WO2016067835A1 - パワーモジュールおよびパワー回路 - Google Patents

パワーモジュールおよびパワー回路 Download PDF

Info

Publication number
WO2016067835A1
WO2016067835A1 PCT/JP2015/078160 JP2015078160W WO2016067835A1 WO 2016067835 A1 WO2016067835 A1 WO 2016067835A1 JP 2015078160 W JP2015078160 W JP 2015078160W WO 2016067835 A1 WO2016067835 A1 WO 2016067835A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power module
power
capacitor
power terminal
Prior art date
Application number
PCT/JP2015/078160
Other languages
English (en)
French (fr)
Inventor
浩隆 大嶽
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2016556458A priority Critical patent/JP6683621B2/ja
Publication of WO2016067835A1 publication Critical patent/WO2016067835A1/ja
Priority to US15/496,651 priority patent/US10418895B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/348Passive dissipative snubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • This embodiment relates to a power module and a power circuit.
  • SiC Silicon carbide
  • One method of reducing the parasitic inductance of a power module is to use a wiring bus (BUS) in the module as laminated wiring.
  • BUS wiring bus
  • the terminals are connected with a mold when molding. It is difficult to introduce laminate wiring especially around the externally exposed terminal due to the method of fixing the object to be molded such as by suppressing it, and the parasitic inductance of the terminal is also low from the viewpoint of securing the creepage distance between the terminals. It becomes a neck.
  • the solution is to place a built-in capacitor closer to the bridge than the terminal connection, thereby creating a circuit part that does not include externally exposed terminals and can form a closed loop with a low inductance and an off-state semiconductor element. Can be suppressed.
  • the inventor has confirmed the effect of the built-in capacitor in the simulation of the switch circuit of the inductive load. As a result, the voltage / current surge applied to the power device itself is improved, but the current that is conducted to the terminal portion can be a noise source. Current oscillation was found.
  • the present embodiment is to provide a power module and a power circuit that achieve both low parasitic inductance and low noise.
  • a bridge portion having a bridge circuit configured by a plurality of transistor elements and a built-in capacitor connected across both ends of the bridge circuit, and both ends of the bridge portion, respectively.
  • a positive power terminal and a negative power terminal with one end connected and the other end exposed to the outside of the sealing portion that seals the bridge portion, and the exposed side of the positive power terminal and the negative power terminal And a snubber circuit connected to straddle the power module.
  • a main substrate a first electrode pattern disposed on the main substrate and connected to a positive power terminal, and a negative power terminal disposed on the main substrate.
  • a second electrode pattern connected to the first substrate, a third electrode pattern disposed on the main substrate and connected to an output terminal, a first transistor element having a first output disposed on the first electrode pattern, A second transistor element having a second output disposed on the third electrode pattern; a built-in capacitor disposed between the first electrode pattern and the second electrode pattern; the positive power terminal;
  • a power module including a snubber circuit connected across a side exposed from a sealing portion that seals the first transistor element and the second transistor element of a side power terminal.
  • a bridge portion having a bridge circuit constituted by a plurality of transistor elements and a built-in capacitor connected across both ends of the bridge circuit, and both ends of the bridge portion One end is connected, and the other end is exposed to the positive power terminal and the negative power terminal exposed to the outside of the sealing portion that seals the bridge portion, and the positive power terminal and the negative power terminal are exposed.
  • a power module including a current noise reduction circuit that is connected so as to straddle a side and reduces current noise of the positive power terminal and the negative power terminal.
  • a power circuit including the power module described above and a smoothing capacitor connected in parallel to the snubber circuit is provided.
  • V DSRG drain-source surge voltage
  • the peak values IdH2P ⁇ IdL2P of the currents IdH2 ⁇ IdL2 that conduct the power terminals P ⁇ N depend on the snubber resistance RB. It is a power circuit provided with the power module which concerns on the modification of embodiment, Comprising: The typical circuit block diagram of a half-bridge circuit.
  • FIG. 7 is an example of operation waveforms of currents IdH2 and IdL2 that conduct power terminals P and N when a snubber circuit (RB and CB) and a parallel capacitor CP are connected in a power circuit including a power module according to a modification of the embodiment.
  • the typical top view before forming the resin layer of the example which is a modification of the internal structure example 1 of the power module which concerns on embodiment, and has internal capacitor
  • FIG. 19 is a schematic sectional view taken along line II in FIG.
  • FIG. 4 is a schematic cross-sectional structure diagram of a SiC-DIMOSFET, which is an example of a semiconductor device applicable to a power circuit including the power module according to the embodiment.
  • FIG. 3 is a schematic cross-sectional structure diagram of a SiC-TMOSFET, which is an example of a semiconductor device applicable to a power circuit including the power module according to the embodiment.
  • a power circuit 2A including a power module 1A includes a plurality of SiC-insulated gate field effect transistors (SiC-MOSFETs: SiC-Metal-Oxide-Semiconductor-Field-Effect-Transistor) Q1 and Q2.
  • SiC-MOSFETs SiC-Metal-Oxide-Semiconductor-Field-Effect-Transistor
  • a bridge portion 3 having a configured bridge circuit and a built-in capacitor C1 connected across both ends of the bridge circuit, and a power terminal P having one end connected to both ends of the bridge portion 3 and the other end exposed to the outside N and a smoothing capacitor C2 connected in parallel so as to straddle the exposed side of the power terminals P and N.
  • the source S1 of the SiC-MOSFET Q1 and the drain D2 of the SiC-MOSFET Q2 are electrically connected to form a half bridge circuit. ing.
  • the gates G1 and G2 and the source senses SS1 and SS2 of the SiC-MOSFETs Q1 and Q2 are connected to externally extracted gate terminals GT1 and GT2 and source sense terminals SST1 and SST2.
  • the drain D1 of the SiC-MOSFET Q1 is connected to the power terminal P, and the source S1 of the SiC-MOSFET Q2 is connected to the power terminal N.
  • the source S1 of the SiC-MOSFET Q1 and the drain D2 of the SiC-MOSFET Q2 are connected to the output terminal OUT.
  • a built-in capacitor C1 is connected between the drain D1 of the SiC-MOSFET Q1 and the source S1 of the SiC-MOSFET Q2, and a load reactor L is externally connected between the output terminal OUT and the power terminal P.
  • a power source E is externally connected between N.
  • FIG. 1 a simulation result is shown in FIG. 2 and FIG. 3 in which 400 V is applied to the power source E to operate the low-side SiC-MOSFET Q2 and turn-off / turn-on with the load current 470A is performed. Is done. That is, short circuit between the gate terminals GT1 ⁇ source sense terminal SST1 the high side of the SIC-MOSFET Q1, through the gate resistor R G between the gate terminal GT2 ⁇ source sense terminal SST2 on the low side of the SIC-MOSFET Q2
  • the simulation results of the operation waveforms of the currents IdL1 and IdH1 that conduct the device when the pulse voltage is applied are expressed as shown in FIG. 2, and the operation waveforms of the currents IdH2 and IdL2 that conduct the power terminals P and N
  • the simulation result is expressed as shown in FIG.
  • the explanatory diagram of the switching operation when the low-side SiC-MOSFET Q2 is turned on is expressed as shown in FIG. 4, and when the low-side SiC-MOSFET Q2 is turned off.
  • the description of the switching operation is expressed as shown in FIG.
  • the vibration phenomenon immediately after the low-side SiC-MOSFET Q2 is turned on releases the electric charge by the built-in capacitor C1 as a carrier for supplying the load current, and the voltage drop is replenished from the external circuit. This is because ringing occurs between the built-in capacitor C1 and the external circuit.
  • the oscillation phenomenon immediately after the low-side side SiC-MOSFET Q2 is turned off is because the load current flowing into the high-side side SiC-MOSFET Q1 flows through the built-in capacitor C1 and the external circuit as shown in FIG. This is because excessive charge accumulates in the built-in capacitor C1, and ringing occurs between the built-in capacitor C1 and the external circuit in the process of releasing the excess charge.
  • Such a vibration phenomenon does not appear in the voltage and current waveforms of the device parts of the SiC-MOSFETs Q1 and Q2, and it is possible to suppress gate malfunction caused by switching loss, avalanche breakdown, and current inflow to the gate-drain feedback capacitance. .
  • a large current-voltage oscillation generated around the power terminals P and N becomes noise and induces a malfunction of the control circuit.
  • the switching is performed in a state where the voltage of the smoothing capacitor C2 is not stable, there is a risk of switching an unexpectedly large voltage, which increases the switching loss and hinders high-frequency operation.
  • the power circuit 2 including the power module 1 according to the embodiment is not limited to a half bridge circuit, and can be applied to a full bridge circuit, a three-phase bridge circuit, or the like.
  • the power circuit 2 including the power module 1 includes a bridge circuit constituted by a plurality of SiC MOSFETs Q1 and Q2, and a built-in capacitor C1 connected across the both ends of the bridge circuit.
  • a bridge circuit constituted by a plurality of SiC MOSFETs Q1 and Q2, and a built-in capacitor C1 connected across the both ends of the bridge circuit.
  • the power circuit 2 may include a smoothing capacitor C2 connected in parallel to the snubber circuit 4, as shown in FIG.
  • the snubber circuit 4 may include a snubber capacitor CB and a snubber resistor RB connected in series.
  • the bridge unit 3 may be provided with either a half bridge circuit, a full bridge circuit, or a three-phase bridge circuit, and the built-in capacitor C1 may be connected with a separate capacitor for each of a plurality of bridges.
  • the built-in capacitor C1 in which charge excess or deficiency occurs mainly due to discharge of load current or inflow of load current causes resonance with the smoothing capacitor C2 or the like. Further, resonance occurs in a closed loop formed by the snubber circuit 4 connected between both ends of the bridge unit 3, energy is consumed by the snubber resistor RB of the snubber circuit 4, and the vibration converges.
  • the RC snubber circuit is used in a form of being connected in parallel to one switch element.
  • the snubber circuit 4 is inserted in parallel to the bridge unit 3, so that the bridge unit 3 Current oscillation generated between both ends of the substrate can be rapidly suppressed.
  • the ringing can be quickly converged without increasing the internal impedance of the smoothing capacitor C2 that supplies a large current and the power supply E that supplies the power supply voltage, and noise can be reduced. Further, since the voltage across the smoothing capacitor C2 is rapidly stabilized, the power circuit 2 according to the embodiment can operate at a high frequency.
  • the source S1 of the SiC-MOSFET Q1 and the drain D2 of the SiC-MOSFET Q2 are electrically connected to form a half-bridge circuit.
  • the gates G1 and G2 and the source senses SS1 and SS2 of the SiC-MOSFETs Q1 and Q2 are connected to externally extracted gate terminals GT1 and GT2 and source sense terminals SST1 and SST2.
  • the drain D1 of the SiC-MOSFET Q1 is connected to the power terminal P, and the source S2 of the SiC-MOSFET Q2 is connected to the power terminal N.
  • the source S1 of the SiC-MOSFET Q1 and the drain D2 of the SiC-MOSFET Q2 are connected to the output terminal OUT.
  • a built-in capacitor C1 is connected between the drain D1 of the SiC-MOSFET Q1 and the source S2 of the SiC-MOSFET Q2, and a snubber comprising a series circuit of a snubber capacitor CB and a snubber resistor RB is connected between the power terminals P and N.
  • the circuit 4 and the smoothing capacitor C2 are externally connected.
  • a load reactor L is connected between the output terminal OUT and the power terminal P, and a power source E is supplied between the power terminals P and N.
  • the value of the built-in capacitor C1 is, for example, 1 ⁇ F
  • the value of the smoothing capacitor C2 is, for example, 125 ⁇ F
  • the value of the power source E is, for example, about 400V.
  • the value of the snubber capacitor CB is desirably 10 times or more that of the built-in capacitor C1, for example, 10 ⁇ F.
  • the value of the snubber resistor RB has a resistance value capable of substantially minimizing the peak values IdH2P and IdL2P of the currents IdH2 and IdL2 conducted through the power terminals P and N. For example, in the above condition, about 40 m ⁇ It is.
  • FIG. 6 a simulation result obtained by applying 400 V to the power source E to operate the low-side SiC-MOSFET Q2 and performing turn-off / turn-on with the load current 470A is expressed as shown in FIGS. That is, short circuit between the gate terminals GT1 ⁇ source sense terminal SST1 the high side of the SIC-MOSFET Q1, through the gate resistor R G between the gate terminal GT2 ⁇ source sense terminal SST2 on the low side of the SIC-MOSFET Q2 The simulation results of the operation waveforms of the currents IdL2 and IdH2 that conduct the power terminals P and N when the pulse voltage is applied are expressed as shown in FIGS.
  • FIG. 7 corresponds to an operation waveform example of the currents IdH2 and IdL2 that conduct the power terminals P and N when the RC snubber circuit (RB and CB) is not connected.
  • FIG. 8 illustrates an RC snubber circuit ( This corresponds to an operation waveform example of currents IdH2 and IdL2 that conduct the power terminals P and N when RB and CB) are connected.
  • time constant ⁇ H ⁇ ⁇ L of the current oscillation of the currents IdH2 and IdL2 conducted through the power terminals P and N can be obtained from the decay time constant of the envelope indicated by the broken line in FIGS.
  • the peak value of the drain-source surge voltage V DSRG when simulating the case where 400 V is applied to the power source E to operate the low-side SiC-MOSFET Q2 and the turn-off / turn-on with the load current 470A is performed.
  • the comparative example is expressed as shown in FIG. That is, in FIG. 9, A represents the drain-source surge voltage V DSRG when there is no built-in capacitor C1, and for example, a value of 700 V or more is obtained.
  • B represents the drain-source surge voltage V DSRG in the case where the built-in capacitor C1 is provided and the snubber circuit (RB ⁇ CB) is not provided. For example, a value of about 500V is obtained.
  • C represents the drain-source surge voltage V DSRG when the built-in capacitor C1 is provided and the snubber circuit (RB ⁇ CB) is provided. For example, a value of about 500V is obtained.
  • FIG. 10 a comparative example of the peak values IdH2P ⁇ IdL2P of the drain-source surge current I DSRG of the currents IdH2 ⁇ IdL2 conducting the power terminals P ⁇ N and the time constants ⁇ H ⁇ ⁇ L of the current oscillations of the currents IdH2 ⁇ IdL2 is shown in FIG. It is expressed as shown in That is, in FIG. 10, D corresponds to the case where the built-in capacitor C1 is provided and the snubber circuit (RB / CB) is not provided, and E is the case where the built-in capacitor C1 is provided and the snubber circuit (RB / CB) is provided. It corresponds to the case where there is.
  • the peak values IdH2P ⁇ IdL2P of the drain-source surge current I DSRG of the currents IdH2 ⁇ IdL2 that conduct the power terminals P ⁇ N are, for example, 800A ⁇ about 790A, and the time constant ⁇ H ⁇ ⁇ L of the current oscillation of the current IdH2 ⁇ IdL2 is, for example, about 6.1 ⁇ s ⁇ about 6.2 ⁇ s.
  • the peak value IdH2P ⁇ IdL2P of the drain-source surge current I DSRG of the current IdH2 ⁇ IdL2 conducting the power terminals P ⁇ N is
  • the current constants ⁇ H ⁇ ⁇ L of the current oscillations of the currents IdH2 and IdL2 are, for example, about 1.5 ⁇ s and about 1.5 ⁇ s.
  • the dependency of the peak values IdH2P and IdL2P on the currents IdH2 and IdL2 conducted through the power terminals P and N on the snubber resistance RB is expressed as shown in FIG.
  • 400V / 470A is switched by the inductive load
  • the value of the parasitic inductance L pp between the snubber circuit 4 and the smoothing capacitor C2 is, for example, about 15 nH
  • the value of the parasitic capacitance C pp is, for example, about 9.3 ⁇ F.
  • the vibrations of the currents IdH2 and IdL2 that conduct the power terminals P and N cannot be effectively attenuated.
  • the peak values IdH2P and IdL2P are relatively large values.
  • the value of the snubber resistance RB is as large as about 1000 m ⁇ , for example, the snubber circuit 4 does not function because it is close to the open state, and the peak values IdH2P and IdL2P show relatively large values. . Therefore, as shown in FIG.
  • the snubber resistance RB has a resistance value that substantially minimizes the peak values IdH2P and IdL2P.
  • the snubber resistance RB is close to the optimum value of 40 m ⁇ .
  • the snubber circuit 4 is externally connected between the power terminals P and N of the bridge unit 3, so that the surge amount of the drain-source voltage applied to the device unit is hardly changed. Even when the built-in capacitor C1 is built in the circuit 3, the vibration of the current flowing through the power terminals P and N can be quickly converged, and noise can be reduced and high-frequency operation can be achieved.
  • the capacity of the snubber capacitor CB of the snubber circuit 4 is too small, the impedance with respect to a steeply rising current increases, and the current path does not occur. Therefore, it is desirable that the capacity of the snubber capacitor CB is greater than or equal to the capacity of the built-in capacitor C1.
  • the ringing time constant becomes long and the effect of damping the vibration cannot be obtained. If too much current flows through another path, the effect of damping the vibration cannot be obtained.
  • the resistance value is a characteristic impedance Z o of about 40 m ⁇ .
  • the power circuit 2 including the power module 1 includes a built-in bridge circuit formed by a plurality of SiC MOSFETs Q1 and Q2 and connected across both ends of the bridge circuit. One end is connected to both ends of the bridge portion 3 having the capacitor C1 and both ends of the bridge portion 3, and the other end is exposed to the outside so as to straddle the exposed side of the power terminal P ⁇ N. And a snubber circuit 4 connected in series.
  • the power circuit 2 including the power module 1 according to the modification of the embodiment may include a smoothing capacitor C2 connected in parallel to the snubber circuit 4 as shown in FIG.
  • the snubber circuit 4 includes a snubber capacitor CB and a snubber resistor RB connected in series as shown in FIG. 12, and further includes a snubber resistor RB.
  • a parallel capacitor CP connected in parallel may be provided.
  • the bridge unit 3 may be provided with either a half bridge circuit, a full bridge circuit, or a three-phase bridge circuit, and the built-in capacitor C1 may be connected with a separate capacitor for each of a plurality of bridges.
  • the power circuit 2 including the power module 1 according to the modification of the embodiment includes a parallel capacitor CP connected in parallel to the snubber resistor RB constituting the snubber circuit 4.
  • Other configurations are the same as those of the embodiment.
  • the snubber resistor is inserted at the moment when the current change immediately after switching is large by inserting the parallel capacitor CP in parallel with the snubber resistor RB of the snubber circuit 4. Since the current flows through the parallel capacitor CP instead of the RB, the impedance of the snubber circuit 4 immediately after switching can be apparently lowered.
  • the snubber circuit 4 can partially bear the supply source of the load current, and the current outflow from the built-in capacitor C1 is reduced, so that the current surge generated when recharging the built-in capacitor C1 is reduced. be able to.
  • a comparative example of the peak values IdL2P and IdH2P of the currents IdH2 and IdL2 conducted through the power terminals P and N is expressed as shown in FIG. That is, in FIG. 14, F represents a peak value IdH2P ⁇ IdL2P when there is no parallel capacitor CP. For example, values of about 735A and about 725A are obtained. On the other hand, G represents the peak value IdH2P ⁇ IdL2P in the case where the parallel capacitor CP is provided, and for example, values of about 710A and about 695A are obtained.
  • the combined impedance of the snubber resistor RB is lowered by the parallel capacitor CP connected in parallel. For this reason, compared with the value of the snubber resistor RB in the power circuit 2 according to the embodiment, the value of the snubber resistor RB in the power circuit 2 according to the modification of the embodiment has an appropriately increased resistance value. Also good.
  • FIG. 1 A schematic top view of the internal structure example 1 of the power module 1 according to the embodiment having the built-in capacitor C1 and the external snubber circuit (RB / CB) 4 before forming the resin layer 20 is shown in FIG. As shown in FIG.
  • FIG. 17 shows a schematic bird's-eye view configuration after forming the resin layer in the power module 1 according to the embodiment.
  • the power module 1 according to the embodiment can be formed by transfer molding as shown in FIG.
  • the power module 1 includes a main substrate 10, a first electrode pattern EP disposed on the main substrate 10 and connected to the positive power terminal P, A second electrode pattern EN disposed on the substrate 10 and connected to the negative power terminal N, a third electrode pattern EO disposed on the main substrate 10 and connected to the output terminal OUT, and a first electrode pattern EP A first SiC-MOSFET Q1 having a first drain D1 disposed thereon, a second SiC-MOSFET Q2 having a second drain D2 disposed on a third electrode pattern EO, a first electrode pattern EP and a second electrode pattern EN And a snubber circuit 30 connected across the exposed side of the resin layer 20 of the positive power terminal P and the negative power terminal N (FIG. 17). It is equipped with a.
  • a smoothing capacitor C2 connected in parallel to the snubber circuit 30 may be provided.
  • the built-in capacitor C1 may be constituted by a series connection of a plurality of built-in capacitors C11 and C12.
  • the snubber circuit 30 may include a snubber resistor RB and a snubber capacitor CB connected in series. As shown in FIGS. 15 and 16, the snubber circuit 30 includes a snubber resistor RB and a snubber capacitor CB connected in series through a plurality of electrode patterns 26, 27, and 28 mounted on the snubber circuit board 25. May be.
  • the power module 1 includes a first metal plate 23P connected to the positive power terminal P and a second metal connected to the negative power terminal N as shown in FIGS.
  • the snubber circuit 30 may be disposed between the first metal plate 23P and the second metal plate 23N.
  • the positive power terminal P and the first metal plate 23P may be screwed and the negative power terminal N and the second metal plate 23N may be screwed.
  • the second gate signal wiring pattern GL2 disposed on the main substrate 10 and connected to the second gate G2 of the second SiC-MOSFET Q2 and the second source S2 connected to the second source S2 of the second SiC-MOSFET Q2 are used.
  • a second signal substrate 14 2 on which the two-source sense signal wiring pattern SL2 is mounted may be provided.
  • the sealing portion of the power module 1 may be sealed with a thermosetting resin.
  • the power module 1 according to the embodiment may be formed by transfer molding.
  • a transfer mold resin, a thermosetting resin, or the like applicable to a SiC semiconductor device can be used. Further, a silicone resin such as silicon gel may be partially used, and a case type power module using a silicone resin such as silicon gel may be employed.
  • the power terminal P ⁇ N is excluded from the closed loop that affects the voltage surge, Vibration of the currents IdH2 and IdL2 that conduct the power terminals P and N can be suppressed. For this reason, as shown in FIGS. 15 to 17, the power module 1 according to the embodiment is low even in a transfer mold type power module in which it is difficult to reduce the parasitic inductance around the power terminals P and N. While realizing noise, the amount of voltage surge can be greatly improved.
  • the power module 1 includes a ceramic substrate 10, and the built-in capacitor C ⁇ b> 1 is disposed so as to straddle between different electrode patterns EP and EN formed on the ceramic substrate 10. May be.
  • the built-in capacitor C1 may be constituted by a series connection of a plurality of built-in capacitors C11 and C12.
  • the assembly can be easily performed.
  • the built-in capacitor C1 by connecting a plurality of built-in capacitors C11 and C12 in series, the parasitic current and the parasitic inductance are appropriately increased while ensuring the withstand voltage, so that the steep current when the load current is supplied / inflowed is generated. The change can be prevented, and as a result, the current surge can be reduced.
  • 15 and 16 show an example in which the SiC-MOSFETs Q1 and Q2 are arranged in parallel on two chips, respectively.
  • the power module 1 includes a positive power terminal P and a negative power terminal N arranged on the first side of the ceramic substrate 10 covered with the resin layer 20.
  • the gate terminal GT1 and the source sense terminal SST1 disposed on the second side adjacent to the first side, the output terminals OUT and OUT disposed on the third side opposite to the first side, A gate terminal GT4 and a source sense terminal SST4 disposed on a fourth side opposite to the second side.
  • the gate terminal GT1 and the source sense terminal SST1 are connected to the gate signal wiring pattern GL1 and the source signal wiring pattern SL1 of the SiC-MOSFET Q1, and the gate terminal GT2 and the source sense terminal SST2 are connected to the SiC-MOSFET Q2.
  • the gate signal wiring pattern GL2 and the source signal wiring pattern SL2 are connected.
  • Gate wires GW1 and GW2 and source sense wires SSW1 and SSW2 are connected. Further, gate terminals GT1 and GT2 for external extraction and SST1 and SST2 are connected to the gate signal wiring patterns GL1 and GL2 and the source sense signal wiring patterns SL1 and SL2 by soldering or the like.
  • the source pad electrodes SP1 and SP2 on the chip surfaces of the SiC-MOSFETs Q1 and Q2 arranged in parallel in two chips are connected to the electrode pattern via the source bonding wires BWS1 and BWS2. Connected to EO / EN. Instead of the source bonding wires BWS1 and BWS2, the source pad electrodes SP1 and SP2 on the chip surface of the SiC-MOSFETs Q1 and Q2 arranged in parallel with each other by adopting a metal spacer and an upper plate electrode are used in common. You may connect.
  • the source pad electrodes SP1 and SP2 are the same as the source pad electrode SP shown in FIGS. 21 and 22, for example.
  • the positive power terminal P, the negative power terminal N, the gate terminals GT1 and GT2 for external extraction, and the SST1 and SST2 can be made of Cu, for example.
  • the main substrate 10 can be formed of a ceramic substrate.
  • the ceramic substrate may be made of, for example, Al 2 O 3 , AlN, SiN, AlSiC, or at least a surface of insulating SiC.
  • the electrode pattern EP / EO / EN can be formed of Cu, Al, or the like, for example.
  • the gate wires GW1 and GW2, the source sense wires SSW1 and SSW2, and the source bonding wires BWS1 and BWS2 can be formed of, for example, Al or AlCu.
  • SiC-MOSFETs Q1 and Q2 SiC-DIMOSFET, SiC-TMOSFET and the like described later can be applied.
  • a GaN power device such as a GaN high electron mobility transistor (HEMT: High Electron Mobility Transistor) can be applied.
  • HEMT High Electron Mobility Transistor
  • a ceramic capacitor or the like can be applied as the snubber capacitor CB.
  • FIG. 18 is a schematic top view of the internal structure example 2 of the power module 1 according to the embodiment, including an internal capacitor C1 and an external snubber circuit (RB / CB), before the resin layer is formed. Represented as shown. Further, a schematic cross-sectional structure taken along line II in FIG. 18 is expressed as shown in FIG. A schematic bird's-eye view configuration after forming the resin layer is expressed in the same manner as in FIG. 17 and can be formed by transfer molding.
  • RB / CB external snubber circuit
  • FIG. 18 shows an example in which the SiC-MOSFETs Q1 and Q2 are arranged in parallel on each of three chips.
  • the main substrate 10 has a multilayer structure of ceramic substrates 10 1 and 10 2 .
  • the back surface of the ceramic substrate 10 1, the metal foil 6 is arranged, on the ceramic substrate 10 first surface, the metal foil 8 are located. Furthermore, on the metal foil 8, the ceramic substrate 10 2 is disposed.
  • the ceramic substrate 10 2 is disposed on the ceramic substrate 10 2, first electrode pattern connected to the positive power terminal P and EP, is disposed on the ceramic substrate 10 2, and the second electrode pattern EN connected to the negative side power terminal N, is disposed on the ceramic substrate 10 2, and the third electrode pattern EO which is connected to the output terminal OUT
  • the first SiC-MOSFET Q1 having the first drain D1 disposed on the first electrode pattern EP
  • the second SiC-MOSFET Q2 having the second drain D2 disposed on the third electrode pattern EO
  • the first electrode pattern EP And the internal capacitor C1 disposed between the second electrode pattern EN and the side of the positive power terminal P and the negative power terminal N exposed to the outside of the resin layer 20.
  • a snubber circuit 30 connected to the.
  • FIG. 18 and FIG. 19 is disposed on the ceramic substrate 10 2, first the first gate G1 to the connected gate signal wiring pattern GPL1, and the SIC-MOSFET Q1 of the SIC-MOSFET Q1 the first signal substrate 151 for mounting the source sensing signal wiring pattern SPL1 connected to first source S1, a gate signal wiring pattern GPL1 connected gate signal wiring pattern to the GL1, and the source sense signal wiring pattern SPL1 a signal substrate 14 1 for mounting the source sensing signal wiring pattern SL1 which is connected to may be provided with a.
  • the second gate G2 connected to the gate signal wiring pattern GPL2, and a source connected sense to the second source S2 of the SIC-MOSFET Q2 of the SIC-MOSFET Q2 a signal substrate 15 2 for mounting the use signal wiring pattern SPL2, the gate signal wiring pattern GPL2 a gate connected to the signal wiring pattern GL2, and a source sensing signal is connected to the wiring pattern SPL2 a source sense signal wiring pattern SL2 it may include a signal substrate 14 2 for mounting.
  • a chip upper surface bus bar 17 1 is disposed via an on-chip spacer 19 1 , and three first SiC- The source pad electrode SP1 of the first source S1 of the MOSFET Q1 is connected in common.
  • a chip upper surface bus bar 17 2 is disposed via an on-chip spacer 19 2, and the sources of the second sources S2 of the three second SiC-MOSFETs Q2 The pad electrode SP2 is connected in common.
  • the chip upper surface bus bar 17 1 is connected to the third electrode pattern EO via the spacer 29 1
  • the chip upper surface bus bar 17 2 is connected to the fourth electrode via the spacer 29 2. Connected to pattern EN2.
  • the second electrode pattern EN is connected to the metal foil 8 on the surface of the ceramic substrate 10 1 through the via hole 21 1
  • the fourth electrode pattern EN2 is also connected through the via hole 21 2. It is connected to the metal foil 8 on the surface of the ceramic substrate 10 1 .
  • Other configurations and materials of each part are the same as those of the internal structure example 1 of the power module 1 according to the embodiment.
  • the laminated wiring structures LM1 and LM2 are formed on the internal structure of the power module 1 by including the laminated ceramic substrates 10 1 and 10 2 .
  • the magnetic flux generated by the parasitic inductance component accompanying the internal wiring of the power module 1 can be canceled by the conduction current i as shown in FIG.
  • the parasitic inductance accompanying the internal wiring of the power module 1 can be reduced.
  • the effect of reducing the parasitic inductance can be obtained also for the laminated wiring structure formed by the current path passing through the chip upper surface bus bars 17 1 and 17 2 and the metal foil 8.
  • the parasitic inductance in the substrate can be reduced, the parasitic inductance of the ring loop of the power module can be minimized.
  • ⁇ SiC-DIMOSFET ⁇ 21 is an example of a semiconductor device 200 applicable to the power circuit 2 including the power module 1 according to the embodiment, and a schematic cross-sectional structure of a SiC-DI (Double Implanted) MOSFET is expressed as shown in FIG. .
  • SiC-DI Double Implanted MOSFET
  • the SiC-DIMOSFET applicable to the power circuit 2 including the power module 1 includes an n + SiC substrate 124 and an n ⁇ drift layer epitaxially grown on the n + SiC substrate 124.
  • a body diode BD is formed between p body region 128 and n ⁇ drift layer 126.
  • the semiconductor device 200 includes a p-body region 128, n + source region 130 formed on the surface of the p-body region 128 is formed by double ion implantation (DI), a source pad electrode SP is n + Connected to source electrode 134 connected to source region 130 and p body region 128.
  • the gate pad electrode GP (not shown) is connected to the gate electrode 138 disposed on the gate insulating layer 132. Further, as shown in FIG. 21, the source pad electrode SP / source electrode 134 and the gate pad electrode GP (not shown) are disposed on a passivation interlayer 144 that covers the surface of the semiconductor device 200.
  • ⁇ SiC-TMOSFET ⁇ 22 is an example of a semiconductor device 200 applicable to the power circuit 2 including the power module 1 according to the embodiment, and a schematic cross-sectional structure of a SiC-trench (T: Trench) MOSFET is expressed as shown in FIG.
  • T Trench
  • the SiC-TMOSFET applicable to the power circuit 2 including the power module 1 includes an n + SiC substrate 124 and an n ⁇ drift layer epitaxially grown on the n + SiC substrate 124 as shown in FIG. 126N, p body region 128 formed on the surface side of n ⁇ drift layer 126N, n + source region 130 formed on the surface of p body region 128, and p body region 128, and n ⁇ drift layer
  • a trench gate electrode 138TG formed through the gate insulating layer 132 and the interlayer insulating films 144U and 144B in the trench formed up to 126N, a source electrode 134 connected to the source region 130 and the p body region 128, and n + Drain electrically connected to the surface of SiC substrate 124 opposite to n ⁇ drift layer 126N Electrode 136.
  • a body diode BD is formed between p body region 128 and n ⁇ drift layer 126N.
  • the semiconductor device 200 includes a trench gate electrode 138TG formed through a gate insulating layer 132 and interlayer insulating films 144U and 144B in a trench formed through the p body region 128 and reaching the n ⁇ drift layer 126N.
  • the source pad electrode SP is connected to the source electrode 134 connected to the source region 130 and the p body region 128.
  • the gate pad electrode GP (not shown) is connected to the gate electrode 138 disposed on the gate insulating layer 132. Further, as shown in FIG. 22, the source pad electrode SP / source electrode 134 and the gate pad electrode GP (not shown) are disposed on the passivation interlayer insulating film 144 ⁇ / b> U covering the surface of the semiconductor device 200.
  • the SiC-TMOSFET does not have a junction resistance extending from the p body region 128 in the drain current path, it is possible to provide an FET having a lower on-resistance than that of the SIC-DMOSFET, and more than 100 A per element. It is also possible to tolerate a drain pulse current.
  • GaN-based FET or the like can be applied to the semiconductor device 200 applicable to the power module and the power circuit according to the embodiment instead of the SiC-based MOSFET.
  • the SiC device has a high breakdown electric field (for example, about 3 MV / cm, about 3 times that of Si), the drift layer is made thinner and the carrier concentration is set higher than that of Si. Can withstand pressure. Because of the difference in the breakdown electric field, the peak electric field strength of the SiC-MOSFET can be set higher than the peak electric field strength of the Si-MOSFET.
  • the SiC-MOSFET since the required n ⁇ drift layers 126 and 126N are thin and the carrier concentration is high, the resistance value of the n ⁇ drift layers 126 and 126N can be reduced, and the on-resistance can be lowered.
  • the chip area can be reduced (smaller chip). Furthermore, since it is possible to achieve a breakdown voltage comparable to that of Si-IGBT with the MOSFET structure as a unipolar device, it is considered that high breakdown voltage and high-speed switching can be achieved, and a reduction in switching loss can be expected.
  • this embodiment includes various embodiments not described here.
  • the power module and the power circuit according to the present embodiment can be applied to a booster circuit for HEV / EV, a three-phase inverter, and can be applied to a wide range of application fields such as a DC / DC converter that is advantageous by operating at a high frequency. is there.
  • Source Electrode 136 Drain electrode 138, 138TG ... Gate electrodes 144, 144U, 144B ... Interlayer insulating film 200, Q1, Q2 ... Semiconductor device (SiC-MOSFET) BD ... Body diode RB ... Snubber resistor CB ... Snubber capacitor CP ... Parallel capacitors C1, C11, C12 ... Built-in capacitor C2 ... Smoothing capacitor P ... Positive power terminal N ... Negative power terminal OUT ... Output terminals S1, S2 ... Source D D1, D2 ... Drain SS1, SS2 ... Source sense EP, EO, EN ... Electrode pattern G1, G2 ... Gate GT1, GT2 ...

Abstract

 パワーモジュール(1)は、複数のSiC-MOSFET Q1・Q2によって構成されたブリッジ回路とブリッジ回路の両端に跨るように接続された内蔵コンデンサC1とを有するブリッジ部(3)と、ブリッジ部(3)の両端にそれぞれ一端が接続され、他端が外部に露出した正側電力端子Pおよび負側電力端子Nと、正側電力端子Pおよび負側電力端子Nの露出された側に跨るように接続されたスナバ回路(RB・CB)(4)とを備え、パワー回路(2)は、パワーモジュール(1)と、スナバ回路(4)に並列に接続された平滑コンデンサC2を備える。低寄生インダクタンスと低ノイズを両立させたパワーモジュールおよびパワー回路を提供することができる。

Description

パワーモジュールおよびパワー回路
 本実施の形態は、パワーモジュールおよびパワー回路に関する。
 炭化ケイ素(SiC:Silicon Carbide)は多くの機関で研究開発され、すでに複数の企業からパワーデバイス製品として世に供給されている。ワイドバンドギャップ半導体であるSiCを用いて作られたパワーデバイスの特長として、従来のSiパワーデバイスよりも優れた低オン抵抗、高速スイッチングおよび高温動作などを挙げることができる。
 しかし、その高速スイッチング性を活用し大電流を高周波でスイッチさせるパワーモジュールを作製する場合、内蔵するパワーデバイスに掛かる電圧サージ量に強く影響するリンギングループの寄生インダクタンスが十分に低減できていないと電圧サージによるパワーデバイスのスイッチング損失の増加やアバランシェ降伏、帰還容量への電流流入に起因するゲート誤動作などの問題を引き起こす。
 パワーモジュールの寄生インダクタンスの低減方法の1つとして、モジュール内の配線バス(BUS)をラミネート配線にする手法があるが、トランスファーモールドタイプのパワーモジュールの場合はモールド成型する際に金型で端子を抑えるなどの方法で被成型物を固定する関係から特に外部露出端子部周辺にラミネート配線を導入することが困難であり、また端子間の沿面距離確保の観点から見ても、端子の寄生インダクタンスがネックになる。
 その解決方法として、端子接続部よりブリッジに近い側に内蔵コンデンサを配置することによって、外部露出端子を含まず、オフ状態の半導体素子と低インダクタンスの閉ループを形成できる回路部を作り、電圧サージを抑制することができる。
特開平10-308510号公報 国際公開第WO2012/073571号 特開2014-30286号公報
 しかしながら、発明者は、誘導負荷のスイッチ回路のシミュレーションにおいて内蔵コンデンサの効果を確認したところ、パワーデバイス自身に掛かる電圧・電流サージは改善される一方、端子部に導通する電流についてノイズ源となり得る大きな電流振動を見出した。
 本実施の形態は、低寄生インダクタンスと低ノイズを両立させたパワーモジュールおよびパワー回路を提供することにある。
 本実施の形態の一態様によれば、複数のトランジスタ素子によって構成されたブリッジ回路と前記ブリッジ回路の両端に跨るように接続された内蔵コンデンサとを有するブリッジ部と、前記ブリッジ部の両端にそれぞれ一端が接続され、他端が前記ブリッジ部を封止する封止部の外部に露出した正側電力端子および負側電力端子と、前記正側電力端子および前記負側電力端子の露出された側に跨るように接続されたスナバ回路とを備えるパワーモジュールが提供される。
 本実施の形態の他の態様によれば、主基板と、前記主基板上に配置され、正側電力端子に接続された第1電極パターンと、前記主基板上に配置され、負側電力端子に接続された第2電極パターンと、前記主基板上に配置され、出力端子に接続された第3電極パターンと、前記第1電極パターン上に第1出力が配置された第1トランジスタ素子と、前記第3電極パターン上に第2出力が配置された第2トランジスタ素子と、前記第1電極パターンと前記第2電極パターンとの間に配置された内蔵コンデンサと、前記正側電力端子と前記負側電力端子の前記第1トランジスタ素子および前記第2トランジスタ素子を封止する封止部から露出された側に跨るように接続されたスナバ回路とを備えるパワーモジュールが提供される。
 本実施の形態の他の態様によれば、複数のトランジスタ素子によって構成されたブリッジ回路と前記ブリッジ回路の両端に跨るように接続された内蔵コンデンサとを有するブリッジ部と、前記ブリッジ部の両端にそれぞれ一端が接続され、他端が前記ブリッジ部を封止する封止部の外部に露出した正側電力端子および負側電力端子と、前記正側電力端子および前記負側電力端子の露出された側に跨るように接続され、前記正側電力端子および前記負側電力端子の電流ノイズを低減する電流ノイズ低減回路とを備えるパワーモジュールが提供される。
 本実施の形態の他の態様によれば、上記のパワーモジュールと、前記スナバ回路に並列に接続された平滑コンデンサとを備えるパワー回路が提供される。
 本実施の形態によれば、低寄生インダクタンスと低ノイズを両立させたパワーモジュールおよびパワー回路を提供することができる。
基本技術に係るパワーモジュールを備えるパワー回路であって、ハーフブリッジ回路の模式的回路構成図。 基本技術に係るパワーモジュールを備えるパワー回路において、デバイス部を導通する電流IdH1・IdL1の動作波形例。 基本技術に係るパワーモジュールを備えるパワー回路において、電力端子P・Nを導通する電流IdL2・IdH2の動作波形例。 基本技術に係るパワーモジュールを備えるパワー回路において、ローサイド側SiC-MOSFET Q2のターンオン時のスイッチング動作の説明図。 基本技術に係るパワーモジュールを備えるパワー回路において、ローサイド側SiC-MOSFET Q2のターンオフ時のスイッチング動作の説明図。 実施の形態に係るパワーモジュールを備えるパワー回路であって、ハーフブリッジ回路の模式的回路構成図。 実施の形態に係るパワーモジュールを備えるパワー回路において、スナバ回路(RB・CB)が接続されていない場合の電力端子P・Nを導通する電流IdH2・のIdL2動作波形例。 実施の形態に係るパワーモジュールを備えるパワー回路において、スナバ回路(RB・CB)を接続した場合の電力端子P・Nを導通する電流IdH2・IdL2の動作波形例。 実施の形態に係るパワーモジュールを備えるパワー回路において、(A)内蔵コンデンサC1がない場合、(B)内蔵コンデンサC1有り・スナバ回路(RB・CB)がない場合、(C)内蔵コンデンサC1有り・スナバ回路(RB・CB)が有る場合のドレイン・ソース間サージ電圧VDSRGのピーク値の比較例。 実施の形態に係るパワーモジュールを備えるパワー回路において、(D)内蔵コンデンサC1有り・スナバ回路(RB・CB)がない場合、(E)内蔵コンデンサC1有り・スナバ回路(RB・CB)が有る場合の電力端子P・Nを導通する電流IdH2・IdL2のドレイン・ソース間サージ電流IDSRGのピーク値IdH2P・IdL2Pおよび電流振動の時定数τH・τLの比較例。 実施の形態に係るパワーモジュールを備えるパワー回路において、電力端子P・Nを導通する電流IdH2・IdL2のピーク値IdH2P・IdL2Pのスナバ抵抗RB依存性。 実施の形態の変形例に係るパワーモジュールを備えるパワー回路であって、ハーフブリッジ回路の模式的回路構成図。 実施の形態の変形例に係るパワーモジュールを備えるパワー回路において、スナバ回路(RB・CB)および並列コンデンサCPを接続した場合の電力端子P・Nを導通する電流IdH2・IdL2の動作波形例。 実施の形態の変形例に係るパワーモジュールを備えるパワー回路において、(F)並列コンデンサCPがない場合、(G)並列コンデンサCPが有る場合の電力端子P・Nを導通する電流IdH2・IdL2のドレイン・ソース間サージ電流IDSRGのピーク値IdH2P・IdL2Pの比較例。 実施の形態に係るパワーモジュールの内部構造例1であって、内蔵コンデンサC1および外付けスナバ回路(RB・CB)を有する例において、樹脂層を形成前の模式的上面図。 実施の形態に係るパワーモジュールの内部構造例1の変形例であって、内蔵コンデンサC11・C12および外付けスナバ回路(RB・CB)を有する例の樹脂層を形成前の模式的上面図。 実施の形態に係るパワーモジュールであって、樹脂層を形成後の模式的鳥瞰構成図。 実施の形態に係るパワーモジュールの内部構造例2であって、内蔵コンデンサC1および外付けスナバ回路(RB・CB)を有する例において、樹脂層を形成前の模式的上面図。 図18のI-I線に沿う模式的断面構造図。 実施の形態に係るパワーモジュールの内部構造例2において、ラミネート配線による電流キャンセルの様子を説明する模式図。 実施の形態に係るパワーモジュールを備えるパワー回路に適用可能な半導体デバイスの例であって、SiC-DIMOSFETの模式的断面構造図。 実施の形態に係るパワーモジュールを備えるパワー回路に適用可能な半導体デバイスの例であって、SiC-TMOSFETの模式的断面構造図。
 次に、図面を参照して、実施の形態を説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
 また、以下に示す実施の形態は、技術的思想を具体化するための装置や方法を例示するものであって、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この実施の形態は、特許請求の範囲において、種々の変更を加えることができる。
 [基本技術]
 基本技術に係るパワーモジュール1Aを備えるパワー回路2Aであって、ハーフブリッジ回路の模式的回路構成は、図1に示すように表される。
 基本技術に係るパワーモジュール1Aを備えるパワー回路2Aは、図1に示すように、複数のSiC-絶縁ゲート電界効果トランジスタ(SiC-MOSFET:SiC-Metal-Oxide-Semiconductor Field Effect Transistor)Q1・Q2によって構成されたブリッジ回路とブリッジ回路の両端に跨るように接続された内蔵コンデンサC1とを有するブリッジ部3と、ブリッジ部3の両端にそれぞれ一端が接続され、他端が外部に露出した電力端子P・Nと、電力端子P・Nの露出された側に跨るように並列に接続された平滑コンデンサC2とを備える。
 基本技術に係るパワーモジュール1Aを備えるパワー回路2Aにおいては、図1に示すように、SiC-MOSFET Q1のソースS1およびSiC-MOSFET Q2のドレインD2が電気的に接続されてハーフブリッジ回路が構成されている。SiC-MOSFET Q1・Q2のゲートG1・G2、ソースセンスSS1・SS2は、外部取り出しのゲート端子GT1・GT2、ソースセンス端子SST1・SST2に接続されている。SiC-MOSFET Q1のドレインD1は、電力端子Pに接続され、SiC-MOSFET Q2のソースS1は、電力端子Nに接続されている。また、SiC-MOSFET Q1のソースS1およびSiC-MOSFET Q2のドレインD2は、出力端子OUTに接続されている。また、SiC-MOSFET Q1のドレインD1・SiC-MOSFET Q2のソースS1間には、内蔵コンデンサC1が接続され、出力端子OUTと電力端子P間には負荷リアクトルLが外部接続され、電力端子P・N間には、電源Eが外部接続されている。
 ここで、図1において、電源Eに400Vを印加してローサイド側のSiC-MOSFET Q2を動作させ、負荷電流470Aでのターンオフ/ターンオンを行ったシミュレーション結果は図2および図3に示すように表される。すなわち、ハイサイド側の第1SiC-MOSFET Q1のゲート端子GT1・ソースセンス端子SST1間を短絡し、ローサイド側の第2SiC-MOSFET Q2のゲート端子GT2・ソースセンス端子SST2間にゲート抵抗RGを介してパルス電圧を印加した場合のデバイス部を導通する電流IdL1・IdH1の動作波形のシミュレーション結果は、図2に示すように表され、電力端子P・Nを導通する電流IdH2・IdL2の動作波形のシミュレーション結果は、図3に示すように表される。
 図1に示される負荷リアクトルLのスイッチングシミュレーションにおいて、内蔵コンデンサC1の効果を確認したところ、SiC-MOSFET Q1・Q2自身に掛かる電圧、電流サージが大きく改善されることが確認された。
 一方で、図3に示すように、電力端子P・Nに流入、または流出する電流(IdH2・IdL2)がローサイド側のSiC-MOSFET Q2がスイッチング動作をする瞬間に大きく振動する現象が見い出された。この電流振動は実測においても確認されている。このような振動現象は、パワー回路2Aのデバイス部ではなく電力端子P・Nにおいて観測される現象である。
 基本技術に係るパワーモジュール1Aを備えるパワー回路2Aにおいて、ローサイド側SiC-MOSFET Q2のターンオン時のスイッチング動作の説明図は、図4に示すように表され、ローサイド側SiC-MOSFET Q2のターンオフ時のスイッチング動作の説明は、図5に示すように表される。
 ローサイド側SiC-MOSFET Q2がターンオンした直後の振動現象は、図4に示すように、内蔵コンデンサC1が負荷電流を供給する担い手となって電荷を放出し、電圧降下した分が外部回路から補充される際に、内蔵コンデンサC1と外部回路の間でリンギングが発生するためである。
 一方、ローサイド側SiC-MOSFET Q2がターンオフした直後の振動現象は、図5に示すように、ハイサイド側SiC-MOSFET Q1に流入した負荷電流が内蔵コンデンサC1と外部回路を通る経路で流れたために内蔵コンデンサC1に余剰電荷が溜まり、それを放出する過程で内蔵コンデンサC1と外部回路の間でリンギングが発生するためである。
 このような振動現象は、SiC-MOSFET Q1・Q2のデバイス部の電圧、電流波形には現れず、スイッチング損失やアバランシェ降伏、ゲート・ドレイン間帰還容量への電流流入に起因するゲート誤動作は抑制できる。一方、電力端子P・Nの周辺に発生する大きな電流電圧振動は、ノイズとなって制御回路の誤動作を誘発する。また、平滑コンデンサC2の電圧が安定しない状態でスイッチを行うと予期せぬ大きな電圧をスイッチする危険があり、スイッチング損失が増加して高周波動作の障害にもなる。後者については特に高周波動作によってパッシブ素子を小型化することでシステム全体の小型軽量低コスト化を阻害する要因になる。この問題は小型で高速スイッチング・高周波・大電流動作させることができるSiC系半導体素子を使ったパワー回路においてより深刻になるため、ブリッジ部3内に内蔵コンデンサC1を搭載するだけでは不十分である。
 [実施の形態]
 実施の形態に係るパワーモジュール1を備えるパワー回路2であって、ハーフブリッジ回路の模式的回路構成は、図6に示すように表される。なお、実施の形態に係るパワーモジュール1を備えるパワー回路2は、ハーフブリッジ回路に限定されず、フルブリッジ回路、或いは3相ブリッジ回路などにおいても適用可能である。
 実施の形態に係るパワーモジュール1を備えるパワー回路2は、図6に示すように、複数のSiCMOSFET Q1・Q2によって構成されたブリッジ回路とブリッジ回路の両端に跨るように接続された内蔵コンデンサC1とを有するブリッジ部3と、ブリッジ部3の両端にそれぞれ一端が接続され、他端が外部に露出した電力端子P・Nと、電力端子P・Nの露出された側に跨るように直列接続されたスナバ回路4とを備える。
 また、実施の形態に係るパワー回路2は、図6に示すように、スナバ回路4に並列に接続された平滑コンデンサC2を備えていても良い。
 また、スナバ回路4は、直列接続されたスナバコンデンサCBとスナバ抵抗RBとを備えていても良い。
 また、ブリッジ部3は、ハーフブリッジ回路、フルブリッジ回路、もしくは3相ブリッジ回路のいずれかを備えていても良く、内蔵コンデンサC1は複数のブリッジ毎に別々のコンデンサを接続していても良い。
 実施の形態に係るパワーモジュール1を備えるパワー回路2において、主に負荷電流用の電荷放出または負荷電流の流入によって電荷過不足が発生した内蔵コンデンサC1は、平滑コンデンサC2などと共振を起こす。さらに、ブリッジ部3の両端間に接続されたスナバ回路4により形成される閉ループの中で共振が発生し、スナバ回路4のスナバ抵抗RBでエネルギーが消費され振動が収束する。通常、RCスナバ回路は1スイッチ素子に並列に接続する形で使われるが、実施の形態に係るパワー回路2においては、スナバ回路4はブリッジ部3に並列に挿入されることで、ブリッジ部3の両端間に発生する電流振動を急速に抑制可能である。
 これにより、大電流を供給する平滑コンデンサC2や電源電圧を供給する電源Eの内部インピーダンスを増加させずにリンギングが素早く収束させることができ、ノイズを低減可能である。また、平滑コンデンサC2の両端の電圧が急速に安定化するため、実施の形態に係るパワー回路2においては、高周波動作が可能になる。
 実施の形態に係るパワーモジュール1を備えるパワー回路2においては、図6に示すように、SiC-MOSFET Q1のソースS1およびSiC-MOSFET Q2のドレインD2が電気的に接続されてハーフブリッジ回路が構成されている。SiC-MOSFET Q1・Q2のゲートG1・G2、ソースセンスSS1・SS2は、外部取り出しのゲート端子GT1・GT2、ソースセンス端子SST1・SST2に接続されている。SiC-MOSFET Q1のドレインD1は、電力端子Pに接続され、SiC-MOSFET Q2のソースS2は、電力端子Nに接続されている。また、SiC-MOSFET Q1のソースS1およびSiC-MOSFET Q2のドレインD2は、出力端子OUTに接続されている。また、SiC-MOSFET Q1のドレインD1・SiC-MOSFET Q2のソースS2間には、内蔵コンデンサC1が接続され、電力端子P・N間には、スナバコンデンサCB・スナバ抵抗RBの直列回路からなるスナバ回路4および平滑コンデンサC2が外部接続されている。また、出力端子OUTと電力端子P間には負荷リアクトルLが接続され、電力端子P・N間には、電源Eが供給される。
 ここで、数値例として、内蔵コンデンサC1の値は、例えば、1μFであり、平滑コンデンサC2の値は、例えば、125μFであり、電源Eの値は、例えば、約400Vである。また、スナバコンデンサCBの値は、内蔵コンデンサC1の10倍以上が望ましく、例えば、10μFである。また、スナバ抵抗RBの値には、電力端子P・Nを導通する電流IdH2・IdL2のピーク値IdH2P・IdL2Pを実質的に最小化可能な抵抗値が存在し、例えば、上記条件においては約40mΩである。
 図6において、電源Eに400Vを印加してローサイド側のSiC-MOSFET Q2を動作させ、負荷電流470Aでのターンオフ/ターンオンを行ったシミュレーション結果は図7および図8に示すように表される。すなわち、ハイサイド側の第1SiC-MOSFET Q1のゲート端子GT1・ソースセンス端子SST1間を短絡し、ローサイド側の第2SiC-MOSFET Q2のゲート端子GT2・ソースセンス端子SST2間にゲート抵抗RGを介してパルス電圧を印加した場合の電力端子P・Nを導通する電流IdL2・IdH2の動作波形のシミュレーション結果は、図7および図8に示すように表される。ここで、図7は、RCスナバ回路(RB・CB)が接続されていない場合の電力端子P・Nを導通する電流IdH2・IdL2の動作波形例に対応し、図8は、RCスナバ回路(RB・CB)を接続した場合の電力端子P・Nを導通する電流IdH2・IdL2の動作波形例に対応する。
 また、電力端子P・Nを導通する電流IdH2・IdL2の電流振動の時定数τH・τLは、図7および図8中の破線で示される包絡線の減衰時定数によって求めることができる。
 また、電源Eに400Vを印加してローサイド側のSiC-MOSFET Q2を動作させ、負荷電流470Aでのターンオフ/ターンオンを行った場合をシミュレーションした際のドレイン・ソース間サージ電圧VDSRGのピーク値の比較例は、図9に示すように表される。すなわち、図9において、Aは、内蔵コンデンサC1がない場合のドレイン・ソース間サージ電圧VDSRGを表し、例えば、700V以上の値が得られている。これに対して、Bは、内蔵コンデンサC1が有り、かつスナバ回路(RB・CB)がない場合のドレイン・ソース間サージ電圧VDSRGを表し、例えば、約500Vの値が得られている。また、Cは、内蔵コンデンサC1が有り、かつスナバ回路(RB・CB)が有る場合のドレイン・ソース間サージ電圧VDSRGを表し、例えば、約500Vの値が得られている。
 また、電力端子P・Nを導通する電流IdH2・IdL2のドレイン・ソース間サージ電流IDSRGのピーク値IdH2P・IdL2Pおよび電流IdH2・IdL2の電流振動の時定数τH・τLの比較例は、図10に示すように表される。ずなわち、図10において、Dは、内蔵コンデンサC1が有り、かつスナバ回路(RB・CB)がない場合に対応し、Eは、内蔵コンデンサC1が有り、かつスナバ回路(RB・CB)が有る場合に対応している。
 内蔵コンデンサC1が有り、かつスナバ回路(RB・CB)がない場合には、電力端子P・Nを導通する電流IdH2・IdL2のドレイン・ソース間サージ電流IDSRGのピーク値IdH2P・IdL2Pは、例えば、約800A・約790Aであり、電流IdH2・IdL2の電流振動の時定数τH・τLは、例えば、約6.1μs・約6.2μsである。
 一方、内蔵コンデンサC1が有り、かつスナバ回路(RB・CB)が有る場合には、電力端子P・Nを導通する電流IdH2・IdL2のドレイン・ソース間サージ電流IDSRGのピーク値IdH2P・IdL2Pは、例えば、約740A・約730Aであり、電流IdH2・IdL2の電流振動の時定数τH・τLは、例えば、約1.5μs・約1.5μsである。
 また、図6において、電力端子P・Nを導通する電流IdH2・IdL2のピーク値IdH2P・IdL2Pのスナバ抵抗RB依存性は、図11に示すように表される。図11においては、誘導負荷で400V/470Aをスイッチングしており、スナバ回路4-平滑コンデンサC2間の寄生インダクタンスLppの値は、例えば、約15nH、寄生容量Cppの値は、例えば、約9.3μFである。
 図11に示すように、スナバ抵抗RBの値が、例えば、数mΩ程度と小さい場合には、電力端子P・Nを導通する電流IdH2・IdL2の振動を効果的に減衰することができず、ピーク値IdH2P・IdL2Pは、相対的に大きな値を示している。一方、スナバ抵抗RBの値が、例えば、1000mΩ程度と大きい場合には、開放状態に近くなるため、スナバ回路4が機能せず、ピーク値IdH2P・IdL2Pは、相対的に大きな値を示している。したがって、図11に示すように、スナバ抵抗RBの値には、ピーク値IdH2P・IdL2Pを実質的に最小化する抵抗値が存在しており、上記の数値例を有する図6の回路例では、スナバ抵抗RBは40mΩが最適値に近い値であることがわかる。
 図9・図10に示すように、スナバ回路4をブリッジ部3の電力端子P・N間に外部接続することで、デバイス部に掛かるドレイン-ソース間電圧のサージ量をほとんど変えずにブリッジ部3に内蔵コンデンサC1を内蔵させた場合でも電力端子P・Nに流れる電流の振動を素早く収束させることができ、ノイズの低減および高周波動作を可能にしている。
 実施の形態に係るパワーモジュール1を備えるパワー回路2において、スナバ回路4のスナバコンデンサCBの容量が小さすぎると急峻な立ち上がりをする電流に対してのインピーダンスが高くなり、電流経路にならなくなってしまうため、スナバコンデンサCBの容量は、内蔵コンデンサC1の容量以上であることが望ましい。
 また、実施の形態に係るパワーモジュール1を備えるパワー回路2において、スナバ回路4のスナバ抵抗RBの抵抗値は小さすぎるとリンギングの時定数が長くなって振動を減衰させる効果が得られず、大きすぎると電流が別の経路を流れるためやはり振動を減衰させる効果が得られない。
 スナバ抵抗RBの抵抗値は、リンギングが発生する閉ループの中でもスナバ回路4と平滑コンデンサC2の閉ループにおける寄生容量Cppと寄生インダクタンスLppから表される特性インピーダンスZo=(Lpp/Cpp1/2に近い値を取ることが望ましい。例えば、寄生インダクタンスLppが15nH、寄生容量Cppが9.3μFの閉ループであれば、抵抗値は約40mΩの特性インピーダンスZoとなる。これにより平滑コンデンサC2とスナバ回路4間で発生する電流振動がブリッジ部3側に与える影響を低減し、電流サージを抑制可能である。
 実施の形態によれば、低寄生インダクタンスと低ノイズを両立させたパワーモジュールおよびパワー回路を提供することができる。
 (変形例)
 実施の形態の変形例に係るパワーモジュール1を備えるパワー回路2であって、ハーフブリッジ回路の模式的回路構成は、図12に示すように表される。なお、実施の形態の変形例に係るパワーモジュール1を備えるパワー回路2においても、ハーフブリッジ回路に限定されず、フルブリッジ回路、或いは3相ブリッジ回路などにおいても適用可能である。
 実施の形態の変形例に係るパワーモジュール1を備えるパワー回路2は、図12に示すように、複数のSiCMOSFET Q1・Q2によって構成されたブリッジ回路とブリッジ回路の両端に跨るように接続された内蔵コンデンサC1とを有するブリッジ部3と、ブリッジ部3の両端にそれぞれ一端が接続され、他端が外部に露出した電力端子P・Nと、電力端子P・Nの露出された側に跨るように直列接続されたスナバ回路4とを備える。
 また、実施の形態の変形例に係るパワーモジュール1を備えるパワー回路2は、図12に示すように、スナバ回路4に並列に接続された平滑コンデンサC2を備えていても良い。
 実施の形態の変形例に係るパワーモジュール1を備えるパワー回路2において、スナバ回路4は、図12に示すように、直列接続されたスナバコンデンサCBとスナバ抵抗RBとを備え、さらに、スナバ抵抗RBに並列接続された並列コンデンサCPを備えていても良い。
 また、ブリッジ部3は、ハーフブリッジ回路、フルブリッジ回路、もしくは3相ブリッジ回路のいずれかを備えていても良く、内蔵コンデンサC1は複数のブリッジ毎に別々のコンデンサを接続していても良い。
 実施の形態の変形例に係るパワーモジュール1を備えるパワー回路2は、スナバ回路4を構成するスナバ抵抗RBに並列に接続された並列コンデンサCPを備える。その他の構成は、実施の形態と同様である。
 実施の形態の変形例に係るパワーモジュール1を備えるパワー回路2においては、スナバ回路4のスナバ抵抗RBに並列に並列コンデンサCPを挿入することで、スイッチング直後の電流変化が大きい瞬間にはスナバ抵抗RBではなく並列コンデンサCPを通して電流が流れることで、特にスイッチング直後のスナバ回路4のインピーダンスを見かけ上低くすることができる。
 これにより、スナバ回路4が負荷電流の供給源を一部負担することができ、内蔵コンデンサC1からの電流流出量を低減させて、内蔵コンデンサC1への再充電時に発生する電流サージを低減化することができる。
 実施の形態の変形例に係るパワーモジュール1を備えるパワー回路2において、スナバ回路4および並列コンデンサCPを接続した場合の電力端子P・Nを導通する電流IdH2・IdL2の動作シミュレーション波形例は、図13に示すように表される。
 また、電力端子P・Nを導通する電流IdH2・IdL2のピーク値IdL2P・IdH2Pの比較例は、図14に示すように表される。すなわち、図14において、Fは、並列コンデンサCPがない場合のピーク値IdH2P・IdL2Pを表し、例えば、約735A・約725Aの値が得られている。一方、Gは、並列コンデンサCPが有る場合のピーク値IdH2P・IdL2Pを表し、例えば、約710A・約695Aの値が得られている。
 図12に示すように、スナバ回路4のスナバ抵抗RBに並列に並列コンデンサCPを入れると、スイッチングの瞬間に電流が急峻に変化する際、スナバ回路4に流れ込む電流はスナバ抵抗RBではなく並列コンデンサCPを流れるため、見かけ上インピーダンスが低くすることができる。これにより並列コンデンサCPが負荷電流の供給源の役割を大きく担うようになることで、内蔵コンデンサC1からの電荷流出が抑制され、図13に示すように、電流サージのピーク値が低下し、リンギングの収束もさらに早めることができる。
 このときのスナバ抵抗RBの抵抗値は、並列接続された並列コンデンサCPによって合成インピーダンスが低下する。このため、実施の形態に係るパワー回路2におけるスナバ抵抗RBの値に比べ、実施の形態の変形例に係るパワー回路2におけるスナバ抵抗RBの値は、適宜増加された抵抗値を有していても良い。
 実施の形態の変形例によれば、低寄生インダクタンスと低ノイズを両立させたパワーモジュールおよびパワー回路を提供することができる。
 (パワーモジュールの内部構造例1)
 実施の形態に係るパワーモジュール1の内部構造例1であって、内蔵コンデンサC1および外付けスナバ回路(RB・CB)4を有する例において、樹脂層20を形成前の模式的上面図は、図15に示すように表される。
 また、実施の形態に係るパワーモジュール1の内部構造例1の変形例であって、内蔵コンデンサC11・C12および外付けスナバ回路(RB・CB)4を有する例の樹脂層20を形成前の模式的上面図は、図16に示すように表される。
 実施の形態に係るパワーモジュール1であって、樹脂層を形成後の模式的鳥瞰構成は、図17に示すように表される。実施の形態に係るパワーモジュール1は、図17に示すように、トランスファーモールド成型によって形成可能である。
 実施の形態に係るパワーモジュール1は、図15~図16に示すように、主基板10と、主基板10上に配置され、正側電力端子Pに接続された第1電極パターンEPと、主基板10上に配置され、負側電力端子Nに接続された第2電極パターンENと、主基板10上に配置され、出力端子OUTに接続された第3電極パターンEOと、第1電極パターンEP上に第1ドレインD1が配置された第1SiC-MOSFET Q1と、第3電極パターンEO上に第2ドレインD2が配置された第2SiC-MOSFET Q2と、第1電極パターンEPと第2電極パターンENとの間に配置された内蔵コンデンサC1と、正側電力端子Pと負側電力端子Nの樹脂層20の外部に露出された側に跨るように接続されたスナバ回路30(図17)とを備えている。
 また、図示は省略されているが、スナバ回路30に並列に接続された平滑コンデンサC2を備えていても良い。
 また、内蔵コンデンサC1は、図16に示すように、複数の内蔵コンデンサC11・C12の直列接続によって構成されていても良い。
 スナバ回路30は、図15・図16に示すように、直列接続されたスナバ抵抗RBおよびスナバコンデンサCBとを備えていても良い。なお、スナバ回路30は、図15・図16に示すように、スナバ回路基板25上に実装された複数の電極パターン26・27・28を介してスナバ抵抗RBおよびスナバコンデンサCBが直列接続されていても良い。
 また、実施の形態に係るパワーモジュール1は、図15~図17に示すように、正側電力端子Pに接続された第1金属板23Pと、負側電力端子Nに接続された第2金属板23Nとを備え、スナバ回路30は第1金属板23Pと第2金属板23Nとの間に配置されていても良い。正側電力端子Pと第1金属板23Pは、ねじ止め接続され、負側電力端子Nと第2金属板23Nもねじ止め接続されていても良い。
 また、図15・図16に示すように、主基板10上に配置され、第1SiC-MOSFET Q1の第1ゲートG1に接続された第1ゲート用信号配線パターンGL1、および第1SiC-MOSFET Q1の第1ソースS1に接続された第1ソースセンス用信号配線パターンSL1を搭載する第1信号基板141を備えていても良い。
 同様に、主基板10上に配置され、第2SiC-MOSFET Q2の第2ゲートG2に接続された第2ゲート用信号配線パターンGL2、および第2SiC-MOSFET Q2の第2ソースS2に接続された第2ソースセンス用信号配線パターンSL2を搭載する第2信号基板142を備えていても良い。
 また、実施の形態に係るパワーモジュール1の封止部は、少なくとも一部が熱硬化樹脂によって封止されていても良い。
 また、実施の形態に係るパワーモジュール1は、トランスファーモールド成型によって形成されていても良い。
 樹脂層20(図17)としては、SiC系半導体デバイスに適用可能なトランスファーモールド樹脂、熱硬化樹脂などを使用可能である。また、 シリコンゲルなどのシリコーン系樹脂を部分的に使用しても良く、シリコンゲルなどのシリコーン系樹脂を使用したケース型パワーモジュールを採用しても良い。
 実施の形態に係るパワーモジュール1を備えるパワー回路2においては、電力端子P・Nの両端にスナバ回路4を外部接続することで電圧サージに影響する閉ループから電力端子P・Nを除外しつつ、電力端子P・Nを導通する電流IdH2・IdL2の振動を抑制することができる。このため、図15~図17に示されるように、実施の形態に係るパワーモジュール1によれば、電力端子P・Nの周辺部の寄生インダクタンス低減が困難なトランスファーモールドタイプのパワーモジュールにおいても低ノイズを実現しつつ、電圧サージ量を大きく改善することができる。
 実施の形態に係るパワーモジュール1は、図15に示すように、セラミック基板10を備え、内蔵コンデンサC1は、セラミック基板10上に形成された異なる電極パターンEP・EN間に跨るように配置されていても良い。
 また、内蔵コンデンサC1は、図16に示すように、複数の内蔵コンデンサC11・C12の直列接続によって構成されていても良い。複数の内蔵コンデンサC11・C12をパワーモジュール1に内蔵しようとする場合、セラミック基板10上の電極パターンに接合するのであれば、容易にアセンブリが可能になる。複数の内蔵コンデンサC11・C12の直列接続によって内蔵コンデンサC1を形成することで、耐圧を確保しつつ寄生抵抗と寄生インダクタンスを適宜増加させて負荷電流の供給・流入が発生した場合の電流の急峻な変化を防ぎ、結果として、電流サージを低減化することができる。
 図15・図16においては、SiC-MOSFET Q1・Q2は、それぞれ2チップ並列に配置されている例が示されている。
 実施の形態に係るパワーモジュール1は、図15~図17に示すように、樹脂層20に被覆されたセラミック基板10の第1の辺に配置された正側電力端子Pおよび負側電力端子Nと、第1の辺に隣接する第2の辺に配置されたゲート端子GT1・ソースセンス端子SST1と、第1の辺に対向する第3の辺に配置された出力端子OUT・OUTと、第2の辺に対向する第4の辺に配置されたゲート端子GT4・ソースセンス端子SST4とを備える。ここで、ゲート端子GT1・ソースセンス端子SST1は、SiC-MOSFET Q1のゲート用信号配線パターンGL1・ソース用信号配線パターンSL1に接続され、ゲート端子GT2・ソースセンス端子SST2は、SiC-MOSFET Q2のゲート用信号配線パターンGL2・ソース用信号配線パターンSL2に接続される。
 図15・図16に示すように、SiC-MOSFET Q1・Q2から信号基板141・142上に配置されたゲート用信号配線パターンGL1・GL2およびソースセンス用信号配線パターンSL1・SL2に向けてゲート用ワイヤGW1・GW2およびソースセンス用ワイヤSSW1・SSW2が接続される。また、ゲート用信号配線パターンGL1・GL2およびソースセンス用信号配線パターンSL1・SL2には、外部取り出し用のゲート端子GT1・GT2およびSST1・SST2が半田付けなどによって接続される。
 図15・図16に示された例では、2チップ並列に配置されたSiC-MOSFET Q1・Q2のチップ表面のソースパッド電極SP1・SP2は、ソース用ボンディングワイヤBWS1・BWS2を介して、電極パターンEO・ENに接続されている。ソース用ボンディングワイヤBWS1・BWS2の代わりに、金属スペーサと上面板状電極を採用することによって2チップ並列に配置されたSiC-MOSFET Q1・Q2のチップ表面のソースパッド電極SP1・SP2をそれぞれ共通に接続しても良い。ここで、ソースパッド電極SP1・SP2は、例えば、図21・図22に示されたソースパッド電極SPと同様である。
 正側電力端子P・負側電力端子N、外部取り出し用のゲート端子GT1・GT2およびSST1・SST2は、例えば、Cuで形成可能である。
 主基板10は、セラミック基板で形成可能である。セラミック基板は、例えば、Al、AlN、SiN、AlSiC、若しくは少なくとも表面が絶縁性のSiCなどで形成されていても良い。
 電極パターンEP・EO・ENは、例えば、Cu、Alなどで形成可能である。
 ゲート用ワイヤGW1・GW2、ソースセンス用ワイヤSSW1・SSW2およびソース用ボンディングワイヤBWS1・BWS2は、例えば、Al、AlCuなどで形成可能である。
 SiC-MOSFET Q1・Q2としては、後述するSiC-DIMOSFET、SiC-TMOSFETなどを適用可能である。或いは、SiC系パワーデバイスに代わり、GaN系高電子移動度トランジスタ(HEMT: High Electron Mobility Transistor)などのGaN系パワーデバイスを適用可能である。
 また、スナバコンデンサCBとしては、セラミックキャパシタなどを適用可能である。
 (パワーモジュールの内部構造例2)
 実施の形態に係るパワーモジュール1の内部構造例2であって、内蔵コンデンサC1および外付けスナバ回路(RB・CB)を有する例において、樹脂層を形成前の模式的上面図は、図18に示すように表される。また、図18のI-I線に沿う模式的断面構造は、図19に示すように表される。樹脂層を形成後の模式的鳥瞰構成は、図17と同様に表され、トランスファーモールド成型によって形成可能である。
 図18においては、SiC-MOSFET Q1・Q2は、それぞれ3チップ並列に配置されている例が示されている。
 別の実施の形態に係るパワーモジュール1は、図18・図19に示すように、主基板10は、セラミック基板101・102の多層構造を備える。セラミック基板101の裏面には、金属箔6が配置され、セラミック基板101の表面には、金属箔8が配置されている。さらに、金属箔8上には、セラミック基板102が配置されている。
 別の実施の形態に係るパワーモジュール1は、図18・図19に示すように、セラミック基板102と、セラミック基板102上に配置され、正側電力端子Pに接続された第1電極パターンEPと、セラミック基板102上に配置され、負側電力端子Nに接続された第2電極パターンENと、セラミック基板102上に配置され、出力端子OUTに接続された第3電極パターンEOと、第1電極パターンEP上に第1ドレインD1が配置された第1SiC-MOSFET Q1と、第3電極パターンEO上に第2ドレインD2が配置された第2SiC-MOSFET Q2と、第1電極パターンEPと第2電極パターンENとの間に配置された内蔵コンデンサC1と、正側電力端子Pと負側電力端子Nの樹脂層20の外部に露出された側に跨るように接続されたスナバ回路30とを備えている。
 また、図18・図19に示すように、セラミック基板102上に配置され、第1SiC-MOSFET Q1の第1ゲートG1に接続されたゲート用信号配線パターンGPL1、および第1SiC-MOSFET Q1の第1ソースS1に接続されたソースセンス用信号配線パターンSPL1を搭載する第1信号基板151と、ゲート用信号配線パターンGPL1に接続されたゲート用信号配線パターンGL1、およびソースセンス用信号配線パターンSPL1に接続されたソースセンス用信号配線パターンSL1を搭載する信号基板141とを備えていても良い。
 同様に、セラミック基板102上に配置され、第2SiC-MOSFET Q2の第2ゲートG2に接続されたゲート用信号配線パターンGPL2、および第2SiC-MOSFET Q2の第2ソースS2に接続されたソースセンス用信号配線パターンSPL2を搭載する信号基板152と、ゲート用信号配線パターンGPL2に接続されたゲート用信号配線パターンGL2、およびソースセンス用信号配線パターンSPL2に接続されたソースセンス用信号配線パターンSL2を搭載する信号基板142とを備えていても良い。
 また、図18・図19に示すように、第1SiC-MOSFET Q1の第1ソースS1上には、チップ上スペーサ191を介して、チップ上面バスバー171が配置され、3個の第1SiC-MOSFET Q1の第1ソースS1のソースパッド電極SP1が共通に接続されている。同様に、第2SiC-MOSFET Q2の第2ソースS2上には、チップ上スペーサ192を介して、チップ上面バスバー172が配置され、3個の第2SiC-MOSFET Q2の第2ソースS2のソースパッド電極SP2が共通に接続されている。
 また、図18・図19に示すように、チップ上面バスバー171は、スペーサ291を介して第3電極パターンEOに接続され、チップ上面バスバー172は、スペーサ292を介して第4電極パターンEN2に接続されている。
 また、図18・図19に示すように、第2電極パターンENは、ビアホール211を介してセラミック基板101表面の金属箔8に接続され、第4電極パターンEN2もビアホール212を介してセラミック基板101表面の金属箔8に接続されている。その他の構成および各部の材料などは、実施の形態に係るパワーモジュール1の内部構造例1と同様である。
 図18・図19に示す実施の形態に係るパワーモジュール1の内部構造例2において、ラミネート配線構造LM1・LM2による電流キャンセルの様子を説明する模式図は、図20に示すように表される。
 実施の形態に係るパワーモジュール1の内部構造例2においては、積層化されたセラミック基板101・102を備えることによって、パワーモジュール1の内部構造上ラミネート配線構造LM1・LM2が形成される。このため、図20に示すような導通電流iによって、パワーモジュール1の内部配線に伴う寄生インダクタンス成分によって発生する磁束を相殺可能である。結果として、パワーモジュール1の内部配線に伴う寄生インダクタンスを低減することができる。また、チップ上面バスバー171・172と金属箔8とを通る電流経路で形成されるラミネート配線構造に対しても、寄生インダクタンスの低減効果は得られる。
 実施の形態に係るパワーモジュール1の内部構造例2においては、基板内の寄生インダクタンスを低減可能であるため、パワーモジュールのリンギングループの寄生インダクタンスを極小化可能である。
 (半導体デバイスの構成例)
 ―SiC-DIMOSFET―
 実施の形態に係るパワーモジュール1を備えるパワー回路2に適用可能な半導体デバイス200の例であって、SiC-DI(Double Implanted)MOSFETの模式的断面構造は、図21に示すように表される。
 実施の形態に係るパワーモジュール1を備えるパワー回路2に適用可能なSiC-DIMOSFETは、図21に示すように、n+SiC基板124と、n+SiC基板124上にエピタキシャル成長されたn-ドリフト層126と、n-ドリフト層126の表面側に形成されたpボディ領域128と、pボディ領域128の表面に形成されたn+ソース領域130と、pボディ領域128間のn-ドリフト層126の表面上に配置されたゲート絶縁層132と、ゲート絶縁層132上に配置されたゲート電極138と、n+ソース領域130およびpボディ領域128に電気的に接続されたソース電極134と、n+SiC基板124の、n-ドリフト層126と反対側の表面に電気的に接続されたドレイン電極136とを備える。また、pボディ領域128とn-ドリフト層126間には、ボディダイオードBDが形成されている。
 図21では、半導体デバイス200は、pボディ領域128と、pボディ領域128の表面に形成されたn+ソース領域130が、ダブルイオン注入(DI)で形成され、ソースパッド電極SPは、n+ソース領域130およびpボディ領域128に接続されたソース電極134に接続される。ゲートパッド電極GP(図示省略)は、ゲート絶縁層132上に配置されたゲート電極138に接続される。また、ソースパッド電極SP・ソース電極134およびゲートパッド電極GP(図示省略)は、図21に示すように、半導体デバイス200の表面を覆うパッシベーション用の層間絶縁膜144上に配置される。
 ―SiC-TMOSFET―
 実施の形態に係るパワーモジュール1を備えるパワー回路2に適用可能な半導体デバイス200の例であって、SiC-トレンチ(T:Trench)MOSFETの模式的断面構造は、図22に示すように表される。
 実施の形態に係るパワーモジュール1を備えるパワー回路2に適用可能なSiC-TMOSFETは、図22に示すように、n+SiC基板124と、n+SiC基板124上にエピタキシャル成長されたn-ドリフト層126Nと、n-ドリフト層126Nの表面側に形成されたpボディ領域128と、pボディ領域128の表面に形成されたn+ソース領域130と、pボディ領域128を貫通し、n-ドリフト層126Nまで形成されたトレンチ内にゲート絶縁層132および層間絶縁膜144U・144Bを介して形成されたトレンチゲート電極138TGと、ソース領域130およびpボディ領域128に接続されたソース電極134と、n+SiC基板124の、n-ドリフト層126Nと反対側の表面に電気的に接続されたドレイン電極136とを備える。また、pボディ領域128とn-ドリフト層126N間には、ボディダイオードBDが形成されている。
 図22では、半導体デバイス200は、pボディ領域128を貫通し、n-ドリフト層126Nまで形成されたトレンチ内にゲート絶縁層132および層間絶縁膜144U・144Bを介して形成されたトレンチゲート電極138TGが形成され、ソースパッド電極SPは、ソース領域130およびpボディ領域128に接続されたソース電極134に接続される。ゲートパッド電極GP(図示省略)は、ゲート絶縁層132上に配置されたゲート電極138に接続される。また、ソースパッド電極SP・ソース電極134およびゲートパッド電極GP(図示省略)は、図22に示すように、半導体デバイス200の表面を覆うパッシベーション用の層間絶縁膜144U上に配置される。
 SiC-TMOSFETはドレイン電流経路にpボディ領域128から伸張するジャンクション抵抗が存在しないため、SIC-DMOSFETと比較してさらに低オン抵抗のFETを提供することが可能であり、1素子当たりに100A以上のドレインパルス電流を許容することも可能になる。
 また、実施の形態に係るパワーモジュールおよびパワー回路に適用可能な半導体デバイス200には、SiC系MOSFETの代わりに、GaN系FETなどを適用することもできる。
 SiCデバイスは、高絶縁破壊電界(例えば、約3MV/cmであり、Siの約3倍)であることから、Siに比べてドリフト層の膜厚を薄くし、かつキャリア濃度を高く設定しても耐圧が確保できる。絶縁破壊電界の違いから、SiC-MOSFETのピーク電界強度は、Si-MOSFETのピーク電界強度よりも高く設定可能である。
 SiC-MOSFETにおいては、必要なn-ドリフト層126・126Nの膜厚が薄く、キャリア濃度が高いため、n-ドリフト層126・126Nの抵抗値を低減し、オン抵抗を低くすることができ、チップ面積を縮小化(小チップ化)可能である。さらにユニポーラデバイスであるMOSFET構造のままで、Si-IGBTに比肩し得る耐圧を実現可能であることから、高耐圧でかつ高速スイッチングできるとされ、スイッチング損失の低減が期待できる。
 以上説明したように、本実施の形態によれば、低寄生インダクタンスと低ノイズを両立させたパワーモジュールおよびパワー回路を提供することができる。
 [その他の実施の形態]
 上記のように、実施の形態およびその変形例によって記載したが、この開示の一部をなす論述および図面は例示的なものであり、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
 このように、本実施の形態ここでは記載していない様々な実施の形態などを含む。
 本実施の形態に係るパワーモジュールおよびパワー回路は、HEV/EV向け昇圧回路、3相インバータに適用可能であり、特に高周波動作させることでメリットが出るDC/DCコンバータなど幅広い応用分野に適用可能である。
1、1、1A、40…パワーモジュール
2、2A…パワー回路
3…ブリッジ部
4、30…スナバ回路
10、101、102…主基板(セラミック基板)
141、142、151、152…信号基板
171、172…チップ上面バスバー
191、192…チップ上スペーサ
20…樹脂層
211、212…ビアホール
23P、23N…金属板
25…スナバ回路基板
26、27、28…電極パターン
291、292…スペーサ
124…n+SiC基板
126、126N…n-ドリフト層
128…pボディ領域
130…ソース領域
132…ゲート絶縁膜
134…ソース電極
136…ドレイン電極
138、138TG…ゲート電極
144、144U、144B…層間絶縁膜
200、Q1、Q2…半導体デバイス(SiC-MOSFET)
BD…ボディダイオード
RB…スナバ抵抗
CB…スナバコンデンサ
CP…並列コンデンサ
C1、C11、C12…内蔵コンデンサ
C2…平滑コンデンサ
P…正側電力端子
N…負側電力端子
OUT…出力端子
S1、S2…ソース
D、D1、D2…ドレイン
SS1、SS2…ソースセンス
EP、EO、EN…電極パターン
G1、G2…ゲート
GT1、GT2…ゲート端子
SST1、SST2…ソースセンス端子
SL1、SL2、SPL1、SPL2…ソースセンス用信号配線パターン
GL1、GL2、GPL1、GPL2…ゲート用信号配線パターン
SP…ソースパッド電極
E…電源
L…負荷リアクトル
IdH1、IdL1…デバイス部を導通する電流
IdH2、IdL2…電力端子P、Nを導通する電流
IdH2P、IdL2P…ピーク値
GW1、GW2…ゲート用ワイヤ
SSW1、SSW2…ソースセンス用ワイヤ
BWS1、BWS2…ソース用ボンディングワイヤ
 
 

Claims (17)

  1.  複数のトランジスタ素子によって構成されたブリッジ回路と前記ブリッジ回路の両端に跨るように接続された内蔵コンデンサとを有するブリッジ部と、
     前記ブリッジ部の両端にそれぞれ一端が接続され、他端が前記ブリッジ部を封止する封止部の外部に露出した正側電力端子および負側電力端子と、
     前記正側電力端子および前記負側電力端子の露出された側に跨るように接続されたスナバ回路と
     を備えることを特徴とするパワーモジュール。
  2.  主基板と、
     前記主基板上に配置され、正側電力端子に接続された第1電極パターンと、
     前記主基板上に配置され、負側電力端子に接続された第2電極パターンと、
     前記主基板上に配置され、出力端子に接続された第3電極パターンと、
     前記第1電極パターン上に第1出力が配置された第1トランジスタ素子と、
     前記第3電極パターン上に第2出力が配置された第2トランジスタ素子と、
     前記第1電極パターンと前記第2電極パターンとの間に配置された内蔵コンデンサと、
     前記正側電力端子と前記負側電力端子の前記第1トランジスタ素子および前記第2トランジスタ素子を封止する封止部から露出された側に跨るように接続されたスナバ回路と
     を備えることを特徴とするパワーモジュール。
  3.  前記主基板は、セラミック基板を備えることを特徴とする請求項2に記載のパワーモジュール。
  4.  前記主基板は、多層構造のセラミック基板を備えることを特徴とする請求項3に記載のパワーモジュール。
  5.  前記内蔵コンデンサは、複数のコンデンサの直列接続によって構成されていることを特徴とする請求項1~4のいずれか1項に記載のパワーモジュール。
  6.  前記封止部は、少なくとも一部がトランスファーモールド成型による樹脂層によって封止されていることを特徴とする請求項1~5のいずれか1項に記載のパワーモジュール。
  7.  前記スナバ回路は、直列接続されたスナバコンデンサとスナバ抵抗とを備えることを特徴とする請求項1~6のいずれか1項に記載のパワーモジュール。
  8. 前記スナバ抵抗に並列に接続された並列コンデンサを備えることを特徴とする請求項7に記載のパワーモジュール。
  9.  前記スナバ回路は、樹脂で封止され、前記樹脂から露出した端子が前記正側電力端子および前記負側電力端子と直接接続されることを特徴とする請求項1~8のいずれか1項に記載のパワーモジュール。
  10.  前記トランジスタ素子は、SiC-MOSFET若しくはワイドギャップトランジスタであることを特徴とする請求項1~9のいずれか1項に記載のパワーモジュール。
  11.  前記スナバコンデンサの値は、前記内蔵コンデンサの値の10倍以上であることを特徴とする請求項1~10のいずれか1項に記載のパワーモジュール。
  12.  前記正側電力端子および前記負側電力端子を導通する電流の電流振動の時定数は、それぞれ5μs以下であるであることを特徴とする請求項1~11のいずれか1項に記載のパワーモジュール。
  13.  複数のトランジスタ素子によって構成されたブリッジ回路と前記ブリッジ回路の両端に跨るように接続された内蔵コンデンサとを有するブリッジ部と、
     前記ブリッジ部の両端にそれぞれ一端が接続され、他端が前記ブリッジ部を封止する封止部の外部に露出した正側電力端子および負側電力端子と、
     前記正側電力端子および前記負側電力端子の露出された側に跨るように接続され、前記正側電力端子および前記負側電力端子の電流ノイズを低減する電流ノイズ低減回路と
     を備えることを特徴とするパワーモジュール。
  14.  前記電流ノイズ低減回路は、前記正側電力端子および前記負側電力端子の露出された側に跨るように接続されたスナバ回路であることを特徴とする請求項13に記載のパワーモジュール。
  15.  前記ブリッジ回路の出力端子は、前記正側電力端子および前記負側電力端子が露出する方向と反対側の方向に露出することを特徴とする請求項14に記載のパワーモジュール。
  16.  前記正側電力端子および前記負側電力端子を導通する電流の電流振動の時定数は、それぞれ5.0μs以下であることを特徴とする請求項13または14に記載のパワーモジュール。
  17.  請求項1~16のいずれか1項に記載のパワーモジュールと、
     前記スナバ回路に並列に接続された平滑コンデンサと
     を備えることを特徴とするパワー回路。
     
     
     
PCT/JP2015/078160 2014-10-30 2015-10-05 パワーモジュールおよびパワー回路 WO2016067835A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016556458A JP6683621B2 (ja) 2014-10-30 2015-10-05 パワーモジュールおよびパワー回路
US15/496,651 US10418895B2 (en) 2014-10-30 2017-04-25 Power module and power circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014221265 2014-10-30
JP2014-221265 2014-10-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/496,651 Continuation US10418895B2 (en) 2014-10-30 2017-04-25 Power module and power circuit

Publications (1)

Publication Number Publication Date
WO2016067835A1 true WO2016067835A1 (ja) 2016-05-06

Family

ID=55857179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078160 WO2016067835A1 (ja) 2014-10-30 2015-10-05 パワーモジュールおよびパワー回路

Country Status (3)

Country Link
US (1) US10418895B2 (ja)
JP (1) JP6683621B2 (ja)
WO (1) WO2016067835A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018007394A (ja) * 2016-06-30 2018-01-11 トヨタ自動車株式会社 電力変換装置
WO2018080801A1 (en) * 2016-10-25 2018-05-03 Tesla, Inc. Inverter
JPWO2018143429A1 (ja) * 2017-02-06 2019-02-07 三菱電機株式会社 電力用半導体モジュールおよび電力変換装置
JP2020096431A (ja) * 2018-12-11 2020-06-18 株式会社日立製作所 過電流検知装置
CN111800020A (zh) * 2019-04-03 2020-10-20 Abb瑞士股份有限公司 开关模块组件及其制造方法
WO2020218298A1 (ja) * 2019-04-24 2020-10-29 ローム株式会社 半導体装置
JP7365405B2 (ja) 2019-04-24 2023-10-19 ローム株式会社 半導体装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6635900B2 (ja) * 2016-09-13 2020-01-29 株式会社東芝 半導体装置
US9768678B1 (en) 2016-11-16 2017-09-19 Silanna Asia Pte Ltd Switching regulator synchronous node snubber circuit
DE112018007125T5 (de) * 2018-02-20 2020-11-05 Mitsubishi Electric Corporation Leistungshalbleitermodul und leistungswandler mit demselben
US11063525B2 (en) * 2019-01-07 2021-07-13 Delta Electronics (Shanghai) Co., Ltd. Power supply module and manufacture method for same
CN110138195B (zh) * 2019-05-24 2020-10-27 哈尔滨工业大学 抑制GaN半桥模块电压尖峰与电流谐振的无损缓冲电路及其测试电路
EP3761492B1 (en) * 2019-07-05 2023-01-04 Infineon Technologies AG Snubber circuit and power semiconductor module with snubber circuit
CN114144965A (zh) * 2019-07-24 2022-03-04 日立安斯泰莫株式会社 电路装置
US11350519B2 (en) 2020-01-22 2022-05-31 Delta Electronics (Shanghai) Co., Ltd. Power module
EP3855488A1 (en) 2020-01-22 2021-07-28 Delta Electronics (Shanghai) Co., Ltd. Power module
CN113161309A (zh) * 2020-01-22 2021-07-23 台达电子企业管理(上海)有限公司 载板及其适用的功率模块
CN115210866A (zh) * 2020-02-19 2022-10-18 皮尔伯格有限责任公司 电功率模块
JP2021182575A (ja) * 2020-05-18 2021-11-25 現代自動車株式会社Hyundai Motor Company 半導体装置内部スナバ回路接続構造及びこれを用いたパワーモジュール構造
US20230178490A1 (en) * 2021-12-03 2023-06-08 Delta Electronics, Inc. Power module
CN116387269B (zh) * 2023-04-21 2024-02-13 华中科技大学 一种功率模块

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071129A (ja) * 2007-09-14 2009-04-02 Ihi Corp コンデンサ内蔵絶縁型半導体パワーモジュール
JP2012115128A (ja) * 2010-11-03 2012-06-14 Denso Corp スイッチングモジュール
JP2013045882A (ja) * 2011-08-24 2013-03-04 Mitsubishi Electric Corp 半導体装置
WO2013132528A1 (ja) * 2012-03-05 2013-09-12 富士電機株式会社 電力変換装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172310A (en) * 1991-07-10 1992-12-15 U.S. Windpower, Inc. Low impedance bus for power electronics
JP2809095B2 (ja) * 1994-03-04 1998-10-08 株式会社デンソー インバータ装置
JP3385938B2 (ja) 1997-03-05 2003-03-10 株式会社デンソー 炭化珪素半導体装置及びその製造方法
US7190564B2 (en) * 2004-09-30 2007-03-13 The Bergquist Torrington Company Snubber circuit
JP4816182B2 (ja) * 2006-03-23 2011-11-16 株式会社日立製作所 スイッチング素子の駆動回路
JP4445036B2 (ja) * 2007-05-29 2010-04-07 パナソニック株式会社 電力変換器
JP4658268B2 (ja) * 2008-11-26 2011-03-23 三菱電機株式会社 電力用半導体モジュール
JP5628494B2 (ja) * 2009-08-11 2014-11-19 デクセリアルズ株式会社 共振回路
JP5568645B2 (ja) 2010-12-01 2014-08-06 株式会社安川電機 電力変換装置
JP5218541B2 (ja) * 2010-12-14 2013-06-26 株式会社デンソー スイッチングモジュール
JP5853368B2 (ja) * 2011-01-13 2016-02-09 富士通株式会社 Dc−dcコンバータ、電源装置、及び情報処理装置
JP5447603B2 (ja) * 2011-08-27 2014-03-19 株式会社デンソー 電力変換装置
US9373617B2 (en) * 2011-09-11 2016-06-21 Cree, Inc. High current, low switching loss SiC power module
JP5999677B2 (ja) * 2011-09-20 2016-09-28 ローム株式会社 電子回路
JP2013258387A (ja) * 2012-05-15 2013-12-26 Rohm Co Ltd パワーモジュール半導体装置
JP2014030286A (ja) 2012-07-31 2014-02-13 Panasonic Corp 電力変換装置および溶接装置
JP5860784B2 (ja) * 2012-09-10 2016-02-16 日立オートモティブシステムズ株式会社 パワー半導体モジュール
US9230957B2 (en) * 2013-03-11 2016-01-05 Alpha And Omega Semiconductor Incorporated Integrated snubber in a single poly MOSFET
JP6237038B2 (ja) * 2013-09-20 2017-11-29 富士通株式会社 カスコードトランジスタ及びカスコードトランジスタの制御方法
WO2015049736A1 (ja) * 2013-10-02 2015-04-09 三菱電機株式会社 Crスナバ回路
JP6425380B2 (ja) * 2013-12-26 2018-11-21 ローム株式会社 パワー回路およびパワーモジュール
JP6769707B2 (ja) * 2015-12-03 2020-10-14 ローム株式会社 半導体モジュール
JP6437959B2 (ja) * 2016-06-30 2018-12-12 トヨタ自動車株式会社 電力変換装置
US9768678B1 (en) * 2016-11-16 2017-09-19 Silanna Asia Pte Ltd Switching regulator synchronous node snubber circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071129A (ja) * 2007-09-14 2009-04-02 Ihi Corp コンデンサ内蔵絶縁型半導体パワーモジュール
JP2012115128A (ja) * 2010-11-03 2012-06-14 Denso Corp スイッチングモジュール
JP2013045882A (ja) * 2011-08-24 2013-03-04 Mitsubishi Electric Corp 半導体装置
WO2013132528A1 (ja) * 2012-03-05 2013-09-12 富士電機株式会社 電力変換装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018007394A (ja) * 2016-06-30 2018-01-11 トヨタ自動車株式会社 電力変換装置
US10224808B2 (en) 2016-06-30 2019-03-05 Toyota Jidosha Kabushiki Kaisha Electric power conversion device with snubber circuit
WO2018080801A1 (en) * 2016-10-25 2018-05-03 Tesla, Inc. Inverter
US11476179B2 (en) 2016-10-25 2022-10-18 Tesla, Inc. Inverter
US11837523B2 (en) 2016-10-25 2023-12-05 Tesla, Inc. Inverter
JPWO2018143429A1 (ja) * 2017-02-06 2019-02-07 三菱電機株式会社 電力用半導体モジュールおよび電力変換装置
JP2020096431A (ja) * 2018-12-11 2020-06-18 株式会社日立製作所 過電流検知装置
CN111800020A (zh) * 2019-04-03 2020-10-20 Abb瑞士股份有限公司 开关模块组件及其制造方法
WO2020218298A1 (ja) * 2019-04-24 2020-10-29 ローム株式会社 半導体装置
JP7365405B2 (ja) 2019-04-24 2023-10-19 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
US20170229953A1 (en) 2017-08-10
JPWO2016067835A1 (ja) 2017-09-14
US10418895B2 (en) 2019-09-17
JP6683621B2 (ja) 2020-04-22

Similar Documents

Publication Publication Date Title
WO2016067835A1 (ja) パワーモジュールおよびパワー回路
US10749520B2 (en) Power circuit and power module using MISFET having control circuit disposed between gate and source
US9818686B2 (en) Semiconductor modules and methods of forming the same
US9741702B2 (en) Semiconductor power modules and devices
US10607978B2 (en) Semiconductor device and electronic apparatus
US9537425B2 (en) Multilevel inverters and their components
JP6647294B2 (ja) フェライトビーズを有するスイッチング回路
TWI425730B (zh) 具有完整漏源電壓鉗位元的功率開關裝置及限制耦合變壓器推拉式整流器之主開關場效應電晶體的最大漏源電壓的裝置及方法
JP2019017112A (ja) パワー回路
WO2019163114A1 (ja) パワーモジュール及びスイッチング電源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856012

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856012

Country of ref document: EP

Kind code of ref document: A1