JPWO2017179632A1 - イオンのオン・オフ面スイッチを用いた電気化学反応装置 - Google Patents

イオンのオン・オフ面スイッチを用いた電気化学反応装置 Download PDF

Info

Publication number
JPWO2017179632A1
JPWO2017179632A1 JP2017548490A JP2017548490A JPWO2017179632A1 JP WO2017179632 A1 JPWO2017179632 A1 JP WO2017179632A1 JP 2017548490 A JP2017548490 A JP 2017548490A JP 2017548490 A JP2017548490 A JP 2017548490A JP WO2017179632 A1 JPWO2017179632 A1 JP WO2017179632A1
Authority
JP
Japan
Prior art keywords
water
electrolyte
repellent porous
porous fluororesin
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017548490A
Other languages
English (en)
Other versions
JP6447743B2 (ja
Inventor
正隆 村原
正隆 村原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M Hikari and Energy Laboratory Co Ltd
Original Assignee
M Hikari and Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M Hikari and Energy Laboratory Co Ltd filed Critical M Hikari and Energy Laboratory Co Ltd
Publication of JPWO2017179632A1 publication Critical patent/JPWO2017179632A1/ja
Application granted granted Critical
Publication of JP6447743B2 publication Critical patent/JP6447743B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/22Devices using combined reduction and oxidation, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/32Deferred-action cells activated through external addition of electrolyte or of electrolyte components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Cell Separators (AREA)
  • Fuel Cell (AREA)
  • Secondary Cells (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本発明の一実施形態は、一対の電極と、該一対の電極間に存在する電解質水溶液と、少なくとも一面が前記電解質水溶液と接触して配置される、互いに連通する複数の細孔を有する撥水性多孔質フッ素樹脂膜と、前記電解質水溶液を加圧するための加圧手段とを含み、イオン導電体として働くイオンのオン・オフ面スイッチを備える化学反応装置である。本実施形態によると、撥水性多孔質フッ素樹脂膜をイオンのオン・オフ面スイッチとして用いた電解精製、二次電池およびキャパシタを提供することができる。

Description

撥液性多孔質フッ素樹脂膜をイオンのオン・オフ面スイッチとして用いた電解精製、二次電池およびキャパシタとして機能する電気化学反応装置に関する。
周期表第1、2,13属に属する卑金属元素は、水に触れると、イオン化し、即座に自己放電を起こし、水素を発生する。このため、水は厳禁で、これらの金属を析出させる電解精製として溶融塩電気分解以外製造方法は無い。実用電池においても、水との反応が著しい周期表第1属元素および第2属のCa、Ba、Srでは、電解質水溶液を用いた1、二次電池はない。また、周期表第2属の内、Be、Mgあるいは3属元素のAlは、1次電池はあるが、二次電池の報告は少ない。このため、第1属元素を用いたリチウムイオン電池への期待は増すばかりである。そして、如何に火災を起こさない電池に改良して行くかが今後の課題である。
実用電池では、電極材料が軽く、かつ起電力が高く、しかも放電容量が大きいものが望まれる。このため周期た表第1元素は理想的な負極材料であるが、自己放電を回避することは難しい。これら実用電池や電解精製あるいはキャパシタが自己放電を引き起こす原因は、電解質水溶液と負極および正極が同一電解質内にあるためである。そこで、電解質と電極を分離し、自己放電を抑制し、かつ周期表1、2,13属に属する卑金属元素と水とを遮断するための技術開発が急がれる。
電力貯蔵用コンデンサー(キャパシタ)では、大容量で、かつ急速充放電が可能なものが望まれる。これを満たすキャパシタとして、電気化学キャパシタが理想的であり、電気二重層キャパシタ、レドックスキャパシタ、ハイブリッドキャパシタがこれに当たる。これらのキャパシタの欠点は漏れ電流や自己放電が高いことである。そこで、この漏れ電流を抑制するための技術開発が急がれる。
自己放電とは負極の金属が溶解すると同時に、発生した電子と水素イオンが反応して水素が生成し、電子が正極板に移動せず電流が流れない現象のことである。一般に、電解質水溶液中で自己放電を抑制する方法として、三星電管株式会社の李相らは、特許文献1(特開平9−180714号公報)において、アルカリ蓄電池用正極上にニッケル基孔体を備え、その中にニッケルおよび添加物を含む活物質粒子を充填した構造体を備えることにより自己放電を減らすことを開示している。三洋電機株式会社の吉田周平らは、特許文献2(特開2009−181710号公報)においてアルカリ蓄電池電極の対向面積増大を図っても実反応面積が減少しない形状を設定し、自己放電を抑制する方法を開示している。東洋紡績株式会社の田中俊雄らは特許文献3(特開2002−63890号公報)において、ポリオレフィン系樹脂繊維をスルフォン化処理した繊維を含む層に、強度、吸液性、ガス透過性、親水性化処理が成されたセパレータを使うことにより自己放電が少なく容量保持率に優れた長寿命電池を開示している。三洋電機株式会社の池田博昭らは、特許文献4(国際公開第01/031724号)において、微結晶シリコン薄膜および非晶質シリコン薄膜などの、リチウムを吸蔵・放出する活物質薄膜が中間層を介して集電体上に設けられたリチウム電池用電極であり、この電極は、リチウム以外の、ナトリウムやカリウムなどのアルカリ金属や、マグネシウムやカルシウムなどのアルカリ土類金属を吸蔵・放出する電極活性物質を用いる非水電解質電池の電極を開示されている。大塚化学株式会社の糸井伸樹らは、特許文献5(特開2012−12261号公報)において、リチウム電池として、多孔質チタン酸リチウムを電極活性物質として用いた場合、非水電解質の含浸性に優れ、充放電サイクル特性を高める方法を開示している。独立行政法人産業技術総合研究所の向井孝志らは、特許文献6(特開2013−54987号公報)において、アニオンを吸蔵および放出が可能な炭素系正極活性物質を有する正極と、Naの吸蔵および放出が可能な負極活性物質であるSn、Znなどを有する負極を有するナトリウム二次電池を開示している。ナトリウムを溶融したナトリウム硫黄電池は溶融塩を形成するために300℃の雰囲気温度を必要とした。しかし、国立大学法人京都大学の萩原理加らは、特許文献7(特開2009−67644号公報)において、FSIをアニオンとし、アルカリ金属Mをカチオンとする溶融塩MFSIを用いることで雰囲気温度を60〜130℃の間で動作する方法を開示している。
電解質と電極との間の隔離膜について、エヌケーイノベーションカンパニーリミテッドのカンキグオンらは特許文献8(特開2013−32535号公報)において、孔径0.1μm以下のポリオレフィン微多孔膜は熱安定性があり、高容量/高出力電池のセパレータに好適であることを開示している。日本板硝子株式会社の猪野寿一らは特許文献9(特開2011−222129号公報)において、シリカ、アルミナ等から成る鱗片状無機多孔膜を正、負極板或はセパレータに設けることにより、イオン伝導度を損なうことなく、電池性能を維持することを開示している。パナソニック株式会社の稲葉幸重らは特許文献10(特開2009−224097号公報)において、非水系二次電池に使用する隔離膜が、塩素を含有した耐熱性多孔質膜、あるいは耐熱性樹脂と多孔質ポリオレフィンとの積層膜、または耐熱性樹脂とフィラーとからなる層と多孔質ポレオレフィンの積層膜であることを開示している。
撥水性多孔質フッ素樹脂膜の利用としては、日本電気株式会社の小林憲司らは特許文献11(国際公開第2007/80763号)において、固体高分子型燃料電池に用い、気孔率は60から90%で通気度は20秒以下であるフッ素系撥水性多孔質フッ素樹脂膜を用いることを開示している。本願発明者の村原正隆らは、特許文献12(特開2005−253305号公報)、特許文献13(米国特許第6167497号)、特許文献14(欧州特許第0644227号公報)において、フッ素系撥水性多孔質フッ素樹脂膜に、結合エネルギーが128kcal/mol以上の原子と親水基を有する化合物の存在下でエキシマレーザー光を照射してフッ素系撥水性多孔質フッ素樹脂膜を製造する方法を開示している。さらに、本願発明者の村原正隆らは特許文献15(特開平6−293837号公報)において、フッ素系撥水性多孔質フッ素樹脂膜の内孔を紫外線の光反応により、親水基を置換し、その親水性を呈する細孔内壁にドーパミン産生細胞、繊維が細胞、コラーゲン増産細胞、幹細胞、髄核細胞、インシュリン産生細胞などを培養して、パーキンソン病、アルツハイマー病、糖尿病、骨軟化症などの患者のための三次元細胞培養素子の製作方法を開示している。さらに、村原正隆らは、非特許文献1(Proceeding of SPIE Vol.4245,P.221−227(2001))において、孔径3ミクロンの撥水性多孔質フッ素樹脂フィルムの耐水圧は1500torrであるが、細孔内部を親水性に光改質して、耐水圧を1500torrから20torrに降下させ、緑内障患者用房水調整弁に使用することを報告している。
電気化学キャパシタの内、電気二重層キャパシタやレドックスキャパシタまたはハイブリッドキャパシタなどに用いる電解質には、非特許文献2(電気二重層キャパシタと蓄電システム 日刊工業新聞社)に開示されているように、強酸や強アルカリ水溶液が用いられる。日新電機株式会社の板橋悟は特許文献16において、第1電極および第2電極並びに第1セパレータおよび第2セパレータが扁平形状に巻き回された電気二重層キャパシタにおいて、巻芯を備えることにより両電極の面圧を一定以上に上げ、かつセパレータを厚くすることなく内部抵抗を抑え、漏れ電流を抑制することを開示している。日本特殊陶業株式会社の西村らは特許文献17において、レッドックスキャパシタの電極基材をニッケルやステンレスからアルミニウムや銅にすることにより内部抵抗を低減することを開示している。
卑金属元素化合物と水の接触を絶つ最も簡便な方法が卑金属元素の溶融塩である。水が存在しない溶融塩は理想的な電解質水溶液である。しかし、この溶融塩を作るためには、それらを融点以上の高温に保つ必要がある。このための熱源の消費量が馬鹿にならない。したがって、この溶融塩の溶融温度を下げるために、他の金属を混合させ、混合溶融塩を作ることが広く行われている。本願発明者村原正隆による特許文献15(特開2011−184260号公報)の(各複合塩と融点の関係を示す図2)にもそれら混合塩の組み合わせと融点の関係が示されている。自然界で常温で液体の元素は水銀と臭素だけであり、他の元素は常温で液体にすることはできない。もし、ここで、卑金属と卑金属塩電解質水溶液とを隔離した状態で電気分解できれば、電解精製や実用二次電池が可能になる。この隔離膜の開発こそが本発明の使命である。この隔離膜の必要十分条件は、当該隔離膜が電解液の保液性に優れ、電気抵抗が小さいことである。本発明では、この課題を解決するために、水溶液に対して撥水性を呈するフッ素樹脂膜を採用する。このフッ素樹脂膜の採用により電解質の保液性に優れていることは勿論のこと、電気抵抗もゼロに保つことができる。さらにこのフッ素樹脂膜として多孔質膜を採用するため、内部をイオン通過可能にすることが出来る。すなわち、この撥水性多孔質フッ素樹脂膜に耐水圧値に等しいかそれ以上の電解質水溶液で加圧すると、イオン透過性膜が実現する。この耐水圧の印加は電気抵抗ゼロ/導電の機械的スイッチの役割をする。
したがって、電解精製や実用電池またはキャパシタの充電時および放電時には、電解質水溶液を耐水圧値まで印加し、蓄電期間は印加しないため、電解質の保液性は持続される。すなわち、蓄電時は正負極の活性物質は絶縁された状態であり、活性物質が反応しないため自然放電は皆無である。さらに材質がフッ素樹脂であるから高温下(約80℃)でも、耐アルカリ性、耐酸性、耐薬品性に優れている。しかも、機械強度と柔軟性、耐熱性に優れている。しかも充放電時に電解質水溶液側から圧をかけるため、稼動時は膜が電極に密着している。このように隔膜として撥水性多孔質フッ素樹脂膜を用いることが課題を解決する最善の方法であると考える。
キャパシタ(コンデンサー)は誘電体が油などの絶縁体のみであれば両電極間の内部抵抗を無視できるが、誘電体と導電体とが電気的に並列や直列の組み合わされた等価回路を成す場合には、内部抵抗が漏れ電流となる。とくに、電気二重層キャパシタやレドックスキャパシタまたはハイブリッドキャパシタなどの電気化学キャパシタにおいては、電極内部や両電極間の電解質による内部抵抗の増大が避けられない。その他に電解質が水系の場合には液漏れも起こる。そこで本発明では、蓄電時の液漏れおよび電流漏れを防止するために、撥水性多孔質フッ素樹脂膜から成る袋の中に強酸や強アルカリなどの電解質水溶液が封入させ、この撥水性多孔質フッ素樹脂膜から成る袋を正極および負極から成る一対の電極で挟み、充放電時には撥水性多孔質フッ素樹脂膜の耐水圧の水圧を印加して、両電極面と電解質水溶液とを接触させ、かつ撥水性多孔質フッ素樹脂膜から成る袋の内部に金属繊維または炭素繊維などの空隙を有する導電材料を電解質と一緒に封入することにより、電解質水溶液が加圧された状態にある充放電時には、電解質水溶液間の電気抵抗が小さく、電解質水溶液の加圧が解除された蓄電時には、撥水性多孔質フッ素樹脂膜の内孔部の電解質水溶液が排除されて、内部が空隙に成るため、低誘電体として働き、自己放電が抑えられる。一方、充放電時は、電解質水溶液加圧により撥水性多孔質フッ素樹脂膜細孔内に電解質が充填され、導電性に変わり、電気二重層キャパシタあるいはレドックスキャパシタに高電荷の授受が行われる。
撥水性多孔質フッ素樹脂膜については、本願発明者の村原正隆は、非特許文献1(Proceeding of SPIE Vol.4245,P.221−227(2001))のFig.6に示すように、撥水性多孔質フッ素樹脂膜(ePTFE)に対して生理食塩水(BSS)を加圧して浸透させたとき、加圧する圧力が耐水圧以上では生理食塩水の流量が上昇することを開示している。なお、撥水性多孔質フッ素樹脂膜(ePTFE)に電解質水溶液が浸透したときの両側の差圧が耐水圧であり、細孔径3μm、厚さ100μの撥水性多孔質フッ素樹脂膜の生理食塩水(BSS)に対する耐水圧は300mmHgである。そこで、撥水性多孔質フッ素樹脂膜は、膜の両面の差圧が耐水圧より低い場合には絶縁膜として働き、膜の両面の差圧が耐水圧になると膜に対して電解質水溶液が浸透して導電膜として働く。この撥水性多孔質フッ素樹脂膜に対して電解質水溶液を耐水圧以上で加圧するか否かを、イオン通過の圧力スイッチとして用いることが本発明の骨子である。特に、フッ素樹脂は撥水性を有するので、膜の両面での差圧が耐水圧以下では電解質水溶液は多孔質膜の細孔内に入らない。撥水性多孔質フッ素樹脂膜は、細孔径の大小、または電解質の塩濃度の大小によって耐水圧が異なる。撥水性多孔質フッ素樹脂膜(細孔径3μm)における電解質水溶液の濃度と膜の両面での差圧とは、真水での耐水圧は430mmHg、食塩濃度が10%での耐水圧は330mmHg、食塩濃度が20%での耐水圧は280mmHgであり、電解質水溶液の濃度が高くなると耐水圧は降下する。一方、多孔質フッ素樹脂膜(細孔径10μm)における電解質水溶液の濃度と膜の両面での差圧は、真水での耐水圧は130mmHg、食塩濃度が1%での耐水圧は7mmHg、食塩濃度が2%での耐水圧は50mmHgであり、耐水圧は低い。この撥水性多孔質フッ素樹脂膜の耐水圧オン・オフの操作を利用すれば、電解質水溶液中での電解精製、または実用電池が可能になる。耐水圧によって、撥水性多孔質フッ素樹脂膜をイオン透過膜にする「イオンのオン・オフスイッチ」に関しては、本願発明者の村原正隆は特許文献18(国際公開第2015/034088号)が開示している。
特開平9−180714号公報 特開2009−181710号公報 特開2002−63890号公報 国際公開第01/031724号 特開2012−12261号公報 特開2013−54987号公報 特開2009−67644号公報 特開2013−32535号公報 特開2011−222129号公報 特開2009−224097号公報 国際公開第2007/80763号 特開2005−253305号公報 米国特許第6167497号明細書 欧州特許第0644227号明細書 特開2011−184260号公報 特開2009−295789号公報 特開2013−138050号公報 国際公開第2015/034088号
Proceeding of SPIE Vol.4245,P.221−227(2001) 電気二重層キャパシタと蓄電システム 日刊工業新聞社(1999)
電解精製や電池の充放電時や蓄電中に起こる目的以外の反応や副反応を抑える方法を見出すことが、本発明が解決しようとする課題である。
電解精製や電池の充電では電極析出物を多くするために常に電解質水溶液を飽和溶解度に保ち、電池の放電では負極から出る正イオンが電解質中の負イオンと結合し溶解度の高い塩を形成し、かつ常に電解質水溶液の溶解度を不飽和状態に保つことが、本発明が解決しようとする課題である。
電気自動車用電池として、電極材料が安価で重量が軽く、かつ高速充電、長距離走行を常温常圧で安全に動作し、火災を起こさない二次電池を開発することが、本発明が解決しようとする課題である。
本発明の一実施形態は、一対の電極と、該一対の電極間に存在する電解質水溶液と、少なくとも一面が前記電解質水溶液と接触して配置される、互いに連通する複数の細孔を有する撥水性多孔質フッ素樹脂膜と、前記電解質水溶液を加圧するための加圧手段とを含み、イオン導電体として働くイオンのオン・オフ面スイッチを備える化学反応装置である。イオンのオン・オフ面スイッチは、加圧手段により前記電解質水溶液を加圧した場合、撥水性多孔質フッ素樹脂膜の前記複数の細孔中に電解質水溶液を部分的に圧入させて撥水性多孔質フッ素樹脂膜の面と平行なイオン導電体の層を形成するとともに、電解質水溶液の未侵入部を該撥水性多孔質フッ素樹脂膜の面と平行な圧縮気体層とする。他方、加圧を解除した場合、圧縮気体層を膨張させて撥水性多孔質フッ素樹脂膜を絶縁体に戻す。或いは、加圧手段により電解質水溶液を加圧した場合、撥水性多孔質フッ素樹脂膜の複数の細孔に電解質水溶液を圧入させて細孔中の気体を追い出し、電解質水溶液で置換し、撥水性多孔質フッ素樹脂膜をイオン導電体とする。他方、加圧を解除した場合、撥水性多孔質フッ素樹脂膜の複数の細孔中の電解質水溶液を気体で排出して撥水性多孔質フッ素樹脂膜を絶縁体として戻す。
本発明によれば、電気化学反応で起きる複数の反応をそれぞれ別個の反応系で行わせることができる。このため、電気化学反応装置における副反応を抑制することができる。この方法は、複数の反応室内の薬品同士を隔離膜で電気的に遮断した状態で直列に並べ、電気化学反応を発生させるときのみ隔離膜をイオン導電体に変えることができる。本願発明者は、この隔離膜を「イオンのオン・オフ面スイッチ」と命名している。この「イオンのオン・オフ面スイッチ」の要部は、撥水性多孔質フッ素樹脂膜である。撥水性多孔質フッ素樹脂膜は、大気中または水溶液中において絶縁体である。ところが、この撥水性多孔質フッ素樹脂膜に電解質水溶液を圧入すると、初めは撥水していた水が通過するようになる。この水が通過した時点の水圧を、この撥水性多孔質フッ素樹脂膜の「耐水圧」という。本発明では、化学反応室を密閉電解槽に置き換え、複数の密閉電解槽を「イオンのオン・オフ面スイッチ」を介して直列に繋ぐ。この直列回路に電流を流すために、それぞれの密閉電解槽中の電解質水溶液に耐水圧をかけると、隔離膜の面全体がオン状態になり各密閉電解槽間でイオンの移動が開始され、目的の反応を行うことができる。特に、「イオンのオン・オフ面スイッチ」である撥水性多孔質フッ素樹脂膜の両面から電解質水溶液を圧入すると、この隔離膜の中央部で互いに面接触する。このとき、両方の電解質水溶液が同じ面積で接するため目的外の反応を抑えることができる。一方、電池においては、充放電時以外は、互いの電解質や電極が電気的に絶縁されるため自己放電も発生せず、電解質同士の拡散や副反応も発生しない。ここで、一方の電解槽に油を封入し、他方の電解槽に電解質水溶液を封入して電気分解すると、隔離膜の近傍または中央で油と水の境界層ができる。この境界層を仮想電極として電気分解することで、Li,Na,Kなどの金属を油が封入された密閉電解槽の中で回収することができる。さらに、この隔離膜の両面から電解質水溶液を耐水圧以上の圧力で圧入すると、隔離膜の中央に極薄い圧縮気体層ができる。この圧縮気体層がキャパシタであり、このキャパシタに電荷を与えると、容量可変キャパシタが実現し、自動車や電車の初期起動力電源として貢献する。
図1は、撥水性多孔質フッ素樹脂膜の等価回路と「イオンのオン・オフ面スイッチ」の原理説明を示し、(A)は撥水性多孔質フッ素樹脂膜内部の電解質水溶液の分布図を示し、(B)は撥水性多孔質フッ素樹脂膜の等価回路を示し、(C)はコールラウシュ・ブリッジによる静電容量の測定方法説明図を示す。 図2は、電解質水溶液2層と、撥水性多孔質フッ素樹脂膜1枚とを備える静電容量可変キャパシタを示し、(a)は無電荷状態のキャパシタ、(b)は充電時のキャパシタ、(c)は蓄電時のキャパシタ、(d)は徐々に放電するキャパシタを示す。 図3は、静電容量可変キャパシタを示し、(A)は電解質水溶液1層と撥水性多孔質フッ素樹脂膜1枚とを備える静電容量可変キャパシタを示し、(a)は圧縮気体層無しの状態を示し、(b)は圧縮気体層有り(キャパシタ、静電容量=1倍)の状態を示し、(B)は電解質水溶液1層と撥水性多孔質フッ素樹脂膜2枚とを備える静電容量可変キャパシタを示し、(a)は圧縮気体層無しの状態を示し、(b)は圧縮気体層有り(キャパシタ、静電容量=1/2倍)の状態を示し、(c)は圧縮気体層無しの状態の並列型のキャパシタを示し、(d)は圧縮気体層有りの状態の並列型キャパシタ(静電容量=2倍)を示す。 図4は、撥水性多孔質フッ素樹脂膜を備える二次電池を示す概略図である。 図5は、Al/Cu二次電池の原理図を示し、(A)は充電時の電子およびイオンの移動を示し、(B)は放電時の電子およびイオンの移動を示す。 図6は、ダニエル電池を改良したAl/Cu二次電池の原理図を示し、(A)は充電時のイオンの移動を示し、(B)は放電時のイオンの移動を示す。 図7は、第1の検出手段および第2の検出手段を備える二次電池を示し、(A)は電解質水溶液の屈折率測定と再結晶時の透過率変化測定の説明図であり、(B)は、Al/Cu二次電池に測定用レーザーを設置した図である。 図8は、多重隔離膜を示し、(A)は多重隔離膜の構造図を示し、(B)は多重隔離膜の配置図を示す。 図9は、多重隔離膜を用いた水酸化ナトリウムの生成装置を示す。 図10は、エキシマランプを使った塩酸の製造装置を示し、(A)はエキシマランプの配置を示し、(B)はXe−Clエキシマランプ光の発振波長を示す。 図11は、多重隔離膜を用いた水の電気分解装置を示す。 図12は、多重隔離膜を用いた食塩水の電気分解による油内での金属ナトリウムの製造装置を示す。 図13は、多重隔離膜を用いた食塩水の電気分解による油内での金属ナトリウムの製造装置を示す。 図14は、多重隔離膜を用いた水酸化ナトリウム水溶液の電気分解による油内での金属ナトリウムの製造装置を示す。 図15は、多重隔離膜を用いた水酸化ナトリウム水溶液の電気分解による油内での金属ナトリウムの製造装置を示す。 図16は、卑金属水酸化物・硝酸塩・硫酸塩・塩化物の溶解度(飽和溶液100gに溶ける質量)(単位:wt%)を示す。 図17は、水枕型(封筒型)電解質水溶液パックを用いたAl/Cu二次電池の模式図を示し、(A)は水枕型電解質水溶液袋の電解質水溶液の加圧する模式図を示し、(B)は水枕型電解質水溶液袋を示す。 図18は、塩化アルミニウム(AlCl)水溶液の充電・蓄電・放電時の屈折率および透過率の経過時間との関係を示す。 図19は、撥水性多孔質フッ素樹脂膜による円筒型キャパシタの説明図を示し、(a)は無電荷状態のキャパシタを示し、(b)は充電状態のキャパシタを示し、(c)は並列型キャパシタを示す。 図20は、撥水性多孔質フッ素樹脂膜による渦巻き型キャパシタの説明図を示し、(a)は無電荷状態のキャパシタを示し、(b)は充電状態のキャパシタを示し、(c)は蚊取り線香型キャパシタを示す。 図21は、塩化アルミニウムの溶解度と耐水圧の関係を示す。 図22は、水酸化ナトリウム、食塩、硫酸および塩酸の濃度と導電率の関係を示す。 図23は、Cu,Mg,Alの硝酸塩・硫酸塩・塩化物の溶解度と温度の関係を示す。
電気化学反応において目的以外の反応を抑えるには、電極と電解質水溶液間のイオン反応を必要に応じてオン・オフする面スイッチが必要である。このイオンのオン・オフ面スイッチ材料として撥水性多孔質フッ素樹脂膜に着目した。撥水性多孔質フッ素樹脂膜内の細孔には空気が入っている。この空気が存在する間は撥水性多孔質フッ素樹脂膜内部に電解質水溶液は入れない。このためイオンは通過できない。そこで電解質水溶液に、耐水圧に匹敵する圧力をかけて空気を追い出すと、細孔内は電解質水溶液に満たされイオンの通過が可能になる(オン状態)。ここで電解質水溶液の圧力を解除すると、撥水性多孔質フッ素樹脂膜の細孔内に自発的に空気が戻れば、イオンの通過ができなくなる(オフ状態)。そこで、撥水性多孔質フッ素樹脂膜の近傍の電気化学反応する領域の外に気体排出路または空気カプセルを備えれば、電解質水溶液の「加圧・除圧」操作による「イオンのオン・オフ面スイッチ」を可能にする。
本発明が課題を解決するための従来法と異なる点は、隔離膜としての撥水性多孔質フッ素樹脂膜を用い、電解質水溶液を耐水圧で加圧を行い、加圧中は隔離膜中をイオンが通過でき、加圧の解放時には隔離膜中をイオンが遮断する「イオンのオン・オフスイッチ」として用いることである。撥水性多孔質フッ素樹脂膜が、イオンを通過および遮断させることが可能な理由は、フッ素樹脂が撥水性を有する性質に由来する。撥水性多孔質フッ素樹脂膜内の細孔には、大気圧下では空気が満たされている。ここで、撥水性多孔質フッ素樹脂膜に水圧をかけて細孔内の空気を追い出すと空気と水が入れ替わり、イオン通過が可能となる。この撥水性多孔質フッ素樹脂膜の細孔内部に水が満たされる水圧を耐水圧と言う。電解質水溶液の加圧が耐水圧未満の場合には、細孔内の空気が電解質水溶液の通過を阻むため、膜におけるイオン通過はオフ状態である。一方、電解質水溶液を耐水圧以上で加圧すると、膜におけるイオン通過はオン状態になる。この性質により、「イオンのオン・オフスイッチ」をオフ状態にするためには、膜の細孔内の空気(気体)の存在が不可欠である。一般に、撥水性多孔質フッ素樹脂膜の一部分が大気開放されていれば、撥水性多孔質フッ素樹脂膜の細孔内に電解質水溶液を耐水圧で圧入してイオン通過をオン状態にした後、耐水圧での加圧を解除すると電解質水溶液は空気(気体)と入れ替わりイオン通過がオフ状態になる。ただし、撥水性多孔質フッ素樹脂膜の一部分が大気開放されていない場合には、オフ状態に戻らない。このような場合には、電気化学反応の終了後、電解質水溶液を排除すると、細孔内に空気(気体)が満たされて、オフ状態に戻る。そこで本発明では、撥水性多孔質フッ素樹脂膜が大気開放できない場合でも、電解質水溶液の耐水圧を解除すると、自発的に細孔内に空気(気体)が戻るように、撥水性多孔質フッ素樹脂膜の一部に気体溜(微小カプセル)または大気開放口を備えている。
一方、従来の隔離膜は、電解質水溶液と電極とを電気的に遮断することはできず、電極における生成物を完全に分離回収することや副反応を完全に抑制することはできなかった。
そこで本発明では、電解精製や電池の充電時に起こる副反応を抑えるために、化学反応ごとに電解槽を独立させた。そして、それぞれ直列に配列した複数の電解槽間に撥水性多孔質フッ素樹脂膜を配置し、電気化学反応を行う時のみ、各電解層内の電解質水溶液を耐水圧で加圧する。この操作により、両電解質水溶液同士は接触し、均衡状態に成り、イオンのみが移動して電気化学反応が行われる。一方、加圧を解除した状態では、撥水性多孔質フッ素樹脂膜の細孔に気体(空気)が戻るため、電解質水溶液同士は絶縁されるため、両電解質水溶液の拡散や混合は起こらない。加えて、負極板および正極板は、電解質水溶液と絶縁されるため、電池の内部抵抗の増加や自己放電も発生しない。
電解精製や電池の充電では、負極板における析出物の量を多くするために、電解質水溶液中に熱交換パイプまたは電極の背面に熱交換ジャケットを備える。それらによって、温水を循環させ、電解質水溶液の液温を室温から100℃の範囲に保つことで、高飽和溶解度および高導電率を達成する。一方、電池の放電時には、正イオンが電解質中の負イオンと結合して生成する金属塩を飽和状態にさせないために、電解質水溶液中に備えた熱交換パイプに冷水を循環させる。それによって、液温を室温から0℃の範囲の低温に保つことで低飽和溶解度を維持し、負極板から出る正イオンの量を多くする。さらに電解槽を複数直列にした複数の電解質水溶液間の反応では、正イオンを与える側の電解質水溶液を加温し、反応系から正イオンを受け取る側の電解質水溶液を冷却または水希釈する。それによって、負極板生成物の析出量を高め、かつ高電流放電と高速充電を実現する。
電気自動車用二次電池として、負極板の材料としてリチウムに比べ安価で資源量が多いアルミニウムやマグネシウムを使用し、正極板材料として酸素や硫黄に比べ導電率が極端に高い銅板を使用し、電解質には飽和溶解度が高い硝酸塩、硫酸塩または塩化物の水溶液を使用することで、高速充電、長距離走行を常温常圧で安全に動作させることができる。
「耐水圧」とは、撥水性多孔質フッ素樹脂膜に液が浸透する時の両側の差圧である。耐水圧の測定方法は、図1に示すように、撥水性多孔質フッ素樹脂膜1の細孔内に第1の電解質水溶液2が侵入する深さ(dx)を第1の電解質水溶液2の液圧3と第2の電解質水溶液5の液圧6との差圧で測定するものである。図1の(A)に示すように、半径r、表面積S、厚さdの撥水性多孔質フッ素樹脂膜1を誘電体(キャパシタ)8と見なすと、静電容量はC=εS/dで与えられる(ε=比誘電率、S=πr=表面積、r=半径、d=厚さ)。図1の(A)−(a)のように、撥水性多孔質フッ素樹脂膜1の細孔内に一方側から加圧された第1の電解質水溶液2が深さ方向に距離dx侵入すると、静電容量はCx=εS/(d−dx)で与えられる。さらに加圧されると、図1の(A)−(b)のように細孔内の気体はピンホール(大気開放口)15に逃れ、第1の電解質水溶液2が撥水性多孔質フッ素樹脂膜1の裏面(厚さd)に到達し、第2の電解質水溶液5と接触し(図1の(B)の等価回路ではSwがオン状態になる)、撥水性多孔質フッ素樹脂膜1は導電体になる。本発明では、この現象がイオンのオン・オフスイッチ、導電体・絶縁体スイッチ、誘電体・絶縁体スイッチとして作用するため、「イオンのオン・オフ膜」と命名する。この撥水性多孔質フッ素樹脂膜1の細孔内の気体(空気)の逃げ場として、ピンホール(大気開放口)15を介して気体を出し入れするための大気開放弁16が備えられている。撥水性多孔質フッ素樹脂膜1を誘電体として用いる場合には、大気開放弁16を閉じて使用する。撥水性多孔質フッ素樹脂膜1を導電体として耐水圧を測定する時は、大気開放弁16を開き大気開放状態を維持する。さらに、図1の(B)に示すように、静電容量可変キャパシタ(Cx)と抵抗(R)とスイッチ(Sw)の組み合わせから成る等価回路を提案する。ここで、抵抗(R)は撥水性多孔質フッ素樹脂膜1の細孔内に進入している電解質水溶液の電気抵抗であり、静電容量可変キャパシタCx=lim[dx→d]εS/(d−dx)=∞で与えられる。この等価回路では、Cx=∞の時をスイッチ(Sw)がオン状態であると表現する。このCx=lim[dx→d]εS/(d−dx)=∞の測定は、図1の(C)のコールラウシュ・ブリッジを用いて、キャパシタ(Cx)の静電容量の変化として測定する。同時に、撥水性多孔質フッ素樹脂膜1の耐水圧は、撥水性多孔質フッ素樹脂膜1を第1の電解質水溶液2と第2の電解質水溶液5で挟み込む構造の耐水圧測定装置で行う。耐水圧(P)は、第1の電解質水溶液2の水圧(P)3と、第2の電解質水溶液5の水圧(P)6との差圧(P=P−P)から求める。耐水圧は、膜の細孔径および膜厚により定まるため、同一種類の撥水性多孔質フッ素樹脂膜1を使用する場合は、n枚重ねて測定すると耐水圧はn倍になる。
本発明では、隔離膜の材質として、水は勿論のこと油を弾く材料として撥水性多孔質フッ素樹脂膜を使用する。この撥水性多孔質フッ素樹脂膜は、互いに連通する複数の細孔を有し、細孔径が0.1ミクロンから80ミクロンまでのものが市販されている。この細孔径が大きいと、耐水圧が低くなる一方、機械的強度も低くなり撥水性多孔質フッ素樹脂膜が壊れやすくなる。このため、細孔径が小さい材料では、細孔内に紫外線光化学反応を利用して親水基(−OH)を置換することができる。本発明では、例えば、耐水圧が0.03〜0.04メガパスカル(Mpa)である細孔径3ミクロンの撥水性多孔質フッ素樹脂膜を使用する。
第1の実施形態に係る発明では、撥水性多孔質フッ素樹脂膜の細孔内部に存在する気体の「追い出し・引き戻し」を、「イオンのオン・オフ面スイッチ」として利用して、電解質水溶液中で電気化学反応を行うものである。電解質水溶液中で、撥水性多孔質フッ素樹脂膜の細孔内に気体を密閉したまま電解質水溶液を耐水圧以上で加圧すると、膜内に強誘電体となる圧縮気体層が生成する。一方、電解質水溶液の加圧を解除すると、圧縮気体層が膨張して膜が絶縁体に戻る。この誘電体・絶縁体スイッチ現象を、静電容量可変キャパシタとして利用する。一方、撥水性多孔質フッ素樹脂膜内部の気体を開放すると、細孔内の気体と電解質水溶液とが入れ替わり、膜が導電性を有する。この気体の開放手段として、電気化学反応域外に撥水性多孔質フッ素樹脂膜と連通する気体カプセルまたは大気開放口を備える。このような構成によれば、加圧により膜内の気体は膜の外部に開放され、撥水性多孔質フッ素樹脂膜は導電体になる。一方、加圧を解除すると、自発的に気体が膜の細孔内に戻り、膜が絶縁体に戻る。この導電体・絶縁体スイッチ現象は、二次電池や電気分解に利用することができる。
第2の実施形態に係る発明では、「誘電体・絶縁体スイッチ」現象を静電容量可変キャパシタ(コンデンサー)として用いる。この静電容量可変キャパシタでは、電解質水溶液を耐水圧以上の圧力で加圧し、撥水性多孔質フッ素樹脂膜の細孔内に存在する気体(空気、窒素または六フッ化硫黄など)で極薄い圧縮気体層を形成する。次いで、この圧縮気体層に電荷を印加した後、電解質水溶液の加圧を解除して、撥水性多孔質フッ素樹脂膜内の気体の表面に電荷を蓄える。放電時には、電解質水溶液の加圧を増減することで、放電容量を制御できる。圧縮気体層が電極近傍に在る場合には、撥水性多孔質フッ素樹脂膜の一方の面が電極板と密着し、他方の面が電解質水溶液に接触しており、この電解質水溶液を介して電極板を配置して両電極間でキャパシタ(コンデンサー)を構成する。一方、圧縮気体層が撥水性多孔質フッ素樹脂膜の中央部に在る場合には、撥水性多孔質フッ素樹脂膜の両方の面が電解質水溶液と接触しており、これら電解質水溶液を介して2つの電極板を配置して、両電極間でキャパシタ(コンデンサー)を構成する。
本発明では、図1の(B)に示すように、撥水性多孔質フッ素樹脂膜をキャパシタCxと考える。撥水性多孔質フッ素樹脂膜の厚さdと電解質水溶液の圧入深さをdxとすると、電解質水溶液の圧入深さdxは抵抗体となり、圧縮気体層部分の厚さd−dxが誘電体となる。そのため、静電容量Cx=εS/(d−dx)は、d−dxが0に近づくと、静電容量は極端に増大する。キャパシタCに蓄えられる静電エネルギーは、W=CV/2与えられる。そのため、静電容量Cが大きい時、高電圧Vを印加するとキャパシタに大きなエネルギーが蓄えられる。次いで、電解質水溶液の加圧を開放すると、当該撥水性多孔質フッ素樹脂膜に静電エネルギーは蓄えられる。ここで再び、電解質水溶液に耐水圧以下の圧力をかけると、正極板および負極板から静電エネルギーが放電される。印加する電解質水溶液の水圧を徐々に上げていくと、静電エネルギーも水圧に比例して大きくなる。このことは、静電容量可変キャパシタ(コンデンサー)、または可変静電エネルギー放出装置として利用できる。
キャパシタの構造としては、1枚の撥水性多孔質フッ素樹脂膜を2つの電解質水溶液で挟み1個のキャパシタとする構成と、2つの撥水性多孔質フッ素樹脂膜で電解質水溶液を挟み2個の直列のキャパシタとする構成とがある。
図2の(a)には、一対の極板(負極板9,正極板10)と、1枚の撥水性多孔質フッ素樹脂膜とを収容する密閉電解質槽12(密閉容器)をキャパシタとする構成を示す。撥水性多孔質フッ素樹脂膜1は、一対の電極(負極板9,正極板10)に挟まれ、電解質水溶液2が封入された密閉電解質槽12の中央に一対の電極と平行に配置されている。
図2の(b)に示すように、液加圧装置11(加圧手段)によって撥水性多孔質フッ素樹脂膜の耐水圧以上の水圧で電解質水溶液を加圧すると、撥水性多孔質フッ素樹脂膜1内に両面から電解質水溶液が侵入して、静電容量Cである圧縮気体層17が形成される。この圧縮気体層17に電圧Vを与えると、W=CV/2なる静電エネルギーWが充電される。ここで、図2の(c)に示すように耐水圧を解除して、圧縮気体層17を膨張させると、撥水性多孔質フッ素樹脂膜1が絶縁体として戻る。このとき、撥水性多孔質フッ素樹脂膜1内には、W=CV/2なる静電エネルギーが蓄電される。図2の(d)に示すように、再度耐水圧以下で電解質水溶液を加圧すると、加圧の大小に連動して圧縮気体層17の厚さが変化する静電容量可変キャパシタが形成され、放電される静電エネルギーを制御することができる。
図3の(A)は、撥水性多孔質フッ素樹脂膜1が、負極板9表面または正極板10表面のいずれか一方の表面に接触して配置されていること以外は図2の(a)と同様の構成を有するキャパシタである。図3の(A)−(a)に示すように、撥水性多孔質フッ素樹脂膜1は、一方の面が負極板9に接触しており、他方の面が電解質水溶液13に接触している。図の3(A)−(b)に示すように、電解質水溶液13を液加圧装置11で耐水圧以上の加圧を行うと膜内の気体が圧縮されて、該撥水性多孔質フッ素樹脂膜1の一方の面の負極板9と密着した場所に圧縮気体層17を生成する。
図3の(B)−(a,b)は、撥水性多孔質フッ素樹脂膜(第1および第2の撥水性多孔質フッ素樹脂膜22,23)が、負極板9および正極板10の両方の表面に接触して配置されていること以外は、図3の(A)と同様の構成を有するキャパシタである。図3の(B)−(a,b)に示すように、電解質水溶液13の両面に第1および第2の撥水性多孔質フッ素樹脂膜22,23を配置すると直列のキャパシタができる。しかし、このキャパシタでは、これらが直列接続であるため、静電容量は1/2になる。そこで、図3の(B)−(c)に示すように、並列接続キャパシタを構成してもよい。このキャパシタは、2つの対向する負極板9,9と、2つの負極板9,9の対向する面にそれぞれ配置される第1および第2の撥水性多孔質フッ素樹脂膜22,23と、各撥水性多孔質フッ素樹脂膜22,23間に配置される電解質水溶液13と、電解質水溶液13の中央に負極板9,9と平行に配置される正極板10とを備える。このキャパシタでは、2個のキャパシタが並列接続されるため、図の(B)−(a)に示すキャパシタと比較して静電容量は2倍になる。図3の(B)−(d)に示すように、電解質水溶液13に耐水圧以上の加圧をすると、第1および第2の撥水性多孔質フッ素樹脂膜22,23内に電解質水溶液が侵入し静電容量Cである圧縮気体層17が形成される。この圧縮気体層に電圧Vを与えると、W=2CV/2=CVなる静電エネルギーWが充電される。ここで、耐水圧を解除すると並列接続された第1および第2の撥水性多孔質フッ素樹脂膜22,23内にそれぞれW=CVなる静電エネルギーが蓄電される。ここで再度耐水圧以上の水圧で加圧すると、水圧の大小に連動して圧縮気体層17の厚さが変化するため、静電エネルギーを制御することができる静電容量可変キャパシタとして使用できる。
第3の実施形態に係る発明は、撥水性多孔質フッ素樹脂膜を備える二次電池に関する。この二次電池では、副反応や内部抵抗を低減させるため、充放電時のみ正極板、負極板、電解質水溶液に通電させ、蓄電時には絶縁するものである。この二次電池は、撥水性多孔質フッ素樹脂膜の細孔内の気体を「追い出し・引き戻し」して、導電体・絶縁体スイッチ現象としてイオンのオン・オフ面スイッチとして用いる。この二次電池では、例えば、この細孔内の気体は空気または窒素からなる。図4に示すように、負極板9および正極板10は、それぞれ第1の面18と第2の面19との間で連通するピンホール15を有しているため通気性を有する。この通気性を有する負極板9および正極板10は、第1の撥水性多孔質フッ素樹脂膜22の第1の主面20および第2の撥水性多孔質フッ素樹脂膜23の第2の主面21にそれぞれ密着している。ここで電解質水溶液13を耐水圧で加圧すると、第1および第2の撥水性多孔質フッ素樹脂膜22,23内の複数の細孔に電解質水溶液13が圧入される。それにより、第1の撥水性多孔質フッ素樹脂膜22の第1の主面20および第2の撥水性多孔質フッ素樹脂膜23の第2の主面21から追い出された気体は、負極板9の第1の面18、および正極板10の第1の面18に備えられたピンホール15に開放される。その結果、第1および第2の撥水性多孔質フッ素樹脂膜22,23はイオン導電体になる。次に、電解質水溶液13の加圧を解除すると、気体は負極板9および正極板10ピンホール15を介して、第1および第2の撥水性多孔質フッ素樹脂膜22,23に戻る。その結果、第1および第2の撥水性多孔質フッ素樹脂膜22,23は、絶縁体になる。負極板9および正極板10は、ピンホールあるいは細孔を有するか、または網状あるいは多孔質状であるため通気性を有している。電極材料が大気に触れることが好ましくない場合、ピンホールまたは細孔内の圧力を大気圧と等しくするため、正極板10および負極板9の第1の面18以外の面を大気保護膜29で覆ってLi,Na,K,Al,Mgなどの卑金属や塩化銅、硝酸銅、硫酸銅などの金属塩の空気や湿気との反応を防止する。
第4の実施形態に係る発明は、撥水性多孔質フッ素樹脂膜を備える二次電池に関するものである。この二次電池は、特に負極板にアルミニウム、亜鉛、ニッケルまたは鉛などの卑金属板を用い、正極板に銅板を用いる卑金属・銅二次電池である。このタイプの電池は、例えばダニエル電池である。ダニエル電池では、負極板側の電解質水溶液として硫酸亜鉛水溶液を用い、この中に亜鉛板電極が挿入されている。一方、正極板側の電解質水溶液として硫酸銅水溶液を用い、この中に銅板が挿入されている。2つの電解質水溶液の間は、一般的に素焼板で隔離されている。この構成では、正極板側の銅イオンが素焼板を介して負極板側に移動して、負極板の亜鉛板に析出し局部電池となるため二次電池にすることができない。
本実施形態では、充放電時において、正極板である銅板と電解質水溶液との直接の反応を抑制するため、正極板である銅板と電解質水溶液との間に固体電解質を介在させる。さらに、この固体電解質と電解質水溶液との間を、撥水性多孔質フッ素樹脂膜で隔離している。この固体電解質は、イオン結晶から成り、正極板である銅板との間で銅イオンの授受および電解質水溶液中の負イオンとの授受を行わせる緩衝反応域である。具体的には、正極板は、銅の塩化物、硫酸塩または硝酸塩からなる卑金属塩層を積層した銅電極とし、負極板は卑金属板とする。正極板および負極板と電解質水溶液とは、撥水性多孔質フッ素樹脂膜によって隔離されている。電解質水溶液には、卑金属の塩化物、硝酸塩または硫酸塩の内1種から成る卑金属塩水溶液が使用される。この二次電池では、各撥水性多孔質フッ素樹脂膜に対して加圧手段にて電解質水溶液を耐水圧で圧入した状態で充放電を行い、加圧を解除した状態で蓄電を行う。次いで、電解質水溶液の加圧を解除すると、各撥水性多孔質フッ素樹脂膜が絶縁体となり、負極板および正極板側の固体電解質と電解質水溶液とが絶縁され、蓄電状態が維持される。この操作によって、充放電時のみ、正極板および負極板でイオン反応が発生する構造とした。
図5は、Al/Cu二次電池の原理説明図である。密閉電解質槽12(密閉容器)内の電解質水溶液13は負極板9および正極板10に挟まれている。負極板9と電解質水溶液13とは、第1の撥水性多孔質フッ素樹脂膜22で隔離されている。正極板10と電解質水溶液13とは、第2の撥水性多孔質フッ素樹脂膜23で隔離されている。電解質水溶液13には塩化アルミニウム(AlCl)水溶液を用いる。負極板9はアルミニウム電極板(Al)であり、正極板10は表面に塩化銅(CuCl)結晶64が積層された銅電極板(Cu)である。そして、塩化銅(CuCl)結晶64が積層された銅電極板(Cu)およびアルミニウム電極板(Al)には、それぞれ第1および第2の撥水性多孔質フッ素樹脂膜22,23が密着している。これら負極板および正極板には、第1および第2の撥水性多孔質フッ素樹脂膜22,23内の気体(空気)を「追い出し・引き戻し」するためのピンホール(大気開放口、気体カプセル)15が備えられている。ここで、液加圧装置11(加圧手段)で電解質水溶液(塩化アルミニウム水溶液)13を耐水圧で加圧して、第1および第2の撥水性多孔質フッ素樹脂膜22,23内の複数の細孔内に電解質水溶液13を圧入する。それにより、細孔内の気体(空気)をそれぞれ正極板10および負極板9のピンホール15に押し出され、気体を電解質水溶液で置換して、第1および第2の撥水性多孔質フッ素樹脂膜22,23をイオン導電体とする。次いで、充電電源供給源45から電圧を印加して充電を開始すると、銅電極板(Cu)に塩化銅(CuCl2)結晶64が積層され、同時にアルミニウム電極板(Al)にアルミニウムが析出し、充電が完了する。次いで、液加圧装置11により加圧を解除すると、第1および第2の撥水性多孔質フッ素樹脂膜22,23にピンホール(大気開放口、気体カプセル)15から気体(空気)が戻り、第1および第2の撥水性多孔質フッ素樹脂膜22,23は絶縁体となり、蓄電状態を維持する。次いで、再度、液加圧装置11で電解質水溶液13を耐水圧以上で加圧すると、第1および第2の撥水性多孔質フッ素樹脂膜22,23内の気体(空気)はピンホール15に押し出され、放電が開始され、負荷(電球)42が点灯する。この電池の初期状態(1)・充電(2)・蓄電(3)・放電(4)におけるイオン反応は、
(1)初期状態:塩化アルミニウム(AlCl)水溶液の両側に、それぞれ撥水性多孔質フッ素樹脂膜を介して正極板である銅板と負極板であるアルミニウム板をセットする。ここでは、電解質水溶液を加圧手段で加圧をしていないため、両極板と電解質水溶液の接触は無く化学反応は起こらない。
(2)充電時:塩化アルミニウム(AlCl)水溶液が満たされた電解質水溶液によって加圧手段で耐水圧まで加圧して、充電を開始する。ここで、負極板から電子を与えられた塩化アルミニウム(AlCl)電解質のイオン反応は、負極板:Al3+(aq)+3e→Al(s)であり、正極板:Cu(s)→Cu2++2e+Cl→CuClである。そして充電が進行するにつれて電解質水溶液の濃度は低くなり充電限界に至る。
(3)蓄電状態:すべての化学反応は停止して、蓄電状態を維持し続ける。
(4)放電時:加圧手段によって加圧を行い電解質水溶液に耐水圧を与え、放電を開始する。負極板のアルミニウムが電解液に溶け出す際に、放出する電子が負荷を通って正極板に移動し、正極板面に付着している塩化銅CuClの銅イオン(Cu2+)に電子を与え、正極板には金属銅が析出する。同時に、電解液中に溶け出した塩素イオン(Cl)と、負極板から溶け出したアルミニウムイオン(Al3+)とが結合して塩化アルミニウム(AlCl)を形成する。負極板:Al(s)−3e→Al3+(aq)、正極板:CuCl→Cu2++2e+2Cl→Cu(s)+2Clであり、電解液濃度は上昇する(Al3+−+Cl→AlCl)。
第5の実施形態に係る発明は、負イオン交換膜を使ったダニエル電池の改良に関するものである。ダニエル電池では、素焼板から正極板側の銅イオンが負極板に侵入して、負極板の亜鉛板に析出し、局部電池を発生させるため、二次電池とすることができない。そこで負イオン交換膜と撥水性多孔質フッ素樹脂膜から成る、イオンのオン・オフ面スイッチを用いて二次電池を開発した。
図6は、ダニエルの改良卑金属/Cu電池の原理説明図で、(A)は充電時、(B)は放電時の模式図である。図6に示す電池は、密閉電解質槽12を正極板10側の第1の室および負極板9側の第2の室に分離する負イオン交換膜46をさらに備える。この第1の室および第2の室には、互いに異なる第1の電解質水溶液2および第2の電解質水溶液5が収容される。各電解質水溶液2,5は互いに負イオンが同一で、正イオンが異なる電解質水溶液である。第1の電解質水溶液2は、例えば、卑金属の塩化物、硝酸塩または硫酸塩の卑金属塩水溶液である。第2の電解質水溶液5は、例えば、塩化銅、硝酸銅または硫酸銅の銅塩水溶液である。負極板9には卑金属板、正極板10には銅電極板(Cu)を用いる。第1の電解質水溶液2と第2の電解質水溶液5との間は、負イオン交換膜46で2分割する。そして、アルミニウム電極板(Al)および銅電極板(Cu)には、それぞれ第1および第2の撥水性多孔質フッ素樹脂膜22,23内部の気体(空気)を「追い出し・引き戻し」するためのピンホール15が開けられている。ここで、液加圧装置11により第1および第2の電解質水溶液2,5を耐水圧で加圧すると、撥水性多孔質フッ素樹脂膜22,23に対して各電解質水溶液2,5が圧入して、イオン導電体になる。この状態で、充電電源供給源45から電圧を印加して、充電を開始する。すると、銅電極板(Cu)から銅イオン(Cu2+)が塩化銅(CuCl)水溶液に溶け、塩化銅(CuCl)水溶液の濃度が次第に高くなる。一方、塩化アルミニウム(AlCl)水溶液中のアルミイオン(Al3+)は、負極板9のアルミニウム電極板(Al)に金属アルミニウムが析出し充電が完了する。ここで、液加圧装置11で加圧を解除すると、第1および第2の撥水性多孔質フッ素樹脂膜22,23にピンホール15から気体(空気)が戻り、第1および第2の撥水性多孔質フッ素樹脂膜22,23は絶縁体になり、蓄電状態を維持する。ここで再度、液加圧装置11で第1および第2の電解質水溶液2,5を耐水圧で加圧すると、第1および第2の撥水性多孔質フッ素樹脂膜22,23の気体はピンホール15に押し出され、各膜22,23が導電性になる。その結果、二次電池の放電が開始され、負荷(電球)42が点灯する。
第6の実施形態に係る発明は、第1の検知手段および第2の検知手段を備える二次電池に関するものである。この二次電池では、充放電時に、電子の流れる密度に比例して変化する電解質水溶液の溶解度と再結晶の過程を、屈折率および透過率で測定し、電池の充電限界と放電限界を検知することができる。
図7の(B)は、図5のAl/Cu二次電池を立体図として示し、さらに測定用レーザーを設置した図である。図7の(A)は電解質水溶液の屈折率測定と再結晶時の透過率変化測定の説明図である。
図7は、負極板9、正極板10、および密閉電解質槽12の中の塩化アルミニウム(AlCl)水溶液が、第1および第2の撥水性多孔質フッ素樹脂膜22,23で隔離されたアルミニウム・銅二次電池を示す。図7に示す二次電池は、二次電池が充放電、蓄電を行っている間の電解質水溶液の屈折率の変化をレーザー光を照射して測定し、充電終了および放電限界を検知する第1の検知手段を備えている。さらに、この二次電池は、二次電池が充放電、蓄電を行っている間の電解質水溶液の透過率の変化をレーザー光を照射して測定し、電解質水溶液の再結晶化を検知する第2の検知手段を備えている。第1の検知手段では、充電、蓄電、放電中に起こる電解質水溶液13としての塩化アルミニウム(AlCl)水溶液の屈折率変化を、第1の半導体レーザー(532nm)73の屈折する角度をリニアセンサー77で測定し、充電終了および放電限界を検知する。同時に、電解質水溶液が飽和溶解度を越えると、屈折率の変化は止まり、塩化アルミニウム(AlCl)水溶液は再結晶が始まる。再結晶が始まると塩化アルミニウム(AlCl)水溶液は散乱現象が起こるため、透過率が減少する。第2の検知手段では、密閉電解質槽12の上部から第2の半導体レーザー光(650nm)74を下方の沈殿槽78に向けて照射し、光の透過強度を光検知器76で測定する。このとき、電解質水溶液13である塩化アルミニウム(AlCl)水溶液が飽和溶解度を超えて再結晶する沈殿量を透過率から測定することができ、これにより放電容量を予測する。
第7の実施形態に係る発明は、多重隔離膜をイオンのオン・オフスイッチ面として用いる電気分解装置に関するものである。この電気分解装置は、異種の電解質水溶液に満たされた複数個の電解質槽を直列に並べ、かつそれぞれの電解質槽間を複数枚の撥水性多孔質フッ素樹脂膜からなる多重隔離膜で隔てた構成を有する。この多重隔離膜を用い、電気化学反応を行う際に、撥水性多孔質フッ素樹脂膜の両面から電解質水溶液を耐水圧で加圧すると、撥水性多孔質フッ素樹脂膜内の気体の逃げ場が無くなり、膜内に気体の絶縁層を形成し、電気化学反応は止まる。そこで、この多重隔離膜は、撥水性多孔質フッ素樹脂膜内の気体を電気化学反応域外に逃がすための通路として気体排出・導入管を備えている。この気体排出・導入管を大気に開放するか、または気体排出・導入管に連結した気体溜(微細カプセル)を備え、電解質水溶液を加圧すると、多重隔離膜内の気体と電解質水溶液とが入れ替わり、導電体になる。一方、電解質水溶液の加圧の解除時には、気体排出・導入管を介して気体を撥水性多孔質フッ素樹脂膜内に戻し、絶縁体になる。この気体の「追い出し・引き戻し」操作を、導電体・絶縁体面スイッチとして働かせる多重隔離膜を提案する。
この多重隔離膜28は、それぞれ密閉状態の2つの電解質槽(第1の電解質槽および第2の電解質槽)30,31との間に配置される。この多重隔離膜28は、図8の(A)に示すように、第1の撥水性多孔質フッ素樹脂膜22と第2の撥水性多孔質フッ素樹脂膜23の間に薄い枠状のガスケット27を挟んだ構造を有している。この多重隔離膜28は、それぞれ第1の撥水性多孔質フッ素樹脂膜22の第1の主面21と第2の撥水性多孔質フッ素樹脂膜23の第2の主面20とが、電解質水溶液に満たされた第1および第2の電解質槽30,31に接触している。ガスケット27内は、ガスケット27と第1、第2の撥水性多孔質フッ素樹脂膜22,23で囲まれた空間に一端が連通されたと気体排出・導入管15によって、大気と連通して大気開放され得る。あるいは気体排出・導入管15に取り付けられた気体溜(微小カプセル)26によって第1および第2の撥水性多孔質フッ素樹脂膜22,23内の気体は収容される。ここで、第1の電解質槽30内の電解質水溶液および第2の電解質槽31内の電解質水溶液を耐水圧で加圧すると、電解質水溶液が各撥水性多孔質フッ素樹脂膜に圧入され、第1の撥水性多孔質フッ素樹脂膜22の第1の主面20と第2の撥水性多孔質フッ素樹脂膜23の第2の主面21が電気的に接触し、導電体になる。第1および第2の電解質槽の電解質水溶液の加圧を解除すると、ガスケット27内に気体が戻り、第1の撥水性多孔質フッ素樹脂膜22の第1の主面20および第2の撥水性多孔質フッ素樹脂膜23の第2の主面21から気体が引き戻され、細孔内が気体で満たされて絶縁体になる。
この多重隔離膜28の利用として最も重要なものは食塩水の電気分解である。この電気分解装置の概略を図8の(B)に示す。この電気分解装置は、負極板9、第3の撥水性多孔質フッ素樹脂膜24、第1の電解質槽30、多重隔離膜28、第2の電解質槽31、第4の撥水性多孔質フッ素樹脂膜25、および正極板10をこの順番に直列に繋いでいる。第1の電解質槽30に水を、第2の電解質槽31に食塩水を供給する。各電解質槽30,31を耐水圧で加圧し、電解電圧を印加して電気分解することができる。この電気分解によって、負極板9の生成ガス回収パイプ33から水素ガスを、第1の電解質槽30の卑金属ソーダ回収口35から水酸化ナトリウム、正極板10の生成ガス回収パイプ33から塩素ガスを回収することができる。
第8の実施形態に係る発明は、上述する多重隔離膜を使った電気分解装置に関するものである。本実施形態では、アルカリ金属塩化物、アルカリ金属硫酸塩またはアルカリ金属硝酸塩などのアルカリ金属塩水溶液を電気分解して、負極板にアルカリ金属水酸化物および水素を生成させ、正極板に塩酸、硫酸、硝酸または酸素を生成させるものである。負極板側の導電剤は、例えば、アルカリ金属水酸化物である。
図9は、食塩の電気分解による水酸化ナトリウムの生成装置である。この装置は、互いに隣接して配置された、それぞれ密閉状態の第1の電解質槽30および第2の電解質槽31を備える。第1および第2の電解質槽30,31は、上述する多重隔離膜28で隔離される。第1の電解質槽30と負極板9側の生成ガス回収室56とは、互いに隣接しており、第3の撥水性多孔質フッ素樹脂膜24で隔離される。第2の電解質槽31と正極板10側の生成ガス回収室56とは、互いに隣接しており、第4の撥水性多孔質フッ素樹脂膜25で隔離される。これら負極板9の生成ガス回収室56、第1および第2の電解質槽30,31および正極板10の生成ガス回収室56は直列に連結される。第1および第2の電解質槽30,31には、それぞれ水および電解質水溶液が収容される。
負極板9側の生成ガス回収室56内には、気体(水素)の回収口を備え、網状または多孔質状の通気性を有する負極板9(カーボンまたはニッケル)を備えている。正極板10側の生成ガス回収室56内には、気体(塩素)の回収口を備えた網状または多孔質状の通気性を有する正極板10(カーボン)を備えている。負極板9側の第1の電解質槽30は水の電解槽で、導電剤として水酸化ナトリウムが添加され、電気分解によって水酸化ナトリウム水溶液を生成し、負極板9側の生成ガス回収室56は水素ガスを生成する。第2の電解質槽31は、食塩水の電気分解槽であり、正極板10側の生成ガス回収室56内では塩素ガスを生成する。電気分解時には、第1の電解質槽30に耐水圧を与えるため、位置水頭hに位置する水供給源(圧力水頭)49から真水が第1の電解質槽30に供給される。同様に、電気分解時には、第2の電解質槽31の耐水圧を与えるため、位置水頭hに位置する食塩水供給源(圧力水頭)48(加圧手段)から30%の食塩水が供給される。ここで、第3、第4の撥水性多孔質フッ素樹脂膜24,25、および多重隔離膜28の備える第1、第2の撥水性多孔質フッ素樹脂膜は同じ細孔径(3ミクロンΦ)であるため、第1および第2の電解質槽30,31への加圧は同圧であってよい。そのため、水供給源49および食塩水供給源48の位置水頭圧は、同じ高さ(h)にする。充放電時には、各電解質槽30,31に収容される電解質水溶液を耐水圧まで加圧することで、第3、第4の撥水性多孔質フッ素樹脂膜24、25および多重隔離膜に、水および電解質水溶液を圧入して導電体にする。蓄電時には、水および電解質水溶液の加圧を解除して、第3、第4の撥水性多孔質フッ素樹脂膜24、25および多重隔離膜に気体を戻し、絶縁体にする。この装置によれば、電気分解を行い、水素、水酸化ナトリウムおよび塩素を高濃度で得ることができる。
第9の実施形態に係る発明は、さらにエキシマランプを備える電気分解装置に関するものである。食塩水の電気分解で正極板に生成した塩素は、水と反応して、次亜塩素酸を生成する。この次亜塩素酸をエキシマランプの光化学反応を用いて分解することで、塩酸を製造することができる。食塩の電気分解では、一般には正極板で塩素ガスを生産するが、ガスの貯蔵および運搬に経費がかかる。本実施形態のように液体の塩酸とすることで、生成物の貯蔵および運搬にかかる経費の削減と安全性を確保できる。したがって、卑金属塩化物を電気分解して正極に塩素ガスを生成する場合には、負極に生成する物質に拘らず、エキシマランプの光化学反応により塩酸を生成することができる。
図10の(A)はエキシマランプ光化学反応による塩酸の製造装置の模式図である。図10の(A)に示す装置は、互いに隣接して配置された、それぞれ密閉状態の第1の電解質槽30、第2の電解質槽31、および第3の電解質槽32を備えている。第1および第2の電解質槽30,31の間には、上述する多重隔離膜28と同様の構造を有する第1の多重隔離膜65が配置されている。第1の多重隔離膜65は、第1の電解質槽30内と接する第1の撥水性多重隔離膜と、第2の電解質槽内と接する第2の撥水性多重隔離膜を有する。第2および第3の電解質槽31,32の間には、上述する多重隔離膜28と同様の構造を有する第2の多重隔離膜66が配置されている。第2の多重隔離膜66は、第2の電解質槽30内と接する第3の撥水性多重隔離膜と、第3の電解質槽内と接する第4の撥水性多重隔離膜を有する。第1の電解質槽30と負極板9側の生成ガス回収室56とは、互いに隣接しており、撥水性多孔質フッ素樹脂膜1(第5の撥水性多孔質フッ素樹脂膜)で隔離される。これら負極板9の生成ガス回収室56、第1、第2および第3の電解質槽30,31,32は直列に連結される。第1、第2および第3の電解質槽30,31,32には、初期状態でそれぞれ水、電解質水溶液および水が収容される。エキシマランプ52本体は、第3の電解質槽32の水中に浸漬している。負極板9は、負極板9側の生成ガス回収室56内に収容される、網状などの通気性を有する電極である。正極板10は、第3の電解質槽32内であって、第2の多重隔離膜66の第4の撥水性多孔質フッ素樹脂膜に密着して配置される通気性を有する電極であって、例えば炭素網電極である。
図9に示す電気分解装置では、食塩水の電気分解において、食塩水の電気分解により正極板10側の生成ガス回収室56で塩素を生成させた。一方、図10の(A)に示す電気分解装置では、正極板10で生成した塩素を水に吸収させ、微量生成される塩酸を導電剤としてエキシマランプ52に電気(交流)を送り発光させ、塩酸と共に生成される比較的多量の次亜塩素酸(HClO)を光分解(HClO+hν=HCl+1/2O)して、塩酸と酸素を生成する。塩酸の光吸収波長は200nm以下に吸収帯を有しているのに対し、次亜塩素酸(HClO)の光吸収波長は200nm以下および300nmに吸収帯を有している(図10の(B))。このため、Xeエキシマランプ光(発振波長306nm)52は、塩酸(HCl)には吸収されず、次亜塩素酸(HClO)のみで吸収されて光分解して塩酸(HCl)を生産する。ここで用いるエキシマランプ52は、石英ガラスパイプ製同軸型で軸中心部がランプ芯電極63であり、石英ガラスパイプ表面が同軸電極として励起される。ガラスパイプの表面が塩酸水溶液に囲まれているため、対の電極として、正極板10をエキシマランプ励起用電極として併用し、エキシマランプ励起電源(交流)53で励起する。このエキシマランプの表面と正極板10の間の塩酸水溶液に電流を流すが、この電流が交流であるために、塩酸水溶液および水の電気分解は起こらないので、塩酸の生成量に影響は及ぼさず、かつ両電極間でも気泡の発生が起こらないためエキシマランプの励起効率にも影響を与えない。ここで生成される塩酸は無機酸回収口36、酸素は生成ガス回収パイプ33から回収される。ここで、撥水性多孔質フッ素樹脂膜1および第1および第2の多重隔離膜65,66は同じ細孔径(3ミクロンΦ)を用いるため、第1、第2および第3の電解質槽30,31,32の耐水圧は同圧である。そのため、水供給源49および食塩水供給源48の位置水頭圧は、同じ高さ(h)で加圧した状態で電気分解とエキシマランプの光化学反応により塩酸を製造する。なお、充放電時には、各電解質槽30,31,32に収容される水および電解質水溶液を耐水圧まで加圧することで、撥水性多孔質フッ素樹脂膜1および各多重隔離膜65,66に、水および電解質水溶液を圧入して導電体にする。蓄電時には、水および電解質水溶液の加圧を解除して、撥水性多孔質フッ素樹脂膜1および各多重隔離膜65,66に気体を戻し、絶縁体にする。
第10の実施形態に係る発明は、多重隔離膜を使用した水の電気分解装置に関するものである。この電気分解装置では、耐水圧に匹敵する水圧が経済的に得られる環境下で、かつ室温下で水を電気分解して水素および酸素を製造することができる。ここで耐水圧に匹敵する環境下とは、湖、海、プールなどの水面下の位置水頭に当該水素発生装置を沈めた状態下で水を直接補給するか、当該装置を水道の蛇口に直結して、水圧を利用して水を補給するか、または位置水頭が得られる高所に設置した貯水槽から水を補給することを意味する。ここで室温下とは、電解質水溶液5を硫酸水溶液とすることである。一般に水の電気分解の導電剤には苛性ソーダが用いられているが、室温(常温)では飽和溶解度および導電率とも低いため、液温を80℃内外にして飽和溶解度を高くすることにより導電率を高くしている。ところが硫酸は室温でも溶解度も導電率も高いため、電解質溶液を加温することなく、湖や海あるいはプールなどの水面下で利用できる。さらに本発明の特徴は、電解質槽は、周囲に撥水性多孔質フッ素樹脂膜から成る3つの窓を備え、電解質槽内部の電解質水溶液は正極板、負極板、および他の水溶液とも完全に隔離されていることである。
図11は、水の電気分解装置の概略図である。この装置は、互いに隣接して配置された、それぞれ密閉状態の第1の電解質槽30および第2の電解質槽31を備えている。第1および第2の電解質槽30,31のは、多重隔離膜28で隔離される。第2の電解質槽31と負極板9側の生成ガス回収室56とは、互いに隣接しており、第3の撥水性多孔質フッ素樹脂膜24で隔離される。第2の電解質槽31と正極板10側の生成ガス回収室56とは、互いに隣接しており、第4の撥水性多孔質フッ素樹脂膜25で隔離される。これら負極板9の生成ガス回収室56、第2の電解質槽31および正極板10側の生成ガス回収室56は、直列に連結される。第1の電解質槽30には、第1の電解質水溶液2である水または海水が収容されている。第2の電解質槽31には、第2の電解質水溶液5である約30%の希硫酸水溶液が収容されている。すなわち、負極板9と第2の電解質水溶液5とは、第3の撥水性多孔質フッ素樹脂膜24で隔離されている。正極板10と第2の電解質水溶液5とは、第4の撥水性多孔質フッ素樹脂膜25で隔離されている。第1の電解質水溶液2と、第2の電解質水溶液5とは、多重隔離膜28で隔離されている。各生成ガス回収室56には、網状などの通気性を有する負極板9および正極板10が収容されている。
ここで、第1の電解質槽30の開閉窓または開閉弁61を開き、水圧供給源(湖や海の水面下、水道、水頭位置にある貯水池)60から2倍の耐水圧以上の水圧を加圧すると、多重隔離膜28、各撥水性多孔質フッ素樹脂膜24,25には第1および第2の電解質水溶液2,5が圧入され、導電体になる。その状態で、負極板9および正極板10の間に水の分解電圧以上の電圧を印加すると、第2の電解質水溶液5の電気分解が開始される。負極板9で生成した水素は、気泡を発生すること無く生成ガス回収パイプ33より回収される。同様に、正極板10で生成した酸素は、気泡を発生すること無く生成ガス回収パイプ33より回収される。ここで第1の電解質槽30に備えられた開閉窓または開閉弁61を閉じれば、多重隔離膜28から第2の電解質槽31への給水が止まる。第3および第4の撥水性多孔質フッ素樹脂膜24,25が耐水圧以下になると、多重隔離膜28、各撥水性多孔質フッ素樹脂膜24,25には気体が戻り、絶縁体となることで電気分解は停止する。ここで、第1の電解質槽30の開閉窓または開閉弁61を開ければ、再度、電気分解は開始される。
第11の実施形態に係る発明は、食塩水から金属ナトリウムを生成する電気分解装置に関するものである。本発明の特徴は、多重隔離膜を使い水溶液の電気分解により油中で金属ナトリウムを回収するものである。金属ナトリウムは油の比重より軽いので、油の下層部で金属ナトリウムを回収することができる。そのため、従来の溶融塩の電気分解による金属ナトリウムの精製とは異なり、水溶液電気分解であって、生成した金属ナトリウムが大気に触れることも無く、100℃以下の温度で製造できるため安全である。
図12に食塩水の電気分解で作る金属ナトリウム製造装置の概略図を示す。この装置は、互いに隣接して配置された、それぞれ密閉状態の第1の電解質槽30および第2の電解質槽31を備えている。第1および第2の電解質槽30,31は、上述する多重隔離膜28で隔離される。第2の電解質槽31隣接して、互いに連通する複数の細孔を有する二重層構造の第3の撥水性多孔質フッ素樹脂膜1,1を介して(第3の撥水性多孔質フッ素樹脂膜1が2枚重ねられた構造)、正極板10側の生成ガス回収室56が配置される。これら第1の電解質槽30、第2の電解質槽31、および正極板10側の生成ガス回収室56は、直列に連結される。第1の電解質槽30には、油70が収容されている。第2の電解質槽31には、約30%の濃度の食塩水71が収容されている。すなわち、第1の電解質槽30内の油70と第2の電解質槽31内の食塩水(30%)71との間は多重隔離膜28で隔離されている。第2の電解質槽31内の食塩水71と生成ガス回収室56内の正極板10との間は二重構造の第3の撥水性多孔質フッ素樹脂膜1,1で隔離されている。負極板9は、第1の電解質槽30の多重隔離膜28に密着して油70中に配置され、通気性を有する網状電極である。この網状電極を油70と食塩水71の境界面に位置させるために、食塩水71と油70の境界面を多重隔離膜28と油70との接触面に一致させる(多重隔離膜28内部に食塩水と油の境界面を形成させてはならない)。このため第1の電解質槽30の油70は加圧せず、食塩水71のみを加圧して多重隔離膜28の油70との接触面に食塩水と油の境界面を形成させる。一方、正極板10は、正極板10で生成するガスが塩素であるため、通気性を有する多孔質状の炭素電極を使用する。ここで、二重構造の第3の撥水性多孔質フッ素樹脂膜1,1を使用する理由は、多重隔離膜28と耐水圧を等しくするためである(1枚で多重隔離膜28と同等の耐水圧を有する撥水性多孔質フッ素樹脂膜を使用する場合はこの限りではない)。
この装置を使用する電気分解では、油70が入った第1の電解質槽30は加圧せず、食塩水(30%)71のみを第1の撥水性多孔質フッ素樹脂膜の耐水圧の2倍で加圧する。そのため、油供給層55には、水頭は無く、第1の電解質槽30の油70と油供給槽55との圧力差は無い。一方、食塩水供給源48には、第2の電解質槽31内の食塩水71を耐水圧の2倍まで加圧するため、高い位置水頭hを与える。第2の電解質槽31内の食塩水71を耐水圧の2倍で加圧すると、多重隔離膜28および二重構造の第3の撥水性多孔質フッ素樹脂膜1,1に食塩水71が圧入され、導電性になる。この状態で、正極板10および負極板9間に、食塩の電気分解電圧を印加することで、第1の電解質槽30の油70の下層部に金属ナトリウムを沈殿させる。生成した金属ナトリウムは、第1の電解質槽30の下層部に接続される金属ナトリウム回収口57から回収される。他方、塩素ガスは、正極板10側の生成ガス回収室56の生成ガス回収パイプ33から回収される。なお、第2の電解質槽31に対する加圧が耐水圧以下になると、多重隔離膜28および二重構造の第3の撥水性多孔質フッ素樹脂膜1,1には気体が戻り、絶縁体となることで電気分解は停止する。
図12に示す電気分解装置では、第1の電解質槽30の多重隔離膜28と密着して設置された網状の負極板9は厚みがあるため、油と水の境界が比較的厚い。そのため、この境界をできるだけ薄くする必要がある。そこで、図13の(A)に示す電気分解装置のように、多重隔離膜28表面近傍の水と油の境界面を仮想の負極板58と見なすことができる(実際には電極は存在しない)。油70は、密度が0.8g/cmであり、水および金属ナトリウム(0.98)の密度よりも小さい。また、油70は、誘電体として機能する。図13の(A)に示すように、多重隔離膜28と対向する第1の電解質槽30の内壁、または内壁から離れて無垢負極板(銅板)9を配置した。この状態で、負極板9と生成ガス回収室56内の通気性を有する正極板10の間を並列にコンデンサー(C)を結合した直流電源を繋ぐと、コンデンサー(C)の電荷はコンデンサー(C)に移行される(図12の(B)の等価回路)。このコンデンサー(C)は、第1の電解質槽30内の無垢の負極板9と仮想の負極板58との間の油70である。コンデンサー(C)が充電された状態では、仮想の負極板58と正極板10との間に電位差が生じ、第2の電解質槽31内の食塩水71が電気分解をすることができる。生成した金属ナトリウムは、第1の電解質槽30の下層部に接続される金属ナトリウム回収口57から回収される。他方、塩素ガスは、正極板10側の生成ガス回収室56の生成ガス回収パイプ33から回収される。図13の(A)に示す電気分解装置においても、図12に示す電気分解装置と同様に作用して金属ナトリウムを生成することができる。
第11の実施形態に係る発明は、水酸化ナトリウムから金属ナトリウムを生成する電気分解装置に関するものである。食塩水の飽和溶解度が30%であるのに対し、水酸化ナトリウムの飽和溶解度は室温で55%、80℃では80%である。そのため、食塩水の電気分解と比較して、水酸化ナトリウムの電気分解では、高効率で金属ナトリウムの生成をすることができる。図14に示す電気分解装置は、図12に示す電気分解装置と比較して、第2の電解質槽31に収容される電解質水溶液を食塩水71に代えて、水酸化ナトリウム水溶液72を収容している。また、第2の電解質槽31内には、水酸化ナトリウム水溶液72を加温するための熱交換パイプ67(加熱手段)が設置されている。それ以外の構成は、図12に示す電気分解装置と同様である。熱交換パイプ67は、水酸化ナトリウム水溶液72を加温することで飽和溶解度を高くして、金属ナトリウムの回収量を増加させるために使用される。熱交換パイプ67には、温水循環を行なうことで、水酸化ナトリウム水溶液を約80℃に加温することができる。図14に示す電気分解装置でも、図12で説明した電気分解装置と同様に機能して、金属ナトリウムをより高効率で生産することができる。
なお、図14に示す電気分解装置も、図13の(A)に示す電気分解装置と同様に、仮想の負極板58を備える構成としてもよい。すなわち、図15の(A)に示すように、多重隔離膜28と対向する第1の電解質槽30の内壁、または内壁から離れて無垢負極板(銅板)9を配置する。この状態で、負極板9と生成ガス回収室56内の通気性を有する正極板10の間を並列にコンデンサー(C)を結合した直流電源を繋いで、多重隔離膜28表面近傍の水と油の境界面を仮想の負極板58するようにしてもよい。図15の(A)に示す電気分解装置でも図13の(A)で説明した電気分解装置と同様に機能して、金属ナトリウムを高効率で生産することができる。
第12の実施形態に係る発明は、電解質の溶解度と温度を制御して、二次電池では大容量充電・長時間放電、電解生成では大容量析出を行う方法に関するものである。図16に示すように、卑金属元素の硝酸塩、硫酸塩または塩化物は高温で飽和溶解度が高いものが多い。一般に、電解精製の電解生成物の原料供給側、または電池の充電時に負極板に金属を供給する側の電解質水溶液の飽和溶解度を高くすることで、負極板に送る正イオンの量を増加させることができる。一方、電解精製の電解生成物製造側、または電池の放電時に正イオンが電解質中の負イオンと結合して作る塩側の飽和溶解度を低くすることで、生成塩濃度を低くするか、または、水を加えて塩濃度を下げることで、正イオンが増加され大電流放電が可能になり、電解精製では負極生成物の生産量を増加させる。例えば、電池ではAl(OH),Mg(OH),Ca(OH)などが電解質水溶液中で沈殿してしまうと二次電池として使えず、これらの塩を溶かすために酸を添加すると副反応を起こす。すなわち、反応系に正イオンを与える側の電解質水溶液の飽和溶解度は高く、正イオンを受け取る側の電解質水溶液の飽和溶解度は低い方が良い。
図16の卑金属水酸化物・硝酸塩・硫酸塩・塩化物・硫化物の溶解度に示すように飽和溶液100gに溶ける塩では温度依存性は殆ど無いが、低温で低く高温で高い塩が多い。特にKNOでは、0℃で11%と低いが、100℃では71%と溶解度曲線の温度勾配が高い。概して、卑金属塩の温度勾配は高く、アルミ二ウムまたはマグネシウムの水酸化塩に比べると卑金属塩化物・硫酸塩の溶解度は高く、卑金属硝酸塩は低温で溶解度が低く、高温で溶解度が高く、電池用電解質には最適の材料である。この塩の性質を利用して、電解質水溶液の溶解度曲線の勾配が0〜100℃の範囲で0.1〜1.5%/℃である場合には、当該反応系が他方の反応系に正イオンを与える側の電解質水溶液を加温する。または、正イオンを受け取る側の電解質水溶液を冷却するか、または水で希釈する。これらの加温と冷却は、同時にあるいは何れか一方を行なう。ここで電解質水溶液が水酸化ナトリウムや金属ナトリウム製造に欠かせない食塩水のときも、水溶液を加温すると導電率が向上するため電解精製では食塩水を加温することが重要である。
第14の実施形態に係る発明は、フッ素樹脂を熱融着して上述する多重隔離膜を一体化する方法である。前記多重隔離膜を有する密閉電解槽が撥水性多孔質フッ素樹脂膜を複数枚重ね合わせて周囲を閉じて多重封筒形状密閉袋を形成する必要がある。しかし、フッ素樹脂の接着は難しく、熱融着が最も簡便である。フッ素樹脂の融点は約300℃であり、しかも融着部分に空気が在ると接着力が弱くなる。撥水性多孔質フッ素樹脂膜には、細孔内に空気が在るためその空気が熱融着を阻害する。このため、空気中での電熱加熱では、接着条件を見出すことは難しい。そこで、被熱融着材料を合成石英ガラス板または赤外線透過板で挟み、被熱融着材料を真空に吸引すると、撥水性多孔質フッ素樹脂膜内の空気も吸引され、かつ合成石英ガラス板または赤外線透過板が大気圧で圧されるため、空気を遮断し、加圧下で赤外線を照射して熱融着ができる。
まず、多重隔離膜の前記枠状のガスケットがフッ素樹脂からなる場合、該ガスケットを2枚の撥水性多孔質フッ素樹脂膜で挟んで積層した積層体、あるいは水枕型(封筒型)電解質水溶液密閉袋作製のための2枚の撥水性多孔質フッ素樹脂膜の積層体を用意する。次いで、該積層体を少なくとも一方が赤外線透過性を有する2枚の板で挟み、2枚の板と前記積層体の間を真空にした状態にし、大気圧下で、前記赤外線透過性の板表面から赤外線を照射する。フッ素樹脂製のガスケットと該ガスケットを挟む2枚の撥水性多孔質フッ素樹脂膜とを外周縁近傍の周辺で互いに熱融着することにより多重隔離膜あるいは複数の撥水性多孔質フッ素樹脂膜を重ね合わせた袋を作製することができる。
なお、合成石英ガラスの表面から赤外線レーザー光や太陽光を集光して与えれば、300℃以上で熱融着が完了する。レーザーは、ヤグレーザー、スラブレーザー、ガラスレーザー、ファイバーレーザー、赤外線ランプや太陽光の集光ビーム、または炭酸ガスレーザー光をスポット状に集光して赤外線加熱による熱融着する。なお、炭酸ガスレーザーの場合には赤外線透過板をセレン化亜鉛板とする。
<実施例>
以下、本発明の効果的な実施の形態を図1から図23に基づいて詳細に説明する。
図1は、第1〜14の実施形態に関する本発明の根幹を成す撥水性多孔質フッ素樹脂膜の耐水圧測定装置である。細孔径が1,3,10ミクロのフッ素樹脂製撥水性多孔質フッ素樹脂膜を挟んで上下にガラス製容器を密着させ、その上下の容器の中に、室温における飽和溶解度の同種の電解質水溶液を入れた。両電解質水溶液に同じ水圧を与え、コールラウシュ・ブリッジで電圧が急に∞になる圧力を測定し耐水圧とした。電解質水溶液は、Ca(NO,NaOH,Cu(NO,KNO,LiNO,KOH,NaNO,CaCl,Al(NO,Mg(NO,CuCl,KF,LiCl,MgCl,Ba(OH),AlCl,Al(SO,NaS,CuSO,BaCl,KCl,MgSO,NaSO,NaCl,BaS,Ba(NO,LiOH,Ca(OH),Al(OH),Mg(OH),Ca(OH),硫酸、塩酸または硝酸の水溶液である。
図21は、膜厚100ミクロン、細孔径(1,3,10ミクロン)の撥水性多孔質フッ素樹脂膜について、塩化アルミニウムの溶解度(0から30%)に対する耐水圧を測定した。細孔径1ミクロン(日東電工:NTF−1131)では、真水(溶解度0%):0.13Mpa(メガパスカル)、溶解度10%以上:0.12Mpaであった。細孔径3ミクロン(日東電工:NTF−1133)では、真水(溶解度0%):0.04Mpa、10%以上:0.03Mpaであった。細孔径10ミクロンでは、真水(溶解度0%):0.01Mpa、10%以上:0.05Mpaであった。そこで、各実施形態では、耐水圧が1気圧(0.1Mpa)以下の細孔径3ミクロン(日東電工:NTF−1133)の撥水性多孔質フッ素樹脂膜を採用する。
試料となる撥水性多孔質フッ素樹脂膜の寸法は、細孔径3ミクロン、厚さ100ミクロン、S=3.14cmを用いた。図1に示す耐水圧測定装置の気体開放弁16を閉じて、図1の(A)−(d)に示すように、撥水性多孔質フッ素樹脂膜1の中央部に圧縮気体層17(誘電体8)を形成させた。この試料に圧入する第1および第2の電解質水溶液2,5は両者とも5%の食塩水を用い、第1および第2の電解質水溶液の液加圧装置4,7を同一水圧で加圧した。加圧しないときの静電容量は12pFであったが、3倍の耐水圧で加圧したときの静電容量は1.15μFであった。
ガラス製容器の中に直径5mm間隔10mm隔てたカーボン電極を挿入し、図1で示した静電容量測定のためのキャパシタを抵抗に変えたホイストンブリッジ回路を用い、1000Hzの交流が0Vになる点をシンクロスコープで観察しながら、0〜100℃の範囲における電気抵抗を測定し、Ca(NO,NaOH,Cu(NO,KNO,LiNO,KOH,NaNO,CaCl,Al(NO,Mg(NO,CuCl,KF,LiCl,MgCl,Ba(OH),AlCl,Al(SO,NaS,CuSO,BaCl,KCl,MgSO,NaSO,NaCl,BaS,Ba(NO,LiOH,Ca(OH),Al(OH),Mg(OH),Ca(OH),硫酸、塩酸、硝酸などの導電率を測定した。
図22は、食塩、水酸化ナトリウム、硫酸、塩酸の液温30℃における導電率(S/cm)を示す。本発明では食塩水電解精製において重要な原材料で、水酸化ナトリウムや金属ナトリウムの析出に、食塩、水酸化ナトリウムおよび塩酸は食塩水の電気分解により水素、水酸化ナトリウムおよび塩酸を製造するときの導電剤に、塩酸はエキシマランプの表面電極に、水酸化ナトリウムあるいは硫酸は水の電気分解による水素および酸素の製造のために使われる。電解質水溶液の導電剤として、塩酸が最も高く濃度20%で0.47S/cm、硫酸:30%で0.41S/cm、食塩:30%で0.24S/cm、水酸化ナトリウム:10%で0.2S/cmであった。
図16は卑金属水酸化物・硝酸塩・硫酸塩・塩化物の溶解度の測定結果である。電解質水溶液を加温するために、ヒータが巻かれたガラス製ビーカーの中に、Ca(NO,NaOH,Cu(NO,KNO,LiNO,KOH,NaNO,CaCl,Al(NO,Mg(NO,CuCl,KF,LiCl,MgCl,Ba(OH),AlCl,Al(SO,NaS,CuSO,BaCl,KCl,MgSO,NaSO,NaCl,BaS,Ba(NO,LiOH,Ca(OH),Al(OH),Mg(OH),Ca(OH),硫酸、塩酸、硝酸などの各濃度の水溶液を挿入し、電解質水溶液が入ったビーカーにHe−Neレーザー光を入射させ、レーザー光の散乱光の照度を測定し、散乱光が増加する点を飽和溶解度として0〜100℃の範囲で測定を行った。
図23はAl/Cu,Mg/Cu,Pb/Cu電池に用いる電解質水溶液としてAl,Mg,Pb,Cuの硝酸塩、硫酸塩、塩化物の溶解度を測定した結果である。電解質水溶液を加温するために、ヒータが巻かれたガラス製ビーカーの中に、Cu(NO,Al(NO,Mg(NO,CuCl,MgCl,AlCl,Al(SO,CuSO,MgSO、Pb(NO,PbClなどの各濃度の水溶液を挿入し、電解質水溶液が入ったビーカーにHe−Neレーザー光を入射させ、レーザー光の散乱光の照度を測定し、散乱光が増加する点を飽和溶解度として0〜100℃の範囲で測定を行った。
図5は、Al/Cu二次電池である。負極板材料から見ると、重量当たりの放電容量はAl:−4.98Wh/gに対しLi:−11.73Wh/gと、リチウムの方が2.35倍大きい。ところが質量当りの放電容量はAl:−13.44Wh/cmに対しLi:−5.87Wh/cmと、アルミニウムの方がリチウムより2.28倍大きい。資源量からみても、アルミニウムの年間生産量は234Mトン(メガトン)、リチウムは0.036Mトンとアルミニウムの方が6,500倍多い。正極は、空気や酸素を利用するよりは金属を使用するほうが簡便である。そこで、図5に示すAl/Cu二次電池では、正極板として銅を用いた。しかし、正極板として銅を用いると、充電時に電解質水溶液中に銅イオン(Cu2+)が溶け出して、負極板のアルミニウムの表面に析出する為、局部電池を形成し二次電池にすることができない。そこで、正極板である銅の表面に塩化銅の層を積層することで、Al/Cu電池ならぬAl/CuCl電池を構成した。電解質水溶液として塩化アルミニウム(AlCl)を採用した理由は、塩化アルミニウムの溶解度に温度依存性がほとんど無いためである。充電中に、塩化アルミニウム水溶液の飽和溶解度が30%を超えると再結晶が始まり、沈殿する。放電時には、この沈殿物が電解質水溶液に電解質を補給するため、長時間放電が可能になる。負極板9および正極板10にはピンホール15を備えているので、電解質水溶液13を加圧すると、各撥水性多孔質フッ素樹脂膜22,23内の空気がピンホール15から押し出される。この結果、各撥水性多孔質フッ素樹脂膜の細孔内は電解質水溶液に満たされ、導電体となる。電解質水溶液13の加圧を解除すると、各極板9,10の備えるピンホール15から各撥水性多孔質フッ素樹脂膜の細孔内に気体が戻り、絶縁体となる。この空気の「追い出し・引き戻し」現象を、「イオンのオン・オフ面スイッチ」として働かせる二次電池を開発した。この二次電池では、充放電時のみ電解質水溶液を加圧し、蓄電時には電解質水溶液の加圧を解除するため、副反応も発生せず、内部抵抗も少ない。80ccの電解質水溶液を有するAl/Cu二次電池を試作して15Aで2時間充電すると、起電力2Vになり、1Aの電流で約30時間の放電をすることができた。この試作電池を、電解質水溶液の加圧を解除して蓄電状態とし、1,000時間放置しても放電容量の低下は認められなかった。
図6は、ダニエル電池を改良するものである。ダニエル電池は、2種類の電解質水溶液を素焼板で隔離しており、放電に適している。しかしながら、ダニエル電池は、時間経過と共に正極板側の電解質水溶液の銅イオン(Cu2+)が素焼板を通過して2種類の電解質水溶液は混合する。なお、負極板側の電解質水溶液である塩化アルミニウム水溶液の中に負極板となる金属アルミニウムを挿入しても、アルミニウムが溶け出すことはほとんどない。一方、正極板側の電解質水溶液である塩化銅水溶液の中に正極板となる金属銅を挿入すると、銅はすぐに溶け出しはじめる。
そこで、本発明では、両電極板とも撥水性多孔質フッ素樹脂膜で電解質水溶液と隔離して、充放電時のみ両電極板がそれぞれの電解質水溶液に接触できるようにした。さらに、素焼板を隔離膜として使用すると、充電時に正極から溶け出す銅イオン(Cu2+)が素焼板を通過し、負極板(Al)に析出し、局部電池を発生させ二次電池の機能を停止する。そのため、2種類の電解質水溶液は、負イオンが同じであるため、素焼板の代替として負イオン交換膜を取り付けた。
図6の(A)に示すように、充電時には、負極板側ではAl3+イオンに負極板から電子が供給されて、金属Alとなり負極板のAl板に析出する。一方、正極板側では電子を奪われたCuがCu2+イオンとなり、第1の電解質水溶液2中に溶解する。ここで、負極板側の第2の電解質水溶液5中ではAl3+イオンが減り、その分余ったClイオンは負イオン交換膜46を通過して、イオン濃度が低い正極板側の第2の電解質水溶液5に移動する。このClイオンは、第2の電解質水溶液5中のCu2+イオンと結合してCuClとなり、第2の電解質水溶液5の濃度が高くなる。一方、負極板側のAlCl水溶液濃度が低くなる時点で、各電解質水溶液2,5の耐水圧までの加圧を解除して充電を終了する。この各電解質水溶液2,5の加圧の解除によって、二次電池が蓄電状態になる。蓄電状態の二次電池では、化学反応が発生せず、各電解質水溶液2,5を耐水圧で加圧を開始するまで蓄電状態が持続する。
図6の(B)に示すように、次いで、各電解質水溶液2,5を耐水圧で加圧すると、二次電池の放電が開始される。放電時には、負極のAlがAl3+イオンとなり、第1の電解質水溶液2中の水に溶けだし、生成した電子は負荷(電球)42を通って正極板に送られる。一方、正極板側の第2の電解質水溶液5中のCu2+イオンは、正極板から電子を受け取り、Cu板電極に金属Cuとして析出する。ここで、正極板10の第2の電解質水溶液5中でCu2+イオンが減り、その分余ったClイオンはイオン濃度が低い負極板9側の第1の電解質水溶液2に移動する。Clイオンは、Al3+イオンと結合してAlClになるため、電解質水溶液の濃度が高くなる。一方、正極板10側のCuCl水溶液の濃度は低くなり、第2の電解質水溶液5のCu2+イオン特有の青色が薄くなる。この第2の電解質水溶液5の色を識別することで、過放電状態であることを判別できる。ここで、正極板側のCuCl水溶液の濃度が低下すると、電子の流れが減少して放電が止まる。このときのAl/Cu電池の起電力は、1.85Vであった。
80ccの容量を有する密閉電解質槽内は、負イオン交換膜46を挿入することで1/2に仕切った。そして、仕切られた空間に、それぞれAlCl:40cc,CuCl:40ccを封入してAl/Cu二次電池を作製した。この二次電池を、15Aで2時間充電したとすると、起電力1.85Vであり、1Aの電流を約24時間の放電することができた。この試作電池を、電解質水溶液の加圧を解除して蓄電状態とし、1,000時間放置しても放電容量の低下は認められなかった。
食塩水溶液を電気分解して水酸化ナトリウムを製造するには、隔膜法が広く行われている。この方法では、生成された水酸化ナトリウム中に塩化ナトリウムが含まれる。さらに、正極板では塩素ガスが生成する。実施形態に係る電気分解装置では、イオン交換膜を使用せず、室温で食塩水を電気分解することができる。本実施形態の特徴は、第1および第2の電解質槽30,31との間に多重隔離膜28が備えられていることである。各電解質槽30,31が耐水圧で加圧されて、第2の電解質槽31内の食塩水が電気分解されるとNaイオンと塩化物イオン(Cl)が発生する。一方、第1の電解質槽30内の水が電気分解されると水素イオン(H)と水酸化物イオン(OH)が発生する。発生したNaイオンは、負極板に引きつけられ、多重隔離膜28を透過して、第1の電解質槽30内の水酸化物イオン(OH)と結合して、水酸化ナトリウムを生成する。発生した水素イオン(H)は、第3の撥水性フッ素隔離膜を通過して、通気性を有する負極板9で水素ガス(H)となる。このとき、負極板9表面で気泡の発生はせず、水素ガス(H)は生成ガス回収パイプ33より回収される。同様に、発生した塩化物イオン(Cl)は、第4の撥水性多孔質フッ素隔離膜を通過して、通気性を有する正極板10で塩素ガス(Cl)となる。このとき、正極板10表面で気泡の発生はせず、塩素ガス(Cl)は生成ガス回収パイプ33より回収される。内容積100ccの第2の電解質槽31に30%食塩水を満たし、室温(25℃)で、常時食塩水の補給を行いながら、3V、5Aで10時間電気分解すると、水酸化ナトリウム約20gが得られた。
また、200ccビーカーに50%の次亜塩素酸(HClO)と2%の塩酸を入れ、カーボン円筒電極と、その中心軸にXe−Clエキシマランプを挿入した。このXe−Clエキシマランプを60分照射すると、約30%濃度の塩酸が得られた。
図11に示す構造を有し、負極板9および正極板10として多孔質炭素電極を備え、内容積42ccの第1の電解質槽30の中に30%の硫酸を密閉した。第2の電解質槽31を、水道の蛇口に繋ぎ耐水圧以上の水圧を与え、2V,5Aで電気分解すると水素と酸素が生成することが確認できた。
100ccビーカーの中央部に一方の面が網電極を、他方の面に多孔質炭素性の正極板を取り付けた生成ガス回収室を備え、両面を撥水性多孔質フッ素樹脂膜で隔離した内容積10ccの密閉電解質槽を挿入した。このビーカーの中に油を満たし、密閉電解質槽に30%の食塩水を耐水圧で圧入し、3V、5Aで電気分解すると、油の中に茶色の金属ナトリウムが析出するのが確認できた。
図7に示すアクリル樹脂で試作したAl/Cu二次電池に対して、内容積80ccの密閉電解質槽12に電解質水溶液13として30%塩化アルミニウム水溶液を密閉した。屈折率測定用にグリーン光半導体レーザー(532nm)73を斜入射させ、再結晶観測用にレッド光半導体レーザー(650nm)74を垂直に照射した状態で、電解質水溶液13を耐水圧で加圧して、2V,10Aで充電を開始した。図18に示すように、はじめ溶解度30%の塩化アルミニウムの屈折率は1.426であった(点(a))。充電のため電流を流し続けると、直線的に溶解度および屈折率が下がり(点(b))、10時間後には溶解度3%、屈折率1.342まで下がり充電を止めた。ここで、耐水圧を解除したら、屈折率は1000時間全く変化しなかった(点(c))。このことは、この電池は、蓄電状態において副反応が発生せず、内部抵抗がないことを示している。再度、電解質水溶液13を耐水圧で加圧し、10Aで放電を開始すると、屈折率は直線的に上昇し(点(d))、10時間後には飽和溶解度の30%、屈折率は1.426になり放電を停止した(点(e))。
図18において、再結晶度を観測するための透過率は、充電を始めた初期は透過率が23%であったが、充電とともに透過率は直線的に上昇し(点(f))、2時間で透過率98%になった(点(g))。次いで、蓄電状態では透過率は、変化しなかった(点(h))。次いで、放電時には、透過率は一定時間98%で維持された(点(i))。放電時に、透過率が98%であることは、電解質水溶液が飽和溶解度以下であり、順調に放電が行っていることを示す。放電を続けると、電解液水溶液の塩化アルミニウムの濃度が上がり、再結晶が始まり、レーザー光の透過率は下がる。これらの結果から、この二次電池は副反応も内部抵抗もない理想的な電池であることが示された。電解質水溶液が再結晶することは、この二次電池が大容量の充電を行えることを意味する。すなわち、放電で電解液水溶液の再結晶が進行しても、飽和溶解度を超えて電解質水溶液の濃度は維持したまま、再結晶が始まるため、長時間放電が可能である。
図17は、試作Al/Cu電池の原理説明図である。この電池は、負極板9と、正極板10と、2枚の撥水性多孔質フッ素樹脂膜1と、水枕型電解質水溶液密閉袋44とを備えている。水枕型電解質水溶液密閉袋44は、撥水性多孔質フッ素樹脂膜(フッ素樹脂)1とで挟まれており、塩化アルミニウム水溶液が充填されている。水枕型電解質水溶液密閉袋44は、表面に塩化銅(CuCl)結晶64が積層された銅板である正極板10と、アルミニウム板である負極板9とに挟まれている。そして、負極板9および正極板10には、撥水性多孔質フッ素樹脂膜1内の気体(空気)を「追い出し/引き戻し」するためのピンホール(大気開放口、気体カプセル)15が開けられている。ここで、加圧手段(指圧)43で負極板9と正極板10を圧縮した状態で、充電電源供給源45から電圧を印加して充電を開始する。充電時には、正極板10に塩化銅(CuCl)結晶64が積層され、負極板9に金属アルミニウムが析出する。ここで加圧手段(指圧)43を解除すると、撥水性多孔質フッ素樹脂膜(フッ素樹脂)1にピンホール(大気開放口、気体カプセル)15を介して気体(空気)が戻り、撥水性多孔質フッ素樹脂膜(フッ素樹脂)1は絶縁体になるため蓄電状態を維持する。ここで再度、加圧手段(指圧)43で加圧を加えると、撥水性多孔質フッ素樹脂膜(フッ素樹脂)1内の気体(空気)はピンホール(大気開放口、気体カプセル)15に押し出され、放電が開始され、負荷(電球)42が点灯する。
水枕型電解質水溶液密閉袋(封筒型電解質パッド)44に充填される電解質水溶液の容量5ccとして、Al/Cu二次電池を試作した。この試作電池を1.5Aで1時間充電すると、起電力2Vであり、1Aの電流で約15時間の放電することができた。この試作電池を、電解質水溶液の加圧を解除して蓄電状態とし、1,000時間放置しても放電容量の低下は認められなかった。
多重隔離膜28あるいは水枕型電解質水溶液密閉袋44は、複数枚の多孔質フッ素樹脂膜、または少なくとも1枚の多孔質フッ素樹脂膜とフッ素樹脂フィルムとを重ね合わせた構造を有している。一般に、フッ素樹脂同士を接合することは難しい。そこで、フッ素樹脂同士を真空中でレーザー溶接する方法が本発明の特徴である。まず、フッ素樹脂フィルムを複数枚重ね合わせたフッ素樹脂の束を、2枚の合成石英ガラス板で挟む。次いで、2枚の石英ガラス板の間を真空に引き、2枚の石英ガラス板を大気圧で加重した状態で、複数枚重ね合わせたフッ素樹脂の束の被融着部を、石英ガラスの表面からヤグレーザー、またはガラスレーザーなどの帯状ビームで瞬間的に加熱する。または、2枚の石英ガラス板に挟まれた試料をX−Yステージに載せ、ファイバーレーザーまたは太陽光を1点に集光させ、ステージを包囲形状に走査して、包囲形状部を熱融着する。ここで、炭酸ガスレーザーを使用する場合には、1枚の石英ガラスと1枚のセレン化亜鉛板とを重ね合わせた板の間にフッ素樹脂束を挟みこんで実験を行った。
図19、図20は、平板キャパシタを円筒キャパシタにした例である。円筒型可変キャパシタの静電容量Cxは図19の(a)のようにCx=lim2πε/lnb/a=∞[b−a→0,b=a→b/a=1→ln1=0]で与えられる。ここで、負極板9はニッケル板、正極10は炭素棒、電解質水溶液2は5%食塩水とした。電解質水溶液2に耐水圧以下の水圧をかけると、図19の(b)のように、電解質水溶液2は両面から撥水性多孔質フッ素樹脂膜1に侵入し圧縮気体層17を形成して大きな静電容量を達成する。このキャパシタを並列に並べてさらに容量を増大したのが、図19の(c)に示すキャパシタである。
図20の(c)に示す蚊取り線香型のキャパシタは、図20(a)に示すように静電容量を増大するために2個のキャパシタを並列に結合して静電容量を2倍にしたものを巻いて形成されている。静電容量可変キャパシタの静電容量は、C=εS/dで与えられるかため、面積Sを広げるために蚊取り線香型にした。電極はニッケル薄板、電解質水溶液は5%食塩水を使用して実験を行った結果、電解質水溶液0.1Mpa(メガパスカル)を加圧することで、静電容量が大きくなることを確認した。
石油および石炭は可採年数は限られ、二酸化炭素を排出する。一方、核燃料は放射能を出す。これとは対照的に、水素は可採年数が無限で、二酸化炭素および放射能を出さず、クリーンで環境にも優しい燃料である。しかしながら、水素自身は軽いが、水素を貯蔵する容器(ボンベ)または吸蔵合金は重過ぎるため運搬には不向きである。特に最近、水素燃料自動車が脚光を浴びているが、ボンベに入れて水素を運び、水素を燃料にする燃料電池車は、発電所を積んだ自動車に他ならない。発電所は電力会社に任せて、その電力を電池に充電すれば自動車の駆動はモーターのみになる。本発明のアルミ・銅電池は安価な電極材料を使い、重量が軽く、かつ高速充電、長距離走行を常温常圧で安全に動作する二次電池である。さらに静電容量可変キャパシタは、発進時の初期駆動源として自動車のエネルギー消費に貢献できる。
1 撥水性多孔質フッ素樹脂膜
2 第1の電解質水溶液
3 第1の電解質水溶液の液圧
4 第1の電解質水溶液の液加圧装置
5 第2の電解質水溶液
6 第2の電解質水溶液の液圧
7 第2の電解質水溶液の液加圧装置
8 誘電体(キャパシタ)
9 負極板
10 正極板
11 液加圧装置
12 密閉電解質槽
13 電解質水溶液
15 大気開放口(ピンホール、気体カプセル、気体排出・導入管)
16 弁
17 圧縮気体層
18 第1の面
19 第2の面
20 第1の主面
21 第2の主面
22 第1の撥水性多孔質フッ素樹脂膜
23 第2の撥水性多孔質フッ素樹脂膜
24 第3の撥水性多孔質フッ素樹脂膜
25 第4の撥水性多孔質フッ素樹脂膜
26 気体溜
27 ガスケット
28 多重隔離膜
29 大気保護膜
30 第1の電解質槽
31 第2の電解質槽
32 第3の電解質槽
33 生成ガス回収パイプ
34 金属塩水溶液圧入口
35 卑金属ソーダ回収口
36 無機酸回収口
37 水の圧入口
42 負荷(電球)
43 加圧手段(指圧)
44 水枕型電解質水溶液密閉袋
45 充電電源供給源
46 負イオン交換膜
48 食塩水供給源(圧力水頭)
49 水供給源(圧力水頭)
52 Xe−Clエキシマランプ(波長306nm)
53 エキシマランプ励起電源(交流)
54 油注入口
55 油供給槽
56 生成ガス回収室
57 金属ナトリウム回収口
58 仮想の負極板(油と水の境界層)
60 水圧供給源(湖や海の水面下、水道、水頭位置にある貯水槽)
61 開閉窓または開閉弁
63 芯電極(石英ガラスパイプにモールドされている)
64 塩化銅(CuCl)結晶
65 第1の多重隔離膜
66 第2の多重隔離膜
67 熱交換パイプ
70 油
71 食塩水(30%)
72 水酸化ナトリウム水溶液
73 第1の半導体レーザー光(532nm)
74 第2の半導体レーザー光(650nm)
75 ミラー
76 光検知器
77 リニアセンサー
78 沈殿槽(再結貯留庫)

Claims (17)

  1. 一対の電極と、該一対の電極間に存在する電解質水溶液と、少なくとも一面が前記電解質水溶液と接触して配置される、互いに連通する複数の細孔を有する撥水性多孔質フッ素樹脂膜と、前記電解質水溶液を加圧するための加圧手段とを含み、イオン導電体として働くイオンのオン・オフ面スイッチを備える電気化学反応装置であって、
    前記イオンのオン・オフ面スイッチは、
    前記加圧手段により前記電解質水溶液を加圧した場合、前記撥水性多孔質フッ素樹脂膜の前記複数の細孔中に前記電解質水溶液を部分的に圧入させて該撥水性多孔質フッ素樹脂膜の面と平行なイオン導電体の層を形成するとともに、前記電解質水溶液の未侵入部を該撥水性多孔質フッ素樹脂膜の面と平行な圧縮気体層とし、他方、前記加圧を解除した場合、前記圧縮気体層を膨張させて前記撥水性多孔質フッ素樹脂膜を絶縁体に戻し、或いは
    前記加圧手段により前記電解質水溶液を加圧した場合、前記撥水性多孔質フッ素樹脂膜の前記複数の細孔に前記電解質水溶液を圧入させて該細孔中の気体を追い出し、該電解質水溶液で置換し、前記撥水性多孔質フッ素樹脂膜をイオン導電体とし、他方、前記加圧を解除した場合、前記撥水性多孔質フッ素樹脂膜の前記複数の細孔中の前記電解質水溶液を前記気体で排出して該撥水性多孔質フッ素樹脂膜を絶縁体として戻す、ように構成される電気化学反応装置。
  2. 静電容量可変キャパシタ機能を有する電気化学反応装置であって、
    正極板および負極板と、該正極板および該負極板の間に存在する電解質水溶液と、少なくとも1面が電解質水溶液と接触して配置される、互いに連通する複数の細孔を有する撥水性多孔質フッ素樹脂膜と、前記電解質水溶液を加圧するための加圧手段とを含み、イオン導電体として働くイオンのオン・オフ面スイッチを備え、
    前記イオンのオン・オフ面スイッチは、前記加圧手段により前記電解質水溶液を加圧した場合、前記撥水性多孔質フッ素樹脂膜の前記複数の細孔中に前記電解質水溶液を部分的に圧入させて該撥水性多孔質フッ素樹脂膜の面と平行なイオン導電体の層を形成するとともに、前記電解質水溶液の未侵入部を該撥水性多孔質フッ素樹脂膜の面と平行な誘電体として機能する圧縮気体層とし、他方、前記加圧を解除した場合、前記圧縮気体層を膨張させて前記撥水性多孔質フッ素樹脂膜を絶縁体として戻す、ように構成され、
    前記誘電体として機能する前記圧縮気体層を形成したときに、さらに前記加圧手段により前記電解質水溶液を前記撥水性多孔質フッ素樹脂膜の耐水圧以上の圧力で加圧して、正極板と負極板の間に電圧を印加して電荷を与え、かつ前記撥水性多孔質フッ素樹脂膜を前記絶縁体として戻したときに、前記絶縁体表面に電荷を蓄える電気化学反応装置。
  3. 前記正極板および前記負極板は、互いに対向して配置され、かつ前記電解質水溶液を収容する密閉容器の一部を構成し、
    前記撥水性多孔質フッ素樹脂膜は、前記密閉容器内に前記電解質水溶液を2つの室に分離するように液密に配置され、
    前記イオンのオン・オフ面スイッチは、前記加圧手段により前記密閉容器の2つの室内の前記電解質水溶液を加圧した場合、前記撥水性多孔質フッ素樹脂膜の両側の前記複数の細孔中に前記電解質水溶液を部分的に圧入させて該撥水性多孔質フッ素樹脂膜の面と平行なイオン導電体の層をそれぞれ形成するとともに、前記撥水性多孔質フッ素樹脂膜の中央付近に位置する前記電解質水溶液の未侵入部を前記撥水性多孔質フッ素樹脂膜の面と平行な誘電体として機能する前記圧縮気体層とし、他方、前記加圧を解除した場合、前記圧縮気体層を膨張させて前記撥水性多孔質フッ素樹脂膜を絶縁体として戻す、ように構成される請求項2記載の電気化学反応装置。
  4. 前記正極板および前記負極板は、互いに対向して配置され、
    前記撥水性多孔質フッ素樹脂膜は、前記正極板表面または前記負極板表面のいずれか一方もしくは両方に接触して配置され、かつ前記電解質水溶液を収容する密閉容器の一部を構成し、
    前記イオンのオン・オフ面スイッチは、前記加圧手段により前記密閉容器内の前記電解質水溶液を加圧した場合、前記撥水性多孔質フッ素樹脂膜の前記複数の細孔中に前記電解質水溶液を部分的に圧入させて該撥水性多孔質フッ素樹脂膜の面と平行なイオン導電体の層を形成するとともに、該撥水性多孔質フッ素樹脂膜の前記正極板近傍または前記負極板近傍のいずれか一方もしくは両方に位置する前記電解質水溶液の未侵入部を前記撥水性多孔質フッ素樹脂膜の面と平行な誘電体として機能する前記圧縮気体層とし、他方、前記加圧を解除した場合、前記撥水性多孔質フッ素樹脂膜の前記圧縮気体層を膨張して前記撥水性多孔質フッ素樹脂膜を絶縁体として戻す、ように構成される請求項2記載の電気化学反応装置。
  5. 二次電池機能を有する電気化学反応装置であって、
    互いに対向され、それぞれ通気性を有する正極板および負極板と、前記正極板表面に配置され、互いに連通する複数の細孔を有する第1の撥水性多孔質フッ素樹脂膜と、前記負極板表面に配置され、互いに連通する複数の細孔を有する第2の撥水性多孔質フッ素樹脂膜と、電解質水溶液を収容し、少なくとも一部が前記第1、第2の撥水性多孔質フッ素樹脂膜で構成される密閉容器と、前記電解質水溶液を加圧するための加圧手段とを含み、イオン導電体として働くイオンのオン・オフ面スイッチを備え、
    前記イオンのオン・オフ面スイッチは、前記加圧手段で前記電解質水溶液を加圧した場合、前記第1および第2の撥水性多孔質フッ素樹脂膜内の複数の細孔に前記電解質水溶液を圧入し、各細孔内の気体をそれぞれ通気性を有する前記正極板および負極板に追出し、該電解質水溶液で置換し、前記第1および第2の撥水性多孔質フッ素樹脂膜をイオン導電体とし、前記電解質水溶液および前記イオン導電体の前記第1および第2の撥水性多孔質フッ素樹脂膜が介在された前記正極板および前記負極板間で充放電を開始し、他方、前記加圧を解除した場合、気体をそれぞれ通気性を有する前記正極板および負極板から前記第1および第2の撥水性多孔質フッ素樹脂膜の複数の細孔内に引き戻し、前記第1および第2の撥水性多孔質フッ素樹脂膜を絶縁体とし、蓄電状態を維持するように構成される電気化学反応装置。
  6. 前記正極板は、前記第1の撥水性多孔質フッ素樹脂膜側の表面に銅塩膜が被覆された銅板から作られ、前記負極板は卑金属板から作られ、かつ前記電解質水溶液は卑金属塩水溶液である請求項5記載の電気化学反応装置。
  7. 前記密閉容器を前記正極板側の第1の室および負極板側の第2の室に分離する負イオン交換膜をさらに備え、かつ前記前記正極板側に位置する第1の室および前記負極板側の第2の室は互いに負イオンが同一で、正イオンが異なる第1の電解質水溶液および第2の電解質水溶液を収容される請求項5記載の電気化学反応装置。
  8. 前記イオンのオン・オフ面スイッチのオン・オフにおいて、前記密閉容器内の前記電解質水溶液を挟んで対向する前記正極板および前記負極板間で充放電、蓄電を行っている間に起こる、 前記電解質水溶液の屈折率変化を前記電解質水溶液にレーザー光を照射することにより測定し、充電終了および放電限界を検知する第1の検知手段と、前記充放電、蓄電を行っている間に起こる、 前記電解質水溶液の飽和溶解度を越えることに伴う再結晶化を前記電解質水溶液にレーザー光の照射による透過率変化から検知する第2の検知手段をさらに備える請求項5記載の電気化学反応装置。
  9. 前記二次電池機能を有する電気化学反応装置において、充電の場合には、前記電解質水溶液を加温するための加温手段と、放電の場合には、前記電解質水溶液を冷却するための冷却手段または水を補給するための水補給手段とをさらに備える請求項6記載の電気化学反応装置。
  10. 電気分解機能を有する電気化学反応装置であって、
    互いに隣接して配置された、それぞれ密閉状態の第1の電解質槽および第2の電解質槽;
    前記第1および第2の電解質槽の間に配置され、イオン導電体として働くイオンのオン・オフ面スイッチを有する多重隔離膜であって、前記第1および第2の電解質槽の間に配置された枠状のガスケットと、前記第1の電解質槽側の前記ガスケット表面に配置され、互いに連通する複数の細孔を有する第1の撥水性多孔質フッ素樹脂膜と、前記第2の電解質槽側の前記ガスケット表面に配置され、互いに連通する複数の細孔を有する第2の撥水性多孔質フッ素樹脂膜と、前記ガスケットと前記第1および第2の撥水性多孔質フッ素樹脂膜で囲まれた空間に一端が連通された気体排出・導入管と、を備える;
    前記第1の電解質槽に収容される水;
    前記第2の電解質槽に収容される電解質水溶液;
    前記多重隔離膜と反対側に位置する前記第1の電解質槽の壁に前記水と接触するように配置された、互いに連通する複数の細孔を有する第3の撥水性多孔質フッ素樹脂膜;
    前記多重隔離膜と反対側に位置する前記第2の電解質槽の面に前記電解質水溶液と接触するように配置された、互いに連通する複数の細孔を有する第4の撥水性多孔質フッ素樹脂膜;
    前記第3の撥水性多孔質フッ素樹脂膜の前記水との接触表面と反対側の表面に配置された通気性を有する負極板;および
    前記第4の撥水性多孔質フッ素樹脂膜の前記電解質水溶液との接触表面と反対側の表面に配置された通気性を有する正極板;
    前記電解質水溶液および水を加圧するための加圧手段;
    を備え、
    前記イオンのオン・オフ面スイッチは、前記加圧手段で前記第1および第2の電解質槽内の前記電解質水溶液および前記水を加圧した場合、前記第1の電解質槽内の水を前記第1の撥水性多孔質フッ素樹脂膜内の複数の細孔に圧入し、各細孔内の気体を追出すとともに、前記第2の電解質槽内の前記電解質水溶液を前記第2の撥水性多孔質フッ素樹脂膜内の複数の細孔に圧入し、各細孔内の気体を追出し、前記第1および第2の撥水性多孔質フッ素樹脂膜をイオン導電体とするとともに、前記気体を前記空間を通して前記気体排出・導入管から外部に排出し、他方、前記第1および第2の電解質槽内の前記水および前記電解質水溶液への加圧を解除した場合、気体を前記気体排出・導入管から前記空間を通して前記第1の撥水性多孔質フッ素樹脂膜の複数の細孔内および前記第2の撥水性多孔質フッ素樹脂膜の複数の細孔内に戻し、前記第1および第2の撥水性多孔質フッ素樹脂膜を絶縁体にする、ように構成され、
    前記加圧手段で前記第1の電解質槽内の前記水を加圧したときに、前記第1の電解質槽内の前記水を前記第3の撥水性多孔質フッ素樹脂膜の複数の細孔に圧入し、各細孔内の気体を通気性を有する前記負極板を通して追出し、前記第3の撥水性多孔質フッ素樹脂膜をイオン導電体とし、前記加圧手段で前記第2の電解質槽内の前記電解質水溶液を加圧したときに、前記第2の電解質槽内の前記電解質水溶液を前記第4の撥水性多孔質フッ素樹脂膜の複数の細孔に圧入し、各細孔内の気体を通気性を有する前記正極板を通して追出し、前記第4の撥水性多孔質フッ素樹脂膜をイオン導電体とすることによって、前記正極板と前記負極板の間で電気分解がなされる電気化学反応装置。
  11. 電気分解機能を有する電気化学反応装置であって、
    互いに隣接して配置された、それぞれ密閉状態の第1の電解質槽および第2の電解質槽;
    前記第2の電解質槽に隣接して配置された、密閉状態の第3の電解質槽;
    前記第1および第2の電解質槽の間に配置され、イオン導電体として働く第1のイオンのオン・オフ面スイッチを有する第1の多重隔離膜であって、前記第1の多重隔離膜は、前記第1および第2の電解質槽の間に配置された枠状の第1のガスケットと、前記第1の電解質槽側の前記第1のガスケット表面に配置され、互いに連通する複数の細孔を有する第1の撥水性多孔質フッ素樹脂膜と、前記第2の電解質槽側の前記ガスケット表面に配置され、互いに連通する複数の細孔を有する第2の撥水性多孔質フッ素樹脂膜と、前記第1のガスケットと前記第1および第2の撥水性多孔質フッ素樹脂膜で囲まれた第1の空間に一端が連通された第1の気体排出・導入管と、を備える;
    前記第2および第3の電解質槽の間に配置されたイオン導電体として働く第2のイオンのオン・オフ面スイッチを有する第2の多重隔離膜であって、前記第2の多重隔離膜は前記第2および第3の電解質槽の間に配置された枠状の第2のガスケットと、該第2のガスケットの前記第2の電解質槽側の表面に配置され、互いに連通する複数の細孔を有する第3の撥水性多孔質フッ素樹脂膜と、前記第2のガスケットの前記第3の電解質槽側の表面に配置され、互いに連通する複数の細孔を有する第4の撥水性多孔質フッ素樹脂膜と、前記第2の枠状のガスケットと前記第3、第4の撥水性多孔質フッ素樹脂膜で囲まれた第2の空間に一端が連通された第2の気体排出・導入管と、を備える;
    前記第2の電解質槽内に収容される電解質水溶液としての塩化ナトリウム水溶液;
    前記第1および第3の電解質槽内にそれぞれ収容される水;
    前記第3の電解質槽内に配置されるエキシマランプ;
    前記第1の多重隔離膜と反対側に位置する前記第1の電解質槽の面に前記電解質水溶液と接触するように配置された、互いに連通する複数の細孔を有する第5の撥水性多孔質フッ素樹脂膜;
    前記第5の撥水性多孔質フッ素樹脂膜の前記水との接触表面と反対側の表面に配置された通気性を有する負極板;および
    前記第3の電解質槽内に位置する前記第4の撥水性多孔質フッ素樹脂膜の表面に配置された通気性を有する網状正極板;
    前記第1〜第3の電解質槽内の前記電解質水溶液および前記水を加圧するための加圧手段;
    を備え、
    前記第1のイオンのオン・オフ面スイッチは、前記加圧手段で前記第1および第2の電解質槽内の前記電解質水溶液および前記水を加圧した場合、前記第1の電解質槽内の前記水を前記第1の撥水性多孔質フッ素樹脂膜内の複数の細孔に圧入し、各細孔内の気体を追出すとともに、前記第2の電解質槽内の電解質水溶液を前記第2の撥水性多孔質フッ素樹脂膜内の複数の細孔に圧入し、各細孔内の気体を追出し、前記第1および第2の撥水性多孔質フッ素樹脂膜をイオン導電体とするとともに、前記気体を前記第1の空間を通して前記第1の気体排出・導入管から外部に排出し、他方、前記第1および第2の電解質槽内の電解質水溶液および水への加圧を解除した場合、気体を前記第1の気体排出・導入管から前記空間を通して前記第1および第2の撥水性多孔質フッ素樹脂膜の複数の細孔内に戻し、前記第1および第2の撥水性多孔質フッ素樹脂膜を絶縁体にする、ように構成され、
    前記第2のイオンのオン・オフ面スイッチは、前記加圧手段で前記第2および第3の電解質槽内の前記電解質水溶液および前記水を加圧した場合、前記第2の電解質槽内の前記電解質水溶液を前記第3の撥水性多孔質フッ素樹脂膜内の複数の細孔に圧入し、各細孔内の気体を追出すとともに、前記第3の電解質槽内の水を前記第4の撥水性多孔質フッ素樹脂膜内の複数の細孔に圧入し、各細孔内の気体を追出し、前記第3、第4の撥水性多孔質フッ素樹脂膜をイオン導電体とするとともに、前記気体を前記第2の空間を通して前記第2の気体排出・導入管から外部に排出し、他方、前記第2および第3の電解質槽内の電解質水溶液および水への加圧を解除した場合、気体を前記第2の気体排出・導入管から前記第2の空間を通して前記第3および第4の撥水性多孔質フッ素樹脂膜の複数の細孔内に戻し、前記第3および第4の撥水性多孔質フッ素樹脂膜を絶縁体にする、ように構成され、
    前記加圧手段で前記第2および第3の電解質槽内の前記電解質水溶液および前記水を加圧するとともに、前記第1の電解質槽内の前記水を加圧したときに、前記第1の電解質槽内の前記水を前記第5の撥水性多孔質フッ素樹脂膜の複数の細孔に圧入し、各細孔内の気体を通気性を有する前記負極板を通して追出し、前記第5の撥水性多孔質フッ素樹脂膜をイオン導電体とすることによって、前記正極板と前記負極板の間で電気分解がなされ、当該電気分解で前記第3の電解質槽内に生成した次亜塩素酸水溶液に前記エキシマランプからエキシマランプ光を照射する電気化学反応装置。
  12. 電気分解機能を有する電気化学反応装置であって、
    互いに隣接して配置された、それぞれ密閉状態の第1の電解質槽および第2の電解質槽;
    前記第1および第2の電解質槽の間に配置され、イオン導電体として働くイオンのオン・オフ面スイッチを有する多重隔離膜であって、前記多重隔離膜は、前記第1および第2の電解質槽の間に配置された枠状のガスケットと、前記第1の電解質槽側の前記ガスケット表面に配置され、互いに連通する複数の細孔を有する第1の撥水性多孔質フッ素樹脂膜と、前記第2の電解質槽側の前記ガスケット表面に配置され、互いに連通する複数の細孔を有する第2の撥水性多孔質フッ素樹脂膜と、前記ガスケットと前記第1および第2の撥水性多孔質フッ素樹脂膜で囲まれた空間に一端が連通された気体排出・導入管と、を備える;
    前記第1の電解質槽に収容される水または海水;
    前記第2の電解質槽に収容される電解質水溶液としての硫酸水溶液または水酸化ナトリウム水溶液;
    前記第2の電解質槽に該第2の電解質槽内の前記電解質水溶液と接触するように配置された、互いに連通する複数の細孔を有する第3の撥水性多孔質フッ素樹脂膜;
    前記第2の電解質槽に該第2の電解質槽内の前記電解質水溶液と接触するとともに、前記第3の撥水性多孔質フッ素樹脂膜と対向するように配置された、互いに連通する複数の細孔を有する第4の撥水性多孔質フッ素樹脂膜;
    前記第3の撥水性多孔質フッ素樹脂膜の前記電解質水溶液との接触表面と反対側の表面に配置された通気性を有する負極板;
    前記第4の撥水性多孔質フッ素樹脂膜の前記電解質水溶液との接触表面と反対側の表面に配置された通気性を有する正極板;および
    前記第1の電解質槽内の水または海水を加圧するための加圧手段;
    を備え、
    前記オン・オフ面スイッチは、前記加圧手段で前記第1の電解質槽内の前記水または海水を前記第1および第2の撥水性多孔質フッ素樹脂膜のいずれかの撥水性多孔質フッ素樹脂膜の耐圧の2倍以上の圧力で加圧した場合、前記第1の電解質槽内の前記水または海水を前記第1の撥水性多孔質フッ素樹脂膜内の複数の細孔に圧入し、各細孔内の気体を追出し、前記空間を通して前記気体排出・導入管から外部に排出し、さらに前記水または海水を前記空間を経由して前記第2の撥水性多孔質フッ素樹脂膜内の複数の細孔に圧入し、各細孔内の気体を前記第2の電解質槽内に追出して前記第1および第2の撥水性多孔質フッ素樹脂膜をイオン導電体とし、他方、前記第1の電解質槽内の前記水または海水への加圧を解除した場合、気体を前記気体排出・導入管から前記空間を通して前記第1および第2の撥水性多孔質フッ素樹脂膜の複数の細孔内に戻し、前記第1および第2の撥水性多孔質フッ素樹脂膜を絶縁体にする、ように構成され
    前記加圧手段で前記第1の電解質槽内の前記水または海水を加圧したときに、前記第2の電解質槽内の前記電解質水溶液も加圧され、前記電解質水溶液を前記第2の電解質槽に配置した前記第3および第4の撥水性多孔質フッ素樹脂膜内の複数の細孔に圧入し、各細孔内の気体を通気性を有する前記正極板および前記負極板にそれぞれ追出し、前記第1および第2の撥水性多孔質フッ素樹脂膜をイオン導電体とすることによって、前記正極板と前記負極板との間で電気分解がなされる電気化学反応装置。
  13. 金属ナトリウムを生成する、電気分解機能を有する電気化学反応装置であって、
    油が収容される密閉状態の第1の電解質槽;
    前記第1の電解質槽に隣接して配置され、ナトリウム系水溶液を電解質水溶液として収容された、密閉状態の第2の電解質槽;
    前記第1および第2の電解質槽の間に配置され、イオン導電体として働くイオンのオン・オフ面スイッチを有する多重隔離膜であって、前記多重隔離膜は前記第1および第2の電解質槽の間に配置された枠状のガスケットと、前記ガスケットの前記第1の電解質槽側の表面に配置され、互いに連通する複数の細孔を有する第1の撥水性多孔質フッ素樹脂膜と、該ガスケットの前記第2の電解質槽側の表面に配置され、互いに連通する複数の細孔を有する第2の撥水性多孔質フッ素樹脂膜と、前記枠状のガスケットと前記第1および第2の撥水性多孔質フッ素樹脂膜で囲まれた空間に一端が連通された気体排出・導入管と、を備える;
    前記第2の電解質槽に該第2の電解質槽内の前記電解質水溶液と接触するように配置された、互いに連通する複数の細孔を有する二重層構造の第3の撥水性多孔質フッ素樹脂膜;
    前記第1の電解質槽側に位置する前記多重隔離膜の前記第1の撥水性多孔質フッ素樹脂膜表面に配置された、網状負極板;および
    前記二重層構造の第3の撥水性多孔質フッ素樹脂膜の前記電解質水溶液と接する表面と反対側の表面に配置された、通気性を有する正極板;
    前記第2の電解質槽内の電解質水溶液を加圧するために加圧手段;
    を備え、
    前記オン・オフ面スイッチは、前記加圧手段で前記第2の電解質槽内の前記電解質水溶液を前記二重層構造の第3の撥水性多孔質フッ素樹脂膜の耐水圧以上の圧力で加圧した場合、前記第2の電解質槽内の前記電解質水溶液を前記第2の撥水性多孔質フッ素樹脂膜内の複数の細孔に圧入し、各細孔内の気体を追出し、前記空間を通して前記気体排出・導入管から外部に排出し、さらに前記電解質水溶液を前記空間を経由して前記第1の撥水性多孔質フッ素樹脂膜内の複数の細孔に圧入し、各細孔内の気体を前記第1の電解質槽内に追出し、前記多重隔離膜の前記第1および第2の撥水性多孔質フッ素樹脂膜をイオン導電体として前記正極板と前記負極板の間の電流流れを可能とし、
    他方、前記第2の電解質槽内の前記電解質水溶液への加圧を解除した場合、気体を前記気体排出・導入管から前記空間を通して前記第1および第2の撥水性多孔質フッ素樹脂膜の複数の細孔内に戻し、前記第1および第2の撥水性多孔質フッ素樹脂膜を絶縁体にする、ように構成され、
    前記加圧手段で前記第2の電解質槽内の前記電解質水溶液を加圧するときに、前記第2の電解質槽に配置した前記二重層構造の第3の撥水性多孔質フッ素樹脂膜内の複数の細孔に圧入し、各細孔内の気体を前記正極板に追出し、前記二重層構造の第3の撥水性多孔質フッ素樹脂膜をイオン導電体とすることによって、前記正極板と前記負極板の間で電気分解がなされる電気化学反応装置。
  14. 前記多重隔離膜の前記第1の撥水性多孔質フッ素樹脂膜表面に配置された網状負極板は、仮想の負極板で、該仮想の負極板は前記多重隔離膜と対向する前記第1の電解質槽の内壁にまたは該内壁から離れて無垢負極板を配置し、当該無垢負極板と前記正極板の間にコンデンサーを繋ぎ、電荷を前記第1の電解質槽内の油を通して前記第1の撥水性多孔質フッ素樹脂膜表面に移動することにより生成する請求項13記載の電気化学反応装置。
  15. 前記電解質水溶液としての前記ナトリウム系水溶液が水酸化ナトリウム水溶液であり、前記第2の電解質槽内の水酸化ナトリウム水溶液を加温するための加熱手段をさらに備える請求項13または14記載の電気化学反応装置。
  16. 前記第1の電解質槽に配置され、該第1の電解質槽内に収容された前記水を冷却するための冷却手段または水を補給するための水補給手段と、前記第2の電解質槽に配置され、該第2の電解質槽内に収容された前記電解質水溶液を加温するための加温手段とをさらに備える請求項10記載の電気化学反応装置。
  17. 前記多重隔離膜の前記枠状のガスケットがフッ素樹脂からなる場合、該ガスケットを2枚の撥水性多孔質フッ素樹脂膜で挟んで積層した積層体を用意し、該積層体を少なくとも一方が赤外線透過性を有する2枚の板で挟み、前記2枚の板と前記積層体の間を真空にした状態にし、大気圧下で、前記赤外線透過性の板表面から赤外線を照射して、フッ素樹脂製の前記ガスケットと該ガスケットを挟む前記2枚の撥水性多孔質フッ素樹脂膜とを外周縁近傍の周辺で互いに熱融着することにより前記多重隔離膜を作製する請求項10〜13いずれか1項記載の電気化学反応装置。
JP2017548490A 2016-04-13 2017-04-12 イオンのオン・オフ面スイッチを用いた電気化学反応装置 Active JP6447743B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016080210 2016-04-13
JP2016080210 2016-04-13
PCT/JP2017/015029 WO2017179632A1 (ja) 2016-04-13 2017-04-12 イオンのオン・オフ面スイッチを用いた電気化学反応装置

Publications (2)

Publication Number Publication Date
JPWO2017179632A1 true JPWO2017179632A1 (ja) 2018-04-19
JP6447743B2 JP6447743B2 (ja) 2019-01-09

Family

ID=60042469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017548490A Active JP6447743B2 (ja) 2016-04-13 2017-04-12 イオンのオン・オフ面スイッチを用いた電気化学反応装置

Country Status (6)

Country Link
US (1) US10981138B2 (ja)
EP (1) EP3444382A4 (ja)
JP (1) JP6447743B2 (ja)
KR (1) KR102300222B1 (ja)
CN (1) CN109072460A (ja)
WO (1) WO2017179632A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048136B (zh) * 2013-09-06 2022-03-18 株式会社M光能源开发研究所 装备疏液性多孔膜的电化学反应器
CN109478686A (zh) * 2017-03-31 2019-03-15 丰田自动车欧洲公司 用于锂离子蓄电池的充电保护的系统和方法
KR102131094B1 (ko) * 2018-09-13 2020-07-08 울산과학기술원 담수 생산 이차전지
JP7159877B2 (ja) * 2019-01-08 2022-10-25 トヨタ自動車株式会社 電池冷却システム
CN112301366A (zh) * 2020-10-30 2021-02-02 福建省展化化工有限公司 一种基于钛基铂金阳极电极电解法制备过硫酸铵的方法
US20210367275A1 (en) * 2021-08-08 2021-11-25 Shen ZHOU Metal-acid-hydrogen energy battery
CN115249872A (zh) * 2022-06-28 2022-10-28 电子科技大学 一种离子传导介质、电容储能器件及其应用
WO2024038871A1 (ja) * 2022-08-16 2024-02-22 株式会社エム光・エネルギー開発研究所 液体誘電体の絶縁破壊を用いた産業機械

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565989A (en) * 1979-05-14 1981-01-22 Gen Electric Electrolysing method and apparatus of alkali metal halide
JPS565990A (en) * 1979-05-14 1981-01-22 Gen Electric Electrolysis method and apparatus
WO2015034088A1 (ja) * 2013-09-06 2015-03-12 株式会社 エム光・エネルギー開発研究所 撥液性多孔質膜を備えた電気化学反応装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992156A (en) 1989-03-06 1991-02-12 Silveri Michael A Electrolytic pool purifier
WO1994021715A1 (en) 1993-03-23 1994-09-29 Tokai University Solid surface modifying method and apparatus
JP3340501B2 (ja) 1993-04-07 2002-11-05 学校法人東海大学 親水性フッ素樹脂多孔質膜の製造方法
JPH09196504A (ja) * 1995-07-24 1997-07-31 Mitsubishi Electric Corp 電解反応による水蒸発式冷却方法およびその冷却装置
DE19535212C2 (de) * 1995-09-22 1997-08-14 Dornier Gmbh Vorrichtung zur Elektrolyse sowie deren Verwendung
KR100373724B1 (ko) 1995-12-15 2003-05-16 삼성에스디아이 주식회사 알칼리축전지용양극및음극극판과그제조방법
JPH1011352A (ja) 1996-06-19 1998-01-16 Hitachi Ltd データ処理装置およびそのレジスタアドレス変換方法
US6042959A (en) * 1997-10-10 2000-03-28 3M Innovative Properties Company Membrane electrode assembly and method of its manufacture
KR100520872B1 (ko) 1999-10-22 2005-10-12 산요덴키가부시키가이샤 리튬 전지용 전극 및 리튬 2차전지
JP4587522B2 (ja) 2000-03-29 2010-11-24 京セラ株式会社 電気二重層コンデンサ
JP2002063890A (ja) 2000-08-18 2002-02-28 Toyobo Co Ltd アルカリ電池用セパレータ及びアルカリ電池
JP2003123808A (ja) 2001-10-17 2003-04-25 Sumitomo Electric Ind Ltd レドックスフロー電池
US6911803B2 (en) * 2003-06-27 2005-06-28 Lsi Logic Corporation Systems and methods for evaluating a charge state of a battery based on optical properties of the battery electrolyte material
CN2687584Y (zh) 2003-10-22 2005-03-23 中国科学院理化技术研究所 一种利用溶质溶解降温的循环制冷装置
JP2005253305A (ja) 2004-03-09 2005-09-22 Masataka Murahara 3次元細胞培養素子の製作方法
JP2006193612A (ja) 2005-01-13 2006-07-27 Masataka Murahara 固体材料の表面改質方法および装置
JP5182559B2 (ja) 2006-01-16 2013-04-17 日本電気株式会社 固体高分子型燃料電池
US8771497B2 (en) * 2007-04-20 2014-07-08 Mitsui Chemicals, Inc. Electrolyzer, electrodes used therefor, and electrolysis method
KR101237327B1 (ko) 2007-05-11 2013-02-28 엠 히카리 앤 에너지 레보레토리 컴퍼니 리미티드 온 사이트 통합 생산 공장
US20090042066A1 (en) 2007-08-10 2009-02-12 Mphase Technologies, Inc. Adjustable Barrier For Regulating Flow Of A Fluid
JP5273765B2 (ja) 2007-09-14 2013-08-28 国立大学法人京都大学 溶融塩組成物及びその利用
KR101432146B1 (ko) 2007-11-28 2014-08-28 에스케이이노베이션 주식회사 물성과 고온 열안정성이 우수한 폴리올레핀 미세다공막
JP5207750B2 (ja) 2008-01-29 2013-06-12 三洋電機株式会社 アルカリ蓄電池
JP2009224097A (ja) 2008-03-14 2009-10-01 Panasonic Corp 非水電解質二次電池
JP2009295789A (ja) 2008-06-05 2009-12-17 Nissin Electric Co Ltd 電気二重層キャパシタ
US8444846B2 (en) * 2009-12-07 2013-05-21 Battelle Energy Alliance, Llc Method and system for producing hydrogen using sodium ion separation membranes
JP2011184260A (ja) 2010-03-10 2011-09-22 M Hikari Energy Kaihatsu Kenkyusho:Kk 水素化金属の析出及び水素の製造方法
JP2011222129A (ja) 2010-04-02 2011-11-04 Nippon Sheet Glass Co Ltd 電池用隔離膜及び電池
JP2012012261A (ja) 2010-07-02 2012-01-19 Otsuka Chem Co Ltd 多孔質チタン酸リチウムの製造方法、多孔質チタン酸リチウム及びそれを用いたリチウム電池
JP5651871B2 (ja) 2010-07-29 2015-01-14 株式会社エム光・エネルギー開発研究所 水中重量物の降下および浮上方法
JP5759687B2 (ja) 2010-08-16 2015-08-05 広重 松本 水電解セル
EP2463407B1 (de) * 2010-12-08 2018-10-10 Airbus Defence and Space GmbH Elektrolyseverfahren und Elektrolysezellen
US9112217B2 (en) 2011-05-17 2015-08-18 The Penn State University Reverse electrodialysis supported microbial fuel cells and microbial electrolysis cells
JP5812482B2 (ja) 2011-09-06 2015-11-11 国立研究開発法人産業技術総合研究所 ナトリウム二次電池、ナトリウム二次電池用負極の製造方法および電気機器
JP2013138050A (ja) 2011-12-28 2013-07-11 Ngk Spark Plug Co Ltd キャパシタ用電極、キャパシタ、および、キャパシタ用電極の製造方法
JP6002685B2 (ja) * 2011-12-28 2016-10-05 旭化成株式会社 レドックスフロー二次電池及びレドックスフロー二次電池用電解質膜
JP2013166406A (ja) 2012-02-14 2013-08-29 M Hikari Energy Kaihatsu Kenkyusho:Kk 水中重量物の降下および浮上方法
DE102012204925A1 (de) * 2012-03-27 2013-10-02 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Fluidisches System, Verwendung und Verfahren zum Betreiben desselben
CA2875882A1 (en) * 2012-06-12 2013-12-19 University Of Wollongong Gas permeable electrodes and electrochemical cells
RU2603772C2 (ru) * 2012-06-12 2016-11-27 Монаш Юниверсити Воздухопроницаемый электрод и способ применения в расщеплении воды
KR101662047B1 (ko) * 2013-07-08 2016-10-04 피너지 엘티디. 전해질 재생
US20150034088A1 (en) * 2013-08-01 2015-02-05 Alexander Luchinskiy Method and Device for the Protection of a Resiratory Tract

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565989A (en) * 1979-05-14 1981-01-22 Gen Electric Electrolysing method and apparatus of alkali metal halide
JPS565990A (en) * 1979-05-14 1981-01-22 Gen Electric Electrolysis method and apparatus
WO2015034088A1 (ja) * 2013-09-06 2015-03-12 株式会社 エム光・エネルギー開発研究所 撥液性多孔質膜を備えた電気化学反応装置

Also Published As

Publication number Publication date
WO2017179632A1 (ja) 2017-10-19
KR20180135467A (ko) 2018-12-20
US10981138B2 (en) 2021-04-20
CN109072460A (zh) 2018-12-21
EP3444382A4 (en) 2020-04-22
EP3444382A1 (en) 2019-02-20
US20190046945A1 (en) 2019-02-14
KR102300222B1 (ko) 2021-09-09
JP6447743B2 (ja) 2019-01-09

Similar Documents

Publication Publication Date Title
JP6447743B2 (ja) イオンのオン・オフ面スイッチを用いた電気化学反応装置
US11459662B2 (en) Electrochemical reactor comprising liquid-repellant porous membrane
US8323817B2 (en) Alkali metal seawater battery
US7666233B2 (en) Active metal/aqueous electrochemical cells and systems
KR100281449B1 (ko) 밀폐형전지의부재를회수하는방법및장치
US20140335392A1 (en) Bi-polar protected electrodes and multi-cell stacks
CA2917750C (en) Regeneration based on membrane electrolysis
CN104577137A (zh) 金属空气电池
US20030198862A1 (en) Liquid gallium alkaline electrolyte fuel cell
TWI483895B (zh) Carrying hydrogen generating unit
JP6680544B2 (ja) 金属電極カートリッジ収容物、金属電極カートリッジの保管方法、及び、金属電極カートリッジの運搬方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6447743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150