WO2012070190A1 - 充電制御回路、電池駆動機器、充電装置及び充電方法 - Google Patents

充電制御回路、電池駆動機器、充電装置及び充電方法 Download PDF

Info

Publication number
WO2012070190A1
WO2012070190A1 PCT/JP2011/006201 JP2011006201W WO2012070190A1 WO 2012070190 A1 WO2012070190 A1 WO 2012070190A1 JP 2011006201 W JP2011006201 W JP 2011006201W WO 2012070190 A1 WO2012070190 A1 WO 2012070190A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
charge
current
discharge
amount
Prior art date
Application number
PCT/JP2011/006201
Other languages
English (en)
French (fr)
Inventor
晴美 室地
吉原 靖之
智哉 菊地
島田 和幸
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2011800073026A priority Critical patent/CN102725936A/zh
Priority to US13/576,317 priority patent/US8421406B2/en
Priority to RU2012134794/07A priority patent/RU2494514C1/ru
Priority to JP2012511476A priority patent/JP4988974B2/ja
Publication of WO2012070190A1 publication Critical patent/WO2012070190A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00716Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to integrated charge or discharge current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a charge control circuit, a battery-driven device, a charging device, and a charging method, and more particularly to a suitable charge control circuit, battery-driven device, charging device, and lead-acid battery used as a power source for devices in which dark current discharge is performed. It relates to a charging method.
  • the industrial area mentioned above is not an area used as a portable device but an area related to special electric vehicles such as an electric cart and a forklift, in which a lead storage battery main body and a device including the lead storage battery are fully recycled.
  • the electric vehicles listed here have a short rest time of the user (driver) (for example, in the case of an electric cart used at a golf course, during the passenger's round, in the case of a forklift for carrying luggage, It is also necessary to charge the battery efficiently while using it. Therefore, when the predetermined voltage V1 is reached, the charging current is reduced and the process proceeds to the next stage charging, and the final stage charging is performed until a predetermined time after the lead-acid battery reaches the voltage V1. It is conceivable to use a technique (for example, Patent Document 1) for increasing the SOC (Charge Depth / State Of Charge) by using I1> I2>. .
  • This invention solves the subject mentioned above, Comprising: Provided the charge control circuit, battery drive apparatus, charging device, and charging method which can charge a lead storage battery suitably so that a lifetime characteristic may not be reduced. Objective.
  • a charging control circuit is a charging control circuit that controls a charging unit that charges a lead storage battery used as a power source of a battery-driven device, and at the end of the previous charging according to an instruction to start charging.
  • the total discharge electricity amount of the lead storage battery from the start of the current charging to the current charge start time is a first discharge electricity amount that is a discharge electricity amount due to a discharge current whose current value is less than a predetermined level, and a current value that is greater than or equal to the predetermined level.
  • a first acquisition unit that acquires separately from a second discharge electricity amount that is a discharge electricity amount by a discharge current; a first charge electricity amount that corresponds to the first discharge electricity amount acquired by the first acquisition unit; Obtaining the second charge electricity amount corresponding to the second discharge electricity amount obtained by the first obtaining unit, and charging the lead storage battery as the sum of the obtained first charge electricity amount and the second charge electricity amount
  • the amount of electricity required for charging And Mel calculation unit based on the amount of charge determined by the calculation unit, provided with a charging control unit that controls charging of the lead-acid battery by the charging unit.
  • a battery-driven device wherein the charge control circuit, the lead storage battery used as the power source, and a current value of a current supplied from the lead storage battery are less than the predetermined level.
  • a charging device includes the above-described charging control circuit and a charging unit that is controlled by the charging control circuit and charges the lead storage battery.
  • a charging method is a method for charging a lead storage battery used as a power source for battery-powered equipment, from the end of the previous charge to the start of the current charge according to an instruction to start charging.
  • the total amount of discharge electricity of the lead storage battery during the period is the first amount of electricity discharged by a discharge current having a current value less than a predetermined level and the amount of electricity discharged by a discharge current having a current value not less than the predetermined level.
  • a first step that is obtained separately for a certain second discharge electric quantity; a first charge electric quantity that corresponds to the first discharge electric quantity obtained by the first step; and the first step that is obtained by the first step.
  • Based on the amount of charge obtained by the second step includes a third step of controlling the charging of the lead-acid battery.
  • the figure which shows the aspect charged after partially discharging a lead storage battery, and the aspect charged with the method of this embodiment is shown.
  • It is a figure which shows the aspect charged after partially discharging a lead acid battery, and the aspect charged by the conventional method is shown as a comparative example.
  • the amount of discharge electricity at a large current accompanying driving of a motor or the like from a full charge is sufficiently large as in the conventional case, the amount of discharge electricity by a dark current is relatively small (the proportion of lead sulfate having a large crystal is small). Therefore, the lead sulfate having a large crystal generated by the dark current discharge can be returned to the charged product while being inefficient by the subsequent full charge.
  • the proportion of lead sulfate having a large crystal increases when the amount of discharge electricity by a dark current is relatively large.
  • the amount of electricity discharged by dark current is calculated as a part of the total amount of discharged electricity, and is handled separately from the normal amount of electricity discharged.
  • the amount of charged electricity alone cannot return most of the lead sulfate with large crystals to the charged product. For this reason, insufficient charging occurs, and as a result, the life characteristics of the lead storage battery are impaired.
  • the inventors who have inferred the logic described above need not obtain the total discharge electricity amount of the lead-acid battery as a sum of the discharge electricity amount D1 due to the dark current and the discharge electricity amount D2 due to the current other than the dark current. I found out. Then, the charge electricity amount corresponding to the discharge electricity amount D1 due to the dark current and the discharge electricity amount D2 due to the current other than the dark current are separately obtained and then added to obtain the charge electricity amount C. The obtained charge electricity amount C It was found that by charging a lead storage battery based on the above, most of the lead sulfate with large crystals can be returned to the charge product.
  • lead sulfate with large crystals can be efficiently returned to the charge product as in a system that can replenish the dark current discharge sequentially by an uninterruptible power supply with sufficient charge electricity, an automotive cell starter, or an auxiliary power supply.
  • Mainly used environment That is, in a usage environment where an auxiliary power source or the like is used for supplying dark current and a lead-acid battery is used only for supplying a large current to a motor or the like, lead sulfate having a large crystal was hardly generated. Therefore, it has been difficult to find out the problems associated with the increase in the ratio of the amount of discharge electricity due to dark current as in this case. The dark current will be described later.
  • FIG. 1 is a block diagram showing a state where an electric vehicle according to an embodiment of the present invention is connected to a charging device.
  • An electric vehicle 1 shown in FIG. 1 includes a lead storage battery 10, a power switch 11, a load 20, and a charge control circuit 30 according to an embodiment of the present invention.
  • the lead storage battery 10 supplies power to each part of the electric vehicle 1.
  • the power switch 11 turns on and off the power supply of the electric vehicle 1. For example, the power switch 11 is turned on when the operator inserts a key, and the power is turned off when the key is pulled out.
  • the load 20 includes a motor 21, a display unit 22, and an electronic control unit (ECU) 23.
  • the motor 21 functions as a drive source that moves the vehicle.
  • the display unit 22 includes a liquid crystal display panel, for example, and displays operation information to be notified to the operator.
  • the ECU 23 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a ROM (Read Only Memory) that stores a predetermined control program, a RAM (Random Access Memory) that temporarily stores data, and the surroundings A circuit is provided.
  • the ECU 23 controls the overall operation of the electric vehicle 1.
  • the ECU 23 measures the elapsed time (that is, the off time of the electric vehicle 1) in which the power switch 11 is off since the end of the previous charging.
  • the ECU 23 notifies the charge control circuit 30 of the measured suspension time of the electric vehicle 1.
  • the electric vehicle 1 shown by FIG. 1 is provided with only the lead storage battery 10 as a power supply, and is not provided with other auxiliary power supplies.
  • the charge control circuit 30 is configured in the same manner as the ECU 23. That is, the charging control circuit 30 includes, for example, a CPU that executes predetermined arithmetic processing, a ROM that stores a predetermined control program, a RAM that temporarily stores data, and peripheral circuits thereof.
  • the charge control circuit 30 further includes a storage unit 31, a charge switch 32, and a voltage detection circuit 33 configured by, for example, a flash memory.
  • the charge control circuit 30 functions as a charge control unit 34, a time measuring unit 35, a discharge electricity amount acquisition unit 36, and a charge electricity amount calculation unit 37 by executing a control program stored in the ROM.
  • the charging device 2 includes a charging circuit 3 connected to a commercial power source AC, for example.
  • the charging circuit 3 includes, for example, an AC-DC converter, a DC-DC converter, and the like.
  • the charging circuit 3 charges the lead storage battery 10 by supplying a charging current according to a request from the charge control circuit 30 to the lead storage battery 10.
  • the charging control circuit 30 starts the operation of the charging circuit 3 and charging supplied from the charging circuit 3.
  • the lead storage battery 10 of the electric vehicle 1 is charged by the current.
  • the charging control circuit 30 controls the charging circuit 3 and charges the lead storage battery 10 in this embodiment, for example, by a multi-stage (n-stage) constant current charging method.
  • FIG. 2 is a diagram schematically showing transition of the terminal voltage Vt and the charging current Ic of the lead storage battery 10 to be charged in the present embodiment.
  • charging current Ic (C) means that the current value is expressed in units of “1C”.
  • “1C” represents a current value at which the state of charge (SOC) of the battery becomes 0% in 1 hour when the battery is discharged at a current value of 1C until the state of charge (SOC) of the battery changes from 100% to 0%.
  • “1C” represents a current value at which the amount of electricity stored in the battery becomes zero in one hour when the nominal capacity value of the battery is discharged at a current value of 1C.
  • C is also expressed as “It”. The function of each part of the charging control circuit 30 will be described with reference to FIGS. 1 and 2.
  • the voltage detection circuit 33 detects the terminal voltage Vt of the lead storage battery 10.
  • the charging control unit 34 starts constant current charging of the lead storage battery 10 with a preset charging current value Ic1 (time t0 in FIG. 2).
  • the charge control unit 34 determines the next stage (in this embodiment, the last stage). The second stage is charged.
  • the timer 35 measures the charging time T1 required for the first stage constant current charging, that is, the charging time T1 from the start of charging until the terminal voltage Vt of the lead storage battery 10 reaches the end-of-charge voltage Vs.
  • the charging control unit 34 reduces the charging current value Ic1 from the charging current value Ic1 to the charging current value Ic2 and performs constant current charging again in the next stage (second stage which is the final stage).
  • the charging control unit 34 ends the charging (time t2 in FIG. 2). That is, in the final stage (second stage) charging, the charging end voltage Vs is removed and the charging is continued until the charging time T2 elapses.
  • the charge end voltage Vs and the charging current values Ic1 and Ic2 at each stage are set in advance so that high charging efficiency can be obtained in consideration of the characteristics of the lead storage battery 10.
  • the current value Ic1 of the first stage charging current Ic is 0.2C
  • the current value Ic2 of the second stage charging current Ic is 0.025C
  • the end-of-charge voltage Vs is 14.4V. An example is shown.
  • the storage unit 31 stores a table in which the total discharge electricity amount D is set in association with a plurality of times set in advance as the charging time T1 required for the first stage constant current charging.
  • the current value Ic1 of the first stage charging current Ic and the charge end voltage Vs are set as known.
  • the storage unit 31 may store a plurality of tables corresponding to different current values Ic1 and end-of-charge voltages Vs.
  • the storage unit 31 stores a first coefficient ⁇ and a second coefficient ⁇ described later ( ⁇ > ⁇ > 1).
  • the second coefficient ⁇ is set to 1.07 ⁇ ⁇ ⁇ 1.15, for example.
  • the storage unit 31 stores the current value of the dark current that is supplied from the lead storage battery 10 to the load 20 of the electric vehicle 1 while the power switch 11 of the electric vehicle 1 is off and flows from the lead storage battery 10.
  • the “dark current” refers to a current necessary for vehicle maintenance that flows when the electric vehicle 1 is at rest (for example, power supply to various memories), a power generation element of the lead storage battery 10, and lead. It includes a current due to self-discharge inherent in the circuit and wiring incorporating the storage battery 10, and a small short-circuit current that does not cause the device to transmit an error mode. Therefore, the current value of the dark current can be estimated in advance based on the specifications of the electric vehicle 1 and the specifications of the lead storage battery 10. Or you may measure the electric current value of the dark current at the time of the rest of the electric vehicle 1 in the state which incorporated the lead storage battery 10 in the electric vehicle 1. FIG.
  • the current value (estimated value or measured value) of the dark current obtained in this way is stored in the storage unit 31 in advance.
  • the dark current may be considered as a current having a current value less than a predetermined level.
  • the predetermined level may be set as a ratio with respect to the nominal capacity of the lead storage battery instead of the absolute value of the current, such as 1/1000 [C] or 1/3000 [C].
  • the discharge electricity quantity acquisition unit 36 Based on the charging time T1 required for the first-stage constant current charging timed by the time measuring unit 35 and the table stored in the storage unit 31, the discharge electricity quantity acquisition unit 36 performs the current charging from the end of the previous charging. The total amount of discharged electricity D of the lead storage battery 10 before the start of charging is acquired.
  • the discharged electricity quantity acquisition unit 36 requests the ECU 23 for a downtime of the electric vehicle 1 and receives the downtime of the electric vehicle 1 measured by the ECU 23 from the ECU 23.
  • the discharge electricity quantity acquisition unit 36 multiplies the rest time of the electric vehicle 1 timed by the ECU 23 and the dark current value stored in the storage unit 31 to obtain the first discharge electricity quantity D1 due to the dark current. Ask.
  • the discharge electricity quantity acquisition unit 36 subtracts the first discharge electricity quantity D1 from the total discharge electricity quantity D to obtain a second discharge electricity quantity D2 due to a current other than the dark current.
  • the second amount of discharged electricity D2 corresponds to the amount of discharged electricity when the power switch 11 of the electric vehicle 1 is on (that is, the operating time of the electric vehicle 1).
  • the charge electric quantity calculation unit 37 includes a first discharge electric quantity D1 and a second discharge electric quantity D2 obtained by the discharge electric quantity acquisition unit 36, and a first coefficient ⁇ and a second coefficient ⁇ stored in the storage unit 31. Based on the above, the charge electricity amount C is obtained by the following formulas (1) to (3).
  • C1 represents a first charge electricity amount corresponding to the first discharge electricity amount D1
  • C2 represents a second charge electricity amount corresponding to the second discharge electricity amount D2.
  • the charge quantity calculation unit 37 charges the final stage (second stage) based on the obtained charge quantity C, the charge current values Ic1 and Ic2, and the charge time T1 required for the first stage constant current charge. Time T2 is determined.
  • the charging control unit 34 ends the charging when the charging time T2 determined by the charging electric quantity calculation unit 37 has elapsed from the start of charging at the final stage (n-th stage) (time t1 in FIG. 2). (Time t2 in FIG. 2).
  • the ECU 23 corresponds to an example of a device control unit
  • the storage unit 31 corresponds to an example of a first storage unit and a second storage unit
  • the voltage detection circuit 33 corresponds to an example of a voltage detection unit.
  • the discharge electricity amount acquisition unit 36 corresponds to an example of the first acquisition unit and the second acquisition unit
  • the charge electricity amount calculation unit 37 corresponds to an example of the calculation unit
  • the electric vehicle 1 is a battery-driven device.
  • the charging circuit 3 corresponds to an example of a charging unit.
  • FIG. 3 and FIG. 4 are diagrams showing a state in which the lead storage battery is charged after being partially discharged.
  • FIG. 3 shows a mode of charging by the method of this embodiment
  • FIG. 4 shows a mode of charging by a conventional method as a comparative example.
  • FIG. 3 and FIG. 4 show that the special electric vehicle 1 that uses the lead storage battery 10 as a power source has four driving periods from morning to night, with three pause periods (Y1 to Y3).
  • Z1 to Z2) is a pattern in which driving is performed at (X1 to X4) and then charging is performed. As described with reference to FIGS.
  • the charging current Ic is changed from the current value Ic1 to Ic2.
  • This is a two-stage constant current charging (charging current Ic is Ic1> Ic2) in which the charging proceeds to the second stage charging and the lead storage battery 10 is charged until a predetermined charging time T2 elapses after reaching the end-of-charge voltage Vs. . 3 and 4, the first charging period is shown as Z1, and the second charging period is shown as Z2.
  • the lead storage battery 10 passes through the rest period Y4 until the morning driving period X1 is reached. During the rest periods Y1 to Y4, the lead storage battery 10 continues to discharge dark current.
  • the dark current is a current necessary for vehicle maintenance (for example, power supply to various memories), a power generation element of the lead storage battery 10, and a circuit and wiring incorporating the lead storage battery 10. It refers to the current due to inherent self-discharge.
  • the discharge electric energy due to the dark current is added to the normal discharge electric energy, and the total discharge electric energy Da is constant. If only the charged amount of electricity Ca obtained by multiplying by the coefficient (for example, 1.07 to 1.15) is charged, most of the lead sulfate having large crystals cannot be returned to the charged product. As a result, insufficient charging occurs, and as a result, the life characteristics of the lead storage battery 10 are impaired.
  • the total amount of discharged electricity D is the same as that in the driving period (X1 to X4), that is, normal discharge (discharge by a current other than dark current). It is obtained as the sum of the two discharge electricity quantity D2 and the first discharge electricity quantity D1 due to the dark current during the rest period (Y1 to Y4) (discharge electricity quantity acquisition unit 36 in FIG. 1). Then, the first charge electric quantity C1 obtained by multiplying the first discharge electric quantity D1 by the first coefficient ⁇ , and the second discharge electric quantity D2 multiplied by the second coefficient ⁇ by the charge electric quantity C required for full charge. 2 is obtained as the sum of the charge amount C2 (charge amount calculation unit 37 in FIG. 1).
  • the second coefficient ⁇ may be the above-described conventional value (ie, 1.07 to 1.15, for example), but the first coefficient ⁇ must be larger than the second coefficient ⁇ .
  • the three types of first coefficients ⁇ are set in advance corresponding to the ratio D1 / D.
  • the charge quantity calculation unit 37 obtains D1 / D from the total discharge quantity D and the first discharge quantity D1 acquired by the discharge quantity calculation unit 36, and is stored in the storage unit 31 as the first coefficient ⁇ .
  • a value corresponding to the ratio D1 / D is used as the first coefficient ⁇ from a plurality of values (three types in this embodiment).
  • Example Below, the effect of the said embodiment of this invention is shown by an Example and a comparative example.
  • FIG. 5 is a table showing the discharge patterns performed in the examples and comparative examples.
  • FIG. 6 is a diagram showing the transition of the discharge capacity of the lead storage battery in Examples and Comparative Examples.
  • As the lead storage battery EC-FV1260 (manufactured by Panasonic Storage Battery Co., Ltd.) having a nominal voltage of 12 V and a nominal capacity of 60 Ah was used.
  • the same charge / discharge as in FIG. 3 was repeated for this lead storage battery, and the same charge / discharge as in FIG. 4 was repeated in the comparative example. That is, as shown in FIG.
  • the charging current value of the first stage is set to 0.2 [C]
  • the charging end voltage of the first stage is set to 14.4V.
  • the charging current value of the second stage is 0.025 [C]
  • the charging time of the second stage is (60 ⁇ R) /1.5 [hours] with respect to the charging electric quantity R of the first stage. To do. That is, the first stage charging electric charge R can be obtained from the first stage charging current value and the charging time.
  • the second stage charging current value is 0.025 [C] and the nominal capacity of the lead storage battery is 60 Ah, the second stage current value is 1.5 A. Therefore, the lead storage battery can be fully charged by setting the second stage charging time to (60-R) /1.5 [hours].
  • the discharge capacity is measured. That is, the discharge capacity is measured based on the discharge time from full charge to the end voltage of 9.9 V and the current value of the discharge current that is a constant current. Then, finally, as the preliminary charge, the same two-stage constant current charge as the above charge is performed, and the measurement of the discharge capacity is finished.
  • Example 1-1 As described above, as in Comparative Example 1-1, the two-stage constant current charging is performed after each of the discharge patterns L to N. However, in Example 1-1, as described in the above embodiment, the total discharge electricity quantity D is equal to the second discharge electricity quantity D2 in the driving periods X1 to X4 and the first discharge electricity quantity in the rest periods Y1 to Y4. Divided into D1. Then, the first charge electricity quantity C1 obtained by multiplying the first discharge electricity quantity D1 by 1.5 as the first coefficient ⁇ , and the second charge electricity quantity obtained by multiplying the second discharge electricity quantity D2 by 1.1 as the second coefficient ⁇ . The amount of charged electricity C is obtained as the sum of the amount C2. Except for this, charge and discharge were repeated in the same manner as in Comparative Example 1-1. The transition of the discharge capacity measured in the same manner as in Comparative Example 1-1 is also shown in FIG.
  • the charging time of the second stage (charging time T2), which is the final stage, is increased by the amount of increase in the calculated value of the amount of charge C compared to Comparative Example 1-1. .
  • Example 1-2 the value of the first coefficient ⁇ used to calculate the amount of charge C is different for each discharge pattern L to N compared to Example 1-1. That is, in Example 1-2, the first coefficient ⁇ is 1.2 for the discharge pattern L, the first coefficient ⁇ is 1.5 for the discharge pattern M, and the first coefficient ⁇ is for the discharge pattern N. The amount of charged electricity C is obtained with ⁇ being 1.9. Except for this, charge and discharge were repeated in the same manner as in Example 1-1. The transition of the discharge capacity measured in the same manner as in Comparative Example 1-1 is also shown in FIG.
  • the charging time of the second stage (charging time T2) as the final stage becomes longer as the calculated value of the first charge electricity amount C1 increases.
  • Examples 1-1 and 1-2 showed better life characteristics as compared with Comparative Example 1-1 in which the first discharge electric quantity D1 due to dark current was not taken into consideration.
  • Example 1-2 in which the first coefficient ⁇ is increased in proportion to the first discharge electricity quantity D1 due to the dark current and the second stage charging time (charging time T2), which is the final stage, is increased.
  • Excellent life characteristics The reason for this is that a sufficient amount of charged electricity C is given immediately after the amount of lead sulfate with large crystals increases (the first discharge electricity quantity D1 due to the dark current becomes large).
  • overcharge is avoided by reducing the amount of charge C.
  • each discharge pattern The representative value based on the average value of the first coefficient ⁇ suitable for the above (for example, the average value 1.53 of 1.2, 1.5, 1.9 used as the coefficient ⁇ of the discharge patterns L to N) is fixed. Even if it is used as a value, at least the same effect as that of Example 1-1 can be expected.
  • storage part 31 should just preserve
  • FIG. 7 is a diagram showing the maintenance rate of the discharge capacity.
  • the three discharge patterns L to N were sequentially repeated in the discharge, but here, the above-described case of the present invention in the case where the discharge was repeated with one discharge pattern. The effect by embodiment is shown.
  • Comparative Example 2 regardless of the discharge patterns L to N, attention is paid only to the total discharge electricity Da, and this is multiplied by 1.1 (a value equal to the second coefficient ⁇ ) as a coefficient.
  • This charging / discharging was repeated, and the discharge capacity of the lead storage battery was measured at the 600th cycle as described above.
  • the result is indicated by a symbol Q in FIG. 7 as a capacity maintenance ratio that is a ratio of the capacity at the 600th cycle to the initial capacity.
  • FIG. 8 is a block diagram showing a state in which the electric vehicle is connected to the charging device according to the embodiment of the present invention.
  • the charging control circuit is provided in the charging device instead of the electric vehicle. That is, the electric vehicle 15 shown in FIG. 8 includes a lead storage battery 10, a power switch 11, and a load 20.
  • the charging device 25 shown in FIG. 8 includes the charging circuit 3 and the charging control circuit 30 according to an embodiment of the present invention.
  • the charge control circuit 30 shown in FIG. 8 has the same function as that of the above embodiment shown in FIG.
  • the charging control circuit 30 causes the charging circuit 3 to be connected.
  • the lead storage battery 10 of the electric vehicle 15 is charged by the charging current supplied from the charging circuit 3 under control.
  • the lead storage battery 10 can be suitably charged without degrading the life characteristics as in the above embodiment.
  • the discharge electricity quantity acquisition unit 36 multiplies the downtime of the electric vehicle 1 timed by the ECU 23 by the current value of the dark current stored in the storage unit 31 to obtain the dark current.
  • the 1st discharge electric quantity D1 by is calculated
  • required it is not restricted to this.
  • the current supplied for driving the motor 21 from the lead storage battery 10 the current supplied for driving the load 20, other than the motor 21, such as the display unit 22 and the ECU 23, is very small.
  • the power switch 11 of the electric vehicle 1 is turned on, the current flowing from the lead storage battery 10 while the motor 21 is stopped is darker than the predetermined level (for example, 1/1000 [C]). It can be considered as a current. Therefore, the discharge while the motor 21 is stopped may be included in the first discharge electric quantity D1.
  • this modified embodiment will be described with a focus on differences from the above embodiment.
  • the ECU 23 measures the motor stop time in which the power switch 11 of the electric vehicle 1 is turned on and the motor 21 is stopped, in addition to the rest time of the electric vehicle 1. In response to a request from the discharge electricity quantity acquisition unit 36, the ECU 23 notifies the discharge electricity quantity acquisition unit 36 of the measured stop time and motor stop time of the electric vehicle 1.
  • the storage unit 31 stores the current value of the first current less than the predetermined level that flows from the lead storage battery 10 during the downtime of the electric vehicle 1.
  • the storage unit 31 stores the current value of the second current less than the predetermined level flowing from the lead storage battery 10 during the motor stop time when the power switch 11 of the electric vehicle 1 is turned on and the motor 21 is stopped. is doing.
  • the discharge electricity quantity acquisition unit 36 multiplies the downtime of the electric vehicle 1 timed by the ECU 23 by the current value of the first current stored in the storage unit 31 to obtain the discharge electricity quantity D11 by the first current. Ask.
  • the discharge electricity quantity acquisition unit 36 multiplies the motor stop time measured by the ECU 23 by the current value of the second current stored in the storage unit 31 to obtain the discharge electricity quantity D12 by the second current.
  • the discharge electricity quantity acquisition unit 36 adds the discharge electricity quantity D11 and the discharge electricity quantity D12 to obtain the first discharge electricity quantity D1 due to the current less than the predetermined level.
  • this modified embodiment is the same as the above embodiment. Also in this modified embodiment, the lead storage battery 10 can be suitably charged without degrading the life characteristics as in the above embodiment.
  • the motor 21 corresponds to an example of a second load
  • the display unit 22 and the ECU 23 correspond to an example of a first load
  • the storage unit 31 corresponds to an example of a third storage unit.
  • the discharge electricity quantity acquisition unit 36 corresponds to an example of a first acquisition unit and a third acquisition unit.
  • This modified embodiment can also be applied to the embodiment shown in FIG.
  • the charging control circuit 30 is provided separately from the ECU 23, but is not limited thereto.
  • the ECU 23 may be configured to realize functions such as the charge control unit 34, the time measuring unit 35, the discharge electric quantity acquisition unit 36, and the charge electric quantity calculation unit 37 of the charge control circuit 30.
  • the discharge electricity quantity acquisition unit 36 acquires the total discharge electricity quantity using a table stored in advance in the storage unit 31, but is not limited thereto.
  • the charge control circuit 30 may be provided with, for example, an electric quantity integrator. Then, by the electric quantity integrator, during discharge, the first discharge electric quantity D1 due to the discharge whose current value is less than the predetermined level and the second discharge electric quantity D2 due to the discharge whose current value is equal to or higher than the predetermined level, respectively. You may make it integrate. Thereby, the first discharge electricity quantity D1 and the second discharge electricity quantity D2 can be accurately obtained.
  • the vehicle is an electric vehicle, but is not limited thereto.
  • a lead storage battery is provided as the only power supply, a large current above the predetermined level is supplied from the lead storage battery to a load such as a motor, and a dark current less than the predetermined level is supplied from the lead storage battery.
  • the battery drive apparatus comprised so that it might flow may be sufficient.
  • a lead storage battery provided in such a battery-driven device can be suitably charged without degrading the life characteristics.
  • a solar power generation system including a lead storage battery, a streetlight as a load, and a photoelectric conversion element that converts sunlight into electric power and charges the lead storage battery with the converted electric power is given.
  • a solar power generation system when the lighting time of the street lamp is short, the ratio of the amount of discharge electricity due to dark current to the total amount of discharge electricity increases. Therefore, also in this solar power generation system, the lead storage battery provided in the solar power generation system can be suitably charged without degrading the battery life characteristics.
  • a charging control circuit is a charging control circuit that controls a charging unit that charges a lead storage battery used as a power source of a battery-driven device, and at the end of the previous charging according to an instruction to start charging.
  • the total discharge electricity amount of the lead storage battery from the start of the current charging to the current charge start time is a first discharge electricity amount that is a discharge electricity amount due to a discharge current whose current value is less than a predetermined level, and a current value that is greater than or equal to the predetermined level.
  • a first acquisition unit that acquires separately from a second discharge electricity amount that is a discharge electricity amount by a discharge current; a first charge electricity amount that corresponds to the first discharge electricity amount acquired by the first acquisition unit; Obtaining the second charge electricity amount corresponding to the second discharge electricity amount obtained by the first obtaining unit, and charging the lead storage battery as the sum of the obtained first charge electricity amount and the second charge electricity amount
  • the amount of electricity required for charging And Mel calculation unit based on the amount of charge determined by the calculation unit, provided with a charging control unit that controls charging of the lead-acid battery by the charging unit.
  • the first acquisition unit determines the total discharge electricity amount of the lead storage battery between the end of the previous charge and the start of the current charge according to the instruction to start the charge, and the current value is less than a predetermined level.
  • the first discharge electricity quantity which is a discharge electricity quantity due to the discharge current
  • the second discharge electricity quantity which is a discharge electricity quantity due to a discharge current whose current value is equal to or higher than a predetermined level.
  • the calculation unit obtains a first charge electricity amount corresponding to the first discharge electricity amount acquired by the first acquisition unit and a second charge electricity amount corresponding to the second discharge electricity amount acquired by the first acquisition unit, And the amount of charge electricity required for charge of a lead storage battery is calculated
  • the charging control unit controls charging of the lead storage battery by the charging unit based on the amount of charging electricity obtained by the calculation unit.
  • the discharge electricity quantity acquisition unit obtains the total discharge electricity quantity separately for the first discharge electricity quantity and the second discharge electricity quantity
  • the charge electricity quantity calculation unit obtains the first discharge electricity quantity.
  • the first charge electricity amount corresponding to the second charge electricity amount and the second charge electricity amount corresponding to the second discharge electricity amount are separately obtained. This can prevent the amount of charged electricity from becoming insufficient.
  • the lead storage battery can be suitably charged so as not to deteriorate the life characteristics.
  • the charge control circuit may further include a first storage unit that stores a preset first coefficient and a second coefficient that is smaller than the first coefficient and larger than 1.
  • the calculation unit multiplies the first discharge electricity amount acquired by the first acquisition unit and the first coefficient stored in the first storage unit to obtain the first charge electricity amount, and It is preferable that the second charge electricity amount is obtained by multiplying the second discharge electricity amount acquired by the first acquisition unit and the second coefficient stored in the first storage unit.
  • the first storage unit stores the first coefficient set in advance and the second coefficient set smaller than the first coefficient and larger than 1.
  • the computing unit multiplies the first discharge electricity amount acquired by the first acquisition unit and the first coefficient stored in the first storage unit to obtain the first charge electricity amount.
  • the calculation unit multiplies the second discharge electricity amount acquired by the first acquisition unit and the second coefficient stored in the first storage unit to obtain the second charge electricity amount.
  • the first storage unit stores a plurality of the first coefficients corresponding to the ratio of the first discharge electricity amount to the total discharge electricity amount, and the plurality of the first coefficients.
  • the numerical value of the first coefficient increases as the ratio increases, and the calculation unit obtains a ratio of the first discharge electricity amount to the total discharge electricity amount, and the plurality of the plurality of the plurality of the first coefficients stored in the first storage unit Among the first coefficients, it is preferable to use the first coefficient corresponding to the obtained ratio.
  • the first storage unit stores a plurality of first coefficients corresponding to the magnitude of the ratio of the first discharge electricity quantity to the total discharge electricity quantity.
  • the plurality of first coefficients have larger numerical values as the ratio increases.
  • the calculation unit obtains a ratio of the first discharge electricity amount to the total discharge electricity amount, and uses a first coefficient corresponding to the obtained ratio among the plurality of first coefficients stored in the first storage unit.
  • the first coefficient having a larger numerical value is used as the ratio of the first discharge electricity amount to the total discharge electricity amount is larger, the first charge electricity amount corresponding to the first discharge electricity amount becomes insufficient. This can be prevented more reliably.
  • the off-time in which the power source of the battery-powered device is turned off between the end of the previous charging and the start of the current charging is acquired.
  • 2 acquisition unit, and a second storage unit that stores a current value of dark current less than the predetermined level flowing from the lead storage battery during the off-time of the battery-powered device and the first acquisition unit includes:
  • the first discharge electric quantity is obtained based on the off time acquired by the second acquisition unit and the current value of the dark current stored in the second storage unit.
  • the second acquisition unit acquires an off time during which the battery-powered device is turned off between the end of the previous charge and the start of the current charge in response to the instruction to start charging.
  • storage part preserve
  • a 1st acquisition part calculates
  • the first discharge electricity quantity can be easily obtained with a simple configuration.
  • the battery drive device is a charge control circuit having a motor as a drive source, and from the end of the previous charge to the start of the current charge according to an instruction to start charging.
  • a third acquisition unit that acquires an off time during which the battery-driven device is turned off and a motor stop time during which the battery-driven device is turned on and the motor is stopped; A current value of the first current less than the predetermined level flowing from the lead storage battery during the off-time of the battery-driven device, and a second value less than the predetermined level flowing from the lead storage battery during the motor stop time of the battery-driven device.
  • a third storage unit that stores a current value of the current, wherein the first acquisition unit is stored in the third storage unit and the off time acquired by the third acquisition unit Based on the current value of the first current, the amount of electricity discharged by the first current is obtained, the motor stop time acquired by the third acquisition unit, and the second stored in the third storage unit Based on the current value of the current, the amount of discharge electricity by the second current is obtained, and the sum of the amount of discharge electricity by the first current and the amount of discharge electricity by the second current is obtained as the first discharge electricity amount. It is preferable.
  • the third acquisition unit in response to the instruction to start charging, between the time when the previous charging ends and the time when the current charging starts, Then, the motor stop time when the battery-driven device is powered on and the motor is stopped is acquired.
  • the third storage unit includes a current value of a first current less than a predetermined level that flows from the lead storage battery during an off time of the battery drive device, and a current of a second current that is less than a predetermined level that flows from the lead storage battery during a motor stop time of the battery drive device. Saving values and.
  • a 1st acquisition part calculates
  • a 1st acquisition part calculates
  • a 1st acquisition part calculates
  • a ratio of the first discharge electricity amount to the total discharge electricity amount is 0.15 or more.
  • the present invention is applied to this case. In this case, a high effect can be obtained.
  • the charge control circuit may further include a voltage detection unit that detects a terminal voltage of the lead storage battery, and the charge control unit starts constant current charging with a predetermined charge current value, and is detected by the voltage detection unit.
  • the charging current value is reduced to proceed to the next stage of charging (n is an integer of 2 or more) stage constant current charging, and finally In the n-th stage charging, the elapsed time from the start of the n-th stage charging is counted, and the charging current value in the previous stage is reduced or the same value, regardless of the terminal voltage of the lead storage battery.
  • the charging current value of each stage Based on the charging current value of each stage and the time required for the terminal voltage of the lead storage battery to reach the end-of-charge voltage in each stage, until the (n-1) th stage charging.
  • the lead storage battery has been charged
  • the amount of electricity is obtained, and the charging time in the final n-th stage charging is determined based on the amount of charged electricity obtained by the calculation unit and the obtained amount of charged electricity. It is preferable to end the n-th stage charging when time elapses.
  • the voltage detection unit detects the terminal voltage of the lead storage battery.
  • the charging control unit starts constant current charging with a predetermined charging current value, and when the terminal voltage of the lead storage battery detected by the voltage detecting unit reaches a predetermined charging end voltage, the charging control value is reduced to the next stage.
  • N (where n is an integer equal to or greater than 2) stage constant current charging is performed.
  • the charge control unit counts the elapsed time from the start of the n-th stage charge, while reducing the charge current value of the previous stage or the same value, the lead storage battery terminal Charge regardless of voltage.
  • the charge control unit determines the lead current until the (n-1) th charge based on the charge current value of each stage and the time required for the terminal voltage of the lead storage battery to reach the end-of-charge voltage in each stage. The amount of charged electricity with which the storage battery is charged is obtained. Further, the charging control unit determines a charging time in the final n-th stage charging based on the charging amount of electricity obtained by the calculation unit and the obtained amount of charged electricity, and n when the determined charging time has elapsed. Finish charging the stage.
  • a battery-driven device wherein the charge control circuit, the lead storage battery used as the power source, and a current value of a current supplied from the lead storage battery are less than the predetermined level.
  • the above charge control circuit is provided.
  • the lead storage battery is used as a power source.
  • the current value of the current supplied from the lead storage battery is less than a predetermined level.
  • the current value of the current supplied from the lead storage battery is equal to or higher than a predetermined level.
  • the discharge electricity quantity acquisition unit obtains the total discharge electricity quantity by dividing the first discharge electricity quantity by the discharge with respect to the first load and the second discharge electricity quantity by the discharge with respect to the second load. To do. And since the charge amount calculation part is calculating
  • a power switch that turns on / off power supply from the lead storage battery to the second load, and a device control unit that counts off time when the power switch is turned off since the end of the previous charging are preferably further provided.
  • the power switch turns on / off the power supply from the lead storage battery to the second load.
  • the device control unit measures the off time during which the power switch is turned off since the end of the previous charging. Even when the power switch is turned off and the power supply to the second load is turned off, dark current having a current value less than a predetermined level often flows from the lead acid battery. Therefore, the time during which the dark current flows can be accurately known by measuring the off time during which the power switch is turned off since the end of the previous charging. As a result, the first acquisition unit can acquire the first discharge electricity quantity.
  • a power switch for turning on / off the power supply from the lead storage battery to the first load and the second load, and an off time during which the power switch has been turned off since the end of the previous charging is measured.
  • a second control unit wherein the second load includes a motor as a drive source, and the device control unit further has the power switch turned on since the end of the previous charge, and It is preferable to measure the time when the motor is not driven.
  • the power switch turns on / off the power supply from the lead storage battery to the first load and the second load.
  • the device control unit measures the off time during which the power switch is turned off since the end of the previous charging.
  • the second load includes a motor as a drive source.
  • the device control unit further counts the time during which the power switch has been turned on and the motor has not been driven since the end of the previous charging. Even when the power switch is turned on and the power supply to the first load and the second load is turned on, when the motor is not driven, only a current having a current value less than a predetermined level flows from the lead storage battery. There are many.
  • the first acquisition unit can acquire the first discharge electricity quantity.
  • a charging device includes the above-described charging control circuit and a charging unit that is controlled by the charging control circuit and charges the lead storage battery.
  • the above charge control circuit is provided.
  • the charging unit is controlled by the charge control circuit to charge the lead storage battery.
  • the first discharge electricity quantity which is the discharge electricity quantity due to the discharge current having a current value less than a predetermined level
  • the current value of the discharge current is as small as less than a predetermined level, and thus the size of the lead sulfate crystals generated by the discharge increases. Become. Therefore, if the amount of charged electricity becomes insufficient, the lead sulfate crystals remain without being eliminated.
  • the discharge electricity quantity acquisition unit obtains the total discharge electricity quantity by dividing it into the first discharge electricity quantity and the second discharge electricity quantity
  • the charge electricity quantity calculation unit obtains the first discharge electricity quantity.
  • the first charge electricity amount corresponding to the second charge electricity amount and the second charge electricity amount corresponding to the second discharge electricity amount are separately obtained. This can prevent the amount of charged electricity from becoming insufficient. As a result, the lead storage battery can be suitably charged so as not to deteriorate the life characteristics.
  • a charging method is a method for charging a lead storage battery used as a power source for battery-powered equipment, from the end of the previous charge to the start of the current charge according to an instruction to start charging.
  • the total amount of discharge electricity of the lead storage battery during the period is the first amount of electricity discharged by a discharge current having a current value less than a predetermined level and the amount of electricity discharged by a discharge current having a current value not less than the predetermined level.
  • a first step that is obtained separately for a certain second discharge electric quantity; a first charge electric quantity that corresponds to the first discharge electric quantity obtained by the first step; and the first step that is obtained by the first step.
  • Based on the amount of charge obtained by the second step includes a third step of controlling the charging of the lead-acid battery.
  • the total discharge electricity amount of the lead storage battery from the end of the previous charge to the start of the current charge is less than a predetermined level in accordance with the charge start instruction. It is obtained by dividing into a first discharge electricity quantity that is a discharge electricity quantity due to a discharge current and a second discharge electricity quantity that is a discharge electricity quantity due to a discharge current having a current value of a predetermined level or more.
  • a first charge electricity amount corresponding to the first discharge electricity amount obtained in the first step and a second charge electricity amount corresponding to the second discharge electricity amount obtained in the first step are obtained, And the amount of charge electricity required for charge of a lead storage battery is calculated
  • the charging of the lead storage battery is controlled based on the amount of charged electricity obtained in the second step.
  • the first discharge electricity quantity which is the discharge electricity quantity due to the discharge current having a current value less than a predetermined level
  • the current value of the discharge current is as small as less than a predetermined level, and thus the size of the lead sulfate crystals generated by the discharge increases. Become. Therefore, if the amount of charged electricity becomes insufficient, the lead sulfate crystals remain without being eliminated.
  • the first step the total discharge electricity amount is acquired separately for the first discharge electricity amount and the second discharge electricity amount, and in the second step, the first discharge electricity amount corresponding to the first discharge electricity amount is obtained.
  • the amount of charged electricity and the amount of charged second electricity corresponding to the amount of discharged second electricity are determined separately. This can prevent the amount of charged electricity from becoming insufficient.
  • the lead storage battery can be suitably charged so as not to deteriorate the life characteristics.
  • the present invention charging is possible even when a mode in which partial charging (multi-stage constant current charging) is performed from a battery-driven device such as an electric vehicle using a lead storage battery as a main power source for a short time to a fully charged state is repeated.
  • the shortage can be prevented, and as a result, the deterioration of the life characteristics of the lead storage battery can be suppressed. Therefore, the demand for inexpensive and high-performance lead-acid batteries can be further expanded.
  • the charging control circuit, battery-driven device, charging device, and charging method according to the present invention are useful as a circuit, device, device, and method for suitably charging a lead storage battery that is used as a main power source for battery-driven devices such as an electric vehicle. .

Abstract

 電池駆動機器(1)の電源として用いられる鉛蓄電池(10)を充電する充電部(3)を制御する充電制御回路(30)であって、充電開始の指示に応じて、前回の充電終了時から今回の充電開始時までの間における鉛蓄電池の総放電電気量を、電流値が所定レベル未満の放電電流による放電電気量である第1放電電気量と、電流値が所定レベル以上の放電電流による放電電気量である第2放電電気量とに分けて取得する第1取得部(36)と、第1取得部により取得された第1放電電気量に対応する第1充電電気量及び第1取得部により取得された第2放電電気量に対応する第2充電電気量を求め、かつ、求めた第1充電電気量及び第2充電電気量の和として鉛蓄電池の充電に要する充電電気量を求める演算部(37)と、演算部により求められた充電電気量に基づき、充電部による鉛蓄電池の充電を制御する充電制御部(34)と、を備えた。

Description

充電制御回路、電池駆動機器、充電装置及び充電方法
 本発明は、充電制御回路、電池駆動機器、充電装置及び充電方法に関し、特に暗電流放電が行われる機器の電源に用いられた鉛蓄電池の、好適な充電制御回路、電池駆動機器、充電装置及び充電方法に関する。
 近年、鉛蓄電池はその充放電特性の改良によって、高価なリチウムイオン二次電池では採算が合わない産業領域における高性能電源として、再び脚光を浴びつつある。上述した産業領域とは、ポータブル機器として用いられる領域ではなく鉛蓄電池本体や鉛蓄電池を含むデバイスのリサイクルが充実した、電動カートやフォークリフトなどの特殊電動車両などに関する領域である。
 ここで挙げた電動車両は、使用者(運転手)の僅かな休止時間(例えばゴルフ場で用いられる電動カートの場合は同乗者のラウンド中、荷物を運搬するフォークリフトの場合は操作者の食事や嗜好品の摂取中)も使って、効率よく充電する必要がある。そこで所定の電圧V1に達したら充電電流を小さくして次段の充電へ進み、最終段の充電は鉛蓄電池が電圧V1に達した後に所定時間まで行う3段以上の多段定電流充電(充電段数をn段とした時の充電電流IはI1>I2>・・・>In-1)によってSOC(充電深さ/State Of Charge)を高める技術(例えば特許文献1)を活用することが考えられる。この技術を利用して、僅かな休止時間中は多段定電流充電の初期段階における比較的大きな電流で急速充電し、作業終了後は多段定電流充電の全段階を経て満充電する方法が好ましいと考えられる。
 しかしながら、基本的に補助電源を持たない特殊電動車両の主電源として鉛蓄電池を用い、充放電を繰り返した場合、補助電源をもつ車両とは異なり、特許文献1のように急速充電を考慮した充電方法では充電不足となり、鉛蓄電池の寿命特性が低下する場合があることがわかってきた。
特開2000-243457号公報
 本発明は、上述した課題を解決するものであって、寿命特性を低下させないように鉛蓄電池を好適に充電することができる充電制御回路、電池駆動機器、充電装置及び充電方法を提供することを目的とする。
 本発明の一局面に係る充電制御回路は、電池駆動機器の電源として用いられる鉛蓄電池を充電する充電部を制御する充電制御回路であって、充電開始の指示に応じて、前回の充電終了時から今回の充電開始時までの間における前記鉛蓄電池の総放電電気量を、電流値が所定レベル未満の放電電流による放電電気量である第1放電電気量と、電流値が前記所定レベル以上の放電電流による放電電気量である第2放電電気量とに分けて取得する第1取得部と、前記第1取得部により取得された前記第1放電電気量に対応する第1充電電気量及び前記第1取得部により取得された前記第2放電電気量に対応する第2充電電気量を求め、かつ、求めた前記第1充電電気量及び前記第2充電電気量の和として前記鉛蓄電池の充電に要する充電電気量を求める演算部と、前記演算部により求められた前記充電電気量に基づき、前記充電部による前記鉛蓄電池の充電を制御する充電制御部と、を備えた。
 本発明の他の局面に係る電池駆動機器は、上記の充電制御回路と、前記電源として用いられる前記鉛蓄電池と、前記鉛蓄電池から供給される電流の電流値が前記所定レベル未満である第1負荷と、前記鉛蓄電池から供給される電流の電流値が前記所定レベル以上である第2負荷と、を備えた。
 本発明のさらに他の局面に係る充電装置は、上記の充電制御回路と、前記充電制御回路により制御されて前記鉛蓄電池を充電する充電部と、を備えた。
 本発明のさらに他の局面に係る充電方法は、電池駆動機器の電源として用いられる鉛蓄電池の充電方法であって、充電開始の指示に応じて、前回の充電終了時から今回の充電開始時までの間における前記鉛蓄電池の総放電電気量を、電流値が所定レベル未満の放電電流による放電電気量である第1放電電気量と、電流値が前記所定レベル以上の放電電流による放電電気量である第2放電電気量とに分けて取得する第1ステップと、前記第1ステップにより取得された前記第1放電電気量に対応する第1充電電気量及び前記第1ステップにより取得された前記第2放電電気量に対応する第2充電電気量を求め、かつ、求めた前記第1充電電気量及び前記第2充電電気量の和として前記鉛蓄電池の充電に要する充電電気量を求める第2ステップと、前記第2ステップにより求められた前記充電電気量に基づき、前記鉛蓄電池の充電を制御する第3ステップと、を含む。
本発明の一実施形態の電動車両が充電装置に接続された状態を示すブロック図である。 本実施形態において、充電される鉛蓄電池の端子電圧と充電電流との推移を模式的に示す図である。 鉛蓄電池を部分放電した後に充電する態様を示す図で、本実施形態の方法で充電する態様を示す。 鉛蓄電池を部分放電した後に充電する態様を示す図で、比較例として従来の方法で充電する態様を示す。 実施例及び比較例で行った放電パターンを表形式で示す図である。 実施例及び比較例における鉛蓄電池の放電容量の推移を示す図である。 放電容量の維持率を示す図である。 電動車両が本発明の一実施形態の充電装置に接続された状態を示すブロック図である。
 (本発明の原理)
 最初に、本発明の原理について説明する。発明者らは、全体の放電電気量に占める、特殊電動車両が駆動している時間以外の放電電気量(いわゆる暗電流による放電電気量)の割合が大きいと、これまで好ましいとされてきた充電方法では鉛蓄電池を満充電状態にすることが困難になることを知見した。そのロジックは、以下の通りであると推察できる。
 鉛蓄電池の放電生成物である硫酸鉛は、その結晶が小さい場合は、引き続いて行われる充電によって充電生成物(正極は二酸化鉛、負極は金属鉛)に戻りやすい。しかし、長時間放置などによって硫酸鉛の結晶が成長して大きくなると、硫酸鉛は小さい結晶のときと比べて充電生成物に戻ることが困難になる。
 そして、暗電流というモータ等の駆動時と比較にならないほどの小さなレベルの電流で放電した場合には、長時間放置された場合と同じように、結晶の大きな硫酸鉛が生成されやすくなる。なお、暗電流による放電電気量は、週末に特殊電動車両が休止するなどの通常起こりうる放置の際に蓄積されることになる。
 従来のように満充電からのモータ等の駆動に伴う大電流での放電電気量が十分に大きければ、暗電流による放電電気量が相対的に小さい(結晶が大きい硫酸鉛の割合が小さい)。したがって、暗電流放電によって生じた結晶が大きい硫酸鉛は、その後の満充電によって非効率的ながらも充電生成物に戻ることができる。
 しかしながら、満充電からの大電流での放電電気量が小さいために、暗電流による放電電気量が相対的に大きくなると、結晶が大きい硫酸鉛の割合が大きくなる。ここで、暗電流による放電電気量(結晶が大きい硫酸鉛の生成に費やされた電気量に比例)を総放電電気量の一部として通常の放電電気量と分けることなく取り扱うと、算出される充電電気量のみでは、結晶が大きい硫酸鉛の大半を充電生成物に戻すことができなくなる。このため、充電不足が発生し、ひいては鉛蓄電池の寿命特性を損なうことになる。
 上述したロジックを推察した発明者らは、鉛蓄電池の総放電電気量を一括で取り扱うのでなく、暗電流による放電電気量D1と暗電流以外の電流による放電電気量D2との和として求める必要があることを見出した。そして、暗電流による放電電気量D1に対応する充電電気量と暗電流以外の電流による放電電気量D2とを別々に求めてから加算して充電電気量Cを求め、この求めた充電電気量Cに基づき鉛蓄電池を充電することで、結晶が大きい硫酸鉛の殆どを充電生成物に戻せることを知見した。
 従来、充電電気量が十分な無停電電源装置や自動車用セルスタータ、あるいは補助電源によって、暗電流放電分を順次補充できるシステムのように、結晶が大きい硫酸鉛を効率的に充電生成物に戻せる使用環境が主であった。すなわち、補助電源等を暗電流の供給に用いて、鉛蓄電池はモータ等に対する大電流の供給のみに用いられる使用環境では、結晶の大きい硫酸鉛が殆ど生成されなかった。そのため、今回のように暗電流による放電電気量の割合が大きくなることに伴う課題は、知見すること自体が困難であった。なお、暗電流については後述する。
 (実施の形態)
 次に、本発明の好ましい実施の形態を、図を用いて説明する。
 図1は、本発明の一実施形態の電動車両が充電装置に接続された状態を示すブロック図である。図1に示される電動車両1は、鉛蓄電池10、電源スイッチ11、負荷20、及び本発明の一実施形態の充電制御回路30を備える。鉛蓄電池10は、電動車両1の各部に電力を供給する。電源スイッチ11は、電動車両1の電源をオンオフする。電源スイッチ11は、例えば、操作者がキーを挿入すると電動車両1の電源がオンにされ、キーを引き抜くと電源がオフにされる。負荷20は、モータ21、表示部22、及び電子制御ユニット(ECU)23を含む。モータ21は、当該車両を移動させる駆動源として機能する。表示部22は、例えば液晶表示パネルからなり、操作者に報知する操作情報などを表示する。
 ECU23は、例えば所定の演算処理を実行するCPU(Central Processing Unit)、所定の制御プログラムが記憶されたROM(Read Only Memory)、データを一時的に記憶するRAM(Random Access Memory)、これらの周辺回路等を備える。ECU23は、電動車両1の全体の動作を制御する。ECU23は、前回の充電終了時点から電源スイッチ11がオフ状態の経過時間(つまり電動車両1のオフ時間)を計時する。ECU23は、充電制御回路30から要求されると、計時した電動車両1の休止時間を充電制御回路30に通知する。なお、図1に示される電動車両1は、電源として鉛蓄電池10のみを備え、他の補助電源等は備えていない。
 充電制御回路30は、ECU23と同様に構成される。すなわち、充電制御回路30は、例えば所定の演算処理を実行するCPU、所定の制御プログラムが記憶されたROM、データを一時的に記憶するRAM、これらの周辺回路等を備える。充電制御回路30は、さらに、例えばフラッシュメモリなどで構成された記憶部31、充電スイッチ32、電圧検出回路33を備える。充電制御回路30は、ROMに記憶された制御プログラムを実行することにより、充電制御部34、計時部35、放電電気量取得部36、充電電気量演算部37として機能する。
 充電装置2は、例えば商用電源ACに接続された充電回路3を備える。充電回路3は、例えばAC-DCコンバータ、DC-DCコンバータ等を備える。充電回路3は、充電制御回路30からの要求に応じた充電電流を鉛蓄電池10に供給して、鉛蓄電池10を充電する。電動車両1の操作者が、電動車両1を充電装置2に接続して充電スイッチ32をオンにすると、充電制御回路30が充電回路3の動作を開始させて、充電回路3から供給される充電電流により、電動車両1の鉛蓄電池10が充電される。充電制御回路30は、充電回路3を制御して、この実施形態では例えば、多段(n段)定電流充電方式で鉛蓄電池10を充電する。nは2以上の整数であり、この実施形態では、n=2である。
 図2は、本実施形態において、充電される鉛蓄電池10の端子電圧Vtと充電電流Icとの推移を模式的に示す図である。図2において、「充電電流Ic(C)」は、「1C」を単位として電流値を表していることを意味する。「1C」は、電池の充電状態(SOC)が100%から0%になるまで1Cの電流値で放電した場合に、電池の充電状態(SOC)が1時間で0%になる電流値を表す。すなわち、「1C」は、電池の公称容量値を1Cの電流値で放電した場合に、1時間で電池の蓄電電気量がゼロとなる電流値を表す。なお、「C」は、「It」とも表される。図1及び図2を用いて、充電制御回路30の各部の機能が説明される。
 電圧検出回路33は、鉛蓄電池10の端子電圧Vtを検出する。充電制御部34は、充電スイッチ32が操作されると、予め設定された充電電流値Ic1で鉛蓄電池10の定電流充電を開始する(図2の時刻t0)。電圧検出回路33により検出された鉛蓄電池10の端子電圧Vtが予め設定された充電終止電圧Vsに達すると(図2の時刻t1)、充電制御部34は、次段(この実施形態では最終段である2段目)の充電に進む。計時部35は、1段目の定電流充電に要した充電時間T1、つまり充電開始から鉛蓄電池10の端子電圧Vtが充電終止電圧Vsに達するまでの充電時間T1を計時する。
 充電制御部34は、次段(最終段である2段目)の充電において、充電電流値Ic1から充電電流値Ic2に低下させて再び定電流充電を行う。充電制御部34は、最終段(n段目)の充電開始から、後述するように決定された充電時間T2が経過すると、充電を終了する(図2の時刻t2)。つまり、最終段(2段目)の充電では、充電終止電圧Vsの制限が外されて、充電時間T2が経過するまで充電が継続される。なお、充電終止電圧Vsおよび各段の充電電流値Ic1,Ic2は、鉛蓄電池10の特性を考慮して、高い充電効率が得られるように予め設定されている。図2では、1段目の充電電流Icの電流値Ic1が0.2Cであり、2段目の充電電流Icの電流値Ic2が0.025Cであり、充電終止電圧Vsが14.4Vである例が示されている。
 記憶部31は、1段目の定電流充電に要する充電時間T1として予め設定された複数の時間に対応付けて、総放電電気量Dが設定されたテーブルを保存している。このテーブルは、1段目の充電電流Icの電流値Ic1と充電終止電圧Vsとが既知のものとして設定されている。なお、記憶部31は、異なる電流値Ic1と充電終止電圧Vsとに対応して、複数のテーブルを保存するようにしてもよい。記憶部31は、後述する第1係数α及び第2係数βを保存している(α>β>1)。第2係数βは、例えば1.07≦β≦1.15に設定されている。記憶部31は、この実施形態では、第2係数βとして、β=1.1を保存している。記憶部31は、この実施形態では、第1係数αとして、α=1.2、1.5、1.9の3種類を保存している。記憶部31は、電動車両1の電源スイッチ11がオフの間に、鉛蓄電池10から電動車両1の負荷20等に供給されて、鉛蓄電池10から流れる暗電流の電流値を保存している。
 ここで「暗電流」とは、電動車両1が休止している際に流れる、車両の保全に最低限必要な電流(例えば各種メモリーへの電源供給など)や、鉛蓄電池10の発電要素や鉛蓄電池10を組み込んだ回路および配線が生来的に有する自己放電による電流、さらには機器がエラーモードを発信しない程度の微小な短絡電流などを含む。したがって、電動車両1の仕様及び鉛蓄電池10の仕様などに基づき、予め暗電流の電流値を推定することができる。または、電動車両1に鉛蓄電池10を組み込んだ状態で、電動車両1の休止時における暗電流の電流値を計測してもよい。このようにして得られた暗電流の電流値(推定値または計測値)が、記憶部31に予め保存されている。また、暗電流は、電流値が所定レベル未満の電流と考えてもよい。ここで、所定レベルは、例えば1/1000[C]または1/3000[C]など、電流の絶対値ではなくて鉛蓄電池の公称容量に対する比率として設定してもよい。
 放電電気量取得部36は、計時部35により計時された1段目の定電流充電に要した充電時間T1と、記憶部31に保存されているテーブルとに基づき、前回の充電終了時から今回の充電開始前までの間における鉛蓄電池10の総放電電気量Dを取得する。放電電気量取得部36は、電動車両1の休止時間をECU23に要求し、ECU23により計時された電動車両1の休止時間をECU23から受け取る。放電電気量取得部36は、ECU23により計時された電動車両1の休止時間と、記憶部31に保存されている暗電流の電流値とを乗算して、暗電流による第1放電電気量D1を求める。放電電気量取得部36は、総放電電気量Dから第1放電電気量D1を減算して、暗電流以外の電流による第2放電電気量D2を求める。言い換えると、第2放電電気量D2は、電動車両1の電源スイッチ11がオン状態(つまり電動車両1の稼働時間)における放電電気量に対応する。
 充電電気量演算部37は、放電電気量取得部36により求められた第1放電電気量D1及び第2放電電気量D2と、記憶部31に保存されている第1係数α及び第2係数βとに基づき、下記式(1)~(3)により、充電電気量Cを求める。
C1=D1×α   (1)
C2=D2×β   (2)
C=C1+C2   (3)
 ここで、C1は、第1放電電気量D1に対応する第1充電電気量を表し、C2は、第2放電電気量D2に対応する第2充電電気量を表す。
 充電電気量演算部37は、求めた充電電気量Cと、充電電流値Ic1,Ic2と、1段目の定電流充電に要した充電時間T1とに基づき、最終段(2段目)の充電時間T2を決定する。上述のように、充電制御部34は、最終段(n段目)の充電開始(図2の時刻t1)から、充電電気量演算部37により決定された充電時間T2が経過すると、充電を終了する(図2の時刻t2)。本実施形態において、ECU23は、機器制御部の一例に対応し、記憶部31は、第1記憶部及び第2記憶部の一例に対応し、電圧検出回路33は、電圧検出部の一例に対応し、放電電気量取得部36は、第1取得部及び第2取得部の一例に対応し、充電電気量演算部37は、演算部の一例に対応し、電動車両1は、電池駆動機器の一例に対応し、充電回路3は、充電部の一例に対応する。
 図3及び図4は、鉛蓄電池を部分放電した後に充電する態様を示す図である。図3は本実施形態の方法で充電する態様を示し、図4は比較例として従来の方法で充電する態様を示す。具体的には、図3及び図4は、鉛蓄電池10を電源とする特殊電動車両1を、3回の休止期間(Y1~Y3)を挟んで、朝から夜に掛けて4回の駆動期間(X1~X4)において駆動させ、その後に充電を行う(Z1~Z2)パターンを示している。なお、充電条件は、図1及び図2を用いて説明されたように、鉛蓄電池10が1段目の充電で所定の充電終止電圧Vsに達すると、充電電流Icを電流値Ic1からIc2に低下させて2段目の充電へ進み、鉛蓄電池10が充電終止電圧Vsに達した後に所定の充電時間T2が経過するまで充電する2段定電流充電(充電電流IcはIc1>Ic2)である。図3及び図4では、1段目の充電期間をZ1、2段目の充電期間をZ2として示している。
 また、充電期間Z1~Z2が終了した後、朝の駆動期間X1を迎えるまでの間、鉛蓄電池10は休止期間Y4を経ることになる。休止期間Y1~Y4の間中、鉛蓄電池10は、暗電流放電を続けることになる。ここで、暗電流とは上述したように、車両の保全に最低限必要な電流(例えば各種メモリーへの電源供給など)や、鉛蓄電池10の発電要素や鉛蓄電池10を組み込んだ回路および配線が生来的に有する自己放電による電流のことなどを指す。
 休止期間Y1~Y4における暗電流放電の間、鉛蓄電池10の放電生成物である硫酸鉛はゆっくりと成長できる。このため、放電深度にかかわらず、駆動期間X1~X4で生成される硫酸鉛と比較して、休止期間Y1~Y4で生成される硫酸鉛の結晶は大きくなる。このような結晶が大きい硫酸鉛は、通常の電流による放電生成物である結晶が小さい硫酸鉛と比べて不活性であり、充電反応が鈍くなる。このような結晶が大きい硫酸鉛の生成を考慮せずに、図4に示されるように、暗電流による放電電気量を通常の放電電気量と合算し、この合算した総放電電気量Daに一定の係数(例えば1.07~1.15)を乗じて求めた充電電気量Caしか充電しなかった場合、結晶が大きい硫酸鉛の大半を充電生成物に戻すことができなくなる。その結果、充電不足が発生し、ひいては鉛蓄電池10の寿命特性を損なうことになる。
 図3に示される充電態様では、図4に示した従来の方法に対して、総放電電気量Dを、駆動期間(X1~X4)すなわち通常の放電(暗電流以外の電流による放電)における第2放電電気量D2と、休止期間(Y1~Y4)の間の暗電流による第1放電電気量D1の和として求める(図1の放電電気量取得部36)。そして、満充電に必要な充電電気量Cを、第1放電電気量D1に第1係数αを乗じた第1充電電気量C1と、第2放電電気量D2に第2係数βを乗じた第2充電電気量C2との和として求める(図1の充電電気量演算部37)。ここで、第2係数βは上述した従来値(つまり例えば1.07~1.15)でよいが、第1係数αは第2係数βより大きい値でなければならない。
 上述したように、暗電流による第1放電電気量D1に乗じる第1係数αを暗電流以外の(通常の)電流による第2放電電気量D2に乗じる第2係数βより大きくし、第1充電電気量C1(=α×D1)を大きく取って充電すれば、暗電流による放電によって結晶が大きくなった硫酸鉛が解消されやすくなる。さらに図2及び図3に示すように、多段定電流充電における電流値が小さい最終段の充電電気量を十分に大きくすれば、結晶が大きい硫酸鉛の解消に必要な電気量を、結晶が大きい硫酸鉛の解消に有利な低電流で行えるので好ましい。そのためには、必要な充電電気量Cが同じであれば、総放電電気量Dに占める暗電流による第1放電電気量D1の比率が相対的に大きいほど、最終段の充電時間T2を長くするのが望ましい。具体的には、比率D1/Dが大きくなるほど第1係数αを大きくさせるなどして、暗電流による第1放電電気量D1の総放電電気量Dに対する比率D1/Dと第1係数αの大きさとを合理的に相応させることが望ましい。そこで、記憶部31は、この実施形態では、上述のように、第1係数αとして、α=1.2、1.5、1.9の3種類を保存している。この3種類の第1係数αは、比D1/Dに対応して、予め設定されている。そして、充電電気量演算部37は、放電電気量取得部36により取得された総放電電気量D及び第1放電電気量D1からD1/Dを求め、記憶部31に第1係数αとして保存されている複数(この実施形態では3種類)の値から、比D1/Dに対応する値を第1係数αとして用いる。
 (実施例)
 以下に、本発明の上記実施形態の効果を実施例及び比較例によって示す。
 図5は実施例及び比較例で行った放電パターンを表形式で示す図である。図6は実施例及び比較例における鉛蓄電池の放電容量の推移を示す図である。鉛蓄電池としては、公称電圧が12Vであり、公称容量が60AhであるEC-FV1260(パナソニックストレージバッテリー株式会社製)を用いた。この鉛蓄電池に対し、実施例では図3と同様の充放電を繰り返し、比較例では図4と同様の充放電を繰り返した。すなわち、図5に示されるように、実施例及び比較例のいずれにおいても、駆動期間X1~X4では1/3[C]の比較的大きな電流値で放電を行い、休止期間Y1~Y4では0.01[C]の微小な電流値で放電を行って、駆動期間X4の後に2段定電流充電を行った。この2段定電流充電では、上記実施形態において図2に示した例と同様に、1段目の充電電流値Ic1=0.2[C]とし、2段目の充電電流値Ic2=0.025[C]とし、1段目の充電終止電圧Vs=14.4Vとした。後述するように、実施例と比較例とでは、2段目の充電時間が異なっている。
 実施例及び比較例のいずれにおいても、図5に示される3種類の放電パターンL~Nを順に行った。すなわち、放電パターンLの放電→2段定電流充電→放電パターンMの放電→2段定電流充電→放電パターンNの放電→2段定電流充電を1括りとして、これを繰り返した。そして、適当な間隔で、以下に示す要領にて鉛蓄電池の放電容量を測定した。
 まず、予備放電を1/3[C]の定電流で、鉛蓄電池の端子電圧が終止電圧9.9Vに達するまで行う。この時点では、容量は測定しない。次いで、2段定電流充電を行う。この2段定電流充電では、1段目の充電電流値を0.2[C]とし、1段目の充電終止電圧14.4Vとする。また、2段目の充電電流値を0.025[C]とし、2段目の充電時間を1段目の充電電気量Rに対して、(60-R)/1.5[時間]とする。すなわち、1段目の充電電流値及び充電時間から、1段目の充電電気量Rを求めることができる。2段目の充電電流値が0.025[C]であり、鉛蓄電池の公称容量が60Ahであることから、2段目の電流値は1.5Aになる。したがって、2段目の充電時間を(60-R)/1.5[時間]とすることで、鉛蓄電池を満充電にすることができる。
 続いて、放電を1/3[C]の定電流で、鉛蓄電池の端子電圧が終止電圧9.9Vに達するまで行う。このとき、放電容量を測定する。すなわち、満充電から終止電圧9.9Vに達するまでの放電時間と、定電流である放電電流の電流値とに基づき、放電容量が測定される。次いで、最後に予備充電として、上記充電と同じ2段定電流充電が行われて、放電容量の測定を終了する。
 (比較例1-1)
 まず、図5の放電パターンLに示す駆動期間X1~X4と休止期間Y1~Y4との放電を行った。そして、駆動期間X1~X4における放電電気量D2と休止期間Y1~Y4における放電電気量D1を合算して総放電電気量Daとし、これに係数として1.1(第2係数βに等しい値)を乗じた充電電気量Ca(Ca=Da×1.1)となるよう、駆動期間X4の後に2段定電流充電を行った。続いて、図5の放電パターンMに示す駆動期間X1~X4と休止期間Y1~Y4との放電を行い、放電パターンLの後と同じ条件の充電(充電電気量Ca=Da×1.1)を行った。さらに、図5の放電パターンNに示す駆動期間X1~X4と休止期間Y1~Y4の放電を行い、放電パターンLの後と同じ条件の充電(充電電気量Ca=Da×1.1)を行った。これらの充放電は、SOCが50%に達する放電を行ってから満充電状態まで充電を行うモードに相当する。上述の要領で測定された放電容量の推移が図6に示される。
 (実施例1-1)
 上述のように、比較例1-1と同様に、各放電パターンL~Nの後で、2段定電流充電を行っている。但し、実施例1-1では、上記実施形態で説明されたように、総放電電気量Dを駆動期間X1~X4における第2放電電気量D2と、休止期間Y1~Y4における第1放電電気量D1とに分けている。そして、第1放電電気量D1に第1係数αとして1.5を乗じた第1充電電気量C1と、第2放電電気量D2に第2係数βとして1.1を乗じた第2充電電気量C2との和として、充電電気量Cを求めている。これ以外は、比較例1-1と同様に充放電を繰り返した。比較例1-1と同じ上述の要領で測定された放電容量の推移が図6に併記される。
 なお、充電条件については、比較例1-1に対して、充電電気量Cの算出値が大きくなった分だけ、最終段である2段目の充電時間(充電時間T2)が長くなっている。
 (実施例1-2)
 実施例1-2では、実施例1-1に対して、各放電パターンL~Nに対して充電電気量Cの算出に用いられる第1係数αの値を異ならせている。すなわち、実施例1-2では、放電パターンLの場合は第1係数αを1.2とし、放電パターンMの場合は第1係数αを1.5とし、放電パターンNの場合は第1係数αを1.9として、充電電気量Cを求めている。これ以外は実施例1-1と同様に充放電を繰り返した。比較例1-1と同じ上述の要領で測定された放電容量の推移が図6に併記される。
 なお、充電条件については、実施例1-1とは異なり、第1充電電気量C1の算出値が大きくなるほど、最終段である2段目の充電時間(充電時間T2)が長くなっている。
 図6から明らかなように、暗電流による第1放電電気量D1に配慮していない比較例1-1と比べて、実施例1-1および1-2は、良好な寿命特性を示した。なかでも、暗電流による第1放電電気量D1に比例して第1係数αを大きくし、最終段である2段目の充電時間(充電時間T2)を長くした実施例1-2は、非常に優れた寿命特性を示した。この理由として、結晶が大きい硫酸鉛が多くなった(暗電流による第1放電電気量D1が大きくなった)直後に十分な充電電気量Cを与えてこれを解消しつつ、そうでない場合には充電電気量Cを絞って過充電を回避したことが挙げられる。
 なお、鉛蓄電池が搭載された電池駆動機器(例えば電動車両)の駆動期間と休止期間の繰り返しパターンが略一定である場合(例えば放電パターンL~Nが均等に繰り返される場合)、各々の放電パターンに好適な第1係数αの平均値などを基にした代表値(例えば放電パターンL~Nの係数αとして用いた1.2、1.5、1.9の平均値1.53)を固定値として用いても、少なくとも実施例1-1と同等以上の効果が見込める。この場合には、記憶部31は、鉛蓄電池10が用いられる電動車両1などの電池駆動機器の使用状態に基づき設定された1種類の第1係数αを保存しておけばよい。
 (実施例2)
 図7は放電容量の維持率を示す図である。比較例1-1、実施例1-1および1-2では、放電において3つの放電パターンL~Nを順に繰り返したが、ここでは1つの放電パターンで放電を繰り返した場合における、本発明の上記実施形態による効果を示す。
 実施例2では、第2放電電気量D2に乗じる第2係数βを1.1として第2充電電気量C2を求めた(C2=D2×1.1)。一方、第1放電電気量D1に乗じる第1係数αを、放電パターンL(D1/D=0.05)を繰り返す場合はα=1.2とし、放電パターンM(D1/D=0.2)を繰り返す場合はα=1.5とし、放電パターンN(D1/D=0.4)を繰り返す場合はα=1.9として、第1充電電気量C1を求めた(C1=D1×α)。
 さらに、図5に示される放電パターンL~Nとは別の放電パターンとして、放電パターンL2(D1/D=0.1)を繰り返す場合はα=1.3とし、放電パターンL3(D1/D=0.15)を繰り返す場合はα=1.4とし、放電パターンM2(D1/D=0.25)を繰り返す場合はα=1.6とし、放電パターンM3(D1/D=0.3)を繰り返す場合はα=1.7とし、放電パターンM4(D1/D=0.35)を繰り返す場合はα=1.8として、第1充電電気量C1を求めた(C1=D1×α)。
 そして、第1充電電気量C1と第2充電電気量C2を加算した充電電気量Cに相応するよう、上記比較例1-1等と同様の2段定電流充電を行った。この充放電を繰り返して、600サイクル目に上述の要領で鉛蓄電池の放電容量を測定した。その結果を、初期容量に対する600サイクル目容量の比率である容量維持率として、図7の符号Pに示す。
 他方、比較例2として、放電パターンL~Nの如何を問わず、総放電電気量Daのみに着目して、これに係数として1.1(第2係数βに等しい値)を乗じた充電電気量Ca(Ca=Da×1.1)に相応するよう、上記比較例1-1等と同様の2段定電流充電を行った。この充放電を繰り返して、600サイクル目に上述の要領で鉛蓄電池の放電容量を測定した。その結果を、初期容量に対する600サイクル目容量の比率である容量維持率として、図7の符号Qに示す。
 図7において、容量維持率Pと容量維持率Qとの乖離度合から、本発明の上記実施形態の効果が顕著になるのは、総放電電気量Dに占める暗電流による第1放電電気量D1の比率D1/Dが0.2以上の場合であることが分かる。
 言い換えると、図7に示されるように、容量維持率Qは、容量維持率Pに対して、比率D1/D=0.15までは徐々に低下している。比率D1/D=0.15以上になると、容量維持率Qの容量維持率Pに対する低下度合いが大きくなる。そして、比率D1/D=0.2以上になると、容量維持率Qは、容量維持率Pに対して90%以下となる。よって、比率D1/D=0.15以上になると、上記実施形態の効果が出始めて、比率D1/D=0.2以上になると、上記実施形態の効果が顕著になると言うことができる。
 (他の実施形態)
 本発明は上記実施形態に限られない。以下、本発明の他の実施形態が説明される。
 (1)図8は、電動車両が本発明の一実施形態の充電装置に接続された状態を示すブロック図である。図8に示される実施形態では、上記実施形態と異なり、充電制御回路は、電動車両に代えて充電装置に設けられている。すなわち、図8に示される電動車両15は、鉛蓄電池10、電源スイッチ11、負荷20を備える。また、図8に示される充電装置25は、充電回路3及び本発明の一実施形態の充電制御回路30を備える。図8では、図1に示される上記実施形態と同一要素には同一符号が付されている。図8に示される充電制御回路30は、図1に示される上記実施形態と同様の機能を有する。すなわち、電動車両15の操作者が、電動車両15を充電装置25に接続し、充電装置25に設けられている充電制御回路30の充電スイッチ32を操作すると、充電制御回路30が充電回路3を制御して、充電回路3から供給される充電電流により電動車両15の鉛蓄電池10が充電される。図8に示される実施形態でも、上記実施形態と同様に、寿命特性を低下させることなく、鉛蓄電池10を好適に充電することができる。
 (2)上記実施形態では、放電電気量取得部36は、ECU23により計時された電動車両1の休止時間と、記憶部31に保存されている暗電流の電流値とを乗算して、暗電流による第1放電電気量D1を求めているが、これに限られない。鉛蓄電池10からモータ21の駆動のために供給される電流に比べて、モータ21以外の負荷20、例えば表示部22やECU23などの駆動のために供給される電流は非常に小さい。このため、電動車両1の電源スイッチ11がオンにされていても、モータ21が停止している間に鉛蓄電池10から流れる電流は、上記所定レベル(例えば1/1000[C])未満の暗電流と考えることができる。そこで、モータ21が停止している間の放電を第1放電電気量D1に含めるようにしてもよい。以下、上記実施形態と異なる点を中心として、この変形された実施形態が説明される。
 ECU23は、電動車両1の休止時間に加えて、電動車両1の電源スイッチ11がオンにされており、かつ、モータ21が停止しているモータ停止時間を計時する。ECU23は、放電電気量取得部36からの要求に応じて、計時した電動車両1の休止時間及びモータ停止時間を放電電気量取得部36に通知する。記憶部31は、電動車両1の休止時間に鉛蓄電池10から流れる上記所定レベル未満の第1電流の電流値を保存している。記憶部31は、電動車両1の電源スイッチ11がオンにされており、かつ、モータ21が停止しているモータ停止時間に鉛蓄電池10から流れる上記所定レベル未満の第2電流の電流値を保存している。
 放電電気量取得部36は、ECU23により計時された電動車両1の休止時間と、記憶部31に保存されている第1電流の電流値とを乗算して、第1電流による放電電気量D11を求める。放電電気量取得部36は、ECU23により計時されたモータ停止時間と、記憶部31に保存されている第2電流の電流値とを乗算して、第2電流による放電電気量D12を求める。放電電気量取得部36は、放電電気量D11と放電電気量D12とを加算して、上記所定レベル未満の電流による第1放電電気量D1を求める。
 上記の点以外は、この変形された実施形態は、上記実施形態と同様である。この変形された実施形態においても、上記実施形態と同様に、寿命特性を低下させることなく、鉛蓄電池10を好適に充電することができる。この変形された実施形態において、モータ21は、第2負荷の一例に対応し、表示部22及びECU23は、第1負荷の一例に対応し、記憶部31は、第3記憶部の一例に対応し、放電電気量取得部36は、第1取得部及び第3取得部の一例に対応する。この変形された実施形態は、図8に示される実施形態にも適用することができる。
 (3)上記実施形態では、ECU23とは別に、充電制御回路30を設けているが、これに限られない。例えば、充電制御回路30の充電制御部34、計時部35、放電電気量取得部36、充電電気量演算部37などの機能を、ECU23が実現するように構成してもよい。
 (4)上記実施形態では、放電電気量取得部36は、記憶部31に予め保存されているテーブルを用いて、総放電電気量を取得しているが、これに限られない。充電制御回路30は、例えば電気量積算計を備えるようにしてもよい。そして、電気量積算計により、放電中において、電流値が上記所定レベル未満の放電による第1放電電気量D1と、電流値が上記所定レベル以上の放電による第2放電電気量D2とを、それぞれ積算するようにしてもよい。これによって、第1放電電気量D1及び第2放電電気量D2を正確に求めることができる。
 (5)上記実施形態では、多段(n段)定電流充電においてn=2としているが、これに限られず、nを3以上としてもよい。
 (6)上記実施形態では、電動車両としているが、これに限られない。例えば、補助電源を備えずに、鉛蓄電池を唯一の電源として備え、鉛蓄電池からモータ等の負荷に上記所定レベル以上の大電流が供給され、かつ、鉛蓄電池から上記所定レベル未満の暗電流が流れるように構成された電池駆動機器であってもよい。このような電池駆動機器に設けられた鉛蓄電池を、寿命特性を低下させずに好適に充電することができる。さらに、上記電池駆動機器の一例として、鉛蓄電池と、負荷としての街灯と、太陽光を電力に変換し、該変換した電力により鉛蓄電池を充電する光電変換素子とを備える太陽光発電システムを挙げることができる。この太陽光発電システムでは、街灯の点灯時間が短い場合には、暗電流による放電電気量の総放電電気量に対する比率が大きくなる。したがって、この太陽光発電システムにおいても、電池の寿命特性を低下させずに、太陽光発電システムに設けられた鉛蓄電池を好適に充電することができる。
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 本発明の一局面に係る充電制御回路は、電池駆動機器の電源として用いられる鉛蓄電池を充電する充電部を制御する充電制御回路であって、充電開始の指示に応じて、前回の充電終了時から今回の充電開始時までの間における前記鉛蓄電池の総放電電気量を、電流値が所定レベル未満の放電電流による放電電気量である第1放電電気量と、電流値が前記所定レベル以上の放電電流による放電電気量である第2放電電気量とに分けて取得する第1取得部と、前記第1取得部により取得された前記第1放電電気量に対応する第1充電電気量及び前記第1取得部により取得された前記第2放電電気量に対応する第2充電電気量を求め、かつ、求めた前記第1充電電気量及び前記第2充電電気量の和として前記鉛蓄電池の充電に要する充電電気量を求める演算部と、前記演算部により求められた前記充電電気量に基づき、前記充電部による前記鉛蓄電池の充電を制御する充電制御部と、を備えた。
 この構成によれば、第1取得部は、充電開始の指示に応じて、前回の充電終了時から今回の充電開始時までの間における鉛蓄電池の総放電電気量を、電流値が所定レベル未満の放電電流による放電電気量である第1放電電気量と、電流値が所定レベル以上の放電電流による放電電気量である第2放電電気量とに分けて取得する。演算部は、第1取得部により取得された第1放電電気量に対応する第1充電電気量及び第1取得部により取得された第2放電電気量に対応する第2充電電気量を求め、かつ、求めた第1充電電気量及び第2充電電気量の和として鉛蓄電池の充電に要する充電電気量を求める。充電制御部は、演算部により求められた充電電気量に基づき、充電部による鉛蓄電池の充電を制御する。
 電流値が所定レベル未満の放電電流による放電電気量である第1放電電気量が大きくなると、放電電流の電流値が所定レベル未満と小さいため、放電によって生成される硫酸鉛の結晶のサイズが大きくなる。したがって、充電電気量が不十分になると、硫酸鉛の結晶が解消されずに残ってしまう。しかしながら、上記構成によれば、放電電気量取得部は、総放電電気量を第1放電電気量と第2放電電気量とに分けて取得し、充電電気量演算部は、第1放電電気量に対応する第1充電電気量と第2放電電気量に対応する第2充電電気量とを別々に求めている。これによって、充電電気量が不十分になるのを未然に防止することができる。その結果、寿命特性を低下させないように、鉛蓄電池を好適に充電することが可能になっている。
 また、上記の充電制御回路において、予め設定された第1係数と、前記第1係数より小さく、かつ1より大きく設定された第2係数とを保存している第1記憶部をさらに備え、前記演算部は、前記第1取得部により取得された前記第1放電電気量と前記第1記憶部に保存されている前記第1係数とを乗算して前記第1充電電気量を求め、かつ、前記第1取得部により取得された前記第2放電電気量と前記第1記憶部に保存されている前記第2係数とを乗算して前記第2充電電気量を求めることが好ましい。
 この構成によれば、第1記憶部は、予め設定された第1係数と、第1係数より小さく、かつ1より大きく設定された第2係数とを保存している。演算部は、第1取得部により取得された第1放電電気量と第1記憶部に保存されている第1係数とを乗算して第1充電電気量を求める。また、演算部は、第1取得部により取得された第2放電電気量と第1記憶部に保存されている第2係数とを乗算して第2充電電気量を求める。このように、第2係数より第1係数の方が大きく設定されているため、第1放電電気量に対応する第1充電電気量が不十分になるのを、より確実に防止することができる。
 また、上記の充電制御回路において、前記第1記憶部は、前記総放電電気量に対する前記第1放電電気量の比率の大きさに対応して複数の前記第1係数を保存し、前記複数の第1係数は、前記比率が大きいほど数値が大きく、前記演算部は、前記総放電電気量に対する前記第1放電電気量の比率を求め、前記第1記憶部に保存されている前記複数の前記第1係数のうちで、求めた前記比率に対応する前記第1係数を用いることが好ましい。
 この構成によれば、第1記憶部は、総放電電気量に対する第1放電電気量の比率の大きさに対応して複数の第1係数を保存している。複数の第1係数は、比率が大きいほど数値が大きい。演算部は、総放電電気量に対する第1放電電気量の比率を求め、第1記憶部に保存されている複数の第1係数のうちで、求めた比率に対応する第1係数を用いる。このように、総放電電気量に対する第1放電電気量の比率が大きいほど数値の大きい第1係数を用いるため、第1放電電気量に対応する第1充電電気量が不十分になるのを、より一層確実に防止することができる。
 また、上記の充電制御回路において、充電開始の指示に応じて、前回の充電終了時から今回の充電開始時までの間において前記電池駆動機器の電源がオフにされているオフ時間を取得する第2取得部と、前記電池駆動機器の前記オフ時間に前記鉛蓄電池から流れる前記所定レベル未満の暗電流の電流値を保存している第2記憶部と、をさらに備え、前記第1取得部は、前記第2取得部により取得された前記オフ時間と、前記第2記憶部に保存されている前記暗電流の電流値とに基づき、前記第1放電電気量を求めることが好ましい。
 この構成によれば、第2取得部は、充電開始の指示に応じて、前回の充電終了時から今回の充電開始時までの間において電池駆動機器の電源がオフにされているオフ時間を取得する。第2記憶部は、電池駆動機器のオフ時間に鉛蓄電池から流れる所定レベル未満の暗電流の電流値を保存している。第1取得部は、第2取得部により取得されたオフ時間と、第2記憶部に保存されている暗電流の電流値とに基づき、第1放電電気量を求める。このように、オフ時間と暗電流の電流値とに基づき、第1放電電気量を簡易な構成で容易に求めることができる。
 また、上記の充電制御回路において、前記電池駆動機器は、駆動源としてのモータを有する充電制御回路であって、充電開始の指示に応じて、前回の充電終了時から今回の充電開始時までの間において、前記電池駆動機器の電源がオフにされているオフ時間と、前記電池駆動機器の電源がオンにされ、かつ前記モータが停止しているモータ停止時間とを取得する第3取得部と、前記電池駆動機器の前記オフ時間に前記鉛蓄電池から流れる前記所定レベル未満の第1電流の電流値と、前記電池駆動機器の前記モータ停止時間に前記鉛蓄電池から流れる前記所定レベル未満の第2電流の電流値とを保存している第3記憶部と、をさらに備え、前記第1取得部は、前記第3取得部により取得された前記オフ時間と、前記第3記憶部に保存されている前記第1電流の電流値とに基づき、前記第1電流による放電電気量を求め、前記第3取得部により取得された前記モータ停止時間と、前記第3記憶部に保存されている前記第2電流の電流値とに基づき、前記第2電流による放電電気量を求め、かつ、前記第1電流による放電電気量と前記第2電流による放電電気量との和を前記第1放電電気量として求めることが好ましい。
 この構成によれば、第3取得部は、充電開始の指示に応じて、前回の充電終了時から今回の充電開始時までの間において、電池駆動機器の電源がオフにされているオフ時間と、電池駆動機器の電源がオンにされ、かつモータが停止しているモータ停止時間とを取得する。第3記憶部は、電池駆動機器のオフ時間に鉛蓄電池から流れる所定レベル未満の第1電流の電流値と、電池駆動機器のモータ停止時間に鉛蓄電池から流れる所定レベル未満の第2電流の電流値とを保存している。第1取得部は、第3取得部により取得されたオフ時間と、第3記憶部に保存されている第1電流の電流値とに基づき、第1電流による放電電気量を求める。第1取得部は、第3取得部により取得されたモータ停止時間と、第3記憶部に保存されている第2電流の電流値とに基づき、第2電流による放電電気量を求める。第1取得部は、第1電流による放電電気量と第2電流による放電電気量との和を第1放電電気量として求める。したがって、第1放電電気量を簡易な構成で容易に求めることができる。
 また、上記の充電制御回路において、前記総放電電気量に対する前記第1放電電気量の比率が0.15以上であることが好ましい。
 この構成によれば、総放電電気量に対する第1放電電気量の比率が0.15以上であるため、上述した課題は、この構成の場合に顕著であるので、この場合に本発明を適用すれば、高い効果が得られるようになる。
 また、上記の充電制御回路において、前記鉛蓄電池の端子電圧を検出する電圧検出部をさらに備え、前記充電制御部は、所定の充電電流値により定電流充電を開始し、前記電圧検出部により検出された前記鉛蓄電池の前記端子電圧が所定の充電終止電圧に達すると、前記充電電流値を低減して次段の充電に進むn(nは2以上の整数)段定電流充電を行い、最終のn段目の充電では、n段目の充電開始からの経過時間を計時しつつ、前段の前記充電電流値を低減した値か又は同一値で、前記鉛蓄電池の前記端子電圧に関係なく充電を行い、前記各段の前記充電電流値と、前記各段において前記鉛蓄電池の前記端子電圧が前記充電終止電圧に達するまでに要した時間とに基づき、(n-1)段目の充電までに前記鉛蓄電池が充電された充電済み電気量を求め、かつ、前記演算部により求められた前記充電電気量と、求めた前記充電済み電気量とに基づき、前記最終のn段目の充電における充電時間を決定し、決定した前記充電時間が経過すると前記n段目の充電を終了することが好ましい。
 この構成によれば、電圧検出部は、鉛蓄電池の端子電圧を検出する。充電制御部は、所定の充電電流値により定電流充電を開始し、電圧検出部により検出された鉛蓄電池の端子電圧が所定の充電終止電圧に達すると、充電電流値を低減して次段の充電に進むn(nは2以上の整数)段定電流充電を行う。また、充電制御部は、最終のn段目の充電では、n段目の充電開始からの経過時間を計時しつつ、前段の充電電流値を低減した値か又は同一値で、鉛蓄電池の端子電圧に関係なく充電を行う。また、充電制御部は、各段の充電電流値と、各段において鉛蓄電池の端子電圧が充電終止電圧に達するまでに要した時間とに基づき、(n-1)段目の充電までに鉛蓄電池が充電された充電済み電気量を求める。また、充電制御部は、演算部により求められた充電電気量と、求めた充電済み電気量とに基づき、最終のn段目の充電における充電時間を決定し、決定した充電時間が経過するとn段目の充電を終了する。
 この2段以上の多段定電流充電では、充電段数がk段のときの充電電流値をIkとすると、nが3以上の場合はI1>I2>・・・>In-1≧Inとなり、n=2の場合はI1>I2となる。このようなn段定電流充電を行うと、比較的短時間でありながら充電電流値の小さい最終段(n段目)の充電に至ることができる。したがって、小さい充電電流値による充電は結晶が大きい硫酸鉛の解消に適しているため、好ましい。
 本発明の他の局面に係る電池駆動機器は、上記の充電制御回路と、前記電源として用いられる前記鉛蓄電池と、前記鉛蓄電池から供給される電流の電流値が前記所定レベル未満である第1負荷と、前記鉛蓄電池から供給される電流の電流値が前記所定レベル以上である第2負荷と、を備えた。
 この構成によれば、上記の充電制御回路を備える。鉛蓄電池は、電源として用いられる。第1負荷は、鉛蓄電池から供給される電流の電流値が所定レベル未満である。第2負荷は、鉛蓄電池から供給される電流の電流値が所定レベル以上である。電流値が所定レベル未満である第1負荷に対する放電による放電電気量である第1放電電気量が大きくなると、放電の電流値が所定レベル未満と小さいため、放電によって生成される硫酸鉛の結晶のサイズが大きくなる。したがって、充電電気量が不十分になると、硫酸鉛の結晶が解消されずに残ってしまう。しかしながら、上記構成によれば、放電電気量取得部は、第1負荷に対する放電による第1放電電気量と、第2負荷に対する放電による第2放電電気量とに分けて、総放電電気量を取得する。そして、充電電気量演算部は、第1放電電気量に対応する第1充電電気量を求めているため、充電電気量が不十分になるのを未然に防止することができる。その結果、寿命特性を低下させないように、鉛蓄電池を好適に充電することが可能になっている。
 上記の電池駆動機器において、前記鉛蓄電池から前記第2負荷への電力供給をオンオフする電源スイッチと、前回の充電終了時から前記電源スイッチがオフにされているオフ時間を計時する機器制御部と、をさらに備えることが好ましい。
 この構成によれば、電源スイッチは、鉛蓄電池から第2負荷への電力供給をオンオフする。機器制御部は、前回の充電終了時から電源スイッチがオフにされているオフ時間を計時する。電源スイッチがオフにされて第2負荷への電力供給がオフにされていても、電流値が所定レベル未満の暗電流が鉛蓄電池から流れていることが多い。そこで、前回の充電終了時から電源スイッチがオフにされているオフ時間を計時することにより、暗電流が流れている時間を正確に知ることができる。その結果、第1取得部は、第1放電電気量を取得することが可能になる。
 上記の電池駆動機器において、前記鉛蓄電池から前記第1負荷及び前記第2負荷への電力供給をオンオフする電源スイッチと、前回の充電終了時から前記電源スイッチがオフにされているオフ時間を計時する機器制御部と、をさらに備え、前記第2負荷は、駆動源としてのモータを含み、前記機器制御部は、さらに、前回の充電終了時から、前記電源スイッチがオンにされており、かつ、前記モータが駆動されていない時間を計時することが好ましい。
 この構成によれば、電源スイッチは、鉛蓄電池から第1負荷及び第2負荷への電力供給をオンオフする。機器制御部は、前回の充電終了時から電源スイッチがオフにされているオフ時間を計時する。第2負荷は、駆動源としてのモータを含む。機器制御部は、さらに、前回の充電終了時から、電源スイッチがオンにされており、かつ、モータが駆動されていない時間を計時する。電源スイッチがオンにされて第1負荷及び第2負荷への電力供給がオンにされていても、モータが駆動されていない場合には、電流値が所定レベル未満の電流のみが鉛蓄電池から流れていることが多い。そこで、前回の充電終了時から、電源スイッチがオンにされており、かつ、モータが駆動されていない時間を計時することにより、所定レベル未満の電流が流れている時間を正確に知ることができる。その結果、第1取得部は、第1放電電気量を取得することが可能になる。
 本発明のさらに他の局面に係る充電装置は、上記の充電制御回路と、前記充電制御回路により制御されて前記鉛蓄電池を充電する充電部と、を備えた。
 この構成によれば、上記の充電制御回路を備える。充電部は、充電制御回路により制御されて鉛蓄電池を充電する。電流値が所定レベル未満の放電電流による放電電気量である第1放電電気量が大きくなると、放電電流の電流値が所定レベル未満と小さいため、放電によって生成される硫酸鉛の結晶のサイズが大きくなる。したがって、充電電気量が不十分になると、硫酸鉛の結晶が解消されずに残ってしまう。しかしながら、上記構成によれば、放電電気量取得部は、総放電電気量を第1放電電気量と第2放電電気量とに分けて取得し、充電電気量演算部は、第1放電電気量に対応する第1充電電気量と第2放電電気量に対応する第2充電電気量とを別々に求めている。これによって、充電電気量が不十分になるのを未然に防止することができる。その結果、寿命特性を低下させないように、鉛蓄電池を好適に充電することが可能になっている。
 本発明のさらに他の局面に係る充電方法は、電池駆動機器の電源として用いられる鉛蓄電池の充電方法であって、充電開始の指示に応じて、前回の充電終了時から今回の充電開始時までの間における前記鉛蓄電池の総放電電気量を、電流値が所定レベル未満の放電電流による放電電気量である第1放電電気量と、電流値が前記所定レベル以上の放電電流による放電電気量である第2放電電気量とに分けて取得する第1ステップと、前記第1ステップにより取得された前記第1放電電気量に対応する第1充電電気量及び前記第1ステップにより取得された前記第2放電電気量に対応する第2充電電気量を求め、かつ、求めた前記第1充電電気量及び前記第2充電電気量の和として前記鉛蓄電池の充電に要する充電電気量を求める第2ステップと、前記第2ステップにより求められた前記充電電気量に基づき、前記鉛蓄電池の充電を制御する第3ステップと、を含む。
 この構成によれば、第1ステップでは、充電開始の指示に応じて、前回の充電終了時から今回の充電開始時までの間における鉛蓄電池の総放電電気量が、電流値が所定レベル未満の放電電流による放電電気量である第1放電電気量と、電流値が所定レベル以上の放電電流による放電電気量である第2放電電気量とに分けて取得される。第2ステップでは、第1ステップにより取得された第1放電電気量に対応する第1充電電気量及び第1ステップにより取得された第2放電電気量に対応する第2充電電気量が求められ、かつ、求められた第1充電電気量及び第2充電電気量の和として鉛蓄電池の充電に要する充電電気量が求められる。第3ステップでは、第2ステップにより求められた充電電気量に基づき、鉛蓄電池の充電が制御される。
 電流値が所定レベル未満の放電電流による放電電気量である第1放電電気量が大きくなると、放電電流の電流値が所定レベル未満と小さいため、放電によって生成される硫酸鉛の結晶のサイズが大きくなる。したがって、充電電気量が不十分になると、硫酸鉛の結晶が解消されずに残ってしまう。しかしながら、上記構成によれば、第1ステップにおいて、総放電電気量が第1放電電気量と第2放電電気量とに分けて取得され、第2ステップにおいて、第1放電電気量に対応する第1充電電気量と第2放電電気量に対応する第2充電電気量とが別々に求められている。これによって、充電電気量が不十分になるのを未然に防止することができる。その結果、寿命特性を低下させないように、鉛蓄電池を好適に充電することが可能になっている。
 本発明によれば、主電源として鉛蓄電池を用いた電動車両などの電池駆動機器を短時間だけ利用してから満充電状態まで部分充電(多段定電流充電)を行うモードを繰り返しても、充電不足が生じるのを防止することができ、その結果、鉛蓄電池の寿命特性の低下を抑制することができる。したがって、廉価で高性能な鉛蓄電池の需要をさらに拡げることができる。
 本発明に係る充電制御回路、電池駆動機器、充電装置及び充電方法は、電動車両などの電池駆動機器に主電源として用いられる鉛蓄電池を好適に充電する回路、機器、装置及び方法として有用である。

Claims (12)

  1.  電池駆動機器の電源として用いられる鉛蓄電池を充電する充電部を制御する充電制御回路であって、
     充電開始の指示に応じて、前回の充電終了時から今回の充電開始時までの間における前記鉛蓄電池の総放電電気量を、電流値が所定レベル未満の放電電流による放電電気量である第1放電電気量と、電流値が前記所定レベル以上の放電電流による放電電気量である第2放電電気量とに分けて取得する第1取得部と、
     前記第1取得部により取得された前記第1放電電気量に対応する第1充電電気量及び前記第1取得部により取得された前記第2放電電気量に対応する第2充電電気量を求め、かつ、求めた前記第1充電電気量及び前記第2充電電気量の和として前記鉛蓄電池の充電に要する充電電気量を求める演算部と、
     前記演算部により求められた前記充電電気量に基づき、前記充電部による前記鉛蓄電池の充電を制御する充電制御部と、
    を備えたことを特徴とする充電制御回路。
  2.  予め設定された第1係数と、前記第1係数より小さく、かつ1より大きく設定された第2係数とを保存している第1記憶部をさらに備え、
     前記演算部は、前記第1取得部により取得された前記第1放電電気量と前記第1記憶部に保存されている前記第1係数とを乗算して前記第1充電電気量を求め、かつ、前記第1取得部により取得された前記第2放電電気量と前記第1記憶部に保存されている前記第2係数とを乗算して前記第2充電電気量を求めることを特徴とする請求項1記載の充電制御回路。
  3.  前記第1記憶部は、前記総放電電気量に対する前記第1放電電気量の比率の大きさに対応して複数の前記第1係数を保存し、
     前記複数の第1係数は、前記比率が大きいほど数値が大きく、
     前記演算部は、前記総放電電気量に対する前記第1放電電気量の比率を求め、前記第1記憶部に保存されている前記複数の前記第1係数のうちで、求めた前記比率に対応する前記第1係数を用いることを特徴とする請求項2記載の充電制御回路。
  4.  充電開始の指示に応じて、前回の充電終了時から今回の充電開始時までの間において前記電池駆動機器の電源がオフにされているオフ時間を取得する第2取得部と、
     前記電池駆動機器の前記オフ時間に前記鉛蓄電池から流れる前記所定レベル未満の暗電流の電流値を保存している第2記憶部と、
    をさらに備え、
     前記第1取得部は、前記第2取得部により取得された前記オフ時間と、前記第2記憶部に保存されている前記暗電流の電流値とに基づき、前記第1放電電気量を求めることを特徴とする請求項1ないし3のいずれか1項に記載の充電制御回路。
  5.  前記電池駆動機器は、駆動源としてのモータを有する請求項1ないし3のいずれか1項に記載の充電制御回路であって、
     充電開始の指示に応じて、前回の充電終了時から今回の充電開始時までの間において、前記電池駆動機器の電源がオフにされているオフ時間と、前記電池駆動機器の電源がオンにされ、かつ前記モータが停止しているモータ停止時間とを取得する第3取得部と、
     前記電池駆動機器の前記オフ時間に前記鉛蓄電池から流れる前記所定レベル未満の第1電流の電流値と、前記電池駆動機器の前記モータ停止時間に前記鉛蓄電池から流れる前記所定レベル未満の第2電流の電流値とを保存している第3記憶部と、
    をさらに備え、
     前記第1取得部は、
     前記第3取得部により取得された前記オフ時間と、前記第3記憶部に保存されている前記第1電流の電流値とに基づき、前記第1電流による放電電気量を求め、
     前記第3取得部により取得された前記モータ停止時間と、前記第3記憶部に保存されている前記第2電流の電流値とに基づき、前記第2電流による放電電気量を求め、かつ、
     前記第1電流による放電電気量と前記第2電流による放電電気量との和を前記第1放電電気量として求めることを特徴とする充電制御回路。
  6.  前記総放電電気量に対する前記第1放電電気量の比率が0.15以上であることを特徴とする請求項1ないし5のいずれか1項に記載の充電制御回路。
  7.  前記鉛蓄電池の端子電圧を検出する電圧検出部をさらに備え、
     前記充電制御部は、
     所定の充電電流値により定電流充電を開始し、前記電圧検出部により検出された前記鉛蓄電池の前記端子電圧が所定の充電終止電圧に達すると、前記充電電流値を低減して次段の充電に進むn(nは2以上の整数)段定電流充電を行い、
     最終のn段目の充電では、n段目の充電開始からの経過時間を計時しつつ、前段の前記充電電流値を低減した値か又は同一値で、前記鉛蓄電池の前記端子電圧に関係なく充電を行い、
     前記各段の前記充電電流値と、前記各段において前記鉛蓄電池の前記端子電圧が前記充電終止電圧に達するまでに要した時間とに基づき、(n-1)段目の充電までに前記鉛蓄電池が充電された充電済み電気量を求め、かつ、
     前記演算部により求められた前記充電電気量と、求めた前記充電済み電気量とに基づき、前記最終のn段目の充電における充電時間を決定し、決定した前記充電時間が経過すると前記n段目の充電を終了することを特徴とする請求項1ないし6のいずれか1項に記載の充電制御回路。
  8.  請求項1ないし7のいずれか1項に記載の充電制御回路と、
     前記電源として用いられる前記鉛蓄電池と、
     前記鉛蓄電池から供給される電流の電流値が前記所定レベル未満である第1負荷と、
     前記鉛蓄電池から供給される電流の電流値が前記所定レベル以上である第2負荷と、
    を備えたことを特徴とする電池駆動機器。
  9.  前記鉛蓄電池から前記第2負荷への電力供給をオンオフする電源スイッチと、
     前回の充電終了時から前記電源スイッチがオフにされているオフ時間を計時する機器制御部と、
    をさらに備えることを特徴とする請求項8記載の電池駆動機器。
  10.  前記鉛蓄電池から前記第1負荷及び前記第2負荷への電力供給をオンオフする電源スイッチと、
     前回の充電終了時から前記電源スイッチがオフにされているオフ時間を計時する機器制御部と、
    をさらに備え、
     前記第2負荷は、駆動源としてのモータを含み、
     前記機器制御部は、さらに、前回の充電終了時から、前記電源スイッチがオンにされており、かつ、前記モータが駆動されていない時間を計時することを特徴とする請求項8記載の電池駆動機器。
  11.  請求項1ないし7のいずれか1項に記載の充電制御回路と、
     前記充電制御回路により制御されて前記鉛蓄電池を充電する充電部と、
    を備えたことを特徴とする充電装置。
  12.  電池駆動機器の電源として用いられる鉛蓄電池の充電方法であって、
     充電開始の指示に応じて、前回の充電終了時から今回の充電開始時までの間における前記鉛蓄電池の総放電電気量を、電流値が所定レベル未満の放電電流による放電電気量である第1放電電気量と、電流値が前記所定レベル以上の放電電流による放電電気量である第2放電電気量とに分けて取得する第1ステップと、
     前記第1ステップにより取得された前記第1放電電気量に対応する第1充電電気量及び前記第1ステップにより取得された前記第2放電電気量に対応する第2充電電気量を求め、かつ、求めた前記第1充電電気量及び前記第2充電電気量の和として前記鉛蓄電池の充電に要する充電電気量を求める第2ステップと、
     前記第2ステップにより求められた前記充電電気量に基づき、前記鉛蓄電池の充電を制御する第3ステップと、
    を含むことを特徴とする充電方法。
PCT/JP2011/006201 2010-11-25 2011-11-07 充電制御回路、電池駆動機器、充電装置及び充電方法 WO2012070190A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800073026A CN102725936A (zh) 2010-11-25 2011-11-07 充电控制电路、电池驱动设备、充电装置以及充电方法
US13/576,317 US8421406B2 (en) 2010-11-25 2011-11-07 Charge control circuit, battery-operated device, charging apparatus and charging method
RU2012134794/07A RU2494514C1 (ru) 2010-11-25 2011-11-07 Схема управления зарядом, работающее от батареи устройство, зарядное устройство и способ зарядки
JP2012511476A JP4988974B2 (ja) 2010-11-25 2011-11-07 充電制御回路、電池駆動機器、充電装置及び充電方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010261964 2010-11-25
JP2010-261964 2010-11-25

Publications (1)

Publication Number Publication Date
WO2012070190A1 true WO2012070190A1 (ja) 2012-05-31

Family

ID=46145564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006201 WO2012070190A1 (ja) 2010-11-25 2011-11-07 充電制御回路、電池駆動機器、充電装置及び充電方法

Country Status (5)

Country Link
US (1) US8421406B2 (ja)
JP (1) JP4988974B2 (ja)
CN (1) CN102725936A (ja)
RU (1) RU2494514C1 (ja)
WO (1) WO2012070190A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642318B1 (ja) * 2013-08-02 2014-12-17 株式会社小松製作所 作業車両
KR20180089698A (ko) * 2017-02-01 2018-08-09 주식회사 엘지화학 배터리 충방전 제어 장치 및 그 충방전 제어 방법

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998454B2 (ja) * 2011-11-07 2016-09-28 ソニー株式会社 制御装置、制御方法および制御システム
EP2629352A1 (en) 2012-02-17 2013-08-21 Oxis Energy Limited Reinforced metal foil electrode
JP2013253991A (ja) 2012-11-30 2013-12-19 Gs Yuasa Corp 蓄電素子の劣化後容量推定装置、劣化後容量推定方法及び蓄電システム
JP6322979B2 (ja) * 2012-12-28 2018-05-16 株式会社リコー 充電装置及び充電システム
EP2784852B1 (en) * 2013-03-25 2018-05-16 Oxis Energy Limited A method of charging a lithium-sulphur cell
ES2546609T3 (es) 2013-03-25 2015-09-25 Oxis Energy Limited Un método para cargar una celda de litio-azufre
EP2784850A1 (en) 2013-03-25 2014-10-01 Oxis Energy Limited A method of cycling a lithium-sulphur cell
DE112013000095T5 (de) 2013-08-02 2015-07-23 Komatsu Ltd. Ladevorrichtung
GB2517228B (en) 2013-08-15 2016-03-02 Oxis Energy Ltd Laminate cell
US9899705B2 (en) 2013-12-17 2018-02-20 Oxis Energy Limited Electrolyte for a lithium-sulphur cell
JP6662522B2 (ja) 2014-05-30 2020-03-11 オキシス エナジー リミテッド リチウム硫黄電池
US9956887B2 (en) * 2014-06-16 2018-05-01 Ford Global Technologies, Llc Batter capacity degradation indication
MY170641A (en) 2016-01-12 2019-08-21 Nissan Motor Power supply system and method for controlling same
CN110277817B (zh) * 2019-06-28 2023-04-21 歌尔科技有限公司 一种电子设备的电量获取方法、装置、设备及存储介质
RU2726941C1 (ru) * 2019-12-30 2020-07-17 Федеральное государственное казенное военное образовательное учреждение высшего образования "Рязанское гвардейское высшее воздушно-десантное ордена Суворова дважды Краснознаменное командное училище имени генерала армии В.Ф. Маргелова" Министерства обороны Российской Федерации Способ компенсации саморазряда свинцовой стартерной аккумуляторной батареи
JP7402774B2 (ja) * 2020-10-05 2023-12-21 プライムアースEvエナジー株式会社 二次電池の制御装置、車両制御装置、及び二次電池の制御方法
CN116250110A (zh) * 2021-02-09 2023-06-09 宁德时代新能源科技股份有限公司 电池充电方法、控制器、电池管理系统、电池和用电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243457A (ja) * 1999-02-24 2000-09-08 Matsushita Electric Ind Co Ltd 鉛蓄電池の充電方法
JP2003219571A (ja) * 2002-01-22 2003-07-31 Daikin Ind Ltd 充電方法、蓄電池システム、空気調和システム
WO2010016275A1 (ja) * 2008-08-07 2010-02-11 パナソニック株式会社 鉛蓄電池の制御方法および電源システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583034A (en) * 1984-07-13 1986-04-15 Martin Robert L Computer programmed battery charge control system
JPH08336205A (ja) * 1995-04-07 1996-12-17 Nippon Soken Inc ハイブリッド車両のバッテリ充電装置
JPH0988778A (ja) * 1995-07-17 1997-03-31 Denso Corp 始動発電装置
US6275006B1 (en) * 1998-05-27 2001-08-14 Matsushita Electric Industrial Co., Ltd. Method for charging secondary battery
JP3624831B2 (ja) * 2000-12-28 2005-03-02 株式会社デンソー 車両用電源装置及びエンジン駆動規制支援装置
US20030219571A1 (en) * 2002-05-21 2003-11-27 Tait Bruce E. Multilayer optical film with melt zone to control delamination
JP3872758B2 (ja) * 2003-01-08 2007-01-24 株式会社日立製作所 電源制御装置
US7321220B2 (en) * 2003-11-20 2008-01-22 Lg Chem, Ltd. Method for calculating power capability of battery packs using advanced cell model predictive techniques
US7683570B2 (en) * 2007-07-18 2010-03-23 Tesla Motors, Inc. Systems, methods, and apparatus for battery charging
RU2371825C2 (ru) * 2007-12-19 2009-10-27 Закрытое Акционерное Общество Производственное объединение "Комплекс" Автоматизированный программно-аппаратный комплекс для заряда и тренировки аккумуляторных батарей "призма"
CN101854427A (zh) * 2010-02-26 2010-10-06 宇龙计算机通信科技(深圳)有限公司 一种提醒操作启动方法和移动终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243457A (ja) * 1999-02-24 2000-09-08 Matsushita Electric Ind Co Ltd 鉛蓄電池の充電方法
JP2003219571A (ja) * 2002-01-22 2003-07-31 Daikin Ind Ltd 充電方法、蓄電池システム、空気調和システム
WO2010016275A1 (ja) * 2008-08-07 2010-02-11 パナソニック株式会社 鉛蓄電池の制御方法および電源システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642318B1 (ja) * 2013-08-02 2014-12-17 株式会社小松製作所 作業車両
WO2015015647A1 (ja) * 2013-08-02 2015-02-05 株式会社小松製作所 作業車両
US9579988B2 (en) 2013-08-02 2017-02-28 Komatsu Ltd. Work vehicle
KR20180089698A (ko) * 2017-02-01 2018-08-09 주식회사 엘지화학 배터리 충방전 제어 장치 및 그 충방전 제어 방법
KR102311949B1 (ko) * 2017-02-01 2021-10-14 주식회사 엘지에너지솔루션 배터리 충방전 제어 장치 및 그 충방전 제어 방법

Also Published As

Publication number Publication date
US8421406B2 (en) 2013-04-16
RU2494514C1 (ru) 2013-09-27
US20120293114A1 (en) 2012-11-22
JP4988974B2 (ja) 2012-08-01
CN102725936A (zh) 2012-10-10
JPWO2012070190A1 (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
JP4988974B2 (ja) 充電制御回路、電池駆動機器、充電装置及び充電方法
US8384352B2 (en) Battery voltage balance apparatus and battery charge apparatus
CN107690740B (zh) 供电系统
US20130021000A1 (en) Charge and discharge control apparatus
US20150002073A1 (en) Power Supply Device Using Secondary Battery and Method of Switching the Battery Mode
US20120299545A1 (en) Rechargeable battery power supply starter and cell balancing apparatus
JP2013009557A (ja) 蓄電池
US9174542B2 (en) Power supply device for vehicle
US20120306449A1 (en) Power supply apparatus, charging method, rechargeable battery cell unit, and charging apparatus
JP6298634B2 (ja) スイッチング電源装置
JP2013042627A (ja) 直流電源制御装置および直流電源制御方法
JP2012070510A (ja) 電力供給装置及び電力供給方法
WO2012043744A1 (ja) 充電制御装置
JP7189861B2 (ja) 充電装置及び充電方法
CN212304790U (zh) 带有太阳能电池板的车载微电网及其聚合而成的发电厂
CN102405416B (zh) 充电控制系统
WO2012124554A1 (ja) 電力貯蔵装置並びにそれを備えた電源装置及び移動体
CN106655313B (zh) 蓄能电池的电流控制装置
JP2017011849A (ja) 定置用蓄電システム
JP2014103819A (ja) 充電装置、充電方法及び電力供給システムとその蓄電残量計測方法
CN102231559A (zh) 一种电动汽车自适应快速充电系统
WO2012043639A1 (ja) 電力供給システム
JP2002315224A (ja) 燃料電池電源システムとその燃料電池電源システムが備えている二次電池の充電方法
TWI405383B (zh) Intelligent charge and discharge system
Divya et al. Mathematical Modelling and Cell Balancing of Lithium-ion Battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007302.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012511476

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843139

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13576317

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012134794

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843139

Country of ref document: EP

Kind code of ref document: A1