WO2014148547A1 - 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ - Google Patents

二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ Download PDF

Info

Publication number
WO2014148547A1
WO2014148547A1 PCT/JP2014/057517 JP2014057517W WO2014148547A1 WO 2014148547 A1 WO2014148547 A1 WO 2014148547A1 JP 2014057517 W JP2014057517 W JP 2014057517W WO 2014148547 A1 WO2014148547 A1 WO 2014148547A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
biaxially oriented
polypropylene
oriented polypropylene
capacitor
Prior art date
Application number
PCT/JP2014/057517
Other languages
English (en)
French (fr)
Inventor
門野照雄
浅野哲也
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014542041A priority Critical patent/JP5660261B1/ja
Priority to CN201480016554.9A priority patent/CN105143321B/zh
Priority to US14/773,516 priority patent/US20160024641A1/en
Priority to EP14770169.2A priority patent/EP2977398B1/en
Publication of WO2014148547A1 publication Critical patent/WO2014148547A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a biaxially oriented polypropylene film suitable for industrial use and the like, and more particularly, to a biaxially oriented polypropylene film suitable as a dielectric for capacitors having high voltage resistance that is stable even at high temperatures. .
  • the biaxially oriented polypropylene film is excellent in transparency, mechanical properties, electrical properties, etc., it is used in various applications such as packaging applications, tape applications, cable wrapping and electrical applications including capacitors.
  • capacitors are particularly preferably used for high voltage capacitors because of their excellent withstand voltage characteristics and low loss characteristics, not limited to DC applications and AC applications.
  • Such a biaxially oriented polypropylene film needs to be appropriately roughened from the viewpoint of voltage resistance, heat resistance, productivity, and workability. Roughening is particularly important because it improves the slipperiness and oil impregnation of the film, or provides security for metal-deposited capacitors.
  • security refers to a metal-deposited capacitor that uses a metal-deposited film formed on the dielectric film as an electrode. In the event of abnormal discharge, the deposited metal scatters due to discharge energy to restore insulation and prevent short-circuiting. This is a function of maintaining the function of the capacitor or preventing the destruction of the capacitor. This security is an extremely important characteristic from the viewpoint of safety.
  • Such roughening methods include mechanical methods such as embossing and sand blasting, chemical methods such as chemical etching with solvents, methods for orienting sheets mixed with different polymers such as polyethylene, and ⁇ crystals.
  • a method of orienting a sheet has been proposed (see Patent Document 1).
  • the mechanical method and the chemical method have a problem that the roughness density is low, and the method of orienting the sheet on which the ⁇ crystals are formed has a problem that coarse protrusions are likely to occur.
  • Films roughened by these methods are not sufficiently impregnated with oil between the film layers during capacitor formation, and partly unimpregnated portions are likely to be produced, and the capacitor life may be reduced.
  • the method of orienting a sheet blended with a different polymer such as polyethylene there are few bubbles remaining during capacitor formation, but when the film is recycled, it may be inappropriate for use after the different polymer is recycled. There was a problem that it was inferior in recyclability.
  • the biaxially oriented polypropylene film produced by any of the methods is not sufficient in terms of safety and reliability in terms of the use conditions of capacitors at high temperatures of 100 ° C. or higher under severe conditions where the potential gradient is 250 V / ⁇ m or higher. There was a problem.
  • the potential gradient is obtained by dividing the voltage applied to the capacitor dielectric film by the film thickness.
  • Patent Document 4 discloses a biaxially oriented polypropylene film in which the surface roughness is controlled, but it is not sufficient for controlling the film surface roughness.
  • Patent Documents 4 and 5 that define the roughness of at least one side of the film surface, as a method of forming a fine rough surface, by setting the ⁇ crystal fraction of the cast raw sheet within a certain range, the element winding property And pressure resistance can be balanced.
  • the manufacturing method is not capable of sufficiently controlling the roughness of both sides of the film, and the pressure resistance and heat resistance, processing required for capacitors for automotive applications, in particular, is only required for the fine roughness of the obtained film. It did not fully satisfy sex.
  • the present invention provides a biaxially oriented polypropylene film that has excellent voltage resistance even in high-voltage capacitor applications and reliability that there is little change in capacitance even under high voltage and ensures workability to the capacitor. Is an issue.
  • the present invention discloses the following polypropylene film.
  • (1) Contains polypropylene, has a mesopentad fraction of 95% or more and less than 98%, has a thickness of 1 to 3 ⁇ m by a micrometer method, and has a heat shrinkage stress value at 140 ° C. in the width direction of 0 Biaxially oriented polypropylene film that is ⁇ 1 N / mm 2 .
  • this invention discloses the following polypropylene films as a preferable aspect of the said film.
  • this invention discloses the following methods as a manufacturing method of one of the said biaxially oriented polypropylenes.
  • a step of melt-extruding a polypropylene resin to obtain an unstretched sheet A step of biaxially stretching the unstretched sheet to obtain a film,
  • the method for producing any one of the biaxially oriented films comprising the step (I) of relaxing the film by 20 to 30%.
  • the mesopentad fraction of polypropylene in the film is 95% or more and less than 98%.
  • the film has a thickness of 1 to 3 ⁇ m by a micrometer method, and a heat shrinkage stress value at 140 ° C. in the width direction of 0 to 1 N / mm 2 .
  • the biaxially oriented polypropylene film of the present invention preferably has a film thickness of 1 to 3 ⁇ m by a micrometer method from the viewpoint of capacitor element size and film formation stability.
  • the film thickness is preferably 1.2 ⁇ m or more, and more preferably 1.5 ⁇ m or more. Moreover, 2.5 micrometers or less, Furthermore 2.3 micrometers or less are preferable. If the film is too thin, the mechanical strength, dielectric breakdown strength, and heat resistance may be inferior. On the other hand, if the film is too thick, it is difficult to form a film having a uniform thickness, and when used as a dielectric for a capacitor, the capacity per volume becomes small.
  • the polypropylene contained in the film of the present invention has a mesopentad fraction of 95% or more and less than 98%. If it is 98% or more, the productivity of a thin film may be extremely lowered. In addition, the crystallinity of the film tends to be high, the plane orientation of the amorphous part is lowered, and the withstand voltage at room temperature may be lowered. If it is less than 95%, the heat resistance and particularly the reliability at high temperatures may be lowered.
  • the film of the present invention has a heat shrinkage stress value at 140 ° C. in the width direction of 0 to 1 N / mm 2 . Furthermore, 0.1 N / mm 2 or more is preferable. Moreover, 0.6 N / mm ⁇ 2 > or less is preferable.
  • the thermal shrinkage stress at 140 ° C. in the width direction is less than 0 N / mm 2 , the film does not actually shrink and the film thermally expands, and the end face curls during the aging process at the time of manufacturing the capacitor, and the electrical characteristics May decrease. If it exceeds 1 N / mm 2 , the end surface may be curled due to the aging temperature at the time of manufacturing the capacitor, resulting in a problem that the electrical characteristics are deteriorated or the shape of the capacitor is deformed.
  • a heat shrinkage stress value at a high temperature that cannot be expressed by a conventional heat shrinkage rate is adopted as a control factor. That is, by grasping the heat shrinkage stress value in the width direction at 140 ° C. as a control target, it is possible to obtain a suitable device finish, shape maintenance by high temperature treatment, withstand voltage at high temperature, reliability, and dimensional stability. It has become possible.
  • the thermal shrinkage stress value in the longitudinal direction of 140 ° C. is 0.5 N / mm 2 or more and more 0.9N / mm 2 or more. Further, it is preferable that this value 2N / mm 2 or less, further 1.6 N / mm 2 or less. If the heat shrinkage stress value in the longitudinal direction at 140 ° C. is in the above range, the winding in the longitudinal direction at the time of capacitor formation will increase the uniformity of the gap between the film layers, improve the capacitor life and reliability, and have excellent electrical characteristics A film suitable for use can be obtained.
  • the sum of the heat shrinkage stress value in the longitudinal direction and the heat shrinkage stress value in the width direction at 140 ° C. is preferably 0.5 N / mm 2 or more, and more preferably 1.0 N / mm 2 or more. Further, the sum of the stress values 2.5 N / mm 2 or less, further 2.2 N / mm 2 or less.
  • the sum of the heat shrinkage stress values is within the above range, the uniformity of the gap between the film layers is increased during capacitor formation, curling of the edge is suppressed, and the capacitor life and reliability are improved. Further, the contact property with the end metallicon is good, and a capacitor having excellent electrical characteristics can be obtained.
  • the heat shrinkage ratio after treatment at 140 ° C. for 15 minutes is preferably 4% or more, more preferably 4.5% or more in the longitudinal direction.
  • the heat shrinkage rate is preferably 7% or less, more preferably 6% or less.
  • the thermal shrinkage after treatment at 140 ° C. for 15 minutes in the width direction is preferably 0 to 2%, more preferably less than 1.5%.
  • the total heat shrinkage rate after treatment at 120 ° C. for 15 minutes in the longitudinal direction and the width direction is preferably 2.5% or less, more preferably 2.2% or less.
  • the uniformity of the inter-film gap and dimensional stability are improved, particularly when forming a multilayer capacitor, and the capacitor life is improved.
  • the contact property between the film and the end metallicon becomes good, and a film having excellent electrical characteristics can be obtained.
  • the biaxially oriented polypropylene film of the present invention has an appropriately roughened film surface. This is because an appropriate rough surface maintains the uniformity of the gap between the film layers and optimizes the ease of sliding between the films or with the transport roll. Therefore, the center line average roughness (SRa) is preferably 10 nm to 40 nm. If the center line average roughness (SRa) is too large, air may easily enter between the layers when the films are laminated, leading to deterioration of the capacitor element.
  • SRa centerline average surface roughness
  • This value is preferably 35 nm or less, and more preferably 30 nm or less.
  • the film of the present invention defined for the heat shrinkage stress value is excellent in thermal dimensional stability at high temperature, and the balance between the heat shrinkage stress value in the longitudinal direction and the width direction and the heat shrinkage rate is controlled. It has characteristic heat absorption behavior. Capacitors obtained from such biaxially oriented polypropylene films with an appropriate rough surface maintain an appropriate clearance between the film layers. There is nothing to do. As a result, the life of the capacitor can be maintained and the safety can be stably exhibited.
  • SRa value is measured based on JIS B-0601 (1982). For example, it can be measured using “Non-contact 3D fine shape measuring instrument (ET-30HK)” and “3D roughness analyzer (MODEL SPA-11)” manufactured by Kosaka Laboratory. Details of measurement conditions and the like will be described later.
  • the polypropylene resin constituting the biaxially oriented polypropylene film of the present invention preferably contains 0.05 to 10% by mass of branched polypropylene (H). Furthermore, the polypropylene resin constituting the film of the present invention is preferably a mixture of linear polypropylene and the branched polypropylene (H).
  • the branched polypropylene (H) has a relationship that the melt tension (MS) and the melt flow index (MFR) measured at 230 ° C. are log (MS)> ⁇ 0.56 log (MFR) +0.74.
  • a branched polypropylene (H) satisfying the formula is particularly preferable.
  • the melt tension measured at 230 ° C. is measured according to the melt flow index (MFR) measurement shown in JIS-K7210 (1999). Specifically, using a melt tension tester manufactured by Toyo Seiki Seisakusho Co., Ltd., the polypropylene is heated to 230 ° C., and the molten polypropylene is discharged at an extrusion speed of 15 mm / min to form a strand, and this strand is 6.4 m / min. The tension at the time of taking up at a speed is measured to obtain the melt tension (unit cN).
  • the melt flow index (MFR) measured at 230 ° C. is a value measured in accordance with JIS-K7210 (1999) at a load of 21.18 N (unit: g / 10 minutes).
  • the branched polypropylene (H) is not particularly limited as long as the above formula is satisfied, but the melt flow index (MFR) is 1 to 20 g / 10 min from the viewpoint of film formability. Those within the range are preferable, and those within the range of 1 to 10 g / 10 min are more preferable.
  • the melt tension is preferably in the range of 1 to 30 cN, more preferably in the range of 2 to 20 cN. When the melt tension is small, the uniformity of the height or density of the protrusions is inferior, and the uniformity of the film interlayer gap when used as a capacitor tends to be inferior. The higher the melt tension, the higher the uniformity of the height and density of the protrusions, the more likely the surface formation is dense (the number of protrusions per unit area increases, the number of small protrusions increases), and the film interlayer gap becomes uniform.
  • a branched polypropylene (H) satisfying the relational expression that the melt tension (MS) and the melt flow index (MFR) measured at 230 ° C. are log (MS)> ⁇ 0.56 log (MFR) +0.74 is obtained.
  • a method of mixing an oligomer or polymer having a branched structure and linear polypropylene The mixing may be performed by mixing pellets or by mixing and melting and kneading the pellets.
  • transducing a long chain branched structure into a polypropylene molecule can also be used.
  • independent granular protrusions can be formed by a method of orienting a sheet containing a different polymer such as polyethylene. Further, it contains branched polypropylene (H) satisfying the relational expression that melt tension (MS) and melt flow index (MFR) satisfy log (MS)> ⁇ 0.56 log (MFR) +0.74 at 230 ° C.
  • H branched polypropylene
  • the biaxially oriented polypropylene film has a finer surface, fewer coarse protrusions, and excellent uniformity of protrusions than the biaxially oriented polypropylene film obtained by blending different polymers such as polyethylene. Have.
  • the size of the spherulite produced in the cooling process of the melt-extruded resin sheet can be easily controlled to be small, and the insulation produced in the stretching process It is possible to obtain a polypropylene film that suppresses generation of defects and has excellent voltage resistance.
  • the branched polypropylene (H) has an action as an ⁇ crystal nucleating agent.
  • the addition amount is within a certain range, it is possible to form a rough surface by crystal transformation.
  • the crater size described later can be made small and dense, excellent in the uniformity of the density of the projections, and few coarse projections A biaxially oriented polypropylene film having excellent surface roughness can be obtained.
  • the branched polypropylene (H) is preferably contained in the polypropylene resin in an amount of 0.5 to 8% by mass, and particularly preferably 1 to 5% by mass, whereby the winding property and voltage resistance are further improved.
  • a film excellent in device processability and capacitor characteristics can be obtained.
  • at least two melting peaks observed when measured by 2nd-Run appear in the polypropylene resin constituting the film. That is, it has a shoulder peak (148 to 157 ° C.) in addition to the first melting peak (temperature 160 to 172 ° C.).
  • a shoulder peak 148 to 157 ° C.
  • the first melting peak temperature 160 to 172 ° C.
  • the branched polypropylene (H) preferably has 1 to 5 internal 3-substituted olefin structures per 10,000 carbon atoms.
  • the presence of the internal tri-substituted olefin can be confirmed from the integral ratio of the signal in the region of 5.0 to 5.2 ppm and the signal of 0.5 to 2.0 ppm in the 1 H-NMR spectrum.
  • Specific examples of the branched polypropylene (H) include “Profax PF-814” manufactured by Basell, and “Daploy HMS-PP” (WB130HMS, WB135HMS, etc.) manufactured by Borealis. Is preferably used since the gel component in the resin is small.
  • melt crystallization temperature of PP is usually in the vicinity of 110 ° C., but rises to a range of 115 to 130 ° C. is there. Thereby, since crystallinity increases, the dimensional stability of the film under high temperature will increase.
  • a method using crystal transformation is suitable. This method is preferably used compared to a method of adding particles such as resin, inorganic particles, and organic particles that are incompatible with polypropylene. This is because the number of substances that deteriorate the electrical characteristics is reduced, and the possibility of deteriorating electrical characteristics such as a dielectric breakdown voltage is low.
  • the surface form obtained by crystal transformation will be described.
  • the surface formation method by crystal transformation is the surface formation using two crystal systems of polypropylene described in the literature (M. Fujiyama et. Al., Journal of Applied Polymer Science 36, P.985-1048 (1988)).
  • ⁇ crystal monoclinic system, crystal density 0.936 g / cm 3
  • ⁇ crystal hexagonal system, crystal density 0.922 g / cm 3
  • irregularities are formed on the film surface by transforming thermally unstable ⁇ crystals into ⁇ crystals in the stretching process.
  • the aspect ratio of the circular protrusion changes corresponding to the ratio of the stretching ratio in the aspect ratio when the stretching is performed.
  • the aspect ratio of the stretching ratio is 1, that is, the isotropic stretching is almost circular, and the aspect ratio is large.
  • the protrusions are flattened, and the shape obtained by the sequential biaxial stretching method usually has a long axis in the transverse direction of the film (the width direction of the film roll).
  • a plurality of craters having different shapes are overlapped, and the crater is closed in an annular shape so that it does not have a circular shape but may have an arcuate or semicircular shape.
  • One method of generating protrusions is to increase the nucleation ability by adding a raw material having a nucleating agent effect. As a result, the number of nuclei increases, resulting in a large number of small fine protrusions. As a result, there can be obtained a surface on which protrusions are uniformly formed with few relatively flat portions.
  • the raw material having the nucleating agent effect include the above-described branched polypropylene (H). By controlling the amount of the branched polypropylene (H) added and the film forming conditions, the shape of the protrusion can be controlled. As a result, a moderately roughened surface can be generated. .
  • the biaxially oriented polypropylene film of the present invention has high dimensional stability at high temperatures, so that the shape maintenance as a capacitor is stable. That is, even when the film is exposed to high temperatures, the dimensional change of the film is small, so that end face curl, wrinkles, and stress distortion during capacitor fabrication are reduced, and the withstand voltage is improved without deteriorating electrical characteristics.
  • the capacitor ambient temperature is as high as 120 to 140 ° C.
  • the expansion of the capacitor, the end face curl, or the instability of the film interlayer may occur. As a result, the electrical characteristics of the capacitor may deteriorate, and it may be difficult to recover the insulating property.
  • one side is preferably subjected to corona discharge treatment in order to perform metal vapor deposition, and the other surface is preferably not subjected to corona discharge treatment.
  • linear polypropylene that can be used for the biaxially oriented polypropylene film of the present invention
  • the linear polypropylene is usually used for a capacitor, but preferably has a cold xylene soluble part (hereinafter CXS) of 7% by mass or less. If the amount of CXS is too large, the film formation stability may be inferior, and when producing a biaxially stretched film, voids may be formed in the film, resulting in dimensional stability and dielectric breakdown resistance. There is a case where the decrease in the resistance becomes large.
  • CXS cold xylene soluble part
  • CXS cold xylene soluble part
  • CXS refers to a polypropylene component dissolved in xylene when polypropylene is completely dissolved in xylene and then precipitated at 20 ° C., and has low stereoregularity. It is considered that this is a component that is difficult to crystallize due to a low molecular weight. If such a component is contained in a large amount in the resin, the thermal dimensional stability of the film may be inferior, and the dielectric breakdown voltage at a high temperature may be lowered. Therefore, CXS is preferably 7% by mass or less, more preferably 5% by mass or less, and particularly preferably 4% by mass or less.
  • the mesopentad fraction of the linear polypropylene is preferably 95% or more, more preferably 95.5% or more from the viewpoint of heat shrinkage characteristics at high temperatures. It is an index showing the stereoregularity of mesopentad fraction polypropylene. This value can be measured by a nuclear magnetic resonance method (NMR method). A higher value means a higher crystallinity and a higher melting point, and is particularly preferable from the viewpoints of dimensional stability at high temperatures and dielectric breakdown voltage.
  • NMR method nuclear magnetic resonance method
  • a higher value means a higher crystallinity and a higher melting point, and is particularly preferable from the viewpoints of dimensional stability at high temperatures and dielectric breakdown voltage.
  • the mesopentad fraction is too large, it works advantageously with respect to dimensional stability at high temperatures, but the orientation tends to be extremely lowered, and the stretchability tends to be poor, so that film formation tends to be difficult.
  • the withstand voltage at room temperature tends to decrease.
  • a method of washing polypropylene resin powder with an aliphatic hydrocarbon such as n-heptane and a method of polymerizing by appropriately selecting a catalyst or a promoter are preferably employed. Is done.
  • the melt flow index (MFR) is more preferably 1 to 10 g / 10 minutes (230 ° C., 21.18 N load), particularly preferably 2 to 5 g / 10 minutes (230 ° C., 21.18 N).
  • the range of (load) is preferable from the viewpoint of film forming property.
  • a method of controlling the average molecular weight or the molecular weight distribution is employed.
  • Such a linear polypropylene is mainly composed of a homopolymer of propylene, but may contain a copolymer component derived from other unsaturated hydrocarbons as long as the object of the present invention is not impaired.
  • monomer components include ethylene, 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene-1, 1-hexene, 4-methylpentene-1, 5-ethylhexene- Examples include 1,1-octene, 1-decene, 1-dodecene, vinylcyclohexene, styrene, allylbenzene, cyclopentene, norbornene, and 5-methyl-2-norbornene.
  • the copolymerization amount or blend amount is preferably less than 1 mol% in terms of copolymerization amount and less than 30 mass% in terms of blend amount from the viewpoint of dielectric breakdown resistance and dimensional stability.
  • additives such as a crystal nucleating agent, an antioxidant, a heat stabilizer, a slipping agent, an antistatic agent, and an antiblocking agent are added to the biaxially oriented polypropylene film of the present invention within a range that does not impair the object of the present invention.
  • An agent, a filler, a viscosity modifier, an anti-coloring agent and the like can also be contained.
  • These additives can be contained in polypropylene pellets.
  • the type and amount of the antioxidant is a phenolic compound having steric hindrance, and at least one of them is preferably a high molecular weight type having a molecular weight of 500 or more.
  • BHT 2,6-di-t-butyl-p-cresol
  • 1,3,5-trimethyl-2,4,6- Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene for example, “Irganox” (registered trademark) manufactured by BASF) 1330: molecular weight 775.2
  • tetrakis [methylene-3 (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate] methane for example, "Irganox” (registered trademark) 1010: molecular weight 1177.7 manufactured by BASF
  • Irganox registered trademark
  • the total content of these antioxidants is preferably in the range of 0.03 to 1.0 mass% with respect to the total amount of polypropylene. If the amount of the antioxidant is too small, the long-term heat resistance may be poor. If the amount of the antioxidant is too large, the capacitor element may be adversely affected by blocking at a high temperature due to bleeding out of these antioxidants.
  • a more preferable content is 0.1 to 0.9% by mass, particularly preferably 0.2 to 0.8% by mass.
  • the biaxially oriented film of the present invention can contain a crystal nucleating agent.
  • the branched polypropylene (H) already has an ⁇ -crystal or ⁇ -crystal nucleating agent effect by itself.
  • Other examples include ⁇ -nucleating agents (dibenzylidene sorbitols, sodium benzoate, etc.), ⁇ -nucleating agents (potassium 1,2-hydroxystearate, magnesium benzoate, N, N′-dicyclohexyl-2,6).
  • -Amide compounds such as naphthalene dicarboxamide, quinanacridon compounds and the like).
  • the addition of these crystal nucleating agents may make it difficult to obtain crystallinity and the accompanying thermal characteristics, dimensional stability, and surface roughness. May have adverse effects. Therefore, the content is preferably less than 0.1% by mass. Of course, if the object of the present invention is achieved, the crystal nucleus material may not be contained.
  • the glossiness of the surface of the biaxially oriented polypropylene film of the present invention is preferably in the range of 120 to 145%, more preferably 125 to 140%, still more preferably 130 to 135%.
  • Low gloss means that light scattering on the film surface is large. This means that the irregularities on the film surface are dense.
  • the glossiness is too low, it means that the height of the protrusions or the number of protrusions is very large. As a result, the slipperiness between the film layers increases, and the dimensional stability at high temperatures as a capacitor tends to decrease. Become.
  • the ash content of the biaxially oriented polypropylene film of the present invention is preferably 50 ppm or less (mass basis, the same applies hereinafter), more preferably 30 ppm or less, and particularly preferably 20 ppm or less.
  • the ash content is too large, the dielectric breakdown resistance of the film is lowered, and the dielectric breakdown strength may be lowered when a capacitor is used.
  • contamination from the extrusion system during film formation should be reduced as much as possible. For example, it is possible to employ a method in which the bleed time is taken for 1 hour or longer and the path is sufficiently washed with a polymer before actually starting film formation.
  • the type of capacitor that can use the biaxially oriented polypropylene film of the present invention is not limited. Specifically, from the viewpoint of electrode configuration, either a foil wound capacitor or a metal-deposited film capacitor may be used, and it is also preferable for an oil immersion type capacitor impregnated with insulating oil or a dry type capacitor not using insulating oil at all. Used. From the viewpoint of the shape, it may be a wound type or a laminated type. Among these, the metal vapor deposition film capacitor is particularly preferably used because of the characteristics of the film of the present invention.
  • a polypropylene film since a polypropylene film usually has a low surface wetting tension and it is difficult to stably deposit metal, it is preferable to perform a surface treatment on the film in advance for the purpose of increasing the adhesion of the metal.
  • the surface treatment include corona discharge treatment, plasma treatment, glow treatment, and flame treatment.
  • the surface wetting tension of a polypropylene film is about 30 mN / m, but it is preferable that the wetting tension is about 37 to 50 mN / m, preferably about 39 to 48 mN / m by these surface treatments. Within this range of surface wetting tension, the adhesion to the metal film is excellent, and the security is good.
  • the biaxially oriented polypropylene film of the present invention is obtained by melt-extruding, forming into a sheet, and biaxially stretching using the raw materials that can give the above-described characteristics.
  • the biaxial stretching method can be obtained by any of the simultaneous inflation biaxial stretching method, the tenter simultaneous biaxial stretching method, and the tenter sequential biaxial stretching method, and among them, the stability of the stretching process and the thickness of the obtained film. It is preferable to employ a tenter sequential biaxial stretching method in terms of controlling the uniformity of the film and the surface shape of the film.
  • a polypropylene resin A mixture of linear polypropylene and high melt tension polypropylene (branched polypropylene (H)) is preferable.
  • polypropylene resin is melt-extruded and passed through a filtration filter, it is extruded from a slit die at a temperature of 230 to 260 ° C. And solidify on a cooling drum to obtain an unstretched sheet.
  • the resin in order to efficiently generate ⁇ crystals, it is preferable to maintain the resin for a predetermined time at a temperature at which the ⁇ crystal generation efficiency is maximized, and this temperature is usually 115 to 135 ° C.
  • the holding time is preferably 1 second or longer.
  • the process can be appropriately determined according to the resin temperature, the extrusion amount, the take-up speed, and the like.
  • the diameter of the cooling drum greatly affects the holding time, the diameter of the drum is preferably at least 1 m.
  • the cooling drum temperature is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and further 85 ° C. or higher.
  • this temperature is 120 degrees C or less, Furthermore, 110 degrees C or less, Furthermore, it is 100 degrees C or less. If the casting drum temperature is too high, the crystallization of the film will proceed excessively, making it difficult to stretch in the subsequent process, and voids may be formed in the film, resulting in a decrease in dielectric breakdown resistance.
  • any method of electrostatic application method, adhesion method using surface tension of water, air knife method, press roll method, underwater casting method, etc. can be used. It may be used.
  • the air knife method is preferable because it has good flatness and can control the heat shrinkage characteristics and surface roughness of the front and back surfaces.
  • the air temperature of the air knife is preferably 35 ° C. or higher, more preferably 40 ° C. or higher, and further 45 ° C. or higher.
  • the temperature is preferably 120 ° C. or lower, more preferably 110 ° C. or lower, and further preferably 100 ° C. or lower. If the air temperature of the air knife is too high, crystallization of the film proceeds too much, and stretching in the subsequent process may be difficult, voids may be formed in the film, and the dielectric breakdown resistance may be degraded. On the other hand, if the air temperature of the air knife is too low, crystal formation may be insufficient, and it may be difficult to obtain the desired heat shrinkage stress and surface roughness.
  • the air knife blown air speed is preferably 130 to 150 m / s, and preferably has a double-pipe structure in order to improve the uniformity in the width direction. If the air speed is too low, sufficient adhesion with the cast drum cannot be imparted and the film-forming property is lowered, and if it is too large, adhesion to the uniform casting drum cannot be performed, film-forming property, uneven quality, Detrimental effects such as uneven thickness are likely to occur. In order to prevent vibration of the film, it is preferable to adjust the position of the air knife so that air flows downstream of the film formation.
  • this unstretched sheet is biaxially stretched to be biaxially oriented.
  • the unstretched film is preheated through a roll maintained at 120 to 150 ° C., and then the sheet is maintained at a temperature of 130 ° C. to 150 ° C. In this case, after stretching by 4 to 7 times as a stretching ratio in the longitudinal direction. Cool to room temperature.
  • the stretching method and the stretching ratio are not particularly limited and are appropriately selected depending on the polymer characteristics to be used.
  • the stretched film is continuously guided to a tenter, stretched 7 to 15 times in the width direction at a temperature of 140 to 165 ° C., and then given a relaxation of 20 to 30% in the width direction, and a temperature of 140 to 165 ° C. After heat setting with, cool at 100-150 ° C. Particularly preferred is a relaxation rate of 22 to 28%, and more preferred is a relaxation rate of 22 to 25%.
  • each of the relaxing steps provided in a plurality of stages is hereinafter referred to as “relaxing process (II)”.
  • the first stage of the relaxing process (II) has the highest relaxation rate.
  • the relaxing step (II) is preferably three or more steps.
  • the relaxation process (II) is performed in the heat fixing chamber.
  • the overall relaxation rate (hereinafter referred to as “total relaxation rate”) is determined by the first heat fixing chamber inlet width (A) and the last heat fixing chamber outlet. Using the width (B), the definition is as follows.
  • Total relaxation rate (%) final heat fixing chamber outlet width (B) / first heat fixing chamber inlet width (A) ⁇ 100 When the total relaxation rate is set to 20%, the following relaxation rates can be taken. Often, the sum of the relaxation rates at each stage is greater than the total relaxation rate.
  • Room 1 1st stage relaxation rate 10.0% Room 2 Second stage relaxation rate 8.0% Room 3 Third stage relaxation rate 3.4%.
  • the desired heat-absorbing stress value can be stably obtained by inclining the temperature and magnification. Further, by performing relaxation also in the cooling zone, it becomes possible to further control the heat absorption stress value.
  • the film is relaxed in the tenter, and after the film comes out of the tenter, the film is rapidly cooled at room temperature for 3 seconds or more before the film is wound, thereby further improving the dimensional stability of the film. Particularly preferably, it is 5 seconds or more. If the rapid cooling time at room temperature is shorter than 3 seconds, the film is wound before the dimensions of the film are fixed. Therefore, after unwinding the film, the dimensions of the film change and it is difficult to obtain the target heat shrinkage stress value.
  • a method of rapidly cooling the film at room temperature it is preferable to blow air or to control the temperature of the film transport roll to room temperature.
  • a metal film can be provided on the surface of the biaxially oriented polypropylene film of the present invention to form a metallized film.
  • the method is not particularly limited, but, for example, a method of depositing a metal film such as an aluminum vapor deposition film to be an internal electrode of a film capacitor by depositing aluminum on at least one side of a polypropylene film is preferably used.
  • a metal film such as an aluminum vapor deposition film to be an internal electrode of a film capacitor by depositing aluminum on at least one side of a polypropylene film is preferably used.
  • other metal components such as nickel, copper, gold, silver, chromium and zinc can be deposited simultaneously or sequentially with aluminum.
  • a protective layer can be provided on the deposited film with oil or the like.
  • the thickness of the metal film is preferably in the range of 20 to 100 nm from the viewpoint of electrical characteristics and self-heeling properties of the film capacitor.
  • the surface electrical resistance value of the metal film is preferably in the range of 1 to 20 ⁇ / ⁇ .
  • the surface electrical resistance value can be controlled by the type of metal used and the film thickness. The method for measuring the surface electrical resistance value will be described later.
  • the metallized film can be subjected to an aging treatment at a specific temperature or a heat treatment. Also, a coating such as polyphenylene oxide can be applied to at least one side of the metallized film for insulation or other purposes.
  • the metallized film thus obtained can be laminated or rolled by various methods to obtain a film capacitor.
  • An example of a preferred method for producing a wound film capacitor is as follows.
  • Aluminum is vacuum-deposited on one side of a polypropylene film to produce a metallized polypropylene film. At that time, aluminum is vapor-deposited so that a striped margin portion (non-deposition portion) is generated in the longitudinal direction of the film.
  • a tape-shaped take-up reel having a margin portion continuous in the longitudinal direction at one end in the width direction is formed by inserting a blade into the center of each vapor deposition portion and the center of each margin portion on the surface.
  • a two-leaf metallized polypropylene film is drawn out from a take-up reel having a margin part on the left side in the width direction and a take-up reel having a margin part on the right side. Get a round body.
  • a metallized propylene film in which the margin part is on the left in the width direction and the deposited metal is present to the right, and a metallized polypropylene film in which the margin part is on the right in the width direction and the deposited metal is present to the left The layers are stacked alternately.
  • the core is removed from this wound body, the wound body is pressed, metallized on both ends in the width direction is sprayed to form an external electrode, and a lead wire is welded to the metallized to obtain a wound type film capacitor. .
  • Film capacitors are used in a wide variety of applications such as for railway vehicles, for general household appliances (for example, for TVs and refrigerators), for automobiles (including hybrid cars, electric cars, etc.), for wind power generation and for solar power generation.
  • the film capacitor of the present invention can also be suitably used for these applications.
  • the characteristic value measurement method and evaluation method in the present invention are as follows. *
  • Heat shrinkage rate (%) ((L0-L1) / L0) ⁇ 100.
  • WMV is the mass method thickness (unit: mm) of the film determined according to JIS-C2330 (2001) 7.4.1.2. The measurement was performed 3 times and the average was obtained.
  • Melt flow index (MFR) According to JIS-K7210 (1999), measurement was performed at a measurement temperature of 230 ° C. and a load of 21.18 N.
  • Melt tension (MS) Measurement was performed using an apparatus for MFR measurement described in JIS-K7210 (1999). Using a melt tension tester manufactured by Toyo Seiki Seisakusho Co., Ltd., the polypropylene is heated to 230 ° C., the molten polypropylene is discharged at an extrusion speed of 15 mm / min to form a strand, and the tension when the strand is taken up at a speed of 6.5 m / min. was measured as melt tension.
  • Peak splitting was performed using WINFIT software (Bruker). At that time, the peak area is divided from the peak area on the high magnetic field side as follows, and the attached software is automatically fitted to optimize the peak area division, and then mmmm and ss (mmmm spinning) The sum of the peak fractions of the sideband peaks was defined as the mesopentad fraction (mmmm). The measurement was performed 5 times, and the average value was defined as the mesopentad fraction.
  • Measurement conditions Apparatus: ECX400P type nuclear magnetic resonance apparatus manufactured by JEOL Ltd. Measurement nucleus: 1 H nucleus (resonance frequency: 500 MHz) Measurement concentration: 2% by mass Solvent: Heavy orthodichlorobenzene Measurement temperature: 120 ° C Pulse width: 45 ° Pulse repetition time: 7 seconds Conversion count: 512 times Measurement mode: non decoupling B.
  • a blade was put in the center of each vapor deposition section and the center of each margin section and slit, and a take-up reel was formed into a tape having a width of 20 mm and a margin of 0.5 mm on the left or right. Two pieces of each of the left and right margins of the obtained reel are overlapped and rolled so that the vapor deposition part protrudes 0.5 mm from the margin part in the width direction, and a round element having a capacitance of about 10 ⁇ F Got. KAW-4NHB manufactured by Minato Co., Ltd. was used for element winding. After aging in a reduced-pressure atmosphere at 140 ° C.
  • element winding yield The ratio of the number of rejected products to the total number of manufactured products was expressed as a percentage and used as an index of workability (hereinafter this ratio is referred to as “element winding yield”). The higher the element winding yield, the better. 95% or more was designated as “A”, less than 95% as 80% or more as “B”, and less than 80% as “C”. The production number was evaluated with 50 elements.
  • the capacitor element was wound with an element winding machine (KAW-4NHB) manufactured by Minato Seisakusho Co., Ltd., metallized, and then heat-treated at 140 ° C. for 10 hours under reduced pressure. A capacitor element was finished by mounting. The capacitance of the capacitor element at this time was 10 ⁇ F.
  • KAW-4NHB element winding machine manufactured by Minato Seisakusho Co., Ltd.
  • the number of manufactured products was evaluated using 10 elements, and expressed as an average value.
  • ⁇ C / C (%) ((C1-C0) / C0) ⁇ 100.
  • Example 1 As a linear polypropylene, a branched polypropylene produced by Basell Co., Ltd. was added to 100 parts by mass of a polypropylene polymer manufactured by Prime Polymer Co., Ltd. having a mesopentad fraction of 97.9% and a melt mass flow rate (MFR) of 2.6 g / 10 min. 0.5 parts by mass of resin (high melt tension polypropylene Profax PF-814 meso pentad fraction 91.0%) is blended and supplied to an extruder at a temperature of 250 ° C., and in sheet form from a T-type slit die at a resin temperature of 250 ° C.
  • MFR melt mass flow rate
  • the molten sheet was melt-extruded and cooled and solidified on a casting drum having a diameter of 1 m held at 90 ° C. at an air knife temperature of 90 ° C. and an air speed of 140 m / s.
  • the retention time at 110 to 135 ° C. was 2.8 seconds as a result of measurement with a radiation thermometer.
  • the sheet was gradually preheated to 140 ° C., then kept at a temperature of 145 ° C., passed between rolls provided with a difference in peripheral speed, and stretched 4.8 times in the longitudinal direction. At that time, a stretching heater (output 3.5 kW) was used in the stretching section to supplement the amount of heat and stretching.
  • the film was guided to a tenter, stretched 10 times in the width direction at a stretching temperature of 160 ° C., and then relaxed in three stages with a relaxation rate of 23% in total in the width direction. (The first stage is 12.0%, the second stage is 9.0%, and the third stage is 3.9%.)
  • Heat treatment is performed at a heat setting temperature of 150 ° C. and a cooling temperature of 140 ° C., and then at room temperature.
  • the film was quenched for 5 seconds to obtain a biaxially oriented polypropylene film having a film thickness of 3.0 ⁇ m.
  • a corona discharge treatment was performed on the surface on one side in the air with a treatment strength of 25 W ⁇ min / m 2 .
  • the properties of the biaxially oriented polypropylene film thus obtained were as shown in Tables 1 and 2. Both withstand voltage and device processability were excellent.
  • Example 2 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the mesopentad fraction of the linear polypropylene was 95.1%. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
  • Example 3 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the film thickness was 1 ⁇ m, the tenter stretching temperature was 145 ° C., the heat setting temperature was 142 ° C., and the cooling temperature was 125 ° C.
  • the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
  • Example 4 The linear polypropylene has a mesopentad fraction of 97.4%, a film thickness of 2.5 ⁇ m, and a total relaxation rate of 25% (first stage 12.5%, second stage 9.0%, third stage 5.8). %), A film was formed in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
  • Example 5 The linear polypropylene has a mesopentad fraction of 97.4%, a film thickness of 2.5 ⁇ m, and a total relaxation rate of 22% (first stage 11.0%, second stage 8.0%, third stage 4.7). %), A film was formed in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
  • Example 6 Tenter stretching temperature 165 ° C, heat setting temperature 165 ° C, cooling temperature 150 ° C, total relaxation rate 28% (1st stage 14.0%, second stage 11.0%, third stage 5.9% Except that the film was formed in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film.
  • the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
  • the linear polypropylene has a mesopentad fraction of 95.1%, a tenter stretching temperature of 140 ° C, a heat setting temperature of 140 ° C, a cooling temperature of 100 ° C, and a total relaxation rate of 20% (1st stage 10.0% The second stage was 8.0%, the third stage was 3.4%), and a film was formed in the same manner as in Example 1 except that the room temperature cooling time was 3 seconds to obtain a biaxially oriented polypropylene film.
  • the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
  • Example 8 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the mesopentad fraction of the linear polypropylene was 97.4%. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
  • Example 9 The film thickness is 2 ⁇ m, the stretching temperature at the tenter is 140 ° C., the heat setting temperature is 140 ° C., the cooling temperature is 100 ° C., and the total relaxation rate is 20% (first stage 11.0%, second stage 7.0%, Film formation was performed in the same manner as in Example 1 except that the third stage (3.3%) and the room temperature cooling time were set to 3 seconds to obtain a biaxially oriented polypropylene film.
  • the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
  • Example 1 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the mesopentad fraction of the linear polypropylene was 98.5%. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
  • Example 2 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the mesopentad fraction of the linear polypropylene was 94.5%. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
  • the linear polypropylene has a mesopentad fraction of 97.5%, a total relaxation rate of 15% (1st stage 8.0%, 2nd stage 5.0%, 3rd stage 2.7%), room temperature quenching time Except for 2.5 seconds, a film was formed in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film.
  • the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
  • Linear polypropylene has a mesopentad fraction of 98.5%, a cooling temperature of 50 ° C., and a relaxation rate of 15% (first stage 5.0%, second stage 5.3%, third stage 5.6%). Except for the above, a film was formed in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
  • Example 5 The film thickness was 5 ⁇ m, the stretching temperature was 165 ° C., the heat setting temperature was 165 ° C., and the relaxation rate was 28% (first stage 9.3%, second stage 10.3%, third stage 11.5%). Except for the above, film formation was carried out in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
  • the linear polypropylene has a mesopentad fraction of 94.5%, a stretching temperature of 165 ° C., a heat setting temperature of 165 ° C., and a relaxation rate of 25% (first stage 13.0%, second stage 9.0%, second stage A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the three steps were 5.2%.
  • the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
  • Example 8 Film formation was performed in the same manner as in Example 1 except that the mesopentad fraction of linear polypropylene was 94.5%, the stretching temperature was 140 ° C, the heat setting temperature was 140 ° C, the cooling temperature was 100 ° C, and the film thickness was 5 ⁇ m. And a biaxially oriented polypropylene film was obtained. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

 本発明は、高電圧用コンデンサ用途において、優れた耐電圧性と信頼性を発揮し、安定した生産性、素子加工性を確保するため、コンデンサ用等に好適な寸法安定性に優れ、高温での熱収縮率が低く、特に熱収縮応力が小さい二軸配向ポリプロピレンフィルムを提供することを課題とする。本発明はメソペンタッド分率が95%以上98%未満であり、厚みが1~3μmであり、幅手方向の140℃での熱収縮応力値が0N/mm以上1N/mm以下である二軸配向ポリプロピレンフィルムである。

Description

二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
 本発明は、工業用等に好適な二軸配向ポリプロピレンフィルムに関するものであり、さらに詳しくは高温時においても安定した,高い耐電圧性を維持したコンデンサ用誘電体として好適な二軸配向ポリプロピレンフィルムに関する。
 二軸配向ポリプロピレンフィルムは、透明性、機械特性、電気特性等に優れるため、包装用途、テープ用途、ケーブルラッピングやコンデンサをはじめとする電気用途等の様々な用途に用いられている。
 この中でもコンデンサ用途は、その優れた耐電圧特性、低損失特性から直流用途、交流用途に限らず高電圧コンデンサ用に特に好ましく用いられている。
 最近では、各種電気設備がインバーター化されつつあり、それに伴いコンデンサの小型化、大容量化の要求が一層強まってきている。そのような市場要求、特に自動車用途(ハイブリッドカー用途を含む)や太陽光発電、風力発電用途の要求を受け、二軸配向ポリプロピレンフィルムの耐電圧性・耐熱性を向上させ、生産性、加工性を維持させつつ、一層の薄膜化が必須な状況となってきている。
 かかる二軸配向ポリプロピレンフィルムは、耐電圧性、耐熱性、生産性、加工性の観点から表面を適度に粗面化する必要がある。粗面化はフィルムの滑り性や油含浸性の向上、あるいは金属蒸着コンデンサでは保安性を付与するため特に重要である。ここでいう保安性とは、該誘電体フィルム上に形成した金属蒸着膜を電極とする金属蒸着コンデンサにおいて、異常放電時に蒸着金属が放電エネルギーによって飛散することで絶縁性を回復させ、ショートを防止することでコンデンサの機能を維持、またはコンデンサの破壊防止する機能である。この保安性は安全性からも極めて重要な特性である。
 かかる粗面化方法としては、これまでエンボス法やサンドブラスト法などの機械的方法、溶剤によるケミカルエッチング等の化学的方法、ポリエチレン等の異種ポリマーを混合したシートを配向する方法、β晶を生成させたシートを配向する方法等が提案されている(特許文献1参照)。
 しかし、機械的方法および化学的方法では粗さ密度が低く、またβ晶を生成させたシートを配向する方法では粗大突起が生じやすいという問題があった。これらの方法で粗面化したフィルムは、コンデンサ形成時にフィルム層間への油含浸が不十分となり、部分的に未含浸部分を生じやすく、コンデンサ寿命が低下する場合があった。一方、ポリエチレン等の異種ポリマーを配合したシートを配向する方法では、コンデンサ形成時に気泡の残存は少ないが、該フィルムをリサイクルした場合に、異種のポリマーがリサイクルした後の用途に不適切な場合があり、リサイクル性に劣るという問題があった。
 また、いずれの方法による二軸配向ポリプロピレンフィルムも、コンデンサの高温100℃以上での使用条件として、電位傾度が250V/μm以上の厳しい条件下では、保安性が十分でなく、信頼性の面で問題を生じることがあった。ここで電位傾度とはコンデンサの誘電体フィルムに印加された電圧を該フィルム厚みで除したものである。
 粗さ密度や突起の均一性について注目した技術として、高溶融張力ポリプロピレンを使用したフィルム(たとえば特許文献3参照)や、上述のポリプロピレンフィルムと通常のポリプロピレンフィルムとを積層したフィルム(たとえば特許文献2参照)が提案されている。しかし高溶融張力ポリプロピレン樹脂そのものをコンデンサ用のフィルム用として使用する場合は樹脂の構造上充分な耐圧性、耐熱性を得ることができず、特に高温での絶縁破壊電圧が著しく低下するという問題があった。また、高溶融張力ポリプロピレンを使用したフィルムと通常のポリプロピレンフィルムとを積層する技術では、特にフィルム厚みが5μm以下の薄膜フィルムでは、コンデンサ用フィルムに要求される均一な積層厚みを得ることが難しいという問題があった。また、特許文献4では表面の粗面化度をコントロールした二軸配向ポリプロピレンフィルムを開示しているが、フィルム表面の粗面化度を制御する上では十分とは言えなかった。
 少なくとも片面のフィルム表面における粗さを規定した特許文献4、5については、微細な粗面を形成する方法として、キャスト原反シートのβ晶分率をある範囲内とすることで、素子巻き性と耐圧性とをバランスさせることができるとされている。しかし、その製造方法は、フィルム両面の粗面化度を十分コントロールできるものではなく、かつ得られたフィルムの微細な粗面程度では、特に自動車用途のコンデンサに求められる耐圧性と耐熱性、加工性を十分満たすものではなかった。
 特許文献6、7では、フィルムの熱収縮率について規定したものであるが、使用する原料の立体規則性がかなり高いため、生産性の悪化、また高温での耐電圧性、つまり高温下でのコンデンサの容量減少や寸法安定性についても必ずしも十分とはいえなかった。さらなる高温での耐電圧向上のため、コンデンサ作製においてもプロセス条件が高温化するなかでコンデンサとしてのさらなる耐熱化、フィルム寸法安定性が求められてきている。
特開2001-324607号公報 特開2001-129944号公報 特開2001-72778号公報 特開平11-147962号公報 特開2007-308604号公報 特開平10-119127号公報 特開平8-294962号公報
 本発明は、高電圧用コンデンサ用途においても優れた耐電圧性と、高電圧下でも容量変化が少ないという信頼性を有し、コンデンサへの加工性を確保する二軸配向ポリプロピレンフィルムを提供することを課題とする。
 上記課題を解決するために、本発明は以下のポリプロピレンフィルムを開示する。
(1)ポリプロピレンを含有し、前記ポリプロピレンのメソペンタッド分率が95%以上98%未満であり、マイクロメータ法による厚みが1~3μmであり、幅手方向の140℃での熱収縮応力値が0~1N/mmである二軸配向ポリプロピレンフィルム。
 そして、本発明は、上記フィルムの好ましい態様として、以下のポリプロピレンフィルムを開示する。
(3) 長手方向の140℃での熱収縮応力値が0.5~2N/mmである、前記二軸配向ポリプロピレンフィルム。
(4)長手方向と幅手方向の140℃での熱収縮応力値の総和が、0.5~2.5N/mmである、前記いずれかの二軸配向ポリプロピレンフィルム。
(5) 140℃15分処理後の熱収縮率が、長手方向において4~7%、幅手方向において0~2%である、前記いずれかの二軸配向ポリプロピレンフィルム。
(6) 長手方向と幅手方向の120℃15分処理後のそれぞれの熱収縮率の和が2.5%以下である、前記いずれかの二軸配向ポリプロピレンフィルム。
(7) 前記いずれかの二軸配向ポリプロピレンフィルムの少なくとも片面に金属膜が設けられてなる金属化フィルム。
(8) 金属膜の表面電気抵抗値が1~20Ω/□の範囲内にある、前記金属化フィルム。
 そして、本発明は上記金属化フィルムの用途として、以下のフィルムコンデンサを開示する。
(9)前記いずれかの金属化フィルムを有するフィルムコンデンサ。
 そして、本発明は前記いずれかの二軸配向ポリプロピレンの製造方法として、以下の方法を開示する。
(10)ポリプロピレン樹脂を溶融押出しし、未延伸シートを得る工程
前記未延伸シートを二軸延伸し、フィルムを得る工程、
前記フィルムを20~30%弛緩する工程(I)を有する前記何れかの二軸配向フィルムの製造方法。
(11)弛緩する工程(I)が複数の弛緩する工程(II)からなり、最初の工程(II)における弛緩率が他の段の弛緩率に比べて高い、前記二軸配向フィルムの製造方法。
 本発明によれば、耐電圧性に優れ、高電圧下でも容量変化が少なく、コンデンサーへの加工性が確保された二軸配向ポリプロピレンフィルムが得られる。
 本発明の二軸配向ポリプロピレンフィルムは、フィルム中のポリプロピレンのメソペンタッド分率が95%以上98%未満である。またそのフィルムはマイクロメータ法による厚みが1~3μmであり、幅手方向の140℃での熱収縮応力値が0~1N/mmである。
 まず、厚みについて説明する。本発明の二軸配向ポリプロピレンフィルムは、コンデンサ素子サイズと製膜安定性の点から、マイクロメータ法によるフィルム厚みが1~3μmであることが好ましい。フィルム厚みは、1.2μm以上、さらに1.5μm以上が好ましい。また2.5μm以下、さらに2.3μm以下が好ましい。フィルムの厚みが薄すぎると、機械的強度や絶縁破壊強度、耐熱性に劣る場合がある。また、フィルムの厚みが厚すぎると均一な厚みのフィルムを製膜することが困難になり、またコンデンサ用の誘電体として用いた場合、体積当たりの容量が小さくなる。
 また、本発明のフィルムが含有するポリプロピレンはメソペンタッド分率が95%以上98%未満である。98%以上であると、薄いフィルムの生産性が極端に低下する場合がある。また、フィルムの結晶性が高くなりやすく、非晶部の面配向が低下し、室温での耐電圧性が低下する場合がある。95%未満であると、耐熱性や特に高温での信頼性が低下する場合がある。
 また、本発明のフィルムは幅手方向の140℃での熱収縮応力値が0~1N/mmである。さらに0.1N/mm以上が好ましい。また0.6N/mm以下が好ましい。幅手方向の140℃での熱収縮応力が0N/mm未満であると、実際には収縮せず、フィルムが熱膨張することとなり、コンデンサ製作時のエージング処理時に端面がカールし、電気特性が低下する場合がある。また、1N/mmを超えると、コンデンサ製作時のエージング温度により端面がカールし電気特性が低下したり、コンデンサ形状が変形したりする不具合が生じる場合がある。
 ここで、本発明の技術的背景について説明する。ポリプロピレンフィルムの耐熱性、寸法安定性、信頼性、コンデンサ加工性を良好とするには、ポリプロピレンフィルムの熱収縮挙動を制御することが重要である。また、コンデンサの加工性を良好とするには、フィルム表面を適度に粗面化し、フィルム層間間隙の均一性、フィルム同士あるいは搬送ロールとのすべり易さを適正化することが重要である。素子とした場合、フィルム同士の局所的層間密着の低減や残留ストレスを低減することも求められる。
 このため、本発明においては、まず従来の熱収縮率では表現できない高温時の熱収縮応力値を制御因子として採用している。すなわち、140℃での幅手方向の熱収縮応力値を制御対象として捉えることにより、好適な素子の出来映え、高温処理による形状維持および高温での耐電圧、信頼性、寸法安定性を得ることが可能となったものである。
 また、本発明の二軸配向ポリプロピレンフィルムは、長手方向の140℃での熱収縮応力値が0.5N/mm以上、さらに0.9N/mm以上であることが好ましい。また、この値は2N/mm以下、さらに1.6N/mm以下であることが好ましい。140℃の長手方向の熱収縮応力値が上記の範囲にあれば、コンデンサ形成時の長手方向巻き締まりにより、フィルム層間間隙の均一性が高まりコンデンサ寿命、信頼性が改善され電気特性に優れたコンデンサ用に好適なフィルムを得ることができる。
 また、140℃での長手方向の熱収縮応力値と幅手方向の熱収縮応力値の和は、0.5N/mm以上、さらに1.0N/mm以上が好ましい。また、この応力値の和は2.5N/mm以下、さらに2.2N/mm以下が好ましい。この熱収縮応力値の和が上記の範囲にあると、コンデンサ形成時にフィルム層間の間隔の均一性が高まり、端部のカールが抑制され、コンデンサ寿命、信頼性が改善される。また端部メタリコンとの接触性が良好となり電気特性に優れたコンデンサを得ることができる。
 本発明の二軸配向ポリプロピレンフィルムは、140℃15分処理後の熱収縮率が、長手方向において4%以上、さらに4.5%以上が好ましい。またこの熱収縮率は7%以下、さらに6%以下が好ましい。幅手方向においての140℃15分処理後の熱収縮率は0~2%さらに1.5%未満が好ましい。140℃15分処理後の熱収縮率が、長手方向および幅手方向それぞれにおいて上記範囲であると、特にフィルムへ蒸着加工するとき時の冷却用キャンロールとの密着性が良好となり、安定して加工でき、得られた蒸着品も品位がよいものとなる。
 また、長手方向と幅手方向の120℃15分処理後の熱収縮率の総和が、2.5%以下、さらに2.2%以下が好ましい。長手方向と幅手方向の120℃15分処理後の熱収縮率の総和が上記範囲であると、特に積層用コンデンサ形成時に、フィルム層間間隙の均一性や寸法安定性が高まり、コンデンサ寿命が改善され、またフィルムと端部メタリコンとの接触性が良好となり、電気特性に優れたフィルムを得ることができる。
 コンデンサへの加工性を良好とするために、本発明の二軸配向ポリプロピレンフィルムは、フィルム表面が適度に粗面化されていることが好ましい。適度な粗面がフィルム層間間隙の均一性を保ち、またフィルム同士あるいは搬送ロールとのすべり易さを適正化するからである。そのため、中心線平均粗さ(SRa)が10nm~40nmであることが好ましい。中心線平均粗さ(SRa)が大きすぎると、フィルムを積層した場合に層間に空気が入り易くコンデンサ素子の劣化につながることがある。またフィルムに金属層を形成したとき金属層に穴アキ等が発生し、高温時の絶縁破壊電圧の低下、コンデンサ寿命の低下、さらに信頼性が低下することがある。さらに電圧印加時に電荷が集中し、絶縁欠陥の原因となり易い。逆にSRaが小さすぎるとフィルムの滑りが極端に低下し、ハンドリング性に劣ったり、シワが発生しやすくなる。シワによりコンデンサとして連続使用していると容量変化が大きくなることがある。フィルムの両面の中心線平均表面粗さ(SRa)は、上記範囲が好ましいが、15nm以上、さらに20nm以上が好ましい。またこの値は、35nm以下、さらに30nm以下が好ましい。これによりコンデンサ素子工程における巻き取り性、コンデンサとした際の容量変化がより改善され、加工性、コンデンサ特性に優れたフィルムを得ることが可能となる。
 上記のように、熱収縮応力値について規定した本発明のフィルムは、高温での熱寸法安定性に優れ、しかも長手方向、幅手方向の熱収縮応力値、熱収縮率のバランスが制御された特徴的な熱収挙動を有するものである。また、このような適度な粗面を有する二軸配向ポリプロピレンフィルムから得られるコンデンサは、フィルム層間に適度のクリアランスを保持しているので、絶縁破壊を起こしても、セルフヒーリングを起こし、ショートで破壊することがない。その結果、コンデンサ寿命を維持でき、保安性が安定的に発揮できる。
 なお、上記のSRaの値は、JIS B-0601(1982)に基づき測定されるものである。例えば、株式会社小坂研究所製「非接触三次元微細形状測定器(ET-30HK)」及び「三次元粗さ分析装置(MODEL SPA-11)」を用いて測定することができる。測定条件等の詳細は後述する。
 本発明の二軸配向ポリプロピレンフィルムを構成するポリプロピレン樹脂は、分岐鎖状ポリプロピレン(H)を0.05~10質量%含有することが好ましい。さらに、本発明のフィルムを構成するポリプロピレン樹脂は、直鎖状ポリプロピレンと前記分岐鎖状ポリプロピレン(H)との混合物であることが好ましい。この場合、分岐鎖状ポリプロピレン(H)は、230℃で測定したときの溶融張力(MS)と溶融流動指数(MFR)が、log(MS)>-0.56log(MFR)+0.74なる関係式を満たす分岐鎖状ポリプロピレン(H)であることが特に好ましい。
 ここで、230℃で測定したときの溶融張力とは、JIS-K7210(1999)に示される溶融流動指数(MFR)測定に準じて測定されたものである。具体的には、株式会社東洋精機製作所製メルトテンションテスターを用いて、ポリプロピレンを230℃に加熱し、溶融ポリプロピレンを押出速度15mm/分で吐出してストランドとし、このストランドを6.4m/分の速度で引き取る際の張力を測定し、溶融張力(単位cN)とするものである。また、230℃で測定したときの溶融流動指数(MFR)とは、JIS-K7210(1999)に準じて荷重21.18Nで測定されたもの(単位g/10分)である。
 上記の分岐鎖状ポリプロピレン(H)としては、上式を満たす限り、特に限定されるものではないが、フィルムの製膜性の観点から上記溶融流動指数(MFR)が1~20g/10分の範囲にあるものが好ましく、1~10g/10分の範囲にあるものがより好ましい。また溶融張力については、1~30cNの範囲にあるものが好ましく、2~20cNの範囲にあるものがより好ましい。溶融張力が小さいと突起の高さまたは密度の均一性に劣り、コンデンサとした場合のフィルム層間間隙の均一性が劣る傾向がある。溶融張力が大きいほど突起の高さおよび密度の均一性が高くなり、緻密な表面形成(単位面積当たりの突起個数が多い、小さい突起個数が増大する)となりやすく、フィルム層間間隙が均一となる。
 230℃で測定したときの溶融張力(MS)と溶融流動指数(MFR)が、log(MS)>-0.56log(MFR)+0.74なる関係式を満たす分岐鎖状ポリプロピレン(H)を得るには、分岐構造を持つオリゴマーまたはポリマーと直鎖状ポリプロピレンとを混合する方法があげられる。混合はペレット同士を混合してもいいし、ペレットを混合し溶融混練してもいい。またポリプロピレン分子中に長鎖分岐構造を導入する方法も使用できる。
 一般にポリエチレン等の異種ポリマーを配合したシートを配向する方法によっても独立した粒状突起を形成できる。また、溶融張力(MS)と溶融流動指数(MFR)とが、230℃でlog(MS)>-0.56log(MFR)+0.74となる関係式を満たす分岐鎖状ポリプロピレン(H)を含有する二軸配向ポリプロピレンフィルムは、ポリエチレン等の異種ポリマーを配合して得られる二軸配向ポリプロピレンフィルムの表面よりも、さらに微細で、粗大突起が少なく、かつ突起のそろった均一性に優れた表面を有する。
 分岐鎖状ポリプロピレン(H)をポリプロピレン樹脂中0.05~10質量%含有することで、溶融押出した樹脂シートの冷却工程で生成する球晶サイズを容易に小さく制御でき、延伸工程で生成する絶縁欠陥の生成を小さく抑え、耐電圧性に優れたポリプロピレンフィルムを得ることができる。
 更に、分岐鎖状ポリプロピレン(H)は、α晶核剤的な作用を有している。ただし一定範囲の添加量であれば結晶変態による粗面形成も可能となる。そして、一定範囲の添加により、前記の球晶サイズを小さくする効果と相まって、後述するクレータのサイズを小さく、緻密に形成することができ、突起の密度の均一性に優れ、かつ粗大突起の少ない優れた表面粗さを有する二軸配向ポリプロピレンフィルムを得ることができる。更に、分岐鎖状ポリプロピレン(H)をポリプロピレン樹脂中0.5~8質量%含有することが好ましく、特に好ましくは1~5質量%含有することで、さらに巻き取り性、耐電圧性が改善され素子加工性、コンデンサ特性に優れたフィルムが得られる。かかる含有量とすることで、フィルムを構成するポリプロピレン樹脂には2nd-Runで測定する際に観測される融解ピークが少なくとも2つ現れる。すなわち、第一の融解ピーク(温度160~172℃)に加えて、ショルダーピーク(148~157℃)を有することとなる。また、かかる含有量とすることにより、突起の均一性に優れ適度に粗面化した表面形状となり、広範囲の雰囲気温度条件下でも優れた加工性を発揮する二軸配向ポリプロピレンフィルムを製造することができる。 
 なお、分岐鎖状ポリプロピレン(H)は、炭素原子10,000個中に対し1~5個の内部3置換オレフィン構造を有するものであることが好ましい。この内部3置換オレフィンの存在はH-NMRスペクトルで5.0~5.2ppmの領域のシグナルと、0.5~2.0ppmのシグナルとの積分比から確認することができる。分岐鎖状ポリプロピレン(H)としては、具体的にBasell社製“Profax PF-814”、Borealis社製“Daploy HMS-PP”(WB130HMS、WB135HMS等)が例示されるが、この中でも電子線架橋法により得られる樹脂が該樹脂中のゲル成分が少ないために好ましく用いられる。こうした分岐鎖状ポリプロピレン(H)をポリプロピレン(PP)に添加した際の特徴は、PPの溶融結晶化温度が通常110℃付近にあるのに対して、115~130℃の範囲に上昇することである。これにより、結晶性が高まるため高温下でのフィルムの寸法安定性が高まることになる。
 また、フィルム表面に突起を形成する方法として、結晶変態を利用する手法が好適である。この手法は、ポリプロピレンに相溶しない樹脂、無機粒子、有機粒子等の粒子を添加する方法に比べて好ましく使用される。なぜなら電気特性を低下させる物質が少なくなり、絶縁破壊電圧等の電気特性を悪化する可能性が低いためである。以下、結晶変態により得られる表面形態について説明する。
 結晶変態による面形成法とは文献(M.Fujiyama et.al., Journal of Applied Polymer Science 36, P.985-1048(1988)等に記載のポリプロピレンが有する2つの結晶系を利用して表面形成を行うものであり、α晶(単斜晶系、結晶密度0.936g/cm)系の球晶とβ晶(六方晶系、結晶密度0.922g/cm)系の球晶を未延伸シートに生成させておき、延伸工程で、熱的に不安定なβ晶をα晶に結晶変態させることで、フィルム表面に凹凸を形成するものである。本手法により得られる表面凹凸のそれぞれは球晶の変形に起因するものであることから、凸部が円形や楕円形の形状になって、並んで観察される。更に、本技術によれば、二軸配向フィルムにおいて、β晶系球晶が存在しないところでは凹凸が形成されず比較的平坦になる傾向がある。二軸延伸する際の縦横の延伸倍率比に対応し、円形状突起(クレータ)はその縦横比が変化する。延伸倍率の縦横比が1、すなわち等方的な延伸ではほぼ円状となり、縦横比が大きくなるにしたがい、突起は扁平化する。通常、逐次2軸延伸法で得られる形状はフィルムの横方向(フイルムロールの幅方向)に長軸を有する。また、球晶のでき方によっては、形状の異なるクレータが複数重畳した形状を示すこともあり、また環状に閉じられて円形とならず、弓状ないしは半円形状の形状を呈することもある。
 突起を生成せしめる手法の一つとして、核剤効果を有する原料を添加して核形成能力を高めることが挙げられる。その結果、核の個数が増え、その結果小さな微細突起が多数生じ、その結果比較的平坦な箇所が少なく、かつ均一に突起が形成された表面が得られる。核剤効果がある原料としては、上述した分岐鎖状ポリプロピレン(H)が例示される。この分岐鎖状ポリプロピレン(H)の添加量と製膜条件を制御することにより、上記の突起の形状をコントロールすることができるため、結果として、適度に粗面化した表面を生成せしめることができる。
 また、本発明の二軸配向ポリプロピレンフィルムは、前記したとおり、高温下での寸法安定性が高いことにより、コンデンサとしての形状維持が安定する。つまり、フィルムが高温下にさらされても、フィルムの寸法変化が少ないため、コンデンサ作製時の端面カール、シワ、応力歪みが低減し、電気特性が低下することなく耐電圧性が良好となる。従来のポリプロピレンを使用した場合、コンデンサの雰囲気温度が120~140℃の高温になると、通常コンデンサの膨張、端面カール、またはフィルム層間間隙の不安定化が生じる場合がある。その結果、コンデンサの電気特性が低下し、特に絶縁性を回復しにくくなる場合がある。
 なお、本発明の二軸配向ポリプロピレンフィルムにおいて、片面が金属蒸着を施すためにコロナ放電処理されていることが好ましく、他の面はコロナ放電処理が施されていないことが好ましい。
 次に、本発明の二軸配向ポリプロピレンフィルムに用いることができる直鎖状ポリプロピレンについて説明する。直鎖状ポリプロピレンは、通常、コンデンサ用に使用されるものであるが、好ましくは冷キシレン可溶部(以下CXS)が7質量%以下であることが好ましい。CXSの量が多すぎると製膜安定性に劣る場合があり、また二軸延伸したフィルムを製造する際にフィルム中にボイドを形成する場合があり、その結果、寸法安定性および耐絶縁破壊特性の低下が大きくなる場合がある。
 ここで冷キシレン可溶部(CXS)とはポリプロピレンをキシレンで完全溶解せしめた後、20℃で析出させたときに、キシレン中に溶解しているポリプロピレン成分のことをいい、立体規則性が低い、分子量が低い等の理由で結晶化しにくい成分に該当していると考えられる。このような成分が多く樹脂中に含まれているとフィルムの熱寸法安定性が劣る場合があり、また高温での絶縁破壊電圧が低下するという問題を生じることがある。従って、CXSは7質量%以下であることが好ましいが、更に好ましくは5質量%以下であり、特に好ましくは4質量%以下である。このような低いCXSを有する直鎖状ポリプロピレンとするには、重合時に樹脂を得る際の触媒活性を高める方法、得られた樹脂を溶媒あるいはプロピレンモノマー自身で洗浄する方法等の方法が使用できる。
 直鎖状ポリプロピレンのメソペンタッド分率は、高温時の熱収縮特性の観点から95%以上であることが好ましく、更に好ましくは95.5%以上である。メソペンタッド分率ポリプロピレンの立体規則性を示す指標である。この値は、核磁気共鳴法(NMR法)で測定できる。この値が高いものほど結晶化度が高く、融点が高くなり、特に高温での寸法安定性、絶縁破壊電圧の観点から好ましい。しかし、メソペンタッド分率が大きすぎると、高温での寸法安定性に関しては有利に働くが、配向性が極端に低下し、延伸性が悪くなることで製膜が難しくなる傾向がある。また室温での耐電圧性が低下する傾向がある。高温での寸法安定性と室温での耐電圧性との両立を図るため、メソペンタッド分率が95%以上98%未満であることが最適である。
 このような立体規則性の高い樹脂を得るには、ポリプロピレンの樹脂パウダーをn-ヘプタン等の脂肪族炭化水素で洗浄する方法や、触媒または助触媒の選定を適宜行って重合する方法が好ましく採用される。
 かかる直鎖状ポリプロピレンとしては、より好ましくは溶融流動指数(MFR)が1~10g/10分(230℃、21.18N荷重)、特に好ましくは2~5g/10分(230℃、21.18N荷重)の範囲のものが、製膜性の点から好ましい。溶融流動指数(MFR)を上記の値とするためには、平均分子量や分子量分布を制御する方法などが採用される。
 かかる直鎖状ポリプロピレンとしては、主としてプロピレンの単独重合体からなるが、本発明の目的を損なわない範囲で、他の不飽和炭化水素による共重合成分を含有してもよい。このような単量体成分としては、例えばエチレン、1-ブテン、1-ペンテン、3-メチルペンテン-1、3-メチルブテン-1、1-ヘキセン、4-メチルペンテン-1、5-エチルヘキセン-1、1-オクテン、1-デセン、1-ドデセン、ビニルシクロヘキセン、スチレン、アリルベンゼン、シクロペンテン、ノルボルネン、5-メチル-2-ノルボルネンなどが挙げられる。共重合量またはブレンド量は、耐絶縁破壊特性、寸法安定性の点から、共重合量では1mol%未満とし、ブレンド量では30質量%未満とするのが好ましい。
 また、本発明の目的を損なわない範囲で、本発明の二軸配向ポリプロピレンフィルムには、種々の添加剤、例えば結晶核剤、酸化防止剤、熱安定剤、すべり剤、帯電防止剤、ブロッキング防止剤、充填剤、粘度調整剤、着色防止剤などを含有せしめることもできる。これらの添加剤はポリプロピレンのペレットの中に含有させておくことができる。
 これらの中で、酸化防止剤の種類および添加量の選定は長期耐熱性の観点から行うことが好ましい。たとえば、かかる酸化防止剤としては立体障害性を有するフェノール系のもので、そのうち少なくとも1種は分子量500以上の高分子量型のものが好ましい。その具体例としては種々のものが挙げられるが、たとえば2,6-ジ-t-ブチル-p-クレゾール(BHT:分子量220.4)とともに1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン(たとえばBASF社製 “Irganox”(登録商標)以下同じ)1330:分子量775.2)またはテトラキス[メチレン-3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(例えばBASF社製 “Irganox” (登録商標)1010:分子量1177.7)を併用することが好ましい。これら酸化防止剤の総含有量はポリプロピレン全量に対して0.03~1.0質量%の範囲が好ましい。酸化防止剤が少なすぎると長期耐熱性に劣る場合がある。酸化防止剤が多すぎるとこれら酸化防止剤のブリードアウトによる高温下でのブロッキングにより、コンデンサ素子に悪影響を及ぼす場合がある。より好ましい含有量は0.1~0.9質量%であり、特に好ましくは0.2~0.8質量%である。
 本発明の二軸配向フィルムにおいては、結晶核剤を含有できる。既述のとおり、分岐鎖状ポリプロピレン(H)は既にそれ自身でα晶またはβ晶の結晶核剤効果を有するものである。他には、別種のα晶核剤(ジベンジリデンソルビトール類、安息香酸ナトリウム等)、β晶核剤(1,2-ヒドロキシステアリン酸カリウム、安息香酸マグネシウム、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキサミド等のアミド系化合物、キナナクリドン系化合物等)等が例示される。ただし、これらの結晶核剤を添加することにより、結晶性やそれに伴う熱特性、寸法安定性、表面粗さが得難くなる場合があり、高温での体積固有抵抗の低下等、電気特性にも悪影響を与える可能性がある。そこで含有量としては、0.1質量%未満とするのが好ましい。もちろん本発明の目的が達成されるのであれば、結晶核材は含有されていなくてもいい。
 また、本発明の二軸配向ポリプロピレンフィルムの表面の光沢度は120~145%の範囲であることが好ましく、より好ましくは125~140%であり、更に好ましくは130~135%である。光沢度が低いということはフィルム表面での光散乱が大きいことを意味する。このことは、フィルム表面の凹凸が緻密になっていることを意味する。ただし、光沢度が低すぎる場合は、突起高さまたは突起個数が非常に大きいことを意味しており、その結果フィルム層間の滑り性が高まり、またコンデンサとして高温での寸法安定性が低下しやすくなる。一方、光沢度が高すぎる場合は、突起高さまたは突起個数が非常に小さいことを意味しており、フィルム層間が非常に滑りにくく、扁平状のコンデンサ素子に成形することが難しくなる。また捲回コンデンサの場合、充分なフィルム層間のクリアランスを維持できずに保安性が極端に悪化する等の問題が生じる場合がある。上記の範囲で、高温での耐電圧性と保安性の両立が可能となる、
 また、本発明の二軸配向ポリプロピレンフィルムの灰分は、50ppm以下(質量基準、以下同じ)であることが好ましく、より好ましくは30ppm以下であり、特に好ましくは20ppm以下である。かかる灰分が多すぎると、該フィルムの耐絶縁破壊特性が低下し、コンデンサとした場合に絶縁破壊強度が低下する場合がある。灰分をこの範囲とするためには、重合触媒残渣の少ない原料を用いることが重要である。その他に製膜時の押出系からの汚染も極力低減するように図るべきである。たとえばブリード時間を1時間以上かけ、実際に製膜を開始する前にポリマーで経路を十分洗浄する方法を採用できる。
 本発明の二軸配向ポリプロピレンフィルムを使用できるコンデンサのタイプは限定されない。具体的には電極構成の観点では箔巻きコンデンサ、金属蒸着膜コンデンサのいずれであってもよいし、絶縁油を含浸させた油浸タイプのコンデンサや、絶縁油を全く使用しない乾式コンデンサにも好ましく用いられる。また、形状の観点では、捲回式であっても積層式であっても構わない。中でも、本発明のフィルムの特性から特に金属蒸着膜コンデンサとして好ましく使用される。
 なお、ポリプロピレンフィルムは通常、表面濡れ張力が低く、金属蒸着を安定的に施すことが困難であるために、金属の付着力を高める目的で、事前にフィルムに対して表面処理を行うことが好ましい。表面処理としては、コロナ放電処理、プラズマ処理、グロー処理、火炎処理が例示される。通常ポリプロピレンフィルムの表面濡れ張力は30mN/m程度であるが、これらの表面処理によって、濡れ張力を37~50mN/m、好ましくは39~48mN/m程度とすることが好ましい。この表面濡れ張力の範囲であると、金属膜との接着性に優れ、保安性も良好となる。
 本発明の二軸配向ポリプロピレンフィルムは、上述した特性を与えうる原料を用い、溶融押出しし、シート化し、二軸延伸することによって得られる。二軸延伸の方法としては、インフレーション同時二軸延伸法、テンター同時二軸延伸法、テンター逐次二軸延伸法のいずれによっても得られるが、その中でも、延伸工程の安定性、得られるフィルムの厚みの均一性、フィルムの表面形状を制御する点においてテンター逐次二軸延伸法を採用することが好ましい。
 次に本発明の二軸配向ポリプロピレンフィルムの製造方法を以下に説明するが、必ずしもこれに限定されるものではない。
 まず、ポリプロピレン樹脂を準備する。直鎖状ポリプロピレンと高溶融張力ポリプロピレン(分岐鎖状ポリプロピレン(H))との混合物が好ましい、ポリプロピレン樹脂を溶融押出しし、濾過フィルターを通した後、230~260℃の温度でスリット状口金から押出し、冷却ドラム上で固化させ未延伸シートを得る。ここで、本発明のフィルムを得るため、β晶を適正に生成せしめる目的で、冷却ドラムの温度制御を適切に行うことが好ましい。ここで、β晶を効率的に生成せしめるためには、β晶の生成効率が最大となる温度に樹脂を所定時間維持することが好ましく、この温度は通常は115~135℃である。また保持時間としては1秒以上保持することが好ましい。これらの条件を実現するためには樹脂温度や押出量、引き取り速度等に応じて適宜プロセスを決定することができる。生産性の観点から、冷却ドラムの径が保持時間に大きく影響するために、該ドラムの直径は少なくとも1m以上であることが好ましい。更に、冷却ドラム温度としては、70℃以上、さらに80℃以上、さらに85℃以上であることが好ましい。またこの温度が、120℃以下、さらに110℃以下、さらに100℃以下である。キャスティングドラム温度が高すぎるとフィルムの結晶化が進行しすぎ、後の工程での延伸が困難になる場合があり、またフィルム内にボイドができ耐絶縁破壊特性が低下する場合がある。口金から押出された未延伸シートのキャスティングドラムへの密着方法としては静電印加法、水の表面張力を利用した密着方法、エアーナイフ法、プレスロール法、水中キャスト法などのうちいずれの手法を用いてもよい。なかでも平面性が良好でかつ表裏の熱収縮特性や表面粗さの制御が可能なエアーナイフ法が好ましい。
 エアーナイフのエアー温度は、35℃以上、さらに40℃以上、さらに45℃以上が好ましい。またこの温度は120℃以下、さらに110℃以下、さらに100℃以下が好ましいである。エアーナイフのエアー温度が高すぎるとフィルムの結晶化が進行しすぎ、後の工程での延伸が困難になる場合があり、フィルム内にボイドができ、耐絶縁破壊特性が低下する場合がある。また、エアーナイフのエアー温度が低すぎると、結晶生成が不十分となり、目的とする熱収縮応力や表面の粗化度を得ることが困難となる場合がある。
 また、エアーナイフの吹き出しエアー速度は、130~150m/sが好ましく幅方向均一性を向上させるために2重管構造となっていることが好ましい。エアー速度が、小さすぎる場合は十分なキャストドラムとの密着性が付与できず製膜性が低下し、大きすぎる場合には、均一なキャスティングドラムへの密着ができず製膜性、品質ムラ、厚みムラ等の弊害が生じやすい。また、フィルムの振動を生じさせないために製膜下流側にエアーが流れるようにエアーナイフの位置を調整することが好ましい。
 次に、この未延伸シートを二軸延伸し、二軸配向せしめる。まず未延伸フィルムを120~150℃に保たれたロールに通して予熱し、引き続き該シートを130℃~150℃の温度に保ち、この場合、長手方向の延伸倍率として4~7倍延伸した後、室温まで冷却する。延伸方法や延伸倍率は、とくに限定されず用いるポリマー特性により適宜選択される。その後、引き続き該延伸フィルムをテンターに導いて、140~165℃の温度で幅方向に7~15倍に延伸し、次いで幅方向に20~30%の弛緩を与えつつ、140~165℃の温度で熱固定した後に、100~150℃で冷却する。特に好ましくは、22~28%の弛緩率であり、更に好ましくは、22~25%の弛緩率である。
 目的の熱収縮応力を得るためには、幅方向に20%以上の弛緩を与えるのが好ましい。この弛緩率を達成するためには、弛緩する工程を複数段設け、段階的に弛緩率を大きく変化させていくことが望ましい。(複数段設けられた弛緩する工程それぞれを、以下「弛緩する工程(II)」という。)さらに、弛緩する工程(II)のうち最初の段階が最も高い弛緩率であることが好ましい。また、弛緩する工程(II)は3段以上であることが好ましい。
 弛緩する工程(II)は熱固定室で行われるが、全体の弛緩率(以下「トータル弛緩率」という。)は、最初の熱固定室の入口幅(A)と最後の熱固定室の出口幅(B)を用いて、下記とおり定義する。
 トータル弛緩率(%)=最後の熱固定室出口幅(B)/最初の熱固定室入口幅(A)×100
 トータル弛緩率を20%としようとする場合、下記のような弛緩率をとることができる。各段の弛緩率の和がトータル弛緩率より大きいことはよくあることである。 
 1室目 第1段階弛緩率10.0% 
 2室目 第2段階弛緩率8.0%  
 3室目 第3段階弛緩率3.4%  。
 また、テンター延伸時でも温度と倍率を傾斜することで目的とする熱収応力値を安定して得ることができる。また、冷却するゾーンにおいても弛緩を行うことで、更に熱収応力値を制御することが可能となる。
 フィルムをテンター内で弛緩し、テンターからフィルムが出た後、フィルムを巻取るまでに室温で3秒以上急冷することでフィルムの寸法安定性が更に向上する。特に好ましくは5秒以上である。室温での急冷時間が3秒より短いとフィルムの寸法が固定される前に巻き取られるため、フィルムを巻き出した後に、フィルムの寸法が変化し、目的の熱収縮応力値を得にくい。フィルムを室温で急冷する方法として、送風したり、フィルムの搬送ロールの温度を室温に制御したりすることが好ましい。
 フィルムを巻取る前に蒸着を施す面に蒸着金属の接着性を良くするために、空気中、窒素中、炭酸ガス中あるいはこれらの混合気体中でコロナ放電処理を行いフィルム表面の濡れ張力を制御することが好ましい。
 本発明の二軸配向ポリプロピレンフィルムの表面に金属膜を設けて金属化フィルムとすることができる。その方法は特に限定されないが、たとえば、ポリプロピレンフィルムの少なくとも片面に、アルミニウムを蒸着してフィルムコンデンサの内部電極となるアルミニウム蒸着膜等の金属膜を設ける方法が好ましく用いられる。このとき、アルミニウムと同時あるいは逐次に、たとえば、ニッケル、銅、金、銀、クロムおよび亜鉛などの他の金属成分を蒸着することもできる。また、蒸着膜上にオイルなどで保護層を設けることもできる。
 金属膜の厚さは、フィルムコンデンサの電気特性とセルフヒール性の点から20~100nmの範囲であることが好ましい。また、同様の理由により、金属膜の表面電気抵抗値は1~20Ω/□の範囲であることが好ましい。表面電気抵抗値は、使用する金属種と膜厚で制御可能である。なお、表面電気抵抗値の測定法は後述する。
 本発明では、必要により、金属膜を形成後、金属化フィルムを特定の温度でエージング処理を行なったり、熱処理を行なったりすることができる。また、絶縁もしくは他の目的で、金属化フィルムの少なくとも片面に、ポリフェニレンオキサイドなどのコーティングを施すこともできる。
 このようして得られた金属化フィルムは、種々の方法で積層もしくは捲き回してフィルムコンデンサを得ることができる。捲回型フィルムコンデンサの好ましい製造方法を例示すると、次のとおりである。
 ポリプロピレンフィルムの片面にアルミニウムを真空蒸着し、金属化ポリプロピレンフィルムを製造する。その際、フィルム長手方向に、ストライプ状のマージン部(非蒸着部)が生じるようにアルミニウムを蒸着する。次に、表面の各蒸着部の中央と各マージン部の中央とに刃を入れてスリットし、幅方向の一端に長手方向に連続したマージン部を有するテープ状の巻取リールを作成する。幅方向の左にマージン部を有する巻取リール、および右にマージン部を有する巻取リールから、2葉の金属化ポリプロピレンフィルムを引き出し、それら重ね合わせて、芯材に捲き付けて捲回し、捲回体を得る。その結果、マージン部が幅方向に左にあり、蒸着金属が右まで存在する金属化プロプロピレンフィルムと、マージン部が幅方向に右にあり、蒸着金属が左まで存在する金属化ポリプロピレンフィルムとは、交互に積層されることになる。この捲回体から芯材を抜いて捲回体をプレスし、幅方向の両端面にメタリコンを溶射して外部電極とし、メタリコンにリード線を溶接して捲回型フィルムコンデンサを得ることができる。フィルムコンデンサの用途は、鉄道車両用、一般家電用(例えばテレビ、冷蔵庫の用途)、自動車用(ハイブリットカー、電気自動車等含む)および風力発電、太陽光発電用等、多岐に亘っている。本発明のフィルムコンデンサもこれら用途に好適に用いることができる。
 以下、実施例を挙げて本発明の効果をさらに説明する。
 なお、本発明における特性値の測定方法および評価方法は次のとおりである。 
 (1)熱収縮率(%)
 JIS-C-2330(2001)7.4.6.2に準拠し、サンプルフィルムを熱風オーブン中で120℃×15分または140℃×15分で以下の条件で保持した後の寸法変化率を各温度での熱収縮率とした。フィルムの長手方向と幅手方向を測定した。 
(a)サンプル:幅10mm×長さ200mm(長さ方向を測定方向に合わせる)
(b)オーブン条件:120℃または140℃、荷重3gf
(c)測定長は処理前長L0=100mmを基準として、処理前後のフィルム長さL1(mm)の精読値を用いて次式で求める。
 熱収縮率(%)=((L0-L1)/L0)×100        。
 (2)140℃での熱収縮応力値(N/mm
熱機械分析(TMA)(SII・ナノテクノロジー(株)社製/型式TMA/SS6100)を用いて、以下の条件でフィルム長手方向、幅手方向の熱収縮力曲線を測定した。
(a)サンプル:幅4mm×長さ20mm(長さ方向を測定方向に合わせる)
(b)温度プログラム:30℃から加熱レート10℃/minにて昇温
 <140℃での熱収縮応力値>
 得られた熱収縮力曲線から140℃の熱収縮力を読みとり、次式により算出した。
140℃での熱収縮応力値(N/mm)=
140℃の熱収縮力(N)/{4(mm)×WMV(mm)}
 ここで、WMVは、JIS-C2330(2001)7.4.1.2により求めたフィルムの質量法厚さ(単位:mm)である。測定は3回行い、平均を求めた。
 (3)フィルム厚み(μm)
 JIS C2330(2001)の7.4.1.1に従い、マイクロメータ法厚みを測定した。
 (4)グロス(光沢度)
 JIS K7105(1981)に準じ、試料をスガ試験機株式会社製 デジタル変角光沢計UGV-5Dを用いて入射角60°受光角60°の条件で測定した。試料の5点の測定値の平均値を光沢度とした。
 (5)溶融流動指数(MFR)
 JIS-K7210(1999)に準じて、測定温度230℃、荷重21.18Nで測定した。
 (6)溶融張力(MS)
 JIS-K7210(1999)に示されるMFR測定用の装置を使用して測定した。株式会社東洋精機製作所製メルトテンションテスターを用いて、ポリプロピレンを230℃に加熱し、溶融ポリプロピレンを押出速度15mm/分で吐出しストランドとし、このストランドを6.5m/分の速度で引き取る際の張力を測定し、溶融張力とした。
 (7)メソペンタッド分率(mmmm)
 試料を溶媒に溶解し、13C-NMRを用いて、以下の条件にてメソペンタッド分率(mmmm)を求めた(参考文献:新版 高分子分析ハンドブック 社団法人日本分析化学会・高分子分析研究懇談会 編 1995年 P609~611)。
 A.測定条件
  装置:Brukner社製、DRX-500
  測定核:13C核(共鳴周波数:125.8MHz)
  測定濃度:10wt%
  溶媒:ベンゼン/重オルトジクロロベンゼン=質量比1:3混合溶液
  測定温度:130℃
  スピン回転数:12Hz
  NMR試料管:5mm管
  パルス幅:45°(4.5μs)
  パルス繰り返し時間:10秒
  データポイント:64K
  換算回数:10,000回
  測定モード:complete decoupling
 B.解析条件
 LB(ラインブロードニングファクター)を1.0としてフーリエ変換を行い、mmmmピークを21.86ppmとした。WINFITソフト(Bruker社製)を用いて、ピーク分割を行った。その際に、高磁場側のピーク面積から以下のようにピーク面積分割を行い、更に付属ソフトの自動フィッテイングを行い、ピーク面積分割の最適化を行った上で、mmmmとss(mmmmのスピニングサイドバンドピーク)のピーク分率の合計をメソペンタッド分率(mmmm)とした。
尚、測定は5回行い、その平均値をメソペンタッド分率とした。
ピーク
  (a)mrrm
  (b)(c)rrrm(2つのピークとして分割)
  (d)rrrr
  (e)mrmm+rmrr
  (f)mmrr
  (g)mmmr
  (h)ss(mmmmのスピニングサイドバンドピーク)
  (i)mmmm
  (j)rmmr  。
 (8)内部3置換オレフィン個数
 試料を溶媒に溶解し、H-NMRを用いて、以下の条件にて内部3置換オレフィンの個数を求める。
 A.測定条件
  装置:日本電子株式会社製ECX400P型核磁気共鳴装置
  測定核:H核(共鳴周波数:500MHz)
  測定濃度:2質量%
  溶媒:重オルトジクロロベンゼン
  測定温度:120℃
  パルス幅:45°
  パルス繰り返し時間:7秒
  換算回数:512回
  測定モード:non decoupling
 B.解析条件
 オルトジクロロベンゼンの化学シフト7.10ppmを基準とし、5.0~5.2ppm領域の内部3置換オレフィンのプロトンに帰属したピークの面積と、0.5~2.0ppmのピークとの比から内部3置換オレフィンのプロトン比を求める。
 (9)冷キシレン可溶部(CXS)
 ポリプロピレンフィルム試料0.5gを沸騰キシレン100mlに溶解して放冷後、20℃の恒温水槽で1時間かけて再結晶化させた後にろ過し、ろ液に溶解しているポリプロピレン成分を液体クロマトグラフ法にて定量する(X(g))。試料0.5gの精量値(X(g))を用いて以下の式で求める。
  CXS(質量%)=(X/X)×100   。
 (10)中心線平均粗さ(SRa)
 JIS B-0601(1982)により、株式会社小坂研究所製「非接触三次元微細形状測定器(ET-30HK)」及び「三次元粗さ分析装置(MODEL SPA-11)」を用いて測定した。測定は長手方向に10回繰り返し、その平均値として中心線平均粗さ(SRa)を求めた。
 (11)金属膜の電気抵抗
 金属化フィルムを長さ方向に10mm幅方向に全幅(50mm)の長方形にカットして試料とし、4端子法により、幅方向30mm間の金属膜の抵抗を測定し、得られた測定値に測定幅(10mm)を乗じて電極間距離(30mm)を除して、10mm×10mm当たりの電気抵抗値を算出した。(単位:Ω/□)
 (12)フィルム絶縁破壊電圧(V/μm)
 JIS C2330(2001)7.4.11.2 B法(平板電極法)に準じて、平均値を求め、測定したサンプルのマイクロメータ法フィルム厚み(μm)(上述)で除し、V/μmで表記した。
 (13)コンデンサ製造の際の素子加工性(素子巻収率)
 後述する各実施例および比較例で得られたポリプロピレンフィルムの片面に、ULVAC製真空蒸着機でアルミニウムを膜抵抗が8Ω/□となるようにアルミニウムを真空蒸着した。その際、長手方向に走るマージン部を有するストライプ状に蒸着した(蒸着部の幅39.0mm、マージン部の幅1.0mmの繰り返し)。
 次に各蒸着部の中央と各マージン部の中央に刃を入れてスリットし、左もしくは右に0.5mmのマージンを有する全幅20mmのテープ状に巻取リールにした。得られたリールの左マージンおよび右マージンのもの各1本ずつを、幅方向に蒸着部分がマージン部より0.5mmはみ出すように2枚重ね合わせて捲き回し、静電容量約10μFの丸型素子を得た。素子捲回には株式会社皆藤製作所製KAW-4NHBを用いた。140℃で8時間減圧雰囲気中でエージングした後に、素子端面のフィルムの倒れ込みを観察し、倒れ込みが発生したものを不合格とした。そして不合格となったものの数の製造数全体に対する割合を百分率で示し加工性の指標とした(以下この割合を「素子巻収率」と称する)。素子巻収率は高いほど好ましい。95%以上を「A」、95%未満80%以上を「B」、80%未満を「C」とした。製造数は、50個の素子で評価実施した。
 (14)高温ライフ評価(コンデンサ信頼性評価)
 後述する各実施例および比較例で得られたフィルムに、ULVAC製真空蒸着機でアルミニウムを膜抵抗が8Ω/□で長手方向に垂直な方向にマージン部を設けた所謂T型マージンパターンを有する蒸着パターンを施し、幅50mmの蒸着リールを得た。
 次いで、このリールを用いて株式会社皆藤製作所製素子巻機(KAW-4NHB)にてコンデンサ素子を巻き取り、メタリコンを施した後、減圧下、140℃で10時間の熱処理を施し、リード線を取り付けてコンデンサ素子を仕上げた。このときのコンデンサ素子の静電容量は10μFであった。
 こうして得られたコンデンサ素子作成直後の静電容量(C0)を測定し、次いで125℃のオーブン中で250VDC/μmを印加し、200時間経過後の静電容量(C1)を測定して、次式で容量変化率(ΔC/C)を求めた。容量変化率は±5%以内であることが好ましい。製造数は、10個の素子で評価実施したものであり、平均値で表記した。
 ΔC/C(%)=((C1-C0)/C0)×100    。
 (実施例1)
 直鎖状ポリプロピレンとしてメソペンタッド分率が97.9%で、メルトマスフローレイト(MFR)が2.6g/10分であるプライムポリマー(株)製ポリプロピレン樹脂100質量部に、Basell社製分岐鎖状ポリプロピレン樹脂(高溶融張力ポリプロピレンProfax PF-814 メソペンタッド分率91.0%)を0.5質量部ブレンドし、温度250℃の押出機に供給し、樹脂温度250℃でT型スリットダイよりシート状に溶融押出し、該溶融シートを90℃に保持された直径1mのキャスティングドラム上で、エアーナイフ温度90℃、エアー速度140m/sで冷却固化した。110~135℃の保持時間は放射温度計による測定の結果、2.8秒であった。次いで、該シートを徐々に140℃に予熱し、引き続き145℃の温度に保ち周速差を設けたロール間に通し、長手方向に4.8倍に延伸した。その際、延伸部でラジエーションヒーター(出力3.5kW)を用い熱量を補い延伸した。引き続き該フィルムをテンターに導き、延伸温度160℃で幅方向に10倍延伸し、次いで幅方向にトータル23%の弛緩率で3段階に弛緩した。(第1段階は12.0%、第2段階は9.0%、第3段階は3.9%である。)、熱固定温度150℃、冷却温度140℃で熱処理を行ない、その後室温で5秒間急冷して、フィルム厚みが3.0μmの二軸配向ポリプロピレンフィルムを得た。さらに片側の表面に25W・min/mの処理強度で大気中でコロナ放電処理を行った。こうして得られた二軸配向ポリプロピレンフィルムの特性は表1、表2に示すとおりであった。耐電圧、素子加工性とも優れるものであった。
 (実施例2)
 直鎖状ポリプロピレンのメソペンタッド分率を95.1%とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
 (実施例3)
 フィルム厚みを1μm、テンター延伸温度を145℃、熱固定温度を142℃、冷却温度を125℃以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
 (実施例4)
 直鎖状ポリプロピレンのメソペンタッド分率を97.4%、フィルム厚みを2.5μm、トータル弛緩率を25%(第1段階12.5%、第2段階9.0%、第3段階5.8%)とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
 (実施例5)
 直鎖状ポリプロピレンのメソペンタッド分率を97.4%、フィルム厚みを2.5μm、トータル弛緩率を22%(第1段階11.0%、第2段階8.0%、第3段階4.7%)とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
 (実施例6)
 テンター延伸温度を165℃、熱固定温度を165℃、冷却温度を150℃、トータル弛緩率を28%(第1段階14.0%、第2段階11.0%、第3段階5.9%)とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
 (実施例7)
 直鎖状ポリプロピレンのメソペンタッド分率を95.1%、テンターでの延伸温度を140℃、熱固定温度を140℃、冷却温度を100℃、トータル弛緩率を20%(第1段階10.0%、第2段階8.0%、第3段階3.4%)、室温冷却時間を3秒とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
 (実施例8)
 直鎖状ポリプロピレンのメソペンタッド分率を97.4%とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
 (実施例9)
 フィルム厚みを2μm、テンターでの延伸温度を140℃、熱固定温度を140℃、冷却温度を100℃、トータル弛緩率を20%(第1段階11.0%、第2段階7.0%、第3段階3.3%)、室温冷却時間を3秒とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
 (比較例1)
 直鎖状ポリプロピレンのメソペンタッド分率を98.5%とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
 (比較例2)
  直鎖状ポリプロピレンのメソペンタッド分率を94.5%とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
 (比較例3)
 直鎖状ポリプロピレンのメソペンタッド分率を97.5%、トータル弛緩率を15%(第1段階8.0%、第2段階5.0%、第3段階2.7%)、室温急冷時間を2.5秒以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
 (比較例4)
 直鎖状ポリプロピレンのメソペンタッド分率を98.5%、冷却温度を50℃、弛緩率を15%(第1段階5.0%、第2段階5.3%、第3段階5.6%)とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
 (比較例5)
 フィルム厚みを5μm、延伸温度を165℃、熱固定温度を165℃、弛緩率を28%(第1段階9.3%、第2段階10.3%、第3段階11.5%)とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
 (比較例6)
 フィルム厚みを4μm以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
 (比較例7)
 直鎖状ポリプロピレンのメソペンタッド分率を94.5%、延伸温度を165℃、熱固定温度を165℃、弛緩率を25%(第1段階13.0%、第2段階9.0%、第3段階5.2%)とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
 (比較例8)
 直鎖状ポリプロピレンのメソペンタッド分率を94.5%、延伸温度を140℃、熱固定温度を140℃、冷却温度を100℃、フィルム厚みを5μmとした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (11)

  1.  ポリプロピレンを含有し、前記ポリプロピレンのメソペンタッド分率が95%以上98%未満であり、マイクロメータ法による厚みが1~3μmであり、幅手方向の140℃での熱収縮応力値が0~1N/mmである二軸配向ポリプロピレンフィルム。
  2.  メソペンタッド分率が95%以上98%未満であるポリプロピレンが直鎖状のポリプロピレンである請求項1記載のポリプロピレンフィルム。
  3.  長手方向の140℃での熱収縮応力値が0.5~2N/mmである、請求項1または2に記載の二軸配向ポリプロピレンフィルム。
  4.  長手方向と幅手方向の140℃での熱収縮応力値の総和が、0.5~2.5N/mmである、請求項1~3いずれかに記載の二軸配向ポリプロピレンフィルム。
  5.  140℃15分処理後の熱収縮率が、長手方向において4~7%、幅手方向において0~2%である、請求項1~4のいずれかに記載の二軸配向ポリプロピレンフィルム。
  6.  長手方向と幅手方向の120℃15分処理後のそれぞれの熱収縮率の和が2.5%以下である、請求項1~5のいずれかに記載の二軸配向ポリプロピレンフィルム。
  7.  請求項1~6のいずれかに記載の二軸配向ポリプロピレンフィルムの少なくとも片面に金属膜が設けられてなる金属化フィルム。
  8.  金属膜の表面電気抵抗値が1~20Ω/□の範囲内にある、請求項7に記載の金属化フィルム。
  9.  請求項7または請求項8に記載の金属化フィルムを有するフィルムコンデンサ。
  10. ポリプロピレン樹脂を溶融押出しし、未延伸シートを得る工程
    前記未延伸シートを二軸延伸し、フィルムを得る工程、
    前記フィルムを20~30%弛緩する工程(I)を有する請求項1~6いずれかの二軸配向フィルムの製造方法。
  11. 弛緩する工程(I)が複数の弛緩する工程(II)からなり、最初の工程(II)における弛緩率が他の段の弛緩率に比べて高い請求項10記載の二軸配向フィルムの製造方法。
PCT/JP2014/057517 2013-03-22 2014-03-19 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ WO2014148547A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014542041A JP5660261B1 (ja) 2013-03-22 2014-03-19 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
CN201480016554.9A CN105143321B (zh) 2013-03-22 2014-03-19 双轴取向聚丙烯膜、金属化膜和膜电容器
US14/773,516 US20160024641A1 (en) 2013-03-22 2014-03-19 Biaxially oriented polypropylene film, metallized film and film capacitor
EP14770169.2A EP2977398B1 (en) 2013-03-22 2014-03-19 Biaxially oriented polypropylene film, metallized film and film capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-059847 2013-03-22
JP2013059847 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148547A1 true WO2014148547A1 (ja) 2014-09-25

Family

ID=51580221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057517 WO2014148547A1 (ja) 2013-03-22 2014-03-19 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ

Country Status (5)

Country Link
US (1) US20160024641A1 (ja)
EP (1) EP2977398B1 (ja)
JP (1) JP5660261B1 (ja)
CN (1) CN105143321B (ja)
WO (1) WO2014148547A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043217A1 (ja) * 2014-09-19 2016-03-24 東レ株式会社 ポリプロピレンフィルムおよびフィルムコンデンサ
JP2016195250A (ja) * 2015-03-31 2016-11-17 王子ホールディングス株式会社 フィルムコンデンサ用二軸延伸ポリプロピレンフィルム
CN107531924A (zh) * 2015-05-12 2018-01-02 东丽株式会社 聚丙烯膜、金属膜层叠膜和膜电容器以及它们的制造方法
WO2019044758A1 (ja) * 2017-08-29 2019-03-07 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP2019044171A (ja) * 2017-08-29 2019-03-22 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP2019172972A (ja) * 2018-03-29 2019-10-10 東レ株式会社 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP2019172973A (ja) * 2018-03-29 2019-10-10 東レ株式会社 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
WO2020196602A1 (ja) * 2019-03-28 2020-10-01 東レ株式会社 ポリプロピレンフィルム
US11021597B2 (en) 2015-10-16 2021-06-01 Borealis Ag Biaxially oriented films made of propylene polymer compositions

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015091829A1 (en) * 2013-12-18 2015-06-25 Borealis Ag Bopp film having low shrinkage
KR101813706B1 (ko) 2014-12-04 2017-12-29 주식회사 엘지화학 무연신 폴리프로필렌계 필름
EP3332961B1 (en) * 2015-08-03 2020-02-19 Toray Industries, Inc. Olefin multilayer film and film capacitor
WO2018124300A1 (ja) 2016-12-28 2018-07-05 王子ホールディングス株式会社 二軸延伸ポリプロピレンフィルム、金属化フィルム及びコンデンサ
KR20210047870A (ko) * 2018-08-29 2021-04-30 오지 홀딩스 가부시키가이샤 금속층 일체형 폴리프로필렌 필름, 필름 콘덴서, 및 금속층 일체형 폴리프로필렌 필름의 제조 방법
CN110165122B (zh) * 2019-05-15 2022-03-04 乐凯胶片股份有限公司 聚乙烯微孔膜及其制备方法和应用
WO2021166994A1 (ja) * 2020-02-21 2021-08-26 東レ株式会社 ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ
WO2021166993A1 (ja) * 2020-02-21 2021-08-26 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
CN111763913A (zh) * 2020-07-07 2020-10-13 江苏伟业铝材有限公司 一种门窗用铝型材表面喷涂方法
CN112175220B (zh) * 2020-09-03 2023-01-03 广东以色列理工学院 耐高温的改性聚丙烯薄膜及其制备方法和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294962A (ja) 1995-02-28 1996-11-12 Toray Ind Inc 耐熱耐電圧性コンデンサ用ポリプロピレンフィルム
JPH10119127A (ja) 1996-10-17 1998-05-12 Toray Ind Inc 二軸配向ポリプロピレンフィルムおよびコンデンサー
JPH11147962A (ja) 1997-11-18 1999-06-02 Oji Paper Co Ltd 粗面化二軸延伸ポリプロピレンおよびその製造方法
JPH11273991A (ja) * 1998-03-20 1999-10-08 Toray Ind Inc コンデンサ用ポリプロピレンフィルム及びそれからなるコンデンサ
JP2001072778A (ja) 1999-07-08 2001-03-21 Toray Ind Inc 二軸配向ポリプロピレンフィルム
JP2001129944A (ja) 1999-11-02 2001-05-15 Toray Ind Inc 二軸配向ポリプロピレンフィルム
JP2001324607A (ja) 2000-05-16 2001-11-22 Kimoto & Co Ltd 光拡散性シート
JP2007308604A (ja) 2006-05-18 2007-11-29 Oji Paper Co Ltd 微細粗面化ポリプロピレンフィルム
JP2008127460A (ja) * 2006-11-21 2008-06-05 Toray Ind Inc コンデンサー用二軸配向ポリプロピレンフィルム、それを用いてなる金属化フィルムおよびコンデンサー
JP2009088492A (ja) * 2007-09-11 2009-04-23 Toray Ind Inc コンデンサ用ポリプロピレンフィルムおよびコンデンサ
WO2009060944A1 (ja) * 2007-11-07 2009-05-14 Oji Paper Co., Ltd. コンデンサー用二軸延伸ポリプロピレンフィルムおよびそれを用いた蒸着フィルム並びにコンデンサー
WO2012002123A1 (ja) * 2010-06-29 2012-01-05 東レ株式会社 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3654541B2 (ja) * 1995-11-29 2005-06-02 東レ株式会社 耐熱性コンデンサ用ポリプロピレンフィルム
US6094337A (en) * 1996-08-09 2000-07-25 Toray Industries Inc. Polypropylene film and capacitor made by using it as a dielectric
JP4715390B2 (ja) * 2004-08-26 2011-07-06 東レ株式会社 コンデンサ用ポリプロピレンフィルム及びそれからなるコンデンサ
CN101374891B (zh) * 2006-02-17 2011-11-30 东丽株式会社 双轴取向聚丙烯薄膜
DE502006008283D1 (de) * 2006-08-31 2010-12-23 Treofan Germany Gmbh & Co Kg Biaxial orientierte Elektroisolierfolie
JP2010129560A (ja) * 2008-11-25 2010-06-10 Toray Ind Inc コンデンサ用ポリプロピレンフィルムおよびこれからなる金属化フィルムコンデンサ

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294962A (ja) 1995-02-28 1996-11-12 Toray Ind Inc 耐熱耐電圧性コンデンサ用ポリプロピレンフィルム
JPH10119127A (ja) 1996-10-17 1998-05-12 Toray Ind Inc 二軸配向ポリプロピレンフィルムおよびコンデンサー
JPH11147962A (ja) 1997-11-18 1999-06-02 Oji Paper Co Ltd 粗面化二軸延伸ポリプロピレンおよびその製造方法
JPH11273991A (ja) * 1998-03-20 1999-10-08 Toray Ind Inc コンデンサ用ポリプロピレンフィルム及びそれからなるコンデンサ
JP2001072778A (ja) 1999-07-08 2001-03-21 Toray Ind Inc 二軸配向ポリプロピレンフィルム
JP2001129944A (ja) 1999-11-02 2001-05-15 Toray Ind Inc 二軸配向ポリプロピレンフィルム
JP2001324607A (ja) 2000-05-16 2001-11-22 Kimoto & Co Ltd 光拡散性シート
JP2007308604A (ja) 2006-05-18 2007-11-29 Oji Paper Co Ltd 微細粗面化ポリプロピレンフィルム
JP2008127460A (ja) * 2006-11-21 2008-06-05 Toray Ind Inc コンデンサー用二軸配向ポリプロピレンフィルム、それを用いてなる金属化フィルムおよびコンデンサー
JP2009088492A (ja) * 2007-09-11 2009-04-23 Toray Ind Inc コンデンサ用ポリプロピレンフィルムおよびコンデンサ
WO2009060944A1 (ja) * 2007-11-07 2009-05-14 Oji Paper Co., Ltd. コンデンサー用二軸延伸ポリプロピレンフィルムおよびそれを用いた蒸着フィルム並びにコンデンサー
WO2012002123A1 (ja) * 2010-06-29 2012-01-05 東レ株式会社 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"High Polymer Analysis Handbook", 1995, RESEARCH SOCIETY OF POLYMER ANALYSIS, pages: 609 - 611
M. FUJIYAMA, JOURNAL OF APPLIED POLYMER SCIENCE, vol. 36, 1988, pages 985 - 1048

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016043217A1 (ja) * 2014-09-19 2017-06-29 東レ株式会社 ポリプロピレンフィルムおよびフィルムコンデンサ
WO2016043217A1 (ja) * 2014-09-19 2016-03-24 東レ株式会社 ポリプロピレンフィルムおよびフィルムコンデンサ
JP2016195250A (ja) * 2015-03-31 2016-11-17 王子ホールディングス株式会社 フィルムコンデンサ用二軸延伸ポリプロピレンフィルム
CN107531924A (zh) * 2015-05-12 2018-01-02 东丽株式会社 聚丙烯膜、金属膜层叠膜和膜电容器以及它们的制造方法
CN107531924B (zh) * 2015-05-12 2021-01-26 东丽株式会社 聚丙烯膜、金属膜层叠膜和膜电容器以及它们的制造方法
US11021597B2 (en) 2015-10-16 2021-06-01 Borealis Ag Biaxially oriented films made of propylene polymer compositions
WO2019044758A1 (ja) * 2017-08-29 2019-03-07 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP2019044171A (ja) * 2017-08-29 2019-03-22 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP6521189B1 (ja) * 2017-08-29 2019-05-29 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP7318187B2 (ja) 2017-08-29 2023-08-01 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
US11440292B2 (en) 2017-08-29 2022-09-13 Toray Industries, Inc. Polypropylene film, metal layer laminated film, and film capacitor
JP2019172973A (ja) * 2018-03-29 2019-10-10 東レ株式会社 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP7218618B2 (ja) 2018-03-29 2023-02-07 東レ株式会社 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP7234698B2 (ja) 2018-03-29 2023-03-08 東レ株式会社 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP2019172972A (ja) * 2018-03-29 2019-10-10 東レ株式会社 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
KR20210148096A (ko) 2019-03-28 2021-12-07 도레이 카부시키가이샤 폴리프로필렌 필름
WO2020196602A1 (ja) * 2019-03-28 2020-10-01 東レ株式会社 ポリプロピレンフィルム

Also Published As

Publication number Publication date
US20160024641A1 (en) 2016-01-28
JP5660261B1 (ja) 2015-01-28
CN105143321A (zh) 2015-12-09
CN105143321B (zh) 2019-05-03
EP2977398B1 (en) 2019-09-18
EP2977398A4 (en) 2016-10-26
EP2977398A1 (en) 2016-01-27
JPWO2014148547A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5660261B1 (ja) 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
JP6120180B2 (ja) コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ
JP5472461B2 (ja) 二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ
JP5825103B2 (ja) 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
JP6319293B2 (ja) コンデンサ用二軸配向ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ
KR20180005670A (ko) 폴리프로필렌 필름, 금속막 적층 필름 및 필름 콘덴서 그리고 이들의 제조 방법
JP6724457B2 (ja) 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP5664137B2 (ja) コンデンサ用二軸延伸ポリプロピレンフィルムおよび金属化フィルム、フィルムコンデンサ
JP6477909B2 (ja) ポリプロピレンフィルムロール
JP6032386B1 (ja) コンデンサ用二軸配向ポリプロピレンフィルム、金属積層フィルムおよびフィルムコンデンサ
US11795282B2 (en) Polypropylene film, metal film laminated film using same, and film capacitor
JP6682937B2 (ja) コンデンサ用二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ
KR102451416B1 (ko) 2축 배향 폴리프로필렌 필름, 금속막 적층 필름 및 필름 콘덴서
JP6885484B2 (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
JP6988243B2 (ja) ポリプロピレンフィルムロール
JP2020132884A (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
JP2019172922A (ja) ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP6992919B2 (ja) ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP2022142713A (ja) 二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ
JP2024035063A (ja) 二軸配向ポリプロピレンフィルム
JP2023082646A (ja) 二軸配向ポリプロピレンフィルム
JP2022114442A (ja) 二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ
JP2020132883A (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
JP2021152131A (ja) 二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016554.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014542041

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770169

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014770169

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14773516

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE