WO2015034088A1 - 撥液性多孔質膜を備えた電気化学反応装置 - Google Patents

撥液性多孔質膜を備えた電気化学反応装置 Download PDF

Info

Publication number
WO2015034088A1
WO2015034088A1 PCT/JP2014/073687 JP2014073687W WO2015034088A1 WO 2015034088 A1 WO2015034088 A1 WO 2015034088A1 JP 2014073687 W JP2014073687 W JP 2014073687W WO 2015034088 A1 WO2015034088 A1 WO 2015034088A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrode
negative electrode
aqueous solution
repellent porous
Prior art date
Application number
PCT/JP2014/073687
Other languages
English (en)
French (fr)
Inventor
正隆 村原
Original Assignee
株式会社 エム光・エネルギー開発研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 エム光・エネルギー開発研究所 filed Critical 株式会社 エム光・エネルギー開発研究所
Priority to EP14842245.4A priority Critical patent/EP3042717B1/en
Priority to RU2016112891A priority patent/RU2660125C2/ru
Priority to JP2015535545A priority patent/JP6652695B2/ja
Priority to CN201910228495.6A priority patent/CN110048136B/zh
Priority to KR1020167005943A priority patent/KR102304978B1/ko
Priority to CN201480049132.1A priority patent/CN105579125B/zh
Publication of WO2015034088A1 publication Critical patent/WO2015034088A1/ja
Priority to US15/060,421 priority patent/US10407780B2/en
Priority to US16/518,194 priority patent/US11459662B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • C25B1/16Hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/21Temperature-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/618Pressure control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/045Cells with aqueous electrolyte characterised by aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/22Immobilising of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/32Deferred-action cells activated through external addition of electrolyte or of electrolyte components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/32Deferred-action cells activated through external addition of electrolyte or of electrolyte components
    • H01M6/34Immersion cells, e.g. sea-water cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells
    • H01M6/38Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells by mechanical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B2018/044Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid
    • A61B2018/046Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid in liquid form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • A61F2007/126Devices for heating or cooling internal body cavities for invasive application, e.g. for introducing into blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F7/03Compresses or poultices for effecting heating or cooling thermophore, i.e. self-heating, e.g. using a chemical reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrochemical reaction apparatus including an electrolytic purification apparatus, a practical battery, and a capacitor using the liquid pressure resistance of a liquid repellent porous film.
  • Base metal elements belonging to Group 1, Group 2 and Group 13 of the periodic table are ionized when they come into contact with water, immediately cause self-discharge and generate hydrogen. For this reason, contact with water is strictly prohibited for these metals, and there is no production method other than molten salt electrolysis as electrolytic purification for precipitating these metals. Even in practical batteries, there are no primary and secondary batteries using an aqueous electrolyte solution for Group 1 elements of the periodic table and Ca, Ba, and Sr of Group 2 that are significantly reactive with water. In addition, regarding Be and Mg among the Group 2 elements of the periodic table or Al which is the Group 13 element, there is a primary battery, but there is no secondary battery.
  • non-aqueous electrolyte solutions organic electrolytes
  • solid electrolytes have been developed for lithium ion batteries and sodium ion batteries using Group 1 elements, and for batteries using Group 1 element sodium.
  • a sodium sulfur battery (NS battery) has been developed that uses it as a molten salt electrolyte and operates at a high temperature of 300 ° C. or higher.
  • the electrode material is light, the electromotive force is high, and the discharge capacity is large.
  • the periodic table Group 1 element is an ideal negative electrode material, but it is difficult to avoid self-discharge.
  • electrolytic refining or capacitors cause self-discharge is that the negative electrode and the positive electrode are present in the same electrolyte aqueous solution. Therefore, there is an urgent need for technical development to separate the electrolyte and the electrode, suppress self-discharge, and shut off the base metal elements belonging to Groups 1, 2 and 13 of the periodic table and water.
  • the power storage capacitor (capacitor) has a large capacity and can be rapidly charged and discharged.
  • an electrochemical capacitor is ideal, and an electric double layer capacitor, a redox capacitor, and a hybrid capacitor correspond to this.
  • the disadvantage of these capacitors is high leakage current and self-discharge. Therefore, there is an urgent need to develop technology for suppressing this leakage current.
  • Self-discharge is a phenomenon in which the metal of the negative electrode dissolves and at the same time the generated electrons react with hydrogen ions to generate hydrogen, and the electrons do not move to the positive electrode and current does not flow.
  • Patent Document 1 provides a nickel base pore on a positive electrode for an alkaline storage battery, and the nickel base pore is filled with active material particles containing nickel and an additive.
  • Patent Document 2 discloses a method of suppressing self-discharge by setting an electrode shape in which the actual reaction area does not decrease even if the facing area of the alkaline storage battery electrode is increased.
  • Patent Document 3 uses a laminate of a sheet comprising a sulfonated polyolefin resin fiber as a main component and a sheet subjected to a hydrophilic treatment other than sulfonate as a separator, and has a low self-discharge and a capacity retention rate. Discloses a long-life alkaline battery.
  • Patent Document 4 discloses an electrode for a lithium battery in which an active material thin film that absorbs and releases lithium, such as a microcrystalline silicon thin film and an amorphous silicon thin film, is provided on a current collector through an intermediate layer. .
  • Patent Document 5 discloses that porous lithium titanate is excellent in impregnation of a nonaqueous electrolyte and improves charge / discharge cycle characteristics as an electrode active material in a lithium battery.
  • Patent Document 6 discloses a sodium secondary battery having a positive electrode having a carbon-based positive electrode active material capable of occluding and releasing anions, and a negative electrode having Sn, Zn and the like as negative electrode active materials capable of occluding and releasing Na. Disclosure. A sodium sulfur battery in which sodium was melted required an ambient temperature of 300 ° C. in order to form a molten salt.
  • Patent Document 7 discloses that by using a molten salt composition containing two or more molten salts MFSI having bisfluorosulfonylimide (FSI) as an anion and alkali metal M as a cation, the ambient temperature is between 60 and 130 ° C. Disclosed is operating a battery.
  • FSI bisfluorosulfonylimide
  • Patent Document 8 discloses that a polyolefin microporous membrane having a pore size of 0.1 ⁇ m or less has thermal stability and is suitable for a separator of a high capacity / high output battery.
  • Patent Document 9 discloses that battery performance is maintained without impairing ionic conductivity by providing a scaly inorganic porous film made of silica, alumina or the like on a positive electrode, a negative electrode, or a separator.
  • Patent Document 10 discloses that a separator film used in a non-aqueous secondary battery is a heat-resistant porous film containing chlorine, a laminated film of a heat-resistant resin and a porous polyolefin, or a layer made of a heat-resistant resin and a filler. And a porous film of porous polyolefin.
  • Patent Document 11 discloses that a fluorine-based water-repellent porous membrane having a porosity of 60 to 90% and an air permeability of 20 seconds or less is used for a polymer electrolyte fuel cell. is doing.
  • Patent Document 12 Patent Document 13, and Patent Document 14, a fluorine-based water-repellent porous film is irradiated with excimer laser light in the presence of a compound having an atom having a binding energy of 128 kcal / mol or more and a hydrophilic group.
  • a method for producing a water repellent porous membrane is disclosed.
  • Patent Document 15 discloses that a fluorine-based water-repellent porous membrane is substituted with a hydrophilic group by photoreaction with ultraviolet rays, and dopaminergic cells, fibroblasts, collagen-enhanced cells are formed on the inner walls of the pores exhibiting the hydrophilicity.
  • Non-Patent Document 1 the water repellent pressure of the water-repellent porous fluororesin film having a pore diameter of 33 ⁇ m is 1500 torr, but the inside of the pore is photomodified to be hydrophilic and the water repellent pressure is 20 torr. It is reported that this modified film is used for the aqueous humor adjustment valve for glaucoma patients.
  • JP-A-9-180714 JP2009-181710A JP 2002-63890 A International Publication WO 01/031724 JP2012-12261 JP2013-54987A JP 2009-67644 A JP2013-32535A JP2011-222129A JP2009-224097 International Publication Number WO 2007/80763 JP 2005-253305 A US Pat. No. 6,167,497 European Patent No. 0644227 JP2011-184260 JP2009-295789 JP2013-138050A JP 2006-193612 A JP2012-30637 JP 2013-166406 A
  • Patent Document 2 a strong acid or a strong alkaline aqueous solution is used for an electrolyte used for an electric double layer capacitor, a redox capacitor, a hybrid capacitor, or the like.
  • Patent Document 16 discloses that in an electric double layer capacitor in which a first electrode, a second electrode, and a first separator and a second separator are wound in a flat shape, the surface pressure of both electrodes is increased to a certain level or more by providing a winding core. In addition, it is disclosed that the internal resistance is suppressed and the leakage current is suppressed without increasing the thickness of the separator.
  • Patent Document 17 discloses that the internal resistance is reduced by changing the electrode base material of the Redox capacitor from nickel or stainless steel to aluminum or copper. It is a problem to be solved by the present invention to reduce the leakage current by suppressing the internal resistance of these electrochemical capacitors.
  • the metal whose ionization energy is smaller than that of hydrogen and is easily attacked by water or acid is called a base metal element, such as lithium, potassium
  • a base metal element such as lithium, potassium
  • the first listed react more vigorously with water. The later listed are less reactive with water but react with acid.
  • magnesium, aluminum, titanium, and the like can easily form a chemically stable surface oxide film in the air, and when such a film is formed, it shows high corrosion resistance in water thereafter.
  • lithium, potassium or sodium which are Group 1 elements of the periodic table
  • barium, calcium or magnesium which are Group 2 elements
  • aluminum which is a Group 13 element
  • electrolytic purification is performed by a molten salt electrolysis method in which an electric current is passed through the molten salt (electrolyte). It is a problem to be solved by the present invention to find out that this molten salt electrolysis is performed in an aqueous electrolyte.
  • a battery that cannot be charged is called a primary battery
  • a battery that can be charged and discharged together is called a secondary battery.
  • These batteries are desired to be able to supply a large amount of electricity and a high electromotive force using a small amount of active material.
  • the electrode potential difference varies depending on the substance constituting the electrode and the ion concentration in the electrolyte.
  • the negative electrode of a practical battery requires a metal that is easily ionized, and the positive electrode requires a metal or an oxidizing agent (including a gaseous or liquid oxidizing agent) that has a very low ionization tendency.
  • a metal or an oxidizing agent including a gaseous or liquid oxidizing agent
  • Separation membrane is necessary to prevent mixing of negative electrode products such as metals, metal compounds or gases produced by electrolytic refining or electrolysis of electrolytes in practical batteries and gases.
  • the most important requirement for this isolation membrane is that ions pass through but no substances or electrolytes pass through.
  • the isolation film is also required to have a high insulation resistance, resistance to acids and alkalis, resistance to heat and vibration, mechanical strength, and long life. Conventionally, unglazed materials, solid electrolytes, filter paper, and the like have been used as separators.
  • a ceramic solid electrolyte such as alumina is suitable for separating the aqueous electrolyte solution and the negative electrode product, but these ceramic solid electrolytes do not function as an electrolyte unless they are in a high temperature environment.
  • the unglazed diaphragm can be used as an aqueous electrolyte solution.
  • the aqueous solution freely penetrates into the unglazed body, moisture cannot be blocked. The same applies to the filter paper. Therefore, it is an object of the present invention to develop a membrane that can shut off the electrode portion and the aqueous electrolyte solution and further control the entry and exit of ions as necessary.
  • the difference between the present invention and the conventional method for solving the problem is that a water-repellent porous fluororesin film as a separator is used as a pressure switch.
  • a water-repellent porous fluororesin film as a separator is used as a pressure switch.
  • positive and negative electrodes have been installed in an aqueous electrolyte solution in an aqueous solution electrochemical reaction. For this reason, it is difficult to avoid an insulating phenomenon caused by a gas generated at the interface between the aqueous electrolyte solution and the electrode during the electrochemical reaction.
  • the positive electrode and the negative electrode sandwiched between the aqueous electrolyte solutions are each electrically insulated and isolated by the water repellent porous membrane, and the electrolyte aqueous solution is pressurized only when an electrochemical reaction is caused, It is possible to fill the pores with an electrolyte aqueous solution and to serve as a switch of an electric circuit that changes the insulating film, which is an insulator, into a conductor only when the pores are pressurized.
  • an aqueous electrolyte solution is sealed in a water-repellent porous membrane bag, charging and discharging are performed while the water-repellent porous membrane bag is being pressurized, and pressure is released during power storage.
  • the electrode and the electrolyte are insulated, and self-discharge and increase in internal resistance are avoided. Also, in electrolysis (electrolytic refining), the entire electrode is not in contact with the aqueous electrolyte solution, so that the product at each electrode is less likely to dissolve again into the electrolyte, and the electrode-generating gas is between the electrode and the aqueous electrolyte solution.
  • a network-like negative electrode is provided at the interface between the electrolyte aqueous solution and oil separated by the water-repellent porous membrane, and the electrolyte aqueous solution is electrolyzed while the electrolyte aqueous solution is pressurized, the oil on the back surface of the network electrode A negative electrode product is deposited therein.
  • base metal elements which are hydrophilic metals (Group 1 and Group 2 elements that react vigorously with water), can be precipitated in oil, and heavy liquid sorting (specific gravity beneficiation) )can do.
  • the simplest method for disconnecting water from the base metal element compound is to use a molten salt of a base metal element.
  • Molten salt without water is an ideal electrolyte solution.
  • FIG. 2 showing the relationship between each mixed salt and the melting point in Patent Document 15 also shows the relationship between the mixed salt and the melting point.
  • Mercury and bromine are the only liquid elements at room temperature that exist in nature, and other elements cannot be made liquid at room temperature.
  • the base metal and the base metal salt electrolyte aqueous solution can be electrolyzed in a separated state, electrolytic purification and a practical secondary battery are possible.
  • the development of this isolation membrane is the mission of the present invention.
  • the necessary and sufficient condition for this separator is that the separator is excellent in electrolyte retention and has low electrical resistance.
  • a fluororesin film exhibiting water repellency with respect to an aqueous solution is employed. By adopting this fluororesin film, not only the liquid retention of the electrolyte is excellent, but also the electric resistance can be kept at zero. Furthermore, since a porous film is adopted as the fluororesin film, the inside can be made to pass ions.
  • an electrolyte aqueous solution is applied at a pressure equal to the water pressure resistance and is not pressurized during the storage period, so that the liquid retention of the electrolyte is maintained. That is, during storage, the positive and negative active materials are insulative, and the active material does not react, so there is no spontaneous discharge. Furthermore, since the separator film is made of a fluororesin, it is excellent in alkali resistance, acid resistance and chemical resistance even at high temperatures (about 80 ° C.). Moreover, it is excellent in mechanical strength, flexibility and heat resistance.
  • the capacitor can ignore the internal resistance between the positive and negative electrodes if the dielectric is only an insulator such as oil, but it constitutes an equivalent circuit in which the dielectric and the conductor are electrically connected in parallel or in series. In this case, the internal resistance becomes a leakage current.
  • an electrochemical capacitor such as an electric double layer capacitor, a redox capacitor, or a hybrid capacitor
  • an increase in internal resistance due to the electrolyte inside or between the electrodes is inevitable.
  • liquid leakage also occurs when the electrolyte is aqueous.
  • an aqueous electrolyte solution such as strong acid or strong alkali is sealed in a bag made of a water repellent porous fluororesin film, and the water repellent porous fluorine
  • a bag made of a resin film is sandwiched between a pair of electrodes made of a positive electrode and a negative electrode, and at the time of charging and discharging, the water-resistant pressure of the water-repellent porous film is applied to bring both electrode surfaces into contact with the aqueous electrolyte solution, and the water-repellent porous fluorine
  • electrolyte is filled in the pores of the water-repellent porous fluororesin film by pressurizing the aqueous electrolyte solution, and it changes to conductivity, and a high charge is transferred to the electric double layer capacitor or redox capacitor.
  • the difference in pressure (differential pressure) on both sides of the membrane at the time when the liquid of the water-repellent porous fluororesin membrane (ePTFE) having a pore diameter of 3 ⁇ m and a thickness of 100 ⁇ m begins to permeate is taken as the water pressure resistance of the membrane.
  • the solution is physiological saline (BSS)
  • the water pressure resistance is 300 mmHg, and it is shown that the flow rate of physiological saline increases above that value.
  • this water-repellent porous fluororesin film when this water-repellent porous fluororesin film is regarded as an electric insulating film, it acts as an insulating film when the differential pressure on both sides of the film is lower than the water pressure resistance, and the penetration of the liquid starts at the water pressure resistance and functions as a conductive film.
  • the gist of the present invention is to use the water pressure resistance of the water-repellent porous membrane as a pressure switch for passing ions.
  • the fluororesin since the fluororesin exhibits water repellency, the aqueous solution does not enter the pores of the porous membrane if the differential pressure across the membrane is less than the water pressure resistance. Further, the water pressure resistance varies depending on the pore size or the salt concentration of the electrolyte.
  • the relationship between the salt concentration of the porous fluororesin membrane (pore diameter 3 ⁇ m) and the permeation differential pressure on both sides of the membrane is that the water pressure resistance in water (not including salts; the same applies hereinafter) is 430 mmHg and the sodium chloride concentration is 10%. As the electrolyte concentration increases, 330 mmHg, 20% at 280 mmHg, the water pressure resistance decreases.
  • the relationship between the salt concentration of the porous fluororesin membrane (pore diameter 10 ⁇ m) and the permeation differential pressure on both sides of the membrane is as follows: the water pressure resistance in water is 130 mmHg, the sodium chloride concentration is 1%, 7 mmHg, and 2% is 50 mmHg. Water pressure is low.
  • V negative electrode ionization potential
  • I electron valence
  • g / cm 3 specific gravity
  • the positive electrode of a practical battery requires a metal or an oxidant (including an oxidant in the form of gas or liquid) that has a very low ionization tendency.
  • Their specific gravity is as follows: Sb: 6.69, Bi: 8.8, Cu: 8.93, Hg: 13.59, Ag: 10.5, O 2 : 1.429, Br 2 (liquid): 3. 14, Cl 2 : 3.21, F 2 : 1.696.
  • the capacity of the oxygen (air) / base metal battery is infinite because the positive electrode is air.
  • the negative electrode material oxidize on the electrode surface, and an electric insulating film is formed on the negative electrode surface, so that the flow of electrons Is blocked.
  • the water-repellent porous fluororesin film of the present invention is used, self-discharge can be suppressed, so that oxidation of these electrode surfaces can be prevented.
  • V electromotive force
  • M mass number of reactant
  • n valence
  • base metal / oxygen can use air as a positive electrode
  • a safe and lightweight battery can be provided.
  • oxygen is used for the positive electrode
  • the discharge capacity of the battery is listed in descending order: Li / O 2 (11,680)> Be / O 2 (6,672)> Al / O 2 (6,165)> Mg / O 2 (6,067)> Ca / O 2 (4,343)> Na / O 2 (3,636).
  • the positive electrode having the first main surface and the second main surface opposite to the first main surface; the first main surface and the first main surface A negative electrode having a second main surface opposite to the surface, wherein the positive electrode and the negative electrode face each other and are spaced apart from each other to define a space therebetween A conductive liquid and / or a dielectric liquid filling the space; a first (solution) separator (isolation means) disposed on the first surface of the positive electrode to isolate the positive electrode from the liquid, wherein The first separator includes a first liquid-repellent porous membrane having a plurality of pores; a second (solution) disposed on the first surface of the negative electrode to isolate the negative electrode from the liquid An isolator (isolator), wherein the second isolator comprises a second liquid repellent porous membrane having a plurality of pores; And a pressure applicator that pressurizes the liquid to fill the pores of the first and second liquid repellent porous membranes
  • the liquid repellent porous membrane can be formed of a fluororesin, a polypropylene resin, or a polyethylene resin, and the liquid is an aqueous electrolyte solution, and the liquid is liquid repellent. Pressurization can be performed at a pressure equal to the liquid pressure resistance of the porous membrane.
  • the liquid repellent porous film is formed of a fluororesin, the liquid is oil, and the liquid (oil) may be pressurized at a pressure equal to the liquid pressure resistance of the liquid repellent porous film. it can.
  • the liquid repellent porous membrane may be made of porous carbon, and the liquid may be a molten salt electrolyte.
  • the first liquid-repellent porous film and the second liquid-repellent porous film can be combined to form one airtight container.
  • the inside of the sealed container can correspond to the space.
  • the first liquid repellent porous film and the second liquid repellent porous film may be separate films.
  • the positive electrode and the negative electrode can be disposed in a positive electrode chamber and a negative electrode, respectively, in which openings facing each other are closed with a liquid repellent porous film, respectively.
  • the electrochemical reaction device includes an electrolysis device, a primary battery, a secondary battery, and a capacitor.
  • the electrochemical reaction device by applying a predetermined pressure to the conductive or dielectric liquid, the liquid enters the pores of each water-repellent porous membrane, and contact between each electrode and the liquid is achieved.
  • the desired electrochemical reaction (involving positive and negative electrodes) occurs.
  • the isolation film acts as an ON / OFF switch that causes the electrochemical reaction to be started / stopped depending on whether or not a predetermined pressure is applied.
  • FIG. 1 The principle of the ON / OFF switch of this water-repellent porous membrane (separating membrane) is shown in FIG.
  • a sealed container 1 made of the water-repellent porous film 11 is sandwiched between a negative electrode chamber 3 that houses a negative electrode and a negative electrode chamber 4 that houses a positive electrode, and an aqueous electrolyte solution 14 is stored in the sealed container 1.
  • the aqueous electrolyte solution 14 is pressurized with a pressure lower than the water pressure resistance of the water-repellent porous membrane 11 by the pressure application tool 6 (for example, a cylindrical weight) (not pressurized in the figure).
  • the pressure application tool 6 for example, a cylindrical weight
  • This water-repellent porous membrane can be used for an electrolysis device, a practical battery, or a capacitor (capacitor) even if it is limited to the electric field (see FIGS. 3A and 3B).
  • charging and discharging are performed by applying a predetermined pressure (hydraulic pressure resistance) to the liquid, and the pressure is less than the pressure. To stop charging and discharging.
  • the liquid repellent porous membrane is a switch for creating a conductive state by passing a solution or ions through the pores by applying a pressure equal to the liquid pressure resistance to the liquid, that is, an electronic ON / ON Takes the role of an OFF switch.
  • the water-resistant (liquid) pressure of the water-repellent (liquid) porous membrane means the pressure on the press-in side (primary side) and the pressure on the outlet side (secondary side) of the water-repellent (liquid) porous film. And the minimum differential pressure at which the liquid can enter the pores of the porous membrane.
  • One side is liquid and the other side is gas or liquid.
  • the liquid is an aqueous solution such as an electrolyte or non-electrolyte, a dielectric liquid such as oil or pure water, or a base metal element-based molten salt solution.
  • the gas is hydrogen, oxygen, chlorine gas generated in the negative electrode or the positive electrode by aqueous solution electrolysis, hydrogen gas injected into the molten salt, or the like.
  • the conductive liquid includes an aqueous electrolyte solution and a molten salt electrolyte, and the aqueous electrolyte solution is used for electrolysis, batteries, or electrochemical capacitors.
  • the liquid repellent porous film can be formed of a fluororesin, a polypropylene resin, or a polyethylene resin, and functions as an electronic switch as described above.
  • the porous carbon film is used as a separator and negative electrode for the molten salt, and hydrogenation is performed in the process of moving negative ions of hydrogen gas from the negative electrode side to the positive side of the molten salt. A metal is formed.
  • the dielectric liquid includes an oil-based liquid and an aqueous liquid
  • the oil-based liquid can be used for recovery of the negative electrode product, recovery of the oil capacitor / negative electrode product, or oil-based capacitor.
  • the Group 1 elements of the periodic table are separated from water and subjected to specific gravity beneficiation in the oil.
  • an electric charge is applied to the oil side, and the electrolyte aqueous solution and the oil are mixed.
  • the negative electrode product is gravity-separated on the oil side with the boundary surface as the negative electrode surface.
  • nitrobenzene or oil with a high dielectric constant is used as an oil-based capacitor, and pure water or formic acid is used as a water-based capacitor.
  • the capacitor structure is a positive electrode plate, water-repellent porous film, dielectric solution, water-repellent porous The material film and the negative electrode plate are arranged in this order.
  • the water-repellent porous film is pressurized with a liquid pressure resistance so that the inside of the water-repellent porous film is filled with the dielectric solution.
  • the liquid pressure of the solution is released, the dielectric solution inside the water repellent porous film is removed, and the water repellent porous film itself functions as a low dielectric constant capacitor.
  • a high-dielectric capacitor is a series capacitor structure in which two low-dielectric capacitors are sandwiched between two low-dielectric capacitors, and one capacitor structure is formed during charging and discharging.
  • the separator is a solid dielectric exhibiting oil repellency
  • the fluororesin if the oil is mixed in the aqueous solution, the fluororesin exhibits lipophilicity. Adsorb. Utilizing this property, a very small amount of oil is mixed in the water-based dielectric, an ultrathin oil layer is formed on the fluororesin dielectric solution side, and an electrode is closely attached to the opposite surface of the fluororesin to provide a high dielectric
  • an electrochemical reaction device using an analog switch that controls electron transfer between electrodes can be provided.
  • the surface and pore walls of the existing porous membrane are used for the purpose of changing the water pressure resistance value of the membrane.
  • Introduce a water-repellent group or hydrophilic group into the material, or select materials with different pore diameters as appropriate change the salt concentration or temperature of the electrolyte aqueous solution, or give a potential between the water-repellent porous membranes This makes it possible to control the amount of the electrolyte aqueous solution and / or ions that can pass through the water-repellent porous membrane according to the water pressure of the electrolyte aqueous solution.
  • the pore diameter of the water-repellent porous membrane may be increased.
  • the mechanical altitude of the membrane becomes weaker. Therefore, if the fluororesin exhibiting water repellency and oil repellency is modified to be hydrophilic, wettability with water increases and water pressure resistance decreases.
  • both surfaces of the fluorine-based porous film are modified to be hydrophilic, the wettability of the film with both the aqueous solution and the electrode increases, and the maintenance of electrical insulation is impaired.
  • Patent Document 12 Patent Document 13, and Patent Document 14 disclose that a fluorine-based water-repellent porous film is irradiated with excimer laser light in the presence of a compound having an atom having a binding energy of 128 kcal / mol or more and a hydrophilic group.
  • Patent Document 15 discloses a method in which an inner hole of a fluorine-based water-repellent porous membrane is substituted with a hydrophilic group by an ultraviolet photoreaction to impart wettability to an inner pore wall.
  • Patent Document 1 describes that a water repellent porous fluororesin film having a pore diameter of 33 ⁇ m has a water pressure resistance of 1500 torr, but the inside of the pores is photomodified to be hydrophilic and the water pressure is lowered to 20 torr. . Further, Non-Patent Document 1 discloses that the water pressure resistance decreases as the salt concentration of the aqueous electrolyte solution increases. Furthermore, Patent Document 18 discloses electrowetting in which the water pressure decreases when the temperature of the electrolyte aqueous solution is increased, or the electrowetting increases the hydrophilicity by applying a potential between the water-repellent porous membranes. In this manner, the amount of ions that can permeate the water-repellent porous membrane can be controlled in an analog manner according to the water pressure of the aqueous solution.
  • the liquid repellent porous membrane is the sea, salt lake, hot spring hell, mineral pond, aqueous solution waste reservoir, hot water tank, reservoir,
  • an open container such as water, a pool, a large water tank or the like
  • a sealed container such as a bag, a tube or a small container, or a smaller sealed container is inserted into the open container or the sealed container
  • the electrolyte aqueous solution in the space is The electrolyte oozes out from the water-repellent porous membrane by pressurization, and an electrochemical reaction of the aqueous electrolyte solution is performed between the positive electrode and the negative electrode.
  • the electrolyte aqueous solution in these separators When the electrolyte aqueous solution in these separators is pressurized with a pressure application tool, the electrolyte repels from the water-repellent porous membrane, and the positive electrode and the negative electrode are electrically coupled to each other, and an electrochemical reaction of the electrolyte aqueous solution is performed.
  • the separator can be divided into a sealed container and an open container.
  • a chemical reaction apparatus using a sealed container refers to a bag, tube, small container, or the like whose surface in contact with a pair of positive and negative electrodes is a water-repellent porous film.
  • a solution such as an electrolyte or a dielectric is sealed, and an arbitrary surface outside is pressurized (FIG. 5 (A)) as shown in the pressure application tool 6 in FIG. 5, or FIG.
  • the solution in the sealed container is manually pressurized with a cylinder (syringe) 6, a dropper rubber, a pipetter 7, etc.
  • a communication pipe 5 via a communication pipe 5, or pressure is applied electrically or with a ratchet additional pressure device 8, or water pressure resistance Is connected to a water storage tank 9 installed at a high place where a pressure head equivalent to the above is obtained by a communication pipe 5, and a position head (h) 10 of the aqueous electrolyte solution is set to perform solution pressurization.
  • the open container 11 includes a sea, a salt lake, a hot spring hell, a mineral pond, a storage pond that stores aqueous waste and electrolyte, and a reservoir filled with an enormous amount of electrolyte solution.
  • Water tanks such as hot water tanks, reservoirs, water, and pools.
  • the separator in this region is regarded as an open container, and the positive electrode and the negative electrode in which electrodes are arranged with a water-repellent porous membrane sandwiched between these enormous amounts of electrolyte solution.
  • a pair of electrode product recovery chambers are submerged to a water pressure equal to the water pressure resistance of the water-repellent porous membrane that can obtain a constant depth at a constant interval, and the electrolytic aqueous solution is directly electrolyzed.
  • a chemical reaction apparatus using a sealed container in an open container is sealed with water pressure in the open container 2 by a structure in which the sealed container 1 is inserted into the open container 2.
  • the container 1 is pressurized, and electrolysis is performed between the positive and negative electrode chambers in close contact with the sealed container 1.
  • at least one water-repellent porous membrane a is attached to the sealed container 1, and sulfuric acid or caustic soda (sodium hydroxide) is contained in the sealed container 1.
  • aqueous solution having high conductivity such as) is placed, and water or an electrolyte aqueous solution that has passed through the water-repellent porous membrane a is supplied by the water pressure of the open container, and electrolysis is performed in the sealed container 1.
  • the double container structure in which the sealed container 1 is inserted into a large sealed container is used to pressurize the sealed container 1 with the water pressure in the large sealed container so that the positive and Electrolysis can also be performed between the negative electrodes.
  • this hydrogen generator consisting of a double-container structure can efficiently produce hydrogen from non-electrolyte water such as seawater
  • the chemical reaction device can be incorporated into fresh water such as lakes and swamps or low-concentration electrolyte aqueous solutions such as salt water or mineral springs. It is also a feature of the present invention that hydrogen can be produced by inserting.
  • a pressure application tool for pressurizing a gas filled in a sealed container made of the liquid repellent porous membrane and pressurizing the gas for allowing the molten salt to penetrate through the pores of the liquid repellent porous membrane
  • an electrochemical reaction device comprising:
  • the material of the water-repellent porous film is a fluororesin, a polypropylene resin, a polyethylene resin, etc., but the material having the highest chemical resistance and the highest heat resistance temperature is fluororesin.
  • FIG. 6 as a method of filling the inside of the hollow sealed bag 1 made of these water repellent porous membranes 11 with the electrolyte aqueous solution 14, the electrolyte aqueous solution 14 is directly put into the hollow bag with a liquid injection cylinder (syringe) 6. Using the injection method (FIG.
  • the water-repellent porous membrane 11 does not allow water to pass through but allows gas to pass through.
  • Place the inside of a sealed container in a state where the inside of a hollow sealed bag in which water or water is retained inside or where a solute such as a chemical is previously sealed is opened to the atmosphere with a communication pipe.
  • a method for producing an aqueous electrolyte solution by pressurizing the water in the sealed container with a water pressure equal to the water pressure resistance and pressurizing the water into the sealed container for hydrolysis (FIG.
  • Non-Patent Document 1 and Patent Document 12 show that the surface tension of water is 72.3 dyn / cm, that of fluororesin is 28.5 dyn / cm, and that of methyl alcohol is 22.3 dyn / cm.
  • porous fluororesin water having a higher surface tension than fluororesin does not penetrate into porous pores, but methyl alcohol having a lower surface tension than fluororesin penetrates into porous pores.
  • alcohol since alcohol has a high affinity for water, if water is placed on the porous fluororesin while it is infiltrated with water, water will permeate the porous pores only when alcohol is present. Is also disclosed.
  • a pair of electrodes consisting of a positive electrode and a negative electrode is composed of an electrode plate in a battery, and in an electrolysis apparatus from an electrode chamber equipped with means for recovering an electrode product.
  • a capacitor it consists of an electrode plate.
  • the negative electrode of the electrode plate is an amphoteric element or Mg, or a metal element that has a higher ionization tendency than hydrogen, excluding Group 1 and Group 2, and the positive electrode is oxygen or fluoride.
  • the negative electrode is composed of Group 1 and Group 2 elements
  • the positive electrode is a halogen or a halogen compound. Both can be made into an electrode chamber in which the outside air is shielded.
  • the electrode chambers are classified into gas permeable electrode chambers, base metal recovery electrode chambers filled with oil, and acid / base aqueous solution recovery electrode chambers filled with water.
  • the object is a gas
  • the inside of both electrodes is a void electrode having a net-like, fiber-like, porous or granular shape made of metal or carbon, or a gas-permeable electrode having a gap on the back of the gap electrode
  • the negative electrode has an electrode chamber structure filled with oil, and the negative electrode product is separated into a heavy liquid for separation.
  • Electrode chamber oil-filled electrode chamber
  • the structure is such that the front surface of the positive electrode plate is filled with water in which dilute acid is added in advance, or the electrode product is a basic aqueous solution.
  • Is an electrode chamber (water-filled electrode chamber) having a structure in which a dilute base is previously added to the front surface of the negative electrode plate, and the water-filled electrode chamber of both electrodes has a water supply port and a generated acidic aqueous solution or base.
  • the structure is equipped with a product gas collection port at the top of the aqueous solution outlet and the water-filled electrode chamber, or the gas such as halogen, nitrous acid, and nitrous acid generated at the positive electrode is absorbed into water and recovered. Therefore, it is possible to provide a water-filled electrode chamber having a structure in which water is circulated through the gap of the gap electrode made of carbon and the gap at the back.
  • the positive and negative electrode plates are bare electrodes and are either a single plate type sandwiching an oil-based or water-based dielectric through a water-repellent porous membrane, or organic carbon on the surface of the activated carbon electrode.
  • Conductive fiber filled with electrolyte between the two redox electrodes that are either electric double layer type with adsorbed molecules or redox type electrodes made of metal oxide, conductive polymer, activated carbon, etc., separated by a water-repellent porous membrane Is short-circuited.
  • This drex structure can store a high charge in the oxide film of both the positive and negative electrode plates, and conductive fibers are sealed in the electrolyte aqueous solution reservoir such as acid and alkali inside the water-repellent porous membrane sealed container (bag). Therefore, internal resistance can be reduced.
  • the electrochemical reaction device can be represented by the equivalent circuit shown in FIG. This circuit is named “Murahara Circuit”. As shown in the equivalent circuit of FIG. 8, this electrochemical reaction apparatus electrolyzes the aqueous electrolyte solution using the boundary surface between the aqueous electrolyte solution surface and the oil surface as a negative electrode to precipitate the cathode product in the oil layer, and A heavy liquid sorting (specific gravity sorting) is performed, and a virtual negative electrode 19 for electrolyzing the aqueous electrolyte solution 14 having electrical resistance (R) to deposit base metal in the oil-filled electrode chamber 16 is included.
  • the virtual negative electrode 19 indicates the boundary between the oil surface and the water surface.
  • This boundary surface is established when the oil surface and the water surface are perpendicular to the ground axis, but in other cases, a water repellent porous film is used.
  • the switch (S) is short-circuited only when a pressure of an aqueous electrolyte solution equal to the water pressure resistance is applied to the water-repellent porous film 11. Is called.
  • the boundary surface between the oil surface of the oil layer and the electrolyte aqueous solution surface constituting the oil-filled electrode chamber 16 is assumed to be the negative electrode 19, the oil layer is the oil capacitor (C 1 + C 2 ), and the electrolyte aqueous solution 14 is the water resistance.
  • the boundary surface between the oil layer and the aqueous electrolyte solution is the negative electrode 19 of the oil capacitor, and an intermediate electrode 18 is provided between the positive electrode 17 and the negative electrode 19 of the oil capacitor.
  • one of the features of the present invention is that the interface between the oil layer and the aqueous electrolyte solution functions as a negative electrode. That is, the water repellent porous film 11 is kept in a state where the voltage (E) 20 is continuously applied to the dielectric 1 (C 1 ) between the positive electrode 17 and the intermediate electrode 18 and the positive electrode 17 of the oil capacitor is used as the positive electrode of the electrolyte aqueous solution 14.
  • FIG. 9 shows a conceptual diagram of an oil capacitor in which the boundary surface between the oil surface and the electrolyte aqueous solution surface is a negative electrode.
  • FIG. 9A is a structural diagram of a virtual negative electrode using a water-repellent porous membrane. The interface between the oil and the electrolyte aqueous solution is not affected by the ground axis
  • FIG. 9B is a diagram in which the virtual negative electrode forms a vertical plane with the ground axis
  • FIG. 9C is a structural diagram in the case where the virtual negative electrode forms a vertical plane with the ground axis and the specific gravity of the oil exceeds 1 when the specific gravity of the oil is less than 1.
  • the virtual negative electrode (boundary surface between the oil surface and the aqueous electrolyte solution surface) 19 has an arbitrary inclination with respect to the ground axis, it is between the oil surface and the aqueous electrolyte solution surface 19.
  • the virtual negative electrode 19 is formed only when the water-repellent porous film 11 is inserted and the aqueous electrolyte solution 14 is pressurized.
  • the virtual negative electrode 19 is perpendicular to the ground axis, the water-repellent porous film 11 is necessarily required.
  • the oil layer 23 is formed on the upper part of the aqueous electrolyte solution 14, and the density of the oil is less than that of the aqueous electrolyte solution 14.
  • the density is higher (specific gravity is more than 1)
  • an oil layer 24 is formed under the electrolyte aqueous solution 14, and a charge 20 is given to the dielectric 1 (C 1 in FIG. 8A), and at the same time the dielectric 2 ( 8 and the negative electrode 19 and the dielectric 1 of the positive electrode 17 of the C 2) of the (a)
  • the negative electrode product is heavy liquid sorted in oil in the (C 2 in FIG. 7 (A)) electrolyte solution 14 connected to decomposition voltage higher than 20 giving dielectric 2 via the recovery port 26 during Take out.
  • a pair of positive and negative gas permeable electrode chambers can be lowered at the head position below the sea surface of a low-concentration electrolyte aqueous solution such as the sea or a salt lake to generate hydrogen and oxygen or chlorine directly from seawater (hydrogen production Apparatus; see FIG. 10).
  • a low-concentration electrolyte aqueous solution such as the sea or a salt lake to generate hydrogen and oxygen or chlorine directly from seawater (hydrogen production Apparatus; see FIG. 10).
  • the water pressure rises by about 1 atm. If this natural phenomenon is utilized and the gas permeable positive and negative electrode chambers are submerged to the water pressure of the water repellent porous membrane, there is no need to apply artificial pressure.
  • a pair of positive and negative electrode chambers with a slight separation between the two electrode surfaces is submerged to a depth where the water pressure resistance of the water-repellent porous membrane below the sea level can be obtained, and when potential is applied to both electrodes, hydrogen and oxygen or chlorine are generated. can do. Therefore, as shown in FIG. 10A, a low-concentration electrolyte aqueous solution (sodium chloride aqueous solution) 14 such as the sea or a salt lake which is an open container 2 is connected to a pair of negative electrode chambers 3 via a water-repellent porous membrane 11. Press-fitting into the positive electrode chamber 4.
  • the positive and negative electrodes are respectively reticulated, fibrous, porous or It consists of a gap electrode made of granular metal or carbon, and is provided with a respective product gas recovery hose 12 at the top of each of the gas recovery electrode chambers 3, 4.
  • a set of electrode chambers close to each other in 14 is formed, and one or a plurality of sets of these electrode chambers are connected to form a positive / negative electrode chamber group, and the electrode chamber group has a water pressure equal to the water pressure resistance of the water-repellent porous membrane.
  • the electrode product does not cause an insulation state between the electrode and the electrolyte. Furthermore, since the pressure on the electrolyte side is higher than that on the electrode product side with the water repellent porous membrane as a boundary, the electrode product recovery efficiency is high. If the open container 2 is replaced with the sealed container 1, it can be used on land as shown in FIG.
  • the electrolyte aqueous solution (salt water) 14 in the airtight container 1 is pressurized with the pressure applicator 6 or directly by adding seawater or concentrated seawater or an electrolyte to the water by the water tank 9 installed at the head position 10 through the communication pipe 5. Electrolysis can be performed to separate and recover hydrogen gas in the negative electrode chamber 3 and gases such as oxygen and chlorine in the positive electrode chamber 4.
  • electrolysis is performed in a state in which fresh water is pressed into the concentrated electrolyte solution sealed in the hermetic container from the outer wall of the hermetic container through the water-repellent porous membrane (for fresh water permeation) 27, and hydrogen and oxygen Alternatively, chlorine can be directly produced with high efficiency (see FIG. 11).
  • a hydrogen production apparatus 30 including a water-repellent porous membrane sealed container filled with a high solubility / high conductivity electrolyte aqueous solution (high concentration aqueous electrolyte solution) such as dilute sulfuric acid or caustic soda aqueous solution.
  • high concentration electrolyte aqueous solution such as fresh water, sea water, hot spring water, high temperature drainage, etc. from the water-repellent porous membrane 27 for pressurizing the aqueous solution attached to the sealed container 1 by being submerged in an open container 2 such as fresh water lake, pond, sea water, hot spring hell Hydrogen is produced by electrolysis of an aqueous solution in a state where 14 is injected.
  • a water-repellent porous membrane (for fresh water permeation) 27 attached to the outer wall of the hermetic container 1 in a state where a high concentration electrolyte aqueous solution such as dilute sulfuric acid or caustic soda aqueous solution enclosed in the hermetic container 1 is put in the hermetic container
  • the low concentration electrolyte aqueous solution 14 is sequentially supplied to the inside of the sealed container to continuously generate hydrogen.
  • the water-repellent porous membrane a (11), b When (27) is of a different type, a membrane having a pore diameter larger than that of the water-repellent porous membrane a (11) is selected.
  • the water-repellent porous membranes a (11) and b (27) are of the same type, a hydrophilic group is substituted on the pore wall on the side of the water-repellent porous membrane b (27) that contacts the low concentration electrolyte aqueous solution.
  • the water-repellent porous film a (11) and the water-repellent porous film b (27) are improved at a water pressure of the same value or a value close to both the low-concentration aqueous electrolyte solution and the high-concentration aqueous electrolyte solution. Can penetrate.
  • the simplest method is to set the water pressure on the low-concentration electrolyte aqueous solution pressure side to a positive pressure (high) or the high-concentration electrolyte aqueous solution pressure.
  • the pressure on the outlet side of the water-repellent porous membrane a into which is injected is negative pressure (suction).
  • Negative pressure is the suction of electrode-generating gas generated in gas-permeable electrode chambers such as the negative electrode chamber 3 and the positive electrode chamber 4 provided in contact with the water-repellent porous membrane a (11) with a gas transport vacuum pump.
  • the differential pressure between the water pressure applied to the low concentration electrolyte aqueous solution and the pressure of the generated gas in the gas permeable electrode chamber on the outlet side of the water repellent porous membrane a (11) is the water pressure resistance of the water repellent porous membrane b (27). And the water repellent porous membrane a (11) is equal to or greater than the sum of the water pressure resistance. Since a large amount of product gas is generated during electrolysis in this gas permeable electrode chamber, it is necessary to simultaneously collect the product gas and perform gas pressure. For this reason, it is desirable to provide a pressure regulating valve 93 upstream of the product gas recovery port 12 of the gas permeable electrode chamber such as the electrode chamber 3 or the cathode electrode chamber 4.
  • the water pressure resistance of the water repellent porous membrane decreases as the electrolyte concentration increases.
  • the pressure (Pg) in the gas permeable electrode chamber including the gas generated in each gas permeable electrode chamber is electrolyzed between the negative electrode chamber 3 and the positive electrode chamber 4 brought into contact with the aqueous porous membrane a (11).
  • the water repellent porous membrane a (11) has a water pressure resistance P lba and the differential pressure between the water pressure P 3lag of the high concentration electrolyte aqueous solution and the pressure (Pg) in the gas permeable electrode chamber is the water repellent porous membrane a (11).
  • the water pressure P lb applied to the low concentration electrolyte aqueous solution 14 is set high (positive pressure), or the pressure (Pg) in the gas permeable electrode chamber is set.
  • the pressure (Pg) in the gas permeable electrode chamber is sucked with a vacuum pump through the pressure regulating valve 93 to make the pressure (Pg) negative.
  • Hydrogen and oxygen or chlorine can be produced by electrolysis of water by adjusting the water pressure P lb applied at the beginning of the reaction system and the gas pressure Pg applied at the end of the reaction system.
  • the same water-repellent porous membrane is used for the water-repellent porous membranes a (11) and b (27), and a positive pressure is applied to the water pressure P lb applied to the low-concentration electrolyte aqueous solution 14, or gas permeation is performed.
  • Hydrogen can be produced directly in seawater or in a lake by performing electrolysis while performing a simple operation of setting the pressure Pg in the electrode chamber to a negative pressure.
  • the sealed container 1 in which a high concentration electrolyte aqueous solution such as dilute sulfuric acid or dilute alkali is sealed is inserted into the open container 2 that is a sea or a lake where the low concentration electrolyte aqueous solution exists, and the sealed container 1 is moved to the pressure head position. Electrolysis is continuously performed in the lowered state.
  • This method can also be used on land as shown in FIG.
  • the airtight container 1 is inserted into the large airtight container 29, and the water pressure of the water supply 28 is pressurized and supplied with water above the water pressure resistance of the water repellent porous membrane 11 and the water repellent porous membrane (for fresh water permeation) 27. Hydrogen can be produced continuously. Instead of tap water, it is put into a container filled with fresh water or sea water or a hot water storage tank and pressurized with a pressure higher than the water pressure resistance of the water-repellent porous membrane. Pressurization and water supply can be performed from the position through the communication pipe.
  • the water pressure resistance of the water-repellent porous fluororesin film (electrode separator film) 11 and the water pressure resistance of the water-repellent porous film (for fresh water permeation) 88 caused by fresh water are set to the same or close values. is there.
  • a pair or a plurality of hydrogen production apparatuses 30 comprising a pair of gas permeable electrode chambers 3 and 4 are connected, and the aqueous electrolyte solution is applied at a voltage equal to or higher than the water decomposition voltage under a pressure equal to the water pressure resistance of the water repellent porous membrane. Electrolysis can generate hydrogen gas in the negative electrode chamber and oxygen gas or chlorine gas in the positive electrode chamber.
  • caustic soda can be produced directly in the negative electrode chamber by electrolysis in a state where water pressure is applied to the water-repellent porous membrane without using the diaphragm or ion exchange membrane in the conventional method.
  • the caustic soda 31 electrolyzes a base metal salt aqueous solution 32 such as sodium chloride, chili nitrate or sodium sulfate to which a water pressure higher than or equal to that of the water-repellent porous membrane 11 is applied, thereby producing a water-repellent porous membrane.
  • the base metal hydroxide (caustic soda) 31 is generated in the water-filled electrode chamber 40 isolated at 11.
  • a water pressure equal to the water pressure resistance is applied to the base metal salt aqueous solution (sodium chloride aqueous solution) 32 in the sealed container 1, and a metal such as nickel or a carbon electrode is placed inside the water-filled electrode chamber 40. And at most 80 ° C. water is supplied from the water supply port 34.
  • the water supplied here may be at room temperature, but since the solubility of caustic soda is high at high temperatures, 80 ° C. or higher is desirable for efficient production of concentrated caustic soda.
  • the electric resistance of water in the water-filled electrode chamber 40 is high at the start of electrolysis, it is necessary to add a dilute caustic soda aqueous solution in advance.
  • a water supply port 34 for supplying water to the water-filled electrode chamber 40, a negative electrode product recovery port 35 for recovering the generated concentrated base metal hydroxide (concentrated caustic soda aqueous solution) 31, and a generated gas (hydrogen) Gas) recovery pipe 12 is provided.
  • the positive electrode includes a gas permeable electrode chamber 41, and includes a positive electrode 37 such as carbon fiber, carbon particles, and porous carbon that is provided in close contact with the water-repellent porous film 11, and generates chlorine gas
  • a product gas recovery pipe 12 for directly recovering a gas such as nitric acid gas or sulfurous acid gas is provided.
  • an aqueous solution is more convenient than a gas. Therefore, as shown in FIG.
  • a water-filled electrode chamber 40 structure is adopted for the positive electrode, and a dilute hydrochloric acid aqueous solution is added to room temperature water supplied from the water supply port 34 in order to react negative ions with water.
  • electrolysis is performed between the negative electrode plate 36 and the positive electrode plate 38 through the water-repellent porous film 11, and an ionic reaction (2Cl ⁇ + 2H 2 O ⁇ 2HCl + O 2 ) is performed.
  • the acid (hydrochloric acid) 33 generated here is recovered from the concentrated acid (hydrochloric acid) outlet 42, and the oxygen is recovered from the generated gas recovery pipe 12.
  • precipitation of a base metal element that most hates water can be performed by electrolysis of an aqueous solution (base metal recovery device).
  • the water-repellent porous membrane 11 is formed on the negative electrode side of the sealed container 1 in order to electrolyze the base metal chloride aqueous solution in the sealed container 1 to generate a base metal in the negative electrode.
  • a net-like negative electrode 43 made of metal or carbon is brought into contact with a separator made of metal, and the back surface thereof is an oil-filled electrode chamber 16 filled with oil 23.
  • the negative electrode product is a base metal (Li, K, Na) from the negative electrode product recovery port 35 provided in the upper part of the oil-filled electrode chamber 16, and base metals (Mg, Ca, Ba, Sr) having a higher specific gravity than the oil 23 are the lowermost part of the oil-filled electrode chamber 16. It is recovered from the negative electrode product recovery port 35 provided in. There are a method of recovering the positive electrode product as a gas and a method of recovering it as a liquid. As shown in FIG. 13A, the positive electrode is composed of a gas permeable electrode chamber 41, and a positive electrode such as carbon fiber, carbon particles, porous carbon, etc. provided in close contact with the water-repellent porous film 11, as shown in FIG.
  • a product gas recovery pipe 12 for directly recovering a positive electrode product gas (chlorine) produced on the surface of the positive electrode.
  • a water-filled electrode chamber 40 structure is adopted for the positive electrode, and a dilute hydrochloric acid aqueous solution is added in advance to room temperature water supplied from the water supply port 34 in order to react negative ions with water.
  • electrolysis is performed between the net-like negative electrode plate 43 and the positive electrode plate 38 through the water-repellent porous film 11, and an ionic reaction (2Cl ⁇ + 2H 2 O ⁇ 2HCl + O 2 ) is performed.
  • the acid (hydrochloric acid) 33 generated here is recovered from the concentrated acid (hydrochloric acid) outlet 42, and the oxygen is recovered from the generated gas recovery pipe 12.
  • the base metal salt aqueous solution is electrolyzed with the boundary surface between the base metal salt aqueous solution surface and the oil surface composed of Group 1 or Group 2 elements of the periodic table as the virtual negative electrode surface, and the cathode product is contained in the oil layer. Can be deposited. As shown in FIGS.
  • FIG 14A shows a structure in which two capacitors C 1 and C 2 are arranged in series in the oil-filled electrode chamber 16, and a positive electrode plate is placed on the surface of the oil-filled electrode chamber 16 facing the water repellent porous film 11. 17 and an intermediate electrode plate 18 is inserted between the water-repellent porous membrane 11 and the positive electrode plate 17, and a capacitor is formed between the intermediate electrode plate 18 in the oil tank and the positive electrode plate 17 in the oil tank.
  • a voltage (E) 20 is applied to C 1 .
  • the base metal salt aqueous solution 32 in the sealed container 1 is pressurized, and the boundary surface between the aqueous solution surface and the oil surface of the base metal salt aqueous solution 32 exuded from the water repellent porous membrane 11 is used as the virtual negative electrode surface 19, and the oil filled electrode chamber
  • the positive electrode plate 17 in 16 and the positive electrode 37 in the gas recovery electrode 41 or the positive electrode plate in the water-filled electrode chamber 40 are short-circuited, respectively, between the intermediate electrode plate 18 and the virtual negative electrode surface 19 in the oil tank.
  • the capacitor C 2 is formed, and electrolysis is performed only when the water pressure of the base metal salt aqueous solution 32 is pressurized at a pressure equal to the water pressure resistance of the water-repellent porous membrane.
  • Base metal is deposited. Without setting the intermediate electrode plate 18 in FIG. 14 (B) is an oil bath of the oil-filled electrode chamber 16, equipped with a solid capacitor C 1 to the outside of the oil-filled electrode chamber 16, the positive electrode plate 17 and the gas recovery electrode in the vat
  • the capacitor C 2 between the positive electrode plate 17 and the virtual negative electrode surface 19 in the oil tank is formed, and the positive electrode 37 (gas The water pressure of the base metal salt aqueous solution 32 placed between the recovery electrode 41) or the positive electrode plate 38 (water-filled electrode chamber 40) and the virtual negative electrode surface 19 is pressurized at a pressure equal to the water pressure resistance of the water repellent porous membrane.
  • Electrolysis is carried out only when the base metal is deposited in the oil in the oil-filled electrode chamber 16.
  • the positive electrode transmits the gas.
  • the positive electrode generating gas can be continuously taken out, or in the case of the water electrolysis chamber, the concentrated inorganic acid such as concentrated hydrochloric acid or the positive electrode generating gas such as oxygen gas can be continuously taken out.
  • a metal hydride can be formed in the process of moving the negative ions of hydrogen gas from the negative electrode side to the positive electrode side of the molten salt using the porous carbon film as a molten salt separator / negative electrode.
  • the base metal hydroxide molten salt (caustic soda) 46 is ionized by the molten salt heater 48 and is in the state of Na + + OH ⁇ .
  • the electrode chamber constituting the negative electrode is a gas permeable electrode chamber 41, and hydrogen gas press-fitted into the gas permeable electrode chamber 41 from the hydrogen gas pressure inlet 47 passes through the porous carbon negative electrode plate / separation film 44 and the base metal water.
  • an oxide molten salt (caustic soda) 46 It is pressed into an oxide molten salt (caustic soda) 46. Under this state, when a voltage (E) 20 equal to or higher than the decomposition voltage of hydrogen negative ion generation is applied between the porous carbon negative electrode plate / separation membrane 44 and the positive electrode plate 38, hydrogen negative ions (H ⁇ ) 50 are generated.
  • the base metal hydroxide molten salt (caustic soda) 46 in the ionic state of Na + + OH ⁇ undergoes an ionic reaction to form a hydrogenated base metal (Na + + H ⁇ NaH).
  • the specific gravity of caustic soda molten salt (NaOH) is 2.13, but the specific gravity of sodium hydride (NaH) is as light as 0.92.
  • the hydrogenated base metal (sodium hydride) 49 that has emerged as soot is recovered from the hydrogenated base metal recovery port 51.
  • These hydrogenated base metals violently hydrolyze with water and generate twice as much hydrogen as the base metal element alone.
  • the melting point of hydroxides of group 1 elements (Li, K, Na), group 2 elements (Mg, Ca, Sr, Br), and group 13 elements (Al) among base metal elements is oxide. Is significantly lower than Among them, the hydride has a higher melting point than hydroxide except for Mg and Al. Moreover, the specific gravity of hydride is lower than that of hydroxide.
  • molten salts other than Mg and Al can be formed at a relatively low temperature, and the specific gravity can be easily selected by surfacing with the hydride produced by reacting with hydrogen negative ions as the upper shell.
  • the hydride of group 1 elements is higher than the melting point of the elements themselves.
  • the melting point of Na is 98 ° C.
  • NaH is 800 ° C.
  • K is 64 ° C.
  • KH has a high melting point of 417 ° C.
  • K and Na which have extremely low melting points, require strict handling.
  • the melting point is high, the specific gravity is light, and double hydrogen can be obtained by hydrolysis. It is promising as a hydrogen generation source for hydrogen automobiles.
  • Na is a hazardous substance type 3 and is a pyrophoric substance and a water-inhibiting substance.
  • NaH further has a low melting point of 98 ° C. in particular. Care must be taken in handling such as explosion in the atmosphere by reacting with moisture.
  • metallic sodium (Na) and sodium hydride (NaH) they are both “no water” chemicals in the Fire Service Act and are both dangerous substances that react violently with water.
  • the danger grade is lower than the grade I of metallic sodium and the grade II of sodium hydride, which is relatively safe and easy to handle.
  • sodium metal is stored in kerosene, but sodium hydride (NaH) can be used relatively safely because the particles are coated with paraffin. Further, when metal sodium is reacted with water, 0.5 mol of hydrogen (H) is produced (Na + H 2 O ⁇ 1 / 2H 2 + NaOH). However, in the case of sodium hydride (NaH), 1 mol (double hydrogen) is formed (NaH + H 2 O ⁇ H 2 + NaOH). Therefore, sodium hydride (NaH) is promising as a hydrogen (H 2 ) generator.
  • sodium (Na) is unstable if not stored in oil, and there is a risk of explosion depending on conditions, but once it is hydrogenated to sodium hydride (NaH), the melting point becomes 800 ° C It can be used safely to withstand long-term storage and to generate hydrogen by reacting with water when necessary.
  • a method of cooling and recovering steam with a cooling wall provided at the upper part of the molten salt tank is adopted.
  • metallic sodium is brought into direct contact with the fluororesin, the fluororesin is attacked. Therefore, when the water-repellent porous fluoromembrane and the metallic sodium are brought close to each other, oils such as light oil and petroleum must be mixed.
  • a primary or secondary battery having a structure in which a water repellent porous membrane sealed container (envelope type) filled with an aqueous electrolyte solution is sandwiched between positive and negative plate electrodes is provided.
  • This battery applies an electrochemical reaction between the positive and negative electrodes by applying a pressure equal to the water pressure resistance of the water-repellent porous membrane to the electrolyte aqueous solution during charging and discharging, and releases the pressure of the aqueous electrolyte solution during power storage. It has a mechanism that avoids self-discharge between both electrodes. As shown in FIG.
  • a sealed container (envelope type) 55 having both surfaces of the electrolyte aqueous solution 14 encapsulated by the water-repellent porous film 11 is sandwiched between a negative electrode chamber (for battery) 52 and a positive electrode chamber (for battery) 53.
  • a pressure equal to the water pressure resistance of the water repellent porous 11 is applied to the electrolyte aqueous solution 14 in the sealed container (envelope type) 55 by the pressure applying tool 6, and the water repellent porous 11
  • the negative electrode chamber (for battery) 52 and the positive electrode chamber (for battery) 53 are charged through the electrolyte aqueous solution 14 that has oozed out, and charging is performed.
  • the pressure of the electrolyte aqueous solution 14 in the sealed container (envelope type) 55 is released, and self-discharge between both electrodes is avoided to maintain the stored electricity (FIG. 17B).
  • the electrolyte aqueous solution 14 in the water-repellent porous membrane sealed container (envelope type) 55 is pressurized again at a pressure equal to the water pressure resistance. Safety and long-term stability are important for battery electrodes.
  • the structural consideration of the electrode chamber is that the negative electrode plate electrode is an amphoteric element (Zn, Al, Sn, Pb) or a metal element (Ti) that has a higher ionization tendency than Mg and Group 1 and 2 elements than Ti. , Mn, Cr, Ga, Fe, Cd, Co, Ni, Fe), the periphery of the plate electrode that is in close contact with the water-repellent porous film does not necessarily need to be blocked from the outside, and the negative electrode is the first.
  • the element is a group or group 2 element and is composed of a solid plate electrode of the group 1 or group 2 element, and the void inside the gap electrode is formed of the negative electrode product composed of the group 1 or group 2 element composed of carbon.
  • the plate electrode of the positive electrode uses a metal and metal oxide or air or oxygen that has a lower ionization tendency than hydrogen, the plate electrode that is in close contact with the water-repellent porous film does not necessarily block the outside.
  • the periphery of the electrode plate in close contact with the water-repellent porous film is covered with a box, coating, water-repellent treatment film or resin film, or the entire battery It must be molded and cut off from the outside world.
  • the plate electrode of the positive electrode is treated with a water-repellent material or a water-repellent treatment, the water-repellent porous film is not required and can be directly inserted into the electrolyte aqueous solution.
  • high electromotive force and discharge capacity can be obtained by using a base metal for the negative electrode and oxygen or halogen for the positive electrode (FIG. 1).
  • an aqueous electrolyte solution can be made from a compound of a base metal element and oxygen or a halogen element.
  • the solubility of the base metal hydroxide (FIG. 18) and halogenated base metal (FIG. 19) in water is high at room temperature at the start of charging, and water is used to continuously release a large amount of power for a long time at the start of discharging.
  • the dissolution density of the base metal oxide or halogenated base metal is low at the start of discharge, preferably high at the end of discharge and close to saturation, and when performing high-speed charging or high-power discharge, the electrolyte It is preferable to heat the aqueous solution (hot spring, industrial waste heat, internal-combustion engine cooling circuit water). These compounds are more or less soluble at higher temperatures, except for NaCl, which is not related to temperature rise.
  • Ba (OH) 2 has a solubility of 5% at room temperature but rapidly rises from 40 ° C. and reaches a solubility of 60% at 80 ° C. The solubility of these compounds in water at 60 ° C. is shown in FIG. In FIG.
  • the solubility 80% is quadruple, the solubility 60-80% is triple, the solubility 30-60% is double, the solubility 10-30% is single, the solubility 1-10% is small, A solubility of 1% or less is indicated by x, and a compound that dissolves when alkali is added is indicated by a triangle ( ⁇ ).
  • the aqueous electrolyte solution having a high solubility shown in FIG. 18 and a high discharge capacity shown in FIG. 1 is desirable.
  • the battery according to the present invention comprises an oxygen / base metal battery.
  • a metal having a light specific gravity is used for the negative electrode, and air in the atmosphere is used for the positive electrode.
  • the oxygen weight is calculated to be 6,165 Wh / kg, but oxygen can be procured from the atmosphere. Is neglected (11,680 Wh / kg), a high discharge capacity is obtained.
  • the Mg / O battery is 3,658 Wh / kg, ignoring air (6,067 Wh / kg), the Al / O battery is 3,264 Wh / kg, and ignoring air (6,165 Wh / kg).
  • Mg (OH) 2 and Al (OH) 3 hardly dissolve in water, and as a result, the negative electrode is covered with an oxide film and obstructs the flow of electrons. .
  • Ca (OH) 2 .
  • Al which belongs to amphoteric elements, is known to dissolve as (Al (OH) 3 + NaOH ⁇ Na [Al (OH) 4 ]) when caustic soda is added to the aqueous electrolyte solution.
  • Na / O, K Consider only / O, Ba / O, Li / O, and Sr / O batteries.
  • a base eg, caustic soda, caustic potash (potassium hydroxide), barium hydroxide) or sulfuric acid, hydrochloric acid, nitric acid, etc. as an aqueous electrolyte solution 14 in an airtight container (envelope type) 55 whose opposing wall is composed of the water repellent porous membrane 11.
  • the oxygen electrode of the positive electrode chamber (for battery) 53 has air or oxygen adsorbed to the carbon gap plate electrode (activated carbon) 58 to form a positive electrode collector plate 64, and the water repellent porous membrane 11 and the carbon gap.
  • An auxiliary positive electrode (reticulated electrode) 56 for charging is disposed between the plate electrode (activated carbon) 58 to eliminate heat generation of the carbon gap plate electrode (activated carbon) 58 (FIG. 21A), or the positive electrode repellent.
  • the surface in contact with the aqueous porous film 11 is used as a metal oxide (CuO or Al 2 O 3 ) 59 of the metal plate 60 as an oxygen supply source (FIG. 21B).
  • the negative electrode chamber (for battery) 52 is a solid electrode of Group 1, Group 2 and / or Group 13 elements, or a Group 1 element or Group 2 element inside or on the surface of a carbon gap electrode plate. And / or an outside air shielding negative electrode 57 on which a negative electrode product of a Group 13 element is adsorbed and the periphery of the negative electrode is surrounded by a resin film 61 or oil 22 is contained inside the negative electrode. To shield it from the outside world.
  • charging is performed in a state where the aqueous electrolyte solution 14 is pressurized, and when the charging is completed, the pressure of the aqueous electrolyte solution 14 is released to maintain the charged state.
  • the aqueous solution 14 is pressurized to start discharging.
  • the battery of the present invention includes a metal / chlorine battery, and its electrode structure can be made maintenance-free. In general, halogen gas is toxic. Therefore, in the present invention, metal chloride (solid) is used as the positive electrode.
  • a metal chloride aqueous solution is sealed as an electrolyte aqueous solution 14 in a sealed container (envelope type) 55 whose opposing wall is made of the water-repellent porous film 11.
  • the electrode chamber 52 in close contact with the water-repellent porous membrane 11 is provided with a negative electrode plate (for battery) 62/65, and the positive electrode chamber 53 is provided with a metal plate (for battery) 64 via a metal chloride 63. Yes.
  • the metal chloride 63 as the positive electrode is in direct contact with the porous film 11.
  • charging is performed in a state where the aqueous electrolyte solution 14 is pressurized by the pressure applicator 6, and positive ions of the metal constituting the aqueous electrolyte solution 14 are deposited on the negative electrode plate 62.
  • the metal chloride 63 of the metal is formed on the surface of the metal plate 64 provided for the charging and the charging is completed, the electrolyte aqueous solution 14 is released from the pressurization to maintain the charged state. Pressure is applied with the applicator 6.
  • 22A is a conceptual diagram of a single-layer battery
  • FIG. 22B is a conceptual diagram of a stacked battery.
  • a laminated battery (FIG. 22B) is formed by connecting single-layer batteries (FIG. 22A) in series.
  • the structure of the positive electrode chamber 53 of the single-layer battery is a metal chloride film 63 in which the portion in contact with the water repellent porous film 11 of one metal plate is salified, and the metal portion that is not salified is the collector electrode plate 64.
  • the electrode configuration between the first layer and the second layer of the laminated battery is a positive electrode (metal chloride used for the negative electrode) 66 in contact with the first layer, and the collector electrode plate 64 of the single-layer battery is connected to the second layer. The same applies to the subsequent layers used as the negative electrode plate 65.
  • the electrolyte aqueous solution 14 in the case of the primary battery may be any metal chloride including sodium chloride, and in the single-layer battery, the combination of the negative electrode and the positive electrode is arbitrarily selected including the same metal from Zn, Mg, Al, Ni, Pb, etc.
  • the metal selected, and the positive electrode may be any metal chloride.
  • both the negative electrode and the positive electrode are made of the same metal, and the positive electrode is made of a metal chloride used in the negative electrode.
  • the electrolyte aqueous solution 14 in the case of the secondary battery is a chloride of the metal used for the negative electrode, and in the single-layer secondary battery, the combination of the negative electrode and the positive electrode includes the same metal from metals such as Zn, Mg, Al, Ni, and Pb. Made of any metal selected.
  • this metal / chlorine battery when the solubility of metal chlorides at room temperature is arranged in descending order as shown in FIG.
  • the negative electrode is a solid electrode of a group 1 or 2 element or an electrode in which a group 1 or 2 element is adsorbed as a negative electrode product inside or on the surface of a carbon gap electrode plate and around the negative electrode. It is necessary to shield from the outside by surrounding the resin film with a resin film or by putting oil in the negative electrode.
  • the battery of the present invention further includes metal / bromine and metal / iodine batteries.
  • halogen gas is a toxic gas, but bromine (boiling point 58.8 ° C.) is liquid and iodine (boiling point 113.6 ° C.) is solid at room temperature.
  • the positive electrode is mixed with activated carbon particles or carbon fibers 67 in a container in which the positive electrode chamber 53 is cut off from the outside, and bromine liquid 68 or iodine particles 69 are mixed, and a sealed container (envelope type).
  • a collector electrode plate 64 is provided on the back surface as a positive electrode in close contact with the 55 water-repellent porous film 11.
  • a bare plate electrode made of a metal element having a higher ionization tendency than hydrogen, excluding amphoteric elements and Mg or group 1 or 2 elements, or solid when using group 1 or group 2 elements is solid.
  • a negative electrode product of Group 1 and Group 2 elements is deposited and stored in the voids inside the carbon gap electrode plate, and the negative electrode is surrounded by a resin film, or inside the negative electrode It is necessary to shield from the outside world by putting oil in the state.
  • an aqueous solution of a bromide or iodide of a metal element used in the negative electrode is used, and it is necessary to always keep the atmospheric temperature of the positive electrode below the boiling point. As shown in FIG. 22 (A), the negative electrode is not affected even when exposed to the outside air.
  • the negative electrode chamber (for battery) 52 is a solid electrode of a Group 1 or 2 element (Li, Na, K, Ca, Sr, Ba) or the inside or surface of a carbon gap electrode plate.
  • the battery of the present invention further includes a metal / fluorine battery.
  • fluorine gas is extremely toxic and difficult to use.
  • the electrode potential is 7.175 times +2.87 V and +0.4 V of oxygen, and the discharge capacity is NaF (3,568 Wh / kg)> KF (2,676 Wh / kg)> AlF 3 (2,589 Wh / kg) is large but there are few types.
  • fluorides are strongly bonded and are almost insoluble in water. Solubility is 50% KF, 4% NaF, and 0.5% AlF 3 at room temperature. Therefore, the only promising negative electrode material is potassium (K), and sodium (Na) and aluminum (Al) are inefficient.
  • the positive electrode has a positive electrode chamber 53 made of graphite 70 and is in close contact with the water-repellent porous film 11 of an airtight container (envelope type) 55. ing.
  • an Al negative electrode plate 71 is closely attached to the water-repellent porous film 11 of the sealed container (envelope type) 55 as the negative electrode, and caustic soda or caustic potash is added to the aluminum fluoride as the electrolyte aqueous solution to be used as a primary battery. (FIG. 24 (A)). As shown in FIG.
  • the negative electrode chamber (for battery) 52 is a group 1 element and / or a group 2 element. Adsorption of negative electrode products of Group 1 elements and / or Group 2 elements in solid electrodes formed of elements (Li, Na, K, Ca, Sr, Ba) or in voids inside or on the surface of carbon gap electrode plates As the outside air-shielding negative electrode 57, electrons are taken out from the collector electrode plate 64, and the periphery of the negative electrode is surrounded by a resin film 61, or the oil 22 is contained in the negative electrode so that the outside world is surrounded. Shielded.
  • the electrolyte aqueous solution 14 in the hermetic container (envelope type) 55 is pressurized and discharged or charged.
  • the capacitor of the present invention includes a capacitor having a structure in which a plate electrode of a positive electrode and a negative electrode is provided in contact with opposing surfaces of a sealed container (envelope type) made of a liquid repellent porous film enclosing a dielectric liquid or an electrolyte solution.
  • a pressure equal to the liquid pressure resistance of the liquid repellent porous membrane is applied to the electrolyte solution to cause an electrochemical reaction between both electrodes, and during pressurization, the pressure of the electrolyte solution is released.
  • a pressure equal to the liquid pressure resistance of the liquid repellent porous membrane is applied to the electrolyte solution to cause an electrochemical reaction between both electrodes, and during pressurization, the pressure of the electrolyte solution is released.
  • this capacitor is formed on the outer surface of both opposing side walls of a water-repellent porous membrane sealed container (envelope type) 55 enclosing oil-based or water-based dielectric liquid 72 or electrolyte aqueous solution 14.
  • the positive electrode chamber 53 and the negative electrode chamber 52 are provided.
  • the electrodes constituting the pair of positive and negative electrode chambers 52, 53 disposed on both opposing side walls of a water-repellent porous membrane sealed container (envelope type) 55 are a plate electrode 73 or the surface of a carbon electrode such as activated carbon, graphite, or nanocarbon.
  • a charge equal to the liquid pressure resistance of the liquid repellent porous film 11 is applied to the dielectric liquid 72 or the electrolyte solution 14 during charging to give a charge between both electrodes (FIG. 25A).
  • the liquid repellent porous film 11 and the electrodes 73, 74, 75, and 76 of the electrode chambers 52 and 53 are separated for convenience, but actually Although in contact, there is no liquid in the pores of the liquid repellent porous film 11 because there is no pressure. For this reason, the water-repellent porous film 11 is considered as a low dielectric constant film.
  • the capacitor of the present invention includes an electric double layer capacitor and a redox capacitor electrochemical capacitor.
  • the positive and negative electrode chambers are high dielectric constant capacitors
  • the inside of the water-repellent porous membrane sealed container envelope type
  • the water-repellent porous membrane is between the positive and negative electrode chambers. It is a switch that turns ON / OFF the continuity.
  • FIG. 26 shows a schematic diagram of an electric double layer capacitor
  • FIG. 27 shows a schematic diagram of a redox capacitor. As shown in FIGS.
  • a metal fiber, carbon fiber, activated carbon, or the like containing a water-repellent porous membrane sealed container (envelope type) 55 sandwiched between a pair of positive and negative electrode chambers 52 and 53 is included.
  • the gap conductive material 78 contains an electrolyte aqueous solution 14 such as dilute sulfuric acid 79 or dilute caustic soda 80, and the electrolyte aqueous solution 14 is pressurized by the pressure applicator 6 at a pressure equal to the water pressure resistance of the liquid repellent porous membrane 11 to thereby make the liquid repellent Charging is performed by passing the aqueous electrolyte solution through the pores of the porous membrane 11 (FIGS.
  • the two low dielectric constant capacitors (C 2 ) and the two high dielectric constant capacitors (C 1 ) are connected in series to maintain the stored electricity.
  • the negative electrode chamber 52 and the positive electrode chamber 53 have the same structure, but the electric double layer capacitor and the redox capacitor are different.
  • the structures of the negative electrode chamber 52 and the positive electrode chamber 53 of the electric double layer capacitor are such that the activated carbon particles 67 are in close contact with the water-repellent porous film 11.
  • a collector electrode plate 64 is provided on the opposite surface, and the positive and negative electrode chambers 52 and 53 are shielded from the outside air.
  • the structures of the negative electrode chamber 52 and the positive electrode chamber 53 of the redox capacitor include a redox capacitor metal plate (Al) 108 and a repelling property of the metal plate.
  • a metal oxide film (Al 2 O 3 ) 109 for redox capacitor in which the surface facing the aqueous porous film 11 is electrically oxidized is provided as a dielectric.
  • Each of the metal plates 108 acting as positive and negative electrodes is in close contact with the porous film 11 via the metal oxide film 109.
  • each base metal element can be separated and recovered from the aqueous solution of the mixed base metal element salt.
  • a plurality of the hydrogen production apparatuses and the base metal recovery apparatuses are connected in series, and starting from the hydrogen generation apparatus, the electrolytic solution is electrolytically purified from the electrolyte aqueous solution in which a plurality of base metal salts are mixed in the order of low decomposition voltage of the deposited metal.
  • the reaction aqueous electrolyte solution is transferred to the next base metal recovery device, the electrolyte aqueous solution is subjected to electrolytic purification under pressure, and the base metal recovery operation is performed while shifting from a metal having a low decomposition voltage to a metal having a high decomposition sequentially.
  • an offshore factory or a seaside factory that uses seawater as a raw material to produce hydrogen and caustic soda in situ using natural energy obtained at sea or midnight power of a seaside thermal power plant.
  • the offshore and / or seaside factories produce the hydrogen described above and the caustic soda described above, and from the produced hydrogen and caustic soda, as described above, the sodium hydride is offshore or It is possible to establish a caustic soda fuel cycle that is produced on land, water is poured into the sodium hydride on land to produce hydrogen, and the by-product caustic soda is reproduced again as sodium hydride.
  • caustic soda which is an intermediate product, can be used as an aqueous electrolyte solution for secondary batteries.
  • a predetermined substance is placed in a container formed of a water-repellent porous film, and the container is placed in an electrolyte or non-electrolyte aqueous solution or water.
  • the liquid penetrates into the pores of the water-repellent porous membrane and undergoes an ionic reaction, hydrolysis reaction or dissolution reaction with the substance inside the container. be able to.
  • a substance that generates gas by hydrolysis or contact with water, or a substance that generates heat by hydrolysis or contact with water A substance that absorbs heat by hydrolysis or contact with water or a water-soluble organic compound is accommodated, and the reaction chamber is placed in a liquid made of water or a non-electrolyte aqueous solution contained in a sealed container. Then, a pressure is applied to the water-repellent porous membrane through the liquid such that the difference between the external pressure and the internal pressure in the reaction chamber is equal to or higher than the water pressure resistance of the water-repellent porous membrane, and the liquid is introduced into the reaction chamber.
  • the obtained gas or aqueous solution can be used for the biological transport of medicines and nutrients or the addition of organic compounds to the aqueous solution.
  • a tube for spraying chemicals made of a water-repellent porous membrane is provided at a desired location, and a tube is connected from a chemical supply port to a chemical aqueous solution supply source by a hose.
  • a chemical aqueous solution can be supplied at a desired location by applying a pressure equal to or higher than the water pressure resistance of the water-repellent porous membrane to the chemical aqueous solution continuously or intermittently as necessary at the supply port.
  • the chemical aqueous solution includes aqueous solutions of chemicals, nutrients, fertilizers and the like.
  • a hydrolysis exothermic reaction is caused by applying a water pressure higher than the water pressure resistance to a capsule in which a hydrolysis exothermic agent is sealed at the tip of an endoscope through a water-repellent porous membrane.
  • the cancer cells inside can be heated.
  • the present invention when a porous fluororesin film exhibiting high electrical insulation in an aqueous electrolyte solution such as seawater or salt lake water is subjected to a water pressure resistance or higher, the fineness of the porous fluororesin film is reduced.
  • the electrolyte aqueous solution and / or ions can pass through the pores, and can function as a switch that analogally controls the amount of the aqueous solution and ions that can permeate the water-repellent porous membrane according to the water pressure.
  • This water-repellent porous membrane is used as a separator between the electrolyte aqueous solution and the positive and negative electrode chambers, and aqueous solution electrolysis is performed with pressure applied to the electrolyte aqueous solution, and the electrode products generated in the positive and negative electrode chambers are separated from the electrolyte aqueous solution. Separate and collect.
  • hydrogen, caustic soda, base metal elements and the like can be taken out directly from an aqueous electrolyte solution such as seawater and salt lake water.
  • This technology can be used not only for electrolytic purification but also for practical batteries and large-capacity capacitors. Conventionally, there has been only a method for electrolysis of molten salt at high temperatures using high power.
  • FIG. 1 shows a discharge capacity comparison of a base metal / oxygen battery and a base metal / halogen battery.
  • 2A and 2B are explanatory views of the principle of the pressure switch of the liquid repellent porous membrane (separation membrane).
  • FIG. 2A shows the case where the aqueous electrolyte solution is less than the water pressure resistance, and FIG. This case is shown.
  • FIG. 3A shows a comparison of the electrical properties of a solution and the role of the liquid repellent porous membrane in an electronic switch of a liquid repellent porous membrane (separator).
  • FIG. 3B shows a comparison of the electrical properties of the solution and the role of the liquid repellent porous membrane in the electronic switch of the liquid repellent porous membrane (separation membrane).
  • FIG. 1 shows a discharge capacity comparison of a base metal / oxygen battery and a base metal / halogen battery.
  • 2A and 2B are explanatory views of the principle of the pressure switch of the liquid repellent porous membrane
  • FIG. 4 schematically shows a chemical reaction device provided with an electrolyte solution separator provided between positive and negative electrodes.
  • FIG. 4A shows a case where the separator constitutes a sealed container made of a liquid repellent porous membrane.
  • B The case where the chemical reaction apparatus is present in the open container
  • C is the case where the separator constitutes a sealed container made of a liquid repellent porous film, and the sealed container is present in the open container.
  • FIG. 5 schematically shows a pressure application tool, in which (A) directly pressurizes a sealed container formed of a liquid repellent porous membrane, and (B) shows manual or electric pressurization or pressure using a communication pipe.
  • FIG. 6 is a view for explaining a method of filling an aqueous electrolyte solution into a hollow airtight container (bag) made of a water-repellent porous membrane, and (A) injects the aqueous electrolyte solution directly into the hollow airtight container (bag).
  • (B) shows the case where water or water vapor is pressed into the solute inserted into the hollow sealed container (bag)
  • (C) shows the case where the hollow sealed container (bag) is inserted through the water-repellent porous membrane.
  • FIG. 7 shows the relationship between the structure of positive and negative electrodes separated by a water-repellent porous membrane and the application.
  • FIG. 8 is an equivalent circuit for electrolyzing the aqueous electrolyte solution using the boundary surface between the aqueous electrolyte layer surface and the oil layer surface as a negative electrode surface.
  • FIG. 8A is a conceptual diagram of the Murahara circuit, and FIG. (Calculation formula) is shown.
  • FIG. 9 is a conceptual diagram of an oil capacitor using an interface between oil and an aqueous electrolyte solution as a negative electrode.
  • FIG. 9A is a structural diagram regarding a virtual negative electrode using a water-repellent porous film. It is a structural diagram in the case where the earth axis and the vertical surface are formed, and the specific gravity of the oil is less than 1, and (C) is a structural diagram in the case where the virtual negative electrode forms a vertical surface with the earth axis and the specific gravity of the oil exceeds 1.
  • FIG. 10 is a schematic view of an apparatus for producing hydrogen by submerging a gas permeable electrode chamber under the sea surface and directly electrolyzing seawater, and (A) shows an electrolyzer utilizing water pressure under the sea surface.
  • FIG. 11 is a schematic view of a hydrogen production apparatus for electrolyzing water in an open container or a sealed container inserted in a large sealed container, and FIG. 11 (A) shows an electrolyzer utilizing water pressure under the surface of a freshwater lake. , (B) shows an electrolyzer that pressurizes with tap water.
  • FIG. 11 is a schematic view of a hydrogen production apparatus for electrolyzing water in an open container or a sealed container inserted in a large sealed container
  • FIG. 11 (A) shows an electrolyzer utilizing water pressure under the surface of a freshwater lake.
  • (B) shows an electrolyzer that pressurizes with tap water.
  • FIG. 11 is a schematic view of a hydrogen production apparatus for electrolyzing water in an open container or a sealed container inserted in a large sealed container
  • FIG. 11 shows an electrolyzer utilizing water pressure under the surface of a freshwater lake.
  • FIG. 11 shows an electrolyzer that pressurizes with tap water.
  • FIG. 12 is a schematic diagram of a base metal hydroxide (caustic soda) production apparatus, (A) shows an apparatus for producing base metal hydroxide (caustic soda) at the negative electrode and positive electrode product gas (chlorine) at the positive electrode (B ) Shows an apparatus for producing base metal hydroxide (caustic soda) at the negative electrode and acid (hydrochloric acid) at the positive electrode.
  • FIG. 13 is a schematic view of a base metal recovery device, (A) shows a device for producing base metal in the oil tank of the negative electrode oil-filled electrode chamber, and positive electrode product gas (chlorine) at the positive electrode, and (B) is a negative electrode.
  • FIG. 14 is a schematic view of an electrolytic purification apparatus in which the interface between the oil and the aqueous electrolyte solution is a virtual negative electrode.
  • FIG. 14A shows the electrolytic purification apparatus in which an intermediate electrode plate is inserted into the oil-filled electrode chamber.
  • FIG. 15 is a schematic view of an apparatus for producing a hydrogenated base metal by an ionic reaction between hydrogen negative ions and a molten salt.
  • FIG. 16 shows a comparison of the melting point and specific gravity of base metal hydride and base metal hydroxide.
  • FIG. 17 is a schematic diagram of a battery, in which (A) shows a battery during charging, (B) shows a battery during storage, and (C) shows a battery during discharge.
  • FIG. 18 shows the relationship between the solubility of base metal hydroxide and temperature.
  • FIG. 19 shows the relationship between the solubility of halogenated (chlorinated) base metal and temperature.
  • FIG. 20 shows the solubility of the electrolyte used in the base metal / oxygen battery and the base metal / halogen battery in water.
  • FIG. 21 is a schematic diagram of a base metal / air battery, where (A) shows a battery having a positive electrode as a carbon plate having a gap and an auxiliary electrode for charging, and (B) shows a battery having a positive electrode as a metal oxide.
  • FIG. 22 is a schematic diagram of a base metal / chlorine battery, where (A) shows a single-layer battery and (B) shows a laminated battery.
  • FIG. 23 is a schematic diagram of a base metal / bromine and base metal / iodine battery, where (A) shows the battery when the negative electrode is a metal that is not affected by the atmosphere, and (B) is a periodic table group 1 of the negative electrode that is weak to the atmosphere.
  • FIG. 24 is a schematic diagram of a base metal / fluorine battery, where (A) shows an Al / F battery and (B) shows a K / F or Na / F battery.
  • FIG. 25 is a schematic diagram of a capacitor (capacitor), (A) shows a capacitor during charging, (B) shows a capacitor during storage, (C) shows a capacitor during discharging, and (D ) Is an explanatory diagram of an operation circuit for charging, storage, and discharging.
  • FIG. 24 is a schematic diagram of a base metal / fluorine battery, where (A) shows an Al / F battery and (B) shows a K / F or Na / F battery.
  • FIG. 25 is a schematic diagram of a capacitor (capacitor), (A) shows a capacitor during charging, (B) shows a capacitor during storage, (C) shows a capacitor during discharging, and (D ) Is an explanatory diagram of an operation circuit for charging, storage, and dischar
  • FIG. 26 is a schematic diagram of an electric double layer capacitor, (A) shows a capacitor during charging, (B) shows a capacitor during storage, (C) shows a capacitor during discharging, and (D) shows It is operation circuit explanatory drawing of charge, electrical storage, and discharge.
  • FIG. 27 is a schematic diagram of a redox capacitor, (A) shows a capacitor during charging, (B) shows a capacitor during storage, (C) shows a capacitor during discharging, and (D) shows It is operation circuit explanatory drawing of charge, electrical storage, and discharge.
  • FIG. 27 is a schematic diagram of a redox capacitor, (A) shows a capacitor during charging, (B) shows a capacitor during storage, (C) shows a capacitor during discharging, and (D) shows It is operation circuit explanatory drawing of charge, electrical storage, and discharge.
  • FIG. 28 is a graph showing the relationship between the water pressure resistance of the porous fluororesin membrane and the salt concentration, (A) shows the case where the pore diameter of the porous fluororesin membrane is 3 ⁇ m, and (B) shows the porous fluororesin. The case where the pore diameter of the membrane is about 10 ⁇ m is shown.
  • FIG. 29 is a schematic diagram of a subsea hydrogen production apparatus.
  • FIG. 30 is a schematic view of a multi-stage subsea hydrogen production apparatus.
  • FIG. 31 is a schematic view of an under-surface hydrogen production apparatus.
  • FIG. 32 is a schematic view of a simple hydrogen production apparatus that uses water pressure.
  • FIG. 33 is a schematic view of an apparatus for directly producing caustic soda and chlorine gas from an aqueous sodium chloride solution.
  • FIG. 34 is a schematic view of an apparatus for directly producing caustic soda and hydrochloric acid from an aqueous sodium chloride solution.
  • FIG. 35 is a schematic view of an apparatus for directly producing a base metal element from a base metal chloride aqueous solution.
  • FIG. 36 is a schematic view of an apparatus for directly producing hydrochloric acid from a base metal element from a base metal chloride aqueous solution.
  • FIG. 37 is a schematic diagram of a base metal manufacturing apparatus using a virtual negative electrode, where (A) shows the apparatus and (B) shows an equivalent circuit.
  • FIG. 38 is a schematic view of a hydrogenated base metal production apparatus.
  • FIG. 39 is a schematic diagram of an apparatus for retaining electrolyte aqueous solution in an envelope-type airtight container, where (A) shows an apparatus before retaining aqueous electrolyte solution, and (B) shows an apparatus after retaining aqueous electrolyte solution.
  • FIG. 40 is a schematic diagram of an electrolyte pressurization type secondary battery, where (A) shows the case of no pressurization of the aqueous electrolyte solution, and (B) shows the case of pressurization of the aqueous electrolyte solution.
  • FIG. 41 is a schematic view of a stacked caustic soda secondary battery, in which (A) is a cross-sectional view and (B) is an external view.
  • FIG. 42 is a schematic diagram of a redox capacitor, (A) is a cross-sectional view, and (B) shows an equivalent circuit.
  • FIG. 43 is a schematic view of an apparatus for extracting individual base metals from an aqueous solution of mixed base metal salts.
  • FIG. 44 is a schematic diagram of a caustic soda fuel cycle.
  • FIG. 45 is a schematic view of a hydrolysis reaction apparatus.
  • FIG. 46 is a schematic diagram of a water / fertilizer supply device for hydroponics.
  • 47A and 47B are diagrams for explaining an endoscopic medical device, where FIG. 47A shows a cross section of a human body, FIG. 47B shows a tube feeding / medicine capsule, and FIG. 47C shows a thermotherapy capsule for cancer. Indicates.
  • FIG. 28 shows measured values regarding the water pressure resistance of the water-repellent porous fluororesin membrane that forms the basis of the present invention.
  • Difference in pressure on both sides of the resin membrane, which is the minimum pressure difference required for the aqueous electrolyte solution to permeate the water-repellent porous fluororesin membrane, which may also be referred to as permeation differential pressure) and the electrolyte concentration of the aqueous electrolyte solution It is a graph which shows the relationship.
  • the water pressure resistance is described in Japanese Industrial Standard (JIS) L1092: 2009.
  • FIG. 28 (A) shows the results when sodium chloride aqueous solutions having different concentrations were used as the aqueous electrolyte solution for a fluororesin water-repellent porous membrane (Nitto Denko PTFE porous membrane NTF-1133) having a pore diameter of 3 ⁇ m.
  • the water pressure resistance is a value relative to pure water.
  • concentration of common seawater is about 3 weight%, and the saturated concentration of sodium chloride in water is about 25 weight%. Therefore, sodium chloride was added to water at a concentration of 0% to 25% by weight, and the relationship between the sodium chloride concentration at room temperature and the water pressure resistance was measured.
  • the water resistance of the fluororesin water-repellent porous membrane is 430 mmHg (0.57 atm) at a sodium chloride concentration of 0%, 320 mmHg (0.42 atm) at a sodium chloride concentration of 10%, and 280 mmHg at a sodium chloride concentration of 20%. It was 270 mmHg (0.36 atm) at a sodium chloride concentration of 25%. As the sodium chloride concentration increases, the water pressure resistance decreases. Further, the water pressure resistance tends to decrease as the temperature of the aqueous electrolyte solution increases.
  • FIG. 28 (B) shows the results when sodium chloride aqueous solutions having different salt concentrations were used as the aqueous electrolyte solution for a fluororesin water-repellent porous membrane (Freon Industries F3011-3) having a pore diameter of about 10 ⁇ m.
  • the water pressure resistance of this fluororesin water-repellent porous membrane was 120 mmHg (0.16 atm) at a sodium chloride concentration of 0% and 50 mmHg (0.07 atm) at 2% sodium chloride.
  • the water pressure resistance value decreases as the pore diameter of the porous membrane increases. Further, since the water pressure resistance decreases as the electrolyte concentration increases, the electrolytes of different concentrations separated by the liquid repellent porous film flow from the higher concentration to the lower one under the same pressure (water pressure). That is, when an aqueous electrolyte solution having a high concentration exists in a sealed container formed of a liquid repellent porous membrane and an aqueous electrolyte solution having a low concentration exists outside the sealed container, the aqueous electrolyte solution is present outside the sealed container. Leak out.
  • the pressure in the electrode chamber in close contact with the sealed container is lowered, and the low concentration electrolyte aqueous solution outside the sealed container enters the sealed container through the liquid repellent porous film, and the other liquid repellent It is necessary to control the pressure difference so as to take a route flowing through the porous porous membrane to the electrode chamber.
  • FIG. 29 is a schematic view showing a subsea hydrogen production apparatus. As shown in FIG. 7, negative electrode chamber 52 and positive electrode chamber 53 each consisting of a gas permeable electrode chamber having a void in the electrode are submerged under the sea surface and seawater is directly electrolyzed to produce hydrogen.
  • the outer walls of the positive and negative electrode chambers 52, 53 are each made of a vertically divided vinyl chloride resin pipe, and the halved openings each have a PTFE porous membrane having a pore diameter of 33 ⁇ m.
  • (Nitto Denko NTF-1133) 11 As shown in the cross-sectional view of the negative electrode chamber 52, stainless fiber 81 (Nippon Seisen Co., Ltd. “Naslon (registered trademark)“ Web ”) is placed in the negative electrode chamber 52, and the cross-sectional view of the other positive electrode chamber 53. As shown in FIG. 2, carbon cloth (carbon fiber) 82 was placed in the positive electrode chamber 53. Further, the product gas recovery hose 12 was connected to the uppermost portions of the electrode chambers 52 and 53, and positive and negative electrode lead wires were provided inside the recovery hose 12, respectively.
  • the electrolyte aqueous solution 14 is seawater, and the average salt concentration of seawater is 3.5% by weight.
  • the water pressure resistance of the porous fluororesin membrane having a pore diameter of 3 ⁇ m and the salt concentration shown in FIG. 28A the water pressure resistance of the porous membrane for the 3.5 wt% sodium chloride aqueous solution is 380 mmHg. is there. Since the water pressure is 10 meters at a depth of 1 atm (760 mmHg), the position head (h) 10 is about 5 m below the sea level.
  • the temperature of the seawater was 23 ° C., and the conductivity was 0.03 S / cm.
  • FIG. 30 is a structural diagram of a multi-stage subsurface hydrogen production apparatus for producing hydrogen by electrolyzing seawater under the sea surface.
  • negative electrode chamber 52 and positive electrode chamber 53 each having a gas permeable electrode chamber having a gap in the electrode are submerged under the sea surface, and seawater is directly electrolyzed to produce hydrogen.
  • the average concentration of seawater used as the aqueous electrolyte solution 14 is 3.5% by weight.
  • the water pressure resistance at 3.5% sodium chloride aqueous solution is 380 mmHg. Therefore, the experiment was conducted by lowering the multi-stage subsea hydrogen production apparatus 84 to about 5 m below the sea surface (position head (h) 10).
  • PTFE porous membrane Nito Denko NTF-1133 having a pore diameter of 3 ⁇ m as the fluororesin water-repellent porous membrane 11 in the positive and negative electrode chambers 52 and 53, and uses positive and negative electrodes.
  • the outer walls of the chambers 52 and 53 are made of vinyl chloride, the product gas recovery hose 12 is connected to the uppermost portion of the electrode chamber 52, and the negative electrode chambers 52 and the positive electrode chambers 53 are alternately and continuously arranged.
  • the hydrogen gas generated in the chamber 52 and the oxygen generated in the positive electrode chamber 53 are collectively connected and recovered through a pipe.
  • the multistage subsurface hydrogen production apparatus 84 arranged three sets of positive and negative hydrogen recovery electrode chambers 52 and oxygen recovery electrode chambers 53 in parallel, and fixed the distance d (83) between the electrodes to 10 mm.
  • the electrode material of the negative electrode chamber 52 is stainless steel fiber 81 (Nippon Seisen Co., Ltd. Naslon (registered trademark) “Web”). Enclosed. Since the salt concentration of the electrolyte was 3.5% by weight in seawater, the temperature of the seawater was 23 ° C., and the conductivity was 0.03 S / cm. It was given 1.5V between where the electrodes, hydrogen 1 m 3, the power requirement of oxygen per 0.5 m 3 was about 17KWh.
  • FIG. 31 is a structural diagram of a subsurface lake hydrogen production apparatus.
  • the fresh water is injected into the high-concentration electrolyte aqueous solution sealed in a sealed container made of a water-repellent porous membrane from the outer wall of the sealed container through the water-repellent porous membrane for press-fitting aqueous solution.
  • a water-repellent porous membrane sealed container filled with a high-concentration electrolyte aqueous solution high solubility and high conductivity electrolyte aqueous solution
  • Hydrogen is produced by electrolyzing the aqueous solution in a state where fresh water or a low concentration electrolyte aqueous solution is injected from the aqueous porous membrane.
  • a lake surface (under the sea surface) hydrogen production apparatus 86 shown in FIG. 31 includes a rectangular column type sealed container 87 sandwiched between a negative electrode chamber 52 and a positive electrode chamber 53.
  • a quadrangular prism type sealed container 87 two of the four side surfaces (side surfaces in contact with the positive and negative electrode chambers 52 and 53) are each made of the water-repellent porous material 11, and at least one other side surface is made of the water-repellent porous material. It consists of a membrane (for freshwater permeation) 27.
  • the pore diameter of the water repellent porous fluororesin film (electrode separator film) 11 is selected to be smaller than the pore diameter of the water repellent porous film (for fresh water permeation) 27, or the water repellent porous fluororesin film ( The electrode separator 11) is hydrophilically treated, and the water repellent porous fluororesin membrane 11 (electrode separator) 11 caused by salt concentration and the water-repellent porous membrane 27 (for fresh water permeation) 27 caused by fresh water.
  • the water pressure resistance is set to the same value or a close value.
  • the hydrogen production device 86 can be applied to seas other than lakes and hot spring water.
  • the generated gas in the positive and negative electrode chambers is collected on the water surface, and therefore can be sucked on the water surface. For this reason, if the gas pressure in the positive and negative electrode chambers is sucked with a vacuum pump, it is not necessary to lower the hydrogen production device 87 to the head position.
  • the gas pressure in the positive and negative electrode chambers 52 and 53 is lower than the pressure of fresh water or dilute electrolyte water entering the water-repellent porous membrane (for fresh water permeation) 27, sulfuric acid is the water-repellent porous membrane (for fresh water permeation) in a sealed container. No drainage from 88 to the outside fresh water. Furthermore, since the gas in the positive and negative electrode chambers can be sucked with a vacuum pump and the gas pressure in the positive and negative electrode chambers can be controlled, the water repellent porous fluororesin films (electrode isolation films) 11 and 27 may be the same.
  • a pressure adjustment valve 93 is provided in front of the production gas outlet and is adjusted by the pressure of the gas generated in the gas permeable electrode chambers 52 and 53.
  • this sulfuric acid and caustic soda are named ionization catalysts.
  • a square column type sealed container 87 having a width of 10 to 100 mm is disposed between the positive and negative electrode chambers, and the electrode material of the negative electrode chamber 52 is stainless steel fiber 81 (Nippon Seisen Co., Ltd. Trademark) “Web”), and carbon cloth (carbon fiber) 82 was enclosed in the positive electrode.
  • the rectangular column type sealed container 87 is divided into two cases when 2.5 normal sulfuric acid and 2.5 normal caustic soda are sealed, and the hydrogen production device 86 is submerged in a 3 m deep pool, and the negative electrode chamber 52
  • the hydrogen generation efficiency was measured while evacuating through the pressure regulating valve 93 so that the gas pressure in the positive electrode chamber 53 could be maintained at 200 to 400 mmHg, respectively.
  • the conductivity of sulfuric acid put into the high concentration electrolyte aqueous solution 79 was 0.8 S / cm.
  • the conductivity of 2.5 normal caustic soda was 0.3 S / cm.
  • FIG. 32 is a structural diagram of a simple hydrogen production apparatus using water pressure. As shown in FIG. 11 (B), a sealed container made of a water-repellent porous membrane is inserted into a large-sized sealed container, and the water pressure of tap water is increased to a pressure higher than the water pressure resistance of the water-repellent porous membrane and tap water. Hydrogen is continuously produced while supplying
  • a simple hydrogen production apparatus 89 using water pressure shown in FIG. 32 inserts the sealed container 1 made of a water-repellent porous membrane into a large-sized sealed container 29, and the water pressure of the water 28 is changed to a water-repellent porous membrane (for fresh water permeation) 27. And pressurizing fresh water (tap water) 88 through the water-repellent porous membrane (for fresh water infiltration) 27 so as to maintain about 3 N (about (8%) sulfuric acid aqueous solution, At the same time, electrolysis is performed in the positive and negative electrode chambers 3 and 4 (gas permeable electrode chambers 52 and 53), and hydrogen is recovered from the generated gas recovery hose 12 in the negative electrode chamber 3 and oxygen is recovered from the generated gas recovery hose 12 in the positive electrode chamber 4.
  • a pressure adjustment valve 93 is provided in front of the production gas outlet, Gas generated in the transmissive electrode chambers 52 and 53 A control mechanism is provided to adjust the pressure of the sulfuric acid, especially the sulfuric acid concentration of 2 to 5 N has the highest conductivity, so the pressure of fresh water is adjusted at the tap to maintain this concentration, and hydrogen and oxygen are maintained. It is accompanied by a vacuum exhaust that balances the generation of gas and a press-fitting device into the cylinder by a compressor.
  • FIG. 33 shows an apparatus for directly producing caustic soda and chlorine from a sodium chloride aqueous solution.
  • the electrolysis is performed in a state in which a pressure equal to the water pressure resistance of the water-repellent porous membrane constituting the sealed container that is in contact with the positive and negative electrode chambers is applied to the sodium chloride aqueous solution.
  • a pressure equal to the water pressure resistance is applied to the water repellent porous membrane via a sodium chloride aqueous solution.
  • An apparatus 90 for directly producing caustic soda and chlorine from an aqueous sodium chloride solution shown in FIG. 33 includes a sealed container 1 defined by two water-repellent porous membranes 11 spaced apart from each other at the center.
  • the negative electrode chamber 3 provided on one side of the hermetic container 1 constitutes an electrode chamber 40 filled with water, and a negative electrode plate 36 is disposed made of carbon or nickel.
  • the positive electrode chamber 4 provided on the other side of the sealed container 1 constitutes a gas permeable electrode chamber 41, and an electrode material having a gap is disposed.
  • the sealed container 1 is filled with an aqueous sodium chloride solution 32 having a concentration of 26% by weight.
  • the solubility of sodium chloride hardly depends on the ambient temperature, but the caustic soda produced depends on the ambient temperature. As shown in FIG. 18, the solubility of caustic soda is 56% at 40.degree. C. and 74% at 80.degree. C., so that the solubility increases. Therefore, hot water is injected into the electrode chamber 40 to produce high-concentration caustic soda 31. It is desirable to heat the chamber 40 with a heater. In this experiment, as a simple method, hot water of 100 ° C. or less was injected from the water supply port 34 of the negative electrode chamber 3. Here, one idea is to increase the electrolysis efficiency by adding dilute caustic soda 31 to the water in the negative electrode chamber 3 in advance at the start of electrolysis.
  • the water-repellent porous membrane 11 is pressurized with the pressure application tool 6 at a pressure equal to the water pressure resistance to generate the caustic soda 31 in the negative electrode chamber 40, Concentrated caustic soda is recovered from the recovery port 35, and hydrogen gas is recovered by the product gas recovery hose 12 attached to the top. Further, chlorine gas is recovered by a generated gas recovery hose 12 attached to the uppermost part of the positive electrode chamber 4.
  • a pressure adjusting valve 93 is provided in front of the production gas outlet, and the gas pressure in the caustic soda generation chamber 31 is adjusted so as not to exceed 1 atm. . When a voltage of 4 V was applied between the electrodes and the current density was set to 20 A, the amount of caustic soda produced was 3 kWh per kg.
  • FIG. 34 shows an apparatus for directly producing caustic soda and hydrochloric acid from an aqueous sodium chloride solution.
  • the negative electrode is subjected to electrolysis in a state where a pressure equal to the water pressure resistance of the water-repellent porous membrane constituting the sealed container that is in contact with the positive and negative electrode chambers is applied to the aqueous sodium chloride solution.
  • Caustic soda is produced indoors.
  • a pressure equal to the water pressure resistance is applied to the water repellent porous membrane via a sodium chloride aqueous solution.
  • An apparatus 91 for directly producing caustic soda and chlorine from an aqueous sodium chloride solution shown in FIG. 34 includes a sealed container 1 defined by two water-repellent porous membranes 11 spaced apart from each other at the center.
  • the negative electrode chamber 3 provided on one side of the hermetic container 1 constitutes an electrode chamber 40 filled with water, and a negative electrode plate 36 is disposed made of carbon or nickel.
  • the positive electrode chamber 4 provided on the other side of the sealed container 1 also constitutes an electrode chamber 40 filled with water, and a positive electrode plate 38 made of carbon is disposed.
  • the sealed container 1 is filled with a sodium chloride aqueous solution 32 having a concentration of 26% by weight, and water is injected from the water supply port 34 of the positive electrode chamber 4 and hot water at 100 ° C. or less is injected from the water supply port 34 of the negative electrode chamber 3. . Further, at the start of electrolysis, the electrolysis efficiency is increased by adding the aqueous caustic soda 31 in advance to the water in the negative electrode chamber 3 and the hydrochloric acid in advance to the water in the positive electrode chamber 4.
  • the water-repellent porous membrane 11 is pressurized with the pressure applicator 6 through the sodium chloride aqueous solution at a pressure equal to the water pressure resistance to generate the caustic soda 31 in the negative electrode chamber 40. Then, the concentrated caustic soda is recovered from the negative electrode product recovery port 35, and the hydrogen gas is recovered by the generated gas recovery hose 12 attached to the top. Further, concentrated hydrochloric acid is recovered from a positive electrode product recovery port (concentrated acid extraction port) 42 in the positive electrode chamber 40, and oxygen gas is recovered by a generated gas recovery hose 12 attached to the top.
  • Caustic soda 31 is manufactured in the electrode chamber 40 of the negative electrode chamber 3, and hydrochloric acid 33 is manufactured in the electrode chamber 41, both of which have high electrical conductivity, so that the electrolyte in the sealed container 1 separated by the water-repellent porous membrane 11 is used.
  • the sodium chloride aqueous solution 32 that is the aqueous solution 14 is efficiently electrolyzed by pressurization of the aqueous electrolyte solution at a withstand pressure.
  • FIG. 35 shows an apparatus for directly producing a base metal element from a base metal chloride aqueous solution.
  • the gap electrode made of carbon is brought into contact with the negative electrode side of the sealed container through a separator made of a water-repellent porous membrane, the back surface is filled with oil, and the specific gravity is lighter than oil.
  • Base metals Li, K, Na
  • base metals Mg, Ca, Ba, Sr, Al
  • a base metal element manufacturing apparatus 92 shown in FIG. 35 includes, for example, NaCl, KCl, LiCl, MgCl 2 , chlorides corresponding to base metal elements desired to be manufactured in the sealed container 1 defined by the water repellent porous film 11.
  • aqueous solution such as CaCl 2 , BaCl 2 , SrCl 2 , AlCl 3 is selected and stored.
  • the solubility of the base metal chloride tends to increase as the solution temperature increases, except for NaCl, which has no temperature dependency. For example, if the temperature of the base metal chloride aqueous solution 32 in the sealed container 1 is heated to 60 ° C.
  • the negative electrode chamber 3 of the base metal element production apparatus 92 shown in FIG. 35 constitutes an electrode chamber 16 filled with oil.
  • a net-like negative electrode 43 made of carbon fiber is used as the electrode, and light oil having a specific gravity of 0.8 is used as the oil 23.
  • the positive electrode chamber 4 constitutes a gas permeable electrode chamber 41, and a positive electrode 37 made of carbon fiber is used, and chlorine gas is recovered from the positive electrode chamber 4 by the generated gas recovery hose 12.
  • the solubility is 53% at 80 ° C., and since the melting point of Li is 179 ° C. and the specific gravity is 0.54 (FIG. 16), about 50% LiCl is added. Electrolysis is performed at 80 ° C., and the metal Li floats on the uppermost portion of the light oil 23 in the negative electrode chamber 3 and is recovered from the negative electrode product recovery port 35 provided on the uppermost portion of the negative electrode chamber 3.
  • chlorine gas is recovered by the product gas recovery hose 12 at the top of the positive electrode chamber.
  • a pressure regulating valve 93 is provided in front of the production gas outlet.
  • a sodium chloride aqueous solution concentrated to 28% was energized at 25 ° C. between 4 and 5 V between the positive and negative electrodes, a current density of 10 A for 1 hour, and 8 g in light oil filled in the oil-filled electrode chamber 16. Of sodium metal was precipitated.
  • FIG. 36 is a structural diagram of an apparatus for directly producing a base metal element and hydrochloric acid from a base metal chloride aqueous solution.
  • the carbon void electrode is brought into contact with the negative electrode side of the sealed container through a separator made of a water-repellent porous membrane, and the back surface thereof is filled with oil.
  • Base metals (Li, K, Na) having a lighter specific gravity are recovered from the upper part, and base metals (Mg, Ca, Ba, Sr, Al) having a higher specific gravity than oil 23 are recovered from the lowermost part.
  • the method for producing the negative electrode product has been described above.
  • the hydrochloric acid produced by the positive electrode employs a water-filled electrode chamber 40 in the positive electrode chamber 4 of the apparatus 95 for directly producing base metal elements and hydrochloric acid shown in FIG. 36, and supplies water to react with negative ions and water.
  • a dilute hydrochloric acid aqueous solution is added to the water supplied from the port 34 in advance, and then electrolysis is performed between the net-like negative electrode plate 43 and the positive electrode plate 38 through the water-repellent porous membrane 11 to generate an ionic reaction (2Cl ⁇ + 2H 2). O ⁇ 2HCl + O 2 ).
  • the acid (hydrochloric acid) 33 generated here is recovered from the concentrated acid (hydrochloric acid) outlet 42 and oxygen is recovered from the generated gas recovery pipe 12.
  • FIG. 37 is a structural diagram of a base metal production apparatus using a virtual negative electrode from a base metal chloride aqueous solution.
  • the base metal salt aqueous solution is electrolyzed with the boundary surface between the base metal salt aqueous solution surface and the oil surface made of Group 1 and 2 elements of the periodic table as the virtual negative electrode surface, and the negative electrode The precipitate is collected in the oil layer. It can easily be considered that the interface between the oil and the aqueous electrolyte solution is a virtual electrode. However, if the virtual electrode is not a negative electrode, no negative electrode product is generated. Accordingly, as shown in the equivalent circuit “Murahara Circuit” in FIG. 37B and the base metal manufacturing apparatus using the virtual negative electrode in FIG.
  • the water-repellent porous membrane 11 that is turned ON / OFF the electrolyte aqueous solution 14 is a switch (S) depicted in the equivalent circuit of FIG. 37B, the electrolyte aqueous solution 14 is (R), and the oil-filled electrode chamber 16
  • the oil 23 is (C2), the voltage is (E), and the large-capacity capacitor placed outside is (C1).
  • FIG. 38 shows an apparatus for producing a hydrogenated base metal.
  • sodium hydride is produced by combining sodium metal produced by molten salt electrolysis of caustic soda with hydrogen at high temperature. The manufacturing cost of this metallic sodium is expensive. As described with respect to FIG. 15, the melting point of caustic soda is as low as 318.degree. For this reason, when the container containing the caustic soda is heated at 318 ° C. or higher, an ionized molten salt is formed. As shown in the metal hydride production apparatus 97 of FIG.
  • a caustic soda molten salt 46 When a caustic soda molten salt 46 is sandwiched between the negative electrode 44 comprising the porous carbon negative electrode / separation film 44 and the positive electrode plate 38 and a potential for generating hydrogen negative ions 50 is applied between the two electrodes, the caustic soda molten salt is obtained.
  • Sodium hydride (NaH) 49 reacts with sodium ions (Na + ) contained therein, and can be produced only by an ionic reaction that does not involve a thermal reaction. Furthermore, since the specific gravity of sodium hydride (NaH) 49 is lighter than the specific gravity of the caustic soda molten salt 46 and the melting point is significantly higher than the melting point of the caustic soda 46, it floats as a solid and can be easily recovered.
  • FIG. 39 shows a device for retaining an aqueous electrolyte solution in an envelope-type airtight container.
  • the envelope-type sealed container 55 is manufactured by stacking two sheets of the water-repellent porous 11 and heat-sealing the four sides at 350 ° C. inside and outside.
  • the envelope-type sealed container 55 has many uses as a battery electrolyte aqueous solution storage container. Therefore, the electrolyte aqueous solution detention device 98 retains the electrolyte aqueous solutions 14 and 102 in the envelope-type sealed container 55. As shown in FIGS.
  • both surfaces of the envelope-type sealed container 55 have a water-repellent porous fluororesin film 100 and a water-repellent porous fluororesin film 101.
  • the water pressure resistance of these water-repellent porous fluororesin films 100 and 101 varies depending on the salt concentration of the aqueous electrolyte solution as shown in FIG.
  • the water pressure of the electrolyte aqueous solution 102 for detention to be pressurized by the pressure application tool 6 is (WP102), and the water pressure of the electrolyte aqueous solution in the envelope-type sealed container 55 is (WP55).
  • the water pressure resistance of the water repellent porous fluororesin film 100 on the electrolyte aqueous solution 102 side is (WP100)
  • the water pressure resistance of the water repellent porous fluororesin film 101 on the suction port 99 side is (WP101)
  • the air pressure of the suction port 99 is (P99).
  • the condition for enclosing the detention electrolyte aqueous solution 102 through the pores of the water-repellent porous fluororesin membrane 100 and enclosing it in the envelope-type sealed container 55 is WP102 ⁇ WP55 + WP100.
  • the negative pressure condition for sucking through the suction port 99 for retaining the aqueous electrolyte solution is WP101 ⁇ P99 ⁇ ⁇ WP101.
  • WP100 WP101. Therefore, first, in the state where the negative pressure equal to or higher than the water pressure resistance ( ⁇ WP101) of the water repellent porous fluororesin film 101 is maintained on the suction port 99 side of the electrolyte aqueous solution retaining device 98 shown in FIG. 6 starts pressurization of the electrolyte solution 102 for detention and simultaneously converts the pressure of the suction port 99 to (+ WP101), and encloses the electrolyte solution 102 for detention in an envelope-type sealed container 55.
  • FIG. 40 shows an electrolyte aqueous solution pressure type secondary battery.
  • the structure of the electrolyte pressurization type secondary battery 103 shown in FIG. 40 (A) is such that the aqueous electrolyte solution 14 is sealed in an envelope-type sealed container 55 using the water-repellent porous fluororesin film 11 as an isolation film.
  • a potential (V) appears as shown in FIGS.
  • the weight 104 is removed, the potential (V) becomes 0V.
  • an aluminum plate is used for the negative electrode plate 36 of the negative electrode chamber 52, and a metal chloride film 63 such as AlCl 3 , ZnCl 2 , MgCl 2 is used for the positive electrode plate 38 of the positive electrode chamber 53.
  • a metal chloride film 63 such as AlCl 3 , ZnCl 2 , MgCl 2 is used for the positive electrode plate 38 of the positive electrode chamber 53.
  • the weight 104 was removed and charging was completed.
  • the concentration of the aluminum chloride aqueous solution inside the envelope-type airtight container 55 is 23%, and in principle it can be charged up to 10%.
  • the weight 104 is removed and left unattended, and one month later, when the electrolyte pressurization type secondary battery 103 is pressurized again with the weight 104, an electromotive force of 3.5V is shown. Showed 0V. Even if the addition and release of the weight 104 were repeated, there was no change in the concentration of the aluminum chloride aqueous solution inside the envelope-type sealed container 55, and it was proved that self-discharge did not occur inside.
  • FIG. 41 shows a laminated caustic soda secondary battery.
  • an aqueous caustic soda solution is used for the electrolyte
  • air is used for the positive electrode
  • carbon fibers are used for the negative electrode
  • sodium is deposited in the carbon voids during charging.
  • the laminated caustic soda secondary battery 106 shown in the cross-sectional view of FIG. 41A has a structure in which an envelope-type sealed container 55 is sandwiched between a negative electrode chamber 52 and a positive electrode chamber 53, and both surfaces of the envelope-type sealed container 55 are water-repellent porous.
  • a bag made of porous fluororesin 11, the electrolyte aqueous solution 14 enclosed inside is 1-8 normal caustic soda, and the negative electrode chambers 52 and 57 are inside or on the surface of the Na plate-like electrode or carbon gap electrode plate.
  • This is a negative electrode chamber in which Na is adsorbed in the gap and the periphery of the negative electrode is surrounded by the resin film 61, or the oil 22 is contained inside the negative electrode.
  • the oxygen electrode in the positive electrode chamber 53 adsorbs air to the carbon gap plate electrode (activated carbon) 58 and assists charging between the water repellent porous membrane 11 and the carbon gap plate electrode (activated carbon) 58.
  • a positive electrode (mesh electrode) 56 is disposed to eliminate the heat generated by the carbon gap plate electrode (activated carbon) 58, and the power is provided with a collector electrode plate 64 on the back surface of the carbon gap plate electrode (activated carbon) 58.
  • the battery is surrounded by a resin film 61 and shielded from the outside by surrounding the laminated caustic soda secondary battery 106, and the electrolyte aqueous solution 14 in the envelope-type sealed container 55 is weighted 104.
  • the secondary battery is charged in a pressurized state, and when the charging is completed, the pressurized aqueous electrolyte solution 14 is released to maintain the charged state, and during discharging, the electrolytic aqueous solution 14 is pressurized to start discharging.
  • the aqueous solution of caustic soda has a high solubility in water and is 50% at room temperature.
  • a 50% aqueous solution of caustic soda is sealed in an envelope-type sealed container 55 made of a water-repellent porous fluororesin film 11, the negative electrode chambers 52 and 57 are surrounded by a resin film 61, and oil is cored.
  • the outside air-shielding negative electrode chamber 57 and the positive electrode chamber 53 have a structure sandwiched between envelope-type sealed containers 55 made of a water-repellent porous fluororesin film 11.
  • the upper portion of the caustic soda battery 106 is pressurized with a weight 104 comparable to the water pressure resistance of the water-repellent porous fluororesin film 11, and in this state, the charging auxiliary positive electrode 56 and the outside air shielding negative electrode chamber 57 After charging for 60 minutes at 10 A between the gap plate electrodes made of carbon, the weight 104 was removed, and the charging was completed. At this time, the concentration of the caustic soda aqueous solution inside the envelope-type airtight container 55 is 43%, and in principle it can be charged up to 10%.
  • FIG. 42 shows the structure of a redox capacitor.
  • the principle of operation is that a ferroelectric capacitor in which a very thin oxide film is formed on the surface of a metal plate in advance is disposed on both positive and negative electrodes, and the positive electrode and the negative electrode are structurally the same.
  • C 1 of the equivalent circuit shown in FIG. 42B is the negative electrode chamber 52, and as shown in the cross-sectional explanatory view of FIG.
  • a very thin redox capacitor oxide film 109 is formed on the surface to form a ferroelectric capacitor.
  • the positive electrode chamber 53 and the negative electrode chamber 52 have the same structure and the same material.
  • An envelope-type sealed container 55 is sandwiched between the pair of positive and negative electrode chambers 52 and 53 via the water-repellent porous film 11.
  • the equivalent circuit of the water-repellent porous film 11 is a low dielectric constant capacitor (C 2 ) 42 (B) and a switch (S).
  • C 2 low dielectric constant capacitor
  • S switch
  • the inside of the envelope-type airtight container 55 is filled with a void-containing conductive material 78 made of carbon fiber, metal fiber or the like, and the void is impregnated with an electrolyte aqueous solution (dilute sulfuric acid) 79 for electrochemical capacitors.
  • dilute sulfuric acid 79 enters the pores of the water-repellent porous membrane 11, and the switch (S) is turned on in terms of electrical circuit, and the positive electrode chamber and the negative electrode
  • the chamber is short-circuited by a void-containing conductor 78 made of carbon fiber, metal fiber, or the like inside the envelope-type hermetic container 55, and two high-dielectric constant capacitors (C 1 ) are charged and discharged in series.
  • the pressurization of the aqueous solution 14 is released, the two low dielectric constant capacitors (C 2 ) and the two high dielectric constant capacitors (C 1 ) are connected in series to maintain power storage.
  • the electrolyte aqueous solution 14 When the electrolyte aqueous solution 14 is not pressurized, the electrolyte aqueous solution 14 does not enter the pores of the water-repellent porous membrane 11 and thus is a low dielectric constant capacitor (C 2 ). The electrolyte aqueous solution enters the pores of the porous membrane 11 and the switch (S) is turned on in terms of electrical circuit.
  • the positive electrode chamber and the negative electrode chamber are connected via a water-repellent porous membrane sealed container (envelope type) 55.
  • the redox capacitor device uses aluminum (Al) for the redox capacitor metal plate 108 and aluminum oxide (Al 2 O 3 ) for the redox capacitor metal oxide film 109.
  • FIG. 43 selectively collects base metal elements such as group 1 elements Na, K, Li and group 2 elements Mg, Ca, Sr, Ba from mixed salt aqueous solutions such as seawater, salt lake water, hot spring water, and industrial wastewater.
  • base metal elements such as group 1 elements Na, K, Li and group 2 elements Mg, Ca, Sr, Ba from mixed salt aqueous solutions such as seawater, salt lake water, hot spring water, and industrial wastewater.
  • the first step is to electrolyze the waste liquid (concentrated salt water) after dehydration by heat or reverse osmosis membrane method, or after electrolyzing seawater to produce hydrogen.
  • the solubility of the base metal chloride varies greatly depending on the element, and the solubility tends to increase as the solution temperature increases.
  • a plurality of base metals It is a device that selectively recovers single elements from elemental salts.
  • FIG. 44 is a schematic diagram of a caustic soda fuel cycle. It is the present invention that attempts to implement this fuel cycle offshore. Energy resources, material resources and the sea are treasures of resources. As described in Non-Patent Documents 3 and 4 by the present inventor, 70.8% of the entire earth is ocean, 3.5% of seawater is salt, and 2.18 g of NaCl is contained in 1 liter of seawater. It is. This sodium (Na) is the energy source that will replace the next generation of fossil and nuclear fuels. Hydrogen fuel made from sodium is a clean energy source that emits neither CO 2 nor radioactivity, and there is no worry of depletion, and it is not affected by the hegemonism and the political situation of the resource-producing countries so far. Can be created.
  • raw material location is more desirable than consumption location.
  • the power for processing the raw material is adjacent to the raw material collection site. Therefore, the offshore factory 110 is floated on the sea, and the seawater just below is used as a raw material, and the power of the processing is offshore wind power generation or solar power generation, or the buoyancy gravity power generation apparatus disclosed by the present inventor in Patent Documents 19 and 20 31 is reciprocated between the sea floor and the sea surface using natural energy such as generating buoyancy gravity that can generate about 1000 times the amount of wind power, and the hydrogen production device 86 shown in FIG. Hydrogen is produced, and caustic soda and hydrochloric acid or chlorine are produced by the caustic soda production apparatuses 90 and 91 shown in FIG.
  • hydrogen and caustic soda are also produced at the seaside factory 111 by using surplus power and late-night power at seaside thermal power plants and nuclear power plants. Since this caustic soda has a melting point as low as 318 ° C. as shown in FIG. 16, it is provided with positive and negative electrodes for the caustic soda melted by the heater in the hydrogenation base metal production apparatus 97, and a reverse voltage is applied to the hydrogen gas.
  • Sodium hydride 49 is produced by reacting negative ions with positive ions of sodium. Moreover, since sodium hydride is produced by an ionic reaction, the power consumption is low, and as shown in FIG.
  • the specific gravity of sodium hydride is 0.92, which is less than the specific gravity of caustic soda molten salt 2.13, and sodium hydride. Since the melting point of this material is 800 ° C., which is higher than the melting point of caustic soda 318 ° C., the specific gravity can be easily selected by floating on sodium hydride.
  • the sodium hydride 49 produced here is inserted into the hydrogen generator 112 and water is poured, hydrogen is generated twice as much as the hydrolysis reaction with metallic sodium. The hydrogen produced here is sent by pipeline to thermal power plants and hydrogen stations.
  • the waste (by-product) caustic soda 31 produced by the hydrogen generator 112 is used as a raw material for the base hydride production apparatus 97, and sodium hydride 49 is produced again.
  • This is not a nuclear fuel cycle but a caustic soda fuel cycle.
  • a part of the caustic soda produced by the caustic soda manufacturing apparatuses 90 and 91 is used as an in-vehicle battery or a power storage battery as the laminated caustic soda battery shown in FIG.
  • a sodium hydroxide hydride fuel cycle system for building a hydrogen society that does not rely on fossil fuels, such as a hydrogen vehicle that does not carry a hydrogen cylinder, can be obtained by immersing sodium hydride in oil and mounting a small hydrogen generator 112 onboard.
  • FIG. 45 is a schematic diagram of a hydrolysis reaction control device.
  • the water-repellent porous fluororesin sealing bag 115 containing the chemical 116 is placed inside the hydrolysis reaction control device 114, and water 88 is infiltrated into the water from the outside of the water-repellent porous fluororesin sealing bag 115 to add water. It can be used for gas generation by decomposition, heat generation, endotherm or dissolution reaction.
  • the most prominent phenomenon in the present invention is a group 1 element, such as Na, K, and Li.
  • These chemicals 116 are inserted into a water-repellent porous fluororesin sealing bag 115, and water is supplied with a differential pressure greater than the water pressure resistance. When infiltrated, hydrogen is generated.
  • the fluororesin is corroded by these Group 1 elements and deteriorates.
  • the oil such as light oil
  • the fluororesin is water. Is lipophilic and Na, K, Li, etc. are not in direct contact with the fluororesin inside the water-repellent porous fluororesin sealing bag 115, so there is no fear of deterioration.
  • sodium bicarbonate and citric acid (1: 1) are inserted as the chemical 116, carbon dioxide (CO 2 ) is generated.
  • the buoyancy gravity power generation device 113 disclosed by the present inventors in Patent Documents 19 and 20 (FIG. 44). Can be used as a gas source for obtaining buoyancy when the water depth is shallower than 1300 m. If calcium oxide (CaO) and aluminum (Al) are inserted as chemicals 116, 2CaO + 2Al + 4H 2 O ⁇ 2Ca (OH) 2 + 2Al + 2H 2 O + 63.3 kJ / mol ⁇ 2CaO + Al 2 O 3 + H 2 +390.1 kJ / mol Since the high temperature and hydrogen can be obtained at the same time, the weight of these chemicals is used as a weight when the submersible sinks to the deep seabed, and the deep seafloor seawater is used as a water source to generate hydrogen and the heat generated simultaneously.
  • CaO calcium oxide
  • Al aluminum
  • the gas By further increasing the volume of the gas, it can be used as a buoyancy gas for submersibles. This heat can be used as a buoyant agent by sublimating dry ice on the deep sea floor deeper than 1300m. If urea ((NH 2 ) 2 CO) is inserted as the chemical 116, ammonia and carbon dioxide can be obtained as (NH 2 ) 2 CO + H 2 O ⁇ 2NH 3 + CO 2 . If carbide (CaC 2 ) is used, acetylene gas can be produced as CaC 2 + 2H 2 O ⁇ Ca (OH) 2 + C 2 H. Non-electrolytic sugar, seasonings, nutrients, medical drugs, or the like may be inserted as the chemical 116 to cause a dissolution reaction with the water 88.
  • FIG. 46 is a schematic diagram of a water and nutrient supply device for hydroponics.
  • the nutrient replenishment device 121 is a device that intermittently supplies water and nutrients controlled by water pressure to plants 119 such as vegetables and fruit trees in plant factories and vegetable factories, and is a chemical spraying water (bag or tube made of water repellent porous resin) 120.
  • plants 119 such as vegetables and fruit trees in plant factories and vegetable factories
  • a chemical spraying water (bag or tube made of water repellent porous resin) 120 are connected by an aqueous solution replenishment pipe (hose) 118, and the nutrient for replenishment 121 such as fertilizer and water is delivered to a desired location continuously or intermittently by the pressure application tool 6 as necessary in the control room 122 of the plant factory.
  • Efficiently supplies moisture and nutrients (fertilizer) to the roots of plants, and can suppress root rot and overnutrition caused by excessive water supply.
  • FIG. 47 is a schematic view of an endoscopic medical device.
  • the catheter 123 is inserted into the organ, and the inside of the capsule inserted into the organ is aspirated (negative pressure) or pressurized (positive pressure) with the pressure applicator 6, and the drug is applied to the affected area. It is possible to transfer the nutrient solution or heat the affected part.
  • the nutrient and medicine 116 are transferred to the water-repellent porous fluororesin sealing bag 115 and the solution is pressurized (positively charged) through the catheter 123.
  • FIG. 47C is a schematic diagram of a thermotherapy capsule 125 that kills cancer cells. Cancer cells are the weakest at temperatures of 39-43 ° C. Although it is a relatively low temperature comparable to the bath temperature, it is difficult to heat the affected part directly at a constant temperature for a long time. Therefore, a preliminary experiment was conducted on the desk.
  • a water-repellent porous fluororesin sealing bag 115 containing a hydrolysis exothermic agent 124 is inserted into a capsule 125 enclosing water 88, and the inside of the water-repellent porous fluororesin sealing bag 115 is sealed with a catheter 123. If the water pressure is sucked (negative pressure) by the differential pressure, the water 88 inside the capsule 125 penetrates into the water-repellent porous fluororesin sealing bag 115 by the negative pressure and reacts with the hydrolysis exothermic agent 124. The fever is generated, and the internal water 88 of the capsule 126 is heated by this heat, and if it is a clinical experiment, the affected part where the cancer cells reside can be directly heated.
  • This negative pressure was repeated in a pulse manner, and water was supplied to the hydrolysis exothermic agent 124 at this negative pressure, and the reaction of the hydrolysis exothermic agent 124 and water 88 maintained a temperature of 39 to 43 ° C. for about 30 minutes.
  • the calorific value of the hydrolysis exothermic agent 124 used here is 65 kJ / mol for CaO, 18.1 kJ / mol for P 2 O 3 + ZnCl 2 + Ba (OH) 2 , 12.6 kJ / mol for NaOH, 39.5 kJ / mol for KOH.
  • base metals / air secondary batteries such as lithium, sodium, potassium, calcium and the like whose base electrolyte is an aqueous solution and base metal / halogen secondary batteries can be manufactured, which is highly economical.
  • metallic sodium obtained from seawater is an important alternative to petroleum, as a resource that generates electricity without fear of depletion and without local distribution, and as a base metal aqueous solution secondary battery with high power generation efficiency. Can contribute.
  • Negative electrode plate Al, Mg, Zn
  • Positive electrode metal chloride used in the negative electrode
  • Activated carbon grain or carbon fiber 68
  • Bromine liquid 69
  • Iodine grain 70
  • Graphite plate 71
  • Aluminum (Al) negative electrode plate 72
  • Dielectric solution oil-based, water-based
  • Plate electrode 74
  • Electric double layer electrode 75
  • Redox capacitor electrode 76
  • Hybrid capacitor electrode 77
  • Enclosed dotted line portion 78 ... Conducted conductive material (metal fiber, carbon fiber, activated carbon) 79.
  • Electrolyte capacitor electrolyte aqueous solution (dilute sulfuric acid) 80 ... dilute caustic soda (electrolytic aqueous solution for electrochemical capacitors) 81 ... stainless fiber 82 ... carbon fiber 83 ... distance between electrodes (d) 84 ... Subsurface hydrogen production device 85 ... Multi-stage subsurface hydrogen production device 86 ... Subsurface lake (undersea) hydrogen production device 87 ... Square column type sealed container 88 ... Fresh water (water) 89 ... Simplified hydrogen production apparatus 90 using water pressure ... Apparatus 91 for directly producing caustic soda and chlorine gas from aqueous sodium chloride solution ...
  • Equipment 92 for directly producing caustic soda and hydrochloric acid from aqueous sodium chloride solution Base metal production apparatus 93 ... Primary pressure regulating valve (Gas permeable electrode chamber) 94 ... Suction port (up to water pressure or below with vacuum pump) 95 ... A device 96 for directly producing base metal elements and hydrochloric acid ... A base metal production device 97 using a virtual negative electrode ... A hydrogenated base metal production device 98 ... An electrolyte aqueous solution retention device 99 ... A suction port (vacuum pump) 100 ... water-repellent porous membrane (11a) 101 ... Water-repellent porous membrane (11b) DESCRIPTION OF SYMBOLS 102 ...
  • Electrolytic aqueous solution 103 Electrode pressurization type secondary battery 104 ... Weight 105 ... Air intake 106 ... Stacking type caustic soda battery 107 ... Redox capacitor 108 ... Redox capacitor metal plate 109 ... Redox capacitor metal oxide film 110 ... Offshore Factory 111 ... Rinkai Factory (Rinkai Power Plant) DESCRIPTION OF SYMBOLS 112 ... Hydrogen generator 113 ... Buoyancy gravity power generation device 114 ... Hydrolysis reaction control device 115 ... Water-repellent porous fluororesin sealing bag 116 ... Chemical 117 ... Gas 118 ... Pipe for aqueous solution replenishment (hose) 119 ... Plants (vegetables, fruit trees) 120 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Thermal Sciences (AREA)
  • Otolaryngology (AREA)
  • Toxicology (AREA)
  • Hybrid Cells (AREA)
  • Cell Separators (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

 電気化学反応装置は、第1の主面とこの第1の主面と反対側の第2の主面を有する正極と、第1の主面とこの第1の主面と反対側の第2の主面を有する負極を有する。、正極と負極とは、前記第1の主面同士が対面し、互いに離間配置されてそれらの間にスペースを規定している。前記スペースは導電性液体および/または誘電性液体で満たされている。正極を液体から隔離する第1の隔離具が正極の第1の面に配置されており、負極を前記液体から隔離する第2の隔離具が負極の第1の面に配置されている。第1の隔離具は複数の細孔を有する第1の撥液性多孔質膜を含み、第2の隔離具は複数の細孔を有する第2の撥液性多孔質膜を含む。装置は、さらに、液体を加圧して第1および第2の撥液性多孔質膜の細孔を液体で満たさせ、それにより正極および負極が関与する電気化学反応を生起させる圧力印加具を備える。

Description

撥液性多孔質膜を備えた電気化学反応装置
 本発明は、撥液性多孔質膜の耐液圧を利用した、電解精製装置、実用電池およびキャパシタを含む電気化学反応装置に関する。
 周期表第1族、第2族および第13族に属する卑金属元素は、水に触れると、イオン化し、即座に自己放電を起こし、水素を発生する。このため、これら金属にとって水との接触は厳禁で、これらの金属を析出させる電解精製として溶融塩電気分解以外製造方法は無い。実用電池においても、水との反応が著しい周期表第1族元素および第2族のCa、Ba、Srについては、電解質水溶液を用いた一次および二次電池は存在しない。また、周期表第2族元素のうちのBeおよびMgあるいは第13族元素であるAlについては、一次電池はあるが、二次電池はない。二次電池としては、第1族元素を用いたリチウムイオン電池やナトリウムイオン電池には非水電解質溶液(有機電解質)や固体電解質が開発され、さらに第1族元素であるナトリウムを用いる電池には、それを溶融塩電解質として用いた、300℃以上の高温で動作するナトリウム硫黄電池(NS電池)が開発されている。
 実用電池では、電極材料が軽く、かつ起電力が高く、しかも放電容量が大きいものが望まれる。このため周期表第1族元素は理想的な負極材料であるが、自己放電を回避することは難しい。これら実用電池や電解精製あるいはキャパシタが自己放電を引き起こす原因は、負極および正極が同一電解質水溶液内に存在するためである。そこで、電解質と電極を分離し、自己放電を抑制し、かつ周期表第1、第2および第13族に属する卑金属元素と水とを遮断するための技術開発が急がれる。
 電力貯蔵用キャパシタ(コンデンサ)では、大容量で、かつ急速充放電が可能なものが望まれる。これを満たすキャパシタとして、電気化学キャパシタが理想的であり、電気二重層キャパシタ、レドックスキャパシタ、ハイブリッドキャパシタがこれに該当する。これらのキャパシタの欠点は漏れ電流や自己放電が高いことである。そこで、この漏れ電流を抑制するための技術開発が急がれる。
 自己放電とは負極の金属が溶解すると同時に、発生した電子と水素イオンが反応して水素が生成し、電子が正極に移動せず電流が流れない現象のことである。一般に、電解質水溶液中で自己放電を抑制する方法として、特許文献1は、アルカリ蓄電池用正極上にニッケル基孔体を設け、そのニッケル基孔体にニッケル及び添加物を含む活物質粒子を充填することにより自己放電を減らすことを開示している。特許文献2は、アルカリ蓄電池電極の対向面積の増大を図っても実反応面積が減少しない電極形状を設定し、自己放電を抑制する方法を開示している。特許文献3は、スルホン化ポリオレフィン系樹脂繊維を主成分として含む繊維からなるシートと、スルホン化以外の親水化処理がなされたシートとの積層体をセパレータとして使った、自己放電が少なく容量保持率に優れた長寿命のアルカリ電池を開示している。特許文献4は、微結晶シリコン薄膜及び非晶質シリコン薄膜などの、リチウムを吸蔵・放出する活物質薄膜が中間層を介して集電体上に設けられたリチウム電池用電極を開示している。特許文献5は、リチウム電池における電極活物質として、多孔質チタン酸リチウムが、非水電解質の含浸性に優れ、充放電サイクル特性を高めることを開示している。特許文献6は、アニオンを吸蔵及び放出が可能な炭素系正極活物質を有する正極と、Naの吸蔵及び放出が可能な負極活物質であるSn、Znなどを有する負極を有するナトリウム二次電池を開示している。ナトリウムを溶融したナトリウム硫黄電池は溶融塩を形成するために300℃の雰囲気温度を必要とした。しかし、特許文献7は、ビスフルオロスルホニルイミド(FSI)をアニオンとし、アルカリ金属Mをカチオンとする溶融塩MFSIを2種以上含む溶融塩組成物を用いることにより雰囲気温度60~130℃の間で電池を動作させることを開示している。
 電解質と電極との間の隔離膜について、特許文献8は、孔径0.1μm以下のポリオレフィン微多孔膜は熱安定性があり、高容量/高出力電池のセパレータに好適であることを開示している。特許文献9は、シリカ、アルミナ等からなる鱗片状無機多孔膜を正、負電極またはセパレータに設けることにより、イオン伝導度を損なうことなく、電池性能を維持することを開示している。特許文献10は、非水系二次電池に使用する隔離膜が、塩素を含有した耐熱性多孔質膜、あるいは耐熱性樹脂と多孔質ポリオレフィンとの積層膜、又は耐熱性樹脂とフィラーとからなる層と多孔質ポレオレフィンの積層膜であることを開示している。
 撥水性多孔質膜の利用としては、特許文献11は、気孔率が60から90%で通気度が20秒以下であるフッ素系撥水性多孔質膜を固体高分子型燃料電池に用いることを開示している。特許文献12、特許文献13および特許文献14は、フッ素系撥水性多孔質膜に、結合エネルギーが128kcal/mol以上の原子と親水基を有する化合物の存在下でエキシマレーザー光を照射してフッ素系撥水性多孔質膜を製造する方法を開示している。さらに、特許文献15は、フッ素系撥水性多孔質膜の内孔を紫外線による光反応により、親水基で置換し、その親水性を呈する細孔内壁にドーパミン産生細胞、繊維芽細胞、コラーゲン増産細胞、幹細胞、髄核細胞、インシュリン産生細胞などを培養して、パーキンソン病、アルツハイマー病、糖尿病、骨軟化症などの患者のための三次元細胞培養素子を製作する方法を開示している。さらに、村原正隆らは、非特許文献1において、孔径33μmの撥水性多孔質フッ素樹脂フィルムの耐水圧は1500torrであるが、細孔内部を親水性に光改質して、耐水圧を20torrに降下させ、この改質フィルムを緑内障患者用房水調整弁に使用することを報告している。
特開平9-180714 特開2009-181710 特開2002-63890 国際公開WO 01/031724 特開2012-12261 特開2013-54987 特開2009-67644 特開2013-32535 特開2011-222129 特開2009-224097 国際公開番号WO 2007/80763 特開2005-253305 米国特許第6167497号 欧州特許第0644227号 特開2011-184260 特開2009-295789 特開2013-138050 特開2006-193612 特開2012-30637 特開2013-166406
Proceeding of SPIE Vol.4245, P.221-227 (2001) 電気二重層キャパシタと蓄電システム 日刊工業新聞社(1999) 再生可能エネルギーを考える《原発に有終の美を》パワー社出版(2011) "風力よ"エタノール化からトウモロコシを救え《風力発電による海洋資源回収と養生工場》パワー社出版(2007)
 周期表第1、第2および第13族に属する卑金属元素は、水に溶解すると、同時に発生した電子と、同時に水から電離した水素イオンとが反応して水素ガスを生成する。この水素ガスにより、卑金属(負極)で発生した電子は消滅し、負極から正極に電流が移動しなくなる。この現象を自己放電という。この自己放電を抑制した実用電池を生み出し、かつ水に溶解している卑金属元素から電気分解により卑金属元素を直接回収することが、本発明が解決しようとする課題である。
 電気化学キャパシタの内、電気二重層キャパシタやレドックスキャパシタまたはハイブリッドキャパシタなどに用いる電解質には、非特許文献2に開示されているように、強酸や強アルカリ水溶液が用いられる。特許文献16は、第1電極及び第2電極並びに第1セパレータ及び第2セパレータが扁平形状に巻き回された電気二重層キャパシタにおいて、巻芯を備えることにより両電極の面圧を一定以上に上げ、かつセパレータを厚くすることなく内部抵抗を抑え、漏れ電流を抑制することを開示している。特許文献17は、レッドックスキャパシタの電極基材をニッケルやステンレスからアルミニウムや銅に変更することにより内部抵抗を低減することを開示している。これら電気化学キャパシタの内部抵抗を抑えて漏れ電流を低減することが、本発明が解決しようとする課題である。
 金属の電解精製において、電解液中で所望の金属のみを負極に析出させる場合、イオン化エネルギーが水素のそれよりも小さく、水または酸に容易に侵される金属を卑金属元素といい、リチウム、カリウム、バリウム、カルシウム、ナトリウム、マグネシウム、アルミニウム、チタン、マンガン、亜鉛、クロム、鉄、カドミウム、コバルト、ニッケル、スズ、鉛などがある。これらのうち、初めに掲げたのものほど水と激しく反応する。後に掲げたものほど水とは反応しにくくなるが、酸とは反応する。しかし、マグネシウム、アルミニウムやチタンなどは空気中において化学的に安定な表面酸化皮膜を形成しやすく、このような皮膜が形成されると、その後は水の中でも高い耐食性を示すようになる。とくに周期律表第1族元素であるリチウム、カリウムまたはナトリウム、第2族元素であるバリウム、カルシウムまたはマグネシウム、第13族元素であるアルミニウムは、水と激しく反応するため、これら金属塩の水溶液電気分解は不可能で、これら金属の塩を高温で溶融し、この溶融塩(電解質)に電流を流す溶融塩電気分解法により電解精製が行なわれている。この溶融塩電気分解を水溶液電解質中で行わせることを見いだすこととが、本発明が解決しようとする課題である。
 一般に、充電できない電池を一次電池と言い、充電と放電が共にできる電池を二次電池という。これら電池は、少量の活物質を用いて、多くの電気量と高い起電力を供給できることが望まれる。電極電位差は、電極を構成する物質および電解質中のイオン濃度により異なる。水素イオン(H+)の電極電位差を±0Vとすると、Li=-3.045V > K=-2.925V > Ba=-2.925V > Ca=-2.840V > Na=-2.714V > Mg=-2.356V > Be=-1.84V > Al=-1.67V > Pb=-1.26V > Mn=-1.26V > Zn=-0.76V > Ni=-0.72V > S=-0.55V > Cr=-0.509V > Fe=-0.44V > Cd=-0.4V > Sn=-0.14V > Cd=-0.4V > Co=-0.28Vが負極材料であり、(H=±0V)以上のCu=+0.337V > O2=+0.401V > Tc=+0.4V > Ru=+0.46V > I2=+0.5346V>Rh=+0.758V > Ag=+0.7991V > Pd=+0.915V >Br2=+1.0874V > Ir=+1.16V > Pt=+1.19V > Cl2=+1.3583V > Au=+1.68V > F2=+2.87Vが正極材料である。実用電池の負極にはイオン化し易い金属が必要で、正極にはイオン化傾向が極めて小さい金属または酸化剤(ガス状または液体状の酸化剤を含む)が必要である。これらの電極電位を考慮して、電解質水溶液を用いた実用二次電池を開発することが本発明が解決しようとする課題である。
 電解精製あるいは実用電池における電解質の電気分解で生成する金属や金属化合物あるいはガスなどの負極生成物と正極生成物の混合を防止するために隔離膜(セパレータ)が必要である。この隔離膜が備えるべき要件としては、イオンは通過して、物質や電解質が通過しないことが最も重要である。隔離膜には、さらに、絶縁抵抗が大きく、酸やアルカリに強く、熱や振動に強く、機械的強度もあり、長寿命であることも求められる。従来、隔離膜としては、素焼き材料、固体電解質、濾紙などが使われてきた。この中で電解質水溶液と負極生成物を分離するにはアルミナなどのセラミック製固体電解質が相応しいが、これらセラミック製固体電解質は高温環境下でないと電解質として機能しない。固体の中で素焼き隔膜は電解質水溶液で使用できるが、素焼き内部に水溶液が自由に浸透するため、水分を遮断することはできない。濾紙も同様である。そこで、電極部と電解質水溶液を遮断し、さらに必要に応じて、イオンの出入を制御できる膜を開発することが本発明の課題である。
 本発明が課題を解決するための従来法と異なる点は、隔離膜としての撥水性多孔質フッ素樹脂膜を圧力スイッチとして用いることである。従来、水溶液電気化学反応では電解質水溶液の中に正負電極を設置していた。このため電気化学反応時には、電解質水溶液と電極との境界面で発生するガスによる絶縁現象を回避することが難しかった。そこで本発明では電解質水溶液に挟まれた正極および負極をそれぞれ撥水性多孔質膜で電気的に絶縁隔離し、電気化学反応を起こさせる時のみ電解質水溶液を加圧して、撥水性多孔質膜内部の細孔に電解質水溶液を充填させ、その加圧時のみ、絶縁体である隔離膜を導電体に変化させる電気回路のスイッチとしての役割を持たせることができる。とくに実用電池においては電解質水溶液を撥水性多孔質膜製袋に密閉し、該撥水性多孔質膜製袋を加圧しているときに充放電を行い、蓄電時は加圧を解除する。この加圧解除により、電極と電解質は絶縁され、自己放電や内部抵抗の増大は回避される。また電気分解(電解精製)においても電極全体が電解質水溶液と接触していないため、夫々の電極での生成物が再度電解質に溶け出す確率は少なく、かつ電極生成ガスが電極と電解質水溶液との間で起こす絶縁現象を回避することができる。また、撥水性多孔質膜によって隔離された電解質水溶液と油との境界面に網状の負電極を備え、電解質水溶液を加圧した状態で電解質水溶液を電気分解すれば、網電極の背面の油の中に負極生成物が析出する。ここで電解質に卑金属塩水溶液を用いれば、嫌水金属(水と激しく反応する周期表第1族および第2族元素)である卑金属元素を油の中で析出でき、しかも重液選別(比重選鉱)することができる。
 卑金属元素化合物と水の接触を絶つ最も簡便な方法は、卑金属元素の溶融塩の使用である。水が存在しない溶融塩は理想的な電解質液である。しかし、この溶融塩を作るためには、卑金属元素の塩を融点以上の高温に保つ必要がある。このための熱源の消費量が軽視できない。したがって、この塩の溶融温度を下げるために、他の金属塩を混合して混合溶融塩を作ることが広く行われている。特許文献15の、各混合塩と融点の関係を示す図2にもそれら混合塩と融点の関係が示されている。自然界に存在する常温で液体の元素は水銀と臭素だけであり、他の元素は常温で液体にすることはできない。もし、ここで、卑金属と卑金属塩電解質水溶液とを隔離した状態で電気分解できれば、電解精製や実用二次電池が可能になる。この隔離膜の開発こそが本発明の使命である。この隔離膜の必要十分条件は、当該隔離膜が電解液の保液性に優れ、電気抵抗が小さいことである。本発明では、この課題を解決するために、水溶液に対して撥水性を呈するフッ素樹脂膜を採用する。このフッ素樹脂膜の採用により電解質の保液性に優れていることは勿論のこと、電気抵抗もゼロに保つことができる。さらにこのフッ素樹脂膜として多孔質膜を採用するため、内部をイオン通過可能にすることができる。すなわち、この撥水性多孔質フッ素樹脂膜に耐水圧に等しい圧力で電解質水溶液を加圧すると、イオン透過性膜が実現する。この耐水圧の印加は電気抵抗ゼロ/導電の機械的スイッチの役割をする。
 したがって、電解精製や実用電池又はキャパシタの充電時および放電時には、電解質水溶液を耐水圧に等しい圧力で印加し、蓄電期間は加圧しないため、電解質の保液性は持続される。すなわち、蓄電時は正負極の活物質は絶縁された状態であり、活物質が反応しないため自然放電は皆無である。さらに隔離膜は材質がフッ素樹脂であるから高温下(約80℃)でも、耐アルカリ性、耐酸性、耐薬品性に優れている。しかも、機械強度と柔軟性、耐熱性に優れている。しかも充放電時に電解質水溶液側から圧をかけるため、稼動時は膜が電極に密着している。このように隔膜として撥水性多孔質フッ素樹脂膜を用いることが課題を解決する最善の方法であると考える。
 キャパシタ(コンデンサ)は誘電体が油などの絶縁体のみであれば正負両電極間の内部抵抗を無視できるが、誘電体と導電体とが電気的に並列や直列に組み合わされた等価回路を構成する場合には、内部抵抗が漏れ電流となる。とくに、電気二重層キャパシタやレドックスキャパシタまたはハイブリッドキャパシタなどの電気化学キャパシタにおいては、電極内部や両電極間の電解質による内部抵抗の増大が避けられない。その他に電解質が水系の場合には液漏れも起こる。そこで本発明では、蓄電時の液漏れ及び電流漏れを防止するために、撥水性多孔質フッ素樹脂膜からなる袋の中に強酸や強アルカリなどの電解質水溶液が封入させ、この撥水性多孔質フッ素樹脂膜からなる袋を正極及び負極からなる一対の電極で挟み、充放電時には撥水性多孔質膜の耐水圧を印加して、両電極面と電解質水溶液とを接触させ、かつ撥水性多孔質フッ素樹脂膜からなる袋の内部に金属繊維又は炭素繊維などの空隙を有する導電材料を電解質と一緒に封入することにより、電解質水溶液が加圧された状態にある充放電時には、電解質水溶液間の電気抵抗が小さく、電解質水溶液の加圧が解除された蓄電時には、撥水性多孔質フッ素樹脂膜の内孔部の電解質水溶液が排除されて、内部が空隙になるため、低誘電体として働き、自己放電が抑えられる。一方、充放電時は、電解質水溶液加圧により撥水性多孔質フッ素樹脂膜細孔内に電解質が充填され、導電性に変わり、電気二重層キャパシタあるいはレドックスキャパシタに高電荷の授受が行われる。
 撥水性多孔質膜については、非特許文献1のFig.6には、細孔径3μm、厚さ100μmの撥水性多孔質フッ素樹脂膜(ePTFE)の液が浸透し始める時点の膜の両側における圧力の差(差圧)を当該膜の耐水圧とすると、溶液を生理食塩水(BSS)としたときの耐水圧は300mmHgであり、その値以上では生理食塩水の流量が上昇することが示されている。そこで、この撥水性多孔質フッ素樹脂膜を電気絶縁膜と見なすと、膜の両側の差圧が耐水圧より低い場合には絶縁膜として働き、耐水圧において液の浸透が始まり導電膜として働く。この撥水性多孔質膜の耐水圧をイオン通過の圧力スイッチとして用いることが本発明の骨子である。特にフッ素樹脂は撥水性を呈するので、膜の両面での差圧が耐水圧未満では水溶液は多孔質膜の細孔内部に入らない。また、細孔径の大小により、あるいは電解質の塩濃度の大小により耐水圧が異なる。多孔質フッ素樹脂膜(細孔径3μm)の塩濃度と膜の両面での透過差圧の関係は、水(塩類を含まない;以下同じ)での耐水圧は430mmHg、塩化ナトリウム濃度が10%で330mmHg、20%で280mmHgと、電解質濃度が高くなると耐水圧は降下する。また多孔質フッ素樹脂膜(細孔径10μm)の塩濃度と膜の両面での透過差圧の関係は、水での耐水圧は130mmHg、塩化ナトリウム濃度が1%で7mmHg、2%で50mmHgと耐水圧は低い。この撥水性多孔質膜の耐水圧ON/OFFの操作を利用すれば、電解質水溶液中での電解精製や実用電池が可能になる。
 実用電池の負極材料の電位差は、Li=Li+=-3.045V、K=K+=-2.925V、Ba=Ba2+=-2.925V、Sr=Sr2+=-2.89V、Ca=Ca2+=-2.840V、Na=Na+=-2.714V、Mg=Mg2+=-2.356V、Al=Al3+=-1.67Vであり、それらの比重は、Li:0.54、K:0.86、Na:0.97、Ca:1.55、Mg:1.74、Sr:2.54、Al:2.6、Ba:3.51、Fe:7.87、Cu:8.96、Pb:11.35である。一方、電流供給量から見ると、3価のイオンを出すアルミニウム(Al)、2価のイオンを出すマグネシウム(Mg)、バリウム(Ba)、カルシウム(Ca)などである。さらに実用電池においては、蓄えられている電気量が、時間経過と共に徐々に減少する自己放電を低減させ、内部抵抗を低減させることが望まれる。さらに二次電池においては、充電時に水素が発生しないこと、充電時のオーム抵抗および分極が小さいこと、実用性からは、充放電後の再生状態が良く、繰り返し使用ができることが望まれる。しかし、これらの条件を全て満足する電極材は、不可能に近い。負極材を取って見ても、最も起電力が高いリチウムは水の存在で激しく反応するため水素を発生して自己放電が起き、電子の流れを阻害する。
 そこで本願発明では、理論上の発電効率を、負極のイオン化電位(V)、電流密度=電子価(I)、比重(g/cm3)として、便宜上VI/gと定める。金属をVI/gが高い順に列挙すると、Li=-3.045×1÷0.54=-5.64、Ca=-2.84×2÷1.55=-3.66、K=-2.925×1÷0.86=-3.40、Na=-2.724×1÷0.97=-2.81、Mg=-2.356×2÷1.74=-2.71、Al=-1.67×3÷2.6=-1.92、Ba=-2.925×2÷3.51=-1.67、Sr=-2.89×2÷2.54=-1.57、S(-2価)=-0.55×2÷2.07=-0.53、Mん=-1.1×2÷7.42=-0.3、Zn=-0.76×2÷7.12=-0.27、Pb=-0.13×2÷11.34=-0.23、Cr=-0.51×3÷7.2=-0.21、Fe(2価)=-0.44×2÷7.876=-0.11、Sn=-0.14×2÷7.28=-0.04、Fe(3価)=-0.04×3÷7.86=-0.015である。
 実用電池の正極には、イオン化傾向が極めて小さい金属または酸化剤(ガス状または液体上の酸化剤を含む)が必要である。金属としてはSb=Sb3+=+0.2V、 Bi=Bi3+=+0.28、Cu=Cu2+=+0.345、Hg=Hg2+=+0.793、Ag=Ag+=+0.808、Hg=Hg3+=+0.86、あるいは酸化気体または液体としてO2=OH-=+0.4V、Br2=Br-=+1.08V、Cl2=Cl-=+1.36V、F2=F-=+2.87、過マンガン酸塩、クロム酸類、硝酸類、ハロゲン、過酸化物、酸化物、金属塩類、酸素類、硫酸類などが相応しい。それらの比重は、Sb:6.69、Bi:8.8、Cu:8.93、Hg:13.59、Ag:10.5、O2:1.429、Br2(液体):3.14、Cl2:3.21、F2:1.696である。そこで理論上の発電効率を、正極のイオン化電位(V)、電流密度=電子価(I)、比重(g/cm3)として、VI/gが高い順に列挙すると、F2=+2.87×1÷1.696=+1.692、Cl2=+1.36×1÷3.21=+0.424、Br2=+1.08×1÷3.14=+0.344、O2=+0.4×1÷1.429=+0.28、Hg(3価)=+0.86×3÷13.59=+0.19、Hg=+0.793×2÷13.59=+0.117、Bi=+0.28×3÷8.8=+0.095、Sb=+0.2×3÷6.69=+0.09、Cu=+0.345×2÷8.93=+0.077、Ag=+0.808×1÷10.5=+0.077である。したがって、最高起電力が得られる理想的な電極の組み合わせは、負極にLi、正極にF2を用いることであり、その起電力は5.915V(=+2.87-(-3.045))である。かくして、正極で最も起電力が得られるのはフッ素ガス(F2=-2.87V)であるが、毒性が強いため、一般的には、酸素ガス(O2=-0.4V)が使われている。しかも、酸素(空気)/卑金属電池は、正極が空気なので、容量は無限である。しかし、この酸素/卑金属電池でも、負極材料に使われるマグネシウム(Mg)、アルミニウム(Al)、亜鉛(Zn)などは電極面が酸化して、負極表面に電気絶縁膜が形成され、電子の流れが阻止される。ところが、本発明の撥水性多孔質フッ素樹脂膜を用いれば、自己放電を抑制できるため、これら電極面の酸化を防止することができる。
 電解精製において、電解質を電気分解して、負極生成物として、1g当量(Eq)の金属を析出(分解)するのに必要な電気量は1ファラデ(F)=96500クーロンである(Eq=分子量(M)/イオンの価数(n))。1クーロンの電気量が1秒間流れる時の電流強度が1アンペアであるから、Aアンペアの電流がt秒間流れた時の通過電気量(Qクーロン)は、Q=Atであり、負極生成物として析出する金属の量(m)は、m=Eq×Q/96500=Eq×At/96500である(m:Q=Eq:96500)。
 実用電池に蓄えられるエネルギー量は電解精製に必要とした電力量と同値であるから、1秒間でm(g)を析出するために必要な電流(A)は、A=m×96500/Eq×tである。したがって、1時間に1kgを析出するに必要な電流(A)は、A=1000×96500/(Eq×3600)=26806/Eqである。
 したがって、実用電池の単位時間・単位重量当たりの放電容量(電池に蓄える重量エネルギー密度(W×時間(h)/kg)=電圧(V)×電気量(A×h)÷電極の密度(kg)=AVh/kg=W・h/kg)は26806×V×n/M[Wh/kg]で与えられる(V:起電力、M:反応物の質量数、n:価数)。実用電池にこの式を適用すると、各種卑金属負極材料及び各種ガス正極材料(酸素またはハロゲン)の組み合わせによる放電容量(Wh/kg)を図1に示す。ただし、正極材料のガス重量を無視(質量をゼロ)したときの放電容量を括弧内に記す。とくに卑金属/ハロゲン電池は起電力が高く魅力的である。例えば、Li/Cl2(16,888)>Li/Br2(15,815)>Li/I2(13,709)>Al/F2(13,522)>Al/Cl2(9,025)>Mg/Cl2(8,185)>Na/F2(6,515)>CaBr2(5,254)>Ca/Cl2(5,112)>Na/Br2(4,429)>K/F2(3,980)>Na/I2(3,788)>Mg/Br2(3,784)>Mg/I2(3,177)であるが、ハロゲンガスを扱うため、危険を伴い、取り扱いに注意を要す。その点、卑金属/酸素は正極として空気を用いることができるため、安全かつ軽量電池を提供できる。正極に酸素を用いた場合、電池の放電容量を多い順に列挙すると、Li/O2(11,680)>Be/O2(6,672)>Al/O2(6,165)>Mg/O2(6,067)>Ca/O2(4,343)>Na/O2(3,636)である。
 かくして、本発明は、まず、第1の側面に従い、第1の主面とこの第1の主面と反対側の第2の主面を有する正極;第1の主面とこの第1の主面と反対側の第2の主面を有する負極、ここで、前記正極と負極とは、前記第1の主面同士が対面し、互いに離間配置されてそれらの間にスペースを規定しており;前記スペースを満たす導電性液体および/または誘電性液体;前記正極の第1の面に配置されて前記正極を前記液体から隔離する第1の(溶液)隔離具(隔離手段)、ここで、前記第1の隔離具は複数の細孔を有する第1の撥液性多孔質膜を含み;前記負極の第1の面に配置されて前記負極を前記液体から隔離する第2の(溶液)隔離具(隔離手段)、ここで、前記第2の隔離具は複数の細孔を有する第2の撥液性多孔質膜を含み;および前記液体を加圧して前記第1および第2の撥液性多孔質膜の細孔を前記液体で満たさせ、それにより前記正極および前記負極が関与する電気化学反応を生起させる圧力印加具を備える電気化学反応装置を提供する。
 本発明の一つの態様において、前記撥液性多孔質膜は、フッ素樹脂、ポリプロプレン樹脂、またはポリエチレン樹脂で形成することができ、そして前記液体は、電解質水溶液であり、かつ液体を撥液性多孔質膜の耐液圧に等しい圧力で加圧することができる。
 他の態様において、前記撥液性多孔質膜は、フッ素樹脂で形成され、液体が油であり、かつ液体(油)を撥液性多孔質膜の耐液圧に等しい圧力で加圧することができる。
 さらに他の態様において、前記撥液性多孔質膜は多孔質炭素からなり、液体が溶融塩電解質であり得る。
 さらに、本発明の一つの態様において、前記第1の撥液性多孔質膜と前記第2の撥液性多孔質膜とは、一緒になって、一つの密閉容器を構成することができる。密閉容器の内部が前記スペースに相当し得る。また、他の態様において、前記第1の撥液性多孔質膜と前記第2の撥液性多孔質膜とは互いに別々の膜であり得る。また、正電極および負電極は、互いに対向する開口がそれぞれ撥液性多孔質膜で閉鎖された正電極室および負電極内にそれぞれ配置することができる。
 本発明による電気化学反応装置は、電気分解装置、一次電池、二次電池、およびキャパシタを含む。
 上記電気化学反応装置において、導電性もしくは誘電性液体に所定の圧力を印加することにより、各撥水性多孔質膜の細孔内に該液体が入り込み、各電極と該液体との接触が達成され、所望の電気化学反応(正極、負極が関与する)が生起する。そして、上記圧力を解放することにより、各電極と該液体との接触が解除される。すなわち、隔離膜は、所定の圧力印加の有無によって電気化学反応の生起/停止を行わせるON/OFFスイッチとして作用する。
 この撥水性多孔質膜(隔離膜)のON/OFFスイッチの原理を図2に示す。撥水性多孔質膜11で作られた密閉容器1を負極を収容する負極室3と正極を収容する負極室4とで挟み、電解質水溶液14を密閉容器1に収容する。そして、図2(A)に示すように圧力印加具6(例えば、円柱状錘)により電解質水溶液14を撥水性多孔質膜11の耐水圧未満の圧力で加圧する(図では、加圧しない)場合には撥水性多孔質膜11の細孔内に電解質溶液が浸入しないので、電圧計VMが0を示すように電気的に絶縁状態が確立する。これに対し、図2(B)に示すように電解質水溶液14に圧力印加具6により圧力をかけると撥水性多孔質膜11の細孔内に電解質水溶液が入り電圧計VMがプラス側に振れて起電力を示す。
 この撥水性多孔質膜は電気分野に限定しただけでも、電気分解装置や実用電池あるいはキャパシタ(蓄電器)に使うことができる(図3Aおよび図3B参照)。本発明の電気化学反応装置(電気分解装置や実用電池装置またはキャパシタ(蓄電器))において、所定の圧力(耐液圧)を液体に印加することにより充放電を行わせ、該圧力未満の圧力下で充放電を停止させる。こうして、撥液性多孔質膜(隔離膜)は、液体に耐液圧に等しい圧力を印加することによって細孔に溶液やイオンを通過させて、導電状態を生み出すためのスイッチ、すなわち電子ON/OFFスイッチの役割を担う。
 ここで、撥水(液)性多孔質膜の耐水(液)圧とは、撥水(液)性多孔質膜の圧入側(1次側)の圧力と出口側(2次側)の圧力との差圧であって、液体が当該多孔質膜の細孔内に浸入し得る最小の差圧をいう。一方の側が液体であり、他方の側が気体または液体である。液体とは電解質、非電解質などの水溶液、また油や純水などの誘電性液体、あるいは卑金属元素系溶融塩溶液である。気体は水溶液電気分解で負極または正極で生成する水素、酸素、塩素ガスあるいは溶融塩に圧入する水素ガスなどである。
 液体は、その電気的性質により、導電体と誘電体に区分できる。導電性液体には、電解質水溶液と溶融塩電解質があり、電解質水溶液は電気分解や電池または電気化学キャパシタに使用される。この場合、撥液性多孔質膜は、フッ素樹脂、あるいはポリプロプレン樹脂、ポリエチレン樹脂で形成することができ、上述したように、電子スイッチとして作用する。溶液が溶融塩導電体の場合には、多孔質炭素膜を溶融塩の隔離膜兼負電極として使用し、負電極側から水素ガスのマイナスイオンを溶融塩の正極側に移動させる過程で水素化金属を形成させる。他方、誘電性液体には、油系液体と水系液体があり、油系液体は負極生成物の回収あるいは油キャパシタ兼負極生成物の回収または油系キャパシタに用いることができる。とくに負極生成物の回収では、周期表第1族元素を水から分離して油の中で比重選鉱し、油キャパシタ兼負極生成物の回収では油側に電荷を与えて電解質水溶液と油との境界面を負電極面として油側で負極生成物を比重選鉱する。
 キャパシタのみに供する場合は、誘電率の高いニトロベンゼンや油を油系キャパシタとし、純水やギ酸などを水系キャパシタとして、キャパシタの構造は正極板、撥水性多孔質膜、誘電体溶液、撥水性多孔質膜、負極板の順に並べられ、充放電時は撥水性多孔質膜に誘電体溶液を耐液圧で加圧して撥水性多孔質膜内部が誘電体溶液で満たされ、蓄電時は誘電体溶液の液圧が解除されて、撥水性多孔質膜内部の誘電体溶液が除かれ、撥水性多孔質膜自身は低誘電率キャパシタとして働く。このように蓄電時は、高誘電率キャパシタが2個の低誘電率キャパシタで挟まれた3個直列のキャパシタ構造であり、充放電時には1個のキャパシタ構造を成している。
 一方、隔離膜が撥油性を呈する固体誘電体の場合には、とくにフッ素樹脂の場合には、水溶液中に油を混入させれば、フッ素樹脂は親油性を呈するので、フッ素樹脂面に油が吸着する。この性質を利用して、水系誘電体の中に微量の油を混入させ、フッ素樹脂の誘電体溶液側に極薄油層を形成させ、かつフッ素樹脂の反対面に電極を密着させて高誘電体を形成させ、電極間で電子移動を制御するアナログスイッチを用いた電気化学反応装置を提供することができる。
 本発明の電気化学反応装置において、前記撥水性多孔質膜が高分子樹脂からなる場合には、当該膜の耐水圧の圧力値を変化させる目的で、既存の多孔質膜の表面や細孔壁に撥水基あるいは親水基を導入するか、あるいは適宜細孔の直径寸法の異なる素材を選択し、あるいは電解質水溶液の塩濃度や液温を変え、あるいは該撥水性多孔質膜間に電位を与えることにより、電解質水溶液の水圧に応じて撥水性多孔質膜を通過できる電解質水溶液および/またはイオンの量を制御することができる。
 耐水圧を高くしたい場合には、撥水性多孔質膜の細孔径を大きくすれば良い。ただし細孔径を大きくすれば膜の機械的高度が弱くなる。そこで撥水性と撥油性を呈するフッ素樹脂を親水性に改質すれば水との濡れ性が増し耐水圧が低くなる。ところがフッ素系多孔質膜の両面が親水性に改質されてしまうと当該膜が水溶液とも電極とも濡れ性が増し電気的絶縁性の維持が損なわれる。特許文献12、特許文献13、特許文献14は、フッ素系撥水性多孔質膜に、結合エネルギーが128kcal/mol以上の原子と親水基を有する化合物の存在下でエキシマレーザー光を照射してフッ素系撥水性多孔質膜を製造する方法が、特許文献15はフッ素系撥水性多孔質膜の内孔を紫外線の光反応により親水基で置換して内孔壁に濡れ性を付与する方法が、非特許文献1は、孔径33μmの撥水性多孔質フッ素樹脂フィルムの耐水圧は1500torrであるが、細孔内部を親水性に光改質して、耐水圧を20torrに降下させることを記載している。さらに非特許文献1は電解質水溶液の塩濃度が高くなると耐水圧が下がることを開示している。さらに、特許文献18は、電解質水溶液の液温を高くすると耐水圧が下がること、あるいは該撥水性多孔質膜間に電位を与えて親水性を高くするエレクトロウエッティングをに開示している。このように水溶液の水圧に応じて該撥水性多孔質膜を透過できるイオンの量をアナログ的に制御できる。
 本発明の電気化学反応装置において、一つの態様によれば、撥液性多孔質膜(隔離膜)が海、塩湖、温泉地獄、鉱泉池、水溶液廃棄物貯蔵池、貯温槽、貯水池、用水、プール、大型水槽などの開放容器あるいは袋、チューブ、小型容器などの密閉容器あるいは該開放容器あるいは該密閉容器の中にさらに小さな密閉容器が挿入された状態で、前記スペース内の電解質水溶液が加圧により撥水性多孔質膜から滲み出て正極と負極間で電解質水溶液の電気化学反応が行われる。
 これら隔離具内の該電解質水溶液を圧力印加具で加圧することにより撥水性多孔質膜から滲み出て正極と負極間が電気的に結合し電解質水溶液の電気化学反応が行われる。この隔離具は図4に示すように、密閉容器と開放容器に区分できる。
 密閉容器を用いた化学反応装置(図4(A))とは、正負一対を成す電極と接する面が撥水性多孔質膜である袋やチューブあるいは小型容器などを指し、この密閉容器の中に電解質や誘電体などの溶液を封入して外側の任意の面に、図5の圧力印加具6に示すように直接加圧(図5(A))をするか、あるいは図5(B)該密閉容器内の溶液に連通管5を介してシリンダ(注射器)6やスポイトゴムやピペター7などで手動加圧をするか、または電動であるいはラチェット付加圧装置8で圧力を与えるか、または耐水圧に等しい圧力水頭が得られる高所に設置した貯水槽9と連通管5で繋ぎ該電解質水溶液の位置水頭(h)10を設定して溶液加圧を行う。
 図4(B)に示すように、開放容器11は、莫大な量の電解質溶液が満たされた海、塩湖、温泉地獄、鉱泉池あるいは水溶液廃棄物や電解質を貯蔵している貯蔵池、貯温槽、貯水池、用水、プールなどの水槽などである。一般に、海や湖など水面から深度が深くなると水圧は10メートルで約1気圧上昇する。これは当該水深における溶液の圧力に等しいので、この領域の隔離具を開放容器と見なし、これら莫大な量の電解質溶液の中に、撥水性多孔質膜を挟んで電極を配置した正極及び負極からなる一対の電極生成物回収室を、一定間隔を保って一定深さが得られる撥水性多孔質膜の耐水圧に等しい水圧まで沈めて電解質水溶液の直接電気分解を行う。
 開放容器の中に密閉容器を用いた化学反応装置とは、図4(C)に示すように、開放容器2の中に密閉容器1を挿入した構造体により、開放容器2内の水圧で密閉容器1を加圧して、密閉容器1に密着させた正及び負の電極室間で電気分解を行う。密閉容器1には一対の電極に密着した2枚の撥水性多孔質膜の他に少なくとも1枚の撥水性多孔質膜aが装着され、かつ密閉容器1内には硫酸や苛性ソーダ(水酸化ナトリウム)などの導電性が高い水溶液を入れておき、開放容器の水圧で撥水性多孔質膜aを通過した水又は電解質水溶液が供給されて密閉容器1で電気分解が行われる。この開放容器の代わりに大型の密閉容器の中に密閉容器1を挿入した二重容器構造体により、大型密閉容器内の水圧で密閉容器1を加圧して、密閉容器1に密着させた正及び負の電極間で電気分解を行うこともできる。この二重容器構造体からなる水素発生装置では海水などの電解質でない水からも効率よく水素製造ができるため湖や沼などの淡水または塩水あるいは鉱泉などの低濃度電解質水溶液の中に当該化学反応装置を挿入して水素を製造できることも本発明の特徴である。あるいは、前記撥液性多孔質膜からなる密閉容器内部に充填したガスを加圧して該撥液性多孔質膜の細孔から溶融塩に浸透させるための該ガスを圧入させるための圧力印加具を備える電気化学反応装置も提供される。
 次に、撥水性多孔質膜からなる中空密閉袋内部に電解質水溶液を注入する方法を説明する。撥水性多孔質膜の材質はフッ素樹脂、ポリプロプレン樹脂、ポリエチレン樹脂などであるが、最も耐薬品性が高く、耐熱温度が高い素材はフッ素樹脂である。図6に示すように、これら撥水性多孔質膜11からなる中空密閉袋内部1に電解質水溶液14を充填する方法として、中空の袋の中に電解質水溶液14を液注入シリンダ(注射器)6で直接注入する方法(図6(A))、撥水性多孔質膜11が水は通さないが気体は透過することを利用して、予め薬品などの溶質15が封入された中空密閉袋1を水蒸気雰囲気に置いて、溶質と加水分解や溶解反応を行い、内部に水を抑留する方法や予め薬品などの溶質が封入された中空密閉袋の内部を連通管で大気に開放した状態で密閉容器の中に挿入して、密閉容器内の水を耐水圧に等しい水圧で加圧して密閉容器内部に水を圧入して加水分解をさせて電解質水溶液を製造する方法(図6(B))、あるいは中空密閉袋の一方の撥水性多孔質膜11を吸引口94より真空ポンプにより耐水圧より低い陰圧で吸引して、密閉容器1内の電解質水溶液14を密閉容器内に抑留させるために、他方側の撥水性多孔質膜11から電解質水溶液14を圧入する方法(図6(C))、あるいは中空密閉容器の一方の壁面にアルコール13を塗布し、このアルコール塗布面から溶媒あるいは該電解質水溶液14を侵入させた後、自然放置または加温してアルコールを発散させることにより袋内に電解質水溶液を抑留させる方法(図6(D))などがある。このアルコール塗布方法に関しては、非特許文献1及び特許文献12には、水の表面張力は72.3dyn/cm、フッ素樹脂のそれは28.5dyn/cm、メチルアルコールのそれは22.3dyn/cmであり、多孔質フッ素樹脂の場合フッ素樹脂より表面張力が高い水は多孔質の細孔には浸透しないが、フッ素樹脂より表面張力が低いメチルアルコールは多孔質の細孔に浸透することが記載されている。一方アルコールは水と親和性が高いので、多孔質フッ素樹脂にアルコールを浸透させた状態でその上に水を載せると、アルコールが存在している時点のみ水が多孔質の細孔に浸透することも開示されている。
 図7に示すように電解質水溶液の電気化学反応に際し、正極および負極からなる一対の電極は、電池においては電極板からなり、電気分解装置においては電極生成物を回収する手段を備えた電極室からなり、キャパシタの場合は電極板からなる。
 電極が電池に供される場合には、電極板の負極が両性元素またはMgあるいは、第1族および第2族元素を除くイオン化傾向が水素より大きい金属元素であり、かつ正極が酸素またはフッ化グラファイトあるいはイオン化傾向が水素より小さい金属元素の場合には両電極は外気に開放された裸電極とされ、負極が第1族、第2族元素からなり、かつ正極がハロゲンまたはハロゲン化合物の場合には両電極とも外気遮蔽を施した電極室とすることができる。
 電極が電気分解に供される場合には、電極室を気体透過性電極室、油が充填される卑金属回収電極室、および水が充填される酸・塩基水溶液回収電極室に分類し、電極生成物が気体の場合には、両電極内部が金属または炭素からなる網状、繊維状、多孔質状あるいは粒状などの形状を呈する空隙電極あるいは該空隙電極の背面に隙間を有する構造の気体透過性電極室とされ、電極生成物が第1族、第2族または第13族元素からなる場合には、負極を油が充填される電極室構造とし、かつ負極生成物を重液選別するために該空隙電極の空隙部にあるいは該空隙電極の背面の隙間部に油を満たし、あるいは該油の背面に板電極を配置して誘電体キャパシタ及び供給電力貯蔵用媒体として併用するための油を満たした電極室(油充填電極室)とされ、水とのイオン反応により電極生成物が酸水溶液である場合には、正極板の前面に予め希酸を添加した水を満たした構造とし、あるいは電極生成物が塩基性水溶液である場合には負極板の前面に予め希塩基を添加した水を満たした構造の電極室(水充填電極室)であり、かつ両電極の水充填電極室には水の供給口と生成した酸性水溶液や塩基性水溶液の取出口および水充填電極室の上部には生成ガス採集口を備えた構造であるか、あるいは正極で生成されるハロゲン、亜流酸、亜硝酸などの気体を水に吸収させて回収するために炭素からなる該空隙電極の空隙や背面の隙間に水を循環させる構造を有する水充填電極室とすることができる。
 電極がキャパシタに供される場合には、正負電極板が裸電極であり共に撥水性多孔質膜を介して油系または水系誘電体を挟む単板型であるか、あるいは活性炭電極の表面に有機分子を吸着させた電気二重層型であるか、あるいは金属酸化物、導電性ポリマー、活性炭などのレドックス型電極であり撥水性多孔質膜で隔離された両レドックス電極間は電解質が充填した導電繊維で短絡されている。このドレックス構造により正負両電極板の酸化膜に高電荷を蓄えることができ、かつ撥水性多孔質膜製密閉容器(袋)内部の酸やアルカリなどの電解質水溶液溜めには導電繊維が封入されているので内抵抗を軽減することができる。
 一つの態様において、電気化学反応装置は、図8に示す等価回路で示すことができる。この回路を「村原サーキット」と命名する。この電気化学反応装置は、図8の等価回路に示すように、電解質水溶液面と油面との境界面を負電極として電解質水溶液を電気分解して、陰極生成物を油層内で析出させ、かつ重液選別(比重選鉱)するものであり、電気抵抗(R)なる電解質水溶液14を電気分解して油充填電極室16内に卑金属を析出させるための仮想負電極19を含む。仮想負極19は油面と水面の境界を指すが、この境界面は油面と水面が地軸に対して鉛直の場合は成立するが、それ以外の場合は撥水性多孔質膜を利用する。この撥水性多孔質膜11をスイッチ(S)と考えて、撥水性多孔質膜11に耐水圧に等しい電解質水溶液の圧力が印加されたときのみスイッチ(S)は短絡して、電気分解が行われる。より詳細には、油充填電極室16を構成する油層の油面と電解質水溶液面との境界面を負電極19と想定し、油層を油キャパシタ(C1+C2)、電解質水溶液14を水抵抗器(R)とした電気回路において、油層と電解質水溶液の境界面を油キャパシタの負極19とし、油キャパシタの正極17と負極19の間に中間電極18を備え、正極17と中間電極18の間を誘電体1(C1)として中間電極18と負極19の間を誘電体2(C2)とするものである。
 ここで、本発明の特徴の一つは、油層と電解質水溶液の境界面が負極の働きをすることである。すなわち正極17と中間電極18の間の誘電体1(C1)に電圧(E)20を印加し続け、かつ油キャパシタの正極17を電解質水溶液14の正極とした状態で撥水性多孔質膜11のスイッチ(S)が短絡された時のみ直列回路が形成されて油キャパシタ(C1+C2)に蓄えられた電荷が電解質水溶液14に移り、分解電圧以上の電圧20を与えて誘電体2(C2)内の油層で負極生成物を重液選別する。ここで誘電体1(C1)を固定キャパシタに代替させ、誘電体1(C1)に電荷を与え、同時に誘電体2(C2)の負極19と誘電体1(C1)の正極16との間に水抵抗器(R)としての電解質水溶液14を接続して分解電圧以上の電圧20を与えて誘電体2(C2)内の油層で負極生成物を重液選別することもできる。
 上記油面と電解質水溶液面との境界面を負極とした油キャパシタの概念図を図9に示す。図9(A)は撥水性多孔質膜を用いた仮想負極に関する構造図で、油と電解質水溶液との界面は地軸に左右されない、図9(B)は仮想負極が地軸と鉛直面を成し、油の比重が1未満の場合の構造図、図9(C)は仮想負極が地軸と鉛直面を成し、油の比重が1を超える場合の構造図である。
 図9(A)に示すように、仮想負極(油面と電解質水溶液面との境界面)19が地軸に対して任意の傾きを成す場合には、油面と電解質水溶液面19との間に撥水性多孔質膜11を挿入して電解質水溶液14を加圧した時のみ仮想負極19を形成させ、仮想負極19が地軸に対して鉛直面である場合には撥水性多孔質膜11は必ずしも必要とせず、かつ油の密度(比重)が電解質水溶液14の密度(比重)より低い場合(比重1未満)には該電解質水溶液14の上部に油層23を形成させ、油の密度が電解質水溶液14の密度より高い場合(比重1超)には該電解質水溶液14の下部に油層24を形成させ、かつ誘電体1(図8(A)のC1)に電荷20を与え、同時に該誘電体2(図8(A)のC2)の負極19と該誘電体1の正極17との間に電解質水溶液14を接続して分解電圧以上の電圧20を与えて該誘電体2(図7(A)のC2)内の油中で重液選別された負極生成物を回収口26から取り出す。
 一つの態様において、海や塩湖などの低濃度電解質水溶液の海面下の水頭位置に正負一対の気体透過電極室を降下させ、海水から水素及び酸素あるいは塩素を直接生成させることができる(水素製造装置;図10参照)。一般に海水面や水面から10m沈めれば約1気圧水圧上昇する。この自然現象を利用し、気体透過性正負電極室を撥水性多孔質膜の耐水圧の水圧まで沈めれば、人為的な圧力印加の必要は無い。例えば両電極面を僅かに隔てた正および負一組の電極室を海面下の撥水性多孔質膜の耐水圧が得られる深さまで沈め、両極に電位を与えると水素と酸素または塩素とを生成することができる。そこで、図10(A)に示すように、開放容器2である海や塩湖などの低濃度電解質水溶液(塩化ナトリウム水溶液)14を撥水性多孔質膜11を介して一対の負極電極室3と正極電極室4とに圧入させる。この気体透過電極室3,4を用い、塩水を電気分解して負極電極室3で水素を正極電極室4で酸素または塩素を生成するに際し、正負電極がそれぞれ網状または繊維状あるいは多孔質状あるいは粒状を成す金属または炭素からなる空隙電極からなり、かつそれぞれの気体回収用電極室3,4の最上部には夫々の生成ガス回収ホース12を備え、両電極室3,4を電解質水溶液(海水)14中で近接させた一組の電極室を構成し、これを一組または複数組連結させて正負電極室群を構成し、電極室群を撥水性多孔質膜の耐水圧に等しい水圧が得られる海面下に設置し、両電極間に電位を与えるだけで電気分解を行い、負電極室で水素を、正電極室で酸素または塩素を分別回収する。本発明では、電極を電解質水溶液の中に直接挿入しないため電極生成物により電極と電解質との絶縁状態を発生させない。さらに撥水性多孔膜を境として、電解質側の圧力が電極生成物側より高圧であるため、電極生成物の回収効率が高い。開放容器2を密閉容器1に代替すれば、図10(B)に示すように陸上でも使用できる。密閉容器1の電解質水溶液(塩水)14を圧力印加具6で加圧し、または連通管5を介して水頭位置10に設置した貯水槽9により海水または濃縮海水をあるいは水に電解質を添加して直接電気分解して、負電極室3で水素ガスを、正電極室4で酸素や塩素などの気体を分別回収することができる。
 一つの態様において、密閉容器の中に封入された濃縮電解質溶液に密閉容器の外壁から撥水性多孔質膜(淡水浸透用)27を介して淡水を圧入した状態で電気分解を行い、水素及び酸素あるいは塩素を高効率で直接生成することができる(図11参照)。
 図11(A)に示すように、希硫酸または苛性ソーダ水溶液などの高溶解度・高電導率電解質水溶液(高濃度電解質水溶液)で満たされた撥水性多孔質膜製密閉容器を備える水素製造装置30を淡水湖、池、海水、温泉地獄などの開放容器2内に沈め、密閉容器1に付けられた水溶液圧入用撥水性多孔質膜27から淡水あるいは海水あるいは温泉水あるいは高温排水などの低濃度電解質水溶液14を圧入した状態で水溶液電気分解して水素を製造する。密閉容器1内に封入された希硫酸または苛性ソーダ水溶液などの高濃度電解質水溶液が密閉容器内に入れられた状態で、密閉容器1の外壁に取り付けた撥水性多孔質膜(淡水浸透用)27から密閉容器内部に順次低濃度電解質水溶液14を供給して、連続して水素を発生させる。尚、密閉容器1の内部と外部とで濃度の異なる2種類の電解質水溶液を同一耐水圧下で撥水性多孔質膜の細孔に浸透させるために、該撥水性多孔質膜a(11)、b(27)が異なる種類の場合には、撥水性多孔質膜a(11)よりも撥水性多孔質膜b(27)の細孔径の寸法を大きな孔径の膜を選定する。あるいは、撥水性多孔質膜a(11)、b(27)が同一種類の場合には、撥水性多孔質膜b(27)の低濃度電解質水溶液に接触する側の孔壁に親水基を置換して水との濡れ性を増進させ、低濃度電解質水溶液と高濃度電解質水溶液とが共に同値またはその近傍値の水圧で撥水性多孔質膜a(11)および撥水性多孔質膜b(27)を浸透可能とする。撥水性多孔質膜a(11),b(27)が同一種類の場合で、最も簡便な方法は、低濃度電解質水溶液圧側の水圧を陽圧(高く)にするか、あるいは高濃度電解質水溶液圧が圧入された撥水性多孔質膜aの出口側の圧の圧力を陰圧(吸引)にすることである。陰圧とは撥水性多孔質膜a(11)に接触して備えた負極電極室3や正極電極室4などの気体透過電極室で生成する電極生成ガスを気体輸送式真空ポンプで吸引して、低濃度電解質水溶液に印加された水圧と撥水性多孔質膜a(11)の出口側の気体透過電極室における生成気体の圧力との差圧を撥水性多孔質膜b(27)の耐水圧と撥水性多孔質膜a(11)の耐水圧との和と等しいかそれ以上になる範囲で吸引することである。この気体透過電極室では電気分解中は生成ガスが大量に生成されるため、生成ガスの回収と、ガス圧とを同時に行う必要がある。このため極電極室3や正極電極室4などの気体透過電極室の生成ガス回収口12の前段に圧力調整弁93を備えることが望ましい。
 一般に、図28の多孔質フッ素樹脂膜の耐水圧と塩濃度の関係に示すように、撥水性多孔質膜の耐水圧は電解質の濃度が高くなると耐水圧は低くなる。
 とくに、低濃度電解質水溶液14や淡水88などが撥水性多孔質膜b(27)を介して密閉容器1内の希硫酸や希アルカリなどの高濃度電解質水溶液に混入してできた電解質水溶液を撥水性多孔質膜a(11)に接触させた負極電極室3と正極電極室4間で電気分解し、各気体透過電極室で生成するガスを含めた該気体透過電極室内の圧力(Pg)が存在する場合には、低濃度電解質水溶液14が撥水性多孔質膜b(27)に加える水圧Plbと高濃度電解質水溶液が撥水性多孔質膜a(11)に加える水圧Plaの差圧が撥水性多孔質膜a(11)の耐水圧Plbaであり、かつ高濃度電解質水溶液の水圧P3lagと該気体透過電極室内の圧力(Pg)の差圧が撥水性多孔質膜a(11)の耐水圧Plagにさせるためには、Plb-Pla ≧P1baおよびPla-Pg=P1agを同時に満たさなければならない。すなわちPlb-P≧Plba+ Plagを満足させるためには、低濃度電解質水溶液14に加える水圧Plbを高く(陽圧)設定するか、あるいは該気体透過電極室内の圧力(Pg)を維持するために、圧力調整弁93を介して真空ポンプで吸引して、該気体透過電極室内の圧力(Pg)を陰圧にすることにより、複数枚の撥水性多孔質膜の夫々の耐水圧の累計が反応系の最初にかかる水圧Plbと最後にかかるガス圧Pgとを調整して水の電気分解による水素と酸素または塩素を製造することができる。実用的には、撥水性多孔質膜a(11)、b(27)を同一な撥水性多孔質膜を用い、低濃度電解質水溶液14に加える水圧Plbに陽圧を加えるか、或いは気体透過電極室内の圧力Pgを陰圧にする簡便な操作を行いながら電気分解を施し、海水中や湖中で直接水素を製造できる。すなわち希硫酸や希アルカリなどの高濃度電解質水溶液が封入された密閉容器1を低濃度電解質水溶液が存在する海や湖である開放容器2の中に挿入し、該密閉容器1を圧力水頭位置まで降下させた状態で電気分解を連続的に行う。
 本方法は、図11(B)に示すように陸上でも使用できる。密閉容器1を大型密閉容器29の中に挿入し、水道28の水圧を撥水性多孔質膜11および撥水性多孔質膜(淡水浸透用)27の耐水圧以上で加圧と水供給を行いながら連続して水素を製造することができる。この水道水の代わりに淡水または海水が満たされた容器または温泉の貯温槽の中に入れて該撥水性多孔質膜の耐水圧以上の圧力で加圧させた状態で、機械加圧または水頭位置から連通管を介して加圧と水供給を行うことができる。ここで重要なことは撥水性多孔質フッ素樹脂膜(電極隔離膜)11の耐水圧と淡水に起因する撥水性多孔質膜(淡水浸透用)88の耐水圧を同値または近値にすることである。これら一組の気体透過用電極室3,4からなる水素製造装置30を一対または複数組つなげ、該電解質水溶液を撥水性多孔質膜の耐水圧に等しい圧力下で水の分解電圧以上の電圧で電気分解して負電極室で水素ガスを正電極室で酸素ガスまたは塩素ガスを発生させることができる。
 一つの態様において、従来法における隔膜やイオン交換膜を用いず、撥水性多孔質膜に水圧をかけた状態で電気分解を行い負電極室内部で直接苛性ソーダを製造することができる。図12に示すように、苛性ソーダ31は撥水性多孔質膜11の耐水圧またはそれ以上の水圧を印加した塩化ナトリウム、チリ硝石、硫酸ソーダなどの卑金属塩水溶液32を電気分解し、撥水性多孔質膜11で隔離された水充填電極室40で卑金属水酸化物(苛性ソーダ)31を生成する。
 図12(A)に示すように、密閉容器1内の卑金属塩水溶液(塩化ナトリウム水溶液)32に耐水圧に等しい水圧を印加し、かつ水充填電極室40内部にはニッケルなどの金属または炭素電極を備え、かつ高々80℃の水を水供給口34から供給する。ここで供給する水は室温でもよいが、高温では苛性ソーダの溶解度が高いため、濃縮苛性ソーダを効率良く製造するには80℃内外が望ましい。とくに電気分解開始時は水充填電極室40内の水の電気抵抗が高いので、予め希苛性ソーダ水溶液を添加しておくことが必要である。この水充填電極室40に給水するための水供給口34と生成された濃縮卑金属水酸化物(濃縮苛性ソーダ水溶液)31を回収するための負極生成物回収口35および最上部には発生ガス(水素ガス)回収管12を備えている。一方、正極は気体透過電極室41からなり、撥水性多孔質膜11に密着して備えた炭素繊維、炭素粒、多孔質炭素などの正電極37を備え、正極表面で生成する塩素ガス、亜硝酸ガス、亜硫酸ガスなどの気体を直接回収するための生成ガス回収管12を備えている。ただし、製品の輸送を考えると気体よりも水溶液の方が都合がよい。そこで図12(B)に示すように、正極に水充填電極室40構造を採用し、負イオンと水との反応を行うために、水供給口34から給水した室温水に予め希塩酸水溶液を添加した後、撥水性多孔質膜11を介して負電極板36と正電極板38との間で電気分解を行い、イオン反応(2Cl-+2H2O→2HCl+O2)を行う。ここで生成した酸(塩酸)33は濃酸(塩酸)取り出し口42から、酸素は生成ガス回収管12から夫々回収する。
 一つの態様において、撥水性多孔質膜をイオンのON/OFFスイッチとして用いることで、水を最も嫌う卑金属元素の析出を、水溶液の電気分解で行うことができる(卑金属回収装置)。図13(A),(B)に示すように、密閉容器1内の卑金属塩化物水溶液を電気分解して負極に卑金属を生成するために、密閉容器1の負極側に撥水性多孔質膜11からなる隔離膜を介して金属または炭素からなる網状負電極43を接触させ、その背面を油23で満たした油充填電極室16とし、負極生成物で油23よりも比重が軽い卑金属(Li,K,Na)は油充填電極室16の上部に備えられた負極生成物回収口35から、油23よりも比重が重い卑金属(Mg,Ca,Ba,Sr)は油充填電極室16の最下部に備えられた負極生成物回収口35から回収される。正極生成物を取り出すにはガスとして回収する方法と液体として回収する方法がある。ガスとして取り出すには図13(A)に示すように、正極は気体透過電極室41からなり、撥水性多孔質膜11に密着して備えた炭素繊維、炭素粒、多孔質炭素などの正電極37を備え、正極表面で生成する正極生成ガス(塩素)を直接回収するための生成ガス回収管12を備えている。ただし、製品の輸送を考えると気体よりも水溶液の方が都合がよい。そこで図13(B)に示すように、正極に水充填電極室40構造を採用し、負イオンと水との反応を行うために、水供給口34から給水した室温水に予め希塩酸水溶液を添加した後、撥水性多孔質膜11を介して網状負電極板43と正電極板38との間で電気分解を行い、イオン反応(2Cl-+2H2O→2HCl+O2)を行う。ここで生成した酸(塩酸)33は濃酸(塩酸)取り出し口42から、酸素は生成ガス回収管12から夫々回収する。
 一つの態様において、周期表第1族または第2族元素からなる卑金属塩水溶液面と油面との境界面を仮想負電極面として、卑金属塩水溶液を電気分解して、陰極生成物を油層内で析出させることができる。図14(A),(B)に示すように、密閉容器1と撥水性多孔質膜11で隔てられた油充填電極室16において、油23と卑金属塩水溶液32との境界面の仮想負極面19と正極37(気体透過電極室を用いた場合)または正電極板38(水充填電極室用いた場合)との間で卑金属塩水溶液32を電気分解し、油充填電極室16中の油23内に負極生成物を析出させる。図13では正極に気体回収電極41を示しているが、水充填電極室40を使うこともできる。図14(A)は油充填電極室16内に2つのキャパシタC1とC2を直列に並べる構造の物であり、油充填電極室16の撥水性多孔質膜11との対向面に正極板17を備え、かつ撥水性多孔質膜11と正極板17との間に中間電極板18を挿入し、この油槽内の中間電極板18と油槽内の正極板17との間に形成されるキャパシタC1に電圧(E)20を与える。一方密閉容器1内の卑金属塩水溶液32を加圧して、撥水性多孔質膜11から滲み出た卑金属塩水溶液32の水溶液面と油面との境界面を仮想負極面19として、油充填電極室16内の正極板17と気体回収電極41内の正電極37とをあるいは水充填電極室40内の正電極板とを夫々短絡すると、油槽内の中間電極板18と仮想負極面19との間のキャパシタC2が形成され、かつ卑金属塩水溶液32の水圧が撥水性多孔質膜の耐水圧に等しい圧力で加圧された時のみ電気分解が行われ、油充填電極室16の油の中で卑金属が析出される。図14(B)は油充填電極室16の油槽内に中間電極板18を設定せず、油充填電極室16の系外に固体キャパシタC1を備え、油槽内の正極板17と気体回収電極41内の正電極37あるいは水充填電極室40内の正電極板とを夫々短絡すると、油槽内の正極板17と仮想負極面19との間のキャパシタC2が形成され、正電極37(気体回収電極41)あるいは正電極板38(水充填電極室40)と仮想負極面19との間に置かれた卑金属塩水溶液32の水圧が撥水性多孔質膜の耐水圧に等しい圧力で加圧された時のみ電気分解が行われ、油充填電極室16の油の中で卑金属が析出される。このように卑金属塩水溶液32の水圧を撥水性多孔質膜11の耐水圧に等しい圧力に保つことにより油充填電極室16の油の中で所望の卑金属を重液選別し、正極が該気体透過用電極室の場合には正極生成ガスを、あるいは該水電解室の場合には濃塩酸など濃縮無機酸あるいは酸素ガスなどの正極生成ガスを連続的に取り出すことができる。
 一つの態様において、多孔質炭素膜を溶融塩の隔離膜兼負電極とし、負電極側から水素ガスのマイナスイオンを溶融塩の正極側に移動させる過程で水素化金属を形成させることができる。図15に示すように、卑金属水酸化物溶融塩(苛性ソーダ)46は溶融塩加熱ヒータ48で電離されてNa++OH-の状態にある。一方、負極を構成する電極室は気体透過電極室41であり、気体透過電極室41に水素ガス圧入口47から圧入された水素ガスが多孔質炭素負極板兼隔離膜44を通過して卑金属水酸化物溶融塩(苛性ソーダ)46に圧入される。この状態下で多孔質炭素負極板兼隔離膜44と正電極板38との間に水素マイナスイオン生成の分解電圧以上の電圧(E)20を印加すると水素マイナスイオン(H-)50が生成され、Na++OH-のイオン状態にある卑金属水酸化物溶融塩(苛性ソーダ)46とイオン反応を起こし、水素化卑金属(Na++H-=NaH)が形成される。ここで苛性ソーダ溶融塩(NaOH)の比重は2.13であるが、水素化ナトリウム(NaH)は比重が0.92と軽いため、結晶固化しながら卑金属水酸化物溶融塩(苛性ソーダ)46から上滓として浮上した水素化卑金属(水素化ナトリウム)49は水素化卑金属回収口51から回収される。これら水素化卑金属は激しく水と加水分解を起こし卑金属元素単体に比べて2倍の水素を発生する。さらに、図16に示すよう卑金属元素の内1族元素(Li,K,Na)、2族元素(Mg,Ca,Sr,Br)、13族元素(Al)の水酸化物の融点は酸化物に比べて著しく低い。その中でも、MgとAlを除くと水素化物の融点は水酸化物よりも高い。しかも水素化物の比重は水酸化物より低い。したがってMgとAl以外は比較的低温度で溶融塩を形成でき、水素マイナスイオンと反応させて生成した水素化物を上滓として浮上させて簡単に比重選別できる。とくに1族元素は元素自体の融点よりも水素化物の方が高い。Naの融点は98℃であるがNaHは800℃、Kは64℃であるがKHの融点は417℃と高い。このため、融点が極端に低いKやNaは取り扱いに厳重な注意が必要であるが、水素化物にすれば融点は高く、比重は軽く、加水分解により2倍の水素が得られるため、水素発電や水素自動車などの水素発生源として有望である。消防法によればNaは危険物第3類であり自然発火性物質及び禁水物質である、しかしNaHはさらにそのためとくにNaは融点が98℃と低い。大気中でも水分と反応して爆発するなど、取り扱いに注意が必要である。一般に金属ナトリウム(Na)と水素化ナトリウム(NaH)の安全性を比較すると、消防法では共に「禁水」薬品であり共に水と激しく反応する危険物第3類である。ただし、危険等級は金属ナトリウムの等級Iに対し、水素化ナトリウムは等級IIと低く、比較的安全であり、取り扱いが楽である。一般には、金属ナトリウムが灯油に保存されているが、水素化ナトリウム(NaH)は粒子がパラフィンでコーティングされているぐらいで、比較的安全に使用できる。更に、金属ナトリウムを水と反応させた時には0.5モルの水素(H)を生成する(Na+H2O→1/2H2+NaOH)。ところが水素化ナトリウム(NaH)の場合には1モル(2倍の水素)を生成する(NaH+H2O→H2+NaOH)。従って水素化ナトリウム(NaH)は、水素(H2)発生物質として有望である。このようにナトリウム(Na)は、油中で保管しないと不安定で、条件によっては爆発の危険性もあるが、一端水素化させ、水素化ナトリウム(NaH)にすると、融点が800℃になり、安全にかつ、長期間の保管にも耐え、必要時に水と反応させて水素を発生させるのに好適に用いられるようになる。一方水酸化物よりも融点が低いMgH2及びAlH3の場合には溶融塩槽上部に備えた冷却壁で蒸気を冷却回収する方法を採用する。ただし、フッ素樹脂に金属ナトリウムを直接触れさせるとフッ素樹脂は侵されるので、撥水性多孔質フッ素膜と金属ナトリウムを近接させる場合には軽油や石油などの油類を混存させなければならない。
 一つの態様において、電解質水溶液を充填した撥水性多孔質膜製密閉容器(封筒型)を正極および負極の板電極で挟む構造の一次または二次電池が提供される。この電池は、充電および放電時には該電解質水溶液に撥水性多孔質膜の耐水圧に等しい圧力を与えて正負両電極間で電気化学反応を行い、蓄電時は該電解質水溶液の加圧を解除して両電極間の自己放電を回避させる機構を有する。図17に示すように、電解質水溶液14を封入した両面が撥水性多孔質膜11からなる密閉容器(封筒型)55を負電極室(電池用)52および正電極室(電池用)53で挟み込み、充電時(図17(A))は密閉容器(封筒型)55内の電解質水溶液14に撥水性多孔質11の耐水圧に等しい圧力を圧力印加具6で加圧し、撥水性多孔質11から滲み出た電解質水溶液14を介して負電極室(電池用)52と正電極室(電池用)53とに電荷を与え充電を行う。充電完了後密閉容器(封筒型)55内の電解質水溶液14の加圧を解除して両電極間の自己放電を回避させで蓄電を維持する(図17(B))。放電時(図17(C))は撥水性多孔質膜製密閉容器(封筒型)55内の電解質水溶液14に再度耐水圧に等しい圧力で加圧を行う。電池の電極では安全と長期安定が重要である。そこで電極室の構造上の配慮点は、負極の板電極が両性元素(Zn,Al,Sn,Pb)あるいはMg及び第1族および第2族元素を除くイオン化傾向が水素より大きい金属元素(Ti,Mn,Cr,Ga,Fe、Cd,Co,Ni,Fe)の場合には、撥水性多孔質膜に密着した該板電極の周囲は必ずしも外界と遮断しなくてもよく、負極が第1族または第2族元素であり、かつ第1族または第2族元素の中実の板電極からなる場合及び第1族または第2族元素からなる負極生成物が炭素からなる空隙電極内部の空隙に貯留させる場合には、板電極の周囲が箱、コーティング、撥水性処理膜あるいは樹脂フィルムで覆われて外界と遮断する必要がある。正極の場合には、正極の板電極が水素よりイオン化傾向が小さい金属および金属酸化物または空気あるいは酸素を用いる場合には、撥水性多孔質膜に密着した板電極は必ずしも外界と遮断しなくても良く、正極がフッ素を除くハロゲンガスあるいはハロゲン化金属の場合には撥水性多孔質膜に密着した電極板の周囲が箱、コーティング、撥水性処理膜あるいは樹脂フィルムで覆われ、あるいは電池全体をモールドして外界と遮断する必要がある。ただし、正極の板電極が撥水性材料または撥水性処理されている場合には撥水性多孔質膜を必要とせず、直接電解質水溶液に挿入することができる。
 本発明の一次または二次電池において、負極に卑金属を、正極に酸素またはハロゲンを用いることにより高い起電力と放電容量が得られる(図1)。この電池において、卑金属元素と酸素やハロゲン元素との化合物から電解質水溶液を作ることができる。その場合、これら化合物の水への溶解度が室温で高いほど放電容量が高くなる。高効率充電を行うには充電開始時には水酸化卑金属(図18)やハロゲン化卑金属(図19)の水に対する溶解度が室温で高く、放電開始時には大容量の電力を長時間放出し続けるために水酸化卑金属やハロゲン化卑金属の溶解密度が放電開始時は低い状態であり、放電終了時には溶解密度が高く、かつ飽和度に近いことが望ましく、さらに高速充電または高電力放電を行う場合には該電解質水溶液を加温(温泉、工業廃熱、内燃機関冷却巡回水)することが好ましい。これら化合物は、温度上昇に無関係なNaCl以外は、多かれ少なかれ温度が高くなると溶解度は高くなる。とくにBa(OH)2は室温では溶解度5%であるが40℃から急上昇し80℃で溶解度60%に達する。これら化合物の60℃での水への溶解度を、図20に示す。図2において、溶解度80%を4重丸、溶解度60~80%を3重丸、溶解度30~60%を2重丸、溶解度10~30%を1重丸、溶解度1~10%を小丸、溶解度1%以下を×、アルカリを添加すると溶解する化合物を三角(△)で示す。これら図18に示す溶解度が高く、かつ図1に示す放電容量が高い電解質水溶液が望ましい。
 本発明による電池は、酸素/卑金属電池を含む。電池を軽量化するには負極を比重の軽い金属を採用し、正極には大気中の空気を用いることが行われている。図1の卑金属/酸素電池の放電容量計算値で示すように、Li/O電池では酸素の重量を入れて計算すると6,165Wh/kgであるが、酸素は大気から調達できるので、その重さを無視すれば(11,680Wh/kg)と高い放電容量が得られる。同様にMg/O電池は3,658Wh/kg、空気を無視すると(6,067Wh/kg)、Al/O電池は3,264Wh/kg、空気を無視すると(6,165Wh/kg)である。しかし、図18の水酸化卑金属の溶解度と温度の関係では、Mg(OH)2もAl(OH)3も殆ど水に溶けず、その結果として負極が酸化膜に覆われ電子の流れを阻害する。Ca(OH)2も同様である。両性元素に属するAlは電解質水溶液中に苛性ソーダを添加すると(Al(OH)3+NaOH→Na[Al(OH)4])となり溶解することが知られているが、本発明ではNa/O、K/O、Ba/O、Li/O、Sr/O電池のみを考える。その理由は室温環境での効率順位はK/O>Na/O>Li/O>Ba/O>Sr/O(温泉など高温が得られる場所ではBa/O)電池であり、放電容量の効率順位ではLi/O>Be/O>Al/O>Mg/O>Ca/O>Na/O>Sr/O>K/O>Ba/Oであるに他ならない。これらの結果を考慮した電池の構造を図21に示す。ここで、正電極室(電池用)53には酸素や空気、負電極室(電池用)52には第1族、第2族および/または第13族金属を用いる。また対向壁が撥水性多孔質膜11で構成される密閉容器(封筒型)55の中に電解質水溶液14として苛性ソーダ、苛性カリ(水酸化カリウム)、水酸化バリウムなどの塩基あるいは硫酸、塩酸、硝酸などの酸を収容する。とくに正電極室(電池用)53の酸素電極は炭素製該空隙板電極(活性炭)58に空気または酸素を吸着させ、正極の集電極板64とし、かつ撥水性多孔質膜11と炭素製空隙板電極(活性炭)58との間に充電用補助正電極(網状電極)56を配置して炭素製空隙板電極(活性炭)58の発熱を無くし(図21(A))、あるいは正電極の撥水性多孔質膜11と接触する面を金属板60の金属酸化物(CuOまたはAl23)59として酸素の供給源とする(図21(B))。
 一方、負電極室(電池用)52は第1族、第2族および/または第13族元素の中実電極あるいは炭素製空隙電極板内部や表面の空隙に第1族元素、第2族元素および/または第13族元素の負極生成物を吸着させた外気遮蔽型負電極57とし、かつ負電極の周囲を樹脂フィルム61で包囲するか、あるいは負電極内部に油22を含ませた状態にすることにより外界と遮蔽する。
 この電池(一次または二次電池)において、電解質水溶液14を加圧した状態で充電を行い、充電を完了させた時点で電解質水溶液14の加圧を解除して蓄電状態を維持し、放電時には電解質水容液14を加圧して放電を開始させる。
 本発明の電池は、金属/塩素電池を含み、その電極構造をメンテナンスフリーとすることができる。一般に、ハロゲンガスは有毒である。そこで本発明では、金属塩化物(固体)を正極にする。図22に示すように、対向壁が撥水性多孔質膜11からなる密閉容器(封筒型)55の中に電解質水溶液14として金属塩化物水溶液を封入する。撥水性多孔質膜11に密着させた電極室52は負電極板(電池用)62/65を備え、正電極室53は金属板(電池用)64が金属塩化物63を介して設けられている。正極としての金属塩化物63は多孔質膜11と直接接している。この電池(一次電池または二次電池)において、電解質水溶液14を圧力印加具6で加圧した状態で充電を行い、負電極板62に電解質水溶液14を構成する金属の正イオンを析出させ、正極に備えた金属板64の表面に当該金属の金属塩化物63を生成させて充電を完了させた時点で電解質水溶液14の加圧を解除して蓄電状態を維持し、放電時には電解質水溶液14を圧力印加具6で加圧を加える。図22(A)は単層電池の概念図、図22(B)は積層電池の概念図である。
 積層電池(図22(B))は単層電池(図22(A))を直列に接続してなる。単層電池の正電極室53の構成は1枚の金属板の撥水性多孔質膜11に接触する部分が塩化した金属塩化膜63であり、塩化されていない金属部分を集電極板64とする。積層電池の1層目と2層目の間の電極構成は1層目に接触させる正極(負極に用いた金属の塩化物)66であり、単層電池の集電極板64を2層目の負電極板65として用い、以降の層も同様である。一次電池の場合の電解質水溶液14は塩化ナトリウムも含めた任意の金属塩化物で良く、単層電池では負極と正極の組み合わせがZn、Mg、Al、Ni、Pbなどから同一金属も含めて任意に選ばれた金属であり、正極は任意の金属の塩化物で良い。積層一次電池では負極と正極は共に同一金属とし、正極は負極で用いた金属の塩化物から構成される。二次電池の場合の電解質水溶液14は負極に用いた金属の塩化物とし、かつ単層二次電池では負極と正極の組み合わせがZn、Mg、Al、Ni、Pbなどの金属から同一金属も含めて任意に選ばれた金属からなる。尚、密閉容器(封筒型)55の対向面に挟まれた正極側の電極面を粗面化して表面積を増大させ、かつ正電極室外壁または電池装置全体に金属塩化物を防湿するための覆いを施すことが望ましい。この金属/塩素電池は、図19に示したように金属塩化物の室温での溶解度を高い順に並べると、ZnCl> CdCl> LiCl > BeCl> CaCl> MnCl> NiCl> FeCl> CoCl> MgCl> AlCl3 > BaCl> KCl> NaClであり、放電容量は図1に示したように、多い順に並べると、BeCl> LiCl >AlCl3 >MgCl> CaCl> NaCl > KCl > SrCl2 > ZnCl> BaCl2である。そこで本発明では空気中で使える負極板としてZn、Mg、Al、Ni、Pbを推奨するが、第1族金属および第2族金属も使える。この場合は負極が1,2族元素の中実電極あるいは炭素製空隙電極板内部や表面の空隙に第1,2族元素を負極生成物として吸着させた電極であり、かつ該負電極の周囲を樹脂フィルムで包囲するか、あるいは該負電極内部に油を含ませた状態にすることにより外界と遮蔽することが必要である。
 本発明の電池は、さらに、金属/臭素および金属/沃素電池を含む。一般にハロゲンガスは有毒気体であるが、室温において臭素(沸点58.8℃)は液体であり、沃素(沸点113.6℃)は固体である。さらに、金属臭化物の室温での溶解度を高い順に並べるとZnBr> LiBr > CaBr2 > MnBr> NiBr> FeBr> CoBr> SrBr> CdBr> NaBr > KBrであり、放電容量は図1に示したように多い順に並べるとCaBr> MgBr2 > NaBr > LiBr > KBr > SrBr2 > MnBr2 > NiBr> FeBr> BaBr2である。また金属沃化物の室温での溶解度を高い順に並べるとZnI> CaI> BaI2> NaI > SrI> LiI > KI > MgI> CaI2> CoI> PbI2であり、放電容量は図1に示したように多い順に並べると、LiI>NaI > CaI> MgI> KI > SrI> ZnI> BaI> PbI> CoI> CdI2である。そこで本発明では、これらハロゲンを固体内部の空隙に貯留する正電極室を考えた。正極は図22(A)(B)に示すように正極電極室53を外界と遮断した容器の中の活性炭粒または炭素繊維67に臭素液68あるいは沃素粒69を混ぜ、密閉容器(封筒型)55の撥水性多孔質膜11に密着させて正極として背面に集電極板64を備えている。他方、負極には両性元素およびMgあるいは1,2族元素を除くイオン化傾向が水素より大きい金属元素からなる裸板電極を用いるか、あるいは第1族元素、第2族元素を用いる場合は中実電極とするか、あるいは炭素製空隙電極板内部の空隙に第1族、第2族元素の負極生成物を析出貯蔵させ、かつ負電極の周囲を樹脂フィルムで包囲するか、あるいは該負電極内部に油を含ませた状態にすることにより外界と遮蔽する必要がある。この電池の電解質水溶液14には、負極で使われる金属元素の臭化物あるいは沃化物の水溶液を用い、常に正極の雰囲気温度を沸点以下に保つことが必要である。負極には図22(A)に示すように、外気に曝されても影響がない負極電極板(裸板電極)62として両性元素(Zn,Al,Sn,Pb)およびMgあるいは1,2族元素を除くイオン化傾向が水素より大きい金属元素(Ni、Pb、Ti、Mn、Cr、Ga、Fe、Cd、Co、Ni、Fe)を用いるか、または図22(B)に示すように、第1,2族金属を用いる場合は、負電極室(電池用)52は1,2族元素(Li,Na,K,Ca,Sr,Ba)の中実電極あるいは炭素製空隙電極板内部や表面の空隙に1,2族元素の負極生成物を吸着させた外気遮蔽型負電極57として電子は集電極板64から取り出し、かつ負電極の周囲を樹脂フィルム61で包囲するか、あるいは負電極内部に油22を含ませた状態にすることにより外界と遮蔽する。この電池(一次または二次電池)において、電解質水溶液14を加圧した状態で充電を行い、充電を完了させた時点で電解質水溶液14の加圧を解除して蓄電状態を維持し、放電時には電解質水容液14を加圧して放電を開始させる。
 本発明の電池は、さらにまた金属/フッ素電池を含む。一般にフッ素ガスは猛毒で使用は難しい。しかし図1に示すように、電極電位は+2.87Vと酸素の+0.4Vの7.175倍であり、放電容量は、NaF(3,568Wh/kg)> KF(2,676Wh/kg)> AlF3(2,589Wh/kg)と大きいが種類は少ない。しかもフッ化物は結合が強く、殆どが水に難溶であり、溶解度が室温で50%のKF、4%のNaF、0.5%のAlF3は例外中の例外である。したがって有望な負極材料はカリウム(K)のみであり、ナトリウム(Na)やアルミニウム(Al)は効率が悪い。一方正極にフッ化グラファイトを用いれば猛毒フッ素ガスを回避でき、K/F、Na/F、Al/F電池ができる。これら電池の電解質水溶液14としてはフッ化カリ水溶が最適であるが、フッ化アルミニウムは難溶であるので電解質水溶液14に苛性ソーダや苛性カリを添加すれば起電力4.54VのAl/F一次電池ができる。K/F一次もしくは二次電池の起電力は5.79Vと共に軽量で高放電容量電池として有望である。正極は図24(A,B)に示すように正極電極室53をグラファイト70とし、密閉容器(封筒型)55の撥水性多孔質膜11に密着させて正極として背面に集電極板64を備えている。他方、負極にはAl負極電極板71を密閉容器(封筒型)55の撥水性多孔質膜11に密着させ、電解質水溶液にはフッ化アルミに苛性ソーダまたは苛性カリを添加して、一次電池として使用する(図24(A))。一次または二次電池は、図24(B)に示すように、カリウム(K)やナトリウム(Na)を用いる場合は、負電極室(電池用)52は第1族元素および/または第2族元素(Li、Na、K、Ca、Sr、Ba)で形成された中実電極あるいは炭素製空隙電極板内部や表面の空隙に第1族元素および/または第2族元素の負極生成物を吸着させた外気遮蔽型負電極57として電子は集電極板64から取り出し、かつ負電極の周囲を樹脂フィルム61で包囲するか、あるいは負電極内部に油22を含ませた状態にすることにより外界と遮蔽している。ここで、密閉容器(封筒型)55の電解質水容液14を加圧して放電または充電を行う。
 本発明のキャパシタは、誘電性液体あるいは電解質溶液を封入した撥液性多孔質膜製密閉容器(封筒型)の対向面にそれぞれ接して正極および負極の板電極を設けた構造のキャパシタを含む。このキャパシタにおいて、充電および放電時には該電解質溶液に撥液性多孔質膜の耐液圧に等しい圧力を与えて両電極間で電気化学反応を行い、蓄電時は該電解質溶液の加圧を解除させる。このキャパシタは図25(概念図)に示すように、油系あるいは水系誘電性液体72あるいは電解質水溶液14を封入した撥水性多孔質膜製密閉容器(封筒型)55の両対向側壁の外側面に正電極室53および負電極室52を設けた構造を有する。撥水性多孔質膜製密閉容器(封筒型)55の両対向側壁に配置した正負一対の電極室52、53を構成する電極は、板電極73あるいは活性炭、グラファイト、ナノカーボンなどの炭素電極の表面に有機分子を吸着させた電気二重層キャパシタ電極74、あるいは電気伝導体の表面に形成した酸化皮膜、導電性ポリマー、活性炭などからなるレドックスキャパシタ電極75、または活性炭、ポリフェノール,グラファイトチタン酸リチウムなどのハイブリッドキャパシタ電極76などで構成される。このキャパシタにおいて、充電時には誘電性液体72あるいは電解質溶液14に撥液性多孔質膜11の耐液圧に等しい圧力を印加して両電極間に電荷を与え(図25(A))、蓄電時は圧力印加を解除し(図25(B))、放電時は耐液圧に等しい圧力を印加する。図25(B)に示す包囲点線部77は撥液性多孔質膜11と電極室52、53の電極73,74,75,76とは便宜上は離れているように描かれているが、実際は接触しているが、加圧が無いため撥液性多孔質膜11の細孔には液体が無い。このため撥水性多孔質膜11を低誘電率フィルムと考えられる。
 したがって、図25(D)に示すように、細孔に誘電体溶液が浸入すれば加圧に応じ電気回路的には可変キャパシタ(C2)、細孔に電解質水溶液が浸入すれば可変抵抗器(R)で表示することができる。すなわち、蓄電時には、撥液性多孔質膜11の細孔には誘電性液体が無く、空気のみであるため、電荷を貯めたキャパシタ(C1)が両端で低誘電率のキャパシタ(C2)で直列に繋がれていると考える。これに圧力をかければ、誘電性液体の場合にはC1=C2、電解質の場合にはRは0に限りなく近づき充電や放電が行われる。
 本発明のキャパシタは、電気二重層キャパシタおよびレドックスキャパシタ電気化学キャパシタを含む。このキャパシタ装置において、正および負電極室が高誘電率キャパシタであり、撥水性多孔質膜製密閉容器(封筒型)内部は導電体と電解質であり、撥水性多孔質膜が正負電極室間の導通をON/OFFするスイッチである。図26に電気二重層キャパシタの概略図を、図27にレドクッスキャパシタの概略図を示す。図26,27に示すように、正負一対の電極室52、53に挟まれた撥水性多孔質膜製密閉容器(封筒型)55の中に充填された金属繊維、炭素繊維あるいは活性炭などの含空隙導電材料78に希硫酸79あるいは希苛性ソーダ80などの電解質水溶液14を含ませ、電解質水溶液14を撥液性多孔質膜11の耐水圧に等しい圧力で圧力印加具6により加圧し、撥液性多孔質膜11の細孔に電解質水溶液を通過させて充電を行い(図26(A),図27(A))、蓄電時は該電解質溶液の加圧を解除し(図26(B),図27(B))、放電時は再度圧力印加具6で耐水圧に等しい圧力を与える。図26(B),図27(B)に示す包囲点線部77は撥水性多孔質膜11と電極室52,53とは便宜的に離れているように描かれているが、実際は接触しているが、圧力が印加されていないため撥液性多孔質膜11の細孔には液体が無い。この状態の撥水性多孔質膜11は低誘電率フィルムとみなすことができる。したがって、等価回路として考えると図26(D),図27(D)に示すように、電解質水溶液14が加圧されていない時は撥水性多孔質膜11の細孔に電解質水溶液14が浸入しないため低誘電率キャパシタ(C2)であるが、電解質水溶液14が加圧されれば撥水性多孔質膜11の細孔に電解質水溶液が浸入して電気回路的にはスイッチ(S)がONになり、正極室と負極室は撥水性多孔質膜製密閉容器(封筒型)55を介して短絡されて、2個の高誘電率キャパシタ(C1)が直列の状態で充放電が行われ、電解質水溶液14の加圧が解除されると2個の低誘電率キャパシタ(C2)と2個の高誘電率キャパシタ(C1)が直列となり蓄電を保つ。他方、負電極室52と正電極室53の構造は同じであるが、電気二重層キャパシタとレドックスキャパシタにおいては異なっている。
 電気二重層キャパシタの負電極室52と正電極室53の構造は、図26(A),(B),(C)に示すように、撥水性多孔質膜11に活性炭粒67が密着しその反対面に集電極板64が設けられて、正負電極室52、53は外気と遮蔽されている。
 レドックスキャパシタの負電極室52と正電極室53の構造は、図27(A),(B),(C)に示すように、レドックスキャパシタ用金属板(Al)108と、この金属板の撥水性多孔質膜11に面する面を電気的に酸化させたレドックスキャパシタ用金属酸化皮膜(Al23)109を誘電体として備える。正負電極として作用する金属板108のそれぞれは、金属酸化皮膜109を介して多孔質膜11に密着している。
 本発明において、混合卑金属元素塩の水溶液からそれぞれの卑金属元素を分離回収するすることができる。上記水素製造装置と上記卑金属回収装置を複数台直列に連結し、水素生成装置からはじめて、複数の卑金属塩が混入している電解質水溶液から被析出金属の分解電圧が低い順に電解精製を行い、未反応の電解質水溶液を次の卑金属回収装置に移送し、当該電解質水溶液を加圧下で電解精製し、分解電圧が低い金属から順次高い金属へ移行しながら当該卑金属の回収操作を行う。
 本発明の一つの態様によると、海水を原料とし、海上で得られる自然エネルギーや臨海火力発電所の深夜電力などの電力を用いて水素や苛性ソーダをその場生産する洋上工場または臨海工場が提供される。この態様において、洋上および/または臨海工場では上で説明した水素の製造および上で説明した苛性ソーダの製造を行い、その製造された水素と苛性ソーダから、上で説明したように水素化ナトリウムを洋上または陸上で製造し、陸上でその水素化ナトリウムに水を注ぎ水素を製造し、副産物の苛性ソーダを再度水素化ナトリウムとして再生産するという苛性ソーダ燃料サイクルを確立することができる。さらに中間生成物である苛性ソーダを二次電池用電解質水溶液として利用することもできる。
 さらに、本発明によると、撥水性多孔質膜で形成された容器に所定の物質を入れ、その容器を電解質もしくは非電解質の水溶液または水からなる液体に入れる。撥水性多孔質膜の耐水圧に等しい液圧下では、該液体が該撥水性多孔質膜の細孔に浸透して該容器内部の物質との間でイオン反応あるいは加水分解反応あるいは溶解反応を行うことができる。
 例えば、本発明によると、撥水性多孔質膜で作られた容器(反応室)の中に、加水分解もしくは水との接触により気体を発生する物質、加水分解もしくは水との接触により発熱する物質、加水分解もしくは水との接触により吸熱する物質あるいは水溶性有機化合物などを収容し、その反応室を、密閉容器に収容された水または非電解質水溶液からなる液体の中に入れる。そして、反応室の外圧と内圧の差が撥水性多孔質膜の耐水圧以上となるような圧力を該液体を介して撥水性多孔質膜に印加して、該液体を反応室内に導入する。すると、反応室内に収容された物質は、該水と反応して、気体発生、熱発生、熱吸収、および溶解反応を起こす。得られた気体や水溶液を医薬や栄養剤の生体移送あるいは水溶液への有機化合物の添加などに使うことができる。
 また、本発明によると、撥水性多孔質膜で作られた薬品散布のためのチューブ等を所望の場所に提供し、チューブの薬品供給口から薬品水溶液供給源までの間をホースで繋ぎ、薬品供給口にて必要に応じ連続または間欠的に該薬品水溶液に撥水性多孔質膜の耐水圧以上の圧力を加えて、薬品水溶液を所望の場所で供給することができる。薬品水溶液は、薬品、栄養、肥料などの水溶液を含む。
 さらに本発明によると、内視鏡の先端に加水分解発熱剤を封入したカプセルに撥水性多孔質膜を介して耐水圧以上の水圧を印加して加水分解発熱反応を起こさせ、この発熱で器官内の癌細胞を温加熱することができる。
 上記のように、本発明によれば、海水や塩湖水などの電解質水溶液中で高い電気絶縁性を呈する多孔質フッ素樹脂膜に耐水圧またはそれ以上の水圧をかけると多孔質フッ素樹脂膜の細孔内部に電解質水溶液および/またはイオンが通過し、その水圧に応じて撥水性多孔質膜を透過できる水溶液やイオンの量をアナログ的に制御するスイッチの役割を担わすことができる。この撥水性多孔質膜を電解質水溶液と正負電極室との隔離膜として用い、電解質水溶液に圧力を加えた状態で水溶液電気分解を行い、正負夫々の電極室で生成する電極生成物を電解質水溶液から分離回収させる。これにより海水や塩湖水などの電解質水溶液から直接、水素、苛性ソーダ、卑金属元素などを取り出すことができる。この技術は電解精製に留まらず、実用電池や大容量キャパシタにも利用でき、従来大電力を用い、高温下で溶融塩電気分解する方法しか無かったが、本発明によれば、常温で、しかも水溶液電気分解でできるため経済効果大である。とくに海水から得られる金属ナトリウムは石油の代替エネルギーとして、枯渇の心配もなく、地域偏存も無いエネルギー資源として、資源戦争の無い世界の創生に貢献する。さらに電解質を水溶液のまま使えるリチウムやナトリウム、カルシウムなどを原料とする卑金属元素/空気電池や卑金属元素/ハロゲン電池は、天候に左右される再生可能エネルギーの貯蔵バッテリーとしてまたは軽量で高効率のバッテリーとして電気自動車の発展に寄与し、二酸化炭素も放射線も出さない水素社会の進展に寄与すると考える。
図1は、卑金属/酸素電池および卑金属/ハロゲン電池の放電容量比較を示す。 図2は、撥液性多孔質膜(隔離膜)の圧力スイッチの原理の説明図であり、(A)は、電解質水溶液が耐水圧以下の場合を、(B)は電解質水溶液が耐水圧以上の場合を示す。 図3Aは、撥液性多孔質膜(隔離膜)の電子スイッチにおける溶液の電気的性質と撥液性多孔質膜の役割を比較して示す。 図3Bは、撥液性多孔質膜(隔離膜)の電子スイッチにおける溶液の電気的性質と撥液性多孔質膜の役割を比較して示す。 図4は、正負電極間に設けられた電解質溶液の隔離具を備える化学反応装置を概略的に示し、(A)は、隔離具が撥液性多孔質膜からなる密閉容器を構成する場合を、(B)化学反応装置が開放容器中に存在する場合を、(C)は、隔離具が撥液性多孔質膜からなる密閉容器を構成し、その密閉容器が開放容器中に存在する場合を示す。 図5は、圧力印加具を概略的に示し、(A)は撥液性多孔質膜で形成された密閉容器を直接加圧する場合を、(B)は連通管による手動や電動加圧あるいは圧力水頭からの水圧を用いる場合を、(C)は開放容器の中の密閉容器に水頭圧を付与る場合を示す。 図6は、撥水性多孔質膜製中空密閉容器(袋)内部に電解質水溶液を充填する方法を説明するための図であり、(A)は、中空密閉容器(袋)に直接電解質水溶液を注入する場合を、(B)は、中空密閉容器(袋)に挿入された溶質に水や水蒸気を圧入する場合を、(C)は、中空密閉容器(袋)に撥水性多孔質膜を介して電解質水溶液を圧入する場合を、(D)は、中空密閉容器(袋)の撥水性多孔質膜にアルコールを塗布して電解質水溶液を抑留させる場合を示す。 図7は、撥水性多孔質膜で隔離された正負電極の構造と用途の関係を示す。 図8は、電解質水溶液層面と油層面との境界面を負電極面として電解質水溶液を電気分解するための等価回路であり、(A)は村原サーキット概念図を示し、(B)は電気回路(計算式)を示す。 図9は、油と電解質水溶液との界面を負極とする油キャパシタの概念図であり、(A)は撥水性多孔質膜を用いた仮想負極に関する構造図であり、(B)は仮想負極が地軸と鉛直面を成し、油の比重が1未満の場合の構造図であり、(C)は仮想負極が地軸と鉛直面を成し、油の比重が1を超える場合の構造図である。 図10は、気体透過電極室を海面下に沈め直接海水を電気分解して水素を製造するため装置の概略図であり、(A)は海面下で水圧を利用した電解装置を示し、(B)は陸上で塩水を加圧する電解装置を示す。 図11は、開放容器または大型密閉容器に挿入された密閉容器内で水を電気分解する水素製造装置の概略図であり、(A)は淡水湖の水面下で水圧を利用した電解装置を示し、(B)は水道水で加圧する電解装置を示す。 図12は、卑金属水酸化物(苛性ソーダ)製造装置の概略図であり、(A)は負極で卑金属水酸化物(苛性ソーダ)、正極で正極生成ガス(塩素)を製造する装置を示し、(B)は負極で卑金属水酸化物(苛性ソーダ)、正極で酸(塩酸)を製造する装置を示す。 図13は、卑金属回収装置の概略図であり、(A)は負極油充填電極室の油槽の中に卑金属を、正極で正極生成ガス(塩素)を製造する装置を示し、(B)は負極油充填電極室の油槽の中に卑金属を、正極で酸(塩酸)を製造する装置を示す。 図14は、油と電解質水溶液との境界面を仮想負電極とした電解精製装置の概略図であり、(A)は油充填電極室内に中間電極板を挿入した電解精製装置を示し、(B)は油充填電極室の系外に固体キャパシタを備えた電解精製装置を示す。 図15は、水素マイナスイオンと溶融塩とのイオン反応による水素化卑金属の製造装置の概略図。 図16は、卑金属水素化物と卑金属水酸化物の融点及び比重を比較して示す。 図17は、電池の概略図であり、(A)は充電時の電池を示し、(B)は蓄電時の電池を示し、(C)は放電時の電池を示す。 図18は、水酸化卑金属の溶解度と温度の関係を示す。 図19は、ハロゲン化(塩化)卑金属の溶解度と温度の関係を示す。 図20は、卑金属/酸素電池および卑金属/ハロゲン電池に用いる電解質の水に対する溶解度を示す。 図21は、卑金属/空気電池の概略図であり、(A)は正極を空隙を有する炭素板とし充電用補助電極を持つ電池を示し、(B)は正極を金属の酸化物とした電池を示す。 図22は、卑金属/塩素電池の概略図であり、(A)は単層電池を示し、(B)は積層電池を示す。 図23は、卑金属/臭素および卑金属/沃素電池の概略図であり、(A)は負極が大気に影響されない金属の場合の電池を示し、(B)は負極が大気に弱い周期表第1族金属または第2族金属の場合の電池の概念図。 図24は、卑金属/フッ素電池の概略図であり、(A)はAl/F電池を示し、(B)はK/FまたはNa/F電池を示す。 図25は、キャパシタ(コンデンサ)の概略図であり、(A)は、充電時のキャパシタを示し、(B)は蓄電時のキャパシタを示し、(C)は放電時のキャパシタを示し、(D)は、充電・蓄電・放電の動作回路説明図である。 図26は、電気二重層キャパシタの概略図であり、(A)は充電時のキャパシタを示し、(B)蓄電時のキャパシタを示し、(C)は放電時のキャパシタを示し、(D)は充電・蓄電・放電の動作回路説明図である。 図27は、レドックスキャパシタの概略図であり、(A)は充電時のキャパシタを示し、(B)は蓄電時のキャパシタを示し、(C)は放電時のキャパシタを示し、(D)は、充電・蓄電・放電の動作回路説明図である。 図28は、多孔質フッ素樹脂膜の耐水圧と塩濃度の関係を示すグラフであり、(A)は多孔質フッ素樹脂膜の細孔径が3μmの場合を示し、(B)は多孔質フッ素樹脂膜の細孔径が約10μmの場合を示す。 図29は、海面下水素製造装置の概略図である。 図30は、多段型海面下水素製造装置の概略図である。 図31は、湖面下水素製造装置の概略図である。 図32は、水道圧を利用する簡易水素製造装置の概略図である。 図33は、塩化ナトリウム水溶液から苛性ソーダと塩素ガスを直接製造する装置の概略図である。 図34は、塩化ナトリウム水溶液から苛性ソーダと塩酸を直接製造する装置の概略図である。 図35は、卑金属塩化物水溶液から卑金属元素を直接製造する装置の概略図である。 図36は、卑金属塩化物水溶液から卑金属元素を塩酸を直接製造する装置の概略図である。 図37は、仮想負電極を利用した卑金属製造装置の概略図であり、(A)は、その装置を示し、(B)は、等価回路を示す。 図38は、水素化卑金属製造装置の概略図である。 図39は、封筒型密閉容器内への電解質水溶液抑留装置の概略図であり、(A)電解質水溶液抑留前の装置を示し、(B)は電解質水溶液抑留後の装置を示す。 図40は、電解質加圧型二次電池の概略図であり、(A)は電解質水溶液無加圧の場合を示し、(B)は電解質水溶液加圧の場合を示す。 図41は、積層型苛性ソーダ二次電池の概略図であり、(A)は断面図、(B)は外観図である。 図42は、レドックスキャパシタの概略図であり、(A)は断面図、(B)は、等価回路を示す。 図43は、混合卑金属塩の水溶液から個々の卑金属を抽出する装置の概略図である。 図44は、苛性ソーダ燃料サイクルの概略図である。 図45は、加水分解反応装置の概略図である。 図46は、水耕栽培用水分・肥料供給装置の概略図である。 図47は、内視鏡型医療装置を説明するための図であり、(A)は、人体断面を示し、(B)経管栄養・薬カプセルを示し、(C)は癌の温熱治療カプセルを示す。
 以下、本発明の効果的な実施の形態を図28~図47に基づいて詳細に説明する。
 図28は、本発明の根幹をなす撥水性多孔質フッ素樹脂膜の耐水圧に関する測定値で、電解質水溶液が撥水性多孔質フッ素樹脂膜を透過するために必要な最小圧力(撥水性多孔質フッ素樹脂膜の両側における圧力の差であって電解質水溶液が撥水性多孔質フッ素樹脂膜を透過するために必要な最小圧力差、これを透過差圧ともいうことがある)と電解質水溶液の電解質濃度との関係を示すグラフである。耐水圧は、日本工業規格(JIS)L1092:2009に記載されている。
 図28(A)は、細孔径が3μmのフッ素樹脂製撥水性多孔質膜(日東電工製PTFE多孔質膜NTF-1133)に対し電解質水溶液として濃度の異なる塩化ナトリウム水溶液を用いた場合の結果を示す。一般に耐水圧は純水に対する値である。また、一般の海水の塩分(塩化ナトリウム)濃度は約3重量%であり、塩化ナトリウムの水中飽和濃度は約25重量%である。そこで水に塩化ナトリウムを0%から25重量%までの濃度で添加して、室温における塩化ナトリウム濃度と耐水圧の関係を測定した。上記フッ素樹脂製撥水性多孔質膜の耐水圧は、塩化ナトリウム濃度0%で430mmHg(0.57気圧)、塩塩化ナトリウム濃度10%で320mmHg(0.42気圧)、塩化ナトリウム濃度20%で280mmHg(0.37気圧)、塩化ナトリウム濃度25%で270mmHg(0.36気圧)であった。塩化ナトリウム濃度が高くなるに連れて耐水圧が下がる。また、電解質水溶液の温度が上がると耐水圧は小さくなる傾向にある。
 図28(B)は、細孔径が約10μmのフッ素樹脂製撥水性多孔質膜(フロン工業F3011-3)に対し電解質水溶液として塩濃度の異なる塩化ナトリウム水溶液を用いた場合の結果を示す。このフッ素樹脂製撥水性多孔質膜の耐水圧は、塩化ナトリウム濃度0%で120mmHg(0.16気圧)、塩化ナトリウム2%で50mmHg(0.07気圧)であった。
 図28(A)に示す結果と図28(B)に示す結果からわかるように、多孔質膜の細孔径が大きくなると耐水圧値は小さくなる。また、電解質濃度が高くなると耐水圧は低くなるので、同じ圧力(水圧)下では、撥液性多孔質膜により隔てられた濃度の異なる電解質は、濃度が高い方から低い方に流れる。すなわち、撥液性多孔質膜で形成された密閉容器の中に濃度の高い電解質水溶液が存在し、密閉容器の外側に濃度の低い電解質水溶液が存在するときは、密閉容器の外側に電解質水溶液が漏れ出す。これを阻止するために、密閉容器に密着させた電極室内の圧力を下げ、密閉容器の外側の低濃度電解質水溶液が撥液性多孔質膜を通って密閉容器内部に入り、もう一方の撥液性多孔質膜を通って電極室に流れるルートを取るような圧力差制御を行う必要がある。
 図29は海面下水素製造装置を示す概略図である。図7に示す、電極の中に空隙を持つ気体透過電極室からそれぞれなる負極電極室52および正極電極室53を海面下に沈め直接海水を電気分解して水素を製造する。
 図29の海面下水素製造装置84において、正負電極室52,53の外壁は、それぞれ縦に半割した塩化ビニル樹脂製パイプで構成し、半割による開口をそれぞれ細孔径33μmのPTFE多孔質膜(日東電工NTF-1133)11で塞いだ。負極電極室52の断面図に示すように、負極電極室52内には、ステンレス繊維81(日本精線株式会社ナスロン(登録商標)「ウエブ」)を入れ、他方正極電極室53の断面図に示すように、正極電極室内53には、カーボンクロス(炭素繊維)82を入れた。また、電極室52、53の最上部にそれぞれ生成ガス回収ホース12を繋ぎ、回収ホース12の内部にそれぞれ正および負電極リード線を設けた。
 ここで、電解質水溶液14は海水であり、海水の平均塩分濃度は3.5重量%である。また、図28(A)に示す、細孔径3μmの多孔質フッ素樹脂膜の耐水圧と塩濃度の関係から、濃度3.5重量%の塩化ナトリウム水溶液についての多孔質膜の耐水圧は380mmHgである。水圧は水深10メートルで1気圧(760mmHg)であるから、位置水頭(h)10は海面下約5mとした。海水の温度は23℃、導電率は0.03S/cmであった。ここで電極間距離d(83)を10mmに固定し、両電極間に1.5Vを与えたところ、水素1m3、酸素0.5m3当たりの所要電力は18.3kWhであった。両電極間の電圧を2.5V以上にすると正極から塩素が生成した。尚、ここで用いた水素製造装置84を陸上において、塩化ナトリウム濃度25重量%に濃縮した電解質水溶液(導電率0.18S/cm)を用い、電極間距離d(83)を10mmに固定し、両電極間に1.5Vを与えたところ、水素1m3、酸素0.5m3当たりの所要電力は約10kWhであった。
 図30は海面下で海水を電気分解して水素を製造するための多段型海面下水素製造装置構造図である。図7に示す、電極の中に空隙を持つ気体透過電極室からなる負極電極室52および正極電極室53を海面下に沈め直接海水を電気分解して水素を製造する。電解質水溶液14として用いる海水の平均濃度は3.5重量%である。図28(A)に示す細孔径3μmの多孔質フッ素樹脂膜の耐水圧と塩濃度の関係から、塩化ナトリウム水溶液3.5%での耐水圧は380mmHgである。したがって多段型海面下水素製造装置84を海面下(位置水頭(h)10)約5mまで降下させて実験を行った。
 図30の多段型海面下水素製造装置85では、正負電極室52,53のフッ素樹脂製撥水性多孔質膜11として細孔径3μmのPTFE多孔質膜(日東電工NTF-1133)を用い、正負電極室52,53の外壁は塩化ビニル製とし、電極室52の最上部に生成ガス回収ホース12を接続し、負極電極室52と正極電極室53を交互に連続して配列し、夫々の負極電極室52で生成する水素ガスおよび正極電極室53で生成する酸素はパイプを通して一括して繋回収する。この実験では多段型海面下水素製造装置84は正負3組の水素回収用電極室52と酸素回収用電極室53を並列に配置し、夫々の電極間距離d(83)を10mmに固定した。負極電極室52の電極材はステンレス繊維81(日本精線株式会社ナスロン(登録商標)「ウエブ」)を用い、正極には負極と同じ構造の電極室の中にカーボンクロス(炭素繊維)82を封入した。電解質の塩濃度は海水中であるから3.5重量%であり、海水の温度は23℃、導電率は0.03S/cmであった。ここで両電極間に1.5Vを与えたところ、水素1m3、酸素0.5m3当たりの所要電力は約17kWhであった。
 図31は湖面下水素製造装置構造図である。原理を図11に示すように、撥水性多孔質膜からなる密閉容器の中に封入された高濃度電解質水溶液の中に密閉容器の外壁から水溶液圧入用撥水性多孔質膜を介して淡水を圧入して水素及び酸素あるいは塩素を高効率で直接生成する。高濃度電解質水溶液(高溶解度・高電導率電解質水溶液)で満たされた撥水性多孔質膜製密閉容器を淡水湖、池あるいは海などの開放容器に沈め、密閉容器に付けられた水溶液圧入用撥水性多孔質膜から淡水あるいは低濃度電解質水溶液を圧入した状態で水溶液を電気分解して水素を製造する。
 図31に示す湖面下(海面下)水素製造装置86は、負極電極室52と正極電極室53に挟まれた四角柱型密閉容器87を備える。四角柱型密閉容器87は、その4つの側面の内2つの側面(正負電極室52、53と接する側面)がそれぞれ撥水性多孔質11からなし、その少なくとも1つの他の側面が撥水性多孔質膜(淡水浸透用)27からなる。四角柱型密閉容器87内には約3規定の硫酸や4規定の苛性ソーダ水溶液を電離増強のため入れて置き、四角柱型密閉容器87の淡水浸透用撥水性多孔質膜27に外部から浸入させた淡水88または低濃度電解質水溶液を正負電極室で電気分解して水素と酸素を製造するもので、ここで用いる酸やアルカリを電離触媒と称する。ただし図28(A)の撥水性多孔質フッ素樹脂膜(細孔径33μm)の塩化ナトリウム水溶液における耐水圧は水で430mmHgに対し10%の塩化ナトリウム水溶液で330mmHgと、100mmHgの圧力差がある。そこで、撥水性多孔質フッ素樹脂膜(電極隔離膜)11の細孔径を撥水性多孔質膜(淡水浸透用)27の細孔径よりも小さい孔径を選択し、あるいは撥水性多孔質フッ素樹脂膜(電極隔離膜)11を親水性処理して、塩濃度に起因する撥水性多孔質フッ素樹脂膜(電極隔離膜)11の耐水圧と淡水に起因する撥水性多孔質膜(淡水浸透用)27の耐水圧を同値または近値にしてあるのが本発明の特徴である。ここで水素製造装置86を湖以外の海や温泉水にも適用できる。本発明の装置構造では正負電極室の生成ガスを水面上で回収するため、水面上で吸引することができる。このため、正負電極室の気体圧を真空ポンプで吸引すれば、水素製造装置87を水頭位置まで降下させる必要は無い。また、正負電極室52,53の気体圧が撥水性多孔質膜(淡水浸透用)27に進入する淡水や希電解質水圧より低いので、硫酸が密閉容器の撥水性多孔質膜(淡水浸透用)88から外部の淡水に流失することも無い。さらに、正負電極室の気体を真空ポンプで吸引し、正負電極室のガス圧を制御できるため、撥水性多孔質フッ素樹脂膜(電極隔離膜)11,27は同じもので良い。さらに、撥水性多孔質膜(淡水浸透用)27にかかる密閉容器外の水圧を高くし、電極室側のガス圧を低く設定して、圧力差を持たせることが必要である。さらに、ガス生成側の圧力を一定値以下に保つためには、製造ガス取り出し口の前に、圧力調整弁93を備え、気体透過電極室52,53で生成するガスの圧力で調整するのが最も簡単である。このような構造の湖面下水素製造装置86を用いれば、四角柱密閉容器87内に1~5規定の硫酸あるいは1~10規定の苛性ソーダを入れておき、外部から水素と酸素の生成量に相当する淡水88を供給して電気分解することにより、連続して水素と酸素を製造することができる。本発明ではこの硫酸や苛性ソーダを電離触媒と命名する。この実験では正負電極室間に10~100mmの幅の四角柱型密閉容器87を配置し、負極電極室52の電極材は断面図に示すようにステンレス繊維81(日本精線株式会社ナスロン(登録商標)「ウエブ」)を用い、正極にはカーボンクロス(炭素繊維)82を封入した。四角柱型密閉容器87の中には2.5規定の硫酸と2.5規定の苛性ソーダを封入した場合の2回に分け、水素製造装置86を深さ3mのプールに沈め、負極電極室52および正電極室53のガス圧を夫々200~400mmHgに保持できるように圧力調整弁93を介して真空排気を行いながら、水素の生成効率を測定した。高濃度電解質水溶液79に入れる硫酸の導電率は0.8S/cmであった。比較のため2.5規定の苛性ソーダの導電率は0.3S/cmであった。そこで水素製造装置86の両電極間に1.5Vを与えたところ、高濃度電解質水溶液が硫酸の場合には水素1m3、酸素0.5m3当たりの所要電力は2.3kWh、苛性ソーダでは5.2kWhであった。
 図32は水道圧利用簡易水素製造装置構造図である。原理を図11(B)に示すように、撥水性多孔質膜からなる密閉容器を大型密閉容器の中に挿入し、水道の水圧を撥水性多孔質膜の耐水圧以上で加圧と水道水の供給を行いながら連続して水素を製造する。
 図32に示す水道圧利用簡易水素製造装置89は撥水性多孔質膜からなる密閉容器1を大型密閉容器29の中に挿入し、水道28の水圧を撥水性多孔質膜(淡水浸透用)27の耐水圧以上で加圧すると同時に淡水(水道水)88を撥水性多孔質膜(淡水浸透用)27を介して、約3N(約(8%)の硫酸水溶液を維持するように圧入し、同時に正負電極室3,4(気体透過電極室52,53)で電気分解を行い、負極電極室3の生成ガス回収ホース12から水素を、正極電極室4の生成ガス回収ホース12から酸素を回収する。このガス回収に当たって、淡水(水道水)88の圧力調整することと、ガス生成側の圧力を一定値以下に保つために、製造ガス取り出し口の前に、圧力調整弁93を備え、気体透過電極室52,53で生成するガスの圧力を調整する制御機構が備えられている。とくに硫酸濃度2~5規定が最も導電率が高いため、この濃度を維持するように水道の蛇口で淡水の圧入圧力を調整し、水素と酸素の発生のバランスをとる真空排気とコンプレッサーによるボンベへの圧入装置を付随している。
 図33は塩化ナトリウム水溶液から苛性ソーダと塩素を直接製造する装置を示す。原理を図12(A),(B)に示すように、正負電極室にそれぞれ接する、密閉容器を構成する撥水性多孔質膜の耐水圧に等しい圧力を塩化ナトリウム水溶液に印加した状態で電気分解を行い負極電極室内部で苛性ソーダを製造する。撥水性多孔質膜には耐水圧に等しい圧力が塩化ナトリウム水溶液を介して印加される。
 図33に示す塩化ナトリウム水溶液から苛性ソーダと塩素を直接製造する装置90は、中央に、離間配置された2つの撥水性多孔質膜11により画定された密閉容器1を備える。密閉容器1の一方の側に設けられた負極電極室3は水が充填される電極室40を構成し、炭素またはニッケルなどからなるに負電極板36が配置されている。密閉容器1の他方の側に設けられた正極電極室4は気体透過性の電極室41を構成し、空隙を有する電極材が配置されている。そして、密閉容器1内に濃度26重量%の塩化ナトリウム水溶液32を満たす。塩化ナトリウムの溶解度は雰囲気温度に殆ど左右されないが、生成する苛性ソーダは雰囲気温度に左右される。図18に示すように苛性ソーダの溶解度は40℃で56%、80℃で74%と高温ほど溶解度が上がるため、高濃度の苛性ソーダ31を製造するために電極室40に熱水を注入するか電極室40をヒータ加熱することが望ましい。本実験では簡便な方法として、負極電極室3の水供給口34から100℃以下の熱水を注入した。ここで、一つの工夫は、電気分解開始時は負極電極室3の水に予め希苛性ソーダ31を添加することにより電気分解効率が上げることである。そこで塩化ナトリウム水溶液32の濃度を常時26%に維持しながら圧力印加具6で撥水性多孔質膜11を耐水圧に等しい圧力で加圧して、負極室40に苛性ソーダ31を生成させ、負極生成物回収口35から濃縮苛性ソーダを回収し、最上部に取り付けた生成ガス回収ホース12で水素ガスを回収する。また正極電極室4の最上部に取り付けた生成ガス回収ホース12で塩素ガスを回収する。この塩素ガス生成側の圧力を一定値以下に保つために、製造ガス取り出し口の前に、圧力調整弁93を備え、苛性ソーダ生成室31のガス圧が1気圧以上にならないように調整している。両電極間に4Vの電圧をかけ、電流密度を20Aに設定したところ、苛性ソーダの生成量は1kg当たり3kWhであった。
 図34は塩化ナトリウム水溶液から苛性ソーダと塩酸を直接製造する装置を示す。原理を図12(B)に示すように、正負電極室にそれぞれ接する、密閉容器を構成する撥水性多孔質膜の耐水圧に等しい圧力を塩化ナトリウム水溶液に印加した状態で電気分解を行い負極電極室内部で苛性ソーダを製造する。撥水性多孔質膜には耐水圧に等しい圧力が塩化ナトリウム水溶液を介して印加される。
 図34に示す塩化ナトリウム水溶液から苛性ソーダと塩素を直接製造する装置91は、中央に、離間配置された2つの撥水性多孔質膜11により画定された密閉容器1を備える。密閉容器1の一方の側に設けられた負極電極室3は水が充填される電極室40を構成し、炭素またはニッケルなどからなるに負電極板36が配置されている。密閉容器1の他方の側に設けられた正極電極室4も水が充填される電極室40を構成し、炭素からなる正電極板38が配置されている。そして密閉容器1内に濃度26重量%の塩化ナトリウム水溶液32を満たし、正極電極室4の水供給口34から水を、負極電極室3の水供給口34から100℃以下の熱水を注入する。さらに電気分解開始時は、負極電極室内3の水に予め苛性ソーダ水溶液31を、正極電極室4の水に予め塩酸を夫々添加することにより電気分解効率が上がる。塩化ナトリウム水溶液の濃度を常時26%に維持しながら、塩化ナトリウム水溶液を介して圧力印加具6で撥水性多孔質膜11を耐水圧に等しい圧力で加圧して、負極室40に苛性ソーダ31を生成させ、負極生成物回収口35から濃縮苛性ソーダを回収し、最上部に取り付けた生成ガス回収ホース12で水素ガスを回収する。また正極電極室40の正極生成物回収口(濃酸取り出し口)42から濃縮塩酸を回収し、最上部に取り付けた生成ガス回収ホース12で酸素ガスを回収する。負極電極室3の電極室40では苛性ソーダ31が製造され、電極室41では塩酸33が製造され、これらは共に電気伝導率が高いので撥水性多孔質膜11で隔離された密閉容器1内の電解質水溶液14である塩化ナトリウム水溶液32は、耐水圧での電解質水溶液の加圧で、効率良く電気分解される。
 図35は卑金属塩化物水溶液から卑金属元素を直接製造する装置を示す。原理を図13(A)に示すように、密閉容器の負極側に撥水性多孔質膜からなる隔離膜を介して炭素製空隙電極を接触させ、その背面を油で満たし、油より比重が軽い卑金属(Li,K,Na)を上部から、油23より比重が重い卑金属(Mg,Ca,Ba,Sr,Al)は最下部から回収される。
 図35に示す卑金属元素製造装置92は、撥水性多孔質膜11により画定された密閉容器1内に製造を所望する卑金属元素に対応した塩化物として、例えば、NaCl、KCl、LiCl、MgCl2、CaCl2、BaCl2、SrCl2、AlCl3などの水溶液を1種類選択して収容する。図19に示すように、卑金属塩化物は温度依存性が無いNaCl以外は、溶液温度が高くなるにつれて溶解度は上昇する傾向にある。例えば密閉容器1内の卑金属塩化物水溶液32の液温を内部ヒータで加温して60℃にすれば、NaClは27%、KClは31%、LiClは50%、MgCl2は38%、CaCl2は58%、BaCl2は32%、SrCl2は47%、AlCl3は32%である。これらの結果から卑金属塩化物水溶液32の液温を25~80℃に上げ飽和溶解度まで濃度を上げた状態で耐水圧まで加圧して電気分解を開始すると良い。図35に示す卑金属元素製造装置92の負極電極室3は油が充填される電極室16を構成し、電極には炭素繊維からなる網状負電極43を用い、油23として比重0.8の軽油を用いる。他方、正極電極室4は気体透過性電極室41を構成し、炭素繊維からなる正電極37を用い、正極電極室4からは生成ガス回収ホース12により塩素ガスを回収する。卑金属塩化物水溶液32としてLiClを用いた場合、溶解度は80℃で53%であり、かつLiの融点が179℃、比重0.54(図16)であるからるから、約50%のLiClを80℃で電解し、負極電極室3の軽油23の最上部に金属Liが浮遊し、負極電極室3の最上部に備えた負極生成物回収口35より回収する。他方、正極電極室の最上部の生成ガス回収ホース12で塩素ガスを回収する。この塩素ガス生成側の圧力を一定値以下に保つために、製造ガス取り出し口の前に圧力調整弁93を備えている。予備実験で、28%に濃縮した塩化ナトリウム水溶液を25℃で正負電極間に4~5V、電流密度は10A、1時間通電し、約油充填電極室16の中に満たした軽油の中に8gの金属ナトリウムを析出した。
 図36は卑金属塩化物水溶液から卑金属元素と塩酸を直接製造する装置構造図である。原理を図13(A),(B)に示すように、密閉容器の負極側に撥水性多孔質膜からなる隔離膜を介して炭素製空隙電極を接触させ、その背面を油で満たし、油より比重が軽い卑金属(Li,K,Na)を上部から、油23より比重が重い卑金属(Mg,Ca,Ba,Sr,Al)は最下部から回収される。負極生成物の生成法は上に述べた。一方正極で作る塩酸は、図36の卑金属元素と塩酸を直接製造する装置95の正極電極室4には水充填電極室40を採用し、負イオンと水との反応を行うために、水供給口34から給水した水に予め希塩酸水溶液を添加した後、撥水性多孔質膜11を介して網状負電極板43と正電極板38との間で電気分解を行い、イオン反応(2Cl-+2H2O→2HCl+O2)を行う。ここで生成した酸(塩酸)33は濃酸(塩酸)取り出し口42から回収し、酸素は生成ガス回収管12から回収する構造の装置である。
 図37は卑金属塩化物水溶液から仮想負電極を利用した卑金属製造装置構造図である。原理を図14(B)に示すように、周期表第1,2族元素からなる卑金属塩水溶液面と油面との境界面を仮想負電極面として、卑金属塩水溶液を電気分解して、負極析出物を油層内で回収させるものである。油と電解質水溶液の境界面を仮想電極とすることは容易に考えられる。しかし、この仮想電極が負極でなければ負極生成物は発生しない。そこで仮想電極を負極にする方法を図37(B)の等価回路「村原サーキット」および図37(A)の仮想負電極を利用した卑金属製造装置に示すように、圧力印加具6で耐水圧の電解質水溶液14をON/OFFされる撥水性多孔質膜11が図37(B)の等価回路に描かれたスイッチが(S)、電解質水溶液14が(R)、油充填電極室16内の油23が(C2)、電圧が(E)、外部に据え置きした大容量キャパシタが(C1)である。先ず大容量キャパシタが(C1)に電圧(E)を与えた後、耐水圧の圧力が加えられると、両電極室面のスイッチ(S)がONされ、C1に蓄えられた電荷はC1,C2の直列キャパシタとして仮想電極面19が負極として働き、Rに電位がかかり、電気分解が行われ、仮想負極電極面19で、油より比重が軽い卑金属(Li,K,Na)が上部から、油23より比重が重い卑金属(Mg,Ca,Ba,Sr,Al)は最下部から回収される。同時に正極電極室4の気体透過電極室41の最上部の生成ガス回収ホース12で塩素ガスを回収する。この塩素ガス生成側の圧力を一定値以下に保つために、製造ガス取り出し口の前に圧力調整弁93を備えた仮想負電極を利用した卑金属製造装置ある。
 図38は水素化卑金属製造装置を示す。一般に水素化ナトリウムは苛性ソーダの溶融塩電気分解により製造した金属ナトリウムを高温で水素と化合させて製造する。この金属ナトリウムの製造費が高価である。図15に関して記載したように、苛性ソーダの融点は318℃と著しく低い。このため苛性ソーダを入れた容器を318℃以上で加熱するとイオン化された状態の溶融塩ができる。図38の水素化金属製造装置97に示すように、苛性ソーダ溶融塩(Na++OH-)の中に水素のプラスイオン(H+)と水素のマイナスイオン(H-)50を反応させると、Na++OH-+H-+H+→NaH+H2Oとなる。そこで苛性ソーダ溶融塩46の中で水素のマイナスイオン(H-)50を生成させるために、気体透過電極室41構造の多孔質炭素負極兼隔離膜44に、水素ガスを圧入口47からから圧入し、この多孔質炭素負極兼隔離膜44からなる負電極44と正電極板38との間に苛性ソーダ溶融塩46を挟み、かつ両電極間に水素マイナスイオン50の生成電位を与えると、苛性ソーダ溶融塩中のナトリウムイオン(Na+)と反応して水素化ナトリウム(NaH)49を、熱反応によらないイオン反応だけで製造できる。さらに水素化ナトリウム(NaH)49の比重が苛性ソーダ溶融塩46の比重より軽く、しかも融点が苛性ソーダ46の融点より著しく高いので、固形物として浮遊し、回収が容易な装置である。
 図39は封筒型密閉容器内への電解質水溶液抑留装置を示す。封筒型密閉容器55は撥水性多孔質11のシートを2枚重ね合わせ、四方を350℃内外で熱融着して製作する。この封筒型密閉容器55は電池の電解質水溶液貯留容器としての用途が非常に多い。そこで、この封筒型密閉容器55に電解質水溶液14,102を抑留するのが電解質水溶液抑留装置98である。封筒型密閉容器55の両面には図39(A),(B)に示すように、撥水性多孔質フッ素樹脂膜100および撥水性多孔質フッ素樹脂膜101を有している。これら撥水性多孔質フッ素樹脂膜100,101の耐水圧は図28に示すように電解質水溶液の塩濃度により異なる。ここで図39(B)に示すように、圧力印加具6で加圧する抑留用電解質水溶液102の水圧を(WP102)、封筒型密閉容器55内の電解質水溶液の水圧を(WP55)とし、抑留用電解質水溶液102側の撥水性多孔質フッ素樹脂膜100の耐水圧を(WP100)、吸引口99側の撥水性多孔質フッ素樹脂膜101の耐水圧を(WP101)、吸引口99の空気圧を(P99)とすると、抑留用電解質水溶液102を撥水性多孔質フッ素樹脂膜100の細孔を通過させて封筒型密閉容器55内部に封入する条件は、WP102≧WP55+WP100であり、封筒型密閉容器55内の電解質水溶液を抑留させるための吸引口99で吸引する負圧条件はWP101≧P99≧-WP101である。ここで2面に用いる撥水性多孔質フッ素樹脂膜100,101を同一材質とすれば、WP100=WP101である。したがって、先ず図39(B)に示す電解質水溶液抑留装置98の吸引口99側で、撥水性多孔質フッ素樹脂膜101の耐水圧(-WP101)以上の負圧を維持した状態で、圧力印加具6により抑留用電解質水溶液102の加圧を開始し、同時に吸引口99の圧力を(+WP101)に変換して、封筒型密閉容器55に抑留用電解質水溶液102を封入する装置である。
 図40は電解質水溶液加圧型二次電池を示す。図40(A)に示す電解質加圧型二次電池103の構造は、撥水性多孔質フッ素樹脂膜11を電極との隔離膜に用いた封筒型密閉容器55に電解質水溶液14を封入し、負極電極室52と正極電極室53とで挟み込み、錘104で加重をすると、図40(A),(B)のように電位(V)が現れる。ここで錘104を除くと電位(V)は0Vになる。本実施例では負極電極室52の負電極板36にアルミ板を、正極電極室53の正電極板38はAlCl3、ZnCl2、MgCl2などの金属塩化物膜63を用いている。先ず一次電池の予備実験として、内部に濃度10%の塩化ナトリウム水溶液を封入した封筒型密閉容器55の両面を、マグネシウム板からなる負電極と電極面に塩化膜を形成させた亜鉛板からなる正電極とで挟み、細孔径33μmの撥水性多孔質フッ素樹脂膜11に図28に示す耐水圧330mmHgに匹敵する錘104で加圧すると、3.5Vの起電力が得られ、錘104を取り除くと電圧値は0Vを示す。次に二次電池の予備実験として、内部に濃度25%の塩化アルミニウム水溶液を封入した封筒型密閉容器55を用意し、その両面を共にアルミニウム電極板で挟み、撥水性多孔質フッ素樹脂膜11の耐水圧に匹敵する錘104で加重した状態で、10アンペアの直流充電を60分行った。この時点で錘104を取り除き、充電を終えた。この時点での封筒型密閉容器55内部の塩化アルミニウム水溶液の濃度は23%であり、原理的には10%まで充電可能である。ここで錘104を取り除いたまま放置して、1ヵ月後、電解質加圧型二次電池103の上を再度錘104で加圧すると、3.5Vの起電力を示し、錘104を取り除くと電圧値は0Vを示した。この錘104の付加と解除を繰り返しても、封筒型密閉容器55内部の塩化アルミニウム水溶液の濃度の変化は無く、内部で自己放電が起こらないことが実証できた。
 図41は積層型苛性ソーダ二次電池を示す。図21で示したように、電解質に苛性ソーダ水溶液を、正電極には空気を、負電極には炭素繊維を用い、充電時には炭素の空隙にナトリウムを析出させる。図41(A)の断面図に示す積層型苛性ソーダ二次電池106は封筒型密閉容器55を負極電極室52と正極電極室53で挟む構造であり、封筒型密閉容器55は両面が撥水性多孔質フッ素樹脂11で作られた袋であり、内部に封入された電解質水溶液14は1~8規定の苛性ソーダ、負極電極室52,57はNaの板状電極あるいは炭素製空隙電極板内部や表面の空隙にNaを吸着させ、かつ負電極の周囲を樹脂フィルム61で包囲するか、あるいは負電極内部に油22を含ませた状態とした負極電極室である。一方、正電極室53の酸素電極は炭素製該空隙板電極(活性炭)58に空気を吸着させ、かつ撥水性多孔質膜11と炭素製空隙板電極(活性炭)58との間に充電用補助正電極(網状電極)56を配置して炭素製空隙板電極(活性炭)58の発熱を無くし、電力は炭素製空隙板電極(活性炭)58の背面に集電極板64を備えている。この電池の概観は図41(B)に示すように、積層型苛性ソーダ二次電池106の周囲を樹脂フィルム61で包囲して外界と遮蔽し、封筒型密閉容器55内の電解質水溶液14を錘104で加圧した状態で充電を行い、充電を完了させた時点で電解質水溶液14の加圧を解除して蓄電状態を維持し、放電時には電解質水容液14を加圧して放電を開始させる二次電池である。苛性ソーダ水溶液は図18に示すように水との溶解度が高く、室温で50%である。先ず撥水性多孔質フッ素樹脂膜11からなる封筒型密閉容器55の内部に50%の苛性ソーダ水溶液を封入し、負極電極室52,57は周囲を樹脂フィルム61で包囲し、かつ油を含芯させた炭素製空隙電極からなる外気遮蔽型負極電極室57であり、正極は周囲を樹脂フィルム61で包囲し、かつ空気が出入りする空気取り入れ口105が備えられた活性炭による炭素製該空隙板電極58であり、かつ撥水性多孔質膜11と活性炭による炭素製該空隙板電極58との間に網状の充電用補助正電極56を備えた正電極室53であり、
 これら該外気遮蔽型負極電極室57と該正電極室53は、撥水性多孔質フッ素樹脂膜11からなる封筒型密閉容器55に挟まれている構造を有している。ここで先ず予備実験として苛性ソーダ電池106上部に撥水性多孔質フッ素樹脂膜11の耐水圧に匹敵する錘104で加圧し、この状態で充電用補助正電極56と外気遮蔽型負極電極室57内の炭素製該空隙板電極との間に10Aで60分の充電を行った後、錘104を取り除き、充電を終えた。この時点での封筒型密閉容器55内部の苛性ソーダ水溶液の濃度は43%であり、原理的には10%まで充電可能である。ここで外気遮蔽型負極電極室57内の炭素製該空隙板電極と銅板からなる集電極板64との間に電気的負荷をかけ、再度錘104で加重すると、放電が始まり起電力は3Vであった。ここで錘104を取り除いたまま放置して、1ヵ月後、再度錘104で加圧すると、3Vの起電力を示し、錘104を取り除くと電圧値は0Vを示した。この錘104の付加と解除を繰り返しても、封筒型密閉容器55内部の苛性ソーダ水溶液の濃度の変化は無く、内部で自己放電が起こらないことが実証できた。
 図42はレドックスキャパシタの構造を示す。動作原理を図27で示したように、正負両電極に金属板表面に予め極薄い酸化皮膜を形成させた強誘電体キャパシタを配置するもので、構造的には正極も負極も同じである。レドックスキャパシタ107を電気回路で説明すると、図42(B)に示す等価回路のC1が負極電極室52であり、図42(A)の断面説明図に示すようにレドックスキャパシタ用金属板108の表面に極く薄いレドックスキャパシタ用酸化皮膜109を形成させ、強誘電体キャパシタを形成させる。ただし、正極電極室53も負極電極室52も同一構造で材料も同じである。これら正負一対の電極室52,53に撥水性多孔質膜11を介して挟まれているのが封筒型密閉容器55である。この撥水性多孔質膜11の等価回路が42(B)の低誘電率キャパシタ(C2)とスイッチ(S)である。とくに本発明では封筒型密閉容器55の内部は炭素繊維や金属繊維などからなる含空隙導電材料78が充填され、さらにその空隙を電気化学キャパシタ用電解質水溶液(希硫酸)79が含浸している。ここで圧力印加具6により耐水圧に等しい水圧をかけると撥水性多孔質膜11の細孔に希硫酸79が浸入して電気回路的にはスイッチ(S)がONになり、正極室と負極室は封筒型密閉容器55の内部の炭素繊維や金属繊維などからなる含空隙導電体78で短絡され、2個の高誘電率キャパシタ(C1)が直列の状態で充放電が行われ、電解質水溶液14の加圧が解除されると2個の低誘電率キャパシタ(C2)と2個の高誘電率キャパシタ(C1)が直列となり蓄電を保つ。電解質水溶液14が未加圧の時は撥水性多孔質膜11の細孔に電解質水溶液14が浸入しないため低誘電率キャパシタ(C2)であるが、電解質水溶液14が加圧されれば撥水性多孔質膜11の細孔に電解質水溶液が浸入して電気回路的にはスイッチ(S)がONになり、正極室と負極室は撥水性多孔質膜製密閉容器(封筒型)55を介して短絡されて、2個の高誘電率キャパシタ(C1)が直列の状態で充放電が行われ、電解質水溶液14の加圧が解除されると2個の低誘電率キャパシタ(C2)と2個の高誘電率キャパシタ(C1)が直列となり蓄電を保つ。ここではレドックスキャパシタ用金属板108にアルミニウム(Al)、レドックスキャパシタ用金属酸化皮膜109に酸化アルミニウム(Al23)を用いたレドックスキャパシタ装置である。
 図43は海水や塩湖水または温泉水あるいは工業排水などの混合塩水溶液から第1族元素のNa,K,Liや第2族元素のMg,Ca,Sr,Baなどの卑金属元素を選択回収する方法であり、塩濃度が高い方が回収効率が高い。このため先ず最初に行うのは、熱や逆浸透膜法で脱水を行った後、あるいは海水を電気分解して水素を製造した後の廃液(濃縮塩水)を電気分解する。ただし、図19に示したように、卑金属塩化物の溶解度は元素により大きく異なり、溶液温度を高くすると溶解度が上がる傾向がある。例えば80℃ではZnCl2は84.4%、CaCl2で60%、LiClで53%、KClで34%、NaClで28%である。析出させる元素は溶解度が高いほうが望ましいが、実際には溶質の分解電圧が低い元素から始める必要がある。そこで先ず水の電気分解1.4V以上、MgSO4:1.62V、CaSO4:1.904V、MgCl2:3.952V、NaCl:4.11V、CaCl2:4.23V、SrCl2:4.286V、BaCl2:4.316V、KCl:4.317V、LiCl:4.441Vの順に印加電圧を高くし、夫々の元素が析出した後の廃液を次の析出装置に移送する方法で、複数卑金属元素塩から単元素を選択回収する装置である。
 図44は苛性ソーダ燃料サイクル模式図である。この燃料サイクルを洋上で実施しようとするのが本発明である。エネルギー資源、材料資源、海は資源の宝庫である。本願発明者が非特許文献3および4で述べているように、地球全体の70.8%は海洋であり、海水の3.5%は塩であり、海水1リットル中に2.18gのNaClが含まれている。このナトリウム(Na)こそが次世代の化石燃料や原子力燃料に替わるエネルギー源である。ナトリウムから作る水素燃料はCO2も放射能も出さないクリーンエネルギー源で、しかも枯渇の心配も無く、これまでの資源生産国の覇権主義や政情にも影響されないため、資源戦争が無い平和な世界を創ることができる。産業は消費地立地よりも原料立地のほうが望ましい。しかも原料を加工するための電力も原料採取地に隣接していることが望ましい。そこで洋上に洋上工場110を浮かべ、真下の海水を原料として使い、その処理の電力は洋上風力発電や太陽光発電、あるいは、特許文献19,20で本願発明者が開示している浮力重力発電装置113を海底と海面の間を往復させて風力の約1000倍の発電量が得られる浮力重力発をなどの自然エネルギーを用い、図31に示す水素製造装置86を海面下の水圧を利用して水素を製造し、図33あるいは図34に示す苛性ソーダ製造装置90,91で苛性ソーダおよび塩酸または塩素を製造する。電力は自然エネルギー発電のほか、臨海火力発電所や原子力発電所などの余剰電力や深夜電力を使って臨海工場111においても水素や苛性ソーダが作られる。この苛性ソーダは図16で示すように融点が318℃と低いため、水素化卑金属製造装置97でヒータ加熱された苛性ソーダ溶融に正負電極を備え、かつ水素ガスに逆電圧を与え、生成された水素の負イオンとナトリウムの正でイオンとを反応させて水素化ナトリウム49を製造する。しかも、水素化ナトリウムをイオン反応で製造するため電力消費が少なく、しかも図16に示すように水素化ナトリウムの比重は0.92と苛性ソーダ溶融塩の比重の2.13より小さく、かつ水素化ナトリウムの融点は800℃と苛性ソーダの融点318℃より高いため水素化ナトリウムを上滓として浮上させて簡単に比重選別できる。ここで製造した水素化ナトリウム49を水素発生装置112に挿入して水を注ぐと金属ナトリウムによる加水分解反応よりも2倍の水素を生成する。ここで製造した水素は火力発電所や水素ステーションにパイプラインで送られる。一方水素発生装置112でできた廃棄物(副産物)の苛性ソーダ31は水素化卑金属製造装置97の原料として使われ、再度水素化ナトリウム49が作られる。これは正に核燃料サイクルでは無く苛性ソーダ燃料サイクルに他ならない。一方苛性ソーダ製造装置90,91で作られた苛性ソーダの一部は図41で示した積層型苛性ソーダ電池として車載バッテリーや電力貯蔵用バッテリーとして使われる。また水素化ナトリウムを油に浸し水素発生装置112の小型装置を車載すれば、水素ボンベを積載しない水素自動車ができるなど、化石燃料に頼らない水素社会を構築するための苛性ソーダ燃料サイクルシステムである。
 図45は加水分解反応制御装置の模式図である。加水分解反応制御装置114の内部には薬品116が収容された撥水性多孔質フッ素樹脂密閉袋115が入れられ、撥水性多孔質フッ素樹脂密閉袋115の外部から水88を内部に浸入させて加水分解による気体発生、熱発生、吸熱あるいは溶解反応に使うことができる。本発明で最も顕著な現象は第1族元素であるNa,K,Liで、撥水性多孔質フッ素樹脂密閉袋115の中にこれらの薬品116を挿入し、耐水圧以上の差圧で水を浸入させると水素を発生する。ただしフッ素樹脂はこれら第1族元素で腐食され、劣化が起こる。これを防止し、安全に加水分解反応を起こさせるためには、撥水性多孔質フッ素樹脂密閉袋115の中に軽油などの油類を第1族元素と共に挿入しておけば、フッ素樹脂は水の中では親油性を呈し、撥水性多孔質フッ素樹脂密閉袋115の内側ではNa,K,Liなどがフッ素樹脂と直接触れないので劣化の心配は無い。例えば、薬品116として重曹とクエン酸(1:1)を挿入すると二酸化炭素(CO2)を発生するので、特許文献19,20で本願発明者が開示している浮力重力発電装置113(図44)の浮力用ガスとして用いれば、水深1300mより浅い場合の浮力を得るためのガス源として利用できる。酸化カルシウム(CaO)とアルミニウム(Al)を薬品116として挿入しておけば、2CaO+2Al+4H2O→2Ca(OH)2+2Al+2H2O+63.3kJ/mol→2CaO+Al23+H2+390.1kJ/molのように高温と水素が同時に得られるため、これらの薬品の重さを深海底へ潜水艇が沈降するときの錘として用い、深海底の海水を水源として用いて水素を発生させ、かつ同時に発生した熱でさらに気体の容積を大きくして、潜水艇の浮力気体として用いることができる。この熱でドライアイスを1300mよりも深い深海底で昇華させ浮力剤としても使える。尿素((NH22CO)を薬品116として挿入しておけば,(NH22CO+H2O→2NH3+CO2としてアンモニアと二酸化炭素が得られる。カーバイド(CaC2)を使えばCaC2+2H2O→Ca(OH)2+C2Hのようにアセチレンガスを作ることができる。薬品116として非電解質の砂糖、調味料、栄養剤あるいは医療薬などを挿入して水88と溶解反応を起こさせることもできる。
 図46は水耕栽培の水分や栄養分補給装置の模式図である。栄養分補給装置121は植物工場や野菜工場で野菜や果樹などの植物119に水圧で制御した水と栄養を間欠的に与える装置で、薬品散布ジョウロ(撥水性多孔質樹脂製の袋やチューブ)120が水溶液補給用パイプ(ホース)118で連結され、植物工場の制御室122で肥料分や水分などの補給用栄養分121を必要に応じ連続または間欠的に圧力印加具6により所望の箇所に配送し、植物の根部に水分と栄養分(肥料)を効率よく与え、水の与え過ぎによる根腐れや栄養過多を抑えることができる。
 図47は内視鏡型医療装置の概略図である。図47(A)に示すように臓器内部にカテーテル123を挿入し、臓器内に挿入したカプセル内部を圧力印加具6で、吸引(陰圧)または加圧(陽圧)を行い、患部に薬や栄養剤水溶液を移送または患部を加熱することができる。患部に薬や栄養剤を移送するには図47(B)に示すように、撥水性多孔質フッ素樹脂密閉袋115に栄養剤や薬品116を移送してカテーテル123を介して溶液加圧(陽圧)を行い、多撥水性孔質膜の耐水圧(差圧)以上の圧力を圧力印加具6で加えることにより必要な場所に栄養や薬を効率よく与え、現在の点滴や経管栄養投与のように四六時中与えるのではなく、生活リズムに合わせて高効率の投与ができる。患部治療についても目的とする患部のみに薬物投与ができる。図47(C)は癌細胞を死滅させる温熱治療カプセル125の模式図である。癌細胞が最も弱いのが39~43℃の温度である。風呂の温度に匹敵する比較的低い温度であるが、患部を長時間一定温度で直接加熱することは難しい。そこで予備実験を机上で行った。まず水88を封入したカプセル125の中に、加水分解発熱剤124を封じ込んだ撥水性多孔質フッ素樹脂密閉袋115を挿入させ、この撥水性多孔質フッ素樹脂密閉袋115内部をカテーテル123で耐水圧が得られる差圧分だけ吸引(陰圧)すればカプセル125内部の水88が陰圧分だけ撥水性多孔質フッ素樹脂密閉袋115の中に浸透し、加水分解発熱剤124と反応して発熱し、この熱でカプセル126内部水88が熱せられ、もし臨床実験ならば癌細胞が宿る患部を直接加温することができる。この負圧をパルス的に繰り返し、この負圧で加水分解発熱剤124に水を供給し、加水分解発熱剤124と水88の反応で39~43℃の温度を約30分持続させた。ここで用いる加水分解発熱剤124の発熱量はCaOで65kJ/mol、P23+ZnCl2+Ba(OH)2で18.1kJ/mol、NaOHで12.6kJ/mol、KOHで39.5kJ/mol、硫酸で37kJ/mol、CaCl2で97.4kJ/mol、Al23で126kJ/mol、CuSO4で27.5kJ/mol、CaO+Alで390.1kJ/molであるのでカプセルへの投入量、到達温度、持続時間などから考慮すると、臨床応用では発熱剤はCaOが適していると考える。
 石油も石炭も可採年数は限られ、しかも二酸化炭素を排出する。核燃料は放射能を出す。これとは対照的に、水素は可採年数が無限で、二酸化炭素も放射能も出さず、クリーンで環境にも優しい燃料である。ところが、水素自身は軽いにも拘らず、水素を貯蔵する容器(ボンベ)や吸蔵合金が重過ぎて運搬には不向きである。そこで、“水素”を“水素の元(ナトリウム)”に変換する。このナトリウムは、海水や岩塩として世界中に広く分布し、枯渇の心配も偏存の心配も無い。ところがその回収には水の除去が不可欠だった。このため溶融塩電気分解以外には回収手段は無かった。本発明により、海水をそのまま電気分解して金属ナトリウムを回収する。苛性ソーダもイオン交換樹脂無しで生産できる。また正負電極を海面下に沈めれば、電位を与えるだけで水素と酸素を製造する。さらに電解質が水溶液であるリチウム、ナトリウム、カリウム、カルシウムなどの卑金属/空気二次電池や卑金属/ハロゲン二次電池が製造できるため経済効果大である。とくに海水から得られる金属ナトリウムは石油の代替エネルギーとして、枯渇の心配もなく、地域偏存も無い電力を生み出す資源として、また発電効率の高い卑金属水溶液二次電池として、共に我が国の産業へ多大の貢献ができる。
1…密閉容器
2…開放容器
3…負極電極室
4…正極電極室
5…連通管
6…圧力印加具(シリンダ)
7…スポイトゴム、ピペター
8…ラチェット付電動加圧装置
9…貯水槽
10…位置水頭(h)
11…撥液(水)性多孔質膜(隔離膜、)
12…生成ガス回収ホース
13…アルコール
14…電解質水溶液
15…溶質(薬品)
16…油充填電極室、
17…正極板(油槽内)
18…中間電極板(油槽内)
19…仮想負電極面(油と電解質の界面)
20…電荷(電圧)
21…電解質内の正極板
22…油
23…油(比重1以下)
24…油(比重1以上)
25…酸(塩化物の場合は塩酸)
26…陰極生成物回収口
27…撥液水性多孔質膜(淡水浸透用)
28…水道(水圧の利用)
29 大型密閉容、
30…水素製造装置
31…卑金属水酸化物(苛性ソーダ)
32…卑金属塩化物水溶液(塩化ナトリウム水溶液)
33…濃酸(塩酸)
34…水供給口
35…負極生成物回収口
36…負電極板
37…正電極(炭素繊維、炭素粒、多孔質炭素)
38…正電極板
39…卑金属塩水溶液供給槽
40…水充填電極室
41…気体透過電極室
42…正極生成物回収口(濃酸取り出し口)
43…網状負電極(炭素繊維、金属網)
44…多孔質炭素負極板兼隔離膜
45…水素ガス
46…卑金属水酸化物溶融塩(苛性ソーダ)
47…水素ガス圧入口
48…溶融塩加熱ヒータ
49…水素化卑金属(水素化ナトリウム)
50…水素マイナスイオン
51…水素化卑金属回収口
52…負極電極室(電池用、キャパシタ用)
53…正極電極室(電池用、キャパシタ用)
55…封筒型密閉容器
56…充電用補助正電極(網状金属)
57…外気遮蔽型負電極室
58…炭素製空隙板電極(活性炭)
59…金属酸化膜(電池正極用)(CuO,AlO,ZnO
60…金属板(電池用)(Cu,Al)
61…樹脂フィルム
62…負電極板(電池用)(Al,Mg,Ca,Zn,Ni,Pb)
63…金属塩化物膜(電池正極用)(ZnCl2
64…集電極板(電池用)(Cu,Al)
65…負極電極板(Al,Mg,Zn)
66…正極(負極で用いた金属の塩化物)
67…活性炭粒または炭素繊維
68…臭素液
69…沃素粒
70…グラファイト板
71…アルミニウム(Al)負極電極板
72…誘電性溶液(油系、水系)
73…板電極(キャパシタ)
74…電気二重層電極(キャパシタ)
75…レドックスキャパシタ電極
76…ハイブリッドキャパシタ電極
77…包囲点線部
78…含空隙導電材料(金属繊維、炭素繊維、活性炭)
79…電気化学キャパシタ用電解質水溶液(希硫酸)
80…希苛性ソーダ(電気化学キャパシタ用電解質水溶液)
81…ステンレス繊維
82…炭素繊維
83…電極間距離(d)
84…海面下水素製造装置
85…多段型海面下水素製造装置
86…湖面下(海面下)水素製造装置
87…四角柱型密閉容器
88…淡水(水)
89…水道圧利用簡易水素製造装置
90…塩化ナトリウム水溶液から苛性ソーダと塩素ガスを直接製造する装置
91…塩化ナトリウム水溶液から苛性ソーダと塩酸を直接製造する装置
92…卑金属製造装置
93…1次圧力調整弁(気体透過用電極室)
94…吸引口(真空ポンプで耐水圧以下まで)
95…卑金属元素と塩酸を直接製造する装置
96…仮想負電極を利用した卑金属製造装置
97…水素化卑金属製造装置
98…電解質水溶液抑留装置
99…吸引口(真空ポンプ)
100…撥水性多孔質膜(11a)
101…撥水性多孔質膜(11b)
102…抑留用電解質水溶液
103…電解質加圧型二次電池
104…錘
105…空気取り入れ口
106…積層型苛性ソーダ電池
107…レドックスキャパシタ
108…レドックスキャパシタ用金属板
109…レドックスキャパシタ用金属酸化被膜
110…洋上工場
111…臨海工場(臨海発電所)
112…水素発生装置
113…浮力重力発電装置
114…加水分解反応制御装置
115…撥水性多孔質フッ素樹脂密閉袋
116…薬品
117…気体
118…水溶液補給用パイプ(ホース)
119…植物(野菜、果樹)
120…薬品散布ジョウロ(撥水性多孔質樹脂製袋やチューブ)
121…補給用栄養分(野菜工場)
122…制御室
123…カテーテル(管)
124…発熱剤(CaO)
125…カプセル

Claims (31)

  1.  第1の主面とこの第1の主面と反対側の第2の主面を有する正極;
     第1の主面とこの第1の主面と反対側の第2の主面を有する負極、ここで、前記正極と負極とは、前記第1の主面同士が対面し、互いに離間配置されてそれらの間にスペースを規定しており;
     前記スペースを満たす導電性液体および/または誘電性液体;
     前記正極の第1の面に配置されて前記正極を前記液体から隔離する第1の隔離具、ここで、前記第1の隔離具は複数の細孔を有する第1の撥液性多孔質膜を含み;
     前記負極の第1の面に配置されて前記負極を前記液体から隔離する第2の隔離具、ここで、前記第2の隔離具は複数の細孔を有する第2の撥液性多孔質膜を含み;および
     前記液体を加圧して前記第1および第2の撥液性多孔質膜の細孔を前記液体で満たさせ、それにより前記正極および前記負極が関与する電気化学反応を生起させる圧力印加具を備える電気化学反応装置。
  2.  前記撥液性多孔質膜がフッ素樹脂、ポリプロプレンまたはポリエチレンで形成され、前記液体が電解質水溶液であり、前記加圧が前記撥液性多孔質膜の耐液圧に等しい圧力で行われる請求項1に記載の電気化学反応装置。
  3.  前記撥液性多孔質膜がフッ素樹脂で形成され、前記液体が油であり、前記加圧が前記撥液性多孔質膜の耐油圧に等しい圧力で行われる請求項1に記載の電気化学反応装置。
  4.  前記撥液性多孔質膜が多孔質炭素であり、前記液体が溶融塩電解質である請求項1に記載の電気化学反応装置。
  5.  前記液体を加圧する圧力が前記撥水性多孔質膜の耐水圧に等しく、前記撥水性多孔質膜が高分子樹脂からなり、前記耐水圧の圧力値を変化させる目的で、前記多孔質膜の表面および/または細孔壁に撥水基あるいは親水基を付与するか、あるいは異なる細孔径を有する多孔質膜を使用するか、あるいは電解質水溶液の塩濃度および/または液温を変え、あるいは該撥水性多孔質膜間に電位を与えることにより、該液体の圧力に応じて該撥水性多孔質膜を通過できる液体および/またはイオンの量を制御する請求項1または請求項2に記載の電気化学反応装置。
  6.  前記隔離具が海、塩湖、温泉地獄、鉱泉池、水溶液廃棄物貯蔵池、貯温槽、貯水池、用水、プール、大型水槽である開放容器あるいは袋、チューブ、小型容器などの密閉容器あるいは該開放容器あるいは該密閉容器の中にさらに小さな密閉容器が挿入された状態で、該隔離具内の該電解質水溶液が加圧により前記撥水性多孔質膜から滲み出て正極と負極間で電解質水溶液の電気化学反応が行われる請求項1または請求項2に記載の電気化学反応装置。
  7.  前記圧力印加具が、前記開放容器に収容された液体からなる場合には、前記隔離具内の前記電解質水溶液の圧力を撥水性多孔質膜の耐水圧に等しい圧力水頭まで該第1および第2の隔離具を降下させ、前記密閉容器からなる場合には該密閉容器内部の該電解質水溶液の圧力を撥水性多孔質膜の耐水圧に等しい圧力水頭が得られる高所に設置した貯水槽と連通管で繋ぎ該電解質水溶液の位置水頭を設定させ、あるいは
     該密閉容器内の電解質水溶液に連通管を介して手動または電動であるいはラチェット付加圧装置で圧力を与え、あるいは該密閉容器の外側の任意の面で加圧し、あるいは、
     高濃度電解質水溶液で満たされた電解質充填密閉容器を湖や沼などの淡水または塩水あるいは鉱泉などの低濃度電解質水溶液の中に挿入して該密閉容器の外壁側から撥水性多孔質膜の耐水圧に等しい水圧で加圧させ、あるいは
     該電解質充填密閉容器を水道蛇口と連結した容器の中に封入して水道水と水道水圧とを併用して加圧させ、あるいは、
     前記撥液性多孔質膜からなる密閉容器内部に充填したガスを加圧して該撥液性多孔質膜の細孔から溶融塩に浸透させるための該ガスを圧入させるための圧力印加具を備える請求項1,2または4に記載の電気化学反応装置。
  8.  前記第1および第2の撥液性多孔質膜が中空密閉袋を構成し、該中空密閉袋の内部に該電解質水溶液を充填するに際し、予め薬品などの溶質が封入された該中空密閉袋を水蒸気雰囲気に置くかあるいは外部から水などの溶媒を圧入するか、あるいは内部が空の該中空密閉袋に備え付の連通管を介して電解質を注入するか、あるいは該中空密閉袋の一方の壁面を撥水性多孔質膜の耐水圧以下の陰圧で吸引した状態で他方側から該電解質水溶液を圧入するか、あるいは該中空密閉容器の一方の壁面にアルコールを塗布し、該アルコール塗布面から該溶媒あるいは該電解質水溶液を侵入させた後、自然放置または加温してアルコールを発散させることなどにより該中空密閉容器内に電解質水溶液を封入する請求項1、2または6に記載の電気化学反応装置。
  9.  前記液体の電気化学反応に際し、前記正極および負極が、電池の場合は電極板からなり、電気分解の場合は電極生成物を回収する手段を備えた電極室からなり、キャパシタの場合は正負電極板に挟まれた誘電体からなり、
     電極が電池に供される場合には、該電極板の負極が両性元素またはMgあるいは、1,2族元素を除くイオン化傾向が水素より大きい金属元素であり、正極が酸素またはフッ化グラファイトあるいはイオン化傾向が水素より小さい金属元素の場合には両電極は外気に開放された裸電極とされ、負極が周期表第1族元素および/または第2族元素からなり、かつ正極がハロゲンまたはハロゲン化合物からなる場合には両電極とも外気遮蔽を施した電極室とし、
     電極が電気分解に供される場合には、電極生成物が気体の場合には両電極とも内部が網状、繊維状、多孔質状あるいは粒状などの形状を呈する空隙電極あるいは該空隙電極の背面に隙間を有する構造の気体透過電極室とされ、
     該電極生成物が周期表第1族、第2族および/または第13族元素からなる場合には負極を油充填電極質構造とし、かつ負極生成物を重液選別するために該空隙電極の空隙部にあるいは該空隙電極の背面の隙間部に油を満たし、あるいは該油の背面に板電極を配置して誘電体キャパシタ及び供給電力貯蔵用媒体として併用するための油を満たした油充填電極質とされ、
     前記電極生成物が塩基性水溶液や酸性水溶液の場合には、正極を水が充填される電極室構造として、該塩基性水溶液の場合には負極板電極の前面に予めアルカリを添加した水を満たし、該酸性水溶液の場合には正極板電極の前面に予め酸を添加した水を満たし、かつ該水充填電極質に水の注入口と生成した塩基性水溶液や酸性水溶液の取出口および該水充填電極質の上部には生成ガス採集口を備え、あるいは正極で生成されるハロゲン、亜流酸、亜硝酸などのガスを水に吸収させるために炭素からなる該空隙電極の空隙や背面の隙間に水を循環させる構造を有する電極室とし、
     電極がキャパシタに供給される場合には、正負電極板が撥水性多孔質膜を介して油系または水系誘電体を挟む構造であるか、あるいは活性炭電極の表面に有機分子を吸着させた電気二重層型であるか、あるいは金属酸化物からなるレドックス型電極であり、かつ該電解質水溶液に前記撥水性多孔質膜の耐水圧に等しい水圧を与えて電気化学反応を行う請求項1または2に記載の電気化学反応装置。
  10.  前記油充填電極室を構成する油層の油面と電解質水溶液面との境界面を電極と想定し、該油層を油キャパシタ、該電解質水溶液を水抵抗器とした電気回路において、
    該境界面を油キャパシタの負極とし、該油キャパシタの正極と負極の間に中間電極を備え、該正極と該中間電極間を誘電体1として該中間電極と該負極間を誘電体2とする構成とし、あるいは該誘電体1を固定キャパシタに代替させ、
     該誘電体1に電荷を与え、同時に該誘電体2の負極と該誘電体1の正極との間に該水抵抗器としての電解質水溶液を接続して分解電圧以上の電圧を与えて該誘電体2内の油層で負極生成物を重液選別する請求項1または9に記載の電気化学反応装置。
  11.  請求項10に記載の油面と電解質水溶液面との境界面を負極とした油キャパシタにおいて、前記油面と電解質水溶液面とを接触させて境界面を形成するに際し、
    該境界面が地球の重心軸に対して任意の傾きを成す場合には、油面と電解質水溶液面との間に前記撥水性多孔質膜を挿入して該電解質水溶液を加圧した時のみ該境界面を形成させ、
    該境界面が地球の重心軸に対して鉛直面である場合には該撥水性多孔質膜は必ずしも必要とせず、かつ該電解質水溶液の密度が油の密度より高い場合には該電解質水溶液の上部に油層を形成させ、該電解質水溶液の密度が油の密度より低い場合には該電解質水溶液の下部に油層を形成させ、
     かつ前記誘電体1に電荷を与え、同時に該誘電体2の負極と該誘電体1の正極との間に電解質水溶液を接続して分解電圧以上の電圧を与えて該誘電体2内の油中で負極生成物を重液選別する請求項1または9に記載の電気化学反応装置。
  12.  海や塩湖などの低濃度電解質水溶液を直接電気分解して水素を製造するに際し、前記隔離具が海または塩湖などの開放容器においては正極および負極からなる一対の前記気体透過電極室を撥水性多孔質膜の耐水圧に等しいの圧力水頭まで降下させ、
    あるいは前記密閉容器内の電解質水溶液が撥水性多孔質膜の耐水圧に等しい圧力水頭が得られる高い水頭位置に設置した貯水槽と連通管により連結し、あるいは該密閉容器内の該電解質水溶液を加圧し、
     かつ正負一対の電極室が前記気体透過用電極室とし、これら正負の気体透過用電極室を相互に近接させて一組の気体透過用電極室を一対または複数組つなげ、該電解質水溶液を撥水性多孔質膜の耐水圧に等しい圧力下で水の分解電圧以上の電圧で電気分解して負電極室で水素ガスを正電極室で酸素ガスまたは塩素ガスを発生させる請求項1、2または9に記載の電気化学反応装置。
  13.  高濃度電解質水溶液で満たされた撥水性多孔質膜aからなる密閉容器cの一部に取り付けた撥水性多孔質膜bから淡水、海水、温泉水、あるいは高温排水などの低濃度電解質水溶液を圧入して希釈した高濃度電解質水溶液を電気分解して水素を製造するに際し、
    該密閉容器cと接した撥水性多孔質膜aを有する正負一対の気体透過用電極室を備えた構造の水素製造装置とし、
     該撥水性多孔質膜a,bが異なる種類の場合には、撥水性多孔質膜aよりも撥水性多孔質膜bの細孔径を大きな孔径にし、
     撥水性多孔質膜a,bが同一種類の場合には、撥水性多孔質膜bの低濃度電解質水溶液に接触する側の孔壁に親水基を置換して水との濡れ性を増進させるか、あるいは低濃度電解質水溶液の水圧と撥水性多孔質膜bの出口側の気体の圧力との差圧が撥水性多孔質膜aの耐水圧と撥水性多孔質膜bの耐水圧との和と等しいかそれ以上になる条件下で、低濃度電解質水溶液圧側の水圧を陽圧(高く)にするか、あるいは高濃度電解質水溶液圧が圧入された撥水性多孔質膜aの出口側の圧の圧力を陰圧(吸引)にし、
    かつ高濃度電解質水溶液が封入された該密閉容器cを、低濃度電解質水溶液が満たされた前記開放容器dの中に挿入し、該密閉容器cを圧力水頭位置まで降下させ、あるいは低濃度電解質水溶液で満たされた大きめな密閉容器eの中に該密閉容器cを挿入し、該撥水性多孔質膜bの耐水圧以上の圧力で加圧させ、あるいは水道蛇口に直結させて水道の水圧で加圧させ、該密閉容器c内部に淡水や低濃度電解質水溶液を浸透させ、希釈された高濃度電解質水溶液も連動加圧され、水の分解電圧以上の電圧で電気分解して負電極室で水素ガスを正電極室で酸素ガスを発生させる請求項1、2、5または9に記載の電気化学反応装置。
  14.  前記隔離具内の塩化ナトリウムあるいは卑金属塩化物、卑金属硝酸化物、あるいは卑金属硫化物などの卑金属塩水溶液を電気分解して負極に苛性ソーダなどの卑金属水酸化物を生成するに際し、
     該負極が前記水充填電極室からなり、該水充填電極室の構造が撥水性多孔質膜に接したアルカリを添加した水を介して金属または炭素からなる板電極を備え、かつ水の注入口と生成された濃縮水酸化卑金属水溶液の取出口と上部に水素ガスなどの負極生成ガスの取出口を備え、
     正極は前記正極生成物を回収する正電極室であり、該隔離具内の該卑金属塩水溶液に該撥水性多孔質膜の耐水圧に等しい圧力を与えた状態で電気分解し、負電極側の水充填電極室で水酸化卑金属および水素ガスを、正電極側の気体透過用電極室では正極生成ガスを、水電解室では無機酸および酸素ガスなどの正極生成ガスを連続的に取り出す請求項1、2または9に記載の電気化学反応装置。
  15.  前記隔離具内の卑金属塩化物水溶液を電気分解して負極に卑金属を生成するに際し、
    該負極が油充填電極室とされ、該隔離具の撥水性多孔質からなる壁面に金属または炭素からなる前記空隙電極を接触させ、その背面を油で満たした油充填電極室とされ、
     正極は正極生成物を回収する機構を有する正電極室とされ、前記電解質水溶液として周期表第1族元素(Li、K、Na)、第2族元素(Mg、Ca、Ba、Sr)および第13族元素(Al)などから選ばれた卑金属塩化物水溶液を用い、かつ該隔離具内の電解質水溶液の水圧を該撥水性多孔質膜の耐水圧に等しい圧力に保ち、かつ該隔離具の両対向面の壁面間の電位を目的析出金属の分解電圧以上の電圧に印加することにより該油充填電極室の油の中で目的金属を重液選別し、正電極側の気体透過用電極室では正極生成ガスをあるいは水電解室では濃塩酸などの濃縮無機酸および酸素ガスなどの正極生成ガスを連続的に取り出す請求項1、2または9に記載の電気化学反応装置。
  16.  負極内の油を油キャパシタとして用いる前記油充填電極室において、油面と電解質水溶液面との境界面を負極とし、該油キャパシタの正極と該中間電極間に電荷を与え、該負極と該正極間の電位を電解質水溶液の目的析出物の分解電圧以上の電圧で印加した状態で電気分解し、該油充填電極室の油の中に所望の卑金属金属を析出させるに際し、
    正極には前記気体透過用電極室または水充填電極室を用い、かつ該電解質水溶液として周期表第1族および第2族に属する卑金属から選ばれた少なくとも1種の卑金属の塩化物の水溶液を用い、該電解質水溶液の水圧を該撥水性多孔質膜の耐水圧に等しい圧力に保つことにより該油充填電極室の油の中で所望の金属を重液選別し、
     正極が該気体透過用電極室の場合には正極生成ガスを、あるいは該水電解室の場合には濃塩酸など濃縮無機酸あるいは酸素ガスなどの正極生成ガスを連続的に取り出す
    請求項1、2、9または10に記載の電気化学反応装置。
  17.  前記撥液性多孔質膜が隔離壁と負極とを兼ねた多孔質炭素からなる前記気体透過用電極室であり、かつ該気体透過用電極室の構造が電極背面に隙間を有する中空電極室からなり、該負極の背面の中空部に浸透ガス圧以上の水素ガスを圧入し、該負極と前記正極との間に前記溶融塩を接触させ、かつ溶融塩槽の内部に加熱機構を備え、該溶融塩槽に卑金属元素の水酸化物を満たし、
     両電極間に水素マイナスイオン生成の分解電圧を与え、該多孔質炭素で生成された水素マイナスイオンが該溶融塩中の卑金属元素と結合して水素化卑金属を生成し、結晶固化しながら該溶融塩から上滓として浮上したMgH2及びAlH3を除く水素化卑金属を重液選別し、MgH2及びAlH3は該溶融塩槽上部に備えた冷却壁再結晶させる請求項1、4,7または9に記載の電気化学反応装置。
  18.  前記隔離具が前記袋を構成し、電解質水溶液を充填した該袋を正極および負極の板電極で挟む構造の一次または二次電池とし、充電および放電時には該電解質水溶液に前記撥水性多孔質膜の耐水圧に等しい圧力を与えて両電極間で電気化学反応を行い、蓄電時は該電解質水溶液の加圧を解除して両電極間の自己放電を回避させる機構とし、
     該負極の板電極が両性元素(Zn,Al,Sn,Pb)あるいはMg及び周期表第1族元素および第2族元素を除くイオン化傾向が水素より大きい金属元素(Ti,Mn,Cr,Ga,Fe,Cd,Co,Ni,Fe)とされる時には、撥水性多孔質膜に密着した該板電極の周囲は必ずしも外界と遮断されず、
     該負極が周期表第1族元素および/または第2族元素で形成され、かつ該元素の中実の板電極からなる場合及び周期表第1族元素および/または第2族元素からなる負極生成物が炭素からなる前記空隙電極内部の空隙に貯留させる場合には、板電極の周囲が箱、コーティング、撥水性処理膜あるいは樹脂フィルムで覆われて外界と遮断され、
     該正極の板電極が水素よりイオン化傾向が小さい金属および金属酸化物または空気あるいは酸素とされる場合には、撥水性多孔質膜に密着した該板電極は必ずしも外界と遮断されず、
     該正極がフッ素を除くハロゲンガスあるいはハロゲン化金属の場合には撥水性多孔質膜に密着した該電極板の周囲が箱、コーティング、撥水性処理膜あるいは樹脂フィルムで覆われ、あるいは電池全体をモールドして外界と遮断し、あるいは正極の板電極が撥水性材料または撥水性処理されている場合には必ずしも撥水性多孔質膜を施さず直接電解質水溶液に挿入することができる一次または二次電池に供されることを目的とする請求項1、2または9に記載の電気化学反応装置。
  19.  電解質水溶液が前記撥水性多孔質膜からなる密閉容器に充填され、該電解質水溶液が加圧により該撥水性多孔質膜から滲み出て正極と負極間でイオン反応を行う水酸化卑金属やハロゲン化卑金属を電解質水溶液とする一次または二次電池において、
     高効率充電を行うには充電開始時には水酸化卑金属やハロゲン化卑金属の水に対する溶解度が室温で高く、放電開始時には大容量の電力を長時間放出し続けるために水酸化卑金属やハロゲン化卑金属の溶解密度が放電開始時は低い状態であり、放電終了時には溶解密度が高く、かつ飽和度に近いことが望ましく、さらに高速充電または高電力放電を行う場合には該電解質水溶液を加温(温泉、工業廃熱、内燃機関冷却巡回水)することもできる請求項1、2または18に記載の電気化学反応装置。
  20.  正極には酸素または空気、負極には周期表第1族金属、第2族金属および/または第13族金属を、電解質水溶液には苛性ソーダ、苛性カリ、水酸化バリウムなどの塩基あるいは硫酸、塩酸、硝酸などの酸を用いる一次または二次電池において、
     該酸素電極は炭素製該空隙電極に空気または酸素を吸着させた板電極とし、かつ撥水性多孔質膜と該空隙電極との間に充電用網状補助正極を配置した正極構造とし、あるいは正極の電解質と接触する面を金属酸化物とし、
     負極は周期表第1族元素、第2族元素および/または第13族元素で形成された中実電極あるいは炭素製空隙電極板内部や表面の空隙に周期表第1族元素、第2族元素および/または第13族元素の負極生成物を吸着させた電極であり、かつ該負電極の周囲を樹脂フィルムで包囲するか、あるいは該負電極内部に油を含ませた状態にすることにより外界と遮蔽し、かつ
     該電解質水溶液を加圧した状態で充電を行い、充電を完了させた時点で該隔離具の加圧を解除して蓄電状態を維持し、放電時には、当該電解質水容液を加圧して放電を開始させる請求項1、2、9、18または19に記載の電気化学反応装置。
  21.  正極には金属塩化物、電解質水溶液には金属塩化物水溶液を用いた一次または二次電池において、
     負極はZn、Mg、Al、Ni、Pbなどの金属板を備えた単層電池または積層電池とし、
     一次電池の場合の電解質水溶液は塩化ナトリウムも含めた任意の金属塩化物とし、単層電池では負極と正極の組み合わせがZn、Mg、Al、Ni、Pbなどから同一金属も含めて任意に選ばれた金属とし、正極は該金属の塩化物であり、積層一次電池では負極と正極は共に同一金属とし、正極は負極で用いた金属の塩化物から構成され、
     二次電池の場合の電解質水溶液は負極に用いた金属の塩化物とし、かつ単層二次電池では負極と正極の組み合わせがZn、Mg、Al、Ni、Pbなどの金属から同一金属も含めて任意に選ばれた金属からなり、あるいは、負極が1,2族元素の中実電極あるいは炭素製空隙電極板内部や表面の空隙に1,2族元素を負極生成物として吸着させた電極であり、かつ該負電極の周囲を樹脂フィルムで包囲するか、あるいは該負電極内部に油を含ませた状態にすることにより外界と遮蔽し、正極はZn、Mg、Al、Ni、Pbなどの金属からなり、
     該電解質水溶液を加圧した状態で充電を行い、負電極に当該金属を析出させ、正電極に当該金属の塩化物を生成させて充電を完了させた時点で当該電解質水溶液の加圧を解除し、必要に応じて該袋の両対向面に挟まれた正極側の電極面を粗面化し、かつ正電極室外壁または電池装置全体に金属塩化物を防湿するための覆いを施す請求項1、2、9、18または19に記載の電気化学反応装置。
  22.  正極に臭素あるいは沃素を用いた一次または二次電池において、
     正極には沸点が58.8℃以下の液体臭素あるいは113.6℃以下の固体沃素を用い、負極には両性元素(Zn,Al,Sn,Pb)およびMgあるいは1、2族元素を除くイオン化傾向が水素より大きい金属元素(Ni、Pb、Ti、Mn、Cr、Ga、Fe、Cd、Co、Ni、Fe)からなる裸板電極であるか、あるいは周期表第1族元素および/または第2族元素からなる中実電極あるいは炭素製空隙電極板内部の空隙に周期表第1族元素および/または第2族元素が負極生成物として析出貯蔵された電極であり、かつ該負電極の周囲を樹脂フィルムで包囲するか、あるいは該負電極内部に油を含ませた状態にすることにより外界と遮蔽した一次または二次電池とし、
     正極は外界と遮断された炭素製空隙電極であり、放電時には該空隙電極内部に臭素溶液または固体沃素を貯留させる構造とし、電解質水溶液には負極に使われる金属元素の臭化物あるいは沃化物の水溶液を用い、
     常に正極の雰囲気温度を沸点以下に保ち、かつ該袋内の該電解質水溶液を加圧して充電を行い、正電極内の空隙に液体臭素あるいは固体沃素を貯留させ、充電を完了させた時点で該隔離具の加圧を解除して蓄電状態を維持し、放電時には、当該電解質水容液を加圧して放電を開始させる機構を有する請求項1、2、9、18または19に記載の電気化学反応装置。
  23.  正極がフッ素を用いたフッ化グラファイトとされ、負極がAl、K、Naなどからなる一次または二次電池とし、
     該負電極がAlの場合は、該Alが格納されている電極室は必ずしも外界と遮断されず、該負電極がKあるいはNaの場合は、これら負電極が格納されている電極室が外界と遮断されあるいは該負電極の周囲に油を含ませた状態で外界と遮断され、かつ
     該電解質水溶液は負電極に使われた金属のフッ化物水溶液として、該電解質水溶液を加圧した状態で充電を行い、負電極内の金属表面に当該金属を析出させ、正電極ではグラファイトまたはフッ化グラファイト表面にフッ化グラファイトを生成させて充電を完了させた時点で当該電解質水溶液の加圧を解除して蓄電状態を維持し、放電時には、当該電解質水容液を加圧して放電を開始させる機構を有する請求項1、2、9、18または19に記載の電気化学反応装置。
  24.  誘電体溶液あるいは電解質水溶液を封入した前記撥水性多孔質膜製密閉容器(封筒型)の2つの外側面に正極および負極の板電極を設けたキャパシタ構造を有し、該撥水性多孔質膜製密閉容器(封筒型)に配置した正負電極が板電極あるいは活性炭、グラファイト、ナノカーボンなどからなる電極表面に有機分子を吸着させた電気二重層キャパシタ電極、あるいは電気伝導体の表面に形成した酸化皮膜、導電性ポリマー、活性炭などのレドックスキャパシタ電極、または活性炭、ポリフェノール,グラファイトチタン酸リチウムなどのハイブリッドキャパシタ電極などを密着させ、充電時には該水溶液に前記撥液性多孔質膜の耐液圧に等しい圧力を与えて両電極間に電荷を与え、蓄電時は該液溶液の加圧を解除し、放電時は耐液圧に等しい圧力を与えるキャパシタ装置である請求項1、2または3に記載の電気化学反応装置。
  25.  電気二重層キャパシタやレドクッスキャパシタなどの電気化学キャパシタの正負一対の電極室に挟まれた撥水性多孔質膜製密閉容器(封筒型)の中に充填された金属繊維、炭素繊維あるいは活性炭などの含空隙導電材料に電解質溶液を含ませ、該電解質溶液を撥液性多孔質膜の耐液圧以上で加圧して該撥液性多孔質膜の細孔に溶液を通過させて充放電を行い、蓄電時は該電解質溶液の加圧を解除し、撥液性多孔質膜製密閉容器(封筒型)内を導電体とするキャパシタ装置である請求項1、2、3または24に記載の電気化学反応装置。
  26.  請求項12記載の水素生成装置と請求項15または16記載の卑金属回収装置を複数台直列に連結し、該水素生成装置を皮切りに複数の卑金属塩が混入している電解質水溶液から被析出金属の分解電圧が低い順に電解精製を行い、未反応の電解質水溶液を次の卑金属回収装置に移送し、当該電解質水溶液を加圧下で電解精製し、分解電圧が低い金属から順次高い金属へ移行しながら当該卑金属の回収操作を行うに際し、
     該電解質水溶液を該撥水性多孔質膜の耐水圧に等しい圧力で加圧した状態で電解精製して、夫々の電気化学反応装置の負電極からは水素および卑金属を、正電極からは正極生成ガスや硫酸や塩酸あるいは硝酸などの無機酸を選択的に順次回収する請求項1、2,15または16に記載の電気化学反応装置。
  27.  海水中の塩化ナトリウム水溶液を原料とし、海上における風力発電や太陽光発電あるいは浮力重力発電などの自然エネルギーを電力として用いる洋上工場で、あるいは臨海火力発電所や原子力発電所の電力を用いる臨海工場で、請求項12および請求項13による海面下での水素製造および請求項14による苛性ソーダ製造を行い、これら水素と苛性ソーダを請求項17による水素化ナトリウムを洋上または陸上で製造し、陸上で水素化ナトリウムに水を注ぎ水素を製造し、副産物の苛性ソーダで再度水素化ナトリウムを製造する苛性ソーダ燃料サイクルに供するか、または苛性ソーダを二次電池用電解質水溶液として、発電所や車載用電池に供することを目的とする撥水性多孔質膜の耐水圧を用いた苛性ソーダ燃料サイクル。
  28.  電解質あるいは非電解質または水などからなる水溶液で満たされた隔離具の少なくとも1面が撥水性多孔質膜を隔てて電極室あるいは水反応室などを配置し、かつ該室と該水溶液とが互いに撥水性多孔質膜で絶縁され、該撥水性多孔質膜の耐水圧に等しい液圧下で該水溶液が該撥水性多孔質膜内孔を浸透して該容器内部の物質あるいは該電極板と該水溶液との間でイオン反応あるいは加水分解反応あるいは溶解反応を行う化学反応方法。
  29.  水または非電解質からなる水溶液の中に前記撥水性多孔質膜からなる水反応室(化学物質袋)を備え、該水反応室内部の物質が加水分解気体発生剤、加水分解発熱剤(乾燥剤)、加水分解吸熱剤、あるいは水溶性有機化合物(糖類、医薬品、調味料、栄養剤)などであり、該水反応室の外圧と内圧の差が該撥水性多孔質膜の耐水圧以上のとき該水と反応して、加水分解反応による気体発生、熱発生、熱吸収、および溶解反応による医療薬や栄養剤の生体移送あるいは水溶液への有機化合物の添加などを行う請求項28に記載の化学反応方法。
  30.  前記撥水性多孔質膜で作られたチューブまたは袋からなる薬品散布ジョウロの外側に薬や栄養剤あるいは肥料などが添加された水溶液を供給するに際し、該薬品供給口から薬品散布室までチューブやホースで配送し、供給口で必要に応じ連続または間欠的に該薬品水溶液に該撥水性多孔質膜の耐水圧以上の圧力を加えて該薬品散布ジョウロから該水溶液を供給する請求項28に記載の化学反応方法。
  31.  水を封入したカプセルの中に前記加水分解発熱剤を封入した前記撥水性多孔質膜からなる水反応室(袋)を封入した二重構造カプセルが内視鏡の先端部分であり、該水反応室の外圧と内圧の差が該撥水性多孔質膜の耐水圧以上にした状態で該水反応室に外壁の水を浸入させて加水分解発熱反応を起こさせ、この発熱で器官内の癌細胞を温加熱する請求項28に記載の化学反応方法。
PCT/JP2014/073687 2013-09-06 2014-09-08 撥液性多孔質膜を備えた電気化学反応装置 WO2015034088A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP14842245.4A EP3042717B1 (en) 2013-09-06 2014-09-08 Electrochemical reaction device provided with liquid-repellant porous film
RU2016112891A RU2660125C2 (ru) 2013-09-06 2014-09-08 Электрохимический реактор, содержащий отталкивающую жидкость пористую мембрану
JP2015535545A JP6652695B2 (ja) 2013-09-06 2014-09-08 撥液性多孔質膜を備えた電気化学反応装置
CN201910228495.6A CN110048136B (zh) 2013-09-06 2014-09-08 装备疏液性多孔膜的电化学反应器
KR1020167005943A KR102304978B1 (ko) 2013-09-06 2014-09-08 발수성 다공질막을 구비한 전기화학반응 장치
CN201480049132.1A CN105579125B (zh) 2013-09-06 2014-09-08 装备疏液性多孔膜的电化学反应器
US15/060,421 US10407780B2 (en) 2013-09-06 2016-03-03 Electrochemical reactor comprising liquid-repellent porous membrane
US16/518,194 US11459662B2 (en) 2013-09-06 2019-07-22 Electrochemical reactor comprising liquid-repellant porous membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-185290 2013-09-06
JP2013185290 2013-09-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/060,421 Continuation US10407780B2 (en) 2013-09-06 2016-03-03 Electrochemical reactor comprising liquid-repellent porous membrane

Publications (1)

Publication Number Publication Date
WO2015034088A1 true WO2015034088A1 (ja) 2015-03-12

Family

ID=52628545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073687 WO2015034088A1 (ja) 2013-09-06 2014-09-08 撥液性多孔質膜を備えた電気化学反応装置

Country Status (7)

Country Link
US (2) US10407780B2 (ja)
EP (1) EP3042717B1 (ja)
JP (5) JP6652695B2 (ja)
KR (1) KR102304978B1 (ja)
CN (2) CN110048136B (ja)
RU (1) RU2660125C2 (ja)
WO (1) WO2015034088A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179632A1 (ja) * 2016-04-13 2017-10-19 株式会社エム光・エネルギー開発研究所 イオンのオン・オフ面スイッチを用いた電気化学反応装置
WO2024038871A1 (ja) * 2022-08-16 2024-02-22 株式会社エム光・エネルギー開発研究所 液体誘電体の絶縁破壊を用いた産業機械

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2660125C2 (ru) 2013-09-06 2018-07-05 М Хикари Энд Энерджи Лэборетери Ко., Лтд. Электрохимический реактор, содержащий отталкивающую жидкость пористую мембрану
CN107429953A (zh) * 2015-03-30 2017-12-01 开利公司 低油制冷剂和蒸汽压缩系统
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries
CN108315740A (zh) * 2017-01-18 2018-07-24 木浦海洋大学校产学协力团 基于恒定电流电解法的船舶用铝合金的空穴防损方法
WO2018181288A1 (ja) * 2017-03-28 2018-10-04 Tdk株式会社 全固体リチウムイオン二次電池及び実装体
CN110381802B (zh) * 2017-03-31 2021-12-21 Hoya株式会社 内窥镜用柔性管的制造方法以及内窥镜的制造方法
CN107331527A (zh) * 2017-08-30 2017-11-07 顾天罡 一种超大容量超级电容器
JP6573650B2 (ja) 2017-09-15 2019-09-11 住友化学株式会社 ガス分離方法
JP6573942B2 (ja) * 2017-09-15 2019-09-11 住友化学株式会社 ガス分離方法
CN111511459A (zh) * 2017-11-07 2020-08-07 小利兰·斯坦福大学托管委员会 用于电催化的人造肺
JP2019090087A (ja) 2017-11-15 2019-06-13 株式会社東芝 電解槽及び水素製造装置
US11316199B2 (en) 2018-01-16 2022-04-26 International Business Machines Corporation Rechargeable metal halide battery
WO2019142994A1 (ko) * 2018-01-17 2019-07-25 중앙대학교 산학협력단 액상막이 표적 코팅된 먼지 포집용 필터
US11501917B2 (en) * 2018-03-02 2022-11-15 Capacitor Foundry Llc Capacitors employing dielectric material outside volume enclosed by electrodes
CN109980300B (zh) * 2019-03-05 2020-08-04 深圳市豪鹏科技有限公司 一种电解液及其配制方法和电池
TWI711758B (zh) * 2019-05-10 2020-12-01 楷玟國際實業有限公司 海水電力系統
CN110174704B (zh) * 2019-06-24 2023-06-16 青岛科技大学 一种基于triz理念的海洋电场传感器
CN110404491A (zh) * 2019-08-05 2019-11-05 凯莱英生命科学技术(天津)有限公司 连续膜反应装置及其应用
CN110755699A (zh) * 2019-09-18 2020-02-07 浙江省北大信息技术高等研究院 可植入的电渗微泵装置
RU198028U1 (ru) * 2019-11-05 2020-06-15 Акционерное общество "Энергия" (АО "Энергия") Батарея на основе электрохимических конденсаторов
KR20210091597A (ko) * 2020-01-14 2021-07-22 주식회사 엘지에너지솔루션 고상-액상 하이브리드 전해질 막을 포함하는 전고체 전지의 제조방법 및 고상-액상 하이브리드 전해질 막
RU209240U1 (ru) * 2020-09-30 2022-02-08 Акционерное общество "Энергия" (АО "Энергия") Батарея на основе электрохимических конденсаторов
TWI806182B (zh) * 2020-11-18 2023-06-21 潔霺生醫科技股份有限公司 多段式氣體致動供藥裝置及方法
AU2022237509A1 (en) * 2021-03-16 2023-09-28 Worcester Polytechnic Institute Metal-air battery
CN115725981A (zh) * 2021-09-01 2023-03-03 深圳大学 海水无淡化原位直接电解制氢方法、装置及系统
WO2024091724A2 (en) * 2022-08-19 2024-05-02 Abilene Christian University Nuclear reactor thermal management system
CN115323399A (zh) * 2022-09-02 2022-11-11 四川大学 一种非纯水溶液无淡化原位直接电解制氢装置及使用方法
CN116190694B (zh) * 2022-09-07 2024-02-13 南京航空航天大学 一种钙离子基热电转换与储能系统
CN115980148B (zh) * 2023-03-22 2023-06-09 深圳一代科技有限公司 一种双电层电容式薄膜传感器及相关制品、装置与方法

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644227A1 (en) 1993-03-23 1995-03-22 Tokai University Solid surface modifying method and apparatus
JPH09180714A (ja) 1995-12-15 1997-07-11 Samsung Electron Devices Co Ltd アルカリ蓄電池用の陽極と陰極及びその製造方法
US6167497A (en) 1996-06-19 2000-12-26 Hitachi, Ltd. Data processing apparatus and register address translation method thereof
WO2001031724A1 (fr) 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode pour pile au lithium et accumulateur au lithium
JP2001284177A (ja) * 2000-03-29 2001-10-12 Kyocera Corp 電気二重層コンデンサ
JP2002063890A (ja) 2000-08-18 2002-02-28 Toyobo Co Ltd アルカリ電池用セパレータ及びアルカリ電池
JP2003123808A (ja) * 2001-10-17 2003-04-25 Sumitomo Electric Ind Ltd レドックスフロー電池
JP2005253305A (ja) 2004-03-09 2005-09-22 Masataka Murahara 3次元細胞培養素子の製作方法
JP2006193612A (ja) 2005-01-13 2006-07-27 Masataka Murahara 固体材料の表面改質方法および装置
WO2007080763A1 (ja) 2006-01-16 2007-07-19 Nec Corporation 固体高分子型燃料電池
JP2009067644A (ja) 2007-09-14 2009-04-02 Kyoto Univ 溶融塩組成物及びその利用
JP2009181710A (ja) 2008-01-29 2009-08-13 Sanyo Electric Co Ltd アルカリ蓄電池
JP2009224097A (ja) 2008-03-14 2009-10-01 Panasonic Corp 非水電解質二次電池
JP2009295789A (ja) 2008-06-05 2009-12-17 Nissin Electric Co Ltd 電気二重層キャパシタ
JP2011184260A (ja) 2010-03-10 2011-09-22 M Hikari Energy Kaihatsu Kenkyusho:Kk 水素化金属の析出及び水素の製造方法
JP2011222129A (ja) 2010-04-02 2011-11-04 Nippon Sheet Glass Co Ltd 電池用隔離膜及び電池
JP2012012261A (ja) 2010-07-02 2012-01-19 Otsuka Chem Co Ltd 多孔質チタン酸リチウムの製造方法、多孔質チタン酸リチウム及びそれを用いたリチウム電池
JP2012030637A (ja) 2010-07-29 2012-02-16 M Hikari Energy Kaihatsu Kenkyusho:Kk 水中重量物の降下および浮上方法
JP2013032535A (ja) 2007-11-28 2013-02-14 Sk Innovation Co Ltd 物性と高温熱安定性に優れるポリオレフィン微多孔膜
JP2013054987A (ja) 2011-09-06 2013-03-21 National Institute Of Advanced Industrial & Technology ナトリウム二次電池、ナトリウム二次電池用負極の製造方法および電気機器
JP2013138050A (ja) 2011-12-28 2013-07-11 Ngk Spark Plug Co Ltd キャパシタ用電極、キャパシタ、および、キャパシタ用電極の製造方法
JP2013166406A (ja) 2012-02-14 2013-08-29 M Hikari Energy Kaihatsu Kenkyusho:Kk 水中重量物の降下および浮上方法

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897266A (en) * 1970-08-03 1975-07-29 Gates Rubber Co Alkaline battery cell
US3818492A (en) 1970-11-13 1974-06-18 Canon Kk Recording of information in bit form
US4214958A (en) * 1979-05-14 1980-07-29 General Electric Company Electrolysis of alkali metal halides in a three-compartment cell with a pressurized buffer compartment
US4212714A (en) * 1979-05-14 1980-07-15 General Electric Company Electrolysis of alkali metal halides in a three compartment cell with self-pressurized buffer compartment
US4796622A (en) * 1987-03-06 1989-01-10 The United States Of America As Represented By The Department Of Health And Human Services Catheter with oxyhydrogen catalytic thermal tip
WO1990010734A1 (en) * 1989-03-06 1990-09-20 Silveri Michael A A submerged electrolytic cell pool purifier
DK0746356T3 (da) * 1991-10-24 2000-10-02 Macromed Inc Gasdrevet anordning til indgivelse af medikamenter
JPH0852218A (ja) * 1994-08-10 1996-02-27 Nippon Zeon Co Ltd スライディングカテーテル
JPH08242712A (ja) * 1995-03-15 1996-09-24 Toray Ind Inc 塩水を用いた植物育成施設
JP2001504387A (ja) * 1996-10-04 2001-04-03 ホワットマン,インコーポレイテッド 同時に多数の化学合成を行う器具と方法
TW442992B (en) * 1998-10-06 2001-06-23 Toshiba Battery Separator used for battery, its manufacturing method and alkaline secondary battery installed with the separator
US6162561A (en) * 1999-05-03 2000-12-19 The Gillette Company Akaline cell with improved cathode
US6350253B1 (en) 1999-07-19 2002-02-26 I-Flow Corporation Catheter for uniform delivery of medication
AU2001250055A1 (en) * 2000-03-30 2001-10-15 Manhattan Scientifics, Inc. Portable chemical hydrogen hydride system
US6860976B2 (en) * 2000-06-20 2005-03-01 Lynntech International, Ltd. Electrochemical apparatus with retractable electrode
KR100644227B1 (ko) 2001-01-30 2006-11-10 김봉택 열차운행 종합제어장치 및 그 제어방법
JP2002223648A (ja) * 2001-01-31 2002-08-13 Haruo Fujimoto パイプ型水耕栽培ユニット及びその利用方法
JP4199966B2 (ja) * 2002-02-22 2008-12-24 岩谷産業株式会社 水素発生方法及び水素発生装置
US6824555B1 (en) * 2002-07-22 2004-11-30 Uop Llc Combustion needle for medical applications
US7323148B2 (en) * 2002-11-05 2008-01-29 Millennium Cell, Inc. Hydrogen generator
EP1648818A1 (en) * 2003-06-16 2006-04-26 Selective Micro Technologies, LLC Reusable apparatus for gas generation
ITPV20030006A1 (it) * 2003-06-24 2004-12-25 Mario Melosi Movimentazione e temporizzazione degli afflussi e riflussi dell'elettrolita all'interno di elettrodi porosi a gas.
JP2005021107A (ja) * 2003-07-04 2005-01-27 National Agriculture & Bio-Oriented Research Organization 多孔質フィルムを利用した水耕栽培装置
CN2687584Y (zh) * 2003-10-22 2005-03-23 中国科学院理化技术研究所 一种利用溶质溶解降温的循环制冷装置
JP2005176808A (ja) * 2003-12-24 2005-07-07 National Agriculture & Bio-Oriented Research Organization 植物地下部環境温度制御方法及び装置
US7749646B2 (en) * 2004-03-18 2010-07-06 Alcatel-Lucent Usa Inc. Reversibly-activated nanostructured battery
EP1922286A1 (en) * 2005-08-09 2008-05-21 The University Of British Columbia Microporous metals and methods for hydrogen generation from water split reaction
JP2007111670A (ja) * 2005-10-24 2007-05-10 Nitto Denko Corp 小型液体供給装置、及び水素発生装置
JP4967890B2 (ja) * 2007-05-01 2012-07-04 トヨタ自動車株式会社 空気電池システム
JP5174811B2 (ja) * 2007-05-11 2013-04-03 株式会社エム光・エネルギー開発研究所 オンサイト統合生産工場
US20090042066A1 (en) * 2007-08-10 2009-02-12 Mphase Technologies, Inc. Adjustable Barrier For Regulating Flow Of A Fluid
ATE494919T1 (de) * 2007-11-13 2011-01-15 Acuros Gmbh Osmotische pumpe
CA2732509C (en) * 2008-07-31 2017-06-06 Regents Of The University Of Minnesota Thermochemical ablation system using heat from delivery of electrophiles
US8444846B2 (en) * 2009-12-07 2013-05-21 Battelle Energy Alliance, Llc Method and system for producing hydrogen using sodium ion separation membranes
JP5759687B2 (ja) * 2010-08-16 2015-08-05 広重 松本 水電解セル
JP4744641B1 (ja) * 2010-10-18 2011-08-10 ミズ株式会社 生体適用液への水素添加器具
US9112217B2 (en) * 2011-05-17 2015-08-18 The Penn State University Reverse electrodialysis supported microbial fuel cells and microbial electrolysis cells
CN103781731A (zh) * 2011-09-08 2014-05-07 阿库亚爱克斯公司 电解装置及其电解方法
JP2013064174A (ja) * 2011-09-16 2013-04-11 M Hikari Energy Kaihatsu Kenkyusho:Kk 電気分解による水素化金属の析出及び回収方法
US9808605B2 (en) * 2011-10-06 2017-11-07 W. L. Gore & Associates, Inc. Controlled porosity devices for tissue treatments, methods of use, and methods of manufacture
KR101872280B1 (ko) * 2012-02-08 2018-07-02 에스케이이노베이션 주식회사 안전 벤트를 갖는 나트륨 이차전지
KR101872064B1 (ko) 2012-02-21 2018-07-31 얼루리언 테크날러지스 인코포레이티드 인체 내에 임시 임플란트를 배치하고 방출하기 위한 방법 및 디바이스
KR101385181B1 (ko) 2012-06-09 2014-04-14 윤성환 체결밴드
AU2012382382A1 (en) * 2012-06-12 2015-01-15 Aquahydrex Pty Ltd Breathable electrode and method for use in water splitting
CN104583459B (zh) * 2012-06-12 2018-03-16 奥克海德莱克斯控股有限公司 气体可渗透的电极和电化学电池
US9931153B2 (en) * 2013-03-15 2018-04-03 Spiration, Inc. Thermochemical reaction ablation catheter
EP2978047B1 (en) * 2013-03-19 2017-11-22 Sony Corporation Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
RU2660125C2 (ru) 2013-09-06 2018-07-05 М Хикари Энд Энерджи Лэборетери Ко., Лтд. Электрохимический реактор, содержащий отталкивающую жидкость пористую мембрану
US10385423B2 (en) * 2013-09-12 2019-08-20 Korea Institute Of Geoscience And Mineral Resources Sea water lithium-recovery device and lithium-recovery station using coastal-water-based lithium-adsorption equipment and shore-based lithium-isolation equipment, and lithium desorption device using aeration
CN109072460A (zh) * 2016-04-13 2018-12-21 株式会社M光能源开发研究所 使用接通/断开离子的表面开关的电化学反应装置

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644227A1 (en) 1993-03-23 1995-03-22 Tokai University Solid surface modifying method and apparatus
JPH09180714A (ja) 1995-12-15 1997-07-11 Samsung Electron Devices Co Ltd アルカリ蓄電池用の陽極と陰極及びその製造方法
US6167497A (en) 1996-06-19 2000-12-26 Hitachi, Ltd. Data processing apparatus and register address translation method thereof
WO2001031724A1 (fr) 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode pour pile au lithium et accumulateur au lithium
JP2001284177A (ja) * 2000-03-29 2001-10-12 Kyocera Corp 電気二重層コンデンサ
JP2002063890A (ja) 2000-08-18 2002-02-28 Toyobo Co Ltd アルカリ電池用セパレータ及びアルカリ電池
JP2003123808A (ja) * 2001-10-17 2003-04-25 Sumitomo Electric Ind Ltd レドックスフロー電池
JP2005253305A (ja) 2004-03-09 2005-09-22 Masataka Murahara 3次元細胞培養素子の製作方法
JP2006193612A (ja) 2005-01-13 2006-07-27 Masataka Murahara 固体材料の表面改質方法および装置
WO2007080763A1 (ja) 2006-01-16 2007-07-19 Nec Corporation 固体高分子型燃料電池
JP2009067644A (ja) 2007-09-14 2009-04-02 Kyoto Univ 溶融塩組成物及びその利用
JP2013032535A (ja) 2007-11-28 2013-02-14 Sk Innovation Co Ltd 物性と高温熱安定性に優れるポリオレフィン微多孔膜
JP2009181710A (ja) 2008-01-29 2009-08-13 Sanyo Electric Co Ltd アルカリ蓄電池
JP2009224097A (ja) 2008-03-14 2009-10-01 Panasonic Corp 非水電解質二次電池
JP2009295789A (ja) 2008-06-05 2009-12-17 Nissin Electric Co Ltd 電気二重層キャパシタ
JP2011184260A (ja) 2010-03-10 2011-09-22 M Hikari Energy Kaihatsu Kenkyusho:Kk 水素化金属の析出及び水素の製造方法
JP2011222129A (ja) 2010-04-02 2011-11-04 Nippon Sheet Glass Co Ltd 電池用隔離膜及び電池
JP2012012261A (ja) 2010-07-02 2012-01-19 Otsuka Chem Co Ltd 多孔質チタン酸リチウムの製造方法、多孔質チタン酸リチウム及びそれを用いたリチウム電池
JP2012030637A (ja) 2010-07-29 2012-02-16 M Hikari Energy Kaihatsu Kenkyusho:Kk 水中重量物の降下および浮上方法
JP2013054987A (ja) 2011-09-06 2013-03-21 National Institute Of Advanced Industrial & Technology ナトリウム二次電池、ナトリウム二次電池用負極の製造方法および電気機器
JP2013138050A (ja) 2011-12-28 2013-07-11 Ngk Spark Plug Co Ltd キャパシタ用電極、キャパシタ、および、キャパシタ用電極の製造方法
JP2013166406A (ja) 2012-02-14 2013-08-29 M Hikari Energy Kaihatsu Kenkyusho:Kk 水中重量物の降下および浮上方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Save Corn From Ethanolization <Collection of Marine Resources and On-Sea Factory By Wind Power Generation", 2007, POWER PUBLICATION, article "Wind Force"
ELECTRIC DOUBLE LAYER CAPACITOR AND POWER STORAGE SYSTEM NIKKAN KOGYO SHIMBUN, 1999
GOODBYE TO NUCLEAR POWER PLANT> POWER PUBLICATION, 2011
PROCEEDING OF SPIE, vol. 4245, 2001, pages 221 - 227

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179632A1 (ja) * 2016-04-13 2017-10-19 株式会社エム光・エネルギー開発研究所 イオンのオン・オフ面スイッチを用いた電気化学反応装置
JPWO2017179632A1 (ja) * 2016-04-13 2018-04-19 株式会社エム光・エネルギー開発研究所 イオンのオン・オフ面スイッチを用いた電気化学反応装置
KR20180135467A (ko) * 2016-04-13 2018-12-20 엠 히카리 앤 에너지 레보레토리 컴퍼니 리미티드 이온의 온·오프면 스위치를 사용한 전기 화학 반응 장치
CN109072460A (zh) * 2016-04-13 2018-12-21 株式会社M光能源开发研究所 使用接通/断开离子的表面开关的电化学反应装置
US10981138B2 (en) 2016-04-13 2021-04-20 M Hikari & Energy Laboratory Co., Ltd. Electrochemical reactor using ion on/off surface switch
KR102300222B1 (ko) * 2016-04-13 2021-09-09 엠 히카리 앤 에너지 레보레토리 컴퍼니 리미티드 이온의 온·오프면 스위치를 사용한 전기 화학 반응 장치
WO2024038871A1 (ja) * 2022-08-16 2024-02-22 株式会社エム光・エネルギー開発研究所 液体誘電体の絶縁破壊を用いた産業機械

Also Published As

Publication number Publication date
US10407780B2 (en) 2019-09-10
US20160186334A1 (en) 2016-06-30
JP7048143B1 (ja) 2022-04-05
EP3042717B1 (en) 2023-06-21
JP6652695B2 (ja) 2020-02-26
CN110048136A (zh) 2019-07-23
KR102304978B1 (ko) 2021-09-24
JP6915198B2 (ja) 2021-08-04
JP7025083B2 (ja) 2022-02-24
JP2022064991A (ja) 2022-04-26
EP3042717A4 (en) 2017-10-04
JPWO2015034088A1 (ja) 2017-03-02
US11459662B2 (en) 2022-10-04
JP2022017342A (ja) 2022-01-25
CN110048136B (zh) 2022-03-18
EP3042717A1 (en) 2016-07-13
JP2021137807A (ja) 2021-09-16
RU2016112891A (ru) 2017-10-09
JP6991425B2 (ja) 2022-01-12
KR20160052560A (ko) 2016-05-12
RU2660125C2 (ru) 2018-07-05
JP2020078796A (ja) 2020-05-28
US20190345619A1 (en) 2019-11-14
CN105579125B (zh) 2019-04-19
CN105579125A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
JP6991425B2 (ja) 撥水性多孔質フッ素樹脂膜を備えた水溶液供給装置
KR102300222B1 (ko) 이온의 온·오프면 스위치를 사용한 전기 화학 반응 장치
US20100068629A1 (en) Alkali metal seawater battery
KR101788180B1 (ko) 염소 또는 염소계 활성물질을 생산하는 이차전지, 이를 이용한 선박 평형수 처리 장치 및 처리 방법
US10988391B2 (en) Desalination electrode
Arnold et al. Dual‐use of seawater batteries for energy storage and water desalination
US20030198862A1 (en) Liquid gallium alkaline electrolyte fuel cell
JP2016051519A (ja) 塩化銀海水電池の後段に燃料電池を使った複合発電器
KR102131094B1 (ko) 담수 생산 이차전지
Lee et al. CO 2 electrolysis in seawater: calcification effect and a hybrid self-powered concept
CN110419123A (zh) 电化学电池和电池组
Lee et al. Rechargeable Seawater Batteries
CN103928705A (zh) 锌氯电能储存装置
CN115133182A (zh) 一种储能-发电-盐水淡化一体化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480049132.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535545

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167005943

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014842245

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842245

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016112891

Country of ref document: RU

Kind code of ref document: A