一方面に面実装型のコンデンサと抵抗とを実装する例について説明したが、図9、図10に示す例では、両面基板9の一方面(図9中の左側面、図10中の上面)に面実装型のコンデンサ5-1と抵抗6a-1とを実装し、両面基板9の他方面(図9中の右側面、図10中の下面)に面実装型のコンデンサ5-2と抵抗6a-2とを実装し(図11(a)参照)、コンデンサ5-1とコンデンサ5-2とを両面基板9を挟んで対向配置し、抵抗6a-1と抵抗6a-2とを両面基板9を挟んで対向配置し、両面基板9の一方面に形成される第1の電流経路と両面基板9の他方面に形成される第2の電流経路とが両面基板9を挟んで対向するようにしている。このように構成することにより、実施の形態1と同様に、第1の電流経路と第2の電流経路とで互いに逆向きの電流が流れ、第1の電流経路に含まれるインダクタンス成分と第2の電流経路に含まれるインダクタンス成分とが結合して相互インダクタンス成分が増加し、CRスナバ回路4の電流経路全体の実効インダクタンス成分を低減することができ、延いては、各コンデンサ5-1,5-2の容量値を小さくすることができるので、リンギング成分の抑制が容易となる。
 さらに、本実施の形態では、各コンデンサ5-1,5-2が直列に接続され、各抵抗6a-1,6a-2が直列に接続されることとなるため、実施の形態1よりも低耐圧の部品を用いて構成することができる。
 また、図1に示す抵抗6の実装位置を両面基板9の一方面と他方面とでそれぞれ同数の複数設け、図9、図10に示す例では各抵抗6a-1,6a-2を実装する例を示したが、各抵抗6a-1,6a-2に代えて、各抵抗6b-1,6b-2あるいは各抵抗6c-1,6c-2を実装するようにしてもよいし、さらに、各抵抗6a-1,6a-2、各抵抗6b-1,6b-2、各抵抗6c-1,6c-2の各直列回路の組み合わせを複数組並列に実装するようにしてもよい(図11(b)参照)。このように抵抗6の実装位置や実装数を変えることにより、電流経路に含まれるインダクタンス成分やBEFの特性を容易に変更することができ、リンギング成分の減衰効果の最適化を図ることが可能となる。
 以上説明したように、実施の形態2のCRスナバ回路によれば、両面基板の一方面および他方面に面実装型のコンデンサと抵抗とをそれぞれ両面基板を挟んで対向配置し、両面基板の一方面に形成される第1の電流経路と両面基板の他方面に形成される第2の電流経路とが両面基板を挟んで対向するように構成したので、実施の形態1と同様に、第1の電流経路と第2の電流経路とで互いに逆向きの電流が流れ、第1の電流経路に含まれるインダクタンス成分と第2の電流経路に含まれるインダクタンス成分とが結合して相互インダクタンス成分が増加し、CRスナバ回路の電流経路全体の実効インダクタンス成分を低減することができ、延いては、各コンデンサの容量値を小さくすることができるので、リンギング成分の抑制が容易となる。
 さらに、本実施の形態では、一方面のコンデンサと他方面のコンデンサとが直列に接続され、一方面の抵抗と他方面の抵抗とが直列に接続されることとなるため、実施の形態1よりも低耐圧の部品を用いて構成することができる。また、実施の形態1と同等の耐圧のコンデンサを用いて構成した場合には、より高圧の回路に適用することができる。
 また、抵抗の実装位置を複数設けたので、抵抗の実装位置や実装数を変えることにより、電流経路に含まれるインダクタンス成分やBEFの特性を容易に変更することができ、リンギング成分の減衰効果の最適化を図ることが可能となる。
実施の形態3.
 図12は、実施の形態3にかかるCRスナバ回路の基板への一実装例を示す図である。また、図13は、図12に示すCRスナバ回路の等価回路を示す図である。また、図14は、実施の形態3にかかるCRスナバ回路の周波数特性例を示す図である。なお、図12に示すCRスナバ回路を実装した基板のパワー半導体モジュールへの実装例については、実施の形態1において説明した図5と同様であるので、ここでは説明を省略する。
 実施の形態1および2では、抵抗の実装位置や実装数を変える例について説明したが、図12に示す例では、両面基板9の一方面(図12中の左側面)に面実装型の複数のコンデンサ5a,5b,5cを実装可能とすると共に、面実装型の抵抗6を実装し、これらコンデンサ5a,5b,5cおよび抵抗6を含み形成される第1の電流経路が、両面基板9の他方面(図12中の右側面)の配線パターンにより形成される第2の電流経路に両面基板9を挟んで対向するようにしている。このように構成することにより、各コンデンサ5a,5b,5cの何れかを選択して実装することにより(図13(a)参照)、それぞれ実装位置に応じてインダクタンス値を異ならせることができ、BEFの共振周波数を変えることができる。
 また、各コンデンサ5a,5b,5cを複数並列に実装することで(図13(b)参照)、それぞれ共振周波数が異なるBEFが形成されるので(例えば、図14中のBEF特性1およびBEF特性2)、CRスナバ回路4のBEF特性はこれら複数のBEF特性の合成特性となり(図14中の合成BEF特性)、図14に示すように、リンギング成分の周波数に対して減衰効果が大きい周波数範囲を拡大することができる。
 また、実施の形態1,2と同様に、第1の電流経路と第2の電流経路とで互いに逆向きの電流が流れ、第1の電流経路に含まれるインダクタンス成分と第2の電流経路に含まれるインダクタンス成分とが結合して相互インダクタンス成分が増加し、CRスナバ回路4の電流経路全体の実効インダクタンス成分を低減することができ、延いては、各コンデンサ5a,5b,5cの容量値を小さくすることができるので、リンギング成分の抑制が容易となる。
 以上説明したように、実施の形態3のCRスナバ回路によれば、コンデンサの実装位置を複数設けたので、コンデンサの実装位置に応じてインダクタンス値を異ならせることができ、BEFの共振周波数を変えることができる。
 また、実装位置が異なる複数のコンデンサを複数並列に実装することで、それぞれ共振周波数が異なるBEFが形成されるので、リンギング成分の周波数に対して減衰効果が大きい周波数範囲を拡大することができる。
 また、実施の形態1,2と同様に、第1の電流経路と第2の電流経路とで互いに逆向きの電流が流れ、第1の電流経路に含まれるインダクタンス成分と第2の電流経路に含まれるインダクタンス成分とが結合して相互インダクタンス成分が増加し、CRスナバ回路の電流経路全体の実効インダクタンス成分を低減することができ、延いては、各コンデンサの容量値を小さくすることができるので、リンギング成分の抑制が容易となる。
実施の形態4.
 図15は、実施の形態4にかかるCRスナバ回路の基板への一実装例を示す図である。また、図16は、図15に示すCRスナバ回路の等価回路を示す図である。なお、図15に示すCRスナバ回路を実装した基板のパワー半導体モジュールへの実装例については、実施の形態1において説明した図5と同様であるので、ここでは説明を省略する。
 実施の形態3では、実施の形態1と同様に、両面基板の一方面に面実装型のコンデンサと抵抗とを実装する例について説明したが、図15に示す例では、両面基板9の一方面(図15中の左側面)に面実装型の複数のコンデンサ5a-1,5b-1,5c-1を実装可能とすると共に、面実装型の抵抗6-1を実装し、両面基板9の他方面(図15中の右側面)に面実装型の複数のコンデンサ5a-2,5b-2,5c-2を実装可能とすると共に、面実装型の抵抗6-2を実装し、各コンデンサ5a-1,5a-2、各コンデンサ5b-1,5b-2、各コンデンサ5c-1,5c-2をそれぞれ両面基板9を挟んで対向配置可能とし、抵抗6-1と抵抗6-2とを両面基板9を挟んで対向配置し、両面基板9の一方面に形成される第1の電流経路と両面基板9の他方面に形成される第2の電流経路とが両面基板9を挟んで対向するようにしている。このように構成することにより、各コンデンサ5a-1,5a-2、各コンデンサ5b-1,5b-2、各コンデンサ5c-1,5c-2の各組み合わせの何れかを選択して実装することにより(図16(a)参照)、各組み合わせの実装位置に応じてインダクタンス値を異ならせることができ、実施の形態3と同様に、BEFの共振周波数を変えることができる。
 また、各コンデンサ5a-1,5a-2、各コンデンサ5b-1,5b-2、各コンデンサ5c-1,5c-2の組み合わせを複数組並列に実装することで(図16(b)参照)、それぞれ共振周波数が異なるBEFが形成されるので、実施の形態3と同様に、リンギング成分の周波数に対して減衰効果が大きい周波数範囲を拡大することができる(図14参照)。
 また、実施の形態1~3と同様に、第1の電流経路と第2の電流経路とで互いに逆向きの電流が流れ、第1の電流経路に含まれるインダクタンス成分と第2の電流経路に含まれるインダクタンス成分とが結合して相互インダクタンス成分が増加し、CRスナバ回路4の電流経路全体の実効インダクタンス成分を低減することができ、延いては、各コンデンサ5a-1,5a-2、各コンデンサ5b-1,5b-2、各コンデンサ5c-1,5c-2の容量値を小さくすることができるので、リンギング成分の抑制が容易となる。
 また、実施の形態2と同様に、各コンデンサ5a-1,5a-2、各コンデンサ5b-1,5b-2、各コンデンサ5c-1,5c-2がそれぞれ直列に接続され、各抵抗6-1,6-2が直列に接続されることとなるため、実施の形態1,3よりも低耐圧の部品を用いて構成することができる。また、実施の形態1,3と同等の耐圧のコンデンサを用いて構成した場合には、より高圧の回路に適用することができる。
 以上説明したように、実施の形態4のCRスナバ回路によれば、実施の形態3と同様に、コンデンサの実装位置を複数設けたので、コンデンサの実装位置に応じてインダクタンス値を異ならせることができ、BEFの共振周波数を変えることができる。
 また、実施の形態3と同様に、実装位置が異なる複数のコンデンサを複数並列に実装することで、それぞれ共振周波数が異なるBEFが形成されるので、リンギング成分の周波数に対して減衰効果が大きい周波数範囲を拡大することができる。
 また、実施の形態1~3と同様に、第1の電流経路と第2の電流経路とで互いに逆向きの電流が流れ、第1の電流経路に含まれるインダクタンス成分と第2の電流経路に含まれるインダクタンス成分とが結合して相互インダクタンス成分が増加し、CRスナバ回路の電流経路全体の実効インダクタンス成分を低減することができ、延いては、各コンデンサの容量値を小さくすることができるので、リンギング成分の抑制が容易となる。
 さらに、本実施の形態では、実施の形態2と同様に、一方面のコンデンサと他方面のコンデンサとが直列に接続され、一方面の抵抗と他方面の抵抗とが直列に接続されることとなるため、実施の形態1,3よりも低耐圧の部品を用いて構成することができる。
実施の形態5.
 図17は、実施の形態5にかかるCRスナバ回路の基板への一実装例を示す図である。なお、図17に示すCRスナバ回路の等価回路は、実施の形態1において説明した図8と同様であるので、ここでは説明を省略する。また、図17に示すCRスナバ回路を実装した基板のパワー半導体モジュールへの実装例については、実施の形態1において説明した図5と同様であるので、ここでは説明を省略する。
 図17に示す例では、実施の形態1において説明した図4に対し、コンデンサ5をディスクリート型の部品で構成した点が異なっている。
 図18は、実施の形態5にかかるCRスナバ回路の基板への図17とは異なる一実装例を示す図である。なお、図18に示すCRスナバ回路の等価回路は、実施の形態3において説明した図13と同様であるので、ここでは説明を省略する。また、図18に示すCRスナバ回路を実装した基板のパワー半導体モジュールへの実装例については、実施の形態1において説明した図5と同様であるので、ここでは説明を省略する。
 図18に示す例では、実施の形態3において説明した図12に対し、各コンデンサ5a,5b,5cをディスクリート型の部品で構成した点が異なっている。
 図19は、実施の形態5にかかるCRスナバ回路の基板への図17、図18とは異なる一実装例を示す図である。また、図20は、図19に示すCRスナバ回路の等価回路を示す図である。なお、図19に示すCRスナバ回路を実装した基板のパワー半導体モジュールへの実装例については、実施の形態1において説明した図5と同様であるので、ここでは説明を省略する。
 図19に示す例では、図18に示す例に対し、コンデンサ5a,5bをそれぞれ2つのディスクリート型の部品を直列接続して構成した例を示している。
 一般に、面実装型のコンデンサは耐圧が低い。本実施の形態では、図17~19に示すように、CRスナバ回路4を構成するコンデンサ5をディスクリート型の部品とすることで、高耐圧化を図ることができる。
 このように、コンデンサ5をディスクリート型の部品で構成しても、上述した実施の形態1~4と同様の効果を得ることができる。
 以上説明したように、実施の形態5のCRスナバ回路によれば、上述した実施の形態1~4と同様の効果を得ることができ、さらに、コンデンサをディスクリート部品で構成することにより、高耐圧化を図ることができる。
実施の形態6.
 図21は、実施の形態6にかかるCRスナバ回路の基板への一実装例を示す図である。また、図22は、図21に示すCRスナバ回路の等価回路を示す図である。なお、図21に示すCRスナバ回路を実装した基板のパワー半導体モジュールへの実装例については、実施の形態1において説明した図5と同様であるので、ここでは説明を省略する。
 図21に示す例では、CRスナバ回路4を構成するコンデンサ5を両面基板9の基板パターン(銅箔)で形成した例を示している。実施の形態1において説明したように、両面基板9の一方面に形成される第1の電流経路と他方面に形成される第2の電流経路とが両面基板9を挟んで対向するように構成することにより、第1の電流経路と第2の電流経路とで互いに逆向きの電流が流れ、第1の電流経路に含まれるインダクタンス成分と第2の電流経路に含まれるインダクタンス成分とが結合して相互インダクタンス成分が増加し、CRスナバ回路4の電流経路全体の実効インダクタンス成分を低減することができ、延いては、リンギング成分の抑制に必要なコンデンサ5の容量値を小さくすることができる。したがって、図21に示すように、両面基板9の基板パターンでコンデンサ5を形成することも可能となる。
 このように、基板パターンでコンデンサ5を形成した場合でも、上述した実施の形態1~4と同様の効果を得ることができ、部品点数の削減を図ることが可能となる。
 図23は、実施の形態6にかかるCRスナバ回路の基板への図21とは異なる一実装例を示す図である。なお、図23に示すCRスナバ回路を実装した基板のパワー半導体モジュールへの実装例については、実施の形態1において説明した図5と同様であるので、ここでは説明を省略する。
 図23に示す例では、図21に示す両面基板9に代えて、4層基板9aを用いている。4層以上の多層基板の複数層の基板パターンを用いてコンデンサ5を形成することで、基板面に占めるコンデンサ5の面積を小さくすることができる。
 以上説明したように、実施の形態6のCRスナバ回路によれば、上述した実施の形態1~4と同様の効果を得ることができ、さらに、基板パターンでコンデンサを形成することにより、部品点数の削減を図ることができる。
 また、4層以上の多層基板の複数層の基板パターンを用いてコンデンサを形成することで、基板面に占めるコンデンサの面積を小さくすることができる。
実施の形態7.
 図24は、実施の形態7にかかるCRスナバ回路の基板への一実装例を示す図である。また、図25は、図24に示すCRスナバ回路の等価回路を示す図である。なお、図24に示すCRスナバ回路を実装した基板のパワー半導体モジュールへの実装例については、実施の形態1において説明した図5と同様であるので、ここでは説明を省略する。
 図24に示す例では、実施の形態1と同様に、両面基板9の一方面(図24中の左側面)に面実装型のコンデンサ5と抵抗6aとを実装し(図25参照)、これらコンデンサ5および抵抗6aを含み形成される第1の電流経路が、両面基板9の他方面(図24中の右側面)の配線パターンにより形成される第2の電流経路に両面基板9を挟んで対向するようにしている。このように構成することにより、第1の電流経路と第2の電流経路とで互いに逆向きの電流が流れ(図24中の正面図参照)、第1の電流経路に含まれるインダクタンス成分と第2の電流経路に含まれるインダクタンス成分とが結合して相互インダクタンス成分が増加し、CRスナバ回路4の電流経路全体の実効インダクタンス成分を低減することができ、延いては、コンデンサ5の容量値を小さくすることができるので、リンギング成分の抑制が容易となる。
 また、実施の形態1と同様に、図1に示す抵抗6の実装位置を複数設け、図24に示す例では抵抗6aを実装する例を示したが、抵抗6aに代えて、抵抗6bあるいは抵抗6cを実装するようにしてもよいし、さらに、抵抗6a~6cを複数並列に実装するようにしてもよい。このように抵抗6の実装位置や実装数を変えることにより、電流経路に含まれるインダクタンス成分やBEFの特性を容易に変更することができ、リンギング成分の減衰効果の最適化を図ることが可能となる。
 さらに、本実施の形態では、両面基板9の他方面(図24中の右側面)に基板パターンにより形成されたパターンヒューズ10を設けている(図25参照)。例えば、コンデンサ5が短絡破壊した際には、パワー半導体モジュール100の直流端子P-N間に過電流が流れる虞があるが、本実施の形態では、上述したパターンヒューズ10を設けているため、部品短絡等により過電流が流れた場合には、パターンヒューズ10が切れることで、直流電源1や外部接続機器等を保護することができる。
 なお、上述した図24に示す例では、実施の形態1において説明した構成にパターンヒューズ10を設けた構成例を示したが、上述した実施の形態2~6において説明した構成にパターンヒューズ10を設けた構成とすることも可能であることは言うまでもない。
 以上説明したように、実施の形態7のCRスナバ回路によれば、上述した実施の形態1~4と同様の効果を得ることができ、さらに、基板パターンでパターンヒューズを形成することにより、部品短絡等により過電流が流れようとした場合には、パターンヒューズが切れることで、直流電源や外部接続機器等を保護することができる。
実施の形態8.
 図26は、実施の形態8にかかるCRスナバ回路の基板への一実装例を示す図である。なお、図26に示すCRスナバ回路の等価回路は、実施の形態2において説明した図11と同様であるので、ここでは説明を省略する。また、図26に示すCRスナバ回路を実装した基板のパワー半導体モジュールへの実装例については、実施の形態1において説明した図5と同様であるので、ここでは説明を省略する。
 図26に示す例では、実施の形態2と同様に、両面基板9の一方面(図26中の左側面)に面実装型のコンデンサ5-1と抵抗6a-1とを実装し、両面基板9の他方面(図26中の右側面)に面実装型のコンデンサ5-2と抵抗6a-2とを実装し、コンデンサ5-1とコンデンサ5-2とを両面基板9を挟んで対向配置し、抵抗6a-1と抵抗6a-2とを両面基板9を挟んで対向配置し、両面基板9の一方面に形成される第1の電流経路と両面基板9の他方面に形成される第2の電流経路とが両面基板9を挟んで対向するようにしている。このように構成することにより、実施の形態2と同様に、第1の電流経路と第2の電流経路とで互いに逆向きの電流が流れ、第1の電流経路に含まれるインダクタンス成分と第2の電流経路に含まれるインダクタンス成分とが結合して相互インダクタンス成分が増加し、CRスナバ回路4の電流経路全体の実効インダクタンス成分を低減することができ、延いては、各コンデンサ5-1,5-2の容量値を小さくすることができるので、リンギング成分の抑制が容易となる。
 さらに、実施の形態2と同様に、各コンデンサ5-1,5-2が直列に接続され、各抵抗6a-1,6a-2が直列に接続されることとなるため、実施の形態1よりも低耐圧の部品を用いて構成することができる。また、実施の形態1と同等の耐圧のコンデンサを用いて構成した場合には、より高圧の回路に適用することができる。
 また、実施の形態2と同様に、図1に示す抵抗6の実装位置を両面基板9の一方面と他方面とでそれぞれ同数の複数設け、図26に示す例では各抵抗6a-1,6a-2を実装する例を示したが、各抵抗6a-1,6a-2に代えて、各抵抗6b-1,6b-2あるいは各抵抗6c-1,6c-2を実装するようにしてもよいし、さらに、各抵抗6a-1,6a-2、各抵抗6b-1,6b-2、各抵抗6c-1,6c-2の各直列回路の組み合わせを複数組並列に実装するようにしてもよい。このように抵抗6の実装位置や実装数を変えることにより、実施の形態2と同様に、電流経路に含まれるインダクタンス成分やBEFの特性を容易に変更することができ、リンギング成分の減衰効果の最適化を図ることが可能となる。
 さらに、本実施の形態では、両面基板9の一方面に実装するコンデンサ5-1をセラミックコンデンサとし、他方面に実装するコンデンサ5-2をフィルムコンデンサとしている(図26参照)。
 一般に、セラミックコンデンサはフィルムコンデンサよりも高耐圧化が容易である反面、例えば過電圧時に過電流が流れようとした場合には短絡破壊する虞がある。本実施の形態では、上述したように両面基板9の一方面に実装するコンデンサ5-1をセラミックコンデンサとし、他方面に実装するコンデンサ5-2をフィルムコンデンサとすることで、セラミックコンデンサであるコンデンサ5-1が短絡破壊して過電流が流れようとした場合には、フィルムコンデンサであるコンデンサ5-2がオープン破壊することで、直流電源1や外部接続機器等を保護することができる。
 なお、上述した図26に示す例では、両面基板9の一方面に実装するコンデンサ5-1をセラミックコンデンサとし、他方面に実装するコンデンサ5-2をフィルムコンデンサとした構成例を示したが、両面基板9の一方面に実装するコンデンサ5-1をフィルムコンデンサとし、他方面に実装するコンデンサ5-2をセラミックコンデンサとした構成であってもよく、また、例えば、実施の形態5において説明した図19に示したように、複数のコンデンサが直列に接続されてコンデンサ5を形成する構成において、一方をセラミックコンデンサ、他方をフィルムコンデンサとしても、本実施の形態において説明した図26の構成と同様の効果が得られることは言うまでもない。
 また、上述のようにセラミックコンデンサとフィルムコンデンサとが直列に接続される構成では、容量値が小さい方により高電圧が印加されるため、フィルムコンデンサよりも高耐圧化が可能なセラミックコンデンサをフィルムコンデンサよりも小容量とするのが好ましい。
 さらに、3つ以上のコンデンサが直列に接続される構成においても、何れか1つ以上をフィルムコンデンサとすることで、上述した効果を得ることができる。
 以上説明したように、実施の形態8のCRスナバ回路によれば、上述した実施の形態1~4と同様の効果を得ることができ、さらに、直列に接続される複数のコンデンサのうちの何れか1つ以上をフィルムコンデンサとすることで、他のコンデンサが短絡破壊して過電流が流れようとした場合には、フィルムコンデンサがオープン破壊することで、直流電源や外部接続機器等を保護することができる。
 なお、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 以上のように、本発明は、CRスナバ回路の実効インダクタンス成分の低減効果を高める技術として有用であり、特に、パワー半導体モジュールに含まれるスイッチング素子のスイッチング時に発生するリンギング成分を抑制するものとして適している。
 1 直流電源、2 平滑コンデンサ、3 スナバコンデンサ、4 CRスナバ回路、5,5-1,5-2,5a-1,5a-2,5b-1,5b-2,5c-1,5c-2 コンデンサ、6,6-1,6-2,6a-1,6a-2,6b-1,6b-2,6c-1,6c-2 抵抗、7a~7f スイッチング素子、9 両面基板(基板)、9a 4層基板(基板)、10 パターンヒューズ、100 パワー半導体モジュール。

Claims (12)

  1.  スイッチング素子を含み形成されたパワー半導体モジュールに直流電圧を印加する直流端子間に直列接続されたコンデンサと抵抗とを含み、基板上に形成されるCRスナバ回路であって、
     前記基板の一方面に形成される第1の電流経路と前記基板の一方面の裏面の他方面に形成される第2の電流経路とが前記基板を挟み対向し、且つ、前記第1の電流経路と前記第2の電流経路とで互いに逆向きに電流が流れるように、前記コンデンサと前記抵抗とが配置され、前記第1の電流経路に含まれるインダクタンス成分と前記第2の電流経路に含まれるインダクタンス成分とが結合して得られる実効インダクタンス成分と、前記コンデンサおよび前記抵抗とにより帯域除去フィルタを形成する
     ことを特徴とするCRスナバ回路。
  2.  前記基板上の複数個所に前記抵抗を実装可能としたことを特徴とする請求項1に記載のCRスナバ回路。
  3.  前記抵抗を1、あるいは複数個並列または直列に実装したことを特徴とする請求項1に記載のCRスナバ回路。
  4.  前記基板上の複数個所に前記コンデンサを実装可能としたことを特徴とする請求項1に記載のCRスナバ回路。
  5.  前記コンデンサを1、あるいは複数個並列または直列に実装したことを特徴とする請求項1に記載のCRスナバ回路。
  6.  前記抵抗は、複数個直列に接続され、前記基板を挟み対向配置されたことを特徴とする請求項1に記載のCRスナバ回路。
  7.  前記コンデンサは、複数個直列に接続され、前記基板を挟み対向配置されたことを特徴とする請求項1に記載のCRスナバ回路。
  8.  前記コンデンサは、ディスクリート型の部品で構成されたことを特徴とする請求項1に記載のCRスナバ回路。
  9.  前記コンデンサは、前記基板上の基板パターンを用いて形成されたことを特徴とする請求項1に記載のCRスナバ回路。
  10.  前記基板上の基板パターンを用いてパターンヒューズが形成されたことを特徴とする請求項1に記載のCRスナバ回路。
  11.  複数個直列に接続された前記コンデンサのうちの少なくとも1つがフィルムコンデンサであることを特徴とする請求項1に記載のCRスナバ回路。
  12.  前記フィルムコンデンサ以外のコンデンサの容量が前記フィルムコンデンサの容量よりも小さいことを特徴とする請求項11に記載のCRスナバ回路。
PCT/JP2013/076822 2013-10-02 2013-10-02 Crスナバ回路 WO2015049736A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020147021051A KR101534453B1 (ko) 2013-10-02 2013-10-02 Cr 스너버 회로
CN201380007824.5A CN104704729B (zh) 2013-10-02 2013-10-02 Cr缓冲电路
US14/364,363 US9570972B2 (en) 2013-10-02 2013-10-02 CR snubber circuit
JP2014505454A JP5558645B1 (ja) 2013-10-02 2013-10-02 Crスナバ回路
PCT/JP2013/076822 WO2015049736A1 (ja) 2013-10-02 2013-10-02 Crスナバ回路
TW103101115A TWI495237B (zh) 2013-10-02 2014-01-13 Cr緩衝器電路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/076822 WO2015049736A1 (ja) 2013-10-02 2013-10-02 Crスナバ回路

Publications (1)

Publication Number Publication Date
WO2015049736A1 true WO2015049736A1 (ja) 2015-04-09

Family

ID=51416951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076822 WO2015049736A1 (ja) 2013-10-02 2013-10-02 Crスナバ回路

Country Status (6)

Country Link
US (1) US9570972B2 (ja)
JP (1) JP5558645B1 (ja)
KR (1) KR101534453B1 (ja)
CN (1) CN104704729B (ja)
TW (1) TWI495237B (ja)
WO (1) WO2015049736A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018007394A (ja) * 2016-06-30 2018-01-11 トヨタ自動車株式会社 電力変換装置
US9973076B1 (en) 2016-11-16 2018-05-15 Silanna Asia Pte Ltd Switching regulator synchronous node snubber circuit
JP6338784B1 (ja) * 2017-02-06 2018-06-06 三菱電機株式会社 ノイズフィルタ
JP6448759B1 (ja) * 2017-12-26 2019-01-09 三菱電機株式会社 電力変換装置
JP6488421B1 (ja) * 2018-09-12 2019-03-20 高周波熱錬株式会社 スナバ回路及びパワー半導体モジュール並びに誘導加熱用電源装置
WO2019230430A1 (ja) 2018-05-28 2019-12-05 三菱電機株式会社 電力変換装置
JP2020099124A (ja) * 2018-12-18 2020-06-25 日立ジョンソンコントロールズ空調株式会社 電力変換装置、及び、これを備える冷凍サイクル装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067835A1 (ja) * 2014-10-30 2016-05-06 ローム株式会社 パワーモジュールおよびパワー回路
FR3044184B1 (fr) * 2015-11-23 2018-03-23 IFP Energies Nouvelles Systeme modulaire de conversion d'une puissance electrique continue en puissance electrique triphasee
JP2017143679A (ja) * 2016-02-12 2017-08-17 三菱電機株式会社 パワーモジュール
JP6922175B2 (ja) * 2016-09-01 2021-08-18 富士電機株式会社 電力変換装置
JP6647189B2 (ja) * 2016-11-21 2020-02-14 三菱電機株式会社 半導体モジュール、半導体装置および電力装置
DE102016224422A1 (de) * 2016-12-08 2018-06-14 Zf Friedrichshafen Ag Kommutierungsschaltkreisvorrichtung und Verfahren zum Entlasten zumindest eines Halbleiters eines Stromrichters und Fahrzeug mit einer Kommutierungsschaltkreisvorrichtung
DE112018000701T5 (de) * 2017-02-06 2019-10-17 Mitsubishi Electric Corporation Leistungshalbleitermodul und leistungswandlervorrichtung
JP6936022B2 (ja) 2017-03-07 2021-09-15 ローム株式会社 プリント配線基板及びこれを用いたスイッチング電源
JP7012754B2 (ja) * 2018-02-16 2022-01-28 三菱電機株式会社 電力変換装置およびこれを用いた空気調和装置
US20220224331A1 (en) * 2019-05-31 2022-07-14 General Electric Company Switching circuit
EP3761492B1 (en) * 2019-07-05 2023-01-04 Infineon Technologies AG Snubber circuit and power semiconductor module with snubber circuit
JP2021182575A (ja) * 2020-05-18 2021-11-25 現代自動車株式会社Hyundai Motor Company 半導体装置内部スナバ回路接続構造及びこれを用いたパワーモジュール構造
KR102573099B1 (ko) * 2021-07-08 2023-08-31 엘에스일렉트릭(주) 반도체 회로 차단기 및 그 반도체 회로 차단기의 과전압 억제부

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086770A (ja) * 1999-09-13 2001-03-30 Hitachi Ltd 電力変換器の主回路構造
JP2003319665A (ja) * 2002-04-19 2003-11-07 Toyota Motor Corp 電力変換装置
JP2009225612A (ja) * 2008-03-18 2009-10-01 Mitsubishi Electric Corp パワーモジュール

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174205A (ja) * 1984-09-17 1986-04-16 ダイソー株式会社 異方導電性組成物
JPH032669U (ja) 1989-05-31 1991-01-11
JPH0355897A (ja) 1989-07-25 1991-03-11 Matsushita Electric Ind Co Ltd 混成集積回路
JPH0345842U (ja) * 1989-09-13 1991-04-26
JP3045842B2 (ja) * 1991-10-15 2000-05-29 日本碍子株式会社 中空体とセラミック体との取付構造
KR0107820Y1 (ko) * 1994-03-31 1998-08-01 배순훈 과전압 입력방지회로를 갖춘 전원장치
JPH0964508A (ja) 1995-08-22 1997-03-07 Nitsuko Corp スナバモジュール及びスナバモジュールを用いた電子回路ユニット
JP3045842U (ja) 1996-02-26 1998-02-20 比良野電機株式会社 多層化印刷基板を用いた保護回路を有する制御装置
JP2000354389A (ja) 1999-06-08 2000-12-19 Sankyo Seiki Mfg Co Ltd モータ駆動回路
JP2003219661A (ja) 2002-01-24 2003-07-31 Toshiba Mach Co Ltd サーボアンプ
CN2660779Y (zh) * 2003-09-28 2004-12-01 阮建民 基板式恒稳直流供电模块
JP4446964B2 (ja) 2006-01-11 2010-04-07 三菱電機株式会社 誘導加熱調理器
JP2008085958A (ja) 2006-09-29 2008-04-10 Nippon Dempa Kogyo Co Ltd 共振器の結合回路
JP2008186770A (ja) * 2007-01-31 2008-08-14 Toshiba Corp 非水電解質電池、電池パック及び自動車
JP2009219268A (ja) * 2008-03-11 2009-09-24 Daikin Ind Ltd 電力変換装置
JP4929298B2 (ja) 2009-02-17 2012-05-09 株式会社東芝 洗濯乾燥機
CN201853705U (zh) * 2010-07-09 2011-06-01 四川英杰电气股份有限公司 一种rc吸收电路的安装装置
CN202444695U (zh) * 2012-02-16 2012-09-19 福建龙净环保股份有限公司 Rcd缓冲电路印刷基板、缓冲电路板及缓冲电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086770A (ja) * 1999-09-13 2001-03-30 Hitachi Ltd 電力変換器の主回路構造
JP2003319665A (ja) * 2002-04-19 2003-11-07 Toyota Motor Corp 電力変換装置
JP2009225612A (ja) * 2008-03-18 2009-10-01 Mitsubishi Electric Corp パワーモジュール

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10224808B2 (en) 2016-06-30 2019-03-05 Toyota Jidosha Kabushiki Kaisha Electric power conversion device with snubber circuit
JP2018007394A (ja) * 2016-06-30 2018-01-11 トヨタ自動車株式会社 電力変換装置
US9973076B1 (en) 2016-11-16 2018-05-15 Silanna Asia Pte Ltd Switching regulator synchronous node snubber circuit
WO2018091997A1 (en) * 2016-11-16 2018-05-24 Silanna Asia Pte Ltd Switching regulator synchronous node snubber circuit
US10177650B2 (en) 2016-11-16 2019-01-08 Silanna Asia Pte Ltd Switching regulator synchronous node snubber circuit
JP6338784B1 (ja) * 2017-02-06 2018-06-06 三菱電機株式会社 ノイズフィルタ
WO2018142611A1 (ja) * 2017-02-06 2018-08-09 三菱電機株式会社 ノイズフィルタ
JP6448759B1 (ja) * 2017-12-26 2019-01-09 三菱電機株式会社 電力変換装置
JP2019115234A (ja) * 2017-12-26 2019-07-11 三菱電機株式会社 電力変換装置
WO2019230430A1 (ja) 2018-05-28 2019-12-05 三菱電機株式会社 電力変換装置
US11323025B2 (en) 2018-05-28 2022-05-03 Mitsubishi Electric Corporation Power converter
JP6488421B1 (ja) * 2018-09-12 2019-03-20 高周波熱錬株式会社 スナバ回路及びパワー半導体モジュール並びに誘導加熱用電源装置
JP2020043710A (ja) * 2018-09-12 2020-03-19 高周波熱錬株式会社 スナバ回路及びパワー半導体モジュール並びに誘導加熱用電源装置
KR20210057046A (ko) * 2018-09-12 2021-05-20 고오슈우하네쓰렌 가부시기가이샤 스너버 회로, 전력 반도체 모듈, 및 유도 가열 전력 공급 디바이스
TWI677172B (zh) * 2018-09-12 2019-11-11 日商高周波熱錬股份有限公司 緩衝器電路及功率半導體模組以及感應加熱用電源裝置
KR102652005B1 (ko) * 2018-09-12 2024-03-28 고오슈우하네쓰렌 가부시기가이샤 스너버 회로, 전력 반도체 모듈, 및 유도 가열 전력 공급 디바이스
JP2020099124A (ja) * 2018-12-18 2020-06-25 日立ジョンソンコントロールズ空調株式会社 電力変換装置、及び、これを備える冷凍サイクル装置

Also Published As

Publication number Publication date
TWI495237B (zh) 2015-08-01
US20160344279A1 (en) 2016-11-24
JP5558645B1 (ja) 2014-07-23
JPWO2015049736A1 (ja) 2017-03-09
TW201515370A (zh) 2015-04-16
CN104704729B (zh) 2016-10-05
US9570972B2 (en) 2017-02-14
CN104704729A (zh) 2015-06-10
KR101534453B1 (ko) 2015-07-06
KR20150050522A (ko) 2015-05-08

Similar Documents

Publication Publication Date Title
JP5558645B1 (ja) Crスナバ回路
JP6399602B2 (ja) 電力変換用回路基板及び電動圧縮機
JP5183830B1 (ja) ノイズフィルタ装置
WO2015162656A1 (ja) 多層プリント基板
WO2016152313A1 (ja) 電力変換用回路基板及び電動圧縮機
WO2015008768A1 (en) Printed circuit board
JP2016192837A (ja) 電力変換装置
JP6338784B1 (ja) ノイズフィルタ
KR101009152B1 (ko) 인쇄회로기판
JP2021068757A (ja) 配線基板
JP6467734B2 (ja) 多層基板のフィルタ
US11647593B2 (en) Semiconductor device manufacturing method
JP2009010273A (ja) プリント配線板の電源ノイズフィルタ構造
JP5741416B2 (ja) 電子部品の実装構造
JP2006310435A (ja) 多層プリント基板
JP6362419B2 (ja) プリント回路基板
US9313878B2 (en) Methods and circuit structures for mitigating voltage stresses on printed circuit board (PCB) in high voltage devices
GB2508442A (en) Conducted emissions filter
JP2015122933A (ja) 電源供給装置及び複合電子部品並びにその実装基板
WO2018147396A1 (ja) 並列コンデンサ回路
KR101968335B1 (ko) 공기 조화기의 필터 모듈
JP6520685B2 (ja) ノイズフィルタ
JP2014082845A (ja) 回路装置
JP2009010229A (ja) プリント配線板の電源ノイズフィルタ構造

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014505454

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14364363

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147021051

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894988

Country of ref document: EP

Kind code of ref document: A1