WO2012043639A1 - 電力供給システム - Google Patents

電力供給システム Download PDF

Info

Publication number
WO2012043639A1
WO2012043639A1 PCT/JP2011/072202 JP2011072202W WO2012043639A1 WO 2012043639 A1 WO2012043639 A1 WO 2012043639A1 JP 2011072202 W JP2011072202 W JP 2011072202W WO 2012043639 A1 WO2012043639 A1 WO 2012043639A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage unit
power
power storage
charging
stage
Prior art date
Application number
PCT/JP2011/072202
Other languages
English (en)
French (fr)
Inventor
山▲崎▼ 淳
隆一郎 富永
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012043639A1 publication Critical patent/WO2012043639A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply system that uses power supplied by discharging a power storage unit.
  • the electricity charge for grid power includes a fixed basic charge and a usage-based charge. Then, the electric power company determines the contract capacity determined based on the maximum value of the amount of grid power consumed in each of a plurality of unit times (for example, 30 minutes) included in a predetermined period (for example, one year). The smaller the smaller, the cheaper the basic fee is. Therefore, in the case of such a contract form, the power charge can be reduced by leveling the consumption of the system power and reducing the maximum value of the system power consumed per unit time. Moreover, regardless of the form of contract with the power company, the power company can efficiently generate power (particularly, thermal power generation) by leveling the consumption of the grid power. Therefore, it becomes possible to reduce the amount of carbon dioxide emission accompanying power generation, which is preferable.
  • the power supply system described above can level the power consumption of the system by discharging the storage battery when the power consumption of the system becomes large (for example, when a specific load with high power consumption is operated). .
  • the storage battery needs to be charged (see, for example, Patent Document 1).
  • the battery can be charged quickly after the storage battery is discharged because the power supply system can efficiently supply power to the load.
  • the power charge basic charge
  • the power charge will increase, and the amount of carbon dioxide emissions associated with power generation by the power company will increase. This causes a problem.
  • an object of the present invention is to provide a power supply system that quickly charges the power storage unit and leveles the consumption of the system power.
  • a power supply system controls a power storage unit that consumes and charges grid power supplied from an electric power company and supplies power by discharging, and charging and discharging of the power storage unit A power storage unit control unit, and a load unit that consumes system power supplied from an electric power company or power supplied by discharging the power storage unit, wherein the power storage unit control unit is charged by the power storage unit
  • the power storage unit can be charged by sequentially performing a preliminary charging stage with a small charge and a main charging stage with a large amount of power charged by the power storage unit, and the power storage unit control unit is included in the load unit
  • the precharging stage of charging the power storage unit is started during the operation time of the specific load.
  • the load unit may include a plurality of loads, and the specific load may be a load that consumes a relatively large amount of power during operation among the plurality of loads. I do not care.
  • the specific load may be a battery charging unit that charges a battery provided in the electric vehicle.
  • the power storage unit control unit may perform the main charging stage of charging the power storage unit after the time when the operation time of the specific load ends.
  • the power storage unit control unit may start and end a precharging stage of charging of the power storage unit during the operation time of the specific load.
  • the power storage unit control unit may set the time at which the main charging stage of charging of the power storage unit starts to be substantially equal to the time at which the operation time of the specific load ends. .
  • the power storage unit control unit may intermittently perform a preliminary charging stage and a main charging stage for charging the power storage unit.
  • the power storage unit control unit is capable of supplying power to the load unit by discharging the power storage unit in at least part of the operation time of the specific load,
  • the power storage unit control unit may start a pre-charging stage of charging of the power storage unit after the time when the specific load is in operation and the discharge of the power storage unit ends.
  • the power storage unit control unit may increase the power supplied by discharging the power storage unit as the time for discharging the power storage unit is shortened.
  • the preliminary charging stage for charging the power storage unit includes a first stage in which a current supplied to the power storage unit is constant
  • the main charging stage for charging the power storage unit includes: A second current is supplied to the power storage unit that is larger and constant than a current supplied to the power storage unit in the preliminary charging stage, and a voltage equal to or higher than a voltage supplied to the power storage unit in the preliminary charging stage. Steps may be included.
  • the power consumed in the preliminary charging stage can be made sufficiently smaller than the power consumed in the main charging stage. Therefore, even if the preliminary charging stage is started at the operating time of the specific load, it becomes possible to level the consumption of the system power.
  • the configuration of the present invention makes it possible to make the time for starting charging the power storage unit earlier. As a result, the power storage unit can be charged quickly. Furthermore, since the power consumed in the preliminary charging stage of charging of the power storage unit is small, even if the preliminary charging stage is started during the operation time of the specific load, it becomes possible to achieve leveling of system power consumption.
  • FIG. 1 is a block diagram illustrating a configuration example of a power supply system according to an embodiment of the present invention.
  • the solid line arrow which connects each block in a figure shows exchange of electric power
  • the broken line arrow has shown exchange of information.
  • the power supply system 1 shown in FIG. 1 consumes system power and charges the power storage unit 2 that supplies the charged power by discharging, and consumes at least one of the system power and the power supplied by discharging the power storage unit 2.
  • a load unit 3 that operates as described above, a load unit control unit 4 that controls the operation of the load unit 3, and a power storage unit control unit 5 that controls charging and discharging of the power storage unit 2.
  • the power storage unit 2 is composed of, for example, a large-capacity storage battery, and appropriately converts the supplied grid power (for example, by converting AC power to DC power) and converts it appropriately when discharging the charged power. (E.g., converting DC power to AC power) and supplying it to the load unit 3.
  • the load unit 3 includes various loads that operate by consuming the supplied power (for example, various devices such as lighting, air conditioners, and refrigerators provided in homes and stores). Further, various loads constituting the load unit 3 include an EV (Electric Vehicle) charging unit 31 that performs an operation of charging a battery of an electric vehicle such as an electric automobile or an electric motorcycle.
  • the power consumed when the EV charging unit 31 operates is larger than the power consumed when another load operates.
  • the power consumed by the EV charging unit 31 and the power consumed by the load unit 3 other than the EV charging unit 31 have the same magnitude (for example, the number of digits of power consumption is substantially equal). It doesn't matter.
  • the electric power supplied by the discharge of the electricity storage unit 2 is mainly consumed by the EV charging unit 31.
  • the power supplied by discharging the power storage unit 2 can be consumed even by a load other than the EV charging unit 31, but in the following, for simplicity of explanation, the case where all the power is consumed by the EV charging unit 31 is illustrated. To do.
  • the load unit control unit 4 formulates an operation plan indicating the timing for operating (loading power) various loads of the load unit 3, and operates the load unit 3 in accordance with the operation plan.
  • the EV charging unit 31 is operated at a predetermined timing based on an instruction from the user of the electric vehicle, or a load required at any time in a home or a store is operated at any time.
  • the operation plan may be a short-term plan (for example, a plan that immediately operates a predetermined load when an instruction is received from a user of the power supply system 1).
  • a medium- to long-term (for example, several minutes to several hours) operation plan is formulated. ,preferable.
  • the power storage unit control unit 5 controls charging and discharging of the power storage unit 2 based on the operation of the load unit 3 (operation plan formulated by the load unit control unit 4). Note that details of a method for controlling charging and discharging of the power storage unit 2 by the power storage unit control unit 5 (hereinafter referred to as a charging method and a discharging method of the power storage unit 2) will be described later.
  • a charging method and a discharging method of the power storage unit 2 (hereinafter referred to as a charging method and a discharging method of the power storage unit 2) will be described later.
  • ⁇ Operation example of power supply system >> ⁇ Charging method for power storage unit>
  • FIG. 2 is a graph illustrating an example of a method of charging the power storage unit in the power supply system of FIG.
  • the power storage unit control unit 5 charges the power storage unit 2 stepwise by a plurality of methods. Specifically, the first stage in which the power storage unit controller 5 charges the power storage unit 2 by supplying a substantially constant current A1 until the voltage V1 is reached, and the current A1 until the voltage V2 is higher than the voltage V1. A second stage in which the power storage unit 2 is charged by supplying a substantially constant current A2 that is larger than the predetermined value, and a current to be supplied to the power storage unit 2 while charging the power storage unit 2 by supplying a substantially constant voltage V2. The power storage unit 2 is charged by sequentially performing the third stage that ends when the size becomes equal to or smaller than the first stage.
  • the power (maximum A1 ⁇ V1) charged (consumed) by the power storage unit 2 in the first stage is small, and the power charged (consumed) by the power storage unit 2 in the second stage (minimum A2 ⁇ V1, maximum A2). XV2) and the power (maximum A2 * V2) that the power storage unit 2 charges (consumes) in the third stage is large.
  • the power storage unit control unit 5 may not perform the third stage.
  • the first stage is referred to as a preliminary charging stage
  • the second stage and the third stage (or the second stage) are referred to as a main charging stage.
  • ⁇ Charging method and discharging method of power storage unit: first specific example> A first specific example of the method for charging and discharging the power storage unit 2 will be described with reference to the drawings.
  • FIGS. 3 to 5 is a graph showing a first specific example of a method of charging and discharging a power storage unit in the power supply system of FIG.
  • FIG. 3 is a graph showing an ideal charging method and discharging method for the power storage unit, FIG.
  • FIG. 4 is a graph showing an inappropriate charging method and discharging method for the power storage unit
  • FIG. It is a graph which shows the charge method and the discharge method. Note that the graphs in FIGS. 3 to 5 show that the electric power company has, for example, 1 1 based on the maximum value of the amount of grid power consumed in the unit time of 0 to 30 minutes and 30 to 0 minutes per hour. This assumes that annual contract capacity is set.
  • the electric power supplied by discharging of the power storage unit 2 and consumed by the EV charging unit 31 is expressed by the height of a hatched area with a right-down diagonal line
  • the power storage unit 2 represents the grid power consumed by the charging of 2 by the height of the hatched area
  • the grid power consumed by the EV charging unit 31 is represented by the gray area height
  • the system power consumed by the load unit 3 other than the EV charging unit 31 is expressed by the height of the white area.
  • the contracted capacity (the amount of grid power that can be consumed per unit time without increasing the current basic charge) in each unit time is represented by the area of the broken line area.
  • the area of the hatched area with a downward slanting line represents the amount of power supplied to and consumed by the EV charging unit 31 by one discharge of the power storage unit 2.
  • the area of the hatched area that is hatched to the right represents the amount of grid power consumed by one charge of the power storage unit 2, and the area of the grayed area is 1 of the EV charging unit 31. This expresses the amount of grid power consumed in each operation.
  • FIG. 3 as an ideal charging method for the power storage unit 2, only the main charging stage where the power charged by the power storage unit 2 is large is performed, and the preliminary charging stage where the power charged by the power storage unit 2 is small is not performed. It is expressed as a thing.
  • FIG. 4 and FIG. 5 as a practical charging method of the power storage unit 2, the preliminary charging stage (the portion where the height of the hatched area with the upward-sloping diagonal line is small) and the main charging stage The hatched region is expressed as a portion where the height of the region is large).
  • FIGS. 3 to 5 for simplification of illustration, fluctuations in the power to be charged (consumed) are omitted during the preliminary charging stage and the main charging stage (assuming that there is no fluctuation). )expressing.
  • the time during which the EV charging unit 31 performs a series of operations is expressed as an operation time.
  • the operation of the EV charging unit 31 is performed at least once.
  • the EV charging unit 31 performs one operation in one operation time.
  • the EV charging unit 31 continuously performs three operations during one operation time.
  • the EV charging unit 31 performs the operation for 30 minutes once, once (in each operation time of 0 to 30 minutes per hour).
  • the load unit control unit 4 formulates an operation plan.
  • the power storage unit 2 is discharged during the operation time of the EV charging unit 31 (0 minutes to 30 minutes per hour) and charged at a time other than the operation time of the EV charging unit 31 (30 minutes to 0 minutes per hour).
  • the power storage unit control unit 5 controls the power storage unit 2.
  • the power storage unit 2 when the power storage unit 2 is actually charged, not only the main charging stage but also a preliminary charging stage may be required. Then, as shown in FIG. 4, the time required for charging power storage unit 2 is increased by the preliminary charging stage as compared with the ideal state shown in FIG. 3. Therefore, compared with the ideal state, the power storage unit 2 cannot be charged quickly. Furthermore, since the time at which the charging of the power storage unit 2 ends is delayed, the time at which the EV charging unit 31 is operated is delayed. Therefore, the number of times that the EV charging unit 31 can operate is reduced as compared with the ideal state.
  • the power storage unit control unit 5 starts a preliminary charging stage for charging the power storage unit 2 during the operation time of the EV charging unit 31.
  • the time to start charging the power storage unit 2 can be advanced. As a result, the power storage unit 2 can be charged quickly. Furthermore, since the electric power consumed in the preliminary charging stage of charging of the power storage unit 2 is small, even if the preliminary charging stage is started during the operation time of the EV charging unit 31, the power consumption of the system power is leveled (for example, It is possible to suppress consumption of electric power exceeding the contracted capacity per unit time).
  • the power storage unit control unit 5 performs the main charging stage of charging the power storage unit 2 after the time when the operation time of the EV charging unit 31 ends. Thereby, it becomes possible to level the consumption of the system power by suppressing the main charging stage in which the consumed power is large during the operation time of the EV charging unit 31.
  • the precharging stage for charging the power storage unit includes a first stage for supplying a constant current A1 to the power storage unit 2, and the main charging stage supplies a constant current A2 to the power storage unit 2 and the first stage.
  • a second stage for supplying one or more stages of voltage is included (see FIG. 2). Therefore, the power consumed in the preliminary charging stage can be made sufficiently smaller than the power consumed in the main charging stage. Therefore, even if the preliminary charging stage is started during the operation time of the EV charging unit 31, it becomes possible to level the consumption of the system power.
  • the power storage unit control unit 5 starts and ends the precharging stage of charging of the power storage unit 2 during the operation time of the EV charging unit 31. Accordingly, it is possible to quickly charge the power storage unit 2 by suppressing the time at which the preliminary charging stage ends from being delayed.
  • power storage unit control unit 5 makes the time at which the main charging stage of charging power storage unit 2 starts substantially equal to the time at which the operation time of EV charging unit 31 ends. As a result, it is possible to level the consumption of the system power and to quickly charge the power storage unit 2 by accelerating the time for starting the main charging stage.
  • the power storage unit control unit 5 discharges the power storage unit 2 during the operation time of the EV charging unit 31, but the time for discharging the power storage unit 2 is longer than the operation time of the EV charging unit 31. It is shortened. Then, as described above, the power storage unit control unit 5 starts the precharging stage of charging of the power storage unit 2 after the time when the EV charging unit 31 is in operation and the discharge of the power storage unit 2 ends. Thereby, it becomes possible to level the consumption of the system power by supplying the power by discharging the power storage unit 2.
  • the time for discharging the power storage unit 2 is substantially equal to the operation time of the EV charging unit 31.
  • the time for discharging power storage unit 2 is made shorter than the operation time of EV charging unit 31 as described above. Increase the power supplied by discharging. Thereby, it becomes possible to level the consumption of the system power by suppressing the amount of power supplied by the discharge of the power storage unit 2 from being reduced.
  • the power storage unit controller 5 discharges the power stored in the power storage unit 2 so that the amount of power discharged by the power storage unit 2 in one discharge becomes a predetermined power amount (for example, the same amount of power as in the ideal state).
  • a predetermined power amount for example, the same amount of power as in the ideal state.
  • the power storage unit control unit 5 sets the power discharged by the power storage unit 2 so that the amount of power discharged by the power storage unit 2 per unit time becomes a predetermined power amount (for example, the same amount of power as in the ideal state). Control.
  • the power storage unit The control unit 5 may control so that the amount of grid power consumed per unit time does not exceed the contracted capacity by increasing the amount of power discharged by the power storage unit 2 during the unit time. Further, in this case, the power storage unit control unit 5 performs control so that the amount of power charged in the power storage unit 2 is increased by one charge (for example, the power amount is set to be commensurate with the amount of power discharged by the power storage unit 2). It doesn't matter.
  • FIG. 6 to 8 are graphs showing a second specific example of the method for charging and discharging the power storage unit in the power supply system of FIG.
  • FIG. 6 is a graph showing an ideal charging method and discharging method for the power storage unit, and corresponds to FIG. 3 showing the first specific example.
  • FIG. 7 is a graph showing an inappropriate charging method and discharging method for the power storage unit, and corresponds to FIG. 4 showing the first specific example.
  • FIG. 8 is a graph showing a preferred charging method and discharging method for the power storage unit, and corresponds to FIG. 5 showing the first specific example.
  • the graphs of FIGS. 6 to 8 are the same as the graphs of FIGS. 3 to 5 in that the maximum amount of grid power consumed in the unit time of 0 minutes to 30 minutes and 30 minutes to 0 minutes per hour. Based on the value, it is assumed that the electric power company sets, for example, a contract capacity for one year.
  • the EV charging unit 31 performs the operation for 20 minutes three times each time (for example, 1:10 to 2:10, 2:40).
  • the load unit control unit 4 formulates an operation plan so that three operations are continuously performed during each operation time of minutes to 3:40.
  • the power storage unit 2 is discharged between the second operation and the first half of the third operation of the EV charging unit 31 (for example, 1:30 to 2: 0, 3: 0 to 3:30).
  • the power storage unit control unit 5 is charged by the power storage unit 2 so as to be charged at a time other than the operation time of the EV charging unit 31 (for example, 2:10 to 2:40, 3:40 to 4:10).
  • this specific example also has the same problem as the first specific example. That is, when the power storage unit 2 is charged, not only the main charging stage but also the preliminary charging stage may be required, and therefore the power storage unit 2 cannot be quickly charged as compared with an ideal state. Therefore, the time at which the charging of power storage unit 2 ends is delayed, and the time at which EV charging unit 31 is operated is delayed, and the number of times that EV charging unit 31 can be operated is reduced as compared with the ideal state.
  • the power storage unit control unit 5 starts the preliminary charging stage of charging the power storage unit 2 during the operation time of the EV charging unit 31, as shown in FIG.
  • the time for charging the power storage unit 2 can be advanced. As a result, the power storage unit 2 can be charged quickly. Furthermore, since the electric power consumed in the preliminary charging stage of charging of the power storage unit 2 is small, even if the preliminary charging stage is started during the operation time of the EV charging unit 31, the power consumption of the system power is leveled (for example, It is possible to suppress consumption of electric power exceeding the contracted capacity per unit time).
  • the power storage unit control unit 5 performs the main charging stage of charging the power storage unit 2 after the time when the operation time of the EV charging unit 31 ends. Thereby, it becomes possible to level the consumption of the system power by suppressing the main charging stage in which the consumed power is large during the operation time of the EV charging unit 31.
  • the precharging stage for charging the power storage unit includes a first stage for supplying a constant current A1 to the power storage unit 2, and the main charging stage supplies a constant current A2 to the power storage unit 2 and the first stage.
  • a second stage for supplying one or more stages of voltage is included (see FIG. 2). Therefore, the power consumed in the preliminary charging stage can be made sufficiently smaller than the power consumed in the main charging stage. Therefore, even if the preliminary charging stage is started during the operation time of the EV charging unit 31, it becomes possible to level the consumption of the system power.
  • the power storage unit control unit 5 starts and ends the precharging stage of charging of the power storage unit 2 during the operation time of the EV charging unit 31. Accordingly, it is possible to quickly charge the power storage unit 2 by suppressing the time at which the preliminary charging stage ends from being delayed.
  • power storage unit control unit 5 makes the time when the main charging stage of charging power storage unit 2 starts substantially equal to the time when the operation time of EV charging unit 31 ends. As a result, the power consumption of the power storage unit 2 can be quickly charged by leveling the consumption of the system power and by increasing the time at which the main charging stage is started.
  • the power storage unit control unit 5 makes the time for discharging the power storage unit 2 shorter than the operation time of the EV charging unit 31, and follows the operation time (in this specific example, the third operation). In the second half), the power storage unit 2 is not discharged. Then, the power storage unit control unit 5 starts the precharging stage of charging of the power storage unit 2 after the EV charging unit 31 is operating and after the end of discharging of the power storage unit 2. Thereby, it becomes possible to level the consumption of the system power by supplying the power by discharging the power storage unit 2.
  • the time for discharging the power storage unit 2 is shorter than the operation time of the EV charging unit 31.
  • the power storage unit control unit 5 can shorten the time for discharging the power storage unit 2 as in the first specific example. You can go. Further, similarly to the first specific example, the power storage unit 5 may increase the power supplied by discharging the power storage unit 2 as the time for discharging the power storage unit 2 is shortened. Further, as in the first specific example, the power storage unit control unit 5 causes the power amount that the power storage unit 2 discharges by one discharge to be a predetermined power amount (for example, the same power amount as in the ideal state).
  • the power that is discharged from the power storage unit 2 may be controlled, and the power storage unit 2 may be controlled so that the amount of power that the power storage unit 2 discharges per unit time becomes a predetermined power amount (for example, the same amount of power as in the ideal state). You may control the electric power which 2 discharges.
  • a predetermined power amount for example, the same amount of power as in the ideal state.
  • the power storage unit The control unit 5 may control so that the amount of grid power consumed per unit time does not exceed the contracted capacity by increasing the amount of power discharged by the power storage unit 2 during the unit time. Further, in this case, the power storage unit control unit 5 performs control so that the amount of power charged in the power storage unit 2 is increased by one charge (for example, the power amount is set to be commensurate with the amount of power discharged by the power storage unit 2). It doesn't matter.
  • FIG. 9 is a graph showing a modification of the method for charging the power storage unit in the power supply system of FIG.
  • a pause stage can be provided between the first stage and the second stage (that is, the preliminary charging stage and the main charging stage are intermittently performed). obtain).
  • the power storage unit control unit 5 controls the length of the suspension stage, so that the main charging stage (second stage) is started from a time approximately equal to the time when the operation time of the EV charging unit 31 ends.
  • the time at which the power storage unit control unit 5 starts charging the power storage unit 2 (the time at which the first stage starts) is set as early as possible so that a pause stage can occur during the operation time of the EV charging unit 31. Then, it is preferable.
  • the time at which the main charging stage starts can be made approximately equal to the time at which the operation time of the EV charging unit 31 ends with high accuracy. Therefore, it is possible to quickly charge the power storage unit 2.
  • the power storage unit controller 5 estimates the time at which the first stage is performed, adjusts the time at which the first stage is started, and absorbs the variation in the time at which the first stage is performed, whereby the EV charging unit 31.
  • the main charging stage (second stage) may be started from a time substantially equal to the time at which the operation time ends.
  • the power storage unit controller 5 estimates the amount of power that can be discharged by the power storage unit 2 (hereinafter referred to as the remaining capacity) to estimate the time during which the first stage is performed (if the remaining capacity is large) If it is short and the remaining capacity is small, it may be estimated to be long).
  • the remaining capacity of the power storage unit 2 is estimated by, for example, the power storage unit 2 or the power storage unit control unit 5 measuring the amount of power and current charged and discharged by the power storage unit 2 as needed, or the voltage value of the power storage unit 2. It is possible to estimate by measuring a voltage value of the power storage unit 2 and referring to the table including a table indicating the relationship between the remaining capacity and the remaining capacity.
  • a control device such as a microcomputer may perform part or all of the operations of the load unit control unit 4 and the power storage unit control unit 5. Further, all or part of the functions realized by such a control device is described as a program, and the program is executed on a program execution device (for example, a computer) to realize all or part of the functions. It doesn't matter if you do.
  • the power supply system 1 shown in FIG. 1 is not limited to the above-described case, and can be realized by hardware or a combination of hardware and software. Further, when realizing a part of the power supply system 1 using software, a block for a part realized by the software represents a functional block of the part.
  • the present invention can be used for a power supply system that uses power supplied by discharging a power storage unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】蓄電部を迅速に充電するとともに、系統電力の消費の平準化を図る電力供給システムを提供する。 【解決手段】電力供給システムは、電力会社から供給される系統電力を消費して充電し放電により電力を供給する蓄電部と、蓄電部の充電及び放電を制御する蓄電部制御部と、電力会社から供給される系統電力または蓄電部の放電により供給される電力を消費する負荷部と、を備える。蓄電部制御部は、蓄電部が充電する電力が小さい予備充電段階と、蓄電部が充電する電力が大きい本充電段階と、を順に行うことで、蓄電部を充電し得る。また、蓄電部制御部は、負荷部に含まれる特定負荷の動作時間中に、蓄電部の充電の予備充電段階を開始する。

Description

電力供給システム
 本発明は、蓄電部の放電により供給される電力を利用する電力供給システムに関する。
 近年、電力会社から供給される電力(以下、系統電力とする)だけでなく、蓄電池の放電により供給される電力をも利用して、家庭や店舗、ビルなどで消費される電力を賄う電力供給システムが提案されている。蓄電池は、系統電力を消費し事前に充電することで、任意のタイミングで放電し電力を供給することができる。即ち、蓄電池の充電及び放電を行うタイミングを制御することで、系統電力を消費するタイミングを制御することが可能になる。
 一般的に、系統電力の電力料金には、固定性の基本料金と、従量制の使用料金とが含まれる。そして、電力会社は、所定の期間(例えば1年間)に含まれる複数の単位時間(例えば、30分間)のそれぞれで消費された系統電力の電力量の最大値に基づいて決定される契約容量が小さいほど、基本料金が安くなるような契約の形態を用意している。そのため、このような契約の形態の場合、系統電力の消費を平準化して、単位時間に消費される系統電力の最大値を低減することで、電力料金を安くすることができる。また、電力会社との契約の形態がどのようなものであっても、系統電力の消費を平準化すると、電力会社が効率良く発電(特に、火力発電)することができるようになる。そのため、発電に伴う二酸化炭素の排出量を削減することが可能になり、好ましい。
 上述の電力供給システムは、系統電力の消費が大きくなるとき(例えば、消費電力の大きい特定の負荷を動作させるとき)に蓄電池を放電することで、系統電力の消費の平準化を図ることができる。ただし、蓄電池が放電可能な電力量は有限であるため、蓄電池の充電が必要である(例えば、特許文献1参照)。
特開2010-50045号公報
 上述の電力供給システムにおいて、蓄電池の放電後に迅速に充電を行うことができれば、電力供給システムが効率良く負荷に電力を供給することができるため、好ましい。しかしながら、無計画に蓄電池を充電すると、系統電力の消費の平準化を図ることが困難になるため、電力料金(基本料金)の高額化や、電力会社の発電に伴う二酸化炭素の排出量の増大化を招来するため、問題となる。
 そこで本発明は、蓄電部を迅速に充電するとともに、系統電力の消費の平準化を図る電力供給システムを提供することを目的とする。
 上記目的を達成するために、本発明における電力供給システムは、電力会社から供給される系統電力を消費して充電し、放電により電力を供給する蓄電部と、前記蓄電部の充電及び放電を制御する蓄電部制御部と、電力会社から供給される系統電力または前記蓄電部の放電により供給される電力を消費する負荷部と、を備え、前記蓄電部制御部が、前記蓄電部が充電する電力が小さい予備充電段階と、前記蓄電部が充電する電力が大きい本充電段階と、を順に行うことで、前記蓄電部を充電し得るものであり、前記蓄電部制御部が、前記負荷部に含まれる特定負荷の動作時間中に、前記蓄電部の充電の予備充電段階を開始することを特徴とする。
 また、上記構成の電力供給システムにおいて、前記負荷部が複数の負荷を含むものであり、前記特定負荷が、前記複数の負荷の中で動作時に消費する電力が比較的大きい負荷であることとしても構わない。さらに、前記特定負荷が、電動車両に備えられるバッテリを充電するバッテリ充電部であっても構わない。
 また、上記構成の電力供給システムにおいて、前記蓄電部制御部が、前記特定負荷の動作時間が終了する時刻以降に、前記蓄電部の充電の本充電段階を行うこととしても構わない。
 このように構成すると、消費される電力が大きい本充電段階が特定負荷の動作時間中に行われることを抑制することで、系統電力の消費の平準化を図ることが可能になる。
 また、上記構成の電力供給システムにおいて、前記蓄電部制御部が、前記特定負荷の動作時間中に、前記蓄電部の充電の予備充電段階を開始しかつ終了することとしても構わない。
 このように構成すると、予備充電段階が終了する時刻が遅くなることを抑制することで、蓄電部の充電を迅速に行うことが可能になる。
 また、上記構成の電力供給システムにおいて、前記蓄電部制御部が、前記蓄電部の充電の本充電段階が開始する時刻を、前記特定負荷の動作時間が終了する時刻と略等しくしても構わない。
 このように構成すると、系統電力の消費の平準化を図るとともに、本充電段階を開始する時刻を早くすることで蓄電部の充電を迅速に行うことが可能になる。
 また、上記構成の電力供給システムにおいて、前記蓄電部制御部が、前記蓄電部の充電の予備充電段階と本充電段階とを断続的に行い得ることとしても構わない。
 このように構成すると、本充電段階が開始する時刻を、精度良く特定負荷の動作時間が終了する時刻と略等しくすることが可能になる。そのため、蓄電部の充電を迅速に行うことが可能になる。
 また、上記構成の電力供給システムにおいて、前記蓄電部制御部が、前記特定負荷の動作時間中の少なくとも一部で、前記蓄電部を放電させて前記負荷部に電力を供給し得るものであり、前記蓄電部制御部が、前記特定負荷の動作時間中であり前記蓄電部の放電が終了する時刻以降に、前記蓄電部の充電の予備充電段階を開始することとしても構わない。
 このように構成すると、蓄電部の放電により電力を供給することで、系統電力の消費の平準化を図ることが可能になる。
 また、上記構成の電力供給システムにおいて、前記蓄電部制御部が、前記蓄電部を放電させる時間を短くするほど、前記蓄電部の放電により供給する電力を大きくすることとしても構わない。
 このように構成すると、蓄電部の放電により供給される電力量が小さくなることを抑制することで、系統電力の消費の平準化を図ることが可能になる。
 また、上記構成の電力供給システムにおいて、前記蓄電部の充電の予備充電段階に、前記蓄電部に供給する電流を一定とする第1段階が含まれ、前記蓄電部の充電の本充電段階に、予備充電段階で前記蓄電部に供給する電流よりも大きくかつ一定の電流を前記蓄電部に供給して、予備充電段階で前記蓄電部に供給する電圧以上の電圧を前記蓄電部に供給する第2段階が含まれることとしても構わない。
 このように構成すると、予備充電段階で消費される電力を、本充電段階で消費される電力よりも十分小さいものにすることが可能になる。したがって、予備充電段階を特定負荷の動作時間に開始したとしても、系統電力の消費の平準化を図ることが可能になる。
 本発明の構成とすると、蓄電部の充電を開始する時刻を早くすることが可能になる。そのため、蓄電部を迅速に充電することが可能になる。さらに、蓄電部の充電の予備充電段階で消費される電力は小さいため、特定負荷の動作時間中に予備充電段階を開始したとしても、系統電力の消費の平準化を図ることが可能になる。
 本発明の意義ないし効果は、以下に示す実施の形態の説明によりさらに明らかとなろう。ただし、以下の実施の形態は、あくまでも本発明の実施の形態の一つであって、本発明ないし各構成要件の用語の意義は、以下の実施の形態に記載されたものに制限されるものではない。
は、本発明の実施の一形態である電力供給システムの構成の一例を示すブロック図である。 は、図1の電力供給システムにおける蓄電部の充電方法の一例を示すグラフである。 は、図1の電力供給システムにおける蓄電部の理想的な充電方法及び放電方法の第1具体例を示すグラフである。 は、図1の電力供給システムにおける蓄電部の不適な充電方法及び放電方法の第1具体例を示すグラフである。 は、図1の電力供給システムにおける蓄電部の好適な充電方法及び放電方法の第1具体例を示すグラフである。 は、図1の電力供給システムにおける蓄電部の理想的な充電方法及び放電方法の第2具体例を示すグラフである。 は、図1の電力供給システムにおける蓄電部の不適な充電方法及び放電方法の第2具体例を示すグラフである。 は、図1の電力供給システムにおける蓄電部の好適な充電方法及び放電方法の第2具体例を示すグラフである。 は、図1の電力供給システムにおける蓄電部の充電方法の変形例を示すグラフである。
 本発明の実施の一形態である電力供給システムについて、以下図面を参照して説明する。まず、本発明の実施の一形態である電力供給システムの構成及び動作の一例について、図面を参照して説明する。
<<電力供給システムの構成例>>
 図1は、本発明の実施の一形態である電力供給システムの構成例を示すブロック図である。なお、図中の各ブロックを接続する実線の矢印は電力のやり取りを示し、破線の矢印は情報のやり取りを示している。
 図1に示す電力供給システム1は、系統電力を消費して充電するとともに充電した電力を放電により供給する蓄電部2と、系統電力及び蓄電部2の放電により供給される電力の少なくとも一方を消費して動作する負荷部3と、負荷部3の動作を制御する負荷部制御部4と、蓄電部2の充電及び放電を制御する蓄電部制御部5と、を備える。
 蓄電部2は、例えば大容量の蓄電池から成り、供給される系統電力を適宜変換して(例えば、交流電力を直流電力に変換して)充電し、充電した電力を放電する際に適宜変換して(例えば、直流電力を交流電力に変換して)負荷部3に供給する。
 負荷部3は、供給される電力を消費して動作する各種負荷(例えば、家庭や店舗等に備えられる照明や空調装置、冷蔵庫などの各種機器)から成る。また、負荷部3を成す各種負荷の中には、電動自動車や電動バイクなどの電動車両のバッテリを充電する動作をするEV(Electric Vehicle)充電部31が含まれる。EV充電部31が動作する際に消費する電力は、他の負荷が動作する際に消費する電力と比較して大きい。例えば、EV充電部31で消費される電力と、EV充電部31以外の負荷部3で消費される電力とが、同程度の大きさ(例えば、消費電力の桁数が略等しい)になっても構わない。
 蓄電部2の放電により供給される電力は、主としてEV充電部31で消費される。蓄電部2の放電により供給される電力は、EV充電部31以外の負荷でも消費可能であるが、以下では説明の簡略化のため、当該電力が全てEV充電部31で消費される場合を例示する。
 負荷部制御部4は、負荷部3の各種負荷を動作させる(電力を消費させる)タイミングを示す動作計画を策定し、当該動作計画に沿って負荷部3を動作させる。具体的に例えば、電動車両のユーザなどの指示に基づいてEV充電部31を所定のタイミングで動作させたり、家庭や店舗等で随時必要とされる負荷を随時動作させたりする。なお、動作計画は、短期的なもの(例えば、電力供給システム1の利用者から指示があった場合に、即座に所定の負荷を動作させるもの)であっても構わない。ただし、蓄電部2を充電するタイミングを確保するなどの観点から、少なくとも消費電力が大きいEV充電部31などの動作に関しては、中長期(例えば、数分~数時間)的な動作計画を策定すると、好ましい。
 蓄電部制御部5は、負荷部3の動作(負荷部制御部4が策定する動作計画)に基づいて、蓄電部2の充電及び放電を制御する。なお、蓄電部制御部5による蓄電部2の充電及び放電の制御方法(以下、蓄電部2の充電方法及び放電方法と表現する)の詳細については、後述する。
<<電力供給システムの動作例>>
<蓄電部の充電方法>
 次に、電力供給システム1の動作例について、図面を参照して説明する。最初に、蓄電部2の充電方法の一例について、図2を参照して説明する。図2は、図1の電力供給システムにおける蓄電部の充電方法の一例を示すグラフである。
 図2に示すように、本例の蓄電部2の充電方法は、蓄電部制御部5が、複数の方法で段階的に蓄電部2を充電するものである。具体的には、蓄電部制御部5が、電圧V1となるまで略一定の電流A1を供給することで蓄電部2を充電する第1段階と、電圧V1よりも大きい電圧V2となるまで電流A1よりも大きい略一定の電流A2を供給することで蓄電部2を充電する第2段階と、略一定の電圧V2を供給することで蓄電部2を充電するとともに蓄電部2に供給する電流が所定の大きさ以下になったときに終了する第3段階と、を順に行うことで蓄電部2を充電する。
 第1段階及び第2段階では、充電の進行に伴い、蓄電部2に供給する電流はそれぞれ略一定となるが、蓄電部2に供給する電圧が次第に増大する。そのため、蓄電部2の充電により消費する電力が、次第に大きくなる。一方、第3段階では、充電の進行に伴い、蓄電部2に供給する電圧は略一定となるが、蓄電部2に供給する電流が次第に減少する。そのため、蓄電部2の充電により消費する電力が、次第に小さくなる。また、第1段階で蓄電部2が充電(消費)する電力(最大でA1×V1)は小さく、第2段階で蓄電部2が充電(消費)する電力(最小でA2×V1、最大でA2×V2)や第3段階で蓄電部2が充電(消費)する電力(最大でA2×V2)は大きい。
 蓄電部制御部5は、上記の第3段階を行わなくても構わない。また、以下では説明の簡略化のため、第1段階を予備充電段階、第2段階及び第3段階(または、第2段階)を本充電段階と呼ぶ。
<蓄電部の充電方法及び放電方法:第1具体例>
 蓄電部2の充電方法及び放電方法の第1具体例について、図面を参照して説明する。図3~図5のそれぞれは、図1の電力供給システムにおける蓄電部の充電方法及び放電方法の第1具体例を示すグラフである。図3は、蓄電部の理想的な充電方法及び放電方法を示すグラフであり、図4は、蓄電部の不適な充電方法及び放電方法を示すグラフであり、図5は、蓄電部の好適な充電方法及び放電方法を示すグラフである。なお、図3~図5のグラフは、毎時0分~30分及び30分~0分の単位時間のそれぞれで消費された系統電力の電力量の最大値に基づいて、電力会社が、例えば1年間の契約容量を設定する場合を仮定したものである。
 また、図3~図5のそれぞれにおいて、蓄電部2の放電により供給されてEV充電部31で消費される電力を、右下がりの斜線のハッチングを付した領域の高さで表現し、蓄電部2の充電により消費される系統電力を、右上がりの斜線のハッチングを付した領域の高さで表現し、EV充電部31で消費される系統電力を、灰色塗りの領域の高さで表現し、EV充電部31以外の負荷部3で消費される系統電力を、白塗りの領域の高さで表現している。また、それぞれの単位時間における契約容量(現状の基本料金を増大させることなく、単位時間に消費可能な系統電力の電力量)を、破線の領域の面積で表現している。
 また、図3~図5のそれぞれにおいて、右下がりの斜線のハッチングを付した領域の面積は、蓄電部2の1回の放電によりEV充電部31に供給されて消費される電力量を表現し、右上がりの斜線のハッチングを付した領域の面積は、蓄電部2の1回の充電により消費される系統電力の電力量を表現し、灰色塗りの領域の面積は、EV充電部31の1回の動作で消費される系統電力の電力量を表現している。
 また、図3では、蓄電部2の理想的な充電方法として、蓄電部2が充電する電力が大きい本充電段階のみが行われ、蓄電部2が充電する電力が小さい予備充電段階は行われないものとして表現している。一方、図4及び図5では、蓄電部2の現実的な充電方法として、予備充電段階(右上がりの斜線のハッチングを付した領域の高さが小さい部分)及び本充電段階(右上がりの斜線のハッチングを付した領域の高さが大きい部分)が行われるものとして表現している。なお、図3~図5のそれぞれでは、図示の簡略化のため、予備充電段階及び本充電段階のそれぞれの段階中において、充電(消費)する電力の変動を省略して(変動がないものとして)表現している。
 また、以下では、EV充電部31が一連の動作を行う時間を、動作時間と表現する。この動作時間には、EV充電部31の動作が少なくとも1回行われる。例えば、本具体例は、1つの動作時間にEV充電部31が1回の動作を行うものである。一方、後述する第2具体例は、1つの動作時間にEV充電部31が3回の動作を連続的に行うものである。
 図3に示すように、本具体例の理想的な状態では、EV充電部31が1回当たり30分の動作を1回ずつ行う(毎時0分~30分のそれぞれの動作時間に、1回の動作を行う)ように、負荷部制御部4が動作計画を策定する。また、蓄電部2がEV充電部31の動作時間(毎時0分~30分)に放電して、EV充電部31の動作時間以外の時間(毎時30分~0分)に充電するように、蓄電部制御部5が蓄電部2を制御する。
 しかしながら、現実的に蓄電部2を充電する場合、本充電段階だけでなく予備充電段階も必要となり得る。すると、図4に示すように、蓄電部2の充電に要する時間が、図3に示す理想的な状態と比べて予備充電段階の分だけ大きくなる。そのため、理想的な状態と比較すると、蓄電部2を迅速に充電できないものとなる。さらに、蓄電部2の充電が終了する時刻が遅くなることで、EV充電部31を動作させる時刻が遅れるため、理想的な状態と比較するとEV充電部31の動作可能な回数が少なくなる。
 そこで、蓄電部制御部5は、図5に示すように、蓄電部2の充電の予備充電段階をEV充電部31の動作時間中に開始する。
 以上のように構成すると、蓄電部2の充電を開始する時刻を早くすることが可能になる。そのため、蓄電部2を迅速に充電することが可能になる。さらに、蓄電部2の充電の予備充電段階で消費される電力は小さいため、EV充電部31の動作時間中に予備充電段階を開始したとしても、系統電力の消費の平準化を図る(例えば、単位時間に契約容量を上回る電力量が消費されることを抑制する)ことが可能になる。
 また、図5に示すように、蓄電部制御部5は、EV充電部31の動作時間が終了する時刻以降に、蓄電部2の充電の本充電段階を行う。これにより、消費される電力が大きい本充電段階がEV充電部31の動作時間中に行われることを抑制することで、系統電力の消費の平準化を図ることが可能になる。
 また、蓄電部の充電の予備充電段階には、蓄電部2に一定の電流A1を供給する第1段階が含まれ、本充電段階には、蓄電部2に一定の電流A2を供給するとともに第1段階以上の電圧を供給する第2段階が含まれる(図2参照)。そのため、予備充電段階で消費される電力を、本充電段階で消費される電力よりも十分小さいものにすることが可能になる。したがって、予備充電段階をEV充電部31の動作時間に開始したとしても、系統電力の消費の平準化を図ることが可能になる。
 また、図5に示すように、蓄電部制御部5は、EV充電部31の動作時間中に、蓄電部2の充電の予備充電段階を開始しかつ終了する。これにより、予備充電段階が終了する時刻が遅くなることを抑制することで、蓄電部2の充電を迅速に行うことが可能になる。
 さらに、図5に示すように、蓄電部制御部5は、蓄電部2の充電の本充電段階が開始する時刻を、EV充電部31の動作時間が終了する時刻と略等しくする。これにより、系統電力の消費の平準化を図るとともに、本充電段階を開始する時刻を早くして蓄電部2の充電を迅速に行うことが可能になる。
 また、図5に示すように、蓄電部制御部5は、EV充電部31の動作時間中に蓄電部2を放電させるが、蓄電部2を放電する時間をEV充電部31の動作時間よりも短くしている。そして、上記のように、蓄電部制御部5は、EV充電部31の動作時間中であり蓄電部2の放電が終了する時刻以降に、蓄電部2の充電の予備充電段階を開始する。これにより、蓄電部2の放電により電力を供給することで、系統電力の消費の平準化を図ることが可能になる。
 図3に示す本具体例の理想的な状態では、蓄電部2を放電させる時間を、EV充電部31の動作時間と略等しくしていた。これに対して、図5に示す本具体例の好適な状態では、上記のように蓄電部2を放電させる時間をEV充電部31の動作時間よりも短くするが、その一方で蓄電部2の放電により供給する電力を大きくする。これにより、蓄電部2の放電により供給される電力量が小さくなることを抑制することで、系統電力の消費の平準化を図ることが可能になる。
 例えば、蓄電部制御部5は、1回の放電で蓄電部2が放電する電力量が所定の電力量(例えば、理想状態と同様の電力量)になるように、蓄電部2が放電する電力を制御する。また例えば、蓄電部制御部5は、単位時間に蓄電部2が放電する電力量が所定の電力量(例えば、理想状態と同様の電力量)になるように、蓄電部2が放電する電力を制御する。
 なお、蓄電部2の充電の予備充電段階をEV充電部31の動作時間中に開始することで、単位時間に消費される系統電力の電力量が契約容量を上回る可能性があれば、蓄電部制御部5は、当該単位時間に蓄電部2が放電する電力量を大きくすることで、単位時間に消費される系統電力の電力量が契約容量を上回らないように制御しても構わない。また、この場合、蓄電部制御部5が、1回の充電で蓄電部2に充電する電力量が大きくなる(例えば、蓄電部2が放電する電力量に見合う大きさにする)ように制御しても構わない。
<蓄電部の充電方法及び放電方法:第2具体例>
 蓄電部2の充電方法及び放電方法の第2具体例について、図面を参照して説明する。図6~図8のそれぞれは、図1の電力供給システムにおける蓄電部の充電方法及び放電方法の第2具体例を示すグラフである。図6は、蓄電部の理想的な充電方法及び放電方法を示すグラフであり、第1具体例について示した図3に相当するものである。図7は、蓄電部の不適な充電方法及び放電方法を示すグラフであり、第1具体例について示した図4に相当するものである。図8は、蓄電部の好適な充電方法及び放電方法を示すグラフであり、第1具体例について示した図5に相当するものである。なお、図6~図8のグラフも、図3~図5のグラフと同様に、毎時0分~30分及び30分~0分の単位時間のそれぞれで消費された系統電力の電力量の最大値に基づいて、電力会社が、例えば1年間の契約容量を設定する場合を仮定したものである。
 図6~図8のグラフは、図3~図5と同様の方法で表現したものである。そのため、図6~図8のグラフの表現方法の説明については、上述した図3~図5の表現方法の説明を参照するものとして、省略する。
 図6に示すように、本具体例の理想的な状態では、EV充電部31が1回当たり20分の動作を3回ずつ行う(例えば、1時10分~2時10分、2時40分~3時40分のそれぞれの動作時間に、3回の動作を連続的に行う)ように、負荷部制御部4が動作計画を策定する。また、蓄電部2が、EV充電部31の2回目の動作と3回目の動作の前半(例えば、1時30分~2時0分、3時0分~3時30分)とに放電して、EV充電部31の動作時間以外の時間(例えば、2時10分~2時40分、3時40分~4時10分)に充電するように、蓄電部制御部5が蓄電部2を制御する。
 図7に示すように、本具体例においても、第1具体例と同様の問題が生じる。即ち、蓄電部2を充電する場合、本充電段階だけでなく予備充電段階も必要となり得るため、理想的な状態と比較すると蓄電部2を迅速に充電できなくなる。したがって、蓄電部2の充電が終了する時刻が遅くなることでEV充電部31を動作させる時刻が遅れ、理想的な状態と比較するとEV充電部31の動作可能な回数が少なくなる。
 そこで、第1具体例と同様に本具体例でも、蓄電部制御部5が、図8に示すように、蓄電部2の充電の予備充電段階をEV充電部31の動作時間中に開始する。
 以上のように構成すると、蓄電部2の充電を行う時刻を早くすることが可能になる。そのため、蓄電部2を迅速に充電することが可能になる。さらに、蓄電部2の充電の予備充電段階で消費される電力は小さいため、EV充電部31の動作時間中に予備充電段階を開始したとしても、系統電力の消費の平準化を図る(例えば、単位時間に契約容量を上回る電力量が消費されることを抑制する)ことが可能になる。
 また、図8に示すように、蓄電部制御部5は、EV充電部31の動作時間が終了する時刻以降に、蓄電部2の充電の本充電段階を行う。これにより、消費される電力が大きい本充電段階がEV充電部31の動作時間中に行われることを抑制することで、系統電力の消費の平準化を図ることが可能になる。
 また、蓄電部の充電の予備充電段階には、蓄電部2に一定の電流A1を供給する第1段階が含まれ、本充電段階には、蓄電部2に一定の電流A2を供給するとともに第1段階以上の電圧を供給する第2段階が含まれる(図2参照)。そのため、予備充電段階で消費される電力を、本充電段階で消費される電力よりも十分小さいものにすることが可能になる。したがって、予備充電段階をEV充電部31の動作時間に開始したとしても、系統電力の消費の平準化を図ることが可能になる。
 また、図8に示すように、蓄電部制御部5は、EV充電部31の動作時間中に、蓄電部2の充電の予備充電段階を開始しかつ終了する。これにより、予備充電段階が終了する時刻が遅くなることを抑制することで、蓄電部2の充電を迅速に行うことが可能になる。
 さらに、図8に示すように、蓄電部制御部5は、蓄電部2の充電の本充電段階が開始する時刻を、EV充電部31の動作時間が終了する時刻と略等しくする。これにより、系統電力の消費の平準化を図るとともに、本充電段階を開始する時刻を早くすることで蓄電部2の充電を迅速に行うことが可能になる。
 また、図8に示すように、蓄電部制御部5は、蓄電部2を放電する時間をEV充電部31の動作時間よりも短くし、動作時間の後段(本具体例では、3回目の動作の後半)に、蓄電部2の放電を行わないようにしている。そして、蓄電部制御部5は、EV充電部31の動作時間中であり蓄電部2の放電の終了時以降に、蓄電部2の充電の予備充電段階を開始する。これにより、蓄電部2の放電により電力を供給することで、系統電力の消費の平準化を図ることが可能になる。
 図6に示す本具体例の理想的な状態では、蓄電部2を放電させる時間を、EV充電部31の動作時間よりも短いものとしていた。このような場合、図8に示す本具体例の好適な状態のように、第1具体例で説明したような蓄電部2を放電させる時間の短縮化は必ずしも必要ではない。
 ただし、本具体例においても、蓄電部2を放電させる時間の短縮化が必要であれば、第1具体例と同様に、蓄電部制御部5が、蓄電部2を放電させる時間の短縮化を行っても構わない。さらに、第1具体例と同様に、蓄電部制御部5が、蓄電部2を放電させる時間を短くするほど、蓄電部2の放電により供給する電力を大きくしても構わない。また、第1具体例と同様に、蓄電部制御部5が、1回の放電で蓄電部2が放電する電力量が所定の電力量(例えば、理想状態と同様の電力量)になるように、蓄電部2が放電する電力を制御しても構わないし、単位時間に蓄電部2が放電する電力量が所定の電力量(例えば、理想状態と同様の電力量)になるように、蓄電部2が放電する電力を制御しても構わない。
 なお、蓄電部2の充電の予備充電段階をEV充電部31の動作時間中に開始することで、単位時間に消費される系統電力の電力量が契約容量を上回る可能性があれば、蓄電部制御部5は、当該単位時間に蓄電部2が放電する電力量を大きくすることで、単位時間に消費される系統電力の電力量が契約容量を上回らないように制御しても構わない。また、この場合、蓄電部制御部5が、1回の充電で蓄電部2に充電する電力量が大きくなる(例えば、蓄電部2が放電する電力量に見合う大きさにする)ように制御しても構わない。
<蓄電部の充電方法の変形例>
 上述のように、蓄電部2の充電の第1段階は、EV充電部31の動作時間中に行われると好ましいが、第1段階が行われる時間は変動し得る。この変動を吸収する蓄電部2の充電方法について、図面を参照して説明する。図9は、図1の電力供給システムにおける蓄電部の充電方法の変形例を示すグラフである。
 図9に示すように、本例の蓄電部2の充電方法では、第1段階と第2段階との間に休止段階を設け得る(即ち、予備充電段階と本充電段階とを断続的に行い得る)。本例では、蓄電部制御部5がこの休止段階の長短を制御することで、本充電段階(第2段階)が、EV充電部31の動作時間が終了する時刻と略等しい時刻から開始されるようにする。ただし、蓄電部制御部5が、蓄電部2の充電を開始する時刻(第1段階を開始する時刻)を、EV充電部31の動作時間中において休止段階が発生し得る程度に早い時刻として設定すると、好ましい。
 このように構成すると、本充電段階が開始する時刻を、精度良くEV充電部31の動作時間が終了する時刻と略等しくすることが可能になる。そのため、蓄電部2の充電を迅速に行うことが可能になる。
 なお、蓄電部制御部5が、第1段階が行われる時間を推定し、第1段階を開始する時刻を調整して第1段階が行われる時間の変動を吸収することで、EV充電部31の動作時間が終了する時刻と略等しい時刻から本充電段階(第2段階)が開始されるようにしても構わない。
 具体的に例えば、蓄電部制御部5が、蓄電部2の放電可能な電力量(以下、残容量とする)を確認することで、第1段階が行われる時間を推定(残容量が大きければ短く、残容量が小さければ長いと推定)しても構わない。また、蓄電部2の残容量の推定は、例えば、蓄電部2または蓄電部制御部5が、蓄電部2が充電及び放電する電力量や電流量を随時測定したり、蓄電部2の電圧値と残容量との関係を示すテーブルを備え蓄電部2の電圧値を測定するとともに当該テーブルを参照したりすることで、推定することが可能である。
<変形例>
 なお、上述の電力供給システム1の説明では、負荷部3に含まれるEV充電部31の動作の有無に基づいて、蓄電部制御部5が蓄電部2の充電及び放電を制御する場合について例示したが、これ以外の負荷の動作の有無に基づいて、蓄電部制御部5が蓄電部2の充電及び放電を制御しても構わない。
 また、本発明の実施形態における電力供給システム1について、負荷部制御部4や蓄電部制御部5などの一部または全部の動作を、マイコンなどの制御装置が行うこととしても構わない。さらに、このような制御装置によって実現される機能の全部または一部をプログラムとして記述し、該プログラムをプログラム実行装置(例えばコンピュータ)上で実行することによって、その機能の全部または一部を実現するようにしても構わない。
 また、上述した場合に限らず、図1に示す電力供給システム1は、ハードウェア、あるいは、ハードウェアとソフトウェアの組み合わせによって実現可能である。また、ソフトウェアを用いて電力供給システム1の一部を実現する場合、ソフトウェアによって実現される部位についてのブロックは、その部位の機能ブロックを表すこととする。
 以上、本発明における実施形態について説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実行することができる。
 本発明は、蓄電部の放電により供給される電力を利用する電力供給システムに利用可能である。
 1  電力供給システム
 2  蓄電部
 3  負荷部
 31 EV充電部
 4  負荷部制御部
 5  蓄電部制御部

Claims (7)

  1.  系統電力を充電し、放電により負荷に電力を供給する蓄電部と、
     前記蓄電部の充電及び放電を制御する蓄電部制御部と、を備え、
     前記蓄電部制御部が、前記蓄電部が充電する電力が小さい予備充電段階と、前記蓄電部が充電する電力が大きい本充電段階を順に行うことで前記蓄電部を充電し得るものであり、
     前記蓄電部制御部が、前記系統電力により供給される電力を消費する負荷の動作時間中に、前記予備充電段階を開始することを特徴とする電力供給システム。
  2.  前記蓄電部制御部が、前記負荷の動作時間が終了する時刻以降に、前記蓄電部の充電の本充電段階を行うことを特徴とする請求項1に記載の電力供給システム。
  3.  前記蓄電部制御部が、前記負荷の動作時間中に、前記蓄電部の充電の予備充電段階を開始しかつ終了することを特徴とする請求項1または請求項2に記載の電力供給システム。
  4.  前記蓄電部制御部が、前記負荷の動作時間中の少なくとも一部で、前記蓄電部を放電させて前記負荷に電力を供給し得るものであり、
     前記蓄電部制御部が、前記負荷の動作時間中であり前記蓄電部の放電が終了する時刻以降に、前記蓄電部の充電の予備充電段階を開始することを特徴とする請求項1~請求項3のいずれかに記載の電力供給システム。
  5.  前記蓄電部制御部が、前記蓄電部を放電させる時間を短くするほど、前記蓄電部の放電により供給する電力を大きくすることを特徴とする請求項4に記載の電力供給システム。
  6.  前記蓄電部の充電の予備充電段階に、前記蓄電部に供給する電流を一定とする第1段階が含まれ、
     前記蓄電部の充電の本充電段階に、予備充電段階で前記蓄電部に供給する電流よりも大きくかつ一定の電流を前記蓄電部に供給して、予備充電段階で前記蓄電部に供給する電圧以上の電圧を前記蓄電部に供給する第2段階が含まれることを特徴とする請求項1~請求項5のいずれかに記載の電力供給システム。
  7. 前記負荷は電動車両の蓄電池であり、当該蓄電池を充電する充電部を備える請求項1~請求項6の何れかに記載の電力供給システム。
PCT/JP2011/072202 2010-09-28 2011-09-28 電力供給システム WO2012043639A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010217944A JP2013255293A (ja) 2010-09-28 2010-09-28 電力供給システム
JP2010-217944 2010-09-28

Publications (1)

Publication Number Publication Date
WO2012043639A1 true WO2012043639A1 (ja) 2012-04-05

Family

ID=45893078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072202 WO2012043639A1 (ja) 2010-09-28 2011-09-28 電力供給システム

Country Status (2)

Country Link
JP (1) JP2013255293A (ja)
WO (1) WO2012043639A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6901286B2 (ja) * 2017-03-14 2021-07-14 積水化学工業株式会社 電力制御システム
JP7382006B2 (ja) 2020-01-15 2023-11-16 住友電気工業株式会社 給電システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199260A (ja) * 2001-12-26 2003-07-11 Sanyo Electric Co Ltd 二次電池の充電方法と充電装置
JP2007049828A (ja) * 2005-08-10 2007-02-22 Daiken Kagaku Kogyo Kk 電池急速充電方法、電池急速充電装置及び電池急速充電システム
JP2007288889A (ja) * 2006-04-14 2007-11-01 Matsushita Electric Ind Co Ltd 充電方法ならびに電池パックおよびその充電器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199260A (ja) * 2001-12-26 2003-07-11 Sanyo Electric Co Ltd 二次電池の充電方法と充電装置
JP2007049828A (ja) * 2005-08-10 2007-02-22 Daiken Kagaku Kogyo Kk 電池急速充電方法、電池急速充電装置及び電池急速充電システム
JP2007288889A (ja) * 2006-04-14 2007-11-01 Matsushita Electric Ind Co Ltd 充電方法ならびに電池パックおよびその充電器

Also Published As

Publication number Publication date
JP2013255293A (ja) 2013-12-19

Similar Documents

Publication Publication Date Title
JP5640387B2 (ja) 電源装置
US8421406B2 (en) Charge control circuit, battery-operated device, charging apparatus and charging method
JP6982787B2 (ja) 燃料電池制御装置およびその制御方法、燃料電池自動車
JP5169186B2 (ja) 電源装置
WO2012176868A1 (ja) 電力供給システム
JP6026713B1 (ja) 電力管理システム
JP5796189B2 (ja) 電力供給システム
JP5874038B2 (ja) 電力供給システム
WO2012029901A1 (ja) 電力供給システム
JP2006262612A5 (ja)
US20180097364A1 (en) Electrical power control apparatus, electrical power control method and electrical power control system
JP6225672B2 (ja) 給電設備及びその運転方法
JP2021093788A (ja) 充電装置及び充電方法
WO2012043639A1 (ja) 電力供給システム
JP5947270B2 (ja) 電力供給システム
JP2017011849A (ja) 定置用蓄電システム
WO2015178131A1 (ja) スイッチング電源
JP2009201240A (ja) 直流電源システムおよびその充電制御方法
WO2011122517A1 (ja) 充電システム
JP2002315224A (ja) 燃料電池電源システムとその燃料電池電源システムが備えている二次電池の充電方法
JP2013099046A (ja) 蓄・給電装置
KR20160108680A (ko) 에너지 저장 시스템 및 그 운용 방법
JP2001286076A (ja) 系統安定化装置の制御方法
JP2023056193A (ja) パワーコンディショナ装置
JP3858673B2 (ja) 負荷平準化システムおよびこの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP