WO2014148547A1 - 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ - Google Patents
二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ Download PDFInfo
- Publication number
- WO2014148547A1 WO2014148547A1 PCT/JP2014/057517 JP2014057517W WO2014148547A1 WO 2014148547 A1 WO2014148547 A1 WO 2014148547A1 JP 2014057517 W JP2014057517 W JP 2014057517W WO 2014148547 A1 WO2014148547 A1 WO 2014148547A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- biaxially oriented
- polypropylene
- oriented polypropylene
- capacitor
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 84
- 229920006378 biaxially oriented polypropylene Polymers 0.000 title claims abstract description 80
- 239000011127 biaxially oriented polypropylene Substances 0.000 title claims abstract description 79
- 239000010408 film Substances 0.000 title claims description 277
- 239000011104 metalized film Substances 0.000 title claims description 13
- -1 polypropylene Polymers 0.000 claims description 98
- 239000004743 Polypropylene Substances 0.000 claims description 97
- 229920001155 polypropylene Polymers 0.000 claims description 96
- 238000000034 method Methods 0.000 claims description 72
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- 239000011347 resin Substances 0.000 claims description 23
- 229920005989 resin Polymers 0.000 claims description 23
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 238000011282 treatment Methods 0.000 claims description 13
- 230000002040 relaxant effect Effects 0.000 claims description 10
- 230000002349 favourable effect Effects 0.000 abstract 1
- 230000035882 stress Effects 0.000 description 26
- 238000005259 measurement Methods 0.000 description 25
- 239000013078 crystal Substances 0.000 description 20
- 238000001816 cooling Methods 0.000 description 18
- 239000000155 melt Substances 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 17
- 230000003746 surface roughness Effects 0.000 description 14
- 230000015556 catabolic process Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 239000010410 layer Substances 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- 238000007740 vapor deposition Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 238000004804 winding Methods 0.000 description 10
- 238000009998 heat setting Methods 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000003963 antioxidant agent Substances 0.000 description 7
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 6
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 6
- 150000001336 alkenes Chemical class 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000008096 xylene Substances 0.000 description 6
- 230000003078 antioxidant effect Effects 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 238000003851 corona treatment Methods 0.000 description 5
- 239000003484 crystal nucleating agent Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000009736 wetting Methods 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000002667 nucleating agent Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000000418 atomic force spectrum Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 208000028659 discharge Diseases 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000010297 mechanical methods and process Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- SDRZFSPCVYEJTP-UHFFFAOYSA-N 1-ethenylcyclohexene Chemical compound C=CC1=CCCCC1 SDRZFSPCVYEJTP-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- ROHFBIREHKPELA-UHFFFAOYSA-N 2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]prop-2-enoic acid;methane Chemical compound C.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O ROHFBIREHKPELA-UHFFFAOYSA-N 0.000 description 1
- KIHBGTRZFAVZRV-UHFFFAOYSA-N 2-hydroxyoctadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(O)C(O)=O KIHBGTRZFAVZRV-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- PCBPVYHMZBWMAZ-UHFFFAOYSA-N 5-methylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C)CC1C=C2 PCBPVYHMZBWMAZ-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- PJJZFXPJNUVBMR-UHFFFAOYSA-L magnesium benzoate Chemical compound [Mg+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 PJJZFXPJNUVBMR-UHFFFAOYSA-L 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- JXRWDHUZHAWOLC-UHFFFAOYSA-N naphthalene-1,2-dicarboxamide Chemical compound C1=CC=CC2=C(C(N)=O)C(C(=O)N)=CC=C21 JXRWDHUZHAWOLC-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 238000001225 nuclear magnetic resonance method Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000002989 phenols Chemical group 0.000 description 1
- 229930015698 phenylpropene Natural products 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0018—Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
- B29C55/143—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/14—Organic dielectrics
- H01G4/18—Organic dielectrics of synthetic material, e.g. derivatives of cellulose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2007/00—Flat articles, e.g. films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/562—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a biaxially oriented polypropylene film suitable for industrial use and the like, and more particularly, to a biaxially oriented polypropylene film suitable as a dielectric for capacitors having high voltage resistance that is stable even at high temperatures. .
- the biaxially oriented polypropylene film is excellent in transparency, mechanical properties, electrical properties, etc., it is used in various applications such as packaging applications, tape applications, cable wrapping and electrical applications including capacitors.
- capacitors are particularly preferably used for high voltage capacitors because of their excellent withstand voltage characteristics and low loss characteristics, not limited to DC applications and AC applications.
- Such a biaxially oriented polypropylene film needs to be appropriately roughened from the viewpoint of voltage resistance, heat resistance, productivity, and workability. Roughening is particularly important because it improves the slipperiness and oil impregnation of the film, or provides security for metal-deposited capacitors.
- security refers to a metal-deposited capacitor that uses a metal-deposited film formed on the dielectric film as an electrode. In the event of abnormal discharge, the deposited metal scatters due to discharge energy to restore insulation and prevent short-circuiting. This is a function of maintaining the function of the capacitor or preventing the destruction of the capacitor. This security is an extremely important characteristic from the viewpoint of safety.
- Such roughening methods include mechanical methods such as embossing and sand blasting, chemical methods such as chemical etching with solvents, methods for orienting sheets mixed with different polymers such as polyethylene, and ⁇ crystals.
- a method of orienting a sheet has been proposed (see Patent Document 1).
- the mechanical method and the chemical method have a problem that the roughness density is low, and the method of orienting the sheet on which the ⁇ crystals are formed has a problem that coarse protrusions are likely to occur.
- Films roughened by these methods are not sufficiently impregnated with oil between the film layers during capacitor formation, and partly unimpregnated portions are likely to be produced, and the capacitor life may be reduced.
- the method of orienting a sheet blended with a different polymer such as polyethylene there are few bubbles remaining during capacitor formation, but when the film is recycled, it may be inappropriate for use after the different polymer is recycled. There was a problem that it was inferior in recyclability.
- the biaxially oriented polypropylene film produced by any of the methods is not sufficient in terms of safety and reliability in terms of the use conditions of capacitors at high temperatures of 100 ° C. or higher under severe conditions where the potential gradient is 250 V / ⁇ m or higher. There was a problem.
- the potential gradient is obtained by dividing the voltage applied to the capacitor dielectric film by the film thickness.
- Patent Document 4 discloses a biaxially oriented polypropylene film in which the surface roughness is controlled, but it is not sufficient for controlling the film surface roughness.
- Patent Documents 4 and 5 that define the roughness of at least one side of the film surface, as a method of forming a fine rough surface, by setting the ⁇ crystal fraction of the cast raw sheet within a certain range, the element winding property And pressure resistance can be balanced.
- the manufacturing method is not capable of sufficiently controlling the roughness of both sides of the film, and the pressure resistance and heat resistance, processing required for capacitors for automotive applications, in particular, is only required for the fine roughness of the obtained film. It did not fully satisfy sex.
- the present invention provides a biaxially oriented polypropylene film that has excellent voltage resistance even in high-voltage capacitor applications and reliability that there is little change in capacitance even under high voltage and ensures workability to the capacitor. Is an issue.
- the present invention discloses the following polypropylene film.
- (1) Contains polypropylene, has a mesopentad fraction of 95% or more and less than 98%, has a thickness of 1 to 3 ⁇ m by a micrometer method, and has a heat shrinkage stress value at 140 ° C. in the width direction of 0 Biaxially oriented polypropylene film that is ⁇ 1 N / mm 2 .
- this invention discloses the following polypropylene films as a preferable aspect of the said film.
- this invention discloses the following methods as a manufacturing method of one of the said biaxially oriented polypropylenes.
- a step of melt-extruding a polypropylene resin to obtain an unstretched sheet A step of biaxially stretching the unstretched sheet to obtain a film,
- the method for producing any one of the biaxially oriented films comprising the step (I) of relaxing the film by 20 to 30%.
- the mesopentad fraction of polypropylene in the film is 95% or more and less than 98%.
- the film has a thickness of 1 to 3 ⁇ m by a micrometer method, and a heat shrinkage stress value at 140 ° C. in the width direction of 0 to 1 N / mm 2 .
- the biaxially oriented polypropylene film of the present invention preferably has a film thickness of 1 to 3 ⁇ m by a micrometer method from the viewpoint of capacitor element size and film formation stability.
- the film thickness is preferably 1.2 ⁇ m or more, and more preferably 1.5 ⁇ m or more. Moreover, 2.5 micrometers or less, Furthermore 2.3 micrometers or less are preferable. If the film is too thin, the mechanical strength, dielectric breakdown strength, and heat resistance may be inferior. On the other hand, if the film is too thick, it is difficult to form a film having a uniform thickness, and when used as a dielectric for a capacitor, the capacity per volume becomes small.
- the polypropylene contained in the film of the present invention has a mesopentad fraction of 95% or more and less than 98%. If it is 98% or more, the productivity of a thin film may be extremely lowered. In addition, the crystallinity of the film tends to be high, the plane orientation of the amorphous part is lowered, and the withstand voltage at room temperature may be lowered. If it is less than 95%, the heat resistance and particularly the reliability at high temperatures may be lowered.
- the film of the present invention has a heat shrinkage stress value at 140 ° C. in the width direction of 0 to 1 N / mm 2 . Furthermore, 0.1 N / mm 2 or more is preferable. Moreover, 0.6 N / mm ⁇ 2 > or less is preferable.
- the thermal shrinkage stress at 140 ° C. in the width direction is less than 0 N / mm 2 , the film does not actually shrink and the film thermally expands, and the end face curls during the aging process at the time of manufacturing the capacitor, and the electrical characteristics May decrease. If it exceeds 1 N / mm 2 , the end surface may be curled due to the aging temperature at the time of manufacturing the capacitor, resulting in a problem that the electrical characteristics are deteriorated or the shape of the capacitor is deformed.
- a heat shrinkage stress value at a high temperature that cannot be expressed by a conventional heat shrinkage rate is adopted as a control factor. That is, by grasping the heat shrinkage stress value in the width direction at 140 ° C. as a control target, it is possible to obtain a suitable device finish, shape maintenance by high temperature treatment, withstand voltage at high temperature, reliability, and dimensional stability. It has become possible.
- the thermal shrinkage stress value in the longitudinal direction of 140 ° C. is 0.5 N / mm 2 or more and more 0.9N / mm 2 or more. Further, it is preferable that this value 2N / mm 2 or less, further 1.6 N / mm 2 or less. If the heat shrinkage stress value in the longitudinal direction at 140 ° C. is in the above range, the winding in the longitudinal direction at the time of capacitor formation will increase the uniformity of the gap between the film layers, improve the capacitor life and reliability, and have excellent electrical characteristics A film suitable for use can be obtained.
- the sum of the heat shrinkage stress value in the longitudinal direction and the heat shrinkage stress value in the width direction at 140 ° C. is preferably 0.5 N / mm 2 or more, and more preferably 1.0 N / mm 2 or more. Further, the sum of the stress values 2.5 N / mm 2 or less, further 2.2 N / mm 2 or less.
- the sum of the heat shrinkage stress values is within the above range, the uniformity of the gap between the film layers is increased during capacitor formation, curling of the edge is suppressed, and the capacitor life and reliability are improved. Further, the contact property with the end metallicon is good, and a capacitor having excellent electrical characteristics can be obtained.
- the heat shrinkage ratio after treatment at 140 ° C. for 15 minutes is preferably 4% or more, more preferably 4.5% or more in the longitudinal direction.
- the heat shrinkage rate is preferably 7% or less, more preferably 6% or less.
- the thermal shrinkage after treatment at 140 ° C. for 15 minutes in the width direction is preferably 0 to 2%, more preferably less than 1.5%.
- the total heat shrinkage rate after treatment at 120 ° C. for 15 minutes in the longitudinal direction and the width direction is preferably 2.5% or less, more preferably 2.2% or less.
- the uniformity of the inter-film gap and dimensional stability are improved, particularly when forming a multilayer capacitor, and the capacitor life is improved.
- the contact property between the film and the end metallicon becomes good, and a film having excellent electrical characteristics can be obtained.
- the biaxially oriented polypropylene film of the present invention has an appropriately roughened film surface. This is because an appropriate rough surface maintains the uniformity of the gap between the film layers and optimizes the ease of sliding between the films or with the transport roll. Therefore, the center line average roughness (SRa) is preferably 10 nm to 40 nm. If the center line average roughness (SRa) is too large, air may easily enter between the layers when the films are laminated, leading to deterioration of the capacitor element.
- SRa centerline average surface roughness
- This value is preferably 35 nm or less, and more preferably 30 nm or less.
- the film of the present invention defined for the heat shrinkage stress value is excellent in thermal dimensional stability at high temperature, and the balance between the heat shrinkage stress value in the longitudinal direction and the width direction and the heat shrinkage rate is controlled. It has characteristic heat absorption behavior. Capacitors obtained from such biaxially oriented polypropylene films with an appropriate rough surface maintain an appropriate clearance between the film layers. There is nothing to do. As a result, the life of the capacitor can be maintained and the safety can be stably exhibited.
- SRa value is measured based on JIS B-0601 (1982). For example, it can be measured using “Non-contact 3D fine shape measuring instrument (ET-30HK)” and “3D roughness analyzer (MODEL SPA-11)” manufactured by Kosaka Laboratory. Details of measurement conditions and the like will be described later.
- the polypropylene resin constituting the biaxially oriented polypropylene film of the present invention preferably contains 0.05 to 10% by mass of branched polypropylene (H). Furthermore, the polypropylene resin constituting the film of the present invention is preferably a mixture of linear polypropylene and the branched polypropylene (H).
- the branched polypropylene (H) has a relationship that the melt tension (MS) and the melt flow index (MFR) measured at 230 ° C. are log (MS)> ⁇ 0.56 log (MFR) +0.74.
- a branched polypropylene (H) satisfying the formula is particularly preferable.
- the melt tension measured at 230 ° C. is measured according to the melt flow index (MFR) measurement shown in JIS-K7210 (1999). Specifically, using a melt tension tester manufactured by Toyo Seiki Seisakusho Co., Ltd., the polypropylene is heated to 230 ° C., and the molten polypropylene is discharged at an extrusion speed of 15 mm / min to form a strand, and this strand is 6.4 m / min. The tension at the time of taking up at a speed is measured to obtain the melt tension (unit cN).
- the melt flow index (MFR) measured at 230 ° C. is a value measured in accordance with JIS-K7210 (1999) at a load of 21.18 N (unit: g / 10 minutes).
- the branched polypropylene (H) is not particularly limited as long as the above formula is satisfied, but the melt flow index (MFR) is 1 to 20 g / 10 min from the viewpoint of film formability. Those within the range are preferable, and those within the range of 1 to 10 g / 10 min are more preferable.
- the melt tension is preferably in the range of 1 to 30 cN, more preferably in the range of 2 to 20 cN. When the melt tension is small, the uniformity of the height or density of the protrusions is inferior, and the uniformity of the film interlayer gap when used as a capacitor tends to be inferior. The higher the melt tension, the higher the uniformity of the height and density of the protrusions, the more likely the surface formation is dense (the number of protrusions per unit area increases, the number of small protrusions increases), and the film interlayer gap becomes uniform.
- a branched polypropylene (H) satisfying the relational expression that the melt tension (MS) and the melt flow index (MFR) measured at 230 ° C. are log (MS)> ⁇ 0.56 log (MFR) +0.74 is obtained.
- a method of mixing an oligomer or polymer having a branched structure and linear polypropylene The mixing may be performed by mixing pellets or by mixing and melting and kneading the pellets.
- transducing a long chain branched structure into a polypropylene molecule can also be used.
- independent granular protrusions can be formed by a method of orienting a sheet containing a different polymer such as polyethylene. Further, it contains branched polypropylene (H) satisfying the relational expression that melt tension (MS) and melt flow index (MFR) satisfy log (MS)> ⁇ 0.56 log (MFR) +0.74 at 230 ° C.
- H branched polypropylene
- the biaxially oriented polypropylene film has a finer surface, fewer coarse protrusions, and excellent uniformity of protrusions than the biaxially oriented polypropylene film obtained by blending different polymers such as polyethylene. Have.
- the size of the spherulite produced in the cooling process of the melt-extruded resin sheet can be easily controlled to be small, and the insulation produced in the stretching process It is possible to obtain a polypropylene film that suppresses generation of defects and has excellent voltage resistance.
- the branched polypropylene (H) has an action as an ⁇ crystal nucleating agent.
- the addition amount is within a certain range, it is possible to form a rough surface by crystal transformation.
- the crater size described later can be made small and dense, excellent in the uniformity of the density of the projections, and few coarse projections A biaxially oriented polypropylene film having excellent surface roughness can be obtained.
- the branched polypropylene (H) is preferably contained in the polypropylene resin in an amount of 0.5 to 8% by mass, and particularly preferably 1 to 5% by mass, whereby the winding property and voltage resistance are further improved.
- a film excellent in device processability and capacitor characteristics can be obtained.
- at least two melting peaks observed when measured by 2nd-Run appear in the polypropylene resin constituting the film. That is, it has a shoulder peak (148 to 157 ° C.) in addition to the first melting peak (temperature 160 to 172 ° C.).
- a shoulder peak 148 to 157 ° C.
- the first melting peak temperature 160 to 172 ° C.
- the branched polypropylene (H) preferably has 1 to 5 internal 3-substituted olefin structures per 10,000 carbon atoms.
- the presence of the internal tri-substituted olefin can be confirmed from the integral ratio of the signal in the region of 5.0 to 5.2 ppm and the signal of 0.5 to 2.0 ppm in the 1 H-NMR spectrum.
- Specific examples of the branched polypropylene (H) include “Profax PF-814” manufactured by Basell, and “Daploy HMS-PP” (WB130HMS, WB135HMS, etc.) manufactured by Borealis. Is preferably used since the gel component in the resin is small.
- melt crystallization temperature of PP is usually in the vicinity of 110 ° C., but rises to a range of 115 to 130 ° C. is there. Thereby, since crystallinity increases, the dimensional stability of the film under high temperature will increase.
- a method using crystal transformation is suitable. This method is preferably used compared to a method of adding particles such as resin, inorganic particles, and organic particles that are incompatible with polypropylene. This is because the number of substances that deteriorate the electrical characteristics is reduced, and the possibility of deteriorating electrical characteristics such as a dielectric breakdown voltage is low.
- the surface form obtained by crystal transformation will be described.
- the surface formation method by crystal transformation is the surface formation using two crystal systems of polypropylene described in the literature (M. Fujiyama et. Al., Journal of Applied Polymer Science 36, P.985-1048 (1988)).
- ⁇ crystal monoclinic system, crystal density 0.936 g / cm 3
- ⁇ crystal hexagonal system, crystal density 0.922 g / cm 3
- irregularities are formed on the film surface by transforming thermally unstable ⁇ crystals into ⁇ crystals in the stretching process.
- the aspect ratio of the circular protrusion changes corresponding to the ratio of the stretching ratio in the aspect ratio when the stretching is performed.
- the aspect ratio of the stretching ratio is 1, that is, the isotropic stretching is almost circular, and the aspect ratio is large.
- the protrusions are flattened, and the shape obtained by the sequential biaxial stretching method usually has a long axis in the transverse direction of the film (the width direction of the film roll).
- a plurality of craters having different shapes are overlapped, and the crater is closed in an annular shape so that it does not have a circular shape but may have an arcuate or semicircular shape.
- One method of generating protrusions is to increase the nucleation ability by adding a raw material having a nucleating agent effect. As a result, the number of nuclei increases, resulting in a large number of small fine protrusions. As a result, there can be obtained a surface on which protrusions are uniformly formed with few relatively flat portions.
- the raw material having the nucleating agent effect include the above-described branched polypropylene (H). By controlling the amount of the branched polypropylene (H) added and the film forming conditions, the shape of the protrusion can be controlled. As a result, a moderately roughened surface can be generated. .
- the biaxially oriented polypropylene film of the present invention has high dimensional stability at high temperatures, so that the shape maintenance as a capacitor is stable. That is, even when the film is exposed to high temperatures, the dimensional change of the film is small, so that end face curl, wrinkles, and stress distortion during capacitor fabrication are reduced, and the withstand voltage is improved without deteriorating electrical characteristics.
- the capacitor ambient temperature is as high as 120 to 140 ° C.
- the expansion of the capacitor, the end face curl, or the instability of the film interlayer may occur. As a result, the electrical characteristics of the capacitor may deteriorate, and it may be difficult to recover the insulating property.
- one side is preferably subjected to corona discharge treatment in order to perform metal vapor deposition, and the other surface is preferably not subjected to corona discharge treatment.
- linear polypropylene that can be used for the biaxially oriented polypropylene film of the present invention
- the linear polypropylene is usually used for a capacitor, but preferably has a cold xylene soluble part (hereinafter CXS) of 7% by mass or less. If the amount of CXS is too large, the film formation stability may be inferior, and when producing a biaxially stretched film, voids may be formed in the film, resulting in dimensional stability and dielectric breakdown resistance. There is a case where the decrease in the resistance becomes large.
- CXS cold xylene soluble part
- CXS cold xylene soluble part
- CXS refers to a polypropylene component dissolved in xylene when polypropylene is completely dissolved in xylene and then precipitated at 20 ° C., and has low stereoregularity. It is considered that this is a component that is difficult to crystallize due to a low molecular weight. If such a component is contained in a large amount in the resin, the thermal dimensional stability of the film may be inferior, and the dielectric breakdown voltage at a high temperature may be lowered. Therefore, CXS is preferably 7% by mass or less, more preferably 5% by mass or less, and particularly preferably 4% by mass or less.
- the mesopentad fraction of the linear polypropylene is preferably 95% or more, more preferably 95.5% or more from the viewpoint of heat shrinkage characteristics at high temperatures. It is an index showing the stereoregularity of mesopentad fraction polypropylene. This value can be measured by a nuclear magnetic resonance method (NMR method). A higher value means a higher crystallinity and a higher melting point, and is particularly preferable from the viewpoints of dimensional stability at high temperatures and dielectric breakdown voltage.
- NMR method nuclear magnetic resonance method
- a higher value means a higher crystallinity and a higher melting point, and is particularly preferable from the viewpoints of dimensional stability at high temperatures and dielectric breakdown voltage.
- the mesopentad fraction is too large, it works advantageously with respect to dimensional stability at high temperatures, but the orientation tends to be extremely lowered, and the stretchability tends to be poor, so that film formation tends to be difficult.
- the withstand voltage at room temperature tends to decrease.
- a method of washing polypropylene resin powder with an aliphatic hydrocarbon such as n-heptane and a method of polymerizing by appropriately selecting a catalyst or a promoter are preferably employed. Is done.
- the melt flow index (MFR) is more preferably 1 to 10 g / 10 minutes (230 ° C., 21.18 N load), particularly preferably 2 to 5 g / 10 minutes (230 ° C., 21.18 N).
- the range of (load) is preferable from the viewpoint of film forming property.
- a method of controlling the average molecular weight or the molecular weight distribution is employed.
- Such a linear polypropylene is mainly composed of a homopolymer of propylene, but may contain a copolymer component derived from other unsaturated hydrocarbons as long as the object of the present invention is not impaired.
- monomer components include ethylene, 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene-1, 1-hexene, 4-methylpentene-1, 5-ethylhexene- Examples include 1,1-octene, 1-decene, 1-dodecene, vinylcyclohexene, styrene, allylbenzene, cyclopentene, norbornene, and 5-methyl-2-norbornene.
- the copolymerization amount or blend amount is preferably less than 1 mol% in terms of copolymerization amount and less than 30 mass% in terms of blend amount from the viewpoint of dielectric breakdown resistance and dimensional stability.
- additives such as a crystal nucleating agent, an antioxidant, a heat stabilizer, a slipping agent, an antistatic agent, and an antiblocking agent are added to the biaxially oriented polypropylene film of the present invention within a range that does not impair the object of the present invention.
- An agent, a filler, a viscosity modifier, an anti-coloring agent and the like can also be contained.
- These additives can be contained in polypropylene pellets.
- the type and amount of the antioxidant is a phenolic compound having steric hindrance, and at least one of them is preferably a high molecular weight type having a molecular weight of 500 or more.
- BHT 2,6-di-t-butyl-p-cresol
- 1,3,5-trimethyl-2,4,6- Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene for example, “Irganox” (registered trademark) manufactured by BASF) 1330: molecular weight 775.2
- tetrakis [methylene-3 (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate] methane for example, "Irganox” (registered trademark) 1010: molecular weight 1177.7 manufactured by BASF
- Irganox registered trademark
- the total content of these antioxidants is preferably in the range of 0.03 to 1.0 mass% with respect to the total amount of polypropylene. If the amount of the antioxidant is too small, the long-term heat resistance may be poor. If the amount of the antioxidant is too large, the capacitor element may be adversely affected by blocking at a high temperature due to bleeding out of these antioxidants.
- a more preferable content is 0.1 to 0.9% by mass, particularly preferably 0.2 to 0.8% by mass.
- the biaxially oriented film of the present invention can contain a crystal nucleating agent.
- the branched polypropylene (H) already has an ⁇ -crystal or ⁇ -crystal nucleating agent effect by itself.
- Other examples include ⁇ -nucleating agents (dibenzylidene sorbitols, sodium benzoate, etc.), ⁇ -nucleating agents (potassium 1,2-hydroxystearate, magnesium benzoate, N, N′-dicyclohexyl-2,6).
- -Amide compounds such as naphthalene dicarboxamide, quinanacridon compounds and the like).
- the addition of these crystal nucleating agents may make it difficult to obtain crystallinity and the accompanying thermal characteristics, dimensional stability, and surface roughness. May have adverse effects. Therefore, the content is preferably less than 0.1% by mass. Of course, if the object of the present invention is achieved, the crystal nucleus material may not be contained.
- the glossiness of the surface of the biaxially oriented polypropylene film of the present invention is preferably in the range of 120 to 145%, more preferably 125 to 140%, still more preferably 130 to 135%.
- Low gloss means that light scattering on the film surface is large. This means that the irregularities on the film surface are dense.
- the glossiness is too low, it means that the height of the protrusions or the number of protrusions is very large. As a result, the slipperiness between the film layers increases, and the dimensional stability at high temperatures as a capacitor tends to decrease. Become.
- the ash content of the biaxially oriented polypropylene film of the present invention is preferably 50 ppm or less (mass basis, the same applies hereinafter), more preferably 30 ppