WO2018142611A1 - ノイズフィルタ - Google Patents

ノイズフィルタ Download PDF

Info

Publication number
WO2018142611A1
WO2018142611A1 PCT/JP2017/004198 JP2017004198W WO2018142611A1 WO 2018142611 A1 WO2018142611 A1 WO 2018142611A1 JP 2017004198 W JP2017004198 W JP 2017004198W WO 2018142611 A1 WO2018142611 A1 WO 2018142611A1
Authority
WO
WIPO (PCT)
Prior art keywords
current path
main
wiring pattern
sub
wiring
Prior art date
Application number
PCT/JP2017/004198
Other languages
English (en)
French (fr)
Inventor
玲仁 小林
尚人 岡
大橋 英征
安泰 関本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112017006666.2T priority Critical patent/DE112017006666B4/de
Priority to US16/473,298 priority patent/US20190372542A1/en
Priority to JP2017536369A priority patent/JP6338784B1/ja
Priority to CN201780085443.7A priority patent/CN110249524A/zh
Priority to PCT/JP2017/004198 priority patent/WO2018142611A1/ja
Publication of WO2018142611A1 publication Critical patent/WO2018142611A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H1/0007Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network of radio frequency interference filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H1/02Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network of RC networks, e.g. integrated networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/06Frequency selective two-port networks including resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0231Capacitors or dielectric substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/167Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0042Wound, ring or feed-through type capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0234Resistors or by disposing resistive or lossy substances in or near power planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/093Layout of power planes, ground planes or power supply conductors, e.g. having special clearance holes therein
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10015Non-printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10022Non-printed resistor

Definitions

  • the present invention relates to a noise filter for removing high-frequency electromagnetic noise that leaks due to anti-resonance caused by parasitic components of a printed circuit board.
  • a bypass capacitor is mounted on a printed circuit board as a noise filter for removing high-frequency electromagnetic noise generated on the printed circuit board.
  • a noise filter including a bypass capacitor is mounted between a power supply terminal on the printed circuit board and a circuit element.
  • a three-terminal capacitor is said to have higher noise suppression performance than a conventionally used two-terminal capacitor, and the power pattern formed on the printed circuit board connecting the circuit element and the power supply circuit for power supply is divided.
  • Mounting that is, through mounting.
  • the first issue is the LC parallel resonance (anti-resonance) at a specific frequency due to the parasitic inductance between the 3-terminal capacitor and the wiring and via for mounting, and the parasitic capacitance between the power supply pattern and the ground pattern formed on the printed circuit board. ).
  • the second problem is that the through-mounting of the three-terminal capacitor makes it impossible to supply power to the circuit element when a stress is applied to the three-terminal capacitor due to distortion of the substrate or the like to cause a crack. Therefore, the durability of the product is reduced.
  • Patent Document 1 a CR snubber circuit including a capacitor and a resistor connected in series is connected between a power supply terminal and a ground terminal of a circuit element.
  • a resistor By inserting a resistor into the current bypass path through the capacitor, the resistor consumes noise current, and the performance of the noise filter in the frequency domain where anti-resonance occurs can be improved.
  • the second issue which is a decrease in the durability of the product, there has been mounting (non-penetrating mounting) that does not divide the power pattern formed on the printed circuit board that connects the circuit element and the power supply circuit for power supply. .
  • non-penetration mounting which is a solution to the second problem, does not divide the power supply pattern that connects the circuit element and the power supply circuit for power supply. There is a path through which noise flows. Therefore, there has been a problem that the performance of the noise filter deteriorates in a high frequency region where inductance is dominant.
  • the present invention has been made to solve such a problem, and reduces noise current in a frequency region where anti-resonance occurs, while preventing performance deterioration in other frequency regions and improving durability.
  • An object of the present invention is to provide a noise filter that can be used.
  • the noise filter according to the present invention branches from a main current path portion provided between the power supply element and the circuit element, a first branch point at one end of the main current path portion, and at the other end of the main current path portion.
  • a sub-current path section connected to the main current path section at the second branch point; a pair of electrode terminals; and a ground terminal provided between the pair of electrode terminals.
  • a three-terminal capacitive element connected in series to the path from the branch point to the second branch point, the ground terminal being connected to the ground conductor, and a pair of electrode terminals, the pair of electrode terminals being the first A resistance element connected in series to a path from the branch point to the second branch point, and the path length of the sub-current path part is set to be the second branch from the first branch point in the main current path part. It is larger than the path length to the point.
  • the path length of the sub current path section is made larger than the path length from the first branch point to the second branch point in the main current path.
  • FIG. 1 is an explanatory diagram of a layer structure of a printed circuit board 1 that realizes a noise filter according to the present embodiment.
  • the illustrated printed circuit board 1 has a layer structure in which a first wiring layer 2 is laminated in a thickness direction Z of an insulating layer 3.
  • This printed board 1 is a single-sided board.
  • the first wiring layer 2 is distributed on the XY plane orthogonal to the thickness direction Z.
  • an electronic component 10 such as an LSI or an IC, which is a circuit element, a power supply element 11, a resistance element 12, and a three-terminal capacitive element 13 are mounted.
  • the insulating layer 3 is made of, for example, an electrically insulating resin material such as an epoxy resin or a polyimide resin.
  • FIG. 2 is a configuration diagram of the noise filter 100 according to the first embodiment.
  • the illustrated noise filter 100 includes a main wiring pattern 20 and a sub wiring that branches from the first branch portion 20 a on one end side of the main wiring pattern 20 and is connected to the second branch portion 20 b on the other end side of the main wiring pattern 20.
  • a pattern 21, a ground conductor 22, a resistance element 12, and a three-terminal capacitive element 13 are provided.
  • the main wiring pattern 20, the sub wiring pattern 21 and the ground conductor 22 are formed on the surface layer of the insulating layer 3 as a component group of the first wiring layer 2.
  • the first wiring layer 2 is made of a conductor such as copper foil.
  • the main wiring pattern 20 and the sub wiring pattern 21 are conductor patterns for supplying power that connect between the electronic component 10 and the power supply element 11.
  • the path of the main wiring pattern 20 including the resistance element 12, the three-terminal capacitor 13 and the main wiring pattern part 20c constitutes a main current path portion
  • the sub wiring pattern 21 constitutes a sub current path portion.
  • One end side of the main wiring pattern 20 is electrically connected to the power supply terminal of the electronic component 10, and the other end side of the main wiring pattern 20 is electrically connected to the positive electrode of the power supply element 11.
  • the sub wiring pattern 21 is configured to branch from the first branch portion 20 a of the main wiring pattern 20 and to be connected again at the second branch portion 20 b of the main wiring pattern 20.
  • the power supply element 11 is mounted on the printed circuit board 1, but the present invention is not limited to this. An external power supply element may be employed instead of the power supply element 11.
  • the resistance element 12 has electrode terminals at both ends in the longitudinal direction, that is, the main wiring pattern 20 direction.
  • the three-terminal capacitive element 13 has electrode terminals at both ends in the longitudinal direction, the electrodes at both ends are electrically connected, and a ground terminal is provided between the electrodes at both ends.
  • the resistance element 12 and the three-terminal capacitive element 13 are mounted on the surface of the printed circuit board 1 so as to be disposed in the first wiring layer 2.
  • the resistance element 12 and the three-terminal capacitive element 13 are connected in series via a part 20c of the main wiring pattern between the first branch part 20a and the second branch part 20b.
  • the order of connection is the order of the resistive element 12 and the three-terminal capacitive element 13 as viewed from the first branch portion 20a.
  • the two electrode terminals of the resistance element 12 are connected to the first branch portion 20a side of the main wiring pattern 20, and the other is connected to the part 20c side of the main wiring pattern.
  • the electrode terminals at both ends of the three-terminal capacitive element 13 one is connected to the part 20 c side of the main wiring pattern and the other is connected to the second branch part 20 b side.
  • the ground terminal of the three-terminal capacitive element 13 is connected to the ground conductor 22.
  • the ground conductor 22 is electrically grounded.
  • a surface mount type chip resistor is used as the resistance element 12, but the present invention is not limited to this. Instead of the chip resistor, a lead terminal type resistor may be used. Similarly, although a multilayer chip capacitor is used as the three-terminal capacitive element 13, it is not limited to this. Instead of the chip capacitor, an electrolytic capacitor or a film capacitor may be used. The same applies to the resistance element 12 and the three-terminal capacitive element 13 used in the second embodiment to be described later.
  • the noise filter 100 described above functions as a noise filter when high frequency electromagnetic noise is generated in the electronic component 10, and causes the noise current input to the main wiring pattern 20 to flow to the ground conductor 22 via the three-terminal capacitive element 13. Can do.
  • the noise filter 100 also has a function of stabilizing the power supply voltage by removing noise current.
  • FIG. 3 is a plan view of the noise filter 100 for explaining the principle of the noise reduction effect of the first embodiment.
  • the sub-current path composed of the sub-wiring pattern 21 is longer than the main current path between the first branch portion 20a and the second branch portion 20b of the main wiring pattern 20.
  • the impedance of the main current path between the first branch part 20a and the second branch part 20b is determined by the sum of the inductance depending on the length of the current path and the resistance value of the resistance element 12. While the impedance due to the inductance is proportional to the frequency, the resistance value of the resistance element 12 is almost constant regardless of the frequency. Further, the impedance of the sub current path by the sub wiring pattern 21 is similarly determined by the inductance depending on the length of the current path.
  • the influence of the resistance element 12 is large below the frequency at which anti-resonance occurs, and the impedance of the sub-current path becomes lower than the impedance of the main current path between the first branch part 20a and the second branch part 20b. Therefore, as shown by a broken line in FIG. 3, a component InA having a frequency equal to or lower than the frequency at which anti-resonance of the noise current occurs flows to the sub-current path and reaches the second branch portion 20b of the main current path, and the three-terminal capacitance Current is bypassed through element 13.
  • the resistance element 12 and the three-terminal capacitive element 13 are connected in series between the first branch portion 20a and the second branch portion 20b of the main wiring pattern 20.
  • the path length of the sub-wiring pattern 21 that is the sub-current path is formed longer than the path length from the first branch portion 20a to the second branch portion 20b of the main current path, so that the noise current Only the component InB in the frequency region in which the anti-resonance occurs can be consumed by the resistance element 12. Therefore, it is possible to realize a noise filter and a printed circuit board that can improve the performance of a noise filter in a frequency region where anti-resonance occurs, and prevent the performance of the noise filter from deteriorating in other frequency regions.
  • the 1st wiring layer 2 is comprised as an outer layer of a double-sided printed mounting board,
  • the first wiring layer 2 may be configured as an inner layer on a multilayer printed board including three or more wiring layers.
  • the outer layer means a wiring layer arranged on the outermost side among the plurality of wiring layers of the printed circuit board
  • the inner layer means a wiring layer arranged inside among the plurality of wiring layers of the printed circuit board.
  • the main wiring pattern 20 is formed in a linear shape, but is not limited to this shape.
  • the sub wiring pattern 21 is formed in a meander shape, it is not limited to this shape.
  • the main current path section provided between the power supply element and the circuit element and the first branch point at one end of the main current path section are branched.
  • a sub-current path section connected to the main current path section at the second branch point of the other end of the main current path section, a pair of electrode terminals, and a ground terminal provided between the pair of electrode terminals,
  • a pair of electrode terminals connected in series to a path from the first branch point to the second branch point, a ground terminal connected to the ground conductor, and a pair of electrode terminals;
  • the pair of electrode terminals includes a resistance element connected in series to a path from the first branch point to the second branch point, and the path length of the sub current path portion is set to the first branch in the main current path portion. Since it is longer than the path length from the point to the second branch point, anti-resonance occurs. While reducing the noise current in the frequency domain, and preventing degradation in performance of the other in the frequency domain, and it is possible to improve the durability.
  • the main current path section, the sub current path section, the three-terminal capacitive element, the ground conductor, and the resistance element are mounted on the same wiring layer on the printed circuit board, and the main current path section
  • the portion is formed in the wiring layer as a main wiring pattern
  • the sub current path portion is formed in the wiring layer as a sub wiring pattern
  • the three-terminal capacitive element and the resistance element are connected in series to the main wiring pattern. Therefore, it is possible to obtain a printed circuit board noise filter that can reduce noise current in a frequency region where anti-resonance occurs, prevent performance deterioration in other frequency regions, and improve durability.
  • FIG. 4 is an explanatory diagram of the layer structure of the printed circuit board 1a that realizes the noise filter of the second embodiment.
  • the first wiring layer 2a and the second wiring layer 4a are in the thickness direction through the insulating layer 3a
  • the second wiring layer 4a and the third wiring layer 6a are in the thickness direction through the insulating layer 5a.
  • 3 is a three-layer printed circuit board having a layer structure laminated on Z.
  • Each of the first wiring layer 2a, the second wiring layer 4a, and the third wiring layer 6a is distributed on the XY plane orthogonal to the thickness direction Z.
  • An electronic component 10 such as an LSI or an IC, a power supply element 11, a resistance element 12, and a three-terminal capacitive element 13 are mounted on the first wiring layer 2a on the surface of the printed board 1a.
  • the insulating layer 3a is made of, for example, an electrically insulating resin material such as an epoxy resin or a polyimide resin.
  • the first wiring layer 2a and the second wiring layer 4a or the first wiring layer 2a and the third wiring layer 3a penetrate through the insulating layer 3a and the insulating layer 5a in the thickness direction Z. Interlayer connection holes called vias or through holes that electrically connect to the wiring layer 6a are formed (see FIG. 5 described later).
  • FIG. 5 is a perspective view showing the configuration of the noise filter 100a of the second embodiment.
  • the illustrated noise filter 100 a includes a main wiring pattern 30, a sub wiring pattern 31, a ground connection wiring 32, a resistance element 12, and a three-terminal capacitive element 13.
  • the main wiring pattern 30 and the ground connection wiring 32 are formed on the surface layer of the insulating layer 3a as a component group of the first wiring layer 2a.
  • the sub wiring pattern 31 is formed on the surface layer of the insulating layer 5a as a component group of the third wiring layer 6a.
  • the first wiring layer 2a and the third wiring layer 6a are made of a conductor such as copper foil.
  • the noise filter 100a includes a ground conductor 33 that is electrically grounded as a component of the second wiring layer 4a.
  • the ground conductor 33 is made of a conductive material such as copper foil, and is formed in a sheet shape. Further, the noise filter 100a includes a first interlayer connection hole 34 and a second interlayer connection hole 35 that penetrate the insulating layer 3a and the insulating layer 5a in the thickness direction Z, and a third layer that penetrates the insulating layer 3a in the thickness direction Z.
  • the interlayer connection hole 36 and the fourth interlayer connection hole 37 are provided.
  • Each of the first interlayer connection hole 34, the second interlayer connection hole 35, the third interlayer connection hole 36, and the fourth interlayer connection hole 37 has a connection conductor such as a conductive paste or a metal plating layer, respectively. Is formed.
  • a pattern connection conductor is formed in the first interlayer connection hole 34 and the second interlayer connection hole 35
  • a ground connection conductor is formed in the second interlayer connection hole 35 and the third interlayer connection hole 36.
  • the first branch portion 30 a on one end side in the main wiring pattern 30 and the pattern connection conductor in the first interlayer connection hole 34 are electrically connected, and the other end in the main wiring pattern 30.
  • the second branch portion 30b on the side and the pattern connection conductor in the second interlayer connection hole 35 are electrically connected.
  • the ground connection wiring 32 and the ground connection conductors in the third interlayer connection hole 36 and the fourth interlayer connection hole 37 are electrically connected.
  • the ground conductor 33 and the ground connection conductor in the third interlayer connection hole 36 and the fourth interlayer connection hole 37 are electrically connected.
  • a first clearance 38 is formed around the first interlayer connection hole 34 in the second wiring layer 4a, and a second clearance 39 is formed around the second interlayer connection hole 35. Therefore, the first interlayer connection hole 34 and the second interlayer connection hole 35 are electrically insulated from the ground conductor 33.
  • the third wiring layer 6a one end of the sub wiring pattern 31 and the first interlayer connection hole 34 are electrically connected, and the other end of the sub wiring pattern 31 and the second interlayer connection hole 35 are electrically connected. Has been.
  • the first branch part 30 a side of the main wiring pattern 30 is electrically connected to the power supply terminal of the electronic component 10, and the second branch part 30 b side of the main wiring pattern 30 is electrically connected to the positive electrode of the power supply element 11. ing.
  • the power supply element 11 is mounted on the printed circuit board 1, but the present invention is not limited to this. An external power supply element may be employed instead of the power supply element 11.
  • the noise filter 100a includes a resistance element 12 and a three-terminal capacitive element 13 as shown in FIG.
  • the resistance element 12 and the three-terminal capacitive element 13 are mounted on the surface of the printed circuit board 1a so as to be disposed on the first wiring layer 2a.
  • the resistance element 12 and the three-terminal capacitive element 13 are connected in series between the first branch part 30a and the second branch part 30b of the main wiring pattern 30 via a part 30c of the main wiring pattern. Yes.
  • the order of connection is the order of the resistive element 12 and the three-terminal capacitive element 13 as viewed from the first branch part 30a.
  • One electrode terminal of the resistance element 12 is connected to the first branch portion 30a side of the main wiring pattern 30, and the other electrode terminal is connected to a part 30c of the main wiring pattern.
  • One electrode terminal of the three-terminal capacitive element 13 is connected to a part 30c of the main wiring pattern, the other electrode terminal is connected to the second branch part 30b, and the ground terminal is connected to the ground connection wiring 32. .
  • the noise filter 100 a functions as a noise filter when high frequency electromagnetic noise is generated in the electronic component 10, and can flow a noise current input to the main wiring pattern 30 to the ground conductor 33 via the three-terminal capacitive element 13. . Note that the noise filter 100a also has a function of stabilizing the power supply voltage by removing noise current.
  • the resistance element 12 and the three-terminal capacitive element 13 are connected in series.
  • the path length of the sub-current path of the pattern connection conductor in the wiring pattern 31, the first interlayer connection hole 34, and the second interlayer connection hole 35 is the main current of the first branch part 30a and the second branch part 30b. It is formed longer than the path length of the path.
  • a noise reduction effect can be realized by the same principle as in the first embodiment.
  • the printed board 1a having a smaller area than that in the first embodiment. A noise filter can be realized.
  • the first wiring layer 2a is configured as an outer layer of the double-sided printed circuit board, but is not limited to this.
  • the first wiring layer 2a may be configured as an inner layer on a multilayer printed board including four or more wiring layers.
  • the outer layer means a wiring layer arranged on the outermost side among the plurality of wiring layers of the printed circuit board
  • the inner layer means a wiring layer arranged inside among the plurality of wiring layers of the printed circuit board.
  • the main wiring pattern 30, the sub wiring pattern 31, and the ground connection wiring 32 are each formed in a linear shape, but are not limited thereto. Furthermore, although the two connection holes of the 1st interlayer connection hole 34 which penetrates the insulating layer 3a in the thickness direction Z and the 2nd interlayer connection hole 35 are used for a subcurrent path, it is limited to this number. It is not a thing. Similarly, the ground connection wiring 32 is connected with the third interlayer connection hole 36 and the fourth interlayer connection hole 37, but the number is not limited to this.
  • the ground conductor 33 is provided in the second wiring layer 4a, it may be provided in the first wiring layer 2a as in the first embodiment.
  • the first interlayer connection hole 34, the second interlayer connection hole 35, the third interlayer connection hole 36, and the fourth interlayer connection hole 37 have a cylindrical shape, but are not limited thereto. is not. Instead of the cylindrical shape, a polygonal column shape may be adopted.
  • the main current path portion, the three-terminal capacitive element, the ground conductor, and the resistance element are mounted on the first wiring layer of the printed circuit board having a plurality of wiring layers.
  • the main current path portion is formed as a main wiring pattern in the first wiring layer, and the sub current path portion is formed in a wiring layer different from the first wiring layer, the main wiring pattern,
  • the pattern connecting conductor is connected to the sub-wiring pattern. The mounting area can be reduced.
  • the main current path section, the three-terminal capacitive element, and the resistance element are mounted on the first wiring layer of the printed circuit board having three or more wiring layers, and the main current path
  • the portion is formed as a main wiring pattern in the first wiring layer
  • the sub current path portion is a pattern connecting conductor connecting the sub wiring pattern formed in the third wiring layer and the main wiring pattern and the sub wiring pattern.
  • the ground conductor is formed in the second wiring layer, the ground conductor and the ground terminal are connected by the ground connection conductor, and the three-terminal capacitive element and the resistance element are connected in series to the main wiring pattern.
  • the noise filters 100 and 100a of each of the above embodiments are not limited to one, and a plurality of noise filters may be mounted.
  • a filter array configured by cascading a plurality of the noise filters 100 and 100a of the above embodiment can be mounted on one printed circuit board. Further, either of the noise filters 100 and 100a may be input / output.
  • the basic configuration of the noise filters 100 and 100a of the first and second embodiments can be applied not only to a printed board but also to a layered circuit such as a semiconductor integrated circuit.
  • a layered circuit such as a semiconductor integrated circuit.
  • the free combination of the first and second embodiments, the modification of any component in each embodiment, or the omission of any component in each embodiment is possible.
  • the noise filter according to the present invention relates to a configuration for removing high-frequency electromagnetic noise that leaks due to anti-resonance caused by parasitic components of a printed circuit board, and is a printed circuit board on which various circuit elements are mounted. Suitable for use in.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Filters And Equalizers (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

副配線パターン(21)は、主配線パターン(20)の第1の分岐部(20a)から分岐し、第2の分岐部(20b)で主配線パターン(20)に接続する。第1の分岐部(20a)から第2の分岐部(20b)の主配線パターン(20)には抵抗素子(12)と3端子型容量素子(13)とが直列接続されている。副配線パターン(21)の経路長が、主配線パターン(20)における第1の分岐部(20a)から第2の分岐部(20b)までの経路長より大きく形成されている。

Description

ノイズフィルタ
 本発明は、プリント基板の寄生成分に起因する反共振が原因となり漏洩する高周波の電磁ノイズを除去するノイズフィルタに関するものである。
 プリント基板には、半導体集積素子などの種々の回路素子を実装することができる。また、プリント基板には、そのプリント基板で発生した高周波の電磁ノイズを除去するノイズフィルタとしてバイパスコンデンサが実装されていることが多い。例えば、プリント基板の電源ノイズの低減のためには、電源インピーダンスを低減することが求められる。そのために、プリント基板上の電源端子と回路素子との間にバイパスコンデンサからなるノイズフィルタが実装されている。
 近年、このバイパスコンデンサには3端子コンデンサが採用される例が増えている。3端子コンデンサは、従来使用されていた2端子コンデンサに比べてノイズ抑制性能が高いと言われており、回路素子と給電用の電源回路とを接続するプリント基板に形成された電源パターンを分断して実装、すなわち貫通実装される。
 しかしながら、3端子コンデンサを貫通実装した場合に以下の2点の課題が生じる。
 一つ目の課題は、3端子コンデンサ及び実装のための配線及びビアの寄生インダクタンスと、プリント基板に形成される電源パターンとグラウンドパターン間の寄生容量により、特定の周波数でLC並列共振(反共振)を引き起こすことである。反共振が生じている周波数領域では、寄生インダクタンスと寄生容量の間でノイズ電流の充放電が繰り返されるため、バイパスコンデンサが機能せずノイズ低減効果が損なわれる。したがって、ノイズフィルタの性能改善のためには、この反共振が生じる周波数領域のノイズ電流を低減することが要求される。
 二つ目の課題は、3端子コンデンサの貫通実装は、基板の歪みなどにより3端子コンデンサに応力が加わりクラックが入った際に、回路素子に対して給電が不可能となる。従って、製品の耐久性が低下することである。
 一つ目の課題であるノイズ電流を低減に関しては、例えば特許文献1に示されるように、直列接続されたコンデンサと抵抗を含むCRスナバ回路を、回路素子の電源端子とグラウンド端子との間に設けた構成が有った。コンデンサを介した電流のバイパス経路に抵抗を挿入することで、この抵抗がノイズ電流を消費し、反共振が生じる周波数領域のノイズフィルタの性能を改善することができる。
 また、二つ目の課題である製品の耐久性の低下に関しては、回路素子と給電用の電源回路とを接続するプリント基板に形成された電源パターンを分断しない実装(非貫通実装)があった。
特許第5558645号公報
 しかしながら、上記特許文献1に記載された技術では、反共振が生じる周波数領域において、抵抗でノイズ電流を消費し、反共振が生じる周波数領域のノイズフィルタの性能を改善することができるが、その他の周波数領域では、電流のバイパス経路に挿入された抵抗の抵抗値と、抵抗及びその接続配線の寄生インダクタンスにより、ノイズフィルタの性能が劣化するという問題があった。特に、3端子コンデンサを用いたノイズフィルタの性能を引き出すためには、バイパス経路に挿入された寄生インダクタンスを低減することが必須である。この点については、当該配線の寄生インダクタンスを磁気的に打ち消すために、抵抗とコンデンサに流れる電流が逆向きになるように部品を配置する対策が考えられる。しかしながら、このような方法ではインダクタンスを完全に打ち消すことはできず、抵抗値は低減できない。
 また、二つ目の課題の解決策である非貫通実装は、回路素子と給電用の電源回路とを接続する電源パターンを分断しないので、3端子コンデンサを通過せずに回路素子から給電点にノイズが流出する経路がある。そのため、インダクタンスが支配的になる高周波領域でノイズフィルタの性能が劣化するという問題があった。
 この発明は、かかる問題を解決するためになされたもので、反共振が生じる周波数領域のノイズ電流を低減しつつ、その他の周波数領域での性能劣化を防止し、かつ耐久性を向上させることのできるノイズフィルタを提供することを目的とする。
 この発明に係るノイズフィルタは、電源素子と回路素子との間に設けられた主電流経路部と、主電流経路部の一端の第1の分岐点から分岐し、主電流経路部の他端の第2の分岐点で主電流経路部に接続する副電流経路部と、一対の電極端子と、一対の電極端子間に設けられたグラウンド端子とを有し、一対の電極端子が、第1の分岐点から第2の分岐点までの経路に直列に接続され、グラウンド端子がグラウンド導体に接続される3端子型容量素子と、一対の電極端子を有し、一対の電極端子が、第1の分岐点から第2の分岐点までの経路に直列に接続される抵抗素子とを備え、副電流経路部の経路長を、前記主電流経路部における前記第1の分岐点から前記第2の分岐点までの経路長よりも大きくしたものである。
 この発明に係るノイズフィルタは、副電流経路部の経路長を、主電流経路における第1の分岐点から第2の分岐点までの経路長よりも大きくしたものである。これにより、反共振が生じる周波数領域のノイズ電流を低減しつつ、その他の周波数領域での性能劣化を防止し、かつ耐久性を向上させることができる。
この発明の実施の形態1のノイズフィルタを実現するプリント基板の層構造の説明図である。 この発明の実施の形態1のノイズフィルタを示す構成図である。 この発明の実施の形態1のノイズフィルタのノイズ電流の電流経路を示す説明図である。 この発明の実施の形態2のノイズフィルタを実現するプリント基板の層構造の説明図である。 この発明の実施の形態2のノイズフィルタの構成を示す斜視図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、本実施の形態によるノイズフィルタを実現するプリント基板1の層構造の説明図である。図示のプリント基板1は、第1配線層2が絶縁層3の厚み方向Zに積層された層構造を有する。このプリント基板1は片面基板である。第1配線層2は、厚み方向Zと直交するX-Y平面上に分布している。また、このプリント基板1の表面には、回路素子であるLSIまたはICなどの電子部品10、電源素子11、抵抗素子12及び3端子型容量素子13が実装されている。絶縁層3は、例えば、エポキシ樹脂またはポリイミド樹脂などの電気絶縁性の樹脂材料で構成されている。
 図2は、実施の形態1のノイズフィルタ100の構成図である。図示のノイズフィルタ100は、主配線パターン20と、主配線パターン20の一端側の第1の分岐部20aから分岐し主配線パターン20の他端側の第2の分岐部20bで接続する副配線パターン21と、グラウンド導体22と、抵抗素子12と、3端子型容量素子13とを備える。主配線パターン20、副配線パターン21及びグラウンド導体22は、第1配線層2の構成要素群として、絶縁層3の表層に形成されている。また、第1配線層2は、銅箔などの導電体で構成される。
 主配線パターン20と副配線パターン21は、電子部品10と電源素子11との間を接続する電源供給用の導体パターンである。抵抗素子12と3端子型容量素子13と主配線パターンの一部20cを含む主配線パターン20の経路が主電流経路部を構成し、副配線パターン21が副電流経路部を構成している。主配線パターン20の一端側は、電子部品10の電源端子と電気的に接続され、主配線パターン20の他端側は、電源素子11の正極と電気的に接続されている。副配線パターン21は、主配線パターン20の第1の分岐部20aから分岐し、主配線パターン20の第2の分岐部20bで再び接続するよう構成されている。
 なお、本実施の形態では、プリント基板1に電源素子11が実装されているが、これに限定されるものでない。電源素子11に代えて外部の電源素子を採用してもよい。
 また、抵抗素子12は、長手方向すなわち主配線パターン20方向の両端に電極端子を有する。3端子型容量素子13は、長手方向の両端に電極端子を有し、この両端の電極間は導通しており、両端の電極間にグラウンド端子を有する。これらの抵抗素子12及び3端子型容量素子13は、第1配線層2に配置されるようにプリント基板1の表面に実装されている。抵抗素子12と3端子型容量素子13は、第1の分岐部20aから第2の分岐部20bまでの間の主配線パターンの一部20cを介して直列に接続されている。接続の順番は、第1の分岐部20aからみて、抵抗素子12、3端子型容量素子13の順である。抵抗素子12の二つの電極端子のうち、一方は主配線パターン20の第1の分岐部20a側に、他方は主配線パターンの一部20c側に接続されている。また、3端子型容量素子13の両端の電極端子のうち、一方は主配線パターンの一部20c側に、他方は第2の分岐部20b側に接続されている。3端子型容量素子13のグラウンド端子はグラウンド導体22に接続されている。このグラウンド導体22は、電気的に接地されている。
 なお、本実施の形態では、抵抗素子12として表面実装型のチップ抵抗を使用しているが、これに限定されるものでない。チップ抵抗に代えて、リード端子タイプの抵抗を使用してもよい。同様に、3端子型容量素子13として積層型のチップコンデンサを使用しているが、これに限定されるものではない。チップコンデンサに代えて、電解コンデンサまたはフィルムコンデンサを使用してもよい。後述する実施の形態2で使用される抵抗素子12及び3端子型容量素子13についても同様である。
 上記したノイズフィルタ100は、電子部品10で高周波電磁ノイズが発生したときにノイズフィルタとして機能し、主配線パターン20に入力されたノイズ電流を3端子型容量素子13経由でグラウンド導体22に流すことができる。なお、ノイズフィルタ100は、ノイズ電流の除去により電源電圧を安定化させる機能をも有する。
 図2に示されるように、主電流経路である主配線パターン20には、抵抗素子12と3端子型容量素子13が直列に接続されており、副電流経路である副配線パターン21の経路長は、この主配線パターン20における第1の分岐部20aから第2の分岐部20b間の経路長に比べて長く形成される。これにより、周波数に応じてノイズ電流を分離することが可能となる。
 図3は、実施の形態1のノイズ低減効果の原理を説明するためのノイズフィルタ100の平面図である。
 主電流経路である主配線パターン20の一端からノイズ電流が流入すると、ノイズ電流は、周波数に依存し、主配線パターン20と副配線パターン21の電流経路に分離される。これは、副配線パターン21からなる副電流経路が、主配線パターン20の第1の分岐部20aから第2の分岐部20bまでの間の主電流経路よりも長いことによるものである。第1の分岐部20aから第2の分岐部20bまでの間の主電流経路のインピーダンスは、電流経路の長さに依存するインダクタンスと、抵抗素子12の抵抗値の和で決まる。インダクタンスによるインピーダンスは周波数と比例関係にある一方、抵抗素子12の抵抗値は周波数によらずほぼ一定である。また、副配線パターン21による副電流経路のインピーダンスは、同様に電流経路の長さに依存するインダクタンスに決まる。
 従って、反共振が生じる周波数以下では抵抗素子12の影響が大きく、副電流経路のインピーダンスが、第1の分岐部20aから第2の分岐部20bまでの間の主電流経路のインピーダンスより低くなる。そのため、図3中の破線で示すように、ノイズ電流の反共振が生じる周波数以下の成分InAが副電流経路に流れて主電流経路の第2の分岐部20bに到達し、3端子型容量素子13を介して電流がバイパスされる。
 一方、反共振が生じる周波数以上では、電流経路の長さに依存するインダクタンスの影響が大きく、副配線パターン21からなる副電流経路のインピーダンスが、第1の分岐部20aから第2の分岐部20b間の主電流経路のインピーダンスより高くなる。そのため、図中の実線で示すように、ノイズ電流の反共振が生じる周波数以上の成分InBが抵抗素子12と3端子型容量素子13とを介してバイパスされる。
 このように、実施の形態1によれば、主配線パターン20の第1の分岐部20aと第2の分岐部20bとの間に抵抗素子12と3端子型容量素子13とが直列に接続されており、副電流経路である副配線パターン21の経路長は、主電流経路の第1の分岐部20aから第2の分岐部20bまでの経路長に比べて長く形成されることで、ノイズ電流の反共振が生じる周波数領域の成分InBのみを抵抗素子12で消費することが可能となる。従って、反共振が生じる周波数領域のノイズフィルタの性能を改善しつつ、その他の周波数領域でノイズフィルタの性能が劣化することを防ぐことができるノイズフィルタ及びプリント基板を実現することができる。
 また、主電流経路に直列に実装された3端子型容量素子13の電源端子間が絶縁状態となった場合でも、副配線パターン21からなる副電流経路により電源素子11から電子部品10への給電が可能である。一方、電源端子間が絶縁状態でない場合は、上述したように、ノイズ電流の高周波数成分が主経路に接続された抵抗素子12と3端子型容量素子13を介してバイパスされる。そのため、3端子型容量素子13を通過せずに回路素子から給電点に流出するノイズ電流の高周波成分を抑制することができる。
 従って、反共振が生じる周波数領域のノイズフィルタの性能を改善しつつ、その他の周波数領域でノイズフィルタの性能が劣化することを防ぎ、かつ性能劣化せずに製品の耐久性を向上するノイズフィルタを提供することができる。
 なお、本実施の形態のプリント基板1は、片面プリント実装基板であるので、第1配線層2は、両面プリント実装基板の外層として構成されているが、これに限定されるものではない。例えば、第1配線層2が、3層以上の配線層を含む多層プリント基板に内層として構成されてもよい。ここで、外層とは、プリント基板の複数の配線層のうち最も外側に配置された配線層を意味し、内層とは、プリント基板の複数の配線層のうち内部に配置された配線層を意味する。
 また、主配線パターン20は線状に形成されているが、この形状に限定されるものではない。さらに、副配線パターン21はミアンダ状に形成されているが、この形状に限定されるものではない。
 以上説明したように、実施の形態1のノイズフィルタによれば、電源素子と回路素子との間に設けられた主電流経路部と、主電流経路部の一端の第1の分岐点から分岐し、主電流経路部の他端の第2の分岐点で主電流経路部に接続する副電流経路部と、一対の電極端子と、一対の電極端子間に設けられたグラウンド端子とを有し、一対の電極端子が、第1の分岐点から第2の分岐点までの経路に直列に接続され、グラウンド端子がグラウンド導体に接続される3端子型容量素子と、一対の電極端子を有し、一対の電極端子が、第1の分岐点から第2の分岐点までの経路に直列に接続される抵抗素子とを備え、副電流経路部の経路長を、主電流経路部における第1の分岐点から第2の分岐点までの経路長よりも大きくしたので、反共振が生じる周波数領域のノイズ電流を低減しつつ、その他の周波数領域での性能劣化を防止し、かつ耐久性を向上させることができる。
 また、実施の形態1のノイズフィルタによれば、主電流経路部、副電流経路部、3端子型容量素子、グラウンド導体及び抵抗素子は、プリント基板における同一の配線層に実装され、主電流経路部は主配線パターンとして配線層に形成されると共に、副電流経路部は副配線パターンとして配線層に形成され、かつ、3端子型容量素子及び抵抗素子は、主配線パターンに直列に接続されたので、反共振が生じる周波数領域のノイズ電流を低減しつつ、その他の周波数領域での性能劣化を防止し、かつ耐久性を向上させることのできるプリント基板のノイズフィルタを得ることができる。
実施の形態2.
 実施の形態2のノイズフィルタは、本発明のノイズフィルタを多層基板に拡張した場合に、複数層でフィルタ構造を実現し、実装面積を低減させたものである。
 図4は、実施の形態2のノイズフィルタを実現するプリント基板1aの層構造の説明図である。図示のプリント基板1aは、第1配線層2aと第2配線層4aとが絶縁層3aを介して、また、第2配線層4aと第3配線層6aとが絶縁層5aを介して厚み方向Zに積層された層構造を有する3層プリント基板である。第1配線層2a、第2配線層4a及び第3配線層6aの各々は、厚み方向Zと直交するX-Y平面上に分布している。また、このプリント基板1aの表面の第1配線層2aには、LSIまたはICなどの電子部品10、電源素子11、抵抗素子12及び3端子型容量素子13が実装されている。絶縁層3aは、例えば、エポキシ樹脂またはポリイミド樹脂などの電気絶縁性の樹脂材料で構成されている。また、図4には示されていないが、絶縁層3a及び絶縁層5aを厚み方向Zに貫通して、第1配線層2aと第2配線層4a、または、第1配線層2aと第3配線層6aとの間を電気的に接続するビアもしくはスルーホールと呼ばれる層間接続孔が形成されている(後述する図5参照)。
 図5は、実施の形態2のノイズフィルタ100aの構成を示す斜視図である。図示のノイズフィルタ100aは、主配線パターン30、副配線パターン31、グラウンド接続配線32、抵抗素子12及び3端子型容量素子13とを備える。
 主配線パターン30及びグラウンド接続配線32は、第1配線層2aの構成要素群として、絶縁層3aの表層に形成されている。また、副配線パターン31は、第3配線層6aの構成要素群として、絶縁層5aの表層に形成されている。また、第1配線層2a及び第3配線層6aは、銅箔などの導電体で構成される。また、ノイズフィルタ100aは、電気的に接地されたグラウンド導体33を第2配線層4aの構成要素として備える。グラウンド導体33は、銅箔などの導電性材料からなり、シート状に形成されている。さらに、ノイズフィルタ100aは、絶縁層3a及び絶縁層5aを厚み方向Zに貫通する第1の層間接続孔34及び第2の層間接続孔35と、絶縁層3aを厚み方向Zに貫通する第3の層間接続孔36及び第4の層間接続孔37とを備えている。これら第1の層間接続孔34、第2の層間接続孔35、第3の層間接続孔36及び第4の層間接続孔37の内部には、それぞれ導電性ペーストまたは金属メッキ層などの接続導体が形成されている。すなわち、第1の層間接続孔34及び第2の層間接続孔35中にはパターン接続導体が形成され、第2の層間接続孔35及び第3の層間接続孔36中にはグラウンド接続導体が形成されている。そのため、第1配線層2aでは、主配線パターン30における一端側の第1の分岐部30aと第1の層間接続孔34中のパターン接続導体が電気的に接続され、主配線パターン30における他端側の第2の分岐部30bと第2の層間接続孔35中のパターン接続導体が電気的に接続されている。また、グラウンド接続配線32と、第3の層間接続孔36及び第4の層間接続孔37中のグラウンド接続導体とが電気的に接続されている。
 第2配線層4aでは、グラウンド導体33と第3の層間接続孔36及び第4の層間接続孔37中のグラウンド接続導体が電気的に接続されている。また、第2配線層4aにおける第1の層間接続孔34の周辺には第1のクリアランス38が形成され、第2の層間接続孔35の周辺には第2のクリアランス39が形成されている。そのため、第1の層間接続孔34及び第2の層間接続孔35は、グラウンド導体33とは電気的に絶縁されている。第3配線層6aでは、副配線パターン31の一端部と第1の層間接続孔34が電気的に接続され、副配線パターン31の他端部と第2の層間接続孔35が電気的に接続されている。主配線パターン30の第1の分岐部30a側は電子部品10の電源端子と電気的に接続され、主配線パターン30の第2の分岐部30b側は電源素子11の正極と電気的に接続されている。
 なお、本実施の形態では、プリント基板1に電源素子11が実装されているが、これに限定されるものでない。電源素子11に代えて外部の電源素子を採用してもよい。
 また、ノイズフィルタ100aは、図5に示すように、抵抗素子12と3端子型容量素子13を備えている。これらの抵抗素子12と3端子型容量素子13とは、第1配線層2aに配置されるようにプリント基板1aの表面に実装されている。抵抗素子12と3端子型容量素子13は、主配線パターン30の第1の分岐部30aから第2の分岐部30bまでの間に、主配線パターンの一部30cを介して直列に接続されている。接続の順番は、第1の分岐部30aからみて、抵抗素子12、3端子型容量素子13の順である。抵抗素子12の一方の電極端子は主配線パターン30の第1の分岐部30a側に、他方の電極端子は主配線パターンの一部30cに接続されている。3端子型容量素子13の一方の電極端子は主配線パターンの一部30cに、他方の電極端子は第2の分岐部30bに接続されており、グラウンド端子はグラウンド接続配線32に接続されている。
 ノイズフィルタ100aは、電子部品10で高周波電磁ノイズが発生したときにノイズフィルタとして機能し、主配線パターン30に入力されたノイズ電流を3端子型容量素子13経由でグラウンド導体33に流すことができる。なお、ノイズフィルタ100aは、ノイズ電流の除去により電源電圧を安定化させる機能をも有する。
 図5に示すように、主配線パターン30の第1の分岐部30aと第2の分岐部30bとの間には、抵抗素子12と3端子型容量素子13が直列に接続されており、副配線パターン31と第1の層間接続孔34及び第2の層間接続孔35中のパターン接続導体の副電流経路の経路長は、第1の分岐部30aと第2の分岐部30bとの主電流経路の経路長に比べて長く形成される。これにより、本実施の形態でも、上記実施の形態1と同様の原理でノイズ低減効果を実現することができる。また、実施の形態2では、第1の層間接続孔34及び第2の層間接続孔35中のパターン接続導体が副電流経路に含まれるために、実施の形態1よりも小面積のプリント基板1aでノイズフィルタを実現できる。
 なお、本実施の形態のプリント基板1aは3層プリント実装基板であるので、第1配線層2aは、両面プリント実装基板の外層として構成されているが、これに限定されるものではない。例えば、第1配線層2aが、4層以上の配線層を含む多層プリント基板に内層として構成されてもよい。ここで、外層とは、プリント基板の複数の配線層のうち最も外側に配置された配線層を意味し、内層とは、プリント基板の複数の配線層のうち内部に配置された配線層を意味する。
 また、上記主配線パターン30、副配線パターン31及びグラウンド接続配線32は、それぞれ線状に形成されているが、これに限定されるものではない。さらに、副電流経路には、絶縁層3aを厚み方向Zに貫通する第1の層間接続孔34と、第2の層間接続孔35の2本の接続孔を用いるが、この本数に限定されるものではない。同様に、グラウンド接続配線32には、第3の層間接続孔36と第4の層間接続孔37の2本が接続されているが、この本数に限定されるものではない。
 また、グラウンド導体33は第2配線層4aに設けたが、実施の形態1と同様に第1配線層2aに設けても良い。
 さらに、第1の層間接続孔34、第2の層間接続孔35、第3の層間接続孔36及び第4の層間接続孔37は、円柱形状を有しているが、これに限定されるものではない。当該円柱形状に代えて多角柱形状を採用してもよい。
 以上説明したように、実施の形態2のノイズフィルタによれば、主電流経路部、3端子型容量素子、グラウンド導体及び抵抗素子は、複数の配線層を有するプリント基板の第1配線層に実装され、主電流経路部は、主配線パターンとして第1配線層に形成され、かつ、副電流経路部は、第1配線層とは異なる配線層に形成された副配線パターンと、主配線パターンと副配線パターンとを接続するパターン接続導体とで形成されると共に、3端子型容量素子及び抵抗素子は、主配線パターンに直列に接続されたので、実施の形態1の効果に加えてプリント基板の実装面積を低減することができる。
 また、実施の形態2のノイズフィルタによれば、主電流経路部、3端子型容量素子及び抵抗素子は、3層以上の配線層を有するプリント基板の第1配線層に実装され、主電流経路部は、主配線パターンとして第1配線層に形成され、かつ、副電流経路部は、第3配線層に形成された副配線パターンと、主配線パターンと副配線パターンとを接続するパターン接続導体とで形成されると共に、グラウンド導体は、第2配線層に形成され、グラウンド導体とグラウンド端子とがグラウンド接続導体で接続され、3端子型容量素子及び抵抗素子は、主配線パターンに直列に接続されたので、さらに実装面積を低減することができる。
 以上、図面を参照して本発明に係る種々の実施の形態について説明したが、これら実施の形態は本発明の例示であり、これら実施の形態以外の様々な形態を採用することもできる。例えば、上記の各実施の形態のノイズフィルタ100,100aは、1個に限らず、複数個実装されてもよい。また、上記実施の形態のノイズフィルタ100,100aの複数個を縦列接続して構成されるフィルタアレイを一つのプリント基板に実装することができる。また、ノイズフィルタ100,100aはどちらが入出力であっても良い。
 また、上記実施の形態1、2のノイズフィルタ100,100aの基本構成は、プリント基板だけでなく、半導体集積回路などの層構造の回路に適用可能である。
 なお、本発明の範囲内において、実施の形態1、2の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。
 以上のように、この発明に係るノイズフィルタは、プリント基板の寄生成分に起因する反共振が原因となり漏洩する高周波の電磁ノイズを除去する構成に関するものであり、種々の回路素子を実装するプリント基板に用いるのに適している。
 1,1a プリント基板、2,2a 第1配線層、3,3a,5a 絶縁層、4a 第2配線層、6a 第3配線層、10 電子部品、11 電源素子、12 抵抗素子、13 3端子型容量素子、20,30 主配線パターン、20a,30a 第1の分岐部、20b,30b 第2の分岐部、21,31 副配線パターン、22,33 グラウンド導体、32 グラウンド接続配線、34 第1の層間接続孔、35 第2の層間接続孔、36 第3の層間接続孔、37 第4の層間接続孔、38 第1のクリアランス、39 第2のクリアランス、100,100a ノイズフィルタ。

Claims (4)

  1.  電源素子と回路素子との間に設けられた主電流経路部と、
     前記主電流経路部の一端の第1の分岐点から分岐し、前記主電流経路部の他端の第2の分岐点で当該主電流経路部に接続する副電流経路部と、
     一対の電極端子と、前記一対の電極端子間に設けられたグラウンド端子とを有し、前記一対の電極端子が、前記第1の分岐点から前記第2の分岐点までの経路に直列に接続され、前記グラウンド端子がグラウンド導体に接続される3端子型容量素子と、
     一対の電極端子を有し、前記一対の電極端子が、前記第1の分岐点から前記第2の分岐点までの経路に直列に接続される抵抗素子とを備え、
     前記副電流経路部の経路長を、前記主電流経路部における前記第1の分岐点から前記第2の分岐点までの経路長よりも大きくしたことを特徴とするノイズフィルタ。
  2.  前記主電流経路部、前記副電流経路部、前記3端子型容量素子、前記グラウンド導体及び前記抵抗素子は、プリント基板における同一の配線層に実装され、
     前記主電流経路部は主配線パターンとして前記配線層に形成されると共に、前記副電流経路部は副配線パターンとして前記配線層に形成され、かつ、
     前記3端子型容量素子及び前記抵抗素子は、前記主配線パターンに直列に接続されたことを特徴とする請求項1記載のノイズフィルタ。
  3.  前記主電流経路部、前記3端子型容量素子、前記グラウンド導体及び前記抵抗素子は、複数の配線層を有するプリント基板の第1配線層に実装され、
     前記主電流経路部は、主配線パターンとして前記第1配線層に形成され、かつ、前記副電流経路部は、前記第1配線層とは異なる配線層に形成された副配線パターンと、前記主配線パターンと前記副配線パターンとを接続するパターン接続導体とで形成されると共に、
     前記3端子型容量素子及び前記抵抗素子は、前記主配線パターンに直列に接続されたことを特徴とする請求項1記載のノイズフィルタ。
  4.  前記主電流経路部、前記3端子型容量素子及び前記抵抗素子は、3層以上の配線層を有するプリント基板の第1配線層に実装され、
     前記主電流経路部は、主配線パターンとして前記第1配線層に形成され、かつ、前記副電流経路部は、第3配線層に形成された副配線パターンと、前記主配線パターンと前記副配線パターンとを接続するパターン接続導体とで形成されると共に、前記グラウンド導体は、第2配線層に形成され、当該グラウンド導体と前記グラウンド端子とがグラウンド接続導体で接続され、
     前記3端子型容量素子及び前記抵抗素子は、前記主配線パターンに直列に接続されたことを特徴とする請求項1記載のノイズフィルタ。
PCT/JP2017/004198 2017-02-06 2017-02-06 ノイズフィルタ WO2018142611A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112017006666.2T DE112017006666B4 (de) 2017-02-06 2017-02-06 Rauschfilter
US16/473,298 US20190372542A1 (en) 2017-02-06 2017-02-06 Noise filter
JP2017536369A JP6338784B1 (ja) 2017-02-06 2017-02-06 ノイズフィルタ
CN201780085443.7A CN110249524A (zh) 2017-02-06 2017-02-06 噪声滤波器
PCT/JP2017/004198 WO2018142611A1 (ja) 2017-02-06 2017-02-06 ノイズフィルタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004198 WO2018142611A1 (ja) 2017-02-06 2017-02-06 ノイズフィルタ

Publications (1)

Publication Number Publication Date
WO2018142611A1 true WO2018142611A1 (ja) 2018-08-09

Family

ID=62487366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004198 WO2018142611A1 (ja) 2017-02-06 2017-02-06 ノイズフィルタ

Country Status (5)

Country Link
US (1) US20190372542A1 (ja)
JP (1) JP6338784B1 (ja)
CN (1) CN110249524A (ja)
DE (1) DE112017006666B4 (ja)
WO (1) WO2018142611A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7456516B2 (ja) 2020-11-04 2024-03-27 株式会社村田製作所 信号電源分離回路が構成される多層回路基板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10912199B1 (en) * 2019-10-03 2021-02-02 Kioxia Corporation Resistive PCB traces for improved stability
WO2022070739A1 (ja) * 2020-09-29 2022-04-07 株式会社村田製作所 共振素子、フィルタ、およびモジュール

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223449A (ja) * 2000-02-09 2001-08-17 Toshiba Corp 多層プリント基板
JP2009158874A (ja) * 2007-12-28 2009-07-16 Murata Mfg Co Ltd 基板及びこれを備えた電子装置
WO2015049736A1 (ja) * 2013-10-02 2015-04-09 三菱電機株式会社 Crスナバ回路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2846271C2 (de) 1978-10-24 1981-01-08 Siemens Ag, 1000 Berlin Und 8000 Muenchen Schaltung zur Ermittlung des Phasenjitters von Digitalsignalen
JPH0888528A (ja) * 1994-09-14 1996-04-02 Zexel Corp 電源フィルタ
JP2006100708A (ja) * 2004-09-30 2006-04-13 Taiyo Yuden Co Ltd 3端子型積層コンデンサ実装回路基板および3端子型積層コンデンサ
JP5120434B2 (ja) * 2010-09-30 2013-01-16 株式会社デンソー 帯域阻止フィルタ
US10200007B2 (en) * 2015-07-17 2019-02-05 Rohm Co., Ltd. Filter chip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223449A (ja) * 2000-02-09 2001-08-17 Toshiba Corp 多層プリント基板
JP2009158874A (ja) * 2007-12-28 2009-07-16 Murata Mfg Co Ltd 基板及びこれを備えた電子装置
WO2015049736A1 (ja) * 2013-10-02 2015-04-09 三菱電機株式会社 Crスナバ回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7456516B2 (ja) 2020-11-04 2024-03-27 株式会社村田製作所 信号電源分離回路が構成される多層回路基板

Also Published As

Publication number Publication date
JPWO2018142611A1 (ja) 2019-02-07
US20190372542A1 (en) 2019-12-05
DE112017006666B4 (de) 2020-10-08
CN110249524A (zh) 2019-09-17
DE112017006666T5 (de) 2019-10-17
JP6338784B1 (ja) 2018-06-06

Similar Documents

Publication Publication Date Title
US7672112B2 (en) Component-embedded substrate and component package using component-embedded substrate
KR100364967B1 (ko) 적층 커패시터, 배선 기판, 및 고주파 회로
KR101013537B1 (ko) 적층 커패시터들의 배선 구조
KR101508796B1 (ko) 회로 기판을 위한 강화되고 국부화된 배분적인 캐패시턴스
US20100149769A1 (en) Circuit board device and integrated circuit device
JP6472344B2 (ja) ノイズフィルタ及びプリント基板
EP2466999A1 (en) Printed circuit board
US6754064B2 (en) Mounting structure for two-terminal capacitor and three-terminal capacitor
JP6338784B1 (ja) ノイズフィルタ
US6618266B2 (en) Method for high-density, low-via-count, decoupling capacitor placement
JP6179670B2 (ja) ノイズ抑制機能を有する多層プリント基板及びそれを用いた電動パワーステアリング装置用ecu基板
US20080225463A1 (en) Layered capacitor and mounting structure
US9998084B2 (en) Noise filter
JP6504960B2 (ja) プリント基板
US8027170B2 (en) Substrate and electronic device using the same
KR101009152B1 (ko) 인쇄회로기판
JP6425632B2 (ja) プリント基板
JP6520685B2 (ja) ノイズフィルタ
US8848386B2 (en) Electronic circuit
JP2009010273A (ja) プリント配線板の電源ノイズフィルタ構造
JP5882001B2 (ja) プリント配線板
US7626828B1 (en) Providing a resistive element between reference plane layers in a circuit board
WO2020235092A1 (ja) フィルタ回路
JP2022184580A (ja) 複合積層セラミックコンデンサ、複合積層セラミックコンデンサの実装方法、及び、配線基板
CN115940858A (zh) 滤波器装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017536369

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895099

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17895099

Country of ref document: EP

Kind code of ref document: A1