WO2011122517A1 - 充電システム - Google Patents

充電システム Download PDF

Info

Publication number
WO2011122517A1
WO2011122517A1 PCT/JP2011/057527 JP2011057527W WO2011122517A1 WO 2011122517 A1 WO2011122517 A1 WO 2011122517A1 JP 2011057527 W JP2011057527 W JP 2011057527W WO 2011122517 A1 WO2011122517 A1 WO 2011122517A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
unit
power
time
battery
Prior art date
Application number
PCT/JP2011/057527
Other languages
English (en)
French (fr)
Inventor
利哉 岩▲崎▼
敦史 須山
敦志 清水
弘嗣 村島
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2012508272A priority Critical patent/JPWO2011122517A1/ja
Priority to EP11762741A priority patent/EP2555369A1/en
Priority to US13/581,561 priority patent/US20120319650A1/en
Priority to CN2011800166590A priority patent/CN102823100A/zh
Publication of WO2011122517A1 publication Critical patent/WO2011122517A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present invention relates to a charging system for charging a battery or the like provided in an electric vehicle.
  • the spread of a charging system for charging a storage battery (hereinafter referred to as a battery) for driving the electric vehicle is indispensable.
  • a charging system for charging a battery of an electric vehicle outside a home is indispensable.
  • a concept of providing a charging system in a store such as a convenience store has been proposed.
  • the store or the like When a store or the like is equipped with a charging system, the store or the like needs to supply power consumed by the charging system in addition to power consumed by various devices such as lighting, an air conditioner, and a refrigerator.
  • the electric power consumed by the charging system can be as large as the electric power consumed by the store or the like with various devices (for example, the order of electric power is substantially equal). Then, an increase in the amount of electric power purchased by a store or the like from a power company causes a problem that the power charge increases, and this problem may be a factor that hinders the spread of the charging system.
  • Patent Document 1 proposes a charging system that reduces power charges by preferentially charging a storage battery by using a time zone with a low power unit price or a time zone with less power demand.
  • Patent Document 1 cannot reduce the power charge unless it is charged inconveniently and at a limited time such as midnight or early morning.
  • a user of an electric vehicle hereinafter simply referred to as a user
  • a user rarely visits a store or the like and charges it during an inconvenient time such as midnight or early morning.
  • the number of electric vehicles that can be charged is small in the limited time zone as described above. Therefore, in the above charging system, it is difficult to reduce the power charge.
  • an object of the present invention is to provide a charging system that can reduce a power charge without limiting a time zone for charging.
  • the present invention provides a charging system for charging a battery, comprising a charging unit for consuming the supplied power and charging the battery, wherein the charging unit is supplied from a power company.
  • the power company sets a power charge that increases as the maximum value of the amount of power supplied in each unit time increases, and is performed once by the charging unit.
  • Charging is configured to start at the front unit time among the adjacent unit times and end at the rear unit time among the adjacent unit times.
  • the power charge set by the electric power company includes a fixed basic charge and a usage-based charge, and the basic charge increases as the maximum amount of power supplied per unit time increases. It does not matter.
  • the time required for the one charging performed by the charging unit may be a unit time or less.
  • an intermediate time of the one charging performed by the charging unit and a time at a boundary between the adjacent unit times may be substantially equal.
  • the battery pack further includes a power storage unit that supplies power by discharging, and the charging unit performs both the system power and the power supplied from the power storage unit in the one-time charging performed by the charging unit. It is good also as what consumes.
  • the apparatus further includes an input unit to which a user instruction is input, a control unit that controls the operation of the charging unit, and a notification unit that notifies the user, and the user inputs the input unit into the input unit.
  • the control unit creates a charging schedule for the battery by the charging unit and controls the notification unit to notify the user of at least a part of the charging schedule. It is good.
  • FIG. 1 is a block diagram illustrating a configuration example of a charging system according to an embodiment of the present invention.
  • the solid line arrow which connects each block in a figure shows exchange of electric power
  • the broken line arrow has shown exchange of information.
  • a charging system 1 shown in FIG. 1 consumes supplied power to supply and charge power to a battery B provided in the electric vehicle C, and charges the supplied power and discharges power.
  • the charging system 1 is supplied with electric power supplied from an electric power company (hereinafter referred to as system power).
  • system power is also supplied to and consumed by various devices such as stores equipped with the charging system 1 (for example, lighting, air conditioners, refrigerators, etc., hereinafter referred to as a load unit R).
  • the charging unit 11 appropriately converts system power or power supplied by discharging the power storage unit 12 (for example, converts AC power to DC power or a voltage of DC power supplied to the battery B of the electric vehicle C).
  • the battery is charged by supplying electric power to the battery B of the electric vehicle C).
  • the power storage unit 12 converts the supplied grid power as necessary (for example, by converting AC power into DC power, adjusting the voltage value of the DC power, etc.) and charging. Moreover, electric power is supplied to the charging part 11 by discharging the charged electric power. Note that the power supplied from the power storage unit 12 may be supplied to the load unit R.
  • the input unit 13 is operated by the user or receives an instruction content transmitted from the user's property (for example, a portable terminal), thereby inputting the user's instruction. In addition, the input unit 13 transmits the input user instruction to the control unit 15.
  • the user instructions include, for example, an instruction to start charging the battery B of the electric vehicle C, an instruction to reserve charging of the battery B of the electric vehicle C, an instruction to stop charging of the battery B of the electric vehicle C, and the like.
  • the notification unit 14 includes, for example, a display device, a speaker, and the like, outputs an image and sound, or includes a transmission device and transmits information to a user's property (for example, a portable terminal registered in the charging system 1 in advance). Is transmitted to the user.
  • a user's property for example, a portable terminal registered in the charging system 1 in advance.
  • Examples of the content notified to the user by the notification unit include a charging schedule of the battery B of the electric vehicle C for which charging is reserved, and charging start, end, and stop.
  • the control unit 15 controls the charging operation of the charging unit 11 and the charging operation and discharging operation of the power storage unit 12.
  • controller 15 confirms that an instruction to reserve charging of battery B of electric vehicle C is input to input unit 12, it creates a charging schedule based on the instruction.
  • reporting part 14 is controlled and a part or all of a charging schedule is alert
  • control unit 15 creates a charging schedule that can reduce a power charge for a store or the like without limiting a time zone for charging the battery B of the electric vehicle C. Then, the operation of the charging unit 11 and the power storage unit 12 is controlled in accordance with the created charging schedule.
  • the details of the charging schedule that is, the control method of the charging unit 11 and the power storage unit 12 will be described later.
  • the charging schedule may include a start time and an end time for charging the battery B of the electric vehicle C. Moreover, the time which charges and discharges the electrical storage part 12 may also be included.
  • the user is notified of the charging schedule by the notification unit 14 to recognize at least the charging start time. For example, if the electric vehicle C and the charging unit 11 are connected by the start time, charging of the battery B of the electric vehicle C is started from the start time.
  • the charging system 1 can suppress the occurrence of waiting for charging and reduce the power charge, it is preferable for both the user side and the store side. Therefore, the spread of the charging system 1 can be expected. Then, by spreading the charging system 1, it is possible to promote the popularization of electric vehicles and to reduce the carbon dioxide emission.
  • the configuration of the charging system shown in FIG. 1 is merely an example, and other configurations may be used.
  • the power supply unit 11, the power storage unit 12, the load unit R, and the like may be configured to include other power sources (for example, solar cells) that can supply power.
  • the charging unit 11 may be connectable to only one electric vehicle C to be charged, or may be connectable to a plurality of electric vehicles C. Further, when the charging unit 11 is configured to be connectable to a plurality of electric vehicles C, the control unit 15 controls the charging unit 11 so that the batteries B of the respective electric vehicles C connected to the charging unit 11 are It may be configured to sequentially charge.
  • FIG. 2 is a graph showing an outline of a method for calculating the power charge of the system power.
  • the graph shown in FIG. 2 is 12:30 to 12:30, 12:30 to 13:30, 13: 0 to 13:30, and 13:30 to 14:00.
  • the amount of grid power consumed by the entire store equipped with the charging system 1 in the unit time (0 to 30 minutes and 30 minutes to 30 minutes each hour) is shown as the height of the graph. It is a thing.
  • the electricity charge for grid power includes, for example, a fixed basic charge and a usage-based charge.
  • power companies increase the basic charge as the maximum amount of grid power consumed per unit time increases for reasons such as generating power efficiently (equalizing the generated power). It is set.
  • the amount of power WP consumed in the unit time from 13:00 to 13:30 is larger than the amount of power consumed in the other unit times, and thus becomes the maximum value. Therefore, the basic charge is set based on the amount of power WP consumed in the unit time from 13:00 to 13:30.
  • FIG. 2 only four unit times are shown for simplification of explanation. However, in a general electric power company, the maximum value of the electric energy from a larger number of unit times (for example, one year). To seek.
  • ⁇ Charging schedule> As described above, by reducing the maximum value of the amount of grid power consumed per unit time, it is possible to reduce the power charge (particularly the basic charge; the same applies hereinafter).
  • a charging schedule (a method for controlling the charging operation of the charging unit 11 by the control unit 15) for reducing the maximum value of the system power consumed per unit time will be described with reference to the drawings. First, for comparison, an undesirable control method for the charging operation of the charging unit 11 will be described with reference to FIGS. 3 and 4.
  • FIG. 3 is a graph showing an example of power consumed when the charging operation of the charging unit is controlled by an undesirable method.
  • FIG. 4 is a graph showing the amount of system power consumed in each unit time when the charging operation of the charging unit is controlled as shown in FIG. 3 and 4 show the same time as the time shown in FIG. 2 (12:00 to 14:00).
  • the magnitude of the system power consumed by the charging unit 11 is indicated by the height of the white area, and the load unit R consumes it.
  • the magnitude of the grid power is indicated by the height of the gray area.
  • the magnitude of the system power consumed by the load unit R is assumed to be constant regardless of the time. Therefore, as shown in FIG. 4, the power amount WR of the system power consumed by the load unit R in each unit time is also constant. Further, as shown in FIG. 3, it is assumed that the amount of power consumed when the charging unit 11 performs the charging operation (charged to the battery B of the electric vehicle C) is constant regardless of the time. Further, as shown in FIG. 3, the time required for one charging operation of the charging unit 11 (charging time per one electric vehicle C) is a time (20 minutes) equal to or less than a unit time (30 minutes). , It will be the same time every time.
  • the battery B of the electric vehicle C is charged by the charging unit 11 during the time from 12:00:00 to 12:20 and the time from 13:05:00 to 13:25. It is said. All the times are within the unit time (12: 0 to 12:30, 13: 0 to 13:30).
  • the power charge is set based on the power amount WPU of the unit time (12: 0 to 12:30, 13: 0 to 13:30) at which the charging operation of the charging unit 11 is performed at least. Is done. Therefore, the power charge can increase.
  • FIG. 5 is a graph showing an example of power consumed when the charging operation of the charging unit is controlled by a preferable method, and corresponds to FIG. 3 showing an unfavorable control method.
  • FIG. 6 is a graph showing the amount of system power consumed in each unit time when the charging operation of the charging unit is controlled as shown in FIG. 5, and corresponds to FIG. 4 showing an unfavorable control method.
  • To do. 5 is the same as FIG. 3 except that the time for operating the charging unit 11 is different from the time shown in FIG. Therefore, in FIG. 5, the description of the same part as in FIG. 3 will be omitted, and the different part will be described in detail.
  • the battery B of the electric vehicle C is charged by the charging unit 11 at the time of 12:20 to 12:40 and the time of 13:25 to 13:45. It is supposed to be Each charging time is different (non-overlapping) unit time (12: 0-12: 30 and 12: 30-13: 30, 13: 0-13: 30 and 13:00) 30 minutes to 14:00 hours).
  • the charging unit 11 is consumed by one charging operation. It becomes possible to distribute the amount of grid power to two unit times. Therefore, as shown in FIG. 6, it is possible to relatively reduce the power amounts WP1 to WP3 of the system power consumed in each unit time. For example, it becomes possible to make it smaller than the electric energy WPU shown in FIG. Therefore, it is possible to suppress the maximum value of the amount of grid power consumed per unit time, and to reduce the power charge.
  • the charging unit 11 performs a plurality of charging operations, the time during which each charging is performed extends over different unit times. For this reason, the amount of grid power consumed by a plurality of charging operations of the charging unit 11 is distributed to the overlapping unit times, thereby suppressing an increase in the amount of grid power consumed during the unit times. It becomes possible to do.
  • the charging operation performed between 12:20 and 12:40 shown in FIG. 5 is an intermediate time (12:30) and a time between two unit times (12:30). Are substantially equal to each other. If comprised in this way, it will become possible to distribute
  • charging is always performed at the reference time (in the above example, 20 to 40 minutes per hour (or 50 to 10 minutes per hour may be acceptable)). It is difficult to control to be done. Further, if the time for performing the charging operation is limited more than necessary, it is difficult to efficiently charge the battery B of the electric vehicle C.
  • a charging schedule (charging unit by the control unit 15) that can allow fluctuations in the time for performing the charging operation while effectively suppressing the maximum amount of system power consumed per unit time. 11 and FIG. 8 will be described with reference to FIG. 7 and FIG.
  • FIG. 7 is a graph showing an example of power consumed when the charging operation of the charging unit is controlled by another preferable method, and corresponds to FIG. 5 showing the above-described preferable method.
  • FIG. 8 is a graph showing the amount of system power consumed in each unit time when the charging operation of the charging unit is controlled as shown in FIG. 7, and corresponds to FIG. 6 showing the above preferred method.
  • the magnitude of the power supplied from the power storage unit 12 and consumed by the charging unit 11 is indicated by a black area. The height is shown.
  • the battery B of the electric vehicle C is charged by the charging unit 11 at the time of 12:15 to 12:35 and the time of 13: 5 to 13:25. It is supposed to be However, in each charging operation from 12:15 to 12:20 and from 13: 5 to 13:15, not only the system power but also the power supplied by discharging the power storage unit 12 is Is also used to charge the battery B of the electric vehicle C.
  • the upper limit in this example, the electric energy of the system electric power consumed by one charging operation
  • the upper limit will be an upper limit in the electric energy of the electric power consumed by the charging unit 11 by the charging operation. Will be provided. Therefore, as shown in FIG. 8, it is possible to relatively reduce the power amounts WP1, WP2, and WR of the system power consumed in each unit time. For example, it becomes possible to make the electric energy WP1 or less shown in FIG. Therefore, it is possible to effectively suppress the maximum value of the amount of grid power consumed per unit time, and it is possible to further reduce the power charge.
  • the time for performing the charging operation of the charging unit 11 is set as the reference time. To 1/4 (5 minutes in the above example).
  • the power storage unit 12 is discharged and supplied with power at a predetermined time after the charging operation of the charging unit 11 is started, but at a predetermined time before the charging operation of the charging unit 11 is ended,
  • the power storage unit 12 may be discharged to supply power.
  • the power storage unit 12 when the time for performing the charging operation of the charging unit 11 is changed ahead of the reference time, the power storage unit 12 is discharged at a predetermined time after the charging operation of the charging unit 11 is started as shown in FIG. In the case of changing the time backward, the power storage unit 12 may be discharged at a predetermined time before the charging operation of the charging unit 11 ends.
  • the charging unit 11 performs charging for consuming system power and charging for consuming power supplied by discharging the power storage unit 12, but includes a case where charging is performed simultaneously. It doesn't matter. Specifically, for example, in charging from 12:15 to 12:35 in FIG. 7, instead of the power storage unit 12 supplying power from 12:15 to 12:20, 1/3 of the power is supplied to 12 It may be distributed and supplied from 15 minutes to 12:30 hours.
  • the rear unit time in the example of FIG. 8, from 12:30 to 13:00, from 13:30 to 14:00 0 minutes
  • the amount of grid power consumed by the charging unit 11 can be reduced. Therefore, you may charge the electrical storage part 12 with system
  • the power storage unit 12 may be charged with the system power in the unit time ahead.
  • the time shown in FIGS. 5 and 7 is measured with a clock attached to a power meter or the like installed by the electric power company, and there may be a deviation from the actual time. Due to the deviation, for example, the unit time is preferably 10 to 40 minutes and 40 to 10 minutes per hour in actual time. In this case, the start time of the reference time can be set to 0 minutes (or 30 minutes). For this reason, it is possible to set a charging time that is clear and easy for the user to remember.
  • the magnitude of the power consumed when the charging unit 11 performs the charging operation is constant regardless of the time, but may not be constant.
  • the intermediate time of the charging operation by the charging unit 11 is set to two unit times. It may be set so as to be shifted from the time that becomes the boundary of. Even in this case, in order to simplify the control of the charging unit 11 by the control unit 15, the intermediate time of one charging operation of the charging unit 11 and the time at the boundary between two unit times are substantially equal. You may set as follows.
  • part or all of the operations of the control unit 15 and the like may be performed by a control device such as a microcomputer. Further, all or part of the functions realized by such a control device are described as a program, and the program is executed on a program execution device (for example, a computer) to realize all or part of the functions. It doesn't matter if you do.
  • the charging system 1 shown in FIG. 1 can be realized by hardware or a combination of hardware and software.
  • achieved by software shall represent the functional block of the site
  • the present invention can be used in a charging system that charges a battery or the like provided in an electric vehicle.
  • the present invention is suitable when applied to a charging system that can perform rapid charging in which power consumption is large and charging is performed within a unit time or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 バッテリを充電する充電システムにおいて、供給される電力を消費して前記バッテリを充電する充電部を備え、前記充電部が、電力会社から供給される系統電力を消費して前記バッテリを充電し得るものであり、前記電力会社が、各単位時間に供給した電力量の最大値が大きくなるほど高くなる電力料金を設定し、前記充電部により行われる1回の充電は、隣り合う単位時間のうち前方の単位時間において開始され、前記隣り合う単位時間のうち後方の単位時間において終了される構成とした。

Description

充電システム
 本発明は、電動車両に備えられるバッテリなどを充電する充電システムに関する。
 近年、蓄電池の大容量化が進み、電動自動車や電動バイクなどの電動車両(Electric Vehicle)の駆動用や、家庭や店舗、ビルなどで消費される電力の貯蔵用などでの利用が検討され、今後広く普及することが見込まれている。また、二酸化炭素排出量の削減などの観点から、電動車両が広く普及することが望まれている。
 電動車両の普及には、電動車両の駆動用の蓄電池(以下、バッテリとする)を充電する充電システムの普及が不可欠である。特に、家庭以外で電動車両のバッテリを充電する充電システムの普及が不可欠である。これについて、コンビニエンスストアなどの店舗等に充電システムを備えさせる構想が提案されている。
 店舗等に充電システムを備える場合、照明や空調装置、冷蔵庫などの各種機器で消費する電力の他に、充電システムで消費する電力をも店舗等が供給する必要がある。充電システムで消費される電力は、店舗等が各種機器で消費する電力と同程度の(例えば、電力のオーダーが略等しい)大きさとなり得る。すると、店舗等が電力会社から購入する電力量が大きくなることで電力料金が増大することが問題となり、当該問題は充電システムの普及を妨げる要因になり得る。
 そこで、例えば特許文献1では、電力単価の安い時間帯や電力需要が少ない時間帯を優先的に利用して蓄電池を充電することで、電力料金を低減する充電システムが提案されている。
特開2008-67418号公報
 特許文献1で提案されている充電システムでは、深夜や早朝などの不便かつ限られた時間帯に充電しなければ、電力料金を低減することができない。しかしながら、電動車両の使用者(以下、単にユーザとする)が、深夜や早朝のような不便な時間帯に店舗等を訪れて充電することは、少ないと考えられる。さらに、充電にはある程度の時間が必要であるため、上記のような限られた時間帯では、充電可能な電動車両の台数は僅かなものとなる。したがって、上記の充電システムでは、電力料金を低減することが困難になる。
 そこで本発明は、充電する時間帯を制限することなく、電力料金を低減することを可能とする充電システムを提供することを目的とする。
 上記目的を達成するために本発明は、バッテリを充電する充電システムにおいて、供給される電力を消費して前記バッテリを充電する充電部を備え、前記充電部が、電力会社から供給される系統電力を消費して前記バッテリを充電し得るものであり、前記電力会社が、各単位時間に供給した電力量の最大値が大きくなるほど高くなる電力料金を設定し、前記充電部により行われる1回の充電は、隣り合う単位時間のうち前方の単位時間において開始され、前記隣り合う単位時間のうち後方の単位時間において終了される構成とする。
 このような構成によれば、充電部の1回の充電動作で消費される系統電力の電力量を、2つの単位時間に分配することが可能となる。そのため、各単位時間に消費される系統電力の電力量を、比較的小さくすることが可能となる。したがって、単位時間に消費される系統電力の電力量の最大値を抑制することが可能となり、電力料金を低減することが可能となる。
 また、前記電力会社が設定する電力料金に、固定性の基本料金と、従量制の使用料金とが含まれ、単位時間に供給した電力量の最大値が大きくなるほど、前記基本料金が高くなることとしても構わない。
 また、上記構成において、前記充電部により行われる前記1回の充電にかかる時間が単位時間以下であることとしてもよい。
 このような構成によれば、単位時間以下の時間で充電を行うために消費する電力が大きくなりやすい場合でも、各単位時間に消費される系統電力の電力量を、比較的小さくすることが可能となる。したがって、単位時間に消費される系統電力の電力量の最大値を抑制することが可能となり、電力料金を低減することが可能となる。
 また、上記構成において、前記充電部により行われる前記1回の充電の中間の時刻と、前記隣り合う単位時間の境界の時刻とが略等しくなることとしてもよい。
 このような構成によれば、充電部の1回の充電動作で消費する系統電力の電力量を、容易に2つの単位時間に略等しく分配することが可能となる。そのため、単位時間に消費される系統電力の電力量の最大値を、効果的に抑制することが可能となる。
 また、上記構成において、放電により電力を供給する蓄電部をさらに備え、前記充電部により行われる前記1回の充電で、前記充電部が、系統電力と前記蓄電部から供給される電力との両方を消費するものであることとしてもよい。
 このような構成によれば、蓄電部が供給可能な電力量に対応した時間だけ、充電部の充電を行う時間の変動を許容することが可能となる。さらに、充電部が系統電力と蓄電部から供給される電力との両方を同時に消費して充電することを許容することで、充電時間を長くすることなく、蓄電部が放電により供給する電力を小さくすることが可能となる。そのため、蓄電部に大きな電力を急激に放電させることを抑制し、蓄電部の負担を軽減することが可能となる。
 また、上記構成において、ユーザの指示が入力される入力部と、前記充電部の動作を制御する制御部と、ユーザに報知を行う報知部と、をさらに備え、前記入力部に、ユーザが前記バッテリの充電を予約する指示を入力するとき、前記制御部が、前記充電部による前記バッテリの充電スケジュールを作成し、前記報知部を制御して当該充電スケジュールの少なくとも一部をユーザに報知することとしてもよい。
 このような構成によれば、バッテリの充電をするべくユーザが店舗等に出向いたときに、他のユーザが先に充電しており迅速な充電ができない状況(充電待ち)が発生することを、抑制することが可能となる。
 本発明によると、単位時間に消費される系統電力の電力量の最大値を抑制することが可能となり、電力料金を低減することが可能となる。
 本発明の意義ないし効果は、以下に示す実施の形態の説明によりさらに明らかとなろう。ただし、以下の実施の形態は、あくまでも本発明の実施の形態の一つであって、本発明ないし各構成要件の用語の意義は、以下の実施の形態に記載されたものに制限されるものではない。
本発明の実施の一形態である充電システムの構成例を示すブロック図である。 系統電力の電力料金の算出方法の概要を示すグラフである。 充電部の充電動作を好ましくない方法で制御した場合に消費される電力の一例を示すグラフである。 図3に示すように充電部の充電動作を制御した場合における、各単位時間に消費される系統電力の電力量を示すグラフである。 充電部の充電動作を好ましい方法で制御した場合に消費される電力の一例を示すグラフである。 図5に示すように充電部の充電動作を制御した場合における、各単位時間に消費される系統電力の電力量を示すグラフである。 充電部の充電動作を別の好ましい方法で制御した場合に消費される電力の一例を示すグラフである。 図7に示すように充電部の充電動作を制御した場合における、各単位時間に消費される系統電力の電力量を示すグラフである。
 本発明の実施の一形態である充電システムについて、以下図面を参照して説明する。まず、本発明の実施の一形態である充電システムの構成及び動作の一例について、図面を参照して説明する。
 <充電システム>
 図1は、本発明の実施の一形態である充電システムの構成例を示すブロック図である。なお、図中の各ブロックを接続する実線の矢印は電力のやり取りを示し、破線の矢印は情報のやり取りを示している。
 図1に示す充電システム1は、供給される電力を消費することで電動車両Cに備えられるバッテリBに電力を供給して充電する充電部11と、供給される電力を充電するとともに放電により電力を供給する蓄電部12と、ユーザの指示が入力される入力部13と、ユーザに報知を行う報知部14と、入力部13からユーザの指示が入力されるとともに充電部11及び蓄電部12の動作を制御する制御部15と、を備える。
 充電システム1には、電力会社から供給される電力(以下、系統電力とする)が供給される。系統電力は、充電システム1を備える店舗等の各種機器(例えば、照明や空調装置、冷蔵庫など。以下、負荷部Rとする)にも供給され、消費される。
 充電部11は、系統電力や、蓄電部12の放電により供給される電力を適宜変換して(例えば、交流電力を直流電力に変換したり、電動車両CのバッテリBに供給する直流電力の電圧値などを調整したりして)、電動車両CのバッテリBに電力を供給することで充電する。
 蓄電部12は、供給される系統電力を必要に応じて変換し(例えば、交流電力を直流電力に変換したり、直流電力の電圧値などを調整したりして)、充電する。また、充電した電力を放電することで、充電部11に電力を供給する。なお、蓄電部12が供給する電力が、負荷部Rに供給されるように構成しても構わない。
 入力部13は、ユーザに操作されたり、ユーザの所有物(例えば、携帯端末など)から送信される指示内容を受信したりすることで、ユーザの指示が入力される。また、入力部13は、入力されたユーザの指示を制御部15に伝える。ユーザの指示として、例えば、電動車両CのバッテリBの充電を開始する指示や、電動車両CのバッテリBの充電を予約する指示、電動車両CのバッテリBの充電を停止する指示などがある。
 報知部14は、例えば、表示装置やスピーカなどを備えて画像や音声を出力したり、送信装置を備えてユーザの所有物(例えば、事前に充電システム1に登録された携帯端末など)に情報を送信したりすることで、ユーザに報知を行う。報知部がユーザに報知する内容として、例えば、充電が予約された電動車両CのバッテリBの充電スケジュールや、充電の開始や終了、停止などがある。
 制御部15は、充電部11の充電動作や、蓄電部12の充電動作及び放電動作を制御する。また、制御部15は、電動車両CのバッテリBの充電を予約する旨の指示が入力部12に入力されたことを確認すると、当該指示に基づいて充電スケジュールを作成する。そして、報知部14を制御して、ユーザに充電スケジュールの一部または全部を報知する。
 また、制御部15は、電動車両CのバッテリBを充電する時間帯を制限することなく、店舗等にかかる電力料金を低減することを可能とする充電スケジュールを作成する。そして、作成した充電スケジュールに沿って、充電部11や蓄電部12の動作を制御する。なお、充電スケジュール(即ち、充電部11や蓄電部12の制御方法)の詳細については、後述する。
 充電スケジュールには、電動車両CのバッテリBの充電の開始時刻や終了時刻が含まれ得る。また、蓄電部12の充電及び放電を行う時刻も含まれ得る。ユーザは、報知部14により充電スケジュールを報知されることで、少なくとも充電の開始時刻を認識する。そして、例えば電動車両Cと充電部11とが当該開始時刻までに接続されれば、当該開始時刻から電動車両CのバッテリBの充電が開始される。
 以上のように構成すると、例えば、電動車両CのバッテリBの充電をするべくユーザが店舗等に出向いたときに、他のユーザが先に充電しており迅速な充電ができない状況(充電待ち)が発生することを、抑制することが可能となる。
 また、充電システム1は、充電待ちの発生を抑制するとともに、電力料金を低減することができるため、ユーザ側にも店舗等の側にも好ましいものとなる。そのため、充電システム1の普及を見込むことができる。そして、充電システム1を普及させることで、電動車両の普及の促進、ひいては二酸化炭素排出量の削減を図ることが可能となる。
 なお、図1に示す充電システムの構成は一例に過ぎず、他の構成としても構わない。例えば、充電部11や蓄電部12、負荷部Rなどに電力を供給可能な他の電力源(例えば、太陽電池など)を備える構成としても構わない。
 また、充電部11が、充電を行う1台の電動車両Cにのみ接続可能としても構わないし、複数の電動車両Cに接続可能としても構わない。また、充電部11を複数の電動車両Cに接続可能な構成とする場合、制御部15が充電部11を制御することで、充電部11に接続されたそれぞれの電動車両CのバッテリBを、順次充電する構成としても構わない。
 <電力料金の算出方法>
 次に、系統電力の電力料金の算出方法の一例について、図面を参照して説明する。図2は、系統電力の電力料金の算出方法の概要を示すグラフである。なお、図2に示すグラフは、12時0分~12時30分、12時30分~13時0分、13時0分~13時30分及び13時30分~14時0分のそれぞれの単位時間(毎時0分~30分及び30分~0分のそれぞれの30分間)において、充電システム1を備える店舗等の全体で消費された系統電力の電力量を、グラフの高さとして示したものである。
 系統電力の電力料金には、例えば、固定性の基本料金と、従量制の使用料金とが含まれる。一般的に電力会社は、効率良く発電する(発電する電力を平準化する)などの理由から、単位時間に消費される系統電力の電力量の最大値が大きくなるほど、基本料金が高くなるように設定している。
 図2に示す例では、13時0分~13時30分の単位時間に消費される電力量WPが、他の単位時間に消費される電力量よりも大きいため、最大値となる。そのため、13時0分~13時30分の単位時間に消費される電力量WPに基づいて、基本料金が設定されることになる。なお、図2では説明の簡略化のため、4つの単位時間のみを示しているが、一般的な電力会社では、もっと多数の単位時間(例えば、1年分)の中から電力量の最大値を求めることとしている。
 <充電スケジュール>
 上述のように、単位時間に消費される系統電力の電力量の最大値を低減することで、電力料金(特に、基本料金。以下同じ。)を低減することができる。以下、単位時間に消費される系統電力の電力量の最大値を低減するための充電スケジュール(制御部15による充電部11の充電動作の制御方法)について、図面を参照して説明する。まず、比較のために、図3及び図4を参照して、充電部11の充電動作の好ましくない制御方法について説明する。
 図3は、充電部の充電動作を好ましくない方法で制御した場合に消費される電力の一例を示すグラフである。また図4は、図3に示すように充電部の充電動作を制御した場合における、各単位時間に消費される系統電力の電力量を示すグラフである。図3及び図4のいずれも、図2に示す時間(12時~14時)と同じ時間について示すものである。また、図3では、充電部11が消費する系統電力の大きさ(系統電力を用いてバッテリBを充電する電力の大きさ)を白塗の領域の高さで示し、負荷部Rが消費する系統電力の大きさを、灰色塗の領域の高さで示している。
 また、以下では説明の簡略化のため、図3に示すように、負荷部Rが消費する系統電力の大きさが、時刻に関係なく一定であることとする。そのため、図4に示すように、各単位時間において負荷部Rが消費する系統電力の電力量WRも一定となる。また、図3に示すように、充電部11が充電動作を行う時に消費する(電動車両CのバッテリBに充電される)電力の大きさも、時刻に関係なく一定であることとする。さらに、図3に示すように、充電部11の1回の充電動作にかかる時間(電動車両Cの1台当たりの充電時間)が、単位時間(30分)以下の時間(20分)であり、毎回同じ時間になることとする。
 図3に示す例では、12時0分~12時20分の時間と、13時5分~13時25分の時間とにおいて、充電部11による電動車両CのバッテリBの充電が行われることとしている。いずれの時間も、単位時間(12時0分~12時30分、13時0分~13時30分)内に全て収まっている。
 図3に示すように充電部11の充電動作を行うと、充電部11の1回の充電動作で消費される電力量の全てが、1つの単位時間に充電部11で消費される系統電力の電力量になる。特に、単位時間以下の時間で充電を行う急速充電では、消費する電力が大きくなる。そのため、1つの単位時間で消費される系統電力の電力量が、大きくなり得る。したがって、図4に示すように、充電部11の充電動作が行われた単位時間(12時0分~12時30分、13時0分~13時30分)に消費された系統電力の電力量WPUが、比較的大きくなる。
 この場合、最低でも充電部11の充電動作が行われた単位時間(12時0分~12時30分、13時0分~13時30分)の電力量WPUに基づいて、電力料金が設定される。したがって、電力料金が増大し得る。
 これに対して、図5及び図6を参照して、充電部11の充電動作の好ましい制御方法について説明する。
 図5は、充電部の充電動作を好ましい方法で制御した場合に消費される電力の一例を示すグラフであり、好ましくない制御方法について示した図3に相当するものである。図6は、図5に示すように充電部の充電動作を制御した場合における、各単位時間に消費される系統電力の電力量を示すグラフであり、好ましくない制御方法について示した図4に相当するものである。なお、図5において、充電部11を動作させる時間が図3に示す時間と異なること以外は、図3と同様である。そのため、以下図5について、図3と同様となる部分については説明を省略し、異なる部分について詳細に説明する。
 図5に示す例では、12時20分~12時40分の時間と、13時25分~13時45分の時間と、のそれぞれで充電部11による電動車両CのバッテリBの充電が行われることとしている。いずれの充電が行われる時間も、それぞれ異なる(重複しない)単位時間(12時0分~12時30分及び12時30分~13時0分、13時0分~13時30分及び13時30分~14時0分)に及ぶ(またがる)ものとしている。
 以上のように構成すると、単位時間以下の時間で充電を行うために消費する電力が大きくなりやすい場合(例えば、急速充電を行う場合)でも、充電部11の1回の充電動作で消費される系統電力の電力量を、2つの単位時間に分配することが可能となる。そのため、図6に示すように、各単位時間に消費される系統電力の電力量WP1~WP3を、比較的小さくすることが可能となる。例えば、図4に示す電力量WPUよりも小さくすることが可能となる。したがって、単位時間に消費される系統電力の電力量の最大値を抑制することが可能となり、電力料金を低減することが可能となる。
 さらに、充電部11の充電動作を行う時間を僅かに変更するだけで済むため、充電する時間帯を深夜や早朝などに制限する必要がない。したがって、充電する時間帯を制限することなく、容易に電力料金を低減することが可能となる。
 また、充電部11が複数の充電動作を行う場合に、それぞれの充電が行われる時間が、それぞれ異なる単位時間に及ぶものとしている。そのため、充電部11の複数の充電動作で消費される系統電力の電力量が、重複した単位時間に分配されることで、当該単位時間に消費される系統電力の電力量が増大することを抑制することが可能となる。
 ところで、図5に示す12時20分~12時40分の時間で行われる充電動作は、その中間の時刻(12時30分)と、2つの単位時間の境界の時刻(12時30分)と、が略等しくなるようにしている。このように構成すると、充電部11の1回の充電動作で消費する系統電力の電力量を、容易に2つの単位時間に略等しく分配することが可能となる。そのため、単位時間に消費される系統電力の電力量の最大値を、効果的に抑制することが可能となる(以下、このように充電部11の充電動作が行われる時間を、「基準時間」とする)。
 しかしながら、諸般の事情(例えば、ユーザの都合による充電開始時刻の変更など)により、基準時間(上述の例では毎時20分~40分(または毎時50分~10分でも良い))に必ず充電が行われるように制御することは困難である。また、充電動作を実行する時間を必要以上に限定すると、効率良く電動車両CのバッテリBを充電することが困難になる。
 そこで以下では、単位時間に消費される系統電力の電力量の最大値を効果的に抑制しつつも、充電動作を実行する時間の変動を許容することができる充電スケジュール(制御部15による充電部11の充電動作及び蓄電部12の放電動作の制御方法)を、図7及び図8を参照して説明する。
 図7は、充電部の充電動作を別の好ましい方法で制御した場合に消費される電力の一例を示すグラフであり、上述の好ましい方法について示した図5に相当するものである。図8は、図7に示すように充電部の充電動作を制御した場合における、各単位時間に消費される系統電力の電力量を示すグラフであり、上述の好ましい方法について示した図6に相当するものである。なお、図7において、充電部11を動作させる時間が図5に示す時間と異なることや、蓄電部12の放電により供給される電力を充電部11の充電動作に利用すること以外は、図5と同様である。そのため、以下図7について、図5と同様となる部分については説明を省略し、異なる部分について詳細に説明する。なお、図7では、蓄電部12から供給されて充電部11が消費する電力の大きさ(蓄電部12から供給される電力を用いてバッテリBを充電する電力の大きさ)を黒塗の領域の高さで示している。
 図7に示す例では、12時15分~12時35分の時間と、13時5分~13時25分の時間と、のそれぞれで充電部11による電動車両CのバッテリBの充電が行われることとしている。ただし、12時15分~12時20分の時間と、13時5分~13時15分の時間とのそれぞれの充電動作において、系統電力だけでなく蓄電部12の放電により供給される電力をも用いて、電動車両CのバッテリBを充電する。
 以上のように構成すると、各単位時間において、充電部11が充電動作により消費する系統電力の電力量に上限(本例では、1回の充電動作で消費する系統電力の電力量の半分)が設けられることとなる。そのため、図8に示すように、各単位時間に消費される系統電力の電力量WP1,WP2,WRを、比較的小さくすることが可能となる。例えば、図6に示す電力量WP1以下にすることが可能となる。したがって、単位時間に消費される系統電力の電力量の最大値を効果的に抑制することが可能となり、電力料金をさらに低減することが可能となる。
 また、蓄電部12が供給可能な電力量に対応した時間だけ、充電部11の充電動作を行う時間の変動を許容することが可能となる。例えば、蓄電部12に充電されている電力量が、充電部11の充電動作で消費される電力量の1/4に相当するものであれば、充電部11の充電動作を行う時間を基準時間から1/4(上述の例では5分)だけ変動させることが可能となる。
 したがって、単位時間に消費される系統電力の電力量の最大値を効果的に抑制しつつも、充電動作を実行する時間の変動を許容することが可能となる。具体的に例えば、ユーザが充電動作を実行する時間を変動させたとしても、その変動された時間に充電を行いつつ、電力料金を効果的に低減することが可能となる。
 また、図7及び図8に示す制御方法において、充電部11の充電動作で消費される電力量の1/2以上に相当する電力量を蓄電部12から供給可能な場合、例えば図7の13時5分~13時25分の時間の充電動作に示すように、任意の時間に充電動作を実行することが可能となる。
 なお、図7において、充電部11の充電動作開始後の所定の時間に、蓄電部12を放電させて電力を供給することとしたが、充電部11の充電動作終了前の所定の時間に、蓄電部12を放電させて電力を供給しても構わない。特に、充電部11の充電動作を行う時間を、基準時間の前方に変動させる場合は、図7に示すように充電部11の充電動作開始後の所定の時間に蓄電部12を放電させ、基準時間の後方に変動させる場合は、充電部11の充電動作終了前の所定の時間に蓄電部12を放電させても構わない。
 また、図7において、充電部11が系統電力を消費する充電と、蓄電部12の放電により供給される電力を消費する充電と、を別々に行うこととしたが、同時に行う場合が含まれても構わない。具体的に例えば、図7の12時15分~12時35分の充電において、蓄電部12が12時15分~12時20分に電力を供給する代わりに、その1/3の電力を12時15分~12時30分に分散して供給しても構わない。
 このように構成すると、充電時間を長くすることなく、蓄電部12が放電により供給する電力を小さくすることが可能となる。そのため、蓄電部12に大きな電力を急激に放電させる(さらに、充電する)ことを抑制し、蓄電部12の負担を軽減することが可能となる。また、このような構成としても、上述のように、単位時間に消費される系統電力の電力量の最大値を、効果的に抑制することが可能である。
 また、充電部11の充電動作を行う時間を、基準時間の前方に変動させる場合、後方の単位時間(図8の例では、12時30分~13時0分、13時30分~14時0分)では、充電部11で消費される系統電力の電力量が小さくなり得る。そのため、この単位時間において、系統電力により蓄電部12を充電しても構わない。同様に、充電部11の充電動作を行う時間を、基準時間の後方に変動させる場合、前方の単位時間において、系統電力により蓄電部12を充電しても構わない。
 また、図5及び図7に示す時間は、電力会社が設置する電力計等に付随する時計で測定されるものであり、実際の時間に対してずれが生じる場合もある。当該ずれにより、例えば単位時間が、実際の時間で毎時10分~40分及び40分~10分になっていると、好ましい。この場合、基準時間の開始時刻を毎時0分(または30分でも良い)にすることが可能になる。そのため、ユーザにとってキリが良く覚えやすい時刻を、充電の開始時刻とすることが可能となる。
 また、説明の簡略化のため、充電部11が充電動作をする際に消費する電力の大きさを時刻によらず一定としたが、一定でなくても構わない。この場合、充電部11の1回の充電動作で消費される系統電力の電力量を2つの単位時間に略等しく分配するために、充電部11による充電動作の中間の時刻を、2つの単位時間の境界となる時刻とずらして設定しても構わない。また、この場合でも、制御部15による充電部11の制御の簡略化のため、充電部11の1回の充電動作の中間の時刻と、2つの単位時間の境界の時刻と、が略等しくなるように設定しても構わない。
 <変形例>
 本発明の実施形態における充電システム1について、制御部15などの一部または全部の動作を、マイコンなどの制御装置が行うこととしても構わない。さらに、このような制御装置によって実現される機能の全部または一部をプログラムとして記述し、該プログラムをプログラム実行装置(例えばコンピュータ)上で実行することによって、その機能の全部または一部を実現するようにしても構わない。
 また、上述した場合に限らず、図1に示す充電システム1は、ハードウェア、或いは、ハードウェアとソフトウェアの組み合わせによって実現可能である。また、ソフトウェアを用いて充電システムの一部を構成する場合、ソフトウェアによって実現される部位についてのブロックは、その部位の機能ブロックを表すこととする。
 以上、本発明における実施形態について説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実行することができる。
 本発明は、電動車両に備えられるバッテリなどを充電する充電システムに利用可能である。特に、消費する電力が大きく単位時間以下の時間で充電を行う急速充電を行い得る充電システムに適用すると、好適である。
   1  充電システム
  11  充電部
  12  蓄電部
  13  入力部
  14  報知部
  15  制御部
   B  バッテリ
   C  電動車両
   R  負荷部

Claims (5)

  1.  バッテリを充電する充電システムにおいて、
     供給される電力を消費して前記バッテリを充電する充電部を備え、
     前記充電部が、電力会社から供給される系統電力を消費して前記バッテリを充電し得るものであり、
     前記電力会社が、各単位時間に供給した電力量の最大値が大きくなるほど高くなる電力料金を設定し、
     前記充電部により行われる1回の充電は、隣り合う単位時間のうち前方の単位時間において開始され、前記隣り合う単位時間のうち後方の単位時間において終了されることを特徴とする充電システム。
  2.  前記充電部により行われる前記1回の充電にかかる時間が単位時間以下であることを特徴とする請求項1に記載の充電システム。
  3.  前記充電部により行われる前記1回の充電の中間の時刻と、前記隣り合う単位時間の境界の時刻とが略等しくなることを特徴とする請求項1または請求項2に記載の充電システム。
  4.  放電により電力を供給する蓄電部をさらに備え、
     前記充電部により行われる前記1回の充電で、前記充電部が、系統電力と前記蓄電部から供給される電力との両方を消費するものであることを特徴とする請求項1~請求項3のいずれかに記載の充電システム。
  5.  ユーザの指示が入力される入力部と、
     前記充電部の動作を制御する制御部と、
     ユーザに報知を行う報知部と、をさらに備え、
     前記入力部に、ユーザが前記バッテリの充電を予約する指示を入力するとき、
     前記制御部が、前記充電部による前記バッテリの充電スケジュールを作成し、前記報知部を制御して当該充電スケジュールの少なくとも一部をユーザに報知することを特徴とする請求項1~請求項4のいずれかに記載の充電システム。
PCT/JP2011/057527 2010-03-29 2011-03-28 充電システム WO2011122517A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012508272A JPWO2011122517A1 (ja) 2010-03-29 2011-03-28 充電システム
EP11762741A EP2555369A1 (en) 2010-03-29 2011-03-28 Recharging system
US13/581,561 US20120319650A1 (en) 2010-03-29 2011-03-28 Recharging system
CN2011800166590A CN102823100A (zh) 2010-03-29 2011-03-28 充电系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-075469 2010-03-29
JP2010075469 2010-03-29

Publications (1)

Publication Number Publication Date
WO2011122517A1 true WO2011122517A1 (ja) 2011-10-06

Family

ID=44712214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057527 WO2011122517A1 (ja) 2010-03-29 2011-03-28 充電システム

Country Status (5)

Country Link
US (1) US20120319650A1 (ja)
EP (1) EP2555369A1 (ja)
JP (1) JPWO2011122517A1 (ja)
CN (1) CN102823100A (ja)
WO (1) WO2011122517A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015043678A (ja) * 2013-08-26 2015-03-05 清水建設株式会社 設備稼働スケジューリング調整システム及びその調整方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891931B2 (ja) * 2012-04-27 2016-03-23 ソニー株式会社 表示制御装置、表示制御方法、表示制御プログラムおよび携帯端末

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11221739A (ja) * 1998-02-06 1999-08-17 Tokyo Electric Power Co Inc:The 生産スケジューリング装置及び電力監視装置
JP2008006741A (ja) 2006-06-30 2008-01-17 Yoshino Kogyosho Co Ltd 合成樹脂製成形品の射出成形方法
JP2008067418A (ja) * 2006-09-04 2008-03-21 Nippon Telegr & Teleph Corp <Ntt> 充電制御方法、蓄電装置および充電制御システム

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755733A (en) * 1987-02-03 1988-07-05 Irsst Institut De Recherche En Sante Et En Securite Du Travail Du Quebec Battery charging and cycling devices
US5594318A (en) * 1995-04-10 1997-01-14 Norvik Traction Inc. Traction battery charging with inductive coupling
JPH11332097A (ja) * 1998-05-11 1999-11-30 Mitsubishi Heavy Ind Ltd デマンド監視装置
JP2005180755A (ja) * 2003-12-18 2005-07-07 Matsushita Electric Ind Co Ltd 遠隔制御装置
FR2871624B1 (fr) * 2004-06-14 2006-11-17 Commissariat Energie Atomique Procede de gestion d'un parc de batteries rechargeables
JP2006304393A (ja) * 2005-04-15 2006-11-02 Toyota Motor Corp 電源装置およびその制御方法並びに車両
JP4760766B2 (ja) * 2006-05-16 2011-08-31 株式会社日立製作所 ピークシフト管理サーバおよび電力需要量ピークシフト方法
US8664915B2 (en) * 2006-12-06 2014-03-04 Marvell World Trade Ltd. Plug-in vehicle
JP5066909B2 (ja) * 2006-12-08 2012-11-07 日本電気株式会社 電子機器、充電器、充電システム及び充電方法
US20100072946A1 (en) * 2007-04-17 2010-03-25 Institute For Energy Application Technologies Co., Ltd. Motor-driven travelling body and high-speed charge method for motor-driven travelling body
JP4333798B2 (ja) * 2007-11-30 2009-09-16 トヨタ自動車株式会社 充電制御装置および充電制御方法
JP4407753B2 (ja) * 2008-01-15 2010-02-03 トヨタ自動車株式会社 電動車両の充電システム
WO2009126811A2 (en) * 2008-04-09 2009-10-15 Intellon Corporation Transmission line directional awareness
US8531162B2 (en) * 2008-06-16 2013-09-10 International Business Machines Corporation Network based energy preference service for managing electric vehicle charging preferences
US9853488B2 (en) * 2008-07-11 2017-12-26 Charge Fusion Technologies, Llc Systems and methods for electric vehicle charging and power management
JP2010028913A (ja) * 2008-07-16 2010-02-04 Shikoku Electric Power Co Inc 電動車両の充電システム
US8324859B2 (en) * 2008-12-15 2012-12-04 Comverge, Inc. Method and system for co-operative charging of electric vehicles
US8106627B1 (en) * 2008-12-15 2012-01-31 Comverge, Inc. Method and system for co-operative charging of electric vehicles
CN102292918A (zh) * 2009-01-22 2011-12-21 创科电动工具科技有限公司 用于电动工具的无线配电系统和方法
US9257865B2 (en) * 2009-01-22 2016-02-09 Techtronic Power Tools Technology Limited Wireless power distribution system and method
US20100191585A1 (en) * 2009-01-23 2010-07-29 Recharge Systems Llc Metered recharging system
US8054038B2 (en) * 2009-01-29 2011-11-08 Tesla Motors, Inc. System for optimizing battery pack cut-off voltage
US20110001356A1 (en) * 2009-03-31 2011-01-06 Gridpoint, Inc. Systems and methods for electric vehicle grid stabilization
CN102458904B (zh) * 2009-06-05 2014-05-14 丰田自动车株式会社 电动汽车以及电动汽车中的全体容许放电电力量设定方法
JP5493510B2 (ja) * 2009-07-01 2014-05-14 日産自動車株式会社 情報提供システム、情報センタ、車載装置及び情報提供方法
US8013570B2 (en) * 2009-07-23 2011-09-06 Coulomb Technologies, Inc. Electrical circuit sharing for electric vehicle charging stations
JP5062229B2 (ja) * 2009-08-05 2012-10-31 株式会社デンソー 給電コントローラおよび給電システム
US20110047102A1 (en) * 2009-08-18 2011-02-24 Ford Global Technologies, Llc Vehicle battery charging system and method
US8473131B2 (en) * 2009-09-28 2013-06-25 Powerhydrant Llc Method and system for charging electric vehicles
US8294420B2 (en) * 2009-09-29 2012-10-23 Schneider Electric USA, Inc. Kiosk vehicle charging and selecting systems
JP2011164771A (ja) * 2010-02-05 2011-08-25 Motion:Kk 充電スタンドの運用管理サーバおよび充電スタンドの運用管理システム
US9043038B2 (en) * 2010-02-18 2015-05-26 University Of Delaware Aggregation server for grid-integrated vehicles
US8604750B2 (en) * 2010-02-23 2013-12-10 Optimization Technologies, Inc. Electric vehicle charging stations with touch screen user interface
US8493025B2 (en) * 2010-02-23 2013-07-23 Optimization Technologies, Inc. Electric vehicle charging station advertising systems
JP5141705B2 (ja) * 2010-03-19 2013-02-13 アイシン・エィ・ダブリュ株式会社 運転支援装置、方法およびプログラム
CN101826745B (zh) * 2010-05-18 2014-06-04 郁百超 锂离子动力电池无损充电机
US20110302078A1 (en) * 2010-06-02 2011-12-08 Bryan Marc Failing Managing an energy transfer between a vehicle and an energy transfer system
WO2011156776A2 (en) * 2010-06-10 2011-12-15 The Regents Of The University Of California Smart electric vehicle (ev) charging and grid integration apparatus and methods
US8359132B2 (en) * 2010-06-16 2013-01-22 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for optimizing use of a battery
US8587221B2 (en) * 2010-12-20 2013-11-19 O2Micro, Inc. DC/DC converter with multiple outputs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11221739A (ja) * 1998-02-06 1999-08-17 Tokyo Electric Power Co Inc:The 生産スケジューリング装置及び電力監視装置
JP2008006741A (ja) 2006-06-30 2008-01-17 Yoshino Kogyosho Co Ltd 合成樹脂製成形品の射出成形方法
JP2008067418A (ja) * 2006-09-04 2008-03-21 Nippon Telegr & Teleph Corp <Ntt> 充電制御方法、蓄電装置および充電制御システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015043678A (ja) * 2013-08-26 2015-03-05 清水建設株式会社 設備稼働スケジューリング調整システム及びその調整方法

Also Published As

Publication number Publication date
EP2555369A1 (en) 2013-02-06
US20120319650A1 (en) 2012-12-20
EP2555369A8 (en) 2013-03-13
CN102823100A (zh) 2012-12-12
JPWO2011122517A1 (ja) 2013-07-08

Similar Documents

Publication Publication Date Title
WO2012026458A1 (ja) 充電システム
JP3131947U (ja) 再生可能エネルギーを有する携帯式電子装置
JP5490834B2 (ja) 充給電器および充給電管理装置、エネルギーマネジメントシステム、並びに充給電管理方法
JP5640387B2 (ja) 電源装置
WO2011118187A1 (ja) 充電制御装置、充電システムおよび充電制御方法
WO2012020756A1 (ja) 電力制御装置
JP6026713B1 (ja) 電力管理システム
WO2011118627A1 (ja) 電力供給システム
WO2012029901A1 (ja) 電力供給システム
JP5874038B2 (ja) 電力供給システム
JP5570835B2 (ja) 充電装置
JP6480212B2 (ja) 電力変換装置、電力管理システム及び電力変換方法
WO2013018600A1 (ja) 電力供給システム
WO2011122517A1 (ja) 充電システム
JP2014195369A (ja) 電気自動車充電システム
WO2012046832A1 (ja) 電力供給システム
KR20180003054A (ko) 전력 저장 장치
US20160359327A1 (en) Microgrid system and control method for the same
JP6009893B2 (ja) 制御装置、蓄電池電力変換装置、及び電力システム
WO2021038762A1 (ja) 充放電制御装置、蓄電システムおよび充放電制御方法
WO2012043639A1 (ja) 電力供給システム
JP7278227B2 (ja) 充電制御装置、充電制御システム及び充電制御プログラム
JP2008289250A (ja) 監視制御装置および方法、受電制御装置および方法、受電システムおよび方法
JP6025637B2 (ja) 電力供給システム
JP2015012654A (ja) 充電制御システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016659.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762741

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508272

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13581561

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011762741

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE