WO2014155069A1 - A method of cycling a lithium-sulphur cell - Google Patents
A method of cycling a lithium-sulphur cell Download PDFInfo
- Publication number
- WO2014155069A1 WO2014155069A1 PCT/GB2014/050890 GB2014050890W WO2014155069A1 WO 2014155069 A1 WO2014155069 A1 WO 2014155069A1 GB 2014050890 W GB2014050890 W GB 2014050890W WO 2014155069 A1 WO2014155069 A1 WO 2014155069A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- lithium
- voltage
- sulphur
- charge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/448—End of discharge regulating measures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/46—Accumulators structurally combined with charging apparatus
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/007182—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
- H02J7/007184—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient
-
- H02J7/0086—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method of cycling a lithium-sulphur battery.
- the present invention also relates to a battery management system for cycling a lithium-sulphur battery.
- a typical lithium-sulphur cell comprises an anode (negative electrode) formed from lithium metal or a lithium metal alloy, and a cathode (positive electrode) formed from elemental sulphur or other electroactive sulphur material.
- the sulphur or other electroactive sulphur-containing material may be mixed with an electrically conductive material, such as carbon, to improve its electrical conductivity.
- the carbon and sulphur are ground and then mixed with a solvent and binder to form a slurry.
- the slurry is applied to a current collector and then dried to remove the solvent.
- the resulting structure is calendared to form a composite structure, which is cut into the desired shape to form a cathode.
- a separator is placed on the cathode and a lithium anode placed on the separator. Electrolyte is then introduced into the assembled cell to wet the cathode and separator.
- Lithium-sulphur cells are secondary cells. When a lithium-sulphur cell is discharged, the sulphur in the cathode is reduced in two-stages. In the first stage, the sulphur (e.g. elemental sulphur) is reduced to polysulphide species, S n 2" (n ⁇ 2). These species are generally soluble in the electrolyte. In the second stage of discharge, the polysulphide species are reduced to lithium sulphide, Li 2 S, which, typically, deposits on the surface of the anode.
- the sulphur e.g. elemental sulphur
- S n 2" polysulphide species
- Li 2 S lithium sulphide
- the two-stage mechanism occurs in reverse, with the lithium sulphide being oxidised to lithium polysulphide and thereafter to lithium and sulphur.
- This two-stage mechanism can be seen in both the discharging and charging profiles of a lithium-sulphur cell. Accordingly, when a lithium-sulphur cell is charged, its voltage typically passes through an inflexion point as the cell transitions between the first and second stage of charge.
- Lithium-sulphur cells may be (re)charged by applying an external current to the cell.
- the cell is charged to a fixed cut-off voltage of, for example, 2.45-2.8.
- the capacity of the cell may fade. Indeed, after a certain number of cycles, it may no longer be possible to charge the cell to the fixed cut-off voltage because of the increasing internal resistance of the cell. By repeatedly charging the cell to the selected cut-off voltage, the cell may eventually be repeatedly over-charged. This can have a detrimental effect on the longevity of the cell, as undesirable chemical reactions may lead to degradation, for example, the cell's electrodes and/or electrolytes
- WO 2007/11 1988 describes a process for determining when a lithium sulphur cell is fully charged.
- this reference describes adding an N-0 additive, such as lithium nitrate, to the electrolyte of the cell.
- the additive is effective in providing a charge profile with a sharp increase in voltage at the point of full charge. Accordingly, if the cell voltage during charge is monitored, charging can be terminated once this rapid increase in voltage is observed.
- a method for cycling a lithium- sulphur cell comprising:
- lithium-sulphur cell is not fully charged at the threshold charge voltage
- lithium-sulphur cell is not fully discharged at the threshold discharge voltage.
- the rate of capacity fade can advantageously be reduced by under-charging and, optionally, under discharging the lithium-sulphur cell.
- the electroactive sulphur material such as elemental sulphur
- the electroactive sulphur material typically exists in its fully oxidised form (e.g. S 8 ).
- the electroactive sulphur material is typically non-conducting. Accordingly, when such a material (e.g. elemental sulphur) deposits on the cathode, the resistance of the cathode may increase. This may result in temperature increases, which, with prolonged cycling, may cause faster degradation of the cell's components.
- the cell is charged to points where a significant proportion of the cathodic sulphur material (e.g. elemental sulphur) is still dissolved in the electrolyte (e.g. as polysulphide).
- the cell may also be discharged to points where a significant proportion of the cathodic sulphur material (e.g. elemental sulphur) is still dissolved in the electrolyte (e.g. as polysulphide).
- the points at which charge and, optionally, discharge are terminated occur when at least 80% of the cathodic sulphur material is dissolved in the electrolyte (e.g. as polysulphide).
- the percentage of cathodic sulphur material dissolved in solution can be determined by known methods, for example, from the amount of residual solid sulphur in a cell as a percentage of the initial amount of sulphur material introduced as the cathodic material.
- the threshold discharge voltage is 1 .5 to 2.1 V, for example, 1.5 to 1 .8 V or from 1.8 V to 2.1V. Suitable threshold discharge voltages range from 1.6 to 2.0 V, for example, 1.7 to 1.9 V. Preferably, the threshold discharge voltage is 1.7 to 1.8 V, preferably about 1.75 V.
- the threshold charge voltage is about 2.30 to 2.36 V, more preferably, 2.30 to 2.35V, yet more preferably 2.31 to 2.34V, for example, 2.33V.
- steps i) to iv) are repeated for at least 2 discharge-charge cycles, preferably for at least 20 discharge-charge cycles, more preferably for at least 100 cycles, for example, throughout the useful lifetime of the cell.
- the method further comprises the step of monitoring the voltage of the cell during charge and/or discharge.
- the present invention also provides a battery management system for carrying out the method described above.
- a battery management system for controlling the discharging and charging of a lithium-sulphur cell, said system comprising
- the system comprises means for monitoring the voltage of the cell during discharge and charge.
- the means for terminating the discharge of the cell terminates the discharge when the voltage of the cell is at 1.5 to 1.8, preferably at1.7 to 1.8 V, for example, about 1.75 V.
- the means for terminating the charge of the cell terminates the charge when the voltage of the cell is 2.3 to 2.4 V.
- the charge voltage is terminated at about 2.30 to 2.36 V, more preferably, 2.30 to 2.35V, yet more preferably 2.31 to 2.34V, for example, 2.33V.
- the system may include means for coupling the system to a lithium-sulphur cell or battery.
- the system includes a lithium sulphur cell or battery.
- the lithium-sulphur cell is charged by supplying electric energy at constant current.
- the current may be supplied so as to charge the cell in a time ranging from 30 minutes to 12 hours, preferably 8 to 10 hours.
- the current may be supplied at a current density ranging from 0.1 to 3 mA/cm 2 , preferably 0.1 to 0.3 mA/cm 2 .
- it may also be possible to charge the lithium- sulphur cell to a constant voltage until the relevant capacity is reached.
- the electrochemical cell may be any suitable lithium-sulphur cell.
- the cell typically includes an anode, a cathode, an electrolyte and, preferably, a porous separator, which may advantageously be positioned between the anode and the cathode.
- the anode may be formed of lithium metal or a lithium metal alloy.
- the anode is a metal foil electrode, such as a lithium foil electrode.
- the lithium foil may be formed of lithium metal or lithium metal alloy.
- the cathode of the electrochemical cell includes a mixture of electroactive sulphur material and electroconductive material. This mixture forms an electroactive layer, which may be placed in contact with a current collector.
- the mixture of electroactive sulphur material and electroconductive material may be applied to the current collector in the form of a slurry in a solvent (e.g. water or an organic solvent).
- a solvent e.g. water or an organic solvent.
- the solvent may then be removed and the resulting structure calendared to form a composite structure, which may be cut into the desired shape to form a cathode.
- a separator may be placed on the cathode and a lithium anode placed on the separator.
- Electrolyte may then be introduced into the assembled cell to wet the cathode and separator.
- the electroactive sulphur material may comprise elemental sulphur, sulphur-based organic compounds, sulphur-based inorganic compounds and sulphur-containing polymers.
- elemental sulphur is used.
- the solid electroconductive material may be any suitable conductive material.
- this solid electroconductive material may be formed of carbon. Examples include carbon black, carbon fibre and carbon nanotubes. Other suitable materials include metal (e.g. flakes, filings and powders) and conductive polymers. Preferably, carbon black is employed.
- the weight ratio of electroactive sulphur material (e.g. elemental sulphur) to electroconductive material (e.g. carbon) may be 1 to 30: 1 ; preferably 2 to 8: 1 , more preferably 5 to 7: 1 .
- the mixture of electroactive sulphur material and electroconductive material may be a particulate mixture.
- the mixture may have an average particle size of 50 nm to 20 microns, preferably 100 nm to 5 microns.
- the mixture of electroactive sulphur material and electroconductive material may optionally include a binder.
- Suitable binders may be formed from at least one of, for example, polyethyelene oxide, polytetrafluoroethylene, polyvinylidene fluoride, ethylene-propylene-diene rubber, methacrylate (e.g. UV-curable methacrylate), and divinyl esters (e.g. heat curable divinyl esters).
- the cathode of the electrochemical cell may further comprise a current collector in contact with the mixture of electroactive sulphur material and solid electroconductive material.
- the mixture of electroactive sulphur material and solid electroconductive material is deposited on the current collector.
- a separator is also disposed between the anode and the cathode of the electrochemical cell.
- the separator may be in contact with the mixture of electroactive sulphur material and solid electroconductive material, which, in turn, is in contact with the current collector.
- Suitable current collectors include metal substrates, such as foil, sheet or mesh formed of a metal or metal alloy.
- the current collector is aluminium foil.
- the separator may be any suitable porous substrate that allows ions to move between the electrodes of the cell.
- the porosity of the substrate should be at least 30%, preferably at least 50%, for example, above 60%.
- Suitable separators include a mesh formed of a polymeric material. Suitable polymers include polypropylene, nylon and polyethylene. Non-woven polypropylene is particularly preferred. It is possible for a multi- layered separator to be employed.
- the electrolyte comprises at least one lithium salt and at least one organic solvent.
- Suitable lithium salts include at least one of lithium hexafluorophosphate (LiPF 6 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium perchlorate (LiCI0 4 ), lithium
- lithium salt lithium
- Suitable organic solvents are tetrahydrofurane, 2-methyltetrahydrofurane, dimethylcarbonate, diethylcarbonate, ethylmethylcarbonate, methylpropylcarbonate, methylpropylpropionate, ethylpropylpropionate, methyl acetate, dimethoxyethane, 1 , 3- dioxolane, diglyme (2-methoxyethyl ether), tetraglyme, ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, dioxolane, hexamethyl phosphoamide, pyridine, dimethyl sulfoxide, tributyl phosphate, trimethyl phosphate, N, N, N, N-tetraethyl sulfamide, and sulfone and their mixtures.
- the organic solvent is a sulfone or a mixture of sulfones.
- sulfones are dimethyl sulfone and sulfolane.
- Sulfolane may be employed as the sole solvent or in combination, for example, with other sulfones.
- the concentration of lithium salt in the electrolyte is preferably 0.1 to 5M, more preferably 0.5 to 3M, for example, 1 M.
- the lithium salt is preferably present at a concentration that is at least 70%, preferably at least 80%, more preferably at least 90%, for example, 95 to 99% of saturation.
- the electrolyte comprises lithium trifluoromethanesulphonate and sulfolane.
- the weight ratio of electrolyte to the total amount of electroactive sulphur material and electroconductive material is 1 - 15 : 1 ; preferably 2 - 9 : 1 , more preferably 6 - 8 : 1.
- Figure 1 depicts the charge-discharge curve of a lithium-sulphur cell that is cycled by charging to a fixed voltage of 2.45 V and discharged to a fixed voltage of 1.5V.
- Figure 2 depicts the charge-discharge curve of a lithium-sulphur cell that is cycled by in accordance with an embodiment of the present invention by (undercharging to 2.33V and (under)discharging to 1.75V. Both cells were manufactured in the same manner to the same specifications. As can be seen from the Figures, the rate of capacity fade is reduced by cycling the cell according to the present invention.
- substantially identical lithium-sulphur pouch cells having an OCV (open circuit voltage) of approximately 2.45 V were used.
- Each cell was subjected to a pre-cycling regime which involved discharging the cell at C/5 followed by 3 charge/discharge cycles at C/5 discharge and C/10 charge, respectively, based on 70% of theoretical capacity using a voltage range of 1.5-2.45V.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2016504738A JP6450997B2 (ja) | 2013-03-25 | 2014-03-21 | リチウム−硫黄電池の循環方法 |
| EP19200301.0A EP3614467A1 (en) | 2013-03-25 | 2014-03-21 | A method of cycling a lithium-sulphur cell |
| US14/768,677 US9935343B2 (en) | 2013-03-25 | 2014-03-21 | Method of cycling a lithium-sulphur cell |
| RU2015145466A RU2641667C2 (ru) | 2013-03-25 | 2014-03-21 | Способ циклирования литий-серного элемента |
| EP14712739.3A EP2979318A1 (en) | 2013-03-25 | 2014-03-21 | A method of cycling a lithium-sulphur cell |
| CN201480018575.4A CN105229827B (zh) | 2013-03-25 | 2014-03-21 | 一种对锂-硫电池单元循环充/放电的方法 |
| KR1020157026247A KR102164616B1 (ko) | 2013-03-25 | 2014-03-21 | 리튬-황 셀의 사이클링 방법 |
| CA2903944A CA2903944C (en) | 2013-03-25 | 2014-03-21 | A method of cycling a lithium-sulphur cell |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP13160756.6A EP2784850A1 (en) | 2013-03-25 | 2013-03-25 | A method of cycling a lithium-sulphur cell |
| EP13160756.6 | 2013-03-25 | ||
| GB1321703.9 | 2013-12-09 | ||
| GB1321703.9A GB2512424B (en) | 2013-03-25 | 2013-12-09 | A method of cycling a lithium-sulphur cell |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014155069A1 true WO2014155069A1 (en) | 2014-10-02 |
Family
ID=47913253
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2014/050890 Ceased WO2014155069A1 (en) | 2013-03-25 | 2014-03-21 | A method of cycling a lithium-sulphur cell |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US9935343B2 (enExample) |
| EP (3) | EP2784850A1 (enExample) |
| JP (1) | JP6450997B2 (enExample) |
| KR (1) | KR102164616B1 (enExample) |
| CN (1) | CN105229827B (enExample) |
| CA (1) | CA2903944C (enExample) |
| GB (1) | GB2512424B (enExample) |
| RU (1) | RU2641667C2 (enExample) |
| TW (1) | TWI635643B (enExample) |
| WO (1) | WO2014155069A1 (enExample) |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10033213B2 (en) * | 2014-09-30 | 2018-07-24 | Johnson Controls Technology Company | Short circuit wake-up system and method for automotive battery while in key-off position |
| US11784303B2 (en) | 2015-09-22 | 2023-10-10 | Ii-Vi Delaware, Inc. | Immobilized chalcogen and use thereof in a rechargeable battery |
| US12155058B2 (en) | 2015-09-22 | 2024-11-26 | Ii-Vi Delaware, Inc. | Immobilized chalcogen comprising a chalcogen element, an electrically conductive material, and hydrophilic membrane gate and use thereof in a rechargeable battery |
| US10734638B2 (en) * | 2015-09-22 | 2020-08-04 | Ii-Vi Delaware, Inc. | Immobilized selenium, a method of making, and uses of immobilized selenium in a rechargeable battery |
| US11588149B2 (en) | 2015-09-22 | 2023-02-21 | Ii-Vi Delaware, Inc. | Immobilized selenium in a porous carbon with the presence of oxygen, a method of making, and uses of immobilized selenium in a rechargeable battery |
| US12159994B2 (en) | 2015-09-22 | 2024-12-03 | Ii-Vi Delaware, Inc. | Immobilized selenium, a method of making, and uses of immobilized selenium in a rechargeable battery |
| CN106159361B (zh) * | 2016-09-30 | 2018-12-04 | 上海空间电源研究所 | 一种锂硫电池充电方法 |
| US11870059B2 (en) | 2017-02-16 | 2024-01-09 | Consejo Superior De Investigaciones Cientificas (Csic) | Immobilized selenium in a porous carbon with the presence of oxygen, a method of making, and uses of immobilized selenium in a rechargeable battery |
| WO2019022399A2 (ko) * | 2017-07-26 | 2019-01-31 | 주식회사 엘지화학 | 리튬-황 전지의 수명 개선 방법 |
| KR102229455B1 (ko) * | 2017-07-26 | 2021-03-18 | 주식회사 엘지화학 | 리튬-황 전지의 수명 개선 방법 |
| KR102632805B1 (ko) * | 2018-09-10 | 2024-02-02 | 에이치헬리, 엘엘씨 | 초고용량 성능 배터리 셀의 사용 방법 |
| CN109616705A (zh) * | 2018-11-26 | 2019-04-12 | 上海大学 | 提高锂离子电池容量的方法 |
| JP7202977B2 (ja) * | 2019-06-11 | 2023-01-12 | 日産自動車株式会社 | リチウム二次電池の制御方法および制御装置、並びにリチウム二次電池システム |
| US12136711B2 (en) | 2022-03-10 | 2024-11-05 | Lyten, Inc. | Battery safety system for detecting analytes |
| US11688895B1 (en) | 2022-03-10 | 2023-06-27 | Lyten, Inc. | Battery safety system for detecting analytes |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001047088A2 (en) * | 1999-12-21 | 2001-06-28 | Moltech Corporation | Methods of charging lithium-sulfur batteries |
| US20040222768A1 (en) * | 2003-05-09 | 2004-11-11 | Moore Stephen W. | System and method for battery charge control based on charge capacity headroom |
| KR20110024707A (ko) * | 2009-09-03 | 2011-03-09 | 주식회사 엘지화학 | 리튬 이차 전지의 충전 방법 |
Family Cites Families (168)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3030720A (en) | 1960-06-08 | 1962-04-24 | Highland Supply Corp | Portable collapsible artificial christmas trees |
| US3185590A (en) | 1961-01-06 | 1965-05-25 | North American Aviation Inc | Lightweight secondary battery |
| US3578500A (en) | 1968-07-08 | 1971-05-11 | American Cyanamid Co | Nonaqueous electro-chemical current producing cell having soluble cathode depolarizer |
| US3639174A (en) | 1970-04-22 | 1972-02-01 | Du Pont | Voltaic cells with lithium-aluminum alloy anode and nonaqueous solvent electrolyte system |
| US3721113A (en) | 1971-08-23 | 1973-03-20 | Du Pont | Rolling of lithium |
| US3907591A (en) | 1971-12-30 | 1975-09-23 | Varta Ag | Positive sulphur electrode for galvanic cells and method of producing the same |
| US3951688A (en) | 1972-04-17 | 1976-04-20 | The Gates Rubber Company | Method and apparatus for pasting battery plates |
| US3778310A (en) | 1972-05-01 | 1973-12-11 | Du Pont | High energy density battery having unsaturated heterocyclic solvent containing electrolyte |
| US3877983A (en) | 1973-05-14 | 1975-04-15 | Du Pont | Thin film polymer-bonded cathode |
| US3907597A (en) | 1974-09-27 | 1975-09-23 | Union Carbide Corp | Nonaqueous cell having an electrolyte containing sulfolane or an alkyl-substituted derivative thereof |
| US4048389A (en) | 1976-02-18 | 1977-09-13 | Union Carbide Corporation | Cathode or cathode collector arcuate bodies for use in various cell systems |
| US4060674A (en) | 1976-12-14 | 1977-11-29 | Exxon Research And Engineering Company | Alkali metal anode-containing cells having electrolytes of organometallic-alkali metal salts and organic solvents |
| US4104451A (en) | 1977-09-26 | 1978-08-01 | Exxon Research & Engineering Co. | Alkali metal anode/chalcogenide cathode reversible batteries having alkali metal polyaryl metallic compound electrolytes |
| US4118550A (en) | 1977-09-26 | 1978-10-03 | Eic Corporation | Aprotic solvent electrolytes and batteries using same |
| US4163829A (en) | 1977-11-14 | 1979-08-07 | Union Carbide Corporation | Metallic reducing additives for solid cathodes for use in nonaqueous cells |
| FR2442512A1 (fr) | 1978-11-22 | 1980-06-20 | Anvar | Nouveaux materiaux elastomeres a conduction ionique |
| US4218523A (en) | 1979-02-28 | 1980-08-19 | Union Carbide Corporation | Nonaqueous electrochemical cell |
| US4252876A (en) | 1979-07-02 | 1981-02-24 | Eic Corporation | Lithium battery |
| US4318430A (en) | 1979-11-07 | 1982-03-09 | General Electric Company | Apparatus for making rechargeable electrodes for electrochemical cells |
| IL63207A (en) | 1980-07-24 | 1985-09-29 | Lonza Ag | Process for the preparation of 2-(2-aminothiazole-4-yl)-2-(syn)-methoxyiminoacetic acid esters |
| IL61085A (en) | 1980-09-19 | 1983-07-31 | Univ Ramot | Nonaqueous sulfur cell |
| JPS59194361A (ja) | 1983-03-18 | 1984-11-05 | Toshiba Battery Co Ltd | 空気電池 |
| US4499161A (en) | 1983-04-25 | 1985-02-12 | Eic Laboratories, Inc. | Electrochemical cell using dimethoxymethane and/or trimethoxymethane as solvent for electrolyte |
| US4550064A (en) | 1983-12-08 | 1985-10-29 | California Institute Of Technology | High cycle life secondary lithium battery |
| FR2576712B1 (fr) | 1985-01-30 | 1988-07-08 | Accumulateurs Fixes | Generateur electrochimique a electrolyte non aqueux |
| DE3687804T2 (de) | 1985-07-05 | 1993-09-23 | Hitachi Ltd | Sekundaerbatterie. |
| US4725927A (en) | 1986-04-08 | 1988-02-16 | Asahi Glass Company Ltd. | Electric double layer capacitor |
| JPH0752647B2 (ja) | 1986-09-26 | 1995-06-05 | 松下電器産業株式会社 | 電池用電極とその製造方法 |
| GB8630857D0 (en) | 1986-12-24 | 1987-02-04 | Sylva Ind Ltd | Electrical contact tab |
| JPH01124969A (ja) | 1987-11-10 | 1989-05-17 | Hitachi Maxell Ltd | リチウム二次電池 |
| US5079109A (en) | 1989-05-16 | 1992-01-07 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
| US5219684A (en) | 1990-05-16 | 1993-06-15 | Her Majesty The Queen In Right Of Canada, As Represented By The Province Of British Columbia | Electrochemical cells containing a safety electrolyte solvent |
| US5368958A (en) | 1992-08-20 | 1994-11-29 | Advanced Energy Technologies Incorporated | Lithium anode with conductive for and anode tab for rechargeable lithium battery |
| US5587253A (en) | 1993-03-05 | 1996-12-24 | Bell Communications Research, Inc. | Low resistance rechargeable lithium-ion battery |
| US5460905A (en) | 1993-06-16 | 1995-10-24 | Moltech Corporation | High capacity cathodes for secondary cells |
| US5961672A (en) | 1994-02-16 | 1999-10-05 | Moltech Corporation | Stabilized anode for lithium-polymer batteries |
| US5648187A (en) | 1994-02-16 | 1997-07-15 | Moltech Corporation | Stabilized anode for lithium-polymer batteries |
| JPH0869812A (ja) | 1994-08-30 | 1996-03-12 | Shin Kobe Electric Mach Co Ltd | 密閉形鉛蓄電池およびその製造法 |
| JPH08138650A (ja) | 1994-11-01 | 1996-05-31 | Dainippon Ink & Chem Inc | 非水電解液二次電池用炭素質電極板および二次電池 |
| JP3385115B2 (ja) | 1994-11-02 | 2003-03-10 | 松下電器産業株式会社 | ゲル電解質およびリチウム二次電池 |
| US6020089A (en) | 1994-11-07 | 2000-02-01 | Sumitomo Electric Industries, Ltd. | Electrode plate for battery |
| US5814420A (en) | 1994-11-23 | 1998-09-29 | Polyplus Battery Company, Inc. | Rechargeable positive electrodes |
| US6358643B1 (en) | 1994-11-23 | 2002-03-19 | Polyplus Battery Company | Liquid electrolyte lithium-sulfur batteries |
| US5523179A (en) | 1994-11-23 | 1996-06-04 | Polyplus Battery Company | Rechargeable positive electrode |
| US6030720A (en) | 1994-11-23 | 2000-02-29 | Polyplus Battery Co., Inc. | Liquid electrolyte lithium-sulfur batteries |
| US5686201A (en) | 1994-11-23 | 1997-11-11 | Polyplus Battery Company, Inc. | Rechargeable positive electrodes |
| US5582623A (en) | 1994-11-23 | 1996-12-10 | Polyplus Battery Company, Inc. | Methods of fabricating rechargeable positive electrodes |
| US6376123B1 (en) | 1994-11-23 | 2002-04-23 | Polyplus Battery Company | Rechargeable positive electrodes |
| US5848351A (en) | 1995-04-03 | 1998-12-08 | Mitsubishi Materials Corporation | Porous metallic material having high specific surface area, method of producing the same, porous metallic plate material and electrode for alkaline secondary battery |
| JPH08298229A (ja) | 1995-04-26 | 1996-11-12 | Mitsubishi Chem Corp | 電気二重層コンデンサ用電解液 |
| JPH08298230A (ja) | 1995-04-26 | 1996-11-12 | Mitsubishi Chem Corp | 電気二重層コンデンサ用電解液 |
| US5744262A (en) | 1995-06-07 | 1998-04-28 | Industrial Technology Research Institute | Stable high-voltage electrolyte for lithium secondary battery |
| US5529860A (en) | 1995-06-07 | 1996-06-25 | Moltech Corporation | Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same |
| EP0834201A4 (en) | 1995-06-07 | 1999-11-10 | Moltech Corp | ELECTROACTIVE UPLOAD CAPACITIVE POLYACETYLENE-CO-POLYSULPHUR MATERIALS AND ELECTROLYTIC CELLS CONTAINING THEM |
| JPH0927328A (ja) | 1995-07-10 | 1997-01-28 | Asahi Denka Kogyo Kk | 非水電池 |
| JPH09147913A (ja) | 1995-11-22 | 1997-06-06 | Sanyo Electric Co Ltd | 非水電解質電池 |
| US5797428A (en) | 1996-01-11 | 1998-08-25 | Vemco Corporation | Pop-alert device |
| US5919587A (en) | 1996-05-22 | 1999-07-06 | Moltech Corporation | Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same |
| WO1997048145A1 (en) | 1996-06-14 | 1997-12-18 | Moltech Corporation | Composition useful in electrolytes of secondary battery cells |
| JPH10284076A (ja) | 1997-04-01 | 1998-10-23 | Matsushita Electric Ind Co Ltd | アルカリ蓄電池及びその電極の製造方法 |
| US20020168574A1 (en) | 1997-06-27 | 2002-11-14 | Soon-Ho Ahn | Lithium ion secondary battery and manufacturing method of the same |
| KR100368753B1 (ko) | 1997-06-27 | 2003-04-08 | 주식회사 엘지화학 | 리튬전지용음극및그의제조방법 |
| US6090504A (en) | 1997-09-24 | 2000-07-18 | Korea Kumho Petrochemical Co., Ltd. | High capacity composite electrode and secondary cell therefrom |
| US6245465B1 (en) | 1997-10-15 | 2001-06-12 | Moltech Corporation | Non-aqueous electrolyte solvents for secondary cells |
| US6162562A (en) | 1997-10-28 | 2000-12-19 | Pioneer Electronic Corporation | Secondary cell comprising a positive electrode containing polyaniline and 4 diazo compound |
| US6201100B1 (en) | 1997-12-19 | 2001-03-13 | Moltech Corporation | Electroactive, energy-storing, highly crosslinked, polysulfide-containing organic polymers and methods for making same |
| US6210831B1 (en) | 1997-12-19 | 2001-04-03 | Moltech Corporation | Cathodes comprising electroactive sulfur materials and secondary batteries using same |
| DE69813164T2 (de) | 1997-12-22 | 2003-10-23 | Gs-Melcotec Co., Ltd. | Verfahren zur Herstellung einer porösen, mit aktiver Masse gefüllten Elektrode |
| JPH11273729A (ja) | 1998-03-19 | 1999-10-08 | Yazaki Corp | リチウム塩及びスルフィド系二次電池 |
| US6350545B2 (en) | 1998-08-25 | 2002-02-26 | 3M Innovative Properties Company | Sulfonylimide compounds |
| JP4016506B2 (ja) | 1998-10-16 | 2007-12-05 | ソニー株式会社 | 固体電解質電池 |
| US6302928B1 (en) | 1998-12-17 | 2001-10-16 | Moltech Corporation | Electrochemical cells with high volumetric density of electroactive sulfur-containing materials in cathode active layers |
| JP3573992B2 (ja) | 1999-02-15 | 2004-10-06 | 三洋電機株式会社 | リチウム二次電池 |
| KR100322449B1 (ko) | 1999-06-07 | 2002-02-07 | 김순택 | 리튬 이차 전지용 전해액 및 이를 사용한 리튬 이차 전지 |
| JP3754239B2 (ja) * | 1999-07-27 | 2006-03-08 | 三洋電機株式会社 | 電池の充放電制御方法 |
| US6413284B1 (en) | 1999-11-01 | 2002-07-02 | Polyplus Battery Company | Encapsulated lithium alloy electrodes having barrier layers |
| WO2001036206A1 (en) | 1999-11-12 | 2001-05-25 | Fargo Electronics, Inc. | Thermal printhead compensation |
| US7247408B2 (en) | 1999-11-23 | 2007-07-24 | Sion Power Corporation | Lithium anodes for electrochemical cells |
| US6733924B1 (en) | 1999-11-23 | 2004-05-11 | Moltech Corporation | Lithium anodes for electrochemical cells |
| US6797428B1 (en) | 1999-11-23 | 2004-09-28 | Moltech Corporation | Lithium anodes for electrochemical cells |
| JP4797219B2 (ja) | 1999-12-09 | 2011-10-19 | パナソニック株式会社 | 電池のリード線接続装置 |
| WO2001073884A1 (fr) | 2000-03-28 | 2001-10-04 | Ngk Insulators, Ltd. | Accumulateur au lithium |
| US6344293B1 (en) | 2000-04-18 | 2002-02-05 | Moltech Corporation | Lithium electrochemical cells with enhanced cycle life |
| CN1182617C (zh) | 2000-05-08 | 2004-12-29 | 森陶硝子株式会社 | 电解质、包含电解质的离子导体和包括这种离子导体的电化学装置 |
| WO2001097304A1 (en) | 2000-06-12 | 2001-12-20 | Korea Institute Of Science And Technology | Multi-layered lithium electrode, its preparation and lithium batteries comprising it |
| KR100756812B1 (ko) | 2000-07-17 | 2007-09-07 | 마츠시타 덴끼 산교 가부시키가이샤 | 비수 전기화학 장치 |
| KR100326466B1 (ko) | 2000-07-25 | 2002-02-28 | 김순택 | 리튬 설퍼 전지용 전해액 |
| KR100326467B1 (ko) | 2000-07-25 | 2002-02-28 | 김순택 | 리튬 설퍼 전지용 전해액 |
| JP2002075446A (ja) | 2000-08-02 | 2002-03-15 | Samsung Sdi Co Ltd | リチウム−硫黄電池 |
| US6544691B1 (en) | 2000-10-11 | 2003-04-08 | Sandia Corporation | Batteries using molten salt electrolyte |
| JP4080335B2 (ja) | 2000-12-21 | 2008-04-23 | シオン・パワー・コーポレーション | 電気化学電池のためのリチウム負極 |
| US6632573B1 (en) | 2001-02-20 | 2003-10-14 | Polyplus Battery Company | Electrolytes with strong oxidizing additives for lithium/sulfur batteries |
| KR100417088B1 (ko) | 2001-05-22 | 2004-02-05 | 주식회사 엘지화학 | 안전성을 향상시키는 비수전해액 첨가제 및 이를 포함하는비수전해액 리튬이온 2차 전지 |
| WO2002095861A1 (en) | 2001-05-22 | 2002-11-28 | Lg Chem, Ltd. | Non-aqueous electrolyte additive for improving safety and lithium ion secondary battery comprising the same |
| KR100385357B1 (ko) | 2001-06-01 | 2003-05-27 | 삼성에스디아이 주식회사 | 리튬-황 전지 |
| US6862168B2 (en) | 2001-06-29 | 2005-03-01 | Kanebo, Limited | Organic electrolyte capacitor |
| KR101178643B1 (ko) | 2001-07-27 | 2012-09-07 | 에이일이삼 시스템즈 인코포레이티드 | 배터리 구조, 자기 조직화 구조 및 관련 방법 |
| US7241535B2 (en) | 2001-10-15 | 2007-07-10 | Samsung Sdi Co., Ltd. | Electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same |
| KR100466924B1 (ko) | 2001-12-28 | 2005-01-24 | 한국과학기술원 | 액적화학증착법을 이용한 초박막형 리튬이온 2차전지의제조방법 |
| US6893762B2 (en) | 2002-01-16 | 2005-05-17 | Alberta Research Council, Inc. | Metal-supported tubular micro-fuel cell |
| TWI263235B (en) | 2002-04-02 | 2006-10-01 | Nippon Catalytic Chem Ind | Material for electrolytic solutions and use thereof |
| CA2384215A1 (en) | 2002-04-30 | 2003-10-30 | Richard Laliberte | Electrochemical bundle and method for making same |
| KR100463181B1 (ko) * | 2002-07-12 | 2004-12-23 | 삼성에스디아이 주식회사 | 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지 |
| DE10238943B4 (de) | 2002-08-24 | 2013-01-03 | Evonik Degussa Gmbh | Separator-Elektroden-Einheit für Lithium-Ionen-Batterien, Verfahren zu deren Herstellung und Verwendung in Lithium-Batterien sowie eine Batterie, aufweisend die Separator-Elektroden-Einheit |
| KR100467456B1 (ko) | 2002-09-10 | 2005-01-24 | 삼성에스디아이 주식회사 | 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지 |
| KR100467453B1 (ko) | 2002-09-12 | 2005-01-24 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 |
| KR100449765B1 (ko) | 2002-10-12 | 2004-09-22 | 삼성에스디아이 주식회사 | 리튬전지용 리튬메탈 애노드 |
| KR100467436B1 (ko) | 2002-10-18 | 2005-01-24 | 삼성에스디아이 주식회사 | 리튬-황 전지용 음극, 그의 제조 방법 및 그를 포함하는리튬-황 전지 |
| KR100477969B1 (ko) | 2002-10-25 | 2005-03-23 | 삼성에스디아이 주식회사 | 리튬 전지용 음극 및 이를 포함하는 리튬 전지 |
| KR100485093B1 (ko) | 2002-10-28 | 2005-04-22 | 삼성에스디아이 주식회사 | 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지 |
| KR100875112B1 (ko) | 2002-11-16 | 2008-12-22 | 삼성에스디아이 주식회사 | 비수계 전해액 및 이를 채용한 리튬 전지 |
| KR100477751B1 (ko) | 2002-11-16 | 2005-03-21 | 삼성에스디아이 주식회사 | 비수계 전해액 및 이를 채용한 리튬 전지 |
| KR100472513B1 (ko) | 2002-11-16 | 2005-03-11 | 삼성에스디아이 주식회사 | 리튬 설퍼 전지용 유기 전해액 및 이를 채용한 리튬 설퍼전지 |
| JP2004179160A (ja) | 2002-11-26 | 2004-06-24 | Samsung Sdi Co Ltd | リチウム−硫黄電池用正極 |
| US7108942B1 (en) | 2003-03-27 | 2006-09-19 | Wilson Greatbatch Technologies, Inc. | Efficient electrode assembly design for cells with alkali metal anodes |
| WO2004095605A2 (en) | 2003-04-22 | 2004-11-04 | Benedetto Anthony Iacovelli | Fuel cell, components and systems |
| JP4055642B2 (ja) | 2003-05-01 | 2008-03-05 | 日産自動車株式会社 | 高速充放電用電極および電池 |
| JP4494731B2 (ja) | 2003-06-13 | 2010-06-30 | 三菱重工業株式会社 | 二次電池、二次電池の製造方法 |
| KR100573109B1 (ko) | 2003-06-17 | 2006-04-24 | 삼성에스디아이 주식회사 | 유기 전해액 및 이를 채용한 리튬 전지 |
| JP4710609B2 (ja) * | 2003-08-11 | 2011-06-29 | 宇部興産株式会社 | リチウム二次電池およびその非水電解液 |
| JP2005071641A (ja) | 2003-08-27 | 2005-03-17 | Japan Storage Battery Co Ltd | 非水電解質二次電池およびその製造方法 |
| US7335440B2 (en) | 2003-09-12 | 2008-02-26 | Medtronic, Inc. | Lithium-limited anode subassembly with solid anode current collector and spacer |
| KR100550981B1 (ko) * | 2003-09-24 | 2006-02-13 | 삼성에스디아이 주식회사 | 리튬 설퍼 전지의 충전 방법 |
| JP2005108724A (ja) | 2003-09-30 | 2005-04-21 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
| JP2005166536A (ja) | 2003-12-04 | 2005-06-23 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
| US7354680B2 (en) | 2004-01-06 | 2008-04-08 | Sion Power Corporation | Electrolytes for lithium sulfur cells |
| US7646171B2 (en) | 2004-01-06 | 2010-01-12 | Sion Power Corporation | Methods of charging lithium sulfur cells |
| US7019494B2 (en) | 2004-01-06 | 2006-03-28 | Moltech Corporation | Methods of charging lithium sulfur cells |
| JP4399779B2 (ja) | 2004-02-25 | 2010-01-20 | 株式会社豊田中央研究所 | 電解質粒子、正極、負極及びリチウム二次電池 |
| US8334079B2 (en) | 2004-04-30 | 2012-12-18 | NanoCell Systems, Inc. | Metastable ceramic fuel cell and method of making the same |
| US20060024579A1 (en) | 2004-07-27 | 2006-02-02 | Vladimir Kolosnitsyn | Battery electrode structure and method for manufacture thereof |
| ATE499714T1 (de) | 2004-10-29 | 2011-03-15 | Medtronic Inc | Verfahren zum aufladen einer lithiumionenbatterie |
| JP4594039B2 (ja) | 2004-11-09 | 2010-12-08 | 本城金属株式会社 | 積層フィルム被覆リチウム箔 |
| US20060105233A1 (en) | 2004-11-18 | 2006-05-18 | Hiroyuki Morita | Battery |
| JP5466364B2 (ja) | 2004-12-02 | 2014-04-09 | オクシス・エナジー・リミテッド | リチウム・硫黄電池用電解質及びこれを使用するリチウム・硫黄電池 |
| JP5651284B2 (ja) | 2005-01-18 | 2015-01-07 | オクシス・エナジー・リミテッド | リチウム−硫黄電池 |
| GB2422244B (en) * | 2005-01-18 | 2007-01-10 | Intellikraft Ltd | Improvements relating to electrolyte compositions for batteries using sulphur or sulphur compounds |
| US7183734B2 (en) * | 2005-02-18 | 2007-02-27 | Atmel Corporation | Sensorless control of two-phase brushless DC motor |
| KR100813240B1 (ko) | 2005-02-18 | 2008-03-13 | 삼성에스디아이 주식회사 | 유기 전해액 및 이를 채용한 리튬 전지 |
| WO2006100464A2 (en) | 2005-03-22 | 2006-09-28 | Oxis Energy Limited | Lithium sulphide battery and method of producing the same |
| EP1865520B1 (en) | 2005-03-31 | 2013-06-05 | Fuji Jukogyo Kabushiki Kaisha | Lithium ion capacitor |
| US7688075B2 (en) * | 2005-04-20 | 2010-03-30 | Sion Power Corporation | Lithium sulfur rechargeable battery fuel gauge systems and methods |
| KR100803191B1 (ko) | 2005-06-24 | 2008-02-14 | 삼성에스디아이 주식회사 | 유기 전해액 및 이를 채용한 리튬 전지 |
| KR101760820B1 (ko) | 2005-09-26 | 2017-07-24 | 옥시스 에너지 리미티드 | 높은 비에너지를 가진 리튬-황 전지 |
| JP4842633B2 (ja) | 2005-12-22 | 2011-12-21 | 富士重工業株式会社 | 電池又はキャパシタ用リチウム金属箔の製造方法 |
| KR100907623B1 (ko) | 2006-05-15 | 2009-07-15 | 주식회사 엘지화학 | 신규한 적층 구조의 이차전지용 전극조립체 |
| GB2438890B (en) | 2006-06-05 | 2011-01-12 | Oxis Energy Ltd | Lithium secondary battery for operation over a wide range of temperatures |
| JP4898308B2 (ja) | 2006-06-07 | 2012-03-14 | パナソニック株式会社 | 充電回路、充電システム、及び充電方法 |
| KR100888284B1 (ko) | 2006-07-24 | 2009-03-10 | 주식회사 엘지화학 | 탭-리드 결합부의 전극간 저항차를 최소화한 전극조립체 및이를 포함하고 있는 전기화학 셀 |
| GB0615870D0 (en) | 2006-08-10 | 2006-09-20 | Oxis Energy Ltd | An electrolyte for batteries with a metal lithium electrode |
| JP5114036B2 (ja) | 2006-09-08 | 2013-01-09 | Necエナジーデバイス株式会社 | 積層型電池の製造方法 |
| JP5297383B2 (ja) * | 2006-10-25 | 2013-09-25 | オクシス・エナジー・リミテッド | 高比エネルギーのリチウム−硫黄電池及びその動作法 |
| KR101342509B1 (ko) | 2007-02-26 | 2013-12-17 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
| US8734986B2 (en) | 2007-07-11 | 2014-05-27 | Nissan Motor Co., Ltd. | Laminate type battery |
| JP5111991B2 (ja) | 2007-09-28 | 2013-01-09 | 株式会社東芝 | 電池 |
| KR101386165B1 (ko) | 2007-10-26 | 2014-04-17 | 삼성에스디아이 주식회사 | 실란계 화합물을 채용한 유기전해액 및 리튬 전지 |
| JP4561859B2 (ja) | 2008-04-01 | 2010-10-13 | トヨタ自動車株式会社 | 二次電池システム |
| GB0808059D0 (en) | 2008-05-02 | 2008-06-11 | Oxis Energy Ltd | Rechargeable battery with negative lithium electrode |
| US9005809B2 (en) | 2009-08-28 | 2015-04-14 | Sion Power Corporation | Electrochemical cells comprising porous structures comprising sulfur |
| JP5487895B2 (ja) | 2009-11-17 | 2014-05-14 | トヨタ自動車株式会社 | 集電体及びその製造方法 |
| EP2541665B1 (en) | 2010-02-22 | 2015-11-25 | Toyota Jidosha Kabushiki Kaisha | Non-aqueous liquid electrolyte secondary battery |
| JP2011192574A (ja) | 2010-03-16 | 2011-09-29 | Panasonic Corp | リチウム一次電池 |
| CN103081281A (zh) * | 2010-10-15 | 2013-05-01 | 三洋电机株式会社 | 电力管理系统 |
| WO2012070190A1 (ja) | 2010-11-25 | 2012-05-31 | パナソニック株式会社 | 充電制御回路、電池駆動機器、充電装置及び充電方法 |
| JP2013042598A (ja) * | 2011-08-16 | 2013-02-28 | Sanyo Electric Co Ltd | 充放電制御装置 |
| CN103427125B (zh) * | 2012-05-15 | 2016-04-13 | 清华大学 | 硫基聚合物锂离子电池的循环方法 |
| JP6219273B2 (ja) | 2012-05-22 | 2017-10-25 | 三洋電機株式会社 | リチウム二次電池用負極、リチウム二次電池、及びリチウム二次電池用負極の製造方法 |
| FR2991104B1 (fr) * | 2012-05-23 | 2014-11-21 | Peugeot Citroen Automobiles Sa | Procede et dispositif pour la desulfatation d'une batterie |
-
2013
- 2013-03-25 EP EP13160756.6A patent/EP2784850A1/en not_active Ceased
- 2013-12-09 GB GB1321703.9A patent/GB2512424B/en active Active
-
2014
- 2014-03-21 US US14/768,677 patent/US9935343B2/en active Active
- 2014-03-21 WO PCT/GB2014/050890 patent/WO2014155069A1/en not_active Ceased
- 2014-03-21 EP EP19200301.0A patent/EP3614467A1/en not_active Withdrawn
- 2014-03-21 KR KR1020157026247A patent/KR102164616B1/ko active Active
- 2014-03-21 CA CA2903944A patent/CA2903944C/en active Active
- 2014-03-21 CN CN201480018575.4A patent/CN105229827B/zh active Active
- 2014-03-21 RU RU2015145466A patent/RU2641667C2/ru active
- 2014-03-21 EP EP14712739.3A patent/EP2979318A1/en not_active Ceased
- 2014-03-21 JP JP2016504738A patent/JP6450997B2/ja active Active
- 2014-03-25 TW TW103111075A patent/TWI635643B/zh not_active IP Right Cessation
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001047088A2 (en) * | 1999-12-21 | 2001-06-28 | Moltech Corporation | Methods of charging lithium-sulfur batteries |
| US20040222768A1 (en) * | 2003-05-09 | 2004-11-11 | Moore Stephen W. | System and method for battery charge control based on charge capacity headroom |
| KR20110024707A (ko) * | 2009-09-03 | 2011-03-09 | 주식회사 엘지화학 | 리튬 이차 전지의 충전 방법 |
Non-Patent Citations (2)
| Title |
|---|
| MARMORSTEIN D ET AL: "Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 89, no. 2, 1 August 2000 (2000-08-01), pages 219 - 226, XP027380264, ISSN: 0378-7753, [retrieved on 20000801] * |
| See also references of EP2979318A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20150133733A (ko) | 2015-11-30 |
| US9935343B2 (en) | 2018-04-03 |
| JP2016514884A (ja) | 2016-05-23 |
| GB201321703D0 (en) | 2014-01-22 |
| TWI635643B (zh) | 2018-09-11 |
| TW201503461A (zh) | 2015-01-16 |
| CA2903944A1 (en) | 2014-10-02 |
| CN105229827A (zh) | 2016-01-06 |
| GB2512424A (en) | 2014-10-01 |
| RU2641667C2 (ru) | 2018-01-19 |
| HK1197705A1 (en) | 2015-02-06 |
| EP2979318A1 (en) | 2016-02-03 |
| GB2512424B (en) | 2015-03-04 |
| EP2784850A1 (en) | 2014-10-01 |
| CN105229827B (zh) | 2018-10-09 |
| EP3614467A1 (en) | 2020-02-26 |
| JP6450997B2 (ja) | 2019-01-16 |
| CA2903944C (en) | 2022-07-12 |
| RU2015145466A (ru) | 2017-05-17 |
| US20160006084A1 (en) | 2016-01-07 |
| KR102164616B1 (ko) | 2020-10-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9935343B2 (en) | Method of cycling a lithium-sulphur cell | |
| EP2784851B1 (en) | A method of charging a lithium-sulphur cell | |
| US9893387B2 (en) | Method of charging a lithium-sulphur cell | |
| HK1197849A (en) | A method of charging a lithium-sulphur cell | |
| HK1197849B (en) | A method of charging a lithium-sulphur cell |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201480018575.4 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14712739 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 14768677 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref document number: 2903944 Country of ref document: CA |
|
| ENP | Entry into the national phase |
Ref document number: 20157026247 Country of ref document: KR Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2016504738 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2014712739 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2015145466 Country of ref document: RU Kind code of ref document: A |