WO2010016275A1 - 鉛蓄電池の制御方法および電源システム - Google Patents

鉛蓄電池の制御方法および電源システム Download PDF

Info

Publication number
WO2010016275A1
WO2010016275A1 PCT/JP2009/003808 JP2009003808W WO2010016275A1 WO 2010016275 A1 WO2010016275 A1 WO 2010016275A1 JP 2009003808 W JP2009003808 W JP 2009003808W WO 2010016275 A1 WO2010016275 A1 WO 2010016275A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
amount
electricity
discharge
cycle
Prior art date
Application number
PCT/JP2009/003808
Other languages
English (en)
French (fr)
Other versions
WO2010016275A9 (ja
Inventor
菊地智哉
室地晴美
吉原靖之
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2009801148501A priority Critical patent/CN102017358A/zh
Priority to JP2009552943A priority patent/JP4473944B2/ja
Priority to US12/991,343 priority patent/US8432135B2/en
Publication of WO2010016275A1 publication Critical patent/WO2010016275A1/ja
Publication of WO2010016275A9 publication Critical patent/WO2010016275A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for controlling a lead storage battery and a power supply system using the lead storage battery.
  • the lead acid battery is strong for tough use and has an appropriate weight, so that it is useful as a power source in a transport vehicle, for example.
  • Patent Document 1 there is a method of repeating the next charging with a slightly higher charge amount (synonymous with charge electricity amount) than the discharge amount (synonymous with discharge electricity amount) discharged after the previous charge. According to this method, it is possible to prevent a decrease in the capacity of the lead storage battery due to insufficient charging while avoiding overcharge except for a predetermined refresh overcharge (recovering the capacity of the lead storage battery with the lead storage battery in an overcharged state). It is written.
  • the lead-acid battery until the charge / discharge cycle consisting of the charge cycle and the discharge cycle immediately after that reaches the predetermined number of cycles (or until the integrated value of the discharged electricity reaches the predetermined value), after the previous charge. It is possible to prevent a decrease in capacity due to insufficient charging by charging the battery next time with a charge amount slightly larger than the discharged discharge amount. However, if the charge / discharge cycle exceeds a predetermined number of cycles (or if the integrated value of discharge electricity exceeds a predetermined value), the lead-acid battery is charged slightly more than the discharge amount discharged after the previous charge. It was found that the lead storage battery was overcharged by being charged in an amount, resulting in deterioration.
  • the present invention has been made to solve the above-described problems, and aims to simultaneously solve two types of problems of lead-acid batteries (capacity reduction due to insufficient charging and deterioration due to overcharging) caused by random charging. And
  • the method for controlling a lead-acid battery calculates a first accumulated charge electricity amount by integrating the charge electricity amount for each charge cycle after the cycle use of the lead-acid battery is started.
  • a first calculation step of calculating the first integrated discharge electricity amount by integrating the discharge electricity amount for each discharge cycle after the cycle use is started; and the first integrated discharge electricity amount is the charge / discharge cycle of the lead storage battery.
  • the lead-acid battery It is determined that the first integrated discharge electricity amount is the first region which is a partial region in the life cycle from the start of the cycle use until the end of the life of the lead storage battery.
  • a determining step of determining that the second region to an area coming the life of the lead-acid battery after the first region wherein in the determination step the After determining that there are two regions, the amount of charge electricity for each charge cycle in the second region is integrated to calculate a second amount of accumulated charge electricity, and the amount of discharge electricity for each discharge cycle in the second region is calculated.
  • a second calculation step of integrating and calculating a second integrated discharge electricity amount, and a first total charge electricity amount C 1 that is the first integrated charge electricity amount at the end of the first region is the first set value D.
  • the amount of electricity charged in the first region is controlled so as to be multiplied by a first value R 1 set in advance, and the life of the lead storage battery is determined after being determined as the second region.
  • Said second product when The second is the overall amount of charge C 2 is charged quantity of electricity, the second setting value D 2 wherein a second accumulated discharge amount of electricity when the life of the lead-acid battery is reached, advance the first value R
  • a control step of controlling the amount of electricity charged in the second region so that the amount of electricity multiplied by the second value R2 set to a value smaller than 1 is obtained.
  • the integrated value of the amount of charge in the entire first region becomes an integrated value equal to or greater than the integrated value of the amount of discharge in the entire first region, charging and discharging are possible in the first region due to insufficient charging. A decrease in the amount of electricity can be reduced.
  • the ratio of the integrated value of the charge electricity amount in the entire second region to the integrated value of the discharge electricity amount in the entire second region is defined as the ratio of the total value of the discharge electricity amount in the entire first region. In the second region, the amount of electricity that can be charged / discharged is significantly reduced by being charged with an excessive amount of charge electricity. be able to.
  • the first integrated discharge electricity amount representing the integrated value of the discharge electricity amount after the cycle use of the lead storage battery is started is the boundary between the first region and the second region.
  • the first set value D 1 may reduce a decrease in charging and discharging electric quantity by insufficient charging, after the first accumulated discharge amount of electricity exceeds the first setting value D 1, rechargeable It is possible to reduce an increase in the amount of electricity that is promoted by overcharging.
  • the life of the lead storage battery can be extended as compared with the control method of charging the lead storage battery at random. Can do.
  • DOD depth of discharge; ratio of discharge amount with respect to rated capacity
  • FIG. 7A is a diagram showing charging efficiency in a first region of a control valve type lead acid battery
  • FIG. 7B is a diagram showing charging efficiency in a second region of a control valve type lead acid battery.
  • the flowchart which shows the further another example of the control method of the lead acid battery which concerns on one Embodiment of this invention.
  • the flowchart which shows the further another example of the control method of the lead acid battery which concerns on one Embodiment of this invention.
  • 1 is a block diagram showing an example of a power supply system according to an embodiment of the present invention.
  • the first embodiment is characterized by the following control method.
  • the control unit 43 determines that the capacity of the lead storage battery during the process of changing the capacity of the lead storage battery caused by the charge / discharge cycle.
  • the first set value D 1 is a first accumulated discharge amount of electricity when the maximum value D max (step S10; set value calculation step).
  • the first cumulative discharge electric quantity means an electric quantity obtained by integrating the discharge electric quantity for each discharge cycle of the lead storage battery in the first region.
  • the first set value D 1 is calculated by, for instance, processing to be described later.
  • an arbitrary amount of charged electricity C 1m-1 is charged by charging in step S11, and an arbitrary amount of discharged electricity D 1m-1 (C 1m-1 > D 1m-1 ) is discharged in step S12. Discharged.
  • the subscript “1m ⁇ 1” means the (m ⁇ 1) th time in the first region.
  • the discharge electricity amount D 1m ⁇ 1 means the charge electricity amount in the charge cycle immediately before the m-th charge in which the charge electricity amount is controlled in the first region.
  • the discharge electricity amount D 1m ⁇ 1 means the charge electricity amount in the discharge cycle immediately before any m-th discharge is performed in the first region.
  • the control unit 43 multiplies the amount of charge electricity in the charge cycle immediately after step S12 by the coefficient R 1 to the amount of discharge electricity D 1m ⁇ 1 in step S12 (that is, the amount of discharge electricity in the immediately preceding discharge cycle). Charging is performed so that the amount of charged electricity C is 1 m (step S13; first region control step). And arbitrary discharge electricity amount D1m is discharged in a lead storage battery (step S14).
  • the 1st calculating part 41 calculates the integrated charge electricity amount (henceforth a 1st integrated charge electricity amount) in a 1st area
  • the first accumulated charge electricity amount represents an accumulated value of the charge electricity amount in each charge cycle of the lead storage battery in the first region.
  • the 1st calculating part 41 calculates a 1st integrated discharge electricity amount (step S16; 1st calculation step). For example, a first accumulated discharge amount of electricity after the discharge has been performed at steps S12 and S14 are discharged electrical quantity D 1 m in step S14, is the amount of electricity made in addition to the discharged amount of electricity D 1 m-1 in step S12 .
  • the Determination unit 42 determines whether more than a first set value D 1 (step S17; determination step). If the first accumulated discharge amount of electricity is less than the first set value D 1 (NO in step S17), the determination unit 42 determines that the life cycle of lead-acid battery is the first region at the present time (step S18) .
  • the first region is a partial region in the life cycle from the start of the cycle use of the lead storage battery to the end of the life of the lead storage battery.
  • region mentioned later is an area
  • the control unit 43 performs charging so that the charge electricity amount C 2n in the charge cycle becomes a charge electricity amount obtained by multiplying the discharge electricity amount D 2n ⁇ 1 in the immediately preceding discharge cycle by the coefficient R 2 (step S23; second). Area control step).
  • the first calculation unit 41 integrates the charge electricity quantity C 1m with the first accumulated charge quantity thus far.
  • the first calculation unit 41 integrates the discharged amount of electricity D 1 m to the first accumulated discharge electricity quantity until then (step S16). Then, the determination unit 42 determines whether the first accumulated discharge amount of electricity obtained exceeds the first set value D 1 (step S17).
  • the subscript “2n ⁇ 1” means the (n ⁇ 1) th time in the second region.
  • the discharge electricity amount D 2n ⁇ 1 means the charge electricity amount in the charge cycle immediately before the n-th charge in which the charge electricity amount is controlled in the second region.
  • the discharge electricity amount D 2n-1 means the charge electricity amount in the discharge cycle immediately before any n-th discharge is performed in the second region.
  • step S17 when the first accumulated discharge amount of electricity exceeds the first set value D 1 (YES in step S17), the determination unit 42, the life cycle of lead-acid battery is the second region at the present time Determination is made (step S19).
  • Control unit 43 the charging electric quantity C 21 in the subsequent charging cycle to charge such that the charge electrical quantity multiplied by a coefficient R 2 to the discharge electric quantity D 1 m in the discharge cycle immediately before (Step S20). Then, in the lead storage battery, an arbitrary amount of discharged electricity D 2n-1 is discharged (step S21).
  • the control unit 43 performs charging so that the charge electricity amount C 2n in the subsequent charge cycle becomes a charge electricity amount obtained by multiplying the discharge electricity amount D 2n ⁇ 1 in the immediately preceding discharge cycle by the coefficient R 2 (step S22; Second area control step).
  • the discharge electricity amount D 2n ⁇ 1 means the discharge electricity amount in the discharge cycle immediately before any n-th discharge is performed in the second region.
  • the second calculation unit 44 calculates the second integrated charge amount in the second region. (Step S24; second calculation step). Moreover, the 2nd calculating part 44 calculates the 2nd integrated discharge electricity amount in a 2nd area
  • the second cumulative discharge electricity quantity after the discharge in steps S22 and S24 is performed is an electricity quantity obtained by adding the discharge electricity quantity D 2n in step S24 to the discharge electricity quantity D 2n-1 in step S22. .
  • Determining unit 42 determines the second accumulated discharge amount of electricity D is whether exceeds the second setting value D 2 (step S26).
  • the second set value D 2 is, for example, set in advance in the judgment unit 42, a second accumulated discharge amount of electricity when the life of the lead-acid battery has arrived in the second region.
  • the second accumulated discharge amount of electricity D is, when the second exceeds the set value D 2 (YES in step S26), the notification unit 6 (see FIG. 10) performs lifetime incoming notification (step S27; notification step). For example, the notification of the arrival of the lifetime notifies the user that the lifetime of the lead storage battery has been reached by causing the notification section 6 to cause the LED to emit light.
  • the second accumulated discharge amount of electricity when less than the second set value D 2 (NO in step S26), is repeated process shown below.
  • the control unit 43 performs charging so that the charge electricity amount C 2n in the charge cycle becomes a charge electricity amount obtained by multiplying the discharge electricity amount D 2n ⁇ 1 in the immediately preceding discharge cycle by the coefficient R 2 (step S22).
  • the second computing unit 44 computes the charge electricity quantity C 2n to the accumulated charge electricity quantity so far (step S23). S24). Further, the discharge electric quantity D 2n is calculated from the second accumulated discharge electric quantity so far (step S25).
  • the determination unit 42 determines whether the second accumulated discharge amount of electricity obtained exceeds the second setting value D 2 (step S26). The above process, the second accumulated discharge amount of electricity is repeated until it is determined to exceed the second set value D 2.
  • the control unit 43 first the entire amount of charge C 1 in the first region, the first set value D 1 which is a boundary between the first region and the second region, which is set in advance as the quantity of electricity obtained by multiplying the first value R 1, controls the amount of charge in the first region.
  • the control unit 43, the second overall amount of charge C 2 in the second region, the second setting value D 2 is a second accumulated discharge amount of electricity when the life of the lead-acid battery has arrived in the second region, as the advance first value R 1 electrical quantity obtained by multiplying the second value R 2 which is set to a value smaller than, for controlling the amount of charge in the second region.
  • the ratio of the integrated value of the charge electricity amount in the entire second region to the integrated value of the discharge electricity amount in the second region is the sum of the charge electricity amount in the entire first region with respect to the integrated value of the discharge electricity amount in the entire first region. It becomes smaller than the ratio of the value. Therefore, unlike the first region, in which the ratio of the average charge electricity per charge cycle to the average discharge electricity per discharge cycle is preferably large, the second region has an average discharge per discharge cycle. The ratio of the average charge electricity amount for each charge cycle to the electricity amount is smaller than the ratio in the first region. Thereby, in the 2nd field, it can reduce that the amount of electricity which can be charged and discharged by overcharge decreases.
  • step S100 the first calculation of the set value D 1 is performed (step S100). Then, in the lead storage battery, charging at step S101 charges an arbitrary amount of charge C 1m-1 , discharge at step S102 an arbitrary amount of discharge electricity D 1m-1 (where C 1m-1 > D 1m-1 ), and the charging of any amount of charge C 1 m in step S103 is performed.
  • the first error calculation unit 45 calculates the amount of electricity (first value) obtained by multiplying the amount of charged electricity C 1m by a preset coefficient R 1 to the amount of discharged electricity D 1m ⁇ 1 in the immediately preceding discharge cycle.
  • An error obtained by subtracting the reference discharge electric quantity is calculated (step S104; first error calculation step).
  • the calculated error is sequentially integrated by the first error integrated value calculating unit 46 (see FIG. 11) to calculate the first error integrated value (step S105; first error integrated value calculating step).
  • the first percentage calculating unit 47 calculates a first percentage PER1 that is an example of the ratio of the first error integrated value to the nominal capacity of the lead storage battery (step). S106; first ratio calculation step).
  • step S107 discharge with an arbitrary discharge amount D 1m is performed.
  • the 1st calculating part 41 calculates the 1st integration charge electric quantity (Step S108; 1st calculation step).
  • the 1st calculating part 41 calculates a 1st integrated discharge electricity amount (step S109; 1st calculation step).
  • the first integrated discharge quantity after the discharge in steps S102 and S107 is performed by adding the discharge quantity D 1m in step S107 to the discharge quantity D 1m-1 in step S102. It is.
  • the determination unit 42 determines whether or not the first percentage PER1 exceeds a preset threshold value (first threshold value) ⁇ (step S110). If the first percentage is less than the threshold value ⁇ (NO in step S110), the processes in steps S103 to S109 are repeated until it is determined that the first percentage exceeds the threshold value ⁇ .
  • first threshold value a preset threshold value
  • the control unit 43 adds the discharge electric quantity D in the first discharge to the first error integrated value at that time.
  • a charge amount obtained by adding the amount of electricity obtained by multiplying 1m ⁇ 1 by a preset coefficient R 1 is charged (step S111).
  • the determination unit 42 determines whether the first accumulated discharge amount of electricity far exceeds the first set value D 1 (step S112; determination step). If the first accumulated discharge amount of electricity is less than the first set value D 1 (NO in step S112), determination unit 42 determines that the life cycle of lead-acid battery is the first region at the present time (step S113 ). Thereafter, until the first accumulated discharge amount of electricity is determined to exceed the first set value D 1, the processing of steps S103 ⁇ 111 are repeated.
  • the first accumulated discharge amount of electricity D is, when it is determined to exceed the first set value D 1 (YES in step S 111), determination unit 42, the life cycle of lead-acid battery in the second region at the present time It is determined that there is (step S114).
  • step S115 charging with an arbitrary amount of charged electricity C 2n-1 in step S115, discharging of an arbitrary amount of discharged electricity D 2n-1 in step S116, and charging of an arbitrary amount of charged electricity C 2n in step S117 are performed.
  • the second error calculation unit 48 calculates the coefficient R 2 that is set in advance from the charge electricity amount C 2n to the discharge electricity amount D 2n ⁇ 1 in the immediately preceding discharge cycle to a value smaller than the coefficient R 1.
  • An error obtained by subtracting the amount of electricity multiplied by (second reference discharge amount of electricity) is calculated (step S118; second error calculating step).
  • the calculated error is sequentially integrated by the second error integrated value calculating unit 49 (see FIG. 11) to calculate the second error integrated value (step S119; first error integrated value calculating step).
  • the second percentage calculating unit 50 calculates a second percentage PER2 that is an example of the ratio of the second error integrated value to the nominal capacity of the lead storage battery (step). S120; second ratio calculation step).
  • step S121 A discharge of any discharge electric quantity D 21 is performed in step S121. Then, the 2nd calculating part 44 calculates a 2nd integral charge electric charge (step S122; 2nd calculation step). Moreover, the 2nd calculating part 44 calculates a 2nd integrated discharge electricity amount (step S123; 2nd calculation step). The processing described above is repeated until it is determined in step S124 that the second percentage PER2 exceeds the preset threshold (second threshold) ⁇ .
  • step S123 When it is determined in step S123 that the second percentage PER2 exceeds the preset threshold value ⁇ , the control unit 43 adds the discharge electric quantity D 2n ⁇ in the first discharge to the second error integrated value at that time. A charge amount obtained by adding an amount of electricity obtained by multiplying 1 by a preset coefficient R 2 is charged. (Step S125).
  • the determination unit 42 determines whether the second accumulated discharge amount of electricity far exceeds the second setting value D 2 (step S126).
  • the second accumulated discharge amount of electricity is, if it is determined to exceed the second set value D 2 (YES in step S126), the notification unit 6 performs lifetime incoming notification (step S127).
  • the second accumulated discharge amount of electricity is, if it is determined that less than the second set value D 2 exceeds (NO in step S126), the second accumulated discharge amount of electricity second set value D 2 Steps S117 to S125 are repeated until it is determined.
  • the second error integrated value is the first error from the viewpoint of preventing overcharge. Unlike the integrated value, a smaller value is desirable. Therefore, the threshold value ⁇ is preferably set to a value smaller than the threshold value ⁇ .
  • the discharge cycle In the process shown in the flowcharts of FIGS. 1 and 2, unlike the first region, in which the ratio of the charge electricity amount for each charge cycle to the discharge electricity amount for each discharge cycle is preferably large, in the second region, the discharge cycle The ratio of the charge electricity amount for each charge cycle to the discharge electricity amount for each charge is smaller than the ratio in the first region. Thereby, in the 2nd field, it can reduce that the amount of electricity which can be charged and discharged by overcharge decreases.
  • the processing shown in the flowcharts of FIGS. 3 and 4 is different from the processing shown in the flowcharts of FIGS. 1 and 2 in which the charge electricity amount is controlled for each charging cycle, every time the charging cycle is executed several times. Since the amount of charged electricity is controlled, there is an advantage that user convenience is improved.
  • Control method in the first region, the electric amount and the amount of charge in each charge cycle multiplied by the appropriate coefficient R 1 to discharge electricity quantity in the immediately preceding discharge cycle of the charge cycle Can be managed.
  • the charge electricity amount in each charge cycle in the second region, is obtained by multiplying the discharge electricity amount in the discharge cycle immediately before the charge cycle by an appropriate coefficient R 2. It can be managed to be a quantity. Therefore, it is preferable as a means for preventing a decrease in the amount of electricity that can be charged and discharged in the lead storage battery.
  • FIG. 1 In an electric vehicle using a lead-acid battery as a power source, for example, assuming a case where a long charge (about several hours) is performed at night while repeating a short charge (about several tens of minutes) during the daytime of the driver, FIG. It is difficult to perform charging each time satisfying the flowchart of 2 (that is, charging to obtain a charge electricity amount C 1m obtained by multiplying the previous discharge electricity amount D 1m ⁇ 1 by a coefficient R 1 ). In this case, as shown in FIGS.
  • the first total charge electricity amount C 1 is managed to be a value obtained by multiplying the first set value D 1 by the coefficient R 1
  • the second overall charge electricity amount C 2 is By managing to be a value obtained by multiplying the second set value D 2 by a coefficient R 2 , charging is performed with a charge quantity obtained by multiplying the discharge quantity in the discharge cycle immediately before the charge by a coefficient each time charging is performed.
  • the effects of the first embodiment can be obtained, though the control method does not reach the control method according to the flowcharts of FIGS.
  • the storage unit 40 (see FIG. 11) stores data representing the correlation between the number of charge / discharge cycles and the capacity of the lead storage battery as shown in FIG.
  • FIG. 5 is a diagram showing an example of the correlation between the number of charge / discharge cycles and the capacity of the lead storage battery.
  • This correlation example is for a lead-acid battery with a nominal capacity of 50 Ah, with a discharge temperature of 20 A and a discharge amount of 48 Ah for each charge / discharge cycle under conditions of a surface temperature of 25 degrees and 45 degrees. It is obtained by performing discharge and subsequent 5-stage constant current charging.
  • FIG. 6 is a diagram illustrating an example of five-stage constant current charge control from a state where DOD (depth of discharge; ratio of discharge amount to rated capacity) is 80%.
  • DOD depth of discharge; ratio of discharge amount to rated capacity
  • CA the reciprocal of the time rate.
  • the charging current is gradually reduced to the second charging current (2), the third charging current (3), and the fourth charging current (4).
  • the charging current is switched from the fourth charging current (4) to the fifth charging current (5).
  • the fifth charging current (5) has the same current value as the fourth charging current (4).
  • Charging after the charging current is switched to the fifth charging current (5) is performed in a state where the battery voltage is not limited. That is, as shown in the figure, even when the battery voltage exceeds the switching voltage V, charging is performed for a predetermined time (for example, 2.5 hours) with the fifth charging current (4). Thereafter, charging ends.
  • the charging with the fifth charging current (5) is charging for bringing the battery into a fully charged state. Therefore, it is preferable that the amount of charged electricity is between 107 and 115% of the amount of discharged electricity. Therefore, the charging with the fifth charging current (5) is continued even if the battery voltage exceeds the switching voltage V.
  • the microcomputer 4 is obtained by multiplying the number of charge / discharge cycles (150) by the amount of discharge electricity (48 Ah) in one charge / discharge cycle.
  • the amount (7200 Ah) is set as the first set value D 1 .
  • the microcomputer 4 is obtained by multiplying the number of charge / discharge cycles (50) by the amount of discharge electricity in one charge / discharge cycle (ie, 48 Ah). the (2400Ah), the first set value D 1.
  • the coefficient R 1 is set to a value in the range of 1 to 1.5
  • the coefficient R 2 is set to a value in the range of 0.9 to 1.25
  • the coefficient the ratio R 1 / R 2 of R 1 and coefficient R 2 is characterized in that a 1 ⁇ R 1 / R 2 ⁇ 1.66.
  • FIG. 7 is a diagram showing the charging efficiency of a control valve type lead storage battery, FIG. 7A shows the charging efficiency in the first region, and FIG. 7B shows the charging efficiency in the second region.
  • the ratio of the actual charge electricity to the capacity of the lead storage battery exceeds 80%, the ratio of the actual discharge electricity to the capacity of the lead storage battery (vertical).
  • the ratio of actual discharge electricity to the capacity of the lead-acid battery gradually decreases, the ratio of actual discharge electricity to the capacity of the lead-acid battery (vertical axis)
  • the ratio (horizontal axis) of the actual amount of charge to the capacity of the lead storage battery needs to be 100% or more.
  • the charge charge in each charge cycle is set to each charge. It is necessary to make it larger than the amount of discharge electricity (capacity of the lead storage battery) in the discharge cycle immediately before the cycle. Therefore, the value R 1 to multiplying each discharge electric quantity is 1 or more.
  • the amount of extra charge electricity generated when the ratio of the amount of discharged electricity to the capacity of the lead storage battery is 90% is the range of the horizontal axis indicated by the arrow A in FIG.
  • the second region is larger than the first region.
  • the inventors have found that the amount of extra charge electricity (horizontal axis indicated by the arrow in FIG. 7B) is the minimum amount of electricity. I found out that Therefore, in the second region, it is desirable to set the range of R 2 to 0.9 to 1.25 in order to minimize the extra charge electricity amount.
  • the present inventors conducted experiments while changing the value of R 1 within the range of 1 to 1.5 and changing the value of R 2 within the range of 0.9 to 1.25. If the ratio R 1 / R 2 between the value of R 1 and the value of R 2 is 1 ⁇ R 1 / R 2 ⁇ 1.66, the integrated value of the discharge electric quantity in the entire second region The ratio of the integrated value of the charged electricity amount in the entire second region may be smaller than the ratio of the integrated value of the charged electricity amount in the entire first region to the integrated value of the discharged electricity amount in the entire first region. I found that I can do it. Therefore, the ratio R 1 / R 2 between the value of R 1 and the value of R 2 is preferably 1 ⁇ R 1 / R 2 ⁇ 1.66.
  • the third embodiment in the second embodiment, the charge-discharge cycle in advance for each repeating set number P 1 of the first region, the charged electricity quantity in the immediately following charge cycle, the charging cycle execution immediately after the The charging electric quantity is set such that a value RP1 obtained by dividing the subsequent first integrated charging electric quantity by the first integrated discharging electric quantity at that time becomes a value within the range of 1 to 1.5.
  • the fourth embodiment in the second embodiment, the charge-discharge cycle in advance for each repeating set number P 2 in the second region, the charged electricity quantity in the immediately following charge cycle, the charging cycle immediately after The charge charge quantity is such that a value RP2 obtained by dividing the second accumulated charge charge quantity after execution by the second accumulated discharge charge quantity at that time becomes a value within the range of 1 to 1.5. It is characterized by.
  • FIG 8 and 9 are flowcharts showing an example of the control method of the third and fourth embodiments.
  • step S200 When a lead-acid battery is a power supply is started using the unused state, the first calculation of the set value D 1 is performed (step S200). Then, in the lead storage battery, charging at step S201 charges an arbitrary amount of charge C 1m-1 , discharge at step S202 of an arbitrary amount of discharge electricity D 1m-1 (where C 1m-1 > D 1m-1 ), and the charging of any amount of charge C 1 m in step S203 is performed.
  • the first error calculation unit 45 calculates the amount of electricity (first value) obtained by multiplying the amount of charged electricity C 1m by the coefficient R p1 set in advance to the amount of discharged electricity D 1m ⁇ 1 in the immediately preceding discharge cycle.
  • An error obtained by subtracting the reference discharge electric quantity is calculated (step S204; first error calculation step).
  • the calculated error is sequentially integrated by the first error integrated value calculating unit 46 (see FIG. 11) to calculate the first error integrated value (step S205; first error integrated value calculating step).
  • step S206 an arbitrary amount of discharge electricity D 1m is discharged.
  • the 1st calculating part 41 calculates a 1st integration charge electric quantity (step S207; 1st calculation step).
  • the 1st calculating part 41 calculates a 1st integrated discharge electricity amount (step S208; 1st calculation step).
  • the first accumulated discharge quantity after discharge in steps S202 and S206 is the accumulated discharge quantity obtained by adding the discharge quantity D 1m in step S206 to the discharge quantity D 1m-1 in step S202. D.
  • the controller 43 determines whether or not the number of times of charging / discharging so far exceeds a preset number of times P 1 (for example, a number in the range of 2 to 20 times) (step S209). When the charge and discharge times is less than the number of P 1 (NO in step S209), until the charge and discharge count is determined to exceed the number of P 1, the processing of steps S203 ⁇ S208 are repeated.
  • P 1 for example, a number in the range of 2 to 20 times
  • control unit 43 counts the number of charge / discharge cycles including the charge cycle and the discharge cycle immediately after the charge cycle. Each time the processes of steps S209 and S211 are performed, the charge / discharge cycle counted so far is counted. The number is reset, and the number of charge / discharge cycles is counted again (count step).
  • step S210 if the charge and discharge count is determined to exceed the number of P 1, the control unit 43, the first error integration value at that time, the discharge electric quantity D in the first discharge A charge amount obtained by adding an amount of electricity obtained by multiplying 1m ⁇ 1 by a preset coefficient R 1 is charged. (Step S210).
  • the determination unit 42 determines whether the first accumulated discharge amount of electricity far exceeds the first set value D 1 (step S211; determination step). If the first accumulated discharge amount of electricity is less than the first set value D 1 (NO in step S211), determination unit 42 determines that the life cycle of lead-acid battery is the first region at the present time (step S212) . And the control part 43 resets the counted charging / discharging frequency
  • the life cycle of lead-acid battery is the second region at the present time Is determined (step S213).
  • step S214 charging with an arbitrary amount of charged electricity C 2n-1 in step S214, discharging of an arbitrary amount of discharged electricity D 2n-1 in step S215, and charging of an arbitrary amount of charged electricity C 2n in step 216 are performed.
  • the second error calculation unit 48 (see FIG. 11) is charged electricity quantity C from 2n, the coefficient is set to a value smaller than previously coefficient R p1 to discharge electric quantity D 2n-1 in the discharge cycle immediately preceding R p2 An error obtained by subtracting the amount of electricity multiplied by (second reference discharge amount of electricity) is calculated (step S217; second error calculating step). The calculated error is sequentially integrated by the second error integrated value calculating unit 49 (see FIG. 11) to calculate the second error integrated value (step S218; second error integrated value calculating step).
  • step S219 discharge with an arbitrary amount of discharge electricity D 1n is performed.
  • the 2nd calculating part 44 calculates the 2nd integral charge electric charge (step S220; 2nd calculation step).
  • the calculating part 41 calculates a 2nd integrated discharge electricity amount (step S221; 2nd calculation step). The processing described above is repeated until it is determined in step S222 that the value representing the number of times of charging / discharging so far exceeds a preset number of times P 2 (for example, a number in the range of 2 to 20 times). Done.
  • control unit 43 counts the number of charge / discharge cycles including the charge cycle and the discharge cycle immediately after the charge cycle, and each time the processes of steps S222 and S224 are performed, the charge / discharge cycle counted so far is counted. The number is reset, and the number of charge / discharge cycles is counted again (count step).
  • step S22 but when the value representing the number of times of charge and discharge of far is determined to exceed the number of times P 2 set in advance, the control unit 43, the second error integration value at that time, in the first discharge A charge electricity amount obtained by adding an electricity amount obtained by multiplying the discharge electricity amount D 2n ⁇ 1 by a preset coefficient R 2 is charged (step S223).
  • the determination unit 42 determines whether the second accumulated discharge amount of electricity far exceeds the second setting value D 2 (step S224).
  • the second accumulated discharge amount of electricity is, if it is determined to exceed the second set value D 2 (YES in step S224), the notification unit 6 performs lifetime incoming notification (step S225).
  • the second accumulated discharge amount of electricity is, if it is determined that less than the second set value D 2 exceeds (NO in step S224), the second accumulated discharge amount of electricity second set value D 2 Steps S216 to S223 are repeated until it is determined.
  • the control unit 43 calculates the first accumulated charge amount after execution of the immediately subsequent charge cycle every time the charge / discharge cycle is repeated a preset number of times P 1 in the first region. Charging is performed so as to obtain a charge electricity amount obtained by multiplying the first integrated discharge electricity amount at that time by a coefficient RP1 set to a value within the range of 1 to 1.5.
  • control unit 43 a charge-discharge cycle in advance for each repeating set number P 2 in the second region, the second cumulative amount of charge after charging cycles performed immediately thereafter, the second accumulated discharge electricity at that time Charging is performed so that the amount of charge is multiplied by a coefficient RP2 set to a value in the range of 0.9 to 1.25. Therefore, the amount of charged electricity is controlled at a frequency that more closely matches the usage mode of the user's lead storage battery.
  • the coefficient R p1 and the coefficient R p2 is the ratio R p1 / R p2 of the coefficients R p1 and the coefficient R p2 is set so that 1 ⁇ R p1 / R p2 ⁇ 1.66.
  • the coefficient R P1 is set to a value within the range of 1 to 1.5
  • the coefficient R P2 is set to a value within the range of 0.9 to 1.25
  • the coefficient R p1 is why the ratio R p1 / R p2 of the coefficient R p2 is set so that 1 ⁇ R p1 / R p2 ⁇ 1.66 is the same as setting the values of and the coefficient R2 of coefficients R1 is there.
  • the fifth embodiment is characterized in that, in the first embodiment, the ratio D S1 / D max between the maximum value D max and the first set value D 1 is in the range of 20 to 200. It is known that a general lead-acid battery has this D 1 / D max within a range of 20 to 200, depending on the constituent conditions such as the composition of the electrolyte. Further, it is known that the capacity of the lead storage battery becomes the maximum value D max when the first integrated discharge electric quantity reaches the first set value D 1 without fully charging and discharging the lead storage battery. Knowing these, by grasping the lead dioxide mass used in the lead-acid battery, it is possible to estimate the first set value D 1 approximately.
  • the mass of lead dioxide used in the lead storage battery can be grasped by disassembling the lead storage battery and performing quantitative analysis.
  • the sixth embodiment is characterized in that, in the first embodiment, the configuration of the lead storage battery is a control valve type.
  • a lead-acid battery takes in and separates sulfate ions (SO 4 2 ⁇ ) in an electrolytic solution as it is charged and discharged. Since the control valve type lead-acid battery reduces the amount of the electrolyte compared to the liquid type used in the cell starter for internal combustion automobiles, the influence of the electrolyte on the charge / discharge reaction described above is reduced. Since the distinction between the region and the second region becomes clear, the effect of using the control method of the present embodiment is increased.
  • control valve type lead-acid battery is configured such that oxygen gas generated from the positive electrode is absorbed by the negative electrode on the principle of operation. If the amount of the electrolytic solution is excessive, the electrolytic solution closes the gas diffusion path from the positive electrode to the negative electrode, so that absorption of oxygen gas at the negative electrode is hindered. Therefore, in the control valve type lead acid battery, the amount of the electrolytic solution is limited as compared with the liquid type lead acid battery. Therefore, the capacity of the lead storage battery is likely to fluctuate according to the activity of the positive electrode active material, not the amount of the electrolytic solution. Thus, classification of the first region and the second region to the first setting value D 1 of the active material of the positive electrode is activated begins to deactivation as a boundary is clear, the effect of using a control method of this embodiment Becomes larger.
  • the seventh embodiment is an embodiment shown below.
  • FIG. 10 is a block diagram showing an example of the power supply system of the seventh embodiment.
  • FIG. 11 is a block diagram showing an example of functional modules of the microcomputer 4.
  • the lead storage battery 1 is electrically connected to a charger 2 for charging it and a load 3 for discharging it.
  • the lead storage battery 1 is also connected to the microcomputer 4.
  • the microcomputer 4 is connected to the notification unit 6.
  • reports to a user that the lifetime of a lead storage battery has come by a voice message, a display, etc.
  • the notification unit 6 may be directly connected to the microcomputer 4, but the notification unit 6 and the microcomputer 4 are connected to a wireless network such as Bluetooth (registered trademark), a wired network including optical communication, or a telephone. It may be connected via an existing information network such as a line.
  • the information regarding the state of the lead acid battery which the microcomputer 4 emits (for example, the information which shows that the life of the lead acid battery has come) will be sent from the lead acid battery 1 or the microcomputer 4 to the notification part 6 of the remote place. It is possible to notify.
  • one lead storage battery 1 includes a plurality of information storage units 6.
  • the notification units 6 can be made to correspond to notify the respective notification units 6 of information related to the state of the lead storage battery 1.
  • a maintenance / inspection worker can be dispatched to the maintenance / inspection of the lead storage battery 1 from a service station that can respond.
  • reporting part 6 is comprised by a mobile telephone terminal or a PHS terminal, for example, these terminals are carried by the maintenance inspection worker, and the state of a lead storage battery is shown on these terminals.
  • Information and position information of the lead storage battery (hereinafter referred to as information related to the lead storage battery 1) may be sent out for notification.
  • the information on the lead storage battery 1 is not sent to all portable notification units 6, but the position information of the notification unit 6 measured using a GPS signal and the work free time of the maintenance inspection worker are taken into consideration. Then, only the notification unit 6 that is located near the lead storage battery 1 that requires maintenance and that is carried by a maintenance and inspection worker who has a work spare time sends out information about the lead storage battery 1 to be notified. Also good. Furthermore, it is good also as a structure which sends out and alert
  • the state of the lead storage battery 1 is notified by the notification unit 6, which is sufficient for each of these measures. This makes it possible to perform a quicker response by a maintenance / inspection worker who has a good response capability.
  • the microcomputer 4 includes at least a storage unit 40, a first calculation unit 41, a determination unit 42, a control unit 43, a second calculation unit 44, a first error calculation unit 45, a first error integrated value.
  • a calculation unit 46, a first percentage calculation unit (first ratio calculation unit) 47, a second error calculation unit 48, a second error integrated value calculation unit 49, and a second percentage calculation unit (second ratio calculation unit) 50 are configured. Has been.
  • the storage unit 40 stores various programs for operating the microcomputer 4 and stores the first and second set values D 1 and D 2 described above.
  • the storage unit 40 stores the coefficients R 1 , R 2 , R p1 , and R p2 described above. Furthermore, the storage unit 40 stores the above-described threshold values ⁇ and ⁇ , the number of times P 1 , and the number of times P 2 .
  • the first calculation unit 41 calculates the first accumulated charge amount by integrating the charge amount for each charge cycle after the cycle use of the lead storage battery is started, and after the cycle use of the lead storage battery is started.
  • the first accumulated discharge quantity is calculated by integrating the discharge quantity for each discharge cycle.
  • the determination part 42 collates the 1st integrated discharge electricity amount which the 1st calculating part 41 calculated
  • the control unit 43 performs various control processes described above. After the determination unit 42 determines that the second region is the second region, the second calculation unit 44 calculates the second integrated charge electricity amount by integrating the charge amount for each charge cycle in the second region. A second integrated discharge electricity quantity is calculated by integrating the discharge electricity quantity for each discharge cycle in the region.
  • the first error calculation unit 45 predetermines from the charge electricity amount when the charge cycle is executed to the discharge electricity amount in the discharge cycle immediately before the charge cycle. It computes the error obtained by subtracting the obtained first reference discharge electricity quantity multiplied by the coefficient R 1.
  • the first error integration value calculation unit 46 integrates the error every time the error is calculated, and calculates a first error integration value that is an error integration value in the first region.
  • the first percentage calculator 47 calculates a first percentage that is a percentage (first ratio) of the first error integrated value with respect to the nominal capacity of the lead storage battery.
  • the second error calculation unit 48 determines in advance from the charge electricity amount when the charge cycle is executed to the discharge electricity amount in the discharge cycle immediately before the charge cycle. was subtracted second reference discharge electricity quantity multiplied by a coefficient R 2 calculates an error obtained.
  • the second error integration value calculation unit 49 integrates the error every time the error is calculated, and calculates a second error integration value that is an error integration value in the second region.
  • the second percentage calculation unit 50 calculates a second percentage that is a percentage (second ratio) of the second error integrated value with respect to the nominal capacity of the lead storage battery.
  • control unit 43 controls opening / closing of the switch 5 connected in series with the charger 2.
  • the control of the switch 5 by the control unit 43 will be specifically described with reference to the flowcharts of FIGS.
  • the processing of Step 103 to Step 109 is repeatedly performed until the first percentage PER1 exceeds the threshold value ⁇ , but the first percentage PER1 sets the threshold value ⁇ .
  • the control unit 43 does not end the charging from the charger 2 by randomly closing the switch 5, but the amount of charged electricity is when the first percentage PER1 exceeds the threshold value ⁇ .
  • the switch 5 when a charged electricity quantity obtained by adding the quantity of electricity obtained by multiplying the coefficient R 1 set in advance to discharge electric quantity D 1 m-1 in the discharge cycle immediately before the first error integration value of It closes and the charge from the charger 2 in step S111 is terminated.
  • first total amount of charge is controlled to be a quantity of electricity obtained by multiplying the coefficient R 1 set in advance to the first total discharged amount of electricity.
  • step S112 when the first accumulated discharge amount of electricity is determined to exceed the first set value D 1, it is determined that the second region is started by the determination unit 42 (first region is completed) The
  • the control unit 43 includes a switch Rather than closing 5 at random and finishing charging from the charger 2, the amount of charged electricity becomes the second error integrated value when the second percentage PER2 exceeds the threshold value ⁇ , and the amount of discharged electricity in the immediately preceding discharge cycle
  • the switch 5 is closed and the charging from the charger 2 is terminated.
  • finishing the step S121 is the last discharge, when the second total discharge quantity of electricity is determined to exceed the second set value D 2, the second area by the determining unit 42 is completed (the lead-acid battery It is determined that the usage limit has been reached.
  • the effect of the seventh embodiment is the same as the effect of the first embodiment.
  • the coefficient R 1 is a value in the range of 1 to 1.5
  • the coefficient R 2 is a value in the range of 0.9 to 1.25
  • the effect of the eighth embodiment is the same as the effect of the second embodiment.
  • the ninth embodiment is characterized in that, in the seventh embodiment, the ratio D 1 / D max between the maximum value D max and the first set value D 1 is a value in the range of 20 to 200.
  • the effect of the ninth embodiment is the same as the effect of the fifth embodiment.
  • the tenth embodiment is characterized in that, in the seventh embodiment, the configuration of the lead storage battery 1 is a control valve type.
  • the effect of the tenth embodiment is the same as the effect of the sixth embodiment.
  • the eleventh embodiment is an embodiment shown below.
  • the configuration of the power supply system of the eleventh embodiment is the same as the block diagrams of FIGS. The following description will be made in detail with reference to the flowcharts shown in FIGS.
  • step S209 when the charge and discharge count has reached the number P 1 within a predetermined range of 2 to 20 times, the charging in step 210 is performed.
  • Control unit 43 in this charging, instead of closing the switch 5 randomly terminate charging from the charger 2, the charge quantity of electricity, the first error integration value when charge and discharge count has reached the number P 1 Switch 5 is closed when the amount of electricity obtained by multiplying the amount of electricity D 1m-1 in the immediately preceding discharge cycle by the preset coefficient R 1 is obtained, and the switch 5 is closed in step S210. Charging from the charger 2 is terminated.
  • the amount of charge in the first region can be controlled more frequently than in the seventh embodiment in which the amount of charge is controlled after the first percentage PER1 exceeds the threshold value ⁇ . it can.
  • the charging in step 223 is performed.
  • the controller 43 does not end the charging from the charger 2 by randomly closing the switch 5, but the amount of charging electricity is the number P 2 within the range of 2 to 20 charging / discharging times.
  • the amount of charge is obtained by adding the amount of electricity obtained by multiplying the discharge error amount D 2n-1 in the immediately preceding discharge cycle by a preset coefficient R 2 to the second error integrated value when Then, the switch 5 is closed to end the charging from the charger 2 in step S223.
  • the amount of charge in the second region can be controlled more frequently than in the seventh embodiment in which the amount of charge is controlled after the second percentage PER2 exceeds the threshold value ⁇ . it can.
  • the coefficient R p1 is a value in the range of 1 to 1.5
  • the coefficient R p2 is a value in the range of 0.9 to 1.25
  • the coefficient R p1 is characterized in that stored in the storage unit 40 that the ratio R p1 / R p2 of the coefficient R p2 is 1 ⁇ R p1 / R p2 ⁇ 1.66.
  • the effects of the twelfth embodiment are the same as those obtained by combining the first to fourth embodiments.
  • the thirteenth embodiment is characterized in that, in the eleventh embodiment, the ratio D 1 / D max between the maximum value D max and the first set value D 1 is a value in the range of 20 to 200.
  • the effects of the thirteenth embodiment are the same as those obtained by combining the first, third, fourth and fifth embodiments.
  • the fourteenth embodiment is characterized in that, in the eleventh embodiment, the configuration of the lead storage battery 1 is a control valve type.
  • the effect of the fourteenth embodiment is the same as that of the first, third, fourth and sixth embodiments combined.
  • the method for controlling a lead-acid battery calculates a first accumulated charge electricity amount by integrating the charge electricity amount for each charge cycle after the cycle use of the lead-acid battery is started.
  • a first calculation step of calculating the first integrated discharge electricity amount by integrating the discharge electricity amount for each discharge cycle after the cycle use is started; and the first integrated discharge electricity amount is the charge / discharge cycle of the lead storage battery.
  • the lead-acid battery It is determined that the first integrated discharge electricity amount is the first region which is a partial region in the life cycle from the start of the cycle use until the end of the life of the lead storage battery.
  • a determining step of determining that the second region to an area coming the life of the lead-acid battery after the first region wherein in the determination step the After determining that there are two regions, the amount of charge electricity for each charge cycle in the second region is integrated to calculate a second amount of accumulated charge electricity, and the amount of discharge electricity for each discharge cycle in the second region is calculated.
  • a second calculation step of integrating and calculating a second integrated discharge electricity amount, and a first total charge electricity amount C 1 that is the first integrated charge electricity amount at the end of the first region is the first set value D.
  • the amount of electricity charged in the first region is controlled so as to be multiplied by a first value R 1 set in advance, and the life of the lead storage battery is determined after being determined as the second region.
  • Said second product when The second is the overall amount of charge C 2 is charged quantity of electricity, the second setting value D 2 wherein a second accumulated discharge amount of electricity when the life of the lead-acid battery is reached, advance the first value R
  • a control step of controlling the amount of electricity charged in the second region so that the amount of electricity multiplied by the second value R2 set to a value smaller than 1 is obtained.
  • the first accumulated charge quantity that is the accumulated value of the charge quantity for each charge cycle after the cycle use of the lead acid battery is started the lead acid battery undergoes the charge / discharge cycle.
  • the lead acid battery undergoes the charge / discharge cycle. in the course of the change in capacity of the lead-acid battery produced by a region where the capacity is less than the first set value D 1 is a first accumulated discharge amount of electricity when the maximum value D max.
  • the active material of the positive electrode is activated and the capacity of the lead storage battery is increased.
  • the lower lead oxide (PbO, PbOx (1 ⁇ x ⁇ 2)), basic sulfate ((PbO) n PbSO 4 (n 1 to 4) remaining in the positive electrode active material. ) Or sulfate (PbSO 4 ) is changed to lead dioxide and lead dioxide is activated, and its surface area is expanded, so that the amount of electricity that can be discharged per unit mass of the positive electrode active material gradually increases. It is thought to continue. In the first region, since the positive electrode active material is activated, the amount of electricity that can be charged naturally increases.
  • the positive electrode active material described above is used. Activation is inhibited and deactivated, and the amount of electricity that can be charged and discharged continues to decrease.
  • the charge electricity amount in the first region is controlled so that the integrated value of the discharge electricity amount in the entire first region becomes equal to or greater than the integrated value of the charge electricity amount in the entire first region.
  • Loss of the amount of electricity used for charging for example, the amount of electricity required for the conversion of lead lower oxide, sulfate or basic sulfate to lead dioxide, inevitably generated oxygen gas on the positive electrode plate
  • the integrated value of the charged electricity amount through the first region (that is, the first total charged electricity amount C 1 that is the accumulated charged electricity amount at the end of the first region) is the first.
  • the set value D 1 so that the quantity of electricity obtained by multiplying the first value R 1 which is set in advance, so as to control the amount of charge in the first region.
  • the first set value D 1 is accumulated discharge amount of electricity when the first region is completed (i.e., the first total amount of charge C 1 is an integrated discharged amount of electricity at the end of the first region) are the the control method of the lead-acid battery according to the present invention, as first the entire amount of charge C 1, the first total amount of charge C 1, the amount of electricity obtained by multiplying the first value R 1 set in advance The amount of electricity charged in the first region can be controlled.
  • the control method of the lead-acid battery according to the present invention in a first region, the first total amount of charge C 1 through the first region, that the first total discharged amount of electricity or amount of electricity through the first region Can do.
  • the integrated value of the charged electricity amount in the entire first region becomes an integrated value equal to or larger than the integrated value of the discharged electricity amount in the entire first region. Then, the shortage of the amount of charged electricity can be avoided. Therefore, in the first region, it is possible to reduce a decrease in the amount of electricity that can be charged / discharged due to insufficient charging.
  • the second region defined in this method the first total discharged amount of electricity is accumulated discharge amount of electricity at the end of the first region is a region where the first exceeds the set value D 1.
  • the deactivation of the active material of the positive electrode starts to proceed.
  • the function as an active material is gradually lost when lead dioxide is subdivided, more specifically, lead dioxide having a cluster structure is subdivided and separated from the mother body. .
  • the amount of electricity that can be charged and discharged per unit weight of lead dioxide continues to gradually decrease.
  • the grid (current collector) of the positive electrode corrodes and the amount of charge that can be charged and discharged is significantly reduced.
  • the ratio of the integrated value of the charge electricity amount in the entire second region to the integrated value of the discharge electricity amount in the entire second region is relative to the integrated value of the discharge electricity amount in the entire first region.
  • the charge electricity amount in the second region is controlled so as to be smaller than the ratio of the integrated value of the charge electricity amount in the entire first region, and the chargeable / dischargeable electricity is obtained by charging with an excessive charge electricity amount. There is a need to reduce the amount that decreases significantly.
  • the second overall amount of charge C 2 is a second cumulative amount of charge when the life of the lead-acid battery is reached
  • the second time the life of lead-acid battery has been reached second set value D 2 is accumulated discharge amount of electricity, so that the previously first second value R 2 and multiplied by the quantity of electricity which is set to a value smaller than the value R 1, the charge in the second region
  • the amount of electricity is controlled.
  • the second set value D 2 is accumulated discharge amount of electricity when the life of the lead-acid battery in the second region is reached (i.e., the second overall amount of charge C is an integrated discharged amount of electricity at the end of the second region 2 ) Therefore, in the method for controlling a lead-acid battery according to the present invention, the second total charge amount C 1 is set to a value smaller than the first value R 1 in advance as the second total charge amount C 2. a second value R 2 so that the electrical quantity multiplied by the, it is possible to control the amount of charge in the second region.
  • the ratio of the integrated value of the charge electricity amount in the entire second region to the integrated value of the discharge electricity amount in the entire second region is set in the entire first region. It can be made smaller than the ratio of the integrated value of charge electricity in the entire first region to the integrated value of discharge electricity. Therefore, in the 2nd field, it can reduce that the amount of electricity which can be charged and discharged remarkably decreases by being charged with an excessive amount of charge electricity.
  • capacitance of a lead storage battery means the amount of discharge electricity which can be taken out from a lead storage battery on a certain predetermined discharge condition. More generally, it means the amount of discharge electricity when the lead storage battery is discharged until the state of charge (SOC) of the lead storage battery reaches 0% from 100%.
  • discharge conditions such as a discharge rate, a discharge end voltage, and the battery temperature at the time of discharge, are set suitably by the model or application of a lead storage battery.
  • the first integrated discharge electric quantity representing the integrated value of the discharge electric quantity after the cycle use of the lead storage battery is started is between the first area and the second area.
  • the first set value D 1 as a boundary can reduce a decrease in charging and discharging electric quantity by insufficient charging, after the first accumulated discharge amount of electricity exceeds the first set value D 1
  • the reduction in the amount of electricity that can be charged and discharged can be reduced from being promoted by overcharging.
  • the life of the lead storage battery can be extended as compared with the control method of charging the lead storage battery at random. Can do.
  • the first value R 1 is a value in the range of 1 to 1.5
  • the second value R 2 is a value in the range of 0.9 to 1.25
  • the ratio R 1 / R 2 between the first value R 1 and the second value R 2 is preferably greater than 1 and not greater than 1.66.
  • the first value R 1 is a value in the range of 1 to 1.5
  • the first total charge amount C 1 is set to be equal to or greater than the first total discharge amount. be able to.
  • the second value R 2 is a value within the range of 0.9 to 1.25
  • the ratio of the second total charge electricity amount C 2 to the second total discharge electricity amount is expressed as can be 1 total charged electricity quantity C 1 is less than the proportion with respect to the first total discharged amount of electricity.
  • the first accumulated discharge amount of electricity when less than the first set value D 1 which is a boundary between the first region and the second region is to prevent the decrease in the rechargeable electric quantity by the charging shortage can be, after the first accumulated discharge amount of electricity exceeds the first setting value D 1, it is possible to prevent the reduction of the rechargeable electric quantity is accelerated by over-charging.
  • the activity of the active material of the positive electrode differs depending on the surface temperature of the lead storage battery.
  • the activity of the positive electrode active material is higher as the surface temperature is higher and lower as the surface temperature is lower.
  • the higher the activity of the positive electrode active material the larger the capacity of the lead-acid battery with a smaller integrated discharge amount of electricity (that is, a smaller number of discharge cycles), and the lower the activity of the positive electrode active material, the greater the integrated discharge amount of electricity. It has the property that the capacity of the lead-acid battery is maximized (that is, a large number of discharge cycles).
  • the capacity of the lead-acid battery for calculating a first set value D 1 is an integrated discharged amount of electricity as the maximum, lead-acid battery using first available operation set value D 1 corresponding to the environment, control method suited to the use environment can be realized.
  • the step of determining whether the second accumulated discharge amount of electricity computed in the second region exceeds the second setting value D 2, wherein said second accumulated discharge electricity quantity second when it exceeds the set value D 2 is preferably further comprising a step of performing notification processing, the.
  • the second accumulated discharge amount of electricity in order to perform notification exceeds a second setting value D 2 when the life of the lead-acid battery is reached, the user may verify that the life of the lead-acid battery has been reached it can.
  • the control step in the first region, and a value of charge quantity, multiplied by the value R 1 of the discharged amount of electricity in the discharge cycle the first immediately before each charging cycle of each charge cycle
  • the charge electricity amount in each charge cycle is controlled so that, in the second region, the charge electricity amount in each charge cycle is equal to the discharge electricity amount in the discharge cycle immediately before each charge cycle. as a value obtained by multiplying the value R 2, it is desirable to control the amount of charge in each of the charging cycle.
  • the charge electrical quantity in each charge cycle in the first region, the charge electrical quantity in each charge cycle, the charging so that the amount of charge obtained by multiplying the first value R 1 in the discharge quantity of electricity in the discharge cycle immediately before the charging cycle Is done.
  • the charge electrical quantity in each charge cycle is charged so that the charged electricity quantity by multiplying the second value R 2 to the discharge electric quantity in the discharge cycle immediately before the charge cycle.
  • the charge electricity amount for each charge cycle is a charge electricity amount that can reduce the decrease in the charge amount of the lead storage battery that can be charged and discharged.
  • the unreasonable charge can be repeated, and the life of the lead storage battery can be further extended.
  • a coefficient R 1 predetermined from a charge electricity amount when the charge cycle is executed to a discharge electricity amount in a discharge cycle immediately before the charge cycle.
  • a first error calculation step of calculating an error obtained by subtracting the first reference discharge electricity quantity multiplied by the value, and integrating the error every time the error is calculated, and an integrated value of the error in the first region A first error integrated value calculating step for calculating a first error integrated value, a first ratio calculating step for calculating a first ratio that is a ratio of the first error integrated value to a nominal capacity of the lead storage battery, and a calculation
  • a first ratio determining step for determining whether or not the set first ratio exceeds a preset first threshold; and when it is determined that the first ratio exceeds the first threshold
  • the amount of charged electricity in the charging cycle immediately thereafter is the first error at that time. Charging is performed so that the amount of charge is equal to the integrated value, and the first amount of accumulated charge is corrected. Accordingly, even if the random charging is repeated in the first region, the first total amount of charge becomes the electrical quantity multiplied by the coefficient R 1 to the first total discharged amount of electricity. Therefore, it is possible to reduce a decrease in the amount of electricity that can be charged / discharged due to insufficient charging in accordance with the actual usage of the lead storage battery of the user.
  • a coefficient R 2 predetermined from a charge electricity amount at the time of executing the charge cycle to a discharge electricity amount in a discharge cycle immediately before the charge cycle.
  • a second error calculating step for calculating an error obtained by subtracting the second reference discharge electricity quantity multiplied by the value, and integrating the error every time the error is calculated, and an integrated value of the error in the second region
  • a second error integrated value calculating step for calculating the second error integrated value
  • a second ratio calculating step for calculating a second ratio that is a ratio of the second error integrated value to the nominal capacity of the lead storage battery
  • a second ratio determining step for determining whether or not the second ratio is greater than a preset second threshold; and when it is determined that the second ratio is greater than the second threshold
  • a charge step in which the charge amount in the immediately subsequent charge cycle is equal to the charge error amount equal to the second error integrated value at that time, and a correction step for correcting the second charge amount of charge, It is desirable to provide further.
  • the amount of charge in the charge cycle immediately thereafter is the second error at that time. Charging is performed so that the amount of charge is equal to the integrated value, and the second amount of accumulated charge is corrected. Accordingly, even if the random charging is repeated in the second region, the second total amount of charge becomes the electrical quantity multiplied by a coefficient R 2 to the second total discharged amount of electricity. Therefore, in accordance with the actual usage of the lead storage battery of the user, it is possible to reduce a significant decrease in the amount of electricity that can be charged / discharged due to excessive charging.
  • the charge-discharge cycle in advance for each repeating set number P 1 of the first region, the first accumulated amount of charge after charging cycles performed immediately thereafter is the first accumulated discharge electricity at that time It is desirable to perform charging in the immediately following charging cycle so that the amount of electricity is obtained by multiplying the amount by a coefficient R P1 set in the range of 1 to 1.5 in advance.
  • the first accumulated charge amount after the execution of the immediately subsequent charge cycle is the amount of charge that can be charged / discharged by the lead storage battery. Therefore, it is possible to reduce the decrease in the amount of electricity that can be charged and discharged due to insufficient charging in accordance with the actual usage of the user.
  • the charge-discharge cycle in advance for each repeating set number P 2 in the second region, the second accumulated amount of charge after charging cycles performed immediately thereafter is the second accumulated discharge electricity at that time It is desirable to perform charging in the immediately following charging cycle so that the amount of electricity is obtained by multiplying the amount by a coefficient RP2 set in advance within a range of 0.9 to 1.25.
  • the charge-discharge cycle in advance for each set is repeated several P 2 in the second region, the second cumulative amount of charge after charging cycles performed immediately thereafter are rechargeable electric quantity of the lead storage battery
  • the amount of charge electricity that can reduce a significant decrease in the amount of charge is reduced, so that the amount of electricity that can be charged and discharged due to excessive charging is reduced in accordance with the actual usage of the user. be able to.
  • a coefficient R 1 predetermined from a charge electricity amount when the charge cycle is executed to a discharge electricity amount in a discharge cycle immediately before the charge cycle.
  • a first error integrated value calculating step for calculating the first error integrated value a count step for counting the number of times the charge / discharge cycle is executed each time the charge / discharge cycle is executed in the first region, the discharge cycle for each repetition the count P 1, the charge quantity of electricity at that immediately after the charge cycle and the first error integration value equal charged electricity quantity at that time Performing charged so that a correction step of correcting the first cumulative amount of charge, further comprising desirably a.
  • each time the charge / discharge cycle is repeated P 1 times in the first region charging is performed such that the charge electricity amount in the immediately subsequent charge cycle is equal to the charge error amount at that time.
  • To correct the first cumulative charge electricity amount even if it is a case where random charge is repeated in the 1st field, the 1st accumulation charge quantity of electricity immediately after repeating charge / discharge cycle P 1 times becomes the 1st accumulation discharge quantity of electricity at that time.
  • the quantity of electricity multiplied by the coefficient R P1 Therefore, it is possible to reduce a decrease in the amount of electricity that can be charged / discharged due to insufficient charging in accordance with the actual usage of the lead storage battery of the user.
  • a coefficient R 2 predetermined from a charge electricity amount at the time of executing the charge cycle to a discharge electricity amount in a discharge cycle immediately before the charge cycle.
  • a second error integrated value calculating step for calculating the second error integrated value a count step for counting the number of times the charge / discharge cycle is executed each time the charge / discharge cycle is executed in the second region, the discharge cycle for each repetition the count P 2, charging electric quantity in the immediately following charge cycle equal amount of charge and the second error integration value at that time Performing charged so that a correction step of correcting the second cumulative amount of charge, further comprising desirably a.
  • the charge-discharge cycle is repeated 2 times P, performs charging so that the charging quantity of electricity at the immediately following charge cycle is the second error integration value equal charged electricity quantity at that time, the 2. Correct the accumulated charge electricity amount. Accordingly, even if the random charging is repeated in the second region, the charge-discharge cycle second cumulative amount of charge immediately after repeated twice P is, the second accumulated discharge amount of electricity that time The quantity of electricity multiplied by the coefficient RP2 . Therefore, in accordance with the actual usage of the lead storage battery of the user, it is possible to reduce a significant decrease in the amount of electricity that can be charged / discharged due to excessive charging.
  • the preset times P 1 and P 2 be a number in the range of 2 to 20.
  • the first and second integrated charge electricity quantities immediately after that can be charged / discharged can reduce the decrease in the amount of electricity. Therefore, the decrease in the amount of electricity that can be charged / discharged can be reduced with an appropriate frequency in accordance with the actual usage mode of the lead storage battery.
  • the ratio D 1 / D max between the maximum value D max and the first set value D 1 is preferably a ratio within a range of 20 to 200.
  • control method according to the present invention can be implemented using a general lead storage battery having D 1 / D max in the range of 20 to 200.
  • the lead storage battery is composed of a control valve type lead storage battery.
  • a control valve type lead-acid battery has a sealed structure and cannot be replenished with electrolyte, so the capacity of the lead-acid battery is not the amount of electrolyte but the active material of the positive electrode. Fluctuates easily depending on the activity. Thus, classification of the first region and the second region to the first setting value D 1 of the active material of the positive electrode is activated begins to deactivation as a boundary is clear, the effect of using the control method of the present invention growing.
  • the power supply system which concerns on the other situation of this invention is the charge for every charge cycle after the lead use battery which comprises a power supply, the charger for charging the said lead acid battery, and the cycle use of a lead acid battery was started.
  • the first integrated charge electricity amount is calculated by integrating the amount of electricity and calculating the first integrated charge electricity amount, and integrating the discharge electricity amount for each discharge cycle after the cycle use of the lead storage battery is started. 1 calculation unit and the first integrated discharge electric quantity when the capacity becomes the maximum value D max in the process of changing the capacity of the lead storage battery caused by the lead storage battery going through a charge / discharge cycle.
  • the second region is determined by the determination unit.
  • the second is the overall amount of charge C 2 is a second cumulative amount of charge, the second accumulated discharge electricity when the life of the lead-acid battery is reached when the life of the lead-acid battery is reached.
  • the second set value D 2 which is a quantity, is multiplied by a second value R 2 set in advance to a value smaller than the first value R 1 , so that the electric quantity in the second region is obtained.
  • a control unit that controls the amount of charged electricity.
  • the first integrated discharge electric quantity that represents the integrated value of the discharge electric quantity after the cycle use of the lead storage battery is started is the first setting that is a boundary between the first area and the second area.
  • the first setting value D 1 may reduce a decrease in charging and discharging electric quantity by insufficient charging, after the first accumulated discharge amount of electricity exceeds the first setting value D 1, a rechargeable electric It can reduce that the fall of quantity is accelerated
  • the life of the lead storage battery can be extended compared with the case of charging the lead storage battery randomly. it can.
  • the first value R 1 is a value in the range of 1 to 1.5
  • the second value R 2 is a value in the range of 0.9 to 1.25.
  • the ratio R 1 / R 2 between the first value R 1 and the second value R 2 is preferably greater than 1 and not greater than 1.66.
  • the first value R 1 is set to a value within the range of 1 to 1.5
  • the first total charge amount C 1 is set to be equal to or greater than the first total discharge amount. be able to.
  • the second value R 2 is a value within the range of 0.9 to 1.25
  • the ratio of the second total charge electricity amount C 2 to the second total discharge electricity amount is expressed as can be 1 total charged electricity quantity C 1 is smaller than the proportion of the first total discharged amount of electricity.
  • the first accumulated discharge amount of electricity when less than the first set value D 1 which is a boundary between the first region and the second region is to prevent the decrease in the rechargeable electric quantity by the charging shortage can be, after the first accumulated discharge amount of electricity exceeds the first setting value D 1, it is possible to prevent the reduction of the rechargeable electric quantity is accelerated by over-charging.
  • control unit depending on the surface temperature of the lead storage battery, it is desirable to calculate the first set value D 1.
  • the capacity of the lead-acid battery for calculating a first set value D 1 is an integrated discharged amount of electricity as the maximum, lead-acid battery using first available operation set value D 1 corresponding to the environment, control method suited to the use environment can be realized.
  • a notification unit for performing a notification process, the determining unit, whether the second accumulated discharge amount of electricity computed in the second region exceeds the second setting value D 2 determined, the notification unit, by the determination unit, when the second accumulated discharge amount of electricity is determined to exceed the second set value D 2, it is desirable to perform the notification process.
  • the second accumulated discharge amount of electricity in order to perform notification exceeds a second setting value D 2 when the life of the lead-acid battery is reached, the user may verify that the life of the lead-acid battery has been reached it can.
  • the charge electrical quantity in each charge cycle in the first region, the charge electrical quantity in each charge cycle, the charging so that the amount of charge obtained by multiplying the first value R 1 in the discharge quantity of electricity in the discharge cycle immediately before the charging cycle Is done.
  • the charge electrical quantity in each charge cycle is charged so that the charged electricity quantity by multiplying the second value R 2 to the discharge electric quantity in the discharge cycle immediately before the charge cycle.
  • the charge electricity amount for each charge cycle is a charge electricity amount that can reduce the decrease in the charge amount of the lead storage battery that can be charged and discharged.
  • the unreasonable charge can be repeated, and the life of the lead storage battery can be further extended.
  • a first error calculation unit for calculating an error obtained by subtracting the first reference discharge electric quantity multiplied by R 1 , and integrating the error every time the error is calculated;
  • a first error integrated value calculator that calculates a first error integrated value that is an integrated value; and a first ratio calculator that calculates a first ratio that is a ratio of the first error integrated value to the nominal capacity of the lead storage battery;
  • the determination unit determines whether or not the calculated first ratio exceeds a preset first threshold value, and the control unit determines that the first ratio is the first ratio.
  • the charge electricity amount in the immediately subsequent charge cycle is the first error at that time. Charging is performed so that the amount of charge is equal to the integrated value, and the first amount of accumulated charge is corrected. Accordingly, even if the random charging is repeated in the first region, the first total amount of charge becomes the electrical quantity multiplied by the coefficient R 1 to the first total discharged amount of electricity. Therefore, it is possible to reduce a decrease in the amount of electricity that can be charged / discharged due to insufficient charging in accordance with the actual usage of the lead storage battery of the user.
  • a second error calculation part for calculating an error obtained by subtracting the second reference discharge electricity quantity multiplied by R 2, the error by integrating each time the error is calculated, the error in the second region A second error integrated value calculator that calculates a second error integrated value that is an integrated value; a second ratio calculator that calculates a second ratio that is a ratio of the second error integrated value to the nominal capacity of the lead storage battery;
  • the determination unit determines whether the calculated second rate exceeds a preset second threshold, and the control unit determines that the second rate is the second rate. Judged to exceed the threshold When the charging is performed, charging is performed such that the amount of charge in the charge cycle immediately thereafter becomes equal to the amount of charge charged at that time, and the second amount of accumulated charge is corrected. desirable.
  • the second region when the ratio of the second error integrated value with respect to the nominal capacity of the lead storage battery exceeds the second threshold, the amount of charge in the charge cycle immediately after that is the second error at that time. Charging is performed so that the amount of charge is equal to the integrated value, and the second amount of accumulated charge is corrected. Accordingly, even if the random charging is repeated in the second region, the second total amount of charge becomes the electrical quantity multiplied by a coefficient R 2 to the second total discharged amount of electricity. Therefore, in accordance with the actual usage of the lead storage battery of the user, it is possible to reduce a significant decrease in the amount of electricity that can be charged / discharged due to excessive charging.
  • the first accumulated amount of charge after charging cycles performed immediately after the said at that time Charging in the immediately following charging cycle is performed so that the first integrated discharge electricity amount is multiplied by a preset coefficient RP1, and the charge / discharge cycle is preset in the second region P 2.
  • the second cumulative charge electricity amount after the execution of the immediately subsequent charge cycle is multiplied by a coefficient RP2 that is set in advance to a value smaller than the coefficient Rp1. It is desirable to perform charging in the immediately following charging cycle so that the amount of electricity is equal.
  • the first accumulated charge amount after the execution of the immediately subsequent charge cycle is the amount of charge that can be charged / discharged by the lead storage battery. Therefore, it is possible to reduce the decrease in the amount of electricity that can be charged and discharged due to insufficient charging in accordance with the actual usage of the user.
  • a coefficient R 1 that is predetermined from a charge electricity amount when the charge cycle is executed to a discharge electricity amount in a discharge cycle immediately before the charge cycle.
  • a first error calculation unit that calculates an error obtained by subtracting the first reference discharge electricity quantity multiplied by the value, and integrates the error every time the error is calculated, and an integrated value of the error in the first region
  • a first error integrated value calculation unit that calculates a first error integrated value, and the control unit executes the charge / discharge cycle each time the charge / discharge cycle is executed in the first region.
  • the charge-discharge cycle for each repetition the count P 1 equal amount of charge at that immediately after the charge cycle and the first error integration value at that time It performs charging so that the amount of charge, it is desirable to perform the correction of the first accumulated amount of charge.
  • a coefficient R 2 that is predetermined from a charge electricity amount when the charge cycle is executed to a discharge electricity amount in a discharge cycle immediately before the charge cycle.
  • a second error integrated value calculation unit that calculates a second error integrated value, and the control unit executes the charge / discharge cycle each time the charge / discharge cycle is executed in the second region.
  • the charge-discharge cycle for each repetition the count P 2 equal amount of charge at that immediately after the charge cycle and the second error integration value at that time It performs charging so that the amount of charge, it is desirable to perform the correction of the second accumulated amount of charge.
  • the charge-discharge cycle is repeated 2 times P, performs charging so that the charging quantity of electricity at the immediately following charge cycle is the second error integration value equal charged electricity quantity at that time, the 2. Correct the accumulated charge electricity amount. Accordingly, even if the random charging is repeated in the second region, the charge-discharge cycle second cumulative amount of charge immediately after repeated twice P is, the second accumulated discharge amount of electricity that time The quantity of electricity multiplied by the coefficient RP2 . Therefore, in accordance with the actual usage of the lead storage battery of the user, it is possible to reduce a significant decrease in the amount of electricity that can be charged / discharged due to excessive charging.
  • the preset times P 1 and P 2 be a number in the range of 2 to 20.
  • the first and second integrated charge electricity quantities immediately after that can be charged / discharged can reduce the decrease in the amount of electricity. Therefore, the decrease in the amount of electricity that can be charged / discharged can be reduced with an appropriate frequency in accordance with the actual usage mode of the lead storage battery.
  • the coefficient R P1 is a value in the range of 1 to 1.5
  • the coefficient R P2 is a value in the range of 0.9 to 1.25
  • the ratio R P1 / R P2 between the coefficient R P2 and the coefficient R P2 is preferably greater than 1 and not greater than 1.66.
  • the coefficient R 1 is set to a value in the range of 1 to 1.5. Therefore, every time the charge / discharge cycle in the first region is repeated P 1 times, the first integrated charge amount immediately after that is repeated. Can be a quantity of electricity equal to or greater than the first cumulative discharge quantity of electricity at that time. Further, since the coefficient R 2 is a value within a range from 0.9 to 1.25 second cumulative amount of charge immediately after its, the ratio with respect to the second accumulated discharge amount of electricity that time The first integrated charge amount immediately after the charge / discharge cycle is repeated P 1 times in the first region can be made smaller than the proportion of the first integrated discharge amount of electricity at that time.
  • the ratio D 1 / D max between the maximum value D max and the first set value D 1 is preferably a ratio within a range of 20 to 200.
  • the lead storage battery is a control valve type lead storage battery.
  • a control valve type lead-acid battery has a sealed structure and cannot be replenished with electrolyte, so the capacity of the lead-acid battery is not the amount of electrolyte but the active material of the positive electrode. Fluctuates easily depending on the activity. Therefore, according to this configuration, divided between the first region and the second region to the first setting value D 1 of the active material of the positive electrode is activated begins to deactivation as a boundary becomes clear.
  • the lead storage battery control method and power supply system according to the present invention promotes the use of a lead storage battery that is tough-use and highly safe as a power source for electric vehicles that are mainly charged irregularly. The impact on is great.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

無作為な充電によって起こる、鉛蓄電池の充電不足による容量低下と、過充電による劣化とを同時に解決する。本発明の鉛蓄電池の制御方法は、理論放電容量が最大値Dmax となる積算放電容量D1 に達するまでの第1領域と、積算放電容量D1 を超えた後の第2領域とを設定し、第1領域における積算充電容量C1 を積算放電容量D1 で除した値R1 が、第2領域における積算充電容量C2 を積算放電容量D2 で除した値R2 よりも大きくなるようにしたことを特徴とする。

Description

鉛蓄電池の制御方法および電源システム
 本発明は鉛蓄電池の制御方法、および鉛蓄電池を用いた電源システムに関する。
 二酸化炭素の排出や石油資源の枯渇を抑制する気運が高まる中、電力(例えば鉛蓄電池などの二次電池)のみを動力とする小型車両の開発が嘱望されている。
 中でも鉛蓄電池は、タフユースに強く適度な重量を有しているため、例えば運搬車両における動力源として有用である。
 この鉛蓄電池を効率的に充電する方法が種々検討されている。特許文献1では、前回の充電後に放電された放電量(放電電気量と同義)よりも僅かに多い充電量(充電電気量と同義)で次回に充電することを繰り返す方法が挙げられている。この方法によれば、所定のリフレッシュ過充電(鉛蓄電池を過充電状態として鉛蓄電池の容量を回復させること)を除いて過充電を避けつつ、充電不足による鉛蓄電池の容量低下を防ぐことができると記されている。
 ところで鉛蓄電池では、充電サイクル及びその直後の放電サイクルからなる充放電サイクルが、所定のサイクル数に達するまで(或いは、放電電気量の積算値が所定の値に達するまで)は、前回の充電後に放電された放電量よりも僅かに多い充電量で次回に充電することで充電不足による容量低下を防ぐことができる。しかしながら、充放電サイクルが所定のサイクル数を超えると(或いは、放電電気量の積算値が所定の値を超えると)、鉛蓄電池が、前回の充電後に放電された放電量よりも僅かに多い充電量で充電されることで、鉛蓄電池が過充電された状態となり、劣化が生じることがわかった。
特開2003-219571号公報
 本発明は上述した課題を解決するためになされたものであり、無作為な充電によって起こる鉛蓄電池の2種の不具合(充電不足による容量低下と、過充電による劣化)を同時に解決することを目的とする。
 本発明の一局面に従う鉛蓄電池の制御方法は、鉛蓄電池のサイクル使用が開始されてからの充電サイクル毎の充電電気量を積算して第1積算充電電気量を演算するとともに、前記鉛蓄電池のサイクル使用が開始されてからの放電サイクル毎の放電電気量を積算して第1積算放電電気量を演算する第1演算ステップと、前記第1積算放電電気量が、前記鉛蓄電池が充放電サイクルを経ることにより生じる当該鉛蓄電池の容量の変化の過程において、当該容量が最大値Dmaxとなるときの前記第1積算放電電気量である第1設定値Dに満たないときには、前記鉛蓄電池のサイクル使用が開始されてから前記鉛蓄電池の寿命が到来するまでのライフサイクルにおける一部の領域である第1領域であると判定し、前記第1積算放電電気量が前記第1設定値Dを超えているときには、前記第1領域の後の領域であって前記鉛蓄電池の寿命が到来するまでの第2領域であると判定する判定ステップと、前記判定ステップにおいて前記第2領域であると判断された後、前記第2領域における充電サイクル毎の充電電気量を積算して第2積算充電電気量を演算するとともに、前記第2領域における放電サイクル毎の放電電気量を積算して第2積算放電電気量を演算する第2演算ステップと、前記第1領域の最後における前記第1積算充電電気量である第1全体充電電気量Cが、前記第1設定値Dに、予め設定された第1の値Rを乗じた電気量となるように、前記第1領域における充電電気量を制御し、前記第2領域と判断された後、前記鉛蓄電池の寿命が到来したときの前記第2積算充電電気量である第2全体充電電気量Cが、前記鉛蓄電池の寿命が到来したときの前記第2積算放電電気量である前記第2設定値Dに、予め前記第1の値Rよりも小さな値に設定された第2の値Rを乗じた電気量となるように、前記第2領域における充電電気量を制御する制御ステップと、を備えることを特徴とする。
 本発明によれば、第1領域全体における充電電気量の積算値が、第1領域全体における放電電気量の積算値以上の積算値となるので、第1領域では、充電不足によって充放電可能な電気量が減少することを低減することができる。また、第2領域全体における放電電気量の積算値に対して第2領域全体における充電電気量の積算値が占める割合を、第1領域全体における放電電気量の積算値に対して第1領域全体における充電電気量の積算値が占める割合よりも小さくすることができるため、第2領域では、過剰な充電電気量で充電されることにより充放電可能な電気量が顕著に減少することを低減することができる。
 そのため、本発明によれば、鉛蓄電池のサイクル使用が開始されてからの放電電気量の積算値を表す第1積算放電電気量が、第1領域と第2領域との間の境となる第1設定値Dに満たないときには、充電不足による充放電可能な電気量の減少を低減することができ、第1積算放電電気量が第1設定値Dを超えた後は、充放電可能な電気量の低下が過充電により促進されることを低減することができる。
 従って、本発明によれば、鉛蓄電池の性質を見極めて無理のない充電を繰り返すことができるので、無作為に鉛蓄電池を充電する制御方法と比べて、鉛蓄電池の長寿命化を実現することができる。
本発明の一実施形態に係る鉛蓄電池の制御方法の一例を示すフローチャート。 本発明の一実施形態に係る鉛蓄電池の制御方法の一例を示すフローチャート。 本発明の一実施形態に係る鉛蓄電池の制御方法の他の例を示すフローチャート。 本発明の一実施形態に係る鉛蓄電池の制御方法の他の例を示すフローチャート。 鉛蓄電池の充放電サイクル数と鉛蓄電池の容量との相関の一例を示した図。 DOD(放電深度;定格容量に対する放電量の比)が80%である状態からの5段定電流充電制御の一例を示した図。 図7Aは制御弁式の鉛蓄電池の第1領域における充電効率を示す図、図7Bは制御弁式の鉛蓄電池の第2領域における充電効率を示す図。 本発明の一実施形態に係る鉛蓄電池の制御方法のさらに他の例を示すフローチャート。 本発明の一実施形態に係る鉛蓄電池の制御方法のさらに他の例を示すフローチャート。 本発明の一実施形態に係る電源システムの一例を示すブロック図。 マイクロコンピュータの機能モジュールの一例を示したブロック図。
 以下に、本発明を実施するための最良の形態について、図を用いて説明する。
 第1の実施形態は、以下に示される制御方法であることを特徴とする。
 図1及び2は第1の実施形態に係る鉛蓄電池の制御方法の一例を示すフローチャートである。電源である鉛蓄電池が未使用の状態から使用されたとき、制御部43(図11参照)は、鉛蓄電池が充放電サイクルを経ることにより生じる当該鉛蓄電池の容量の変化の過程において、当該容量が最大値Dmaxとなるときの第1積算放電電気量である第1設定値Dを演算する(ステップS10;設定値演算ステップ)。ここに、第1積算放電電気量は、第1領域において、鉛蓄電池の放電サイクル毎の放電電気量を積算することによって得られた電気量を意味する。また、第1設定値Dは、例えば、後述される処理によって求められる。
 そして、鉛蓄電池において、ステップS11における充電で任意の充電電気量C1m-1が充電され、ステップS12における放電で任意の放電電気量D1m-1(C1m-1>D1m-1)が放電される。ここに、添え字「1m-1」は、第1領域における(m-1)回目を意味する。例えば、放電電気量D1m-1は、第1領域において、充電電気量の制御が行われるm回目の充電が行われる直前の充電サイクルにおける充電電気量を意味する。また、放電電気量D1m-1は、第1領域において、任意のm回目の放電が行われる直前の放電サイクルにおける充電電気量を意味する。
 制御部43(図11参照)は、ステップS12の直後の充電サイクルにおける充電電気量が、ステップS12における放電電気量D1m-1(つまり直前の放電サイクルにおける放電電気量)に係数R1を乗じた充電電気量C1mとなるように充電を行う(ステップS13;第1領域制御ステップ)。そして、鉛蓄電池において、任意の放電電気量D1mが放電される(ステップS14)。
 そして、第1演算部41(図11参照)は、第1領域における積算充電電気量(以下、第1積算充電電気量という)を演算する(ステップS15;第1演算ステップ)。ここに、第1積算充電電気量は、第1領域において、鉛蓄電池の各充電サイクルにおける充電電気量の積算値を意味する。また、第1演算部41は、第1積算放電電気量を演算する(ステップS16;第1演算ステップ)。例えば、ステップS12及びS14における放電が行われた後の第1積算放電電気量は、ステップS14における放電電気量D1mを、ステップS12における放電電気量D1m-1に加えてなる電気量である。
 判定部42(図11参照)は、第1積算放電電気量が、第1設定値Dを超えているか否かを判定する(ステップS17;判定ステップ)。第1積算放電電気量が第1設定値Dに満たない場合(ステップS17のNO)、判定部42は、鉛蓄電池のライフサイクルが現時点において第1領域であることを判定する(ステップS18)。ここに、第1領域は、鉛蓄電池のサイクル使用が開始されてから鉛蓄電池の寿命が到来するまでのライフサイクルにおける一部の領域である。また、後述される第2領域は、第1領域の後の領域であって、鉛蓄電池の寿命が到来するまでの領域である。
 その後、以下に示される処理が繰り返し行われる。制御部43は、充電サイクルにおける充電電気量C2nが、直前の放電サイクルにおける放電電気量D2n-1に係数Rを乗じた充電電気量となるように充電を行う(ステップS23;第2領域制御ステップ)。当該充電の直後の放電サイクルにおいて任意の放電電気量D1mが放電されると(ステップS14)、第1演算部41は、それまでの第1積算充電電気量に充電電気量C1mを積算する(ステップS15)。また、第1演算部41は、それまでの第1積算放電電気量に放電電気量D1mを積算する(ステップS16)。そして、判定部42は、得られた第1積算放電電気量が第1設定値Dを超えているか否かを判定する(ステップS17)。
 ここに、添え字「2n-1」は、第2領域における(n-1)回目を意味する。例えば、放電電気量D2n-1は、第2領域において、充電電気量の制御が行われるn回目の充電が行われる直前の充電サイクルにおける充電電気量を意味する。また、放電電気量D2n-1は、第2領域において、任意のn回目の放電が行われる直前の放電サイクルにおける充電電気量を意味する。
 以上の処理の繰り返しによって、第1積算放電電気量が第1設定値Dを超えたとき(ステップS17のYES)、判定部42は、鉛蓄電池のライフサイクルが現時点において第2領域であると判定する(ステップS19)。
 制御部43は、その後の充電サイクルにおける充電電気量C21が、直前の放電サイクルにおける放電電気量D1mに係数Rを乗じた充電電気量となるように充電を行う(ステップS20)。そして、鉛蓄電池において、任意の放電電気量D2n-1が放電される(ステップS21)。
 制御部43は、その後の充電サイクルにおける充電電気量C2nが、直前の放電サイクルにおける放電電気量D2n-1に係数Rを乗じた充電電気量となるように充電を行う(ステップS22;第2領域制御ステップ)。ここに、放電電気量D2n-1は、第2領域において、任意のn回目の放電が行われる直前の放電サイクルにおける放電電気量を意味する。
 当該充電の直後の放電サイクルにおいて任意の放電電気量D2nが放電されると(ステップS23)、第2演算部44(図11参照)は、第2領域における第2積算充電電気量を演算する(ステップS24;第2演算ステップ)。また、第2演算部44は、第2領域における第2積算放電電気量を演算する(ステップS25;第2演算ステップ)。例えば、ステップS22及びS24における放電が行われた後の第2積算放電電気量は、ステップS24における放電電気量D2nを、ステップS22における放電電気量D2n-1に加えてなる電気量である。
 判定部42は、第2積算放電電気量Dが、第2設定値Dを超えているか否かを判定する(ステップS26)。ここに、第2設定値Dは、例えば判定部42に予め設定されており、第2領域において鉛蓄電池の寿命が到来したときの第2積算放電電気量である。
 第2積算放電電気量Dが、第2設定値Dを超えるときには(ステップS26のYES)、報知部6(図10参照)が寿命到来通知を行う(ステップS27;報知ステップ)。寿命到来通知は、例えば、報知部6によりLEDを発光させるなどして、ユーザに対して、鉛蓄電池の寿命が到来したことを通知する。
 一方、第2積算放電電気量が、第2設定値Dに満たないときには(ステップS26のNO)、以下に示される処理が繰り返し行われる。制御部43は、充電サイクルにおける充電電気量C2nが、直前の放電サイクルにおける放電電気量D2n-1に係数Rを乗じた充電電気量となるように充電を行う(ステップS22)。第2演算部44は、当該充電の直後の放電サイクルにおいて任意の放電電気量D2nが放電されると(ステップS23)、それまでの積算充電電気量に充電電気量C2nを演算する(ステップS24)。また、それまでの第2積算放電電気量に放電電気量D2nを演算する(ステップS25)。そして、判定部42は、得られた第2積算放電電気量が第2設定値Dを超えているか否かを判定する(ステップS26)。以上の処理が、第2積算放電電気量が第2設定値Dを超えると判定されるまで繰り返し行われる。
 以上に示されるように、制御部43は、第1領域における第1全体充電電気量Cが、第1領域と第2領域との境となる第1設定値Dに、予め設定された第1の値Rを乗じた電気量となるように、第1領域における充電電気量を制御する。また、制御部43は、第2領域における第2全体充電電気量Cが、第2領域において鉛蓄電池の寿命が到来したときの第2積算放電電気量である第2設定値Dに、予め第1の値Rよりも小さな値に設定された第2の値Rを乗じた電気量となるように、第2領域における前記充電電気量を制御する。
 そのため、第2領域における放電電気量の積算値に対する第2領域全体における充電電気量の積算値の割合は、第1領域全体における放電電気量の積算値に対する第1領域全体における充電電気量の積算値の割合よりも小さくなる。従って、放電サイクル毎の平均的な放電電気量に対する充電サイクル毎の平均的な充電電気量の比率が大きいことが好ましい第1領域とは異なり、第2領域では、放電サイクル毎の平均的な放電電気量に対する充電サイクル毎の平均的な充電電気量の比率が、第1領域における比率よりも小さくなる。これにより、第2領域において、過充電により充放電可能な電気量が減少することを低減することができる。
 図3及び4は第1の実施形態の制御方法の他の例を示すフローチャートである。電源である鉛蓄電池が未使用の状態から使用が開始されたとき、第1設定値Dの演算が行われる(ステップS100)。そして、鉛蓄電池において、ステップS101における充電で任意の充電電気量C1m-1の充電、ステップS102における任意の放電電気量D1m-1(但しC1m-1>D1m-1)の放電、及び、ステップS103における任意の充電電気量C1mの充電が行われる。
 そして、第1誤差演算部45(図11参照)が、充電電気量C1mから、直前の放電サイクルにおける放電電気量D1m-1に予め設定された係数Rを乗じた電気量(第1基準放電電気量)を減じて得られる誤差を演算する(ステップS104;第1誤差演算ステップ)。演算された誤差を第1誤差積算値演算部46(図11参照)が順次積算して第1誤差積算値を演算する(ステップS105;第1誤差積算値演算ステップ)。第1誤差積算値が演算された後、第1百分率演算部47(図11参照)は、鉛蓄電池の公称容量に対する第1誤差積算値の割合の一例である第1百分率PER1を演算する(ステップS106;第1割合演算ステップ)。
 そして、ステップS107における任意の放電電気量D1mの放電が行われる。その後、第1演算部41は、第1積算充電電気量を演算する(ステップS108;第1演算ステップ)。また、第1演算部41は、第1積算放電電気量を演算する(ステップS109;第1演算ステップ)。例えば、ステップS102及びS107における放電が行われた後の第1積算放電電気量は、ステップS107における放電電気量D1mを、ステップS102における放電電気量D1m-1に加えてなる積算放電電気量である。
 判定部42は、第1百分率PER1が、予め設定された閾値(第1閾値)αを超えているか否かを判定する(ステップS110)。第1百分率が閾値αに満たない場合には(ステップS110のNO)、第1百分率が閾値αを超えていると判定されるまで、ステップS103~S109の処理が繰り返し行われる。
 一方、第1百分率PER1が閾値αを超えていると判定された場合には(ステップS110のYES)、制御部43は、そのときの第1誤差積算値に、最初の放電における放電電気量D1m-1に予め設定された係数Rを乗じた電気量を加算して得られる充電電気量を充電する(ステップS111)。
 その後、判定部42は、それまでの第1積算放電電気量が第1設定値Dを超えているか否かを判定する(ステップS112;判定ステップ)。第1積算放電電気量が、第1設定値Dに満たない場合(ステップS112のNO)、判定部42は、鉛蓄電池のライフサイクルが現時点において第1領域であることを判定する(ステップS113)。その後、第1積算放電電気量が第1設定値Dを超えていると判定されるまで、ステップS103~111の処理が繰り返し行われる。
 一方、第1積算放電電気量Dが、第1設定値Dを超えていると判定されたときには(ステップS111のYES)、判定部42は、鉛蓄電池のライフサイクルが現時点において第2領域であると判定する(ステップS114)。
 その後、ステップS115における任意の充電電気量C2n-1の充電、ステップS116における任意の放電電気量D2n-1の放電、及び、ステップS117における任意の充電電気量C2nの充電が行われる。
 そして、第2誤差演算部48(図11参照)が、充電電気量C2nから、直前の放電サイクルにおける放電電気量D2n-1に予め係数Rよりも小さな値に設定された係数Rを乗じた電気量(第2基準放電電気量)を減じて得られる誤差を演算する(ステップS118;第2誤差演算ステップ)。演算された誤差を第2誤差積算値演算部49(図11参照)が順次積算して第2誤差積算値を演算する(ステップS119;第1誤差積算値演算ステップ)。第2誤差積算値が演算された後、第2百分率演算部50(図11参照)は、鉛蓄電池の公称容量に対する第2誤差積算値の割合の一例である第2百分率PER2を演算する(ステップS120;第2割合演算ステップ)。
 そして、ステップS121における任意の放電電気量D21の放電が行われる。その後、第2演算部44は、第2積算充電電気量を演算する(ステップS122;第2演算ステップ)。また、第2演算部44は、第2積算放電電気量を演算する(ステップS123;第2演算ステップ)。以上に示される処理が、ステップS124において、第2百分率PER2が予め設定された閾値(第2閾値)βを超えていると判定されるまで繰り返し行われる。
 ステップS123において、第2百分率PER2が予め設定された閾値βを超えていると判定されたときには、制御部43は、そのときの第2誤差積算値に、最初の放電における放電電気量D2n-1に予め設定された係数Rを乗じた電気量を加算して得られる充電電気量を充電する。(ステップS125)。
 その後、判定部42は、それまでの第2積算放電電気量が第2設定値Dを超えているか否かを判定する(ステップS126)。第2積算放電電気量が、第2設定値Dを超えていると判定された場合には(ステップS126のYES)、報知部6が寿命到来通知を行う(ステップS127)。一方、第2積算放電電気量が、第2設定値Dに満たないと判定された場合には(ステップS126のNO)、第2積算放電電気量が第2設定値Dを超えていると判定されるまで、ステップS117~S125の処理が繰り返し行われる。
 ここに、第2領域における活物質の活性度は、第1領域における活物質の活性度よりも低いので、過充電が生じることを防止する観点からは、第2誤差積算値は、第1誤差積算値とは異なり小さいほうが望ましい。そのため、閾値βは、閾値αよりも小さな値とされることが好ましい。
 以上に説明されたように、図1及び2のフローチャートに示される処理では、第1領域では、充電の都度、その直前の放電サイクルにおける放電電気量に係数Rを乗じた値の充電電気量が充電されるようになっている。一方、第2領域では、充電の都度、その直前の放電サイクルにおける放電電気量に係数Rよりも小さな値の係数Rを乗じた値の充電電気量が充電されるようになっている。
 従って、図1及び2のフローチャートに示される処理では、放電サイクル毎の放電電気量に対する充電サイクル毎の充電電気量の比率が大きいことが好ましい第1領域とは異なり、第2領域では、放電サイクル毎の放電電気量に対する充電サイクル毎の充電電気量の比率が、第1領域における比率よりも小さくなる。これにより、第2領域において、過充電により充放電可能な電気量が減少することを低減することができる。
 また、図3及び4のフローチャートに示される処理では、第1領域では、鉛蓄電池の公称容量に対する第1誤差積算値の割合の一例である第1百分率が閾値αを超えるごとに、そのときの第1誤差積算値が充電電気量となるように充電される。一方、第2領域では、鉛蓄電池の公称容量に対する第2誤差積算値の割合の一例である第2百分率が閾値βを超えるごとに、そのときの第2誤差積算値が充電電気量となるように充電される。
 したがって、図3及び4のフローチャートに示される処理は、充電サイクル毎に充電電気量が制御される図1及び2のフローチャートに示される処理とは異なり、充電サイクルが何回か実行される毎に充電電気量が制御されるので、ユーザの使い勝手が向上するという利点がある。
 図1及び2のフローチャートに沿った制御方法は、第1領域において、各充電サイクルにおける充電電気量が当該充電サイクルの直前の放電サイクルにおける放電電気量に適切な係数Rを乗じた電気量となるように管理できる。また、図1及び2のフローチャートに沿った制御方法は、第2領域において、各充電サイクルにおける充電電気量が当該充電サイクルの直前の放電サイクルにおける放電電気量に適切な係数Rを乗じた電気量となるように管理できる。従って、鉛蓄電池の充放電可能な電気量の低下を防ぐ手段として好ましい。
 しかしながら鉛蓄電池を電源とする電動車両において、例えば昼間は運転者の休憩時間に短い充電(数十分程度)を繰り返しつつ夜間に長い充電(数時間程度)を行う場合を想定すると、図1及び2のフローチャートを満たすような充電(すなわち前回の放電電気量D1m-1に係数R1を乗じた充電電気量C1mとなるような充電)を毎回行うのは困難である。この場合、図3及び4のように第1全体充電電気量C1が第1設定値Dに係数R1を乗じた値となるように管理し、かつ第2全体充電電気量C2が第2設定値Dに係数Rを乗じた値となるように管理することで、充電のつど、当該充電の直前の放電サイクルにおける放電電気量に係数を乗じて得た充電電気量で充電を行う図1及び2のフローチャートに沿った制御方法には及ばないものの、第1の実施形態の効果は得られる。
 図1~図4のフローチャートに示される処理に用いられる第1設定値Dは、例えば、以下に示される処理により演算される。
 記憶部40(図11参照)には、図5に示されるような、充放電サイクル数と鉛蓄電池の容量との相関を表すデータが記憶されている。図5は、充放電サイクル数と鉛蓄電池の容量との相関の一例を示した図である。
 この相関例は、公称容量50Ahの鉛蓄電池において、表面温度が25度及び45度のそれぞれの条件下で、1回の充放電サイクルごとに、20Aの放電電流、及び、48Ahの放電電気量の放電と、その後の5段定電流充電と、を行うことによって得られたものである。
 ここに、5段定電流充電について説明する。図6は、DOD(放電深度;定格容量に対する放電量の比)が80%である状態からの5段定電流充電制御の一例を示した図である。尚、図中、“CA”は、CAは時間率の逆数である。
 図6に示されるように、充電が第1充電電流(1)で開始されてから、電池電圧が切替電圧V(V=14.4+0.03(25-T);Tは電池の表面温度)に達する毎に、充電電流が、第2充電電流(2)、第3充電電流(3)、第4充電電流(4)へと順次小さくなってゆく。
 ここに、電池電圧が切替電圧Vを超えると、充電反応より、電解液の分解、正極格子の腐食反応などといった副反応のほうが促進される。従って、先述されたように、電池電圧が切替電圧Vに達する毎に充電電流を段階的に小さくしている。
 そして、第4充電電流(4)で充電が行われてから、電池電圧が切替電圧Vに達すると、充電電流が、第4充電電流(4)から第5充電電流(5)に切り換わる。尚、図6の例では、第5充電電流(5)は第4充電電流(4)と同じ電流値である。
 充電電流が第5充電電流(5)に切り替わった以降の充電は、電池電圧の制限がない状態で行われる。つまり、図示するように、電池電圧が切替電圧Vを上回っても、第5充電電流(4)で予め定められた時間(例えば2.5時間)充電が行われる。その後、充電が終了する。
 第5充電電流(5)による充電は、電池を満充電状態とするための充電である。従って、充電電気量が放電電気量に対して107~115%の間である状態にすることが好ましい。そのため、第5充電電流(5)による充電は、電池電圧が切替電圧Vを上回っても継続される。
 図5に示される相関例から明らかなように、鉛蓄電池の表面温度が25度の場合には、充放電サイクル数が150のときに、ピーク値であるおよそ58Ahの鉛蓄電池の容量が得られる。従って、ピーク値であるおよそ58Ahの鉛蓄電池の容量が得られる放電サイクルが含まれる150回目の充放電サイクルが、鉛蓄電池の容量が最大容量CAmaxとなる充放電サイクルであることが判る。
 従って、マイクロコンピュータ4は、鉛蓄電池の表面温度が25度の場合には、充放電サイクルの回数(150)に、1回の充放電サイクルにおける放電電気量(48Ah)を乗じて得た放電電気量(7200Ah)を、第1設定値Dとする。
 また、鉛蓄電池の表面温度が45度の場合には、充放電サイクル数が50のときに、ピーク値であるおよそ54Ahの鉛蓄電池の容量が得られる。従って、マイクロコンピュータ4は、鉛蓄電池の表面温度が45度の場合には、充放電サイクルの回数(50)に、1回の充放電サイクルにおける放電電気量(つまり48Ah)を乗じて得た値(2400Ah)を、第1設定値Dとする。
 第2の実施形態は、第1の実施形態において、係数R1を1~1.5の範囲内の値とし、係数R2を0.9~1.25の範囲内の値とし、かつ係数R1と係数R2との比R1/R2が1<R1/R2≦1.66としたことを特徴とする。
 図7は制御弁式の鉛蓄電池の充電効率を示す図であり、図7Aは第1領域における充電効率を、図7Bは第2領域における充電効率を示す。
 図7Aから明らかなように、第1領域では、鉛蓄電池の容量に対する実際の充電電気量の比(横軸)が80%を超えると、鉛蓄電池の容量に対する実際の放電電気量の比(縦軸)とのズレが発生して充電効率(実際の充電電気量に対する実際の放電電気量の比)は徐々に低下するため、鉛蓄電池の容量に対する実際の放電電気量の比(縦軸)を十分大きくするためには、鉛蓄電池の容量に対する実際の充電電気量の比(横軸)が100%以上である必要がある。
 鉛蓄電池において様々なSOCから充電を開始したとき、鉛蓄電池の容量に対する実際の充電電気量の比(横軸)を100%以上とするためには、各充電サイクルにおける充電電気量を、各充電サイクルの直前の放電サイクルにおける放電電気量(鉛蓄電池の容量)よりも大きくする必要がある。そのため、各放電電気量に乗じるべき値Rが1以上とされている。
 一方で、鉛蓄電池の容量に対する実際の充電電気量の比(横軸)が110%を超えると、真の過充電が始まる。その際、充電電気量はほぼ放電電気量に反映されなくなるだけでなく、真の過充電を繰返すことで正極の格子の腐食が加速して充放電可能な電気量が顕著に減少する。さらに、鉛蓄電池の容量に対する実際の充電電気量の比(横軸)が150%を超えると、真の過充電が生じるだけでなく、鉛蓄電池の寿命が急激に短くなる。
 本発明者らが様々なSOCから充電を行って実験した結果、R1の値が1.5以下であれば、鉛蓄電池の寿命が急激に短くなることが抑制できることが判った。そのため、様々なSOCから充電を開始したときに、鉛蓄電池の寿命が急激に短くなることを抑制するため、R1の値を1.5以下でとすることが好ましい。
 一方、鉛蓄電池の容量に対する放電電気量の比を90%とする際に生じる余分な充電電気量(すなわち過充電電気量)は、図7Aにおける矢印Aで示される横軸の範囲と、図7Bに示される横軸の範囲との比較から明らかなように、第1領域と比べて第2領域の方が大きい。
 本発明者らが、第2領域において、R2の値を様々な値としながら実験した結果、余分な充電電気量(図7Bの矢印で示される横軸の範囲)が最低限の電気量となることが判った。そのため、第2領域では、余分な充電電気量を最低限の電気量とするため、R2の範囲を0.9~1.25とすることが望ましい。
 さらに、本発明者らが、Rの値を1~1.5の範囲内で変えながら、且つ、Rの値を0.9~1.25の範囲内で変えながら実験を行った結果、Rの値とRの値との間の比率R1/R2が1<R1/R2≦1.66であれば、第2領域全体における放電電気量の積算値に対して第2領域全体における充電電気量の積算値が占める割合が、第1領域全体における放電電気量の積算値に対して第1領域全体における充電電気量の積算値が占める割合よりも小さくすることができることが判った。そのため、Rの値とRの値との間の比率R1/R2が、1<R1/R2≦1.66であることが好ましい。
 第3の実施形態は、第2の実施形態において、第1領域において充放電サイクルを予め設定された回数P繰り返す毎に、その直後の充電サイクルにおける充電電気量を、当該直後の充電サイクル実行後の第1積算充電電気量をそのときの第1積算放電電気量で除して得られる値RP1が1~1.5の範囲内の値となるような充電電気量とすることを特徴とする。
 また第4の実施形態は、第2の実施形態において、第2領域において充放電サイクルを予め設定された回数P繰り返す毎に、その直後の充電サイクルにおける充電電気量を、当該直後の充電サイクル実行後の第2積算充電電気量をそのときの第2積算放電電気量で除して得られる値RP2が、1~1.5の範囲内の値となるような充電電気量とすることを特徴とする。
 図8及び9は第3および第4の実施形態の制御方法の一例を示すフローチャートである。
 電源である鉛蓄電池が未使用の状態から使用が開始されたとき、第1設定値Dの演算が行われる(ステップS200)。そして、鉛蓄電池において、ステップS201における充電で任意の充電電気量C1m-1の充電、ステップS202における任意の放電電気量D1m-1(但しC1m-1>D1m-1)の放電、及び、ステップS203における任意の充電電気量C1mの充電が行われる。
 そして、第1誤差演算部45(図11参照)が、充電電気量C1mから、直前の放電サイクルにおける放電電気量D1m-1に予め設定された係数Rp1を乗じた電気量(第1基準放電電気量)を減じて得られる誤差を演算する(ステップS204;第1誤差演算ステップ)。演算された誤差を第1誤差積算値演算部46(図11参照)が順次積算して第1誤差積算値を演算する(ステップS205;第1誤差積算値演算ステップ)。
 そして、ステップS206における任意の放電電気量D1mの放電が行われる。その後、第1演算部41は、第1積算充電電気量を演算する(ステップS207;第1演算ステップ)。また、第1演算部41は、第1積算放電電気量を演算する(ステップS208;第1演算ステップ)。例えば、ステップS202及びS206における放電が行われた後の第1積算放電電気量は、ステップS206における放電電気量D1mを、ステップS202における放電電気量D1m-1に加えてなる積算放電電気量Dである。
 制御部43は、これまでの充放電回数が予め設定された回数P(例えば2~20回の範囲内の回数)を超えているか否かを判定する(ステップS209)。充放電回数が回数Pに満たない場合には(ステップS209のNO)、充放電回数が回数Pを超えていると判定されるまで、ステップS203~S208の処理が繰り返し行われる。
 ここに、制御部43は、充電サイクル及びその直後の放電サイクルからなる充放電サイクルの数をカウントしており、ステップS209及びS211の処理が行われる毎に、それまでにカウントした充放電サイクルの数をリセットし、充放電サイクルの数をあらためてカウントする(カウントステップ)。
 一方、充放電回数が回数Pを超えていると判定された場合には(ステップS209のYES)、制御部43は、そのときの第1誤差積算値に、最初の放電における放電電気量D1m-1に予め設定された係数Rを乗じた電気量を加算して得られる充電電気量を充電する。(ステップS210)。
 その後、判定部42は、それまでの第1積算放電電気量が第1設定値Dを超えているか否かを判定する(ステップS211;判定ステップ)。第1積算放電電気量が第1設定値Dに満たない場合(ステップS211のNO)、判定部42は、鉛蓄電池のライフサイクルが現時点において第1領域であることを判定する(ステップS212)。そして、制御部43はカウントした充放電回数をリセットする。以上の処理が、第1積算放電電気量が第1設定値Dを超えていると判定されるまで繰り返し行われる。
 一方、第1積算放電電気量Dが第1設定値Dを超えていると判定されたときには(ステップS211のYES)、判定部42は、鉛蓄電池のライフサイクルが現時点において第2領域であると判定する(ステップS213)。
 その後、ステップS214における任意の充電電気量C2n-1の充電、ステップS215における任意の放電電気量D2n-1の放電、及び、ステップ216における任意の充電電気量C2nの充電が行われる。
 そして、第2誤差演算部48(図11参照)が、充電電気量C2nから、直前の放電サイクルにおける放電電気量D2n-1に予め係数Rp1よりも小さな値に設定された係数Rp2を乗じた電気量(第2基準放電電気量)を減じて得られる誤差を演算する(ステップS217;第2誤差演算ステップ)。演算された誤差を第2誤差積算値演算部49(図11参照)が順次積算して第2誤差積算値を演算する(ステップS218;第2誤差積算値演算ステップ)。
 そして、ステップS219における任意の放電電気量D1nの放電が行われる。その後、第2演算部44は、第2積算充電電気量を演算する(ステップS220;第2演算ステップ)。また、演算部41は、第2積算放電電気量を演算する(ステップS221;第2演算ステップ)。以上に示される処理が、ステップS222において、それまでの充放電回数を表す値が予め設定された回数P(例えば2~20回の範囲内の回数)を超えていると判定されるまで繰り返し行われる。
 ここに、制御部43は、充電サイクル及びその直後の放電サイクルからなる充放電サイクルの数をカウントしており、ステップS222及びS224の処理が行われる毎に、それまでにカウントした充放電サイクルの数をリセットし、充放電サイクルの数をあらためてカウントする(カウントステップ)。
 ステップS22において、それまでの充放電回数を表す値が予め設定された回数Pを超えていると判定されたときには、制御部43は、そのときの第2誤差積算値に、最初の放電における放電電気量D2n-1に予め設定された係数Rを乗じた電気量を加算して得られる充電電気量を充電する(ステップS223)。
 その後、判定部42は、それまでの第2積算放電電気量が第2設定値Dを超えているか否かを判定する(ステップS224)。第2積算放電電気量が、第2設定値Dを超えていると判定された場合には(ステップS224のYES)、報知部6が寿命到来通知を行う(ステップS225)。一方、第2積算放電電気量が、第2設定値Dに満たないと判定された場合には(ステップS224のNO)、第2積算放電電気量が第2設定値Dを超えていると判定されるまで、ステップS216~S223の処理が繰り返し行われる。
 図1及び2のフローチャートに沿うことで、全ての充電を鉛蓄電池のパフォーマンス(例えば、鉛蓄電池の充電受け入れ性)に合わせられるため充放電可能な電気量の低下を最小にできるが、全ての充電を厳密に図1及び2のフローチャートに沿わせることは、鉛蓄電池を電源とする電源システムの実際の使用形態(例えば電動車両の駆動源)と符合し難い。一方、鉛蓄電池の電気量の低下をなるべく抑えるには、鉛蓄電池を電源とする電源システムの実際の使用形態と単に符合させた図3及び4のフローチャートをさらに改善する必要がある。
 そこで、図8及び9のフローチャートでは、制御部43は、第1領域において充放電サイクルを予め設定された回数P繰り返す毎に、その直後の充電サイクル実行後の第1積算充電電気量が、そのときの第1積算放電電気量に1~1.5の範囲内の値に設定された係数RP1を乗じた充電電気量となるように充電している。
 一方、制御部43は、第2領域において充放電サイクルを予め設定された回数P繰り返す毎に、その直後の充電サイクル実行後の第2積算充電電気量が、そのときの第2積算放電電気量に0.9~1.25の範囲内の値に設定された係数RP2を乗じた充電電気量となるように充電している。そのため、よりユーザの鉛蓄電池の使用態様に即した頻度で、充電電気量が制御される。
 また、係数Rp1及び係数Rp2は、係数Rp1と係数Rp2との比Rp1/Rp2が1<Rp1/Rp2≦1.66となるように設定されている。
 尚、係数RP1が1~1.5の範囲内の値に設定されており、係数RP2が0.9~1.25の範囲内の値に設定されており、さらに、係数Rp1と係数Rp2との比Rp1/Rp2が1<Rp1/Rp2≦1.66となるように設定されている理由は、係数R1の値及び係数R2の値を設定する場合と同じである。
 ここで積算値を計算する充放電の回数が2回未満の場合、鉛蓄電池を電源とする電源システムの実際の使用形態に符合させようとしたときに使用者の使い勝手が低下する(例えば充電が終了するまで電動車両を動かすことができない、など)。また積算値を計算する充放電の回数が20回を超える場合、実質的に図3及び4のフローチャートを用いた場合と同様、鉛蓄電池の電気量の低下がやや顕著化する。
 第5の実施形態は、第1の実施形態において、最大値Dmaxと第1設定値Dとの比DS1/Dmaxが20~200の範囲内であることを特徴とする。一般的な鉛蓄電池は、電解液の組成などの構成条件にもよるがこのD/Dmaxが20~200の範囲内となることが知られている。さらに鉛蓄電池を満充放電しなくても、第1積算放電電気量が第1設定値Dに達したときに鉛蓄電池の容量が最大値Dmaxとなることが知られている。これらを把握すれば、鉛蓄電池に用いた二酸化鉛の質量を把握することで、第1設定値Dを概ね見積もることができるようになる。
 ここで、鉛蓄電池に用いた二酸化鉛の質量は、鉛蓄電池を分解して定量分析を行うことにより把握することができる。
 第6の実施形態は、第1の実施形態において、鉛蓄電池の構成を制御弁式としたことを特徴とする。鉛蓄電池は充放電に伴って、電解液中の硫酸イオン(SO4 2-)を活物質に取り込んだり離脱させたりする。制御弁式の鉛蓄電池は内燃式自動車のセルスタータ用途のような液式のものに比べて電解液を減量しているため、上述した充放電反応に及ぼす電解液の影響が小さくなって第1領域と第2領域との区分が明確になるので、本実施形態の制御方法を用いることの効果が大きくなる。
 つまり、制御弁式の鉛蓄電池は、その動作原理上、正極より発生した酸素ガスを負極で吸収させる構成とされている。そして、電解液の量が過剰であると、電解液が、正極から負極へのガス拡散経路を閉塞するので、酸素ガスの負極における吸収が阻害される。従って、制御弁式の鉛蓄電池では、液式の鉛蓄電池と比較して、電解液の量が少なく制限されている。そのため、鉛蓄電池の容量が、電解液の量ではなく、正極の活物質の活性度に応じて変動しやすくなる。従って、活性化している正極の活物質が失活化し始める第1設定値Dを境とする第1領域と第2領域との区分が明確となり、本実施形態の制御方法を用いることの効果が大きくなる。
 第7の実施形態は、以下に示される実施形態である。
 図10は第7の実施形態の電源システムの一例を示すブロック図である。図11はマイクロコンピュータ4の機能モジュールの一例を示すブロック図である。鉛蓄電池1は、これを充電するための充電器2およびこれを放電させる負荷3と、電気的に接続されている。一方で鉛蓄電池1はマイクロコンピュータ4とも接続されている。マイクロコンピュータ4は報知部6に接続されている。報知部6は、音声メッセージや表示などにより、鉛蓄電池の寿命が到来したことをユーザに報知する。
 ここに、報知部6は、マイクロコンピュータ4に直接接続されていてもよいが、報知部6とマイクロコンピュータ4とをBluetooth(登録商標)等の無線ネットワーク、光通信を含む有線ネットワーク、或いは、電話回線などの、既存の情報ネットワークを介して接続してもよい。
 こうすれば、マイクロコンピュータ4が発する鉛蓄電池の状態に関する情報(例えば、鉛蓄電池の寿命が到来したことを示す情報)を、鉛蓄電池1やマイクロコンピュータ4から遠隔地の報知部6に送出して報知することが可能である。
 また、このような情報ネットワークを用いる場合、鉛蓄電池1と、その状態をユーザに報知する報知部6の数は、必ずしも一致している必要はなく、例えば、1つの鉛蓄電池1に、複数の報知部6を対応させて、それぞれの報知部6に鉛蓄電池1の状態に関する情報を報知させることができる。この場合、複数の報知部6を、例えば、鉛蓄電池1の保守点検作業者が駐在する複数のサービスステーションにそれぞれ設置しておけば、或る鉛蓄電池1の保守点検が必要となった際に、対応可能なサービスステーションから保守点検作業者を、その鉛蓄電池1の保守点検に派遣することができる。
 また、このような形態では、報知部6を、例えば、携帯電話端末もしくはPHS端末で構成し、これらの端末を保守点検作業者に携帯させておき、これらの端末に、鉛蓄電池の状態を示す情報、及び、鉛蓄電池の位置情報(以下、鉛蓄電池1に関する情報という)を送出して報知させるようにしてもよい。
 また、全ての携帯型の報知部6に鉛蓄電池1に関する情報を送出するのではなく、GPS信号を用いて計測される報知部6の位置情報と、保守点検作業者の作業空き時間とを勘案して、保守点検を要する鉛蓄電池1の近隣に位置し、且つ、作業空き時間を有した保守点検作業者によって携帯される報知部6のみに、鉛蓄電池1に関する情報を送出して報知させてもよい。さらに、1つの報知部6に、複数の鉛蓄電池1に関する情報を送出して報知させる構成としてもよい。その構成としては、上記の例示が適用可能である。
 以上の構成によれば、鉛蓄電池1に対して何らかの対処、すなわち、交換や点検作業が必要な場合には、報知部6によって鉛蓄電池1の状態が報知されるので、これらの各対処に十分な対応能力を有する保守点検作業者によってより迅速な対応が可能となり、好ましいものとなる。
 マイクロコンピュータ4は、図11に示されるように、少なくとも記憶部40、第1演算部41、判定部42、制御部43、第2演算部44、第1誤差演算部45、第1誤差積算値演算部46、第1百分率演算部(第1割合演算部)47、第2誤差演算部48、第2誤差積算値演算部49、及び第2百分率演算部(第2割合演算部)50から構成されている。
 記憶部40は、このマイクロコンピュータ4が動作するための各種プログラムを記憶する他、先述された第1及び第2設定値D及びDを記憶している。また、記憶部40は、先述された係数R、R、Rp1、Rp2を記憶している。さらに、記憶部40は、先述された閾値α、β、回数P、及び回数Pを記憶している。
 第1演算部41は、鉛蓄電池のサイクル使用が開始されてからの充電サイクル毎の充電電気量を積算して第1積算充電電気量を演算するとともに、鉛蓄電池のサイクル使用が開始されてからの放電サイクル毎の放電電気量を積算して第1積算放電電気量を演算する。
 判定部42は、第1演算部41が求めた第1積算放電電気量を記憶部40と照合して、鉛蓄電池のライフサイクルが現時点において第1領域及び第2領域のいずれかを判定する。また、判定部42は、演算された第1百分率(第1割合)が予め設定された閾値αを超えているか否かを判定する。さらに、判定部42は、演算された第2百分率(第2割合)が予め設定された閾値βを超えているか否かを判定する。
 制御部43は、先述された様々な制御処理を行う。第2演算部44は、判定部42によって第2領域であると判断された後、第2領域における充電サイクル毎の充電電気量を積算して第2積算充電電気量を演算するとともに、第2領域における放電サイクル毎の放電電気量を積算して第2積算放電電気量を演算する。
 第1誤差演算部45は、第1領域において充電サイクルが実行される毎に、当該充電サイクルが実行されたときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第1基準放電電気量を減じて得られる誤差を演算する。
 第1誤差積算値演算部46は、誤差が演算される毎に誤差を積算して、第1領域における誤差の積算値である第1誤差積算値を演算する。第1百分率演算部47は、鉛蓄電池の公称容量に対する第1誤差積算値の百分率(第1割合)である第1百分率を演算する。
 第2誤差演算部48は、第2領域において充電サイクルが実行される毎に、当該充電サイクルが実行されたときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第2基準放電電気量を減じて得られる誤差を演算する。
 第2誤差積算値演算部49は、誤差が演算される毎に誤差を積算して、第2領域における誤差の積算値である第2誤差積算値を演算する。
 第2百分率演算部50は、鉛蓄電池の公称容量に対する第2誤差積算値の百分率(第2)割合)である第2百分率を演算する。
 さらに制御部43は、充電器2と直列に接続されたスイッチ5の開閉の開閉を司る。制御部43によるスイッチ5の制御について、図3及び4のフローチャートを用いて具体的に説明する。未使用の鉛蓄電池1において充放電サイクルが開始されると、第1百分率PER1が閾値αを超えるまでの間、ステップ103~ステップ109の処理が繰り返し行われるが、第1百分率PER1が閾値αを超えた後のステップS111の充電において、制御部43は、スイッチ5を無作為に閉じて充電器2からの充電を終えるのでなく、充電電気量が、第1百分率PER1が閾値αを超えたときの第1誤差積算値にその直前の放電サイクルにおける放電電気量D1m-1に予め設定された係数Rを乗じた電気量を加算して得られる充電電気量となったときにスイッチ5を閉じて、ステップS111における充電器2からの充電を終了させる。このような充電を繰返すことで、第1全体充電電気量が、第1全体放電電気量に予め設定された係数Rを乗じた電気量となるように制御することができる。
 そして、ステップS112において、第1積算放電電気量が第1設定値Dを超えていると判断されたときには、判定部42によって第2領域が開始した(第1領域が終了した)と判定される。
 第2領域では、充放電が、第2百分率PER2が閾値βを超えるまでの間繰り返し行われるが、第2百分率PER2が閾値βを超えた後のステップS125における充電において、制御部43は、スイッチ5を無作為に閉じて充電器2からの充電を終えるのでなく、充電電気量が、第2百分率PER2が閾値βを超えたときの第2誤差積算値にその直前の放電サイクルにおける放電電気量D2n-1に予め設定された係数Rを乗じた電気量を加算して得られる充電電気量となったときにスイッチ5を閉じて、充電器2からの充電を終了させる。このような充電を繰返すことで、第2全体充電電気量が、第2全体放電電気量に予め設定された係数Rを乗じた電気量となるように制御することができる。
 そして、最後の放電であるステップS121を終えて、第2全体放電電気量が第2設定値Dを超えていると判断されたときには、判定部42によって第2領域が終了した(鉛蓄電池が使用限度に達した)と判定される。なお第7の実施形態の効果は、第1の実施形態の効果と同様である。
 第8の実施形態は、第7の実施形態において、係数R1が1~1.5の範囲内の値、係数R2が0.9~1.25の範囲内の値、係数R1と係数R2との比R1/R2が1<R1/R2≦1.66であることを記憶部40に記憶させたことを特徴とする。第8の実施形態の効果は、第2の実施形態の効果と同様である。
 第9の実施形態は、第7の実施形態において、最大値Dmaxと第1設定値D1との比D1/Dmaxが20~200の範囲内の値であることを特徴とする。第9の実施形態の効果は、第5の実施形態の効果と同様である。
 第10の実施形態は、第7の実施形態において、鉛蓄電池1の構成を制御弁式としたことを特徴とする。第10の実施形態の効果は、第6の実施形態の効果と同様である。
 第11の実施形態は、以下に示される実施形態である。
 第11の実施形態の電源システムの構成は、図10及び図11のブロック図と同様である。以下、第7の実施形態の電源システムと動作が異なるスイッチ5の開閉を中心に、図8及び9のフローチャートを用いて詳述する。
 第11の実施形態では、第1領域において、充放電回数が所定の2~20回の範囲内の回数Pに達したときに(ステップS209のYES)、ステップ210における充電が行われる。制御部43は、この充電において、スイッチ5を無作為に閉じて充電器2からの充電を終えるのでなく、充電電気量が、充放電回数が回数Pに達したときの第1誤差積算値にその直前の放電サイクルにおける放電電気量D1m-1に予め設定された係数Rを乗じた電気量を加算して得られる充電電気量となったときにスイッチ5を閉じて、ステップS210における充電器2からの充電を終了させる。このような充電を行うことで、第1百分率PER1が閾値αを超えてから充電電気量の制御を行う第7の実施形態よりも高い頻度で、第1領域における充電電気量を制御することができる。
 また、第2領域において、充放電回数が所定の2~20回の範囲内の回数Pに達したときに(ステップS222のYES)、ステップ223における充電が行われる。制御部43は、この充電において、スイッチ5を無作為に閉じて充電器2からの充電を終えるのでなく、充電電気量が、充放電回数が所定の2~20回の範囲内の回数Pに達したときの第2誤差積算値にその直前の放電サイクルにおける放電電気量D2n-1に予め設定された係数Rを乗じた電気量を加算して得られる充電電気量となったときにスイッチ5を閉じて、ステップS223における充電器2からの充電を終了させる。このような充電を行うことで、第2百分率PER2が閾値βを超えてから充電電気量の制御を行う第7の実施形態よりも高い頻度で、第2領域における充電電気量を制御することができる。
 なお第11の実施形態の効果は、第1、3および4の実施形態を合わせたものと同様である。
 第12の実施形態は、第11の実施形態において、係数Rp1が1~1.5の範囲内の値、係数Rp2が0.9~1.25の範囲内の値、係数Rp1と係数Rp2との比Rp1/Rp2が1<Rp1/Rp2≦1.66であることを記憶部40に記憶させたことを特徴とする。第12の実施形態の効果は、第1~4の実施形態を合わせたものと同様である。
 第13の実施形態は、第11の実施形態において、最大値Dmaxと第1設定値Dとの比D/Dmaxが20~200の範囲内の値であることを特徴とする。第13の実施形態の効果は、第1、3、4および5の実施形態を合わせたものと同様である。
 第14の実施形態は、第11の実施形態において、鉛蓄電池1の構成を制御弁式としたことを特徴とする。第14の実施形態の効果は、第1、3、4および6の実施形態を合わせたものと同様である。
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 本発明の一局面に従う鉛蓄電池の制御方法は、鉛蓄電池のサイクル使用が開始されてからの充電サイクル毎の充電電気量を積算して第1積算充電電気量を演算するとともに、前記鉛蓄電池のサイクル使用が開始されてからの放電サイクル毎の放電電気量を積算して第1積算放電電気量を演算する第1演算ステップと、前記第1積算放電電気量が、前記鉛蓄電池が充放電サイクルを経ることにより生じる当該鉛蓄電池の容量の変化の過程において、当該容量が最大値Dmaxとなるときの前記第1積算放電電気量である第1設定値Dに満たないときには、前記鉛蓄電池のサイクル使用が開始されてから前記鉛蓄電池の寿命が到来するまでのライフサイクルにおける一部の領域である第1領域であると判定し、前記第1積算放電電気量が前記第1設定値Dを超えているときには、前記第1領域の後の領域であって前記鉛蓄電池の寿命が到来するまでの第2領域であると判定する判定ステップと、前記判定ステップにおいて前記第2領域であると判断された後、前記第2領域における充電サイクル毎の充電電気量を積算して第2積算充電電気量を演算するとともに、前記第2領域における放電サイクル毎の放電電気量を積算して第2積算放電電気量を演算する第2演算ステップと、前記第1領域の最後における前記第1積算充電電気量である第1全体充電電気量Cが、前記第1設定値Dに、予め設定された第1の値Rを乗じた電気量となるように、前記第1領域における充電電気量を制御し、前記第2領域と判断された後、前記鉛蓄電池の寿命が到来したときの前記第2積算充電電気量である第2全体充電電気量Cが、前記鉛蓄電池の寿命が到来したときの前記第2積算放電電気量である前記第2設定値Dに、予め前記第1の値Rよりも小さな値に設定された第2の値Rを乗じた電気量となるように、前記第2領域における充電電気量を制御する制御ステップと、を備えることを特徴とする。
 この方法において定義される第1領域は、鉛蓄電池のサイクル使用が開始されてからの充電サイクル毎の充電電気量の積算値である第1積算充電電気量が、鉛蓄電池が充放電サイクルを経ることにより生じる当該鉛蓄電池の容量の変化の過程において、当該容量が最大値Dmaxとなるときの第1積算放電電気量である第1設定値Dに満たない領域である。この第1領域では、鉛蓄電池の充放電サイクルが開始された後には、正極の活物質が活性化し、鉛蓄電池の容量が増大する。
 この第1領域では、正極の活物質中に残存する鉛の低級酸化物(PbO、PbOx(1<x<2))、塩基性硫酸塩((PbO)PbSO(n=1~4))あるいは硫酸塩(PbSO)が二酸化鉛に変化するとともに二酸化鉛が活性化されて、その表面積が拡大することによって、正極の活物質の単位質量当たりの放電可能な電気量が徐々に増大し続けると考えられる。また、第1領域では、正極の活物質が活性化しているので、当然のことながら、充電可能な電気量も増大する。
 この第1領域で充電電気量が不足した場合(より具体的には、直前の放電電気量に満たない充電電気量で充電を終える充放電を続けた場合)、先述された正極の活物質の活性化が阻害されて失活し、充放電可能な電気量が減少し続ける。
 そのため、第1領域では、第1領域全体における放電電気量の積算値が、第1領域全体における充電電気量の積算値以上の積算値となるように、第1領域における充電電気量を制御して、充電に用いられた電気量のロス(例えば、鉛の低級酸化物や硫酸塩あるいは塩基性硫酸塩の二酸化鉛への転化に要する電気量、不可避的に発生する正極板上での酸素ガス発生に消費される電気量等)をも鑑みて、充電電気量の不足を回避する必要がある。
 したがって、本発明に従う鉛蓄電池の制御方法は、第1領域を通しての充電電気量の積算値(すなわち第1領域の最後における積算充電電気量である第1全体充電電気量C)が、第1設定値Dに、予め設定された第1の値Rを乗じた電気量となるように、第1領域における充電電気量を制御するようにしている。
 ここに、第1設定値Dは、第1領域が終了するときの積算放電電気量(つまり、第1領域の最後における積算放電電気量である第1全体充電電気量C)であるので、本発明に従う鉛蓄電池の制御方法は、第1全体充電電気量Cが、第1全体充電電気量Cに、予め設定された第1の値Rを乗じた電気量となるように、第1領域における充電電気量を制御することができる。
 そのため、本発明に従う鉛蓄電池の制御方法は、第1領域では、第1領域を通しての第1全体充電電気量Cを、第1領域を通しての第1全体放電電気量以上の電気量とすることができる。
 これにより、本発明に従う鉛蓄電池の制御方法によれば、第1領域全体における充電電気量の積算値が、第1領域全体における放電電気量の積算値以上の積算値となるので、第1領域では、充電電気量の不足を回避することができる。従って、第1領域では、充電不足によって充放電可能な電気量が減少することを低減することができる。
 また、この方法において定義される第2領域は、第1領域の最後における積算放電電気量である第1全体放電電気量が、第1設定値Dを超える領域である。この第2領域では、正極の活物質の失活化が進行し始める。この第2領域では、二酸化鉛の細分化、より具体的には、クラスター構造を有する二酸化鉛が細分化されて、母体から離脱することにより、活物質としての機能が徐々に失われると考えられる。この第2領域では、二酸化鉛の単位重量当たりの充放電可能な電気量は徐々に減少し続ける。この第2領域で充電電気量が過剰であった場合、正極の格子(集電体)が腐食して充放電可能な電気量がより顕著に減少してしまう。
 そのため、第2領域では、第2領域全体における放電電気量の積算値に対して第2領域全体における充電電気量の積算値が占める割合が、第1領域全体における放電電気量の積算値に対して第1領域全体における充電電気量の積算値が占める割合よりも小さくなるように、第2領域における充電電気量を制御して、過剰な充電電気量で充電されることにより充放電可能な電気量が顕著に減少することを低減する必要がある。
 そのため、本発明に従う鉛蓄電池の制御方法は、鉛蓄電池の寿命が到来したときの第2積算充電電気量である第2全体充電電気量Cが、鉛蓄電池の寿命が到来したときの第2積算放電電気量である第2設定値Dに、予め第1の値Rよりも小さな値に設定された第2の値Rを乗じた電気量となるように、第2領域における充電電気量を制御するようにしている。
 ここに、第2設定値Dは、第2領域において鉛蓄電池の寿命が到来したときの積算放電電気量(つまり、第2領域の最後における積算放電電気量である第2全体充電電気量C)であるので、本発明に従う鉛蓄電池の制御方法は、第2全体充電電気量Cが、第2全体充電電気量Cに、予め第1の値Rよりも小さな値に設定された第2の値Rを乗じた電気量となるように、第2領域における充電電気量を制御することができる。
 これにより、本発明に従う鉛蓄電池の制御方法によれば、第2領域全体における放電電気量の積算値に対して第2領域全体における充電電気量の積算値が占める割合を、第1領域全体における放電電気量の積算値に対して第1領域全体における充電電気量の積算値が占める割合よりも小さくすることができる。そのため、第2領域では、過剰な充電電気量で充電されることにより充放電可能な電気量が顕著に減少することを低減することができる。
 なお、鉛蓄電池の容量は、ある所定の放電条件で鉛蓄電池から取り出すことができる放電電気量を意味する。さらに一般的には、鉛蓄電池の充電状態(State of charge;SOC)が100%の状態から0%の状態に到達するまで、鉛蓄電池が放電したときの放電電気量を意味する。なお、放電率、放電終止電圧、および、放電時の電池温度といった放電条件は、鉛蓄電池の機種あるいは用途によって適宜設定される。
 上述した知見を活用した本発明によれば、鉛蓄電池のサイクル使用が開始されてからの放電電気量の積算値を表す第1積算放電電気量が、第1領域と第2領域との間の境となる第1設定値Dに満たないときには、充電不足による充放電可能な電気量の減少を低減することができ、第1積算放電電気量が第1設定値Dを超えた後は、充放電可能な電気量の低下が過充電により促進されることを低減することができる。
 従って、本発明によれば、鉛蓄電池の性質を見極めて無理のない充電を繰り返すことができるので、無作為に鉛蓄電池を充電する制御方法と比べて、鉛蓄電池の長寿命化を実現することができる。
 上記方法において、前記第1の値Rは、1~1.5の範囲内の値とされ、前記第2の値Rは、0.9~1.25の範囲内の値とされ、且つ、前記第1の値Rと前記第2の値Rとの間の比率R/Rは、1を超え、1.66以下とされていることが望ましい。
 この方法によれば、第1の値Rが1~1.5の範囲内の値とされているので、第1全体充電電気量Cを第1全体放電電気量以上の電気量とすることができる。また、第2の値Rが0.9~1.25の範囲内の値とされているので、第2全体充電電気量Cが第2全体放電電気量に対して占める割合を、第1全体充電電気量Cが第1全体放電電気量に対して占める割合よりも小さくすることができる。
 したがって、第1積算放電電気量が、第1領域と第2領域との間の境となる第1設定値Dに満たないときには、充電不足による充放電可能な電気量の減少を防止することができ、第1積算放電電気量が第1設定値Dを超えた後は、充放電可能な電気量の低下が過充電により促進されることを防止することができる。
 上記方法において、前記鉛蓄電池の表面温度に応じて、前記第1設定値Dを演算する設定値演算ステップをさらに備えることが望ましい。
 一般的に、鉛蓄電池はその表面温度に応じて、正極の活物質の活性度が異なる。例えば、正極の活物質の活性度は、表面温度が高いほど高く、表面温度が低いほど低い。そして、正極の活物質の活性度が高いほど、小さな積算放電電気量(すなわち少ない放電サイクル数)で鉛蓄電池の容量が最大となり、正極の活物質の活性度が低いほど、大きな積算放電電気量(すなわち多い放電サイクル数)で鉛蓄電池の容量が最大となる性質がある。
 本方法によれば、鉛蓄電池の容量に影響を与える鉛蓄電池の表面温度に応じて、鉛蓄電池の容量が最大となる積算放電電気量である第1設定値Dを演算するため、鉛蓄電池の使用環境に応じた第1設定値Dの演算ができ、実際の使用環境に適した制御方法が実現できる。
 上記方法において、前記第2領域において演算された前記第2積算放電電気量が前記第2設定値Dを超えているか否かを判断するステップと、前記第2積算放電電気量が前記第2設定値Dを超えているときには、報知処理を行うステップと、をさらに備えることが望ましい。
 この方法によれば、第2積算放電電気量が、鉛蓄電池の寿命が到来したときの第2設定値Dを超えると報知を行うため、ユーザは、鉛蓄電池の寿命が到来したことを確認できる。
 上記方法において、前記制御ステップにおいて、前記第1領域において、各充電サイクルにおける充電電気量が、前記各充電サイクルの直前の放電サイクルにおける放電電気量に前記第1の値Rを乗じた値となるように、前記各充電サイクルにおける前記充電電気量を制御し、前記第2領域において、各充電サイクルにおける充電電気量が、前記各充電サイクルの直前の放電サイクルにおける放電電気量に前記第2の値Rを乗じた値となるように、前記各充電サイクルにおける充電電気量を制御することが望ましい。
 この方法によれば、第1領域では、各充電サイクルにおける充電電気量が、当該充電サイクルの直前の放電サイクルにおける放電電気量に第1の値Rを乗じた充電電気量となるように充電される。また、第2領域では、各充電サイクルにおける充電電気量が、当該充電サイクルの直前の放電サイクルにおける放電電気量に第2の値Rを乗じた充電電気量となるように充電される。
 これにより、第1領域及び第2領域の各々において、各充電サイクル毎における充電電気量が、鉛蓄電池の充放電可能な電気量の減少を低減させることができる充電電気量とされるので、より、無理のない充電を繰り返すことができ、鉛蓄電池のさらなる長寿命化を実現することができる。
 上記方法において、前記第1領域において充電サイクルを実行する毎に、当該充電サイクルを実行したときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第1基準放電電気量を減じて得られる誤差を演算する第1誤差演算ステップと、前記誤差が演算される毎に前記誤差を積算して、前記第1領域における前記誤差の積算値である第1誤差積算値を演算する第1誤差積算値演算ステップと、前記鉛蓄電池の公称容量に対する前記第1誤差積算値の割合である第1割合を演算する第1割合演算ステップと、演算された前記第1割合が予め設定された第1閾値を超えているか否かを判定する第1割合判定ステップと、前記第1割合が前記第1閾値を超えていると判定されたときには、その直後の充電サイクルにおける充電電気量がそのときの前記第1誤差積算値と等しい充電電気量となるように充電を行って、前記第1積算充電電気量の補正を行う補正ステップと、をさらに備えることが望ましい。
 この方法によれば、第1領域において、鉛蓄電池の公称容量に対する第1誤差積算値の割合が第1閾値を超えているときには、その直後の充電サイクルにおける充電電気量がそのときの第1誤差積算値と等しい充電電気量となるように充電を行って、第1積算充電電気量の補正を行う。これにより、第1領域において無作為な充電が繰り返された場合であっても、第1全体充電電気量が、第1全体放電電気量に係数Rを乗じた電気量となる。そのため、ユーザの鉛蓄電池の使用実態に即して、充電不足による充放電可能な電気量の減少を低減することができる。
 上記方法において、前記第2領域において充電サイクルを実行する毎に、当該充電サイクルを実行したときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第2基準放電電気量を減じて得られる誤差を演算する第2誤差演算ステップと、前記誤差が演算される毎に前記誤差を積算して、前記第2領域における前記誤差の積算値である第2誤差積算値を演算する第2誤差積算値演算ステップと、前記鉛蓄電池の公称容量に対する前記第2誤差積算値の割合である第2割合を演算する第2割合演算ステップと、演算された前記第2割合が予め設定された第2閾値を超えているか否かを判定する第2割合判定ステップと、前記第2割合が前記第2閾値を超えていると判定されたときには、その直後の充電サイクルにおける充電電気量がそのときの前記第2誤差積算値と等しい充電電気量となるように充電を行って、第2積算充電電気量の補正を行う補正ステップと、をさらに備えることが望ましい。
 この方法によれば、第2領域において、鉛蓄電池の公称容量に対する第2誤差積算値の割合が第2閾値を超えているときには、その直後の充電サイクルにおける充電電気量がそのときの第2誤差積算値と等しい充電電気量となるように充電を行って、第2積算充電電気量の補正を行う。これにより、第2領域において無作為な充電が繰り返された場合であっても、第2全体充電電気量が、第2全体放電電気量に係数Rを乗じた電気量となる。そのため、ユーザの鉛蓄電池の使用実態に即して、過剰な充電が行われることによる充放電可能な電気量の顕著な減少を低減することができる。
 上記方法において、前記第1領域において充放電サイクルを予め設定された回数P繰り返す毎に、その直後の充電サイクル実行後の前記第1積算充電電気量が、そのときの前記第1積算放電電気量に予め1~1.5の範囲内で設定された係数RP1を乗じた電気量となるように、当該直後の充電サイクルにおける充電を行うことが望ましい。
 この方法によれば、第1領域において充放電サイクルを予め設定された数P繰り返す毎に、その直後の充電サイクル実行後の第1積算充電電気量が、鉛蓄電池の充放電可能な電気量の減少を低減させることができる充電電気量とされるので、より、ユーザの使用実態に即して、充電不足による充放電可能な電気量の減少を低減することができる。
 上記方法において、前記第2領域において充放電サイクルを予め設定された回数P繰り返す毎に、その直後の充電サイクル実行後の前記第2積算充電電気量が、そのときの前記第2積算放電電気量に予め0.9~1.25の範囲内で設定された係数RP2を乗じた電気量となるように、当該直後の充電サイクルにおける充電を行うことが望ましい。
 この方法によれば、第2領域において充放電サイクルを予め設定された数P繰り返す毎に、その直後の充電サイクル実行後の第2積算充電電気量が、鉛蓄電池の充放電可能な電気量の顕著な減少を低減させることができる充電電気量とされるので、より、ユーザの使用実態に即して、過剰な充電が行われることによる充放電可能な電気量の顕著な減少を低減することができる。
 上記方法において、前記第1領域において充電サイクルを実行する毎に、当該充電サイクルを実行したときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第1基準放電電気量を減じて得られる誤差を演算する第1誤差演算ステップと、前記誤差が演算される毎に前記誤差を積算して、前記第1領域における前記誤差の積算値である第1誤差積算値を演算する第1誤差積算値演算ステップと、前記第1領域において充放電サイクルを実行する毎に、当該充放電サイクルを実行した回数をカウントするカウントステップと、前記充放電サイクルを前記回数P繰り返す毎に、その直後の充電サイクルにおける充電電気量がそのときの前記第1誤差積算値と等しい充電電気量となるように充電を行って、前記第1積算充電電気量の補正を行う補正ステップと、をさらに備えることが望ましい。
 この方法によれば、第1領域において、充放電サイクルをP回繰り返す毎に、その直後の充電サイクルにおける充電電気量がそのときの第1誤差積算値と等しい充電電気量となるように充電を行って、第1積算充電電気量の補正を行う。これにより、第1領域において無作為な充電が繰り返された場合であっても、充放電サイクルをP回繰り返した直後の第1積算充電電気量が、そのときの第1積算放電電気量に係数RP1を乗じた電気量となる。そのため、ユーザの鉛蓄電池の使用実態に即して、充電不足による充放電可能な電気量の減少を低減することができる。
 上記方法において、前記第2領域において充電サイクルを実行する毎に、当該充電サイクルを実行したときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第2基準放電電気量を減じて得られる誤差を演算する第2誤差演算ステップと、前記誤差が演算される毎に前記誤差を積算して、前記第2領域における前記誤差の積算値である第2誤差積算値を演算する第2誤差積算値演算ステップと、前記第2領域において充放電サイクルを実行する毎に、当該充放電サイクルを実行した回数をカウントするカウントステップと、前記充放電サイクルを前記回数P繰り返す毎に、その直後の充電サイクルにおける充電電気量がそのときの前記第2誤差積算値と等しい充電電気量となるように充電を行って、前記第2積算充電電気量の補正を行う補正ステップと、をさらに備えることが望ましい。
 この方法によれば、充放電サイクルをP回繰り返すことに、その直後の充電サイクルにおける充電電気量がそのときの第2誤差積算値と等しい充電電気量となるように充電を行って、第2積算充電電気量の補正を行う。これにより、第2領域において無作為な充電が繰り返された場合であっても、充放電サイクルをP回繰り返した直後の第2積算充電電気量が、そのときの第2積算放電電気量に係数RP2を乗じた電気量となる。そのため、ユーザの鉛蓄電池の使用実態に即して、過剰な充電が行われることによる充放電可能な電気量の顕著な減少を低減することができる。
 上記方法において、前記予め設定された回数P及びPは、2~20の範囲内の回数であることが望ましい。
 この方法によれば、第1領域及び第2領域において、充放電サイクルを2~20の範囲内の回数実行すれば、その直後の第1及び第2の積算充電電気量が、充放電可能な電気量の減少を低減させることができる充電電気量とされる。そのため、実際の鉛蓄電池の使用態様に即した適切な頻度で、充放電可能な電気量の減少を低減することができる。
 上記方法において、前記最大値Dmaxと、前記第1設定値Dとの間の比率D/Dmaxは、20~200の範囲内の比率であることが望ましい。
 この方法によれば、D/Dmaxが20~200の範囲内である一般的な鉛蓄電池を使用して、本発明に従う制御方法を実施することができる。
 上記方法において、前記鉛蓄電池は、制御弁式鉛蓄電池で構成されていることが望ましい。
 一般に、制御弁式の鉛蓄電池は、シールされた構成とされており、電解液の補充ができないようになっているため、鉛蓄電池の容量は電解液の多さではなく、正極の活物質の活性度に応じて変動しやすくなる。従って、活性化している正極の活物質が失活化し始める第1設定値Dを境とする第1領域と第2領域との区分が明確となり、本発明の制御方法を用いることの効果が大きくなる。
 また、本発明の他の局面に係る電源システムは、電源を構成する鉛蓄電池と、前記鉛蓄電池を充電するための充電器と、鉛蓄電池のサイクル使用が開始されてからの充電サイクル毎の充電電気量を積算して第1積算充電電気量を演算するとともに、前記鉛蓄電池のサイクル使用が開始されてからの放電サイクル毎の放電電気量を積算して第1積算放電電気量を演算する第1演算部と、前記第1積算放電電気量が、前記鉛蓄電池が充放電サイクルを経ることにより生じる当該鉛蓄電池の容量の変化の過程において、当該容量が最大値Dmaxとなるときの前記第1積算放電電気量である第1設定値Dに満たないときには、前記鉛蓄電池のサイクル使用が開始されてから前記鉛蓄電池の寿命が到来するまでのライフサイクルにおける一部の領域である第1領域であると判定し、前記第1積算放電電気量が前記第1設定値Dを超えているときには、前記第1領域の後の領域であって前記鉛蓄電池の寿命が到来するまでの第2領域であると判定する判定部と、前記判定部によって前記第2領域であると判断された後、前記第2領域における充電サイクル毎の充電電気量を積算して第2積算充電電気量を演算するとともに、前記第2領域における放電サイクル毎の放電電気量を積算して第2積算放電電気量を演算する第2演算部と、前記第1領域の最後における前記第1積算充電電気量である第1全体充電電気量Cが、前記第1設定値Dに、予め設定された第1の値Rを乗じた電気量となるように、前記第1領域における充電電気量を制御し、前記判定部によって前記第2領域と判断された後、前記鉛蓄電池の寿命が到来したときの前記第2積算充電電気量である第2全体充電電気量Cが、前記鉛蓄電池の寿命が到来したときの前記第2積算放電電気量である前記第2設定値Dに、予め前記第1の値Rよりも小さな値に設定された第2の値Rを乗じた電気量となるように、前記第2領域における前記充電電気量を制御する制御部と、を備えることを特徴とする。
 この構成によれば、鉛蓄電池のサイクル使用が開始されてからの放電電気量の積算値を表す第1積算放電電気量が、第1領域と第2領域との間の境となる第1設定値Dに満たないときには、充電不足による充放電可能な電気量の減少を低減することができ、第1積算放電電気量が第1設定値Dを超えた後は、充放電可能な電気量の低下が過充電により促進されることを低減することができる。
 従って、本発明によれば、鉛蓄電池の性質を見極めて無理のない充電を繰り返すことができるので、無作為に鉛蓄電池を充電する場合と比べて、鉛蓄電池の長寿命化を実現することができる。
 上記構成において、前記第1の値Rは、1~1.5の範囲内の値とされ、前記第2の値Rは、0.9~1.25の範囲内の値とされ、前記第1の値Rと前記第2の値Rとの間の比率R/Rは、1を超え、1.66以下とされていることが望ましい。
 この構成によれば、第1の値Rが1~1.5の範囲内の値とされているので、第1全体充電電気量Cを第1全体放電電気量以上の電気量とすることができる。また、第2の値Rが0.9~1.25の範囲内の値とされているので、第2全体充電電気量Cが第2全体放電電気量に対して占める割合を、第1全体充電電気量Cが第1全体放電電気量に対して占める割合よりも小さくすることができる。
 したがって、第1積算放電電気量が、第1領域と第2領域との間の境となる第1設定値Dに満たないときには、充電不足による充放電可能な電気量の減少を防止することができ、第1積算放電電気量が第1設定値Dを超えた後は、充放電可能な電気量の低下が過充電により促進されることを防止することができる。
 上記構成において、前記制御部は、前記鉛蓄電池の表面温度に応じて、前記第1設定値Dを演算することが望ましい。
 この構成によれば、鉛蓄電池の容量に影響を与える鉛蓄電池の表面温度に応じて、鉛蓄電池の容量が最大となる積算放電電気量である第1設定値Dを演算するため、鉛蓄電池の使用環境に応じた第1設定値Dの演算ができ、実際の使用環境に適した制御方法が実現できる。
 上記構成において、報知処理を行うための報知部をさらに備えており、前記判定部は、前記第2領域において演算された前記第2積算放電電気量が前記第2設定値Dを超えているかを判定し、前記報知部は、前記判定部によって、前記第2積算放電電気量が前記第2設定値Dを超えていると判断されたときには、報知処理を行うことが望ましい。
 この構成によれば、第2積算放電電気量が、鉛蓄電池の寿命が到来したときの第2設定値Dを超えると報知を行うため、ユーザは、鉛蓄電池の寿命が到来したことを確認できる。
 上記構成において、前記制御部は、前記第1領域において、各充電サイクルにおける充電電気量が、前記各充電サイクルの直前の放電サイクルにおける放電電気量に前記第1の値Rを乗じた値となるように、前記各充電サイクルにおける充電電気量を制御し、前記第2領域において、各充電サイクルにおける充電電気量が、前記各充電サイクルの直前の放電サイクルにおける放電電気量に前記第2の値Rを乗じた値となるように、前記各充電サイクルにおける充電電気量を制御することが望ましい。
 この構成によれば、第1領域では、各充電サイクルにおける充電電気量が、当該充電サイクルの直前の放電サイクルにおける放電電気量に第1の値Rを乗じた充電電気量となるように充電される。また、第2領域では、各充電サイクルにおける充電電気量が、当該充電サイクルの直前の放電サイクルにおける放電電気量に第2の値Rを乗じた充電電気量となるように充電される。
 これにより、第1領域及び第2領域の各々において、各充電サイクル毎における充電電気量が、鉛蓄電池の充放電可能な電気量の減少を低減させることができる充電電気量とされるので、より、無理のない充電を繰り返すことができ、鉛蓄電池のさらなる長寿命化を実現することができる。
 上記構成において、前記第1領域において充電サイクルが実行される毎に、当該充電サイクルが実行されたときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第1基準放電電気量を減じて得られる誤差を演算する第1誤差演算部と、前記誤差が演算される毎に前記誤差を積算して、前記第1領域における前記誤差の積算値である第1誤差積算値を演算する第1誤差積算値演算部と、前記鉛蓄電池の公称容量に対する前記第1誤差積算値の割合である第1割合を演算する第1割合演算部と、をさらに備えており、前記判定部は、演算された前記第1割合が予め設定された第1閾値を超えているか否かを判定し、前記制御部は、前記第1割合が前記第1閾値を超えていると判定されたときには、その直後の充電サイクルにおける充電電気量がそのときの前記第1誤差積算値と等しい充電電気量となるように充電を行って、前記第1積算充電電気量の補正を行うことが望ましい。
 この構成によれば、第1領域において、鉛蓄電池の公称容量に対する第1誤差積算値の割合が第1閾値を超えているときには、その直後の充電サイクルにおける充電電気量がそのときの第1誤差積算値と等しい充電電気量となるように充電を行って、第1積算充電電気量の補正を行う。これにより、第1領域において無作為な充電が繰り返された場合であっても、第1全体充電電気量が、第1全体放電電気量に係数Rを乗じた電気量となる。そのため、ユーザの鉛蓄電池の使用実態に即して、充電不足による充放電可能な電気量の減少を低減することができる。
 上記構成において、前記第2領域において充電サイクルが実行される毎に、当該充電サイクルが実行されたときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第2基準放電電気量を減じて得られる誤差を演算する第2誤差演算部と、前記誤差が演算される毎に前記誤差を積算して、前記第2領域における前記誤差の積算値である第2誤差積算値を演算する第2誤差積算値演算部と、前記鉛蓄電池の公称容量に対する前記第2誤差積算値の割合である第2割合を演算する第2割合演算部と、をさらに備えており、前記判定部は、演算された前記第2割合が予め設定された第2閾値を超えているか否かを判定し、前記制御部は、前記第2割合が前記第2閾値を超えていると判定されたときには、その直後の充電サイクルにおける充電電気量がそのときの前記第2誤差積算値と等しい充電電気量となるように充電を行って、前記第2積算充電電気量の補正を行うことが望ましい。
 この構成によれば、第2領域において、鉛蓄電池の公称容量に対する第2誤差積算値の割合が第2閾値を超えているときには、その直後の充電サイクルにおける充電電気量がそのときの第2誤差積算値と等しい充電電気量となるように充電を行って、第2積算充電電気量の補正を行う。これにより、第2領域において無作為な充電が繰り返された場合であっても、第2全体充電電気量が、第2全体放電電気量に係数Rを乗じた電気量となる。そのため、ユーザの鉛蓄電池の使用実態に即して、過剰な充電が行われることによる充放電可能な電気量の顕著な減少を低減することができる。
 上記構成において、前記制御部は、前記第1領域において充放電サイクルを予め設定された回数P繰り返す毎に、その直後の充電サイクル実行後の前記第1積算充電電気量が、そのときの前記第1積算放電電気量に予め設定された係数RP1を乗じた電気量となるように、当該直後の充電サイクルにおける充電を行い、前記第2領域において充放電サイクルを予め設定された回数P繰り返す毎に、その直後の充電サイクル実行後の前記第2積算充電電気量が、そのときの前記第2積算放電電気量に予め前記係数Rp1よりも小さな値に設定された係数RP2を乗じた電気量となるように、当該直後の充電サイクルにおける充電を行うことが望ましい。
 この構成によれば、第1領域において充放電サイクルを予め設定された数P繰り返す毎に、その直後の充電サイクル実行後の第1積算充電電気量が、鉛蓄電池の充放電可能な電気量の減少を低減させることができる充電電気量とされるので、より、ユーザの使用実態に即して、充電不足による充放電可能な電気量の減少を低減することができる。
 上記構成において、前記第1領域において充電サイクルを実行する毎に、当該充電サイクルを実行したときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第1基準放電電気量を減じて得られる誤差を演算する第1誤差演算部と、前記誤差が演算される毎に前記誤差を積算して、前記第1領域における前記誤差の積算値である第1誤差積算値を演算する第1誤差積算値演算部と、をさらに備えており、前記制御部は、前記第1領域において充放電サイクルを実行する毎に、当該充放電サイクルを実行した回数をカウントするカウントし、前記充放電サイクルを前記回数P繰り返す毎に、その直後の充電サイクルにおける充電電気量がそのときの前記第1誤差積算値と等しい充電電気量となるように充電を行って、前記第1積算充電電気量の補正を行うことが望ましい。
 この構成によれば、第1領域において、充放電サイクルをP回繰り返す毎に、その直後の充電サイクルにおける充電電気量がそのときの第1誤差積算値と等しい充電電気量となるように充電を行って、第1積算充電電気量の補正を行う。これにより、第1領域において無作為な充電が繰り返された場合であっても、充放電サイクルをP回繰り返した直後の第1積算充電電気量が、そのときの第1積算放電電気量に係数RP1を乗じた電気量となる。そのため、ユーザの鉛蓄電池の使用実態に即して、充電不足による充放電可能な電気量の減少を低減することができる。
 上記構成において、前記第2領域において充電サイクルを実行する毎に、当該充電サイクルを実行したときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第2基準放電電気量を減じて得られる誤差を演算する第2誤差演算部と、前記誤差が演算される毎に前記誤差を積算して、前記第2領域における前記誤差の積算値である第2誤差積算値を演算する第2誤差積算値演算部と、をさらに備えており、前記制御部は、前記第2領域において充放電サイクルを実行する毎に、当該充放電サイクルを実行した回数をカウントするカウントし、前記充放電サイクルを前記回数P繰り返す毎に、その直後の充電サイクルにおける充電電気量がそのときの前記第2誤差積算値と等しい充電電気量となるように充電を行って、前記第2積算充電電気量の補正を行うことが望ましい。
 この構成によれば、充放電サイクルをP回繰り返すことに、その直後の充電サイクルにおける充電電気量がそのときの第2誤差積算値と等しい充電電気量となるように充電を行って、第2積算充電電気量の補正を行う。これにより、第2領域において無作為な充電が繰り返された場合であっても、充放電サイクルをP回繰り返した直後の第2積算充電電気量が、そのときの第2積算放電電気量に係数RP2を乗じた電気量となる。そのため、ユーザの鉛蓄電池の使用実態に即して、過剰な充電が行われることによる充放電可能な電気量の顕著な減少を低減することができる。
 上記構成において、前記予め設定された回数P及びPは、2~20の範囲内の回数であることが望ましい。
 この構成によれば、第1領域及び第2領域において、充放電サイクルを2~20の範囲内の回数実行すれば、その直後の第1及び第2の積算充電電気量が、充放電可能な電気量の減少を低減させることができる充電電気量とされる。そのため、実際の鉛蓄電池の使用態様に即した適切な頻度で、充放電可能な電気量の減少を低減することができる。
 上記構成において、前記係数RP1は、1~1.5の範囲内の値とされ、前記係数RP2は、0.9~1.25の範囲内の値とされ、かつ、前記係数RP1と前記係数RP2との間の比率RP1/RP2は、1を超え、1.66以下とされていることが望ましい。
 この構成によれば、係数Rが1~1.5の範囲内の値とされているので、第1領域における充放電サイクルをP回繰り返す毎に、その直後の第1積算充電電気量を、そのときの第1積算放電電気量以上の電気量とすることができる。また、係数Rが0.9~1.25の範囲内の値とされているので、その直後の第2積算充電電気量が、そのときの第2積算放電電気量に対して占める割合を、第1領域において充放電サイクルをP回繰り返した直後の第1積算充電電気量が、そのときの第1積算放電電気量に対して占める割合よりも小さくすることができる。
 したがって、ユーザの使用形態により即した頻度で、充放電可能な電気量の減少を低減することができる。
 上記構成において、前記最大値Dmaxと、前記第1設定値Dとの間の比率D/Dmaxは、20~200の範囲内の比率であることが望ましい。
 この構成によれば、D/Dmaxが20~200の範囲内である一般的な鉛蓄電池を使用して、その鉛蓄電池の制御を行うことができる。
 上記構成において、前記鉛蓄電池は、制御弁式鉛蓄電池で構成されていることが望ましい。
 一般に、制御弁式の鉛蓄電池は、シールされた構成とされており、電解液の補充ができないようになっているため、鉛蓄電池の容量は電解液の多さではなく、正極の活物質の活性度に応じて変動しやすくなる。従って、この構成によれば、活性化している正極の活物質が失活化し始める第1設定値Dを境とする第1領域と第2領域との区分が明確となる。
 本発明の鉛蓄電池の制御方法および電源システムは、タフユースが可能で安全性が高い鉛蓄電池を、不定期な充電が主となる電動車両の電源に用いることを促進するものであり、産業の発展に与える影響は大きい。

Claims (29)

  1.  鉛蓄電池のサイクル使用が開始されてからの充電サイクル毎の充電電気量を積算して第1積算充電電気量を演算するとともに、前記鉛蓄電池のサイクル使用が開始されてからの放電サイクル毎の放電電気量を積算して第1積算放電電気量を演算する第1演算ステップと、
     前記第1積算放電電気量が、前記鉛蓄電池が充放電サイクルを経ることにより生じる当該鉛蓄電池の容量の変化の過程において、当該容量が最大値Dmaxとなるときの前記第1積算放電電気量である第1設定値Dに満たないときには、前記鉛蓄電池のサイクル使用が開始されてから前記鉛蓄電池の寿命が到来するまでのライフサイクルにおける一部の領域である第1領域であると判定し、前記第1積算放電電気量が前記第1設定値Dを超えているときには、前記第1領域の後の領域であって前記鉛蓄電池の寿命が到来するまでの第2領域であると判定する判定ステップと、
     前記判定ステップにおいて前記第2領域であると判断された後、前記第2領域における充電サイクル毎の充電電気量を積算して第2積算充電電気量を演算するとともに、前記第2領域における放電サイクル毎の放電電気量を積算して第2積算放電電気量を演算する第2演算ステップと、
     前記第1領域の最後における前記第1積算充電電気量である第1全体充電電気量Cが、前記第1設定値Dに、予め設定された第1の値Rを乗じた電気量となるように、前記第1領域における充電電気量を制御し、
     前記第2領域と判断された後、前記鉛蓄電池の寿命が到来したときの前記第2積算充電電気量である第2全体充電電気量Cが、前記鉛蓄電池の寿命が到来したときの前記第2積算放電電気量である前記第2設定値Dに、予め前記第1の値Rよりも小さな値に設定された第2の値Rを乗じた電気量となるように、前記第2領域における充電電気量を制御する制御ステップと、
     を備えることを特徴とする鉛蓄電池の制御方法。
  2.  前記第1の値Rは、1~1.5の範囲内の値とされ、
     前記第2の値Rは、0.9~1.25の範囲内の値とされ、
     且つ、前記第1の値Rと前記第2の値Rとの間の比率R/Rは、1を超え、1.66以下とされていることを特徴とする請求項1に記載の鉛蓄電池の制御方法。
  3.  前記鉛蓄電池の表面温度に応じて、前記第1設定値Dを演算する設定値演算ステップをさらに備えることを特徴とする請求項1又は請求項2に記載の鉛蓄電池の制御方法。
  4.  前記第2領域において演算された前記第2積算放電電気量が前記第2設定値Dを超えているか否かを判断するステップと、
     前記第2積算放電電気量が前記第2設定値Dを超えているときには、報知処理を行うステップと、をさらに備えることを特徴とする請求項1乃至請求項3のいずれか一項に記載の鉛蓄電池の制御方法。
  5.  前記制御ステップにおいて、
     前記第1領域において、各充電サイクルにおける充電電気量が、前記各充電サイクルの直前の放電サイクルにおける放電電気量に前記第1の値Rを乗じた値となるように、前記各充電サイクルにおける充電電気量を制御し、
     前記第2領域において、各充電サイクルにおける充電電気量が、前記各充電サイクルの直前の放電サイクルにおける放電電気量に前記第2の値Rを乗じた値となるように、前記各充電サイクルにおける充電電気量を制御することを特徴とする請求項1乃至4のいずれか一項に記載の鉛蓄電池の制御方法。
  6.  前記第1領域において充電サイクルを実行する毎に、当該充電サイクルを実行したときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第1基準放電電気量を減じて得られる誤差を演算する第1誤差演算ステップと、
     前記誤差が演算される毎に前記誤差を積算して、前記第1領域における前記誤差の積算値である第1誤差積算値を演算する第1誤差積算値演算ステップと、
     前記鉛蓄電池の公称容量に対する前記第1誤差積算値の割合を演算する第1割合演算ステップと、
     演算された前記第1割合が予め設定された第1閾値を超えているか否かを判定する第1割合判定ステップと、
     前記第1割合が前記第1閾値を超えていると判定されたときには、その直後の充電サイクルにおいて、そのときの前記第1誤差積算値に、その直前の放電サイクルにおける放電電気量に前記第1閾値を乗じた電気量を加算して得られる充電電気量を充電して、前記第1積算充電電気量の補正を行う補正ステップと、
     をさらに備えることを特徴とする請求項1乃至請求項4のいずれか一項に記載の鉛蓄電池の制御方法。
  7.  前記第2領域において充電サイクルを実行する毎に、当該充電サイクルを実行したときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第2基準放電電気量を減じて得られる誤差を演算する第2誤差演算ステップと、
     前記誤差が演算される毎に前記誤差を積算して、前記第2領域における前記誤差の積算値である第2誤差積算値を演算する第2誤差積算値演算ステップと、
     前記鉛蓄電池の公称容量に対する前記第2誤差積算値の割合である第2割合を演算する第2割合演算ステップと、
     演算された前記第2割合が予め設定された第2閾値を超えているか否かを判定する第2割合判定ステップと、
     前記第2割合が前記第2閾値を超えていると判定されたときには、その直後の充電サイクルにおいて、そのときの前記第2誤差積算値に、その直前の放電サイクルにおける放電電気量に前記第2閾値を乗じた電気量を加算して得られる充電電気量を充電して、前記第2積算充電電気量の補正を行う補正ステップと、
     をさらに備えることを特徴とする請求項1乃至請求項4のいずれか一項に記載の鉛蓄電池の制御方法。
  8.  前記第1領域において充放電サイクルを予め設定された回数P繰り返す毎に、その直後の充電サイクル実行後の前記第1積算充電電気量が、そのときの前記第1積算放電電気量に予め1~1.5の範囲内で設定された係数RP1を乗じた電気量となるように、当該直後の充電サイクルにおける充電を行うことを特徴とする請求項1乃至請求項4のいずれか一項に記載の鉛蓄電池の制御方法。
  9.  前記第2領域において充放電サイクルを予め設定された回数P繰り返す毎に、その直後の充電サイクル実行後の前記第2積算充電電気量が、そのときの前記第2積算放電電気量に予め0.9~1.25の範囲内で設定された係数RP2を乗じた電気量となるように、当該直後の充電サイクルにおける充電を行うことを特徴とする請求項1乃至請求項4のいずれか一項に記載の鉛蓄電池の制御方法。
  10.  前記第1領域において充電サイクルを実行する毎に、当該充電サイクルを実行したときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第1基準放電電気量を減じて得られる誤差を演算する第1誤差演算ステップと、
     前記誤差が演算される毎に前記誤差を積算して、前記第1領域における前記誤差の積算値である第1誤差積算値を演算する第1誤差積算値演算ステップと、
     前記第1領域において充放電サイクルを実行する毎に、当該充放電サイクルを実行した回数をカウントするカウントステップと、
     前記充放電サイクルを前記回数P繰り返す毎に、その直後の充電サイクルにおける充電電気量がそのときの前記第1誤差積算値と等しい充電電気量となるように充電を行って、前記第1積算充電電気量の補正を行う補正ステップと、
     をさらに備えることを特徴とする請求項8に記載の鉛蓄電池の制御方法。
  11.  前記第2領域において充電サイクルを実行する毎に、当該充電サイクルを実行したときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第2基準放電電気量を減じて得られる誤差を演算する第2誤差演算ステップと、
     前記誤差が演算される毎に前記誤差を積算して、前記第2領域における前記誤差の積算値である第2誤差積算値を演算する第2誤差積算値演算ステップと、
     前記第2領域において充放電サイクルを実行する毎に、当該充放電サイクルを実行した回数をカウントするカウントステップと、
     前記充放電サイクルを前記回数P繰り返す毎に、その直後の充電サイクルにおける充電電気量がそのときの前記第2誤差積算値と等しい充電電気量となるように充電を行って、前記第2積算充電電気量の補正を行う補正ステップと、
     をさらに備えることを特徴とする請求項9に記載の鉛蓄電池の制御方法。
  12.  前記予め設定された回数Pは、2~20の範囲内の回数であることを特徴とする請求項8又は請求項10に記載の鉛蓄電池の制御方法。
  13.  前記予め設定された回数Pは、2~20の範囲内の回数であることを特徴とする請求項9又は請求項11に記載の鉛蓄電池の制御方法。
  14.  前記最大値Dmaxと、前記第1設定値Dとの間の比率D/Dmaxは、20~200の範囲内の比率であることを特徴とする請求項1乃至請求項13のいずれか一項に記載の鉛蓄電池の制御方法。
  15.  前記鉛蓄電池は、制御弁式鉛蓄電池で構成されていることを特徴とする請求項1乃至14のいずれか一項に記載の鉛蓄電池の制御方法。
  16.  電源を構成する鉛蓄電池と、
     前記鉛蓄電池を充電するための充電器と、
     鉛蓄電池のサイクル使用が開始されてからの充電サイクル毎の充電電気量を積算して第1積算充電電気量を演算するとともに、前記鉛蓄電池のサイクル使用が開始されてからの放電サイクル毎の放電電気量を積算して第1積算放電電気量を演算する第1演算部と、
     前記第1積算放電電気量が、前記鉛蓄電池が充放電サイクルを経ることにより生じる当該鉛蓄電池の容量の変化の過程において、当該容量が最大値Dmaxとなるときの前記第1積算放電電気量である第1設定値Dに満たないときには、前記鉛蓄電池のサイクル使用が開始されてから前記鉛蓄電池の寿命が到来するまでのライフサイクルにおける一部の領域である第1領域であると判定し、前記第1積算放電電気量が前記第1設定値Dを超えているときには、前記第1領域の後の領域であって前記鉛蓄電池の寿命が到来するまでの第2領域であると判定する判定部と、
     前記判定部によって前記第2領域であると判断された後、前記第2領域における充電サイクル毎の充電電気量を積算して第2積算充電電気量を演算するとともに、前記第2領域における放電サイクル毎の放電電気量を積算して第2積算放電電気量を演算する第2演算部と、
     前記第1領域の最後における前記第1積算充電電気量である第1全体充電電気量Cが、前記第1設定値Dに、予め設定された第1の値Rを乗じた電気量となるように、前記第1領域における充電電気量を制御し、
     前記判定部によって前記第2領域と判断された後、前記鉛蓄電池の寿命が到来したときの前記第2積算充電電気量である第2全体充電電気量Cが、前記鉛蓄電池の寿命が到来したときの前記第2積算放電電気量である前記第2設定値Dに、予め前記第1の値Rよりも小さな値に設定された第2の値Rを乗じた電気量となるように、前記第2領域における前記充電電気量を制御する制御部と、
     を備えることを特徴とする電源システム。
  17.  前記第1の値Rは、1~1.5の範囲内の値とされ、
     前記第2の値Rは、0.9~1.25の範囲内の値とされ、
     且つ、前記第1の値Rと前記第2の値Rとの間の比率R/Rは、1を超え、1.66以下とされていることを特徴とする請求項16に記載の電源システム。
  18.  前記制御部は、
     前記鉛蓄電池の表面温度に応じて、前記第1設定値Dを演算することを特徴とする請求項16又は請求項17に記載の電源システム。
  19.  報知処理を行うための報知部をさらに備えており、
     前記判定部は、前記第2領域において演算された前記第2積算放電電気量が前記第2設定値Dを超えているかを判定し、
     前記報知部は、前記判定部によって、前記第2積算放電電気量が前記第2設定値Dを超えていると判断されたときには、報知処理を行うことを特徴とする請求項16乃至請求項18のいずれか一項に記載の電源システム。
  20.  前記制御部は、
     前記第1領域において、各充電サイクルにおける充電電気量が、前記各充電サイクルの直前の放電サイクルにおける放電電気量に前記第1の値Rを乗じた値となるように、前記各充電サイクルにおける充電電気量を制御し、
     前記第2領域において、各充電サイクルにおける充電電気量が、前記各充電サイクルの直前の放電サイクルにおける放電電気量に前記第2の値Rを乗じた値となるように、前記各充電サイクルにおける充電電気量を制御することを特徴とする請求項16乃至請求項18のいずれか一項に記載の電源システム。
  21.  前記第1領域において充電サイクルが実行される毎に、当該充電サイクルが実行されたときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第1基準放電電気量を減じて得られる誤差を演算する第1誤差演算部と、
     前記誤差が演算される毎に前記誤差を積算して、前記第1領域における前記誤差の積算値である第1誤差積算値を演算する第1誤差積算値演算部と、
     前記鉛蓄電池の公称容量に対する前記第1誤差積算値の割合である第1割合を演算する第1割合演算部と、をさらに備えており、
     前記判定部は、演算された前記第1割合が予め設定された第1閾値を超えているか否かを判定し、
     前記制御部は、前記第1割合が前記第1閾値を超えていると判定されたときには、その直後の充電サイクルにおいて、そのときの前記第1誤差積算値に、その直前の放電サイクルにおける放電電気量に前記第1閾値を乗じた電気量を加算して得られる充電電気量を充電して、前記第1積算充電電気量の補正を行うことを特徴とする請求項16乃至請求項18のいずれか一項に記載の電源システム。
  22.  前記第2領域において充電サイクルが実行される毎に、当該充電サイクルが実行されたときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第2基準放電電気量を減じて得られる誤差を演算する第2誤差演算部と、
     前記誤差が演算される毎に前記誤差を積算して、前記第2領域における前記誤差の積算値である第2誤差積算値を演算する第2誤差積算値演算部と、
     前記鉛蓄電池の公称容量に対する前記第2誤差積算値の割合である第2割合を演算する第2割合演算部と、をさらに備えており、
     前記判定部は、演算された前記第2割合が予め設定された第2閾値を超えているか否かを判定し、
     前記制御部は、前記第2割合が前記第2閾値を超えていると判定されたときには、その直後の充電サイクルにおいて、そのときの前記第2誤差積算値に、その直前の放電サイクルにおける放電電気量に前記第2閾値を乗じた電気量を加算して得られる充電電気量を充電して、前記第2積算充電電気量の補正を行うことを特徴とする請求項16乃至請求項18のいずれか一項に記載の電源システム。
  23.  前記制御部は、
     前記第1領域において充放電サイクルを予め設定された回数P繰り返す毎に、その直後の充電サイクル実行後の前記第1積算充電電気量が、そのときの前記第1積算放電電気量に予め設定された係数RP1を乗じた電気量となるように、当該直後の充電サイクルにおける充電を行い、
     前記第2領域において充放電サイクルを予め設定された回数P繰り返す毎に、その直後の充電サイクル実行後の前記第2積算充電電気量が、そのときの前記第2積算放電電気量に予め前記係数Rp1よりも小さな値に設定された係数RP2を乗じた電気量となるように、当該直後の充電サイクルにおける充電を行うことを特徴とする請求項16乃至請求項18に記載の電源システム。
  24.  前記第1領域において充電サイクルを実行する毎に、当該充電サイクルを実行したときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第1基準放電電気量を減じて得られる誤差を演算する第1誤差演算部と、
     前記誤差が演算される毎に前記誤差を積算して、前記第1領域における前記誤差の積算値である第1誤差積算値を演算する第1誤差積算値演算部と、をさらに備えており、
     前記制御部は、
     前記第1領域において充放電サイクルを実行する毎に、当該充放電サイクルを実行した回数をカウントするカウントし、
     前記充放電サイクルを前記回数P繰り返す毎に、その直後の充電サイクルにおける充電電気量がそのときの前記第1誤差積算値と等しい充電電気量となるように充電を行って、前記第1積算充電電気量の補正を行うことを特徴とする請求項23に記載の電源システム。
  25.  前記第2領域において充電サイクルを実行する毎に、当該充電サイクルを実行したときの充電電気量から、当該充電サイクルの直前の放電サイクルにおける放電電気量に予め定められた係数Rを乗じた第2基準放電電気量を減じて得られる誤差を演算する第2誤差演算部と、
     前記誤差が演算される毎に前記誤差を積算して、前記第2領域における前記誤差の積算値である第2誤差積算値を演算する第2誤差積算値演算部と、をさらに備えており、
     前記制御部は、
     前記第2領域において充放電サイクルを実行する毎に、当該充放電サイクルを実行した回数をカウントするカウントし、
     前記充放電サイクルを前記回数P繰り返す毎に、その直後の充電サイクルにおける充電電気量がそのときの前記第2誤差積算値と等しい充電電気量となるように充電を行って、前記第2積算充電電気量の補正を行うことを特徴とする請求項23に記載の電源システム。
  26.  前記予め設定された回数P及びPは、2~20の範囲内の回数であることを特徴とする請求項23に記載の電源システム。
  27.  前記値RP1は、1~1.5の範囲内の値とされ、
     前記値RP2は、0.9~1.25の範囲内の値とされ、
     かつ、前記値RP1と前記値RP2との間の比率RP1/RP2は、1を超え、1.66以下とされていることを特徴とする請求項23に記載の電源システム。
  28.  前記最大値Dmaxと、前記第1設定値Dとの間の比率D/Dmaxは、20~200の範囲内の比率であることを特徴とする請求項16乃至請求項27のいずれか一項に記載の電源システム。
  29.  前記鉛蓄電池は、制御弁式鉛蓄電池で構成されていることを特徴とする請求項16乃至28のいずれか一項に記載の電源システム。
PCT/JP2009/003808 2008-08-07 2009-08-07 鉛蓄電池の制御方法および電源システム WO2010016275A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801148501A CN102017358A (zh) 2008-08-07 2009-08-07 铅蓄电池的控制方法以及电源系统
JP2009552943A JP4473944B2 (ja) 2008-08-07 2009-08-07 鉛蓄電池の制御方法および電源システム
US12/991,343 US8432135B2 (en) 2008-08-07 2009-08-07 Method of controlling lead-acid battery and power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-203985 2008-08-07
JP2008203985 2008-08-07

Publications (2)

Publication Number Publication Date
WO2010016275A1 true WO2010016275A1 (ja) 2010-02-11
WO2010016275A9 WO2010016275A9 (ja) 2010-04-08

Family

ID=41663503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003808 WO2010016275A1 (ja) 2008-08-07 2009-08-07 鉛蓄電池の制御方法および電源システム

Country Status (5)

Country Link
US (1) US8432135B2 (ja)
JP (1) JP4473944B2 (ja)
CN (1) CN102017358A (ja)
RU (1) RU2463694C2 (ja)
WO (1) WO2010016275A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070190A1 (ja) * 2010-11-25 2012-05-31 パナソニック株式会社 充電制御回路、電池駆動機器、充電装置及び充電方法
CN117214726A (zh) * 2023-11-02 2023-12-12 江苏天合储能有限公司 状态检测方法及装置、电子设备、计算机可读存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085238B2 (en) * 2013-01-11 2015-07-21 Johnson Controls Technology Company Energy storage control system and method
KR20150054464A (ko) * 2013-11-12 2015-05-20 삼성에스디아이 주식회사 배터리 충전 방법 및 배터리 충전 시스템
WO2016205079A1 (en) * 2015-06-14 2016-12-22 Smithville Labs, Llc. Apparatus and method for charging valve regulated lead acid batteries
JP6605008B2 (ja) * 2017-10-20 2019-11-13 本田技研工業株式会社 電源システム及び車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189104A (ja) * 1997-09-09 1999-03-30 Matsushita Electric Ind Co Ltd 鉛蓄電池の充電方法
US6275006B1 (en) * 1998-05-27 2001-08-14 Matsushita Electric Industrial Co., Ltd. Method for charging secondary battery
JP2003219517A (ja) * 2002-01-21 2003-07-31 Kawamura Electric Inc 分電盤の負荷名称表示
JP2006114312A (ja) * 2004-10-14 2006-04-27 Matsushita Electric Ind Co Ltd 鉛蓄電池の充電方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2022802A1 (en) * 1989-12-05 1991-06-06 Steven E. Koenck Fast battery charging system and method
JP3121732B2 (ja) * 1994-11-04 2001-01-09 三菱電機株式会社 二次電池のパラメータ測定方法ならびにそれを用いた二次電池の充放電制御方法および寿命予測方法、ならびに、二次電池の充放電制御装置およびそれを用いた電力貯蔵装置
JP3669153B2 (ja) * 1998-05-27 2005-07-06 松下電器産業株式会社 鉛蓄電池の充電方法
JP3642212B2 (ja) * 1999-02-19 2005-04-27 松下電器産業株式会社 鉛蓄電池の充電方法
JPH11355968A (ja) * 1998-06-04 1999-12-24 Matsushita Electric Ind Co Ltd 蓄電池の充電方法とその充電装置
JP3678045B2 (ja) * 1999-03-24 2005-08-03 松下電器産業株式会社 蓄電池の充電方法
JP2003219571A (ja) * 2002-01-22 2003-07-31 Daikin Ind Ltd 充電方法、蓄電池システム、空気調和システム
RU2265921C2 (ru) * 2003-12-05 2005-12-10 Государственное образовательное учреждение высшего профессионального образования Южно-Российский государственный технический университет (Новочеркасский политехнический институт) Система диагностирования свинцовых аккумуляторных батарей
CN100365911C (zh) * 2006-03-02 2008-01-30 航天东方红卫星有限公司 一种蓄电池充电控制方法
JP4577294B2 (ja) 2006-10-24 2010-11-10 株式会社デンソー バッテリ状態検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189104A (ja) * 1997-09-09 1999-03-30 Matsushita Electric Ind Co Ltd 鉛蓄電池の充電方法
US6275006B1 (en) * 1998-05-27 2001-08-14 Matsushita Electric Industrial Co., Ltd. Method for charging secondary battery
JP2003219517A (ja) * 2002-01-21 2003-07-31 Kawamura Electric Inc 分電盤の負荷名称表示
JP2006114312A (ja) * 2004-10-14 2006-04-27 Matsushita Electric Ind Co Ltd 鉛蓄電池の充電方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070190A1 (ja) * 2010-11-25 2012-05-31 パナソニック株式会社 充電制御回路、電池駆動機器、充電装置及び充電方法
JP4988974B2 (ja) * 2010-11-25 2012-08-01 パナソニック株式会社 充電制御回路、電池駆動機器、充電装置及び充電方法
US8421406B2 (en) 2010-11-25 2013-04-16 Panasonic Corporation Charge control circuit, battery-operated device, charging apparatus and charging method
RU2494514C1 (ru) * 2010-11-25 2013-09-27 Панасоник Корпорэйшн Схема управления зарядом, работающее от батареи устройство, зарядное устройство и способ зарядки
CN117214726A (zh) * 2023-11-02 2023-12-12 江苏天合储能有限公司 状态检测方法及装置、电子设备、计算机可读存储介质
CN117214726B (zh) * 2023-11-02 2024-01-26 江苏天合储能有限公司 状态检测方法及装置、电子设备、计算机可读存储介质

Also Published As

Publication number Publication date
WO2010016275A9 (ja) 2010-04-08
US8432135B2 (en) 2013-04-30
JP4473944B2 (ja) 2010-06-02
JPWO2010016275A1 (ja) 2012-01-19
CN102017358A (zh) 2011-04-13
RU2463694C2 (ru) 2012-10-10
US20110057619A1 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
US8768549B2 (en) Battery maintenance system
JP4473944B2 (ja) 鉛蓄電池の制御方法および電源システム
JP5407893B2 (ja) 二次電池システム、及びハイブリッド車両
JP4709951B1 (ja) 鉛蓄電池
JP5812025B2 (ja) 定置用蓄電システム及び制御方法
CN102237706B (zh) 具有多个蓄电池的电源单元
KR20140003325A (ko) 배터리 팩 및 배터리 팩에 적용되는 soc 알고리즘
US11281417B2 (en) Display device and vehicle comprising the same
KR20130109042A (ko) 배터리 팩 충전 시스템 및 그 제어 방법
JP6073901B2 (ja) 車両用のバッテリシステムとこれを搭載する車両
US20120098501A1 (en) Efficient lead acid battery charging
WO2000054359A1 (en) Dual battery systems and methods for maintaining the charge state of high power batteries
US6801017B2 (en) Charger for rechargeable nickel-zinc battery
CN1237649C (zh) 镍-金属氢化物蓄电池以及使用该蓄电池的混合电动车辆
CN116667480A (zh) 一种基于dc-dc控制器的充放电策略确定方法及系统
WO2014120250A1 (en) Battery maintenance system
JP4331473B2 (ja) 鉛蓄電池の充放電制御装置及び充放電制御方法
JP2017127169A (ja) 余剰電力の貯蔵用蓄電システム
JP2015214167A (ja) 車両用のバッテリシステムとこれを搭載する車両
WO2012091075A1 (ja) バッテリシステム
JP2021136710A (ja) 蓄電池の運用方法
JP2020048311A (ja) 電動車の電池制御装置
JP2010051045A (ja) 鉛蓄電池の充電方法および電源システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114850.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2009552943

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12991343

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010145167

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 09804762

Country of ref document: EP

Kind code of ref document: A1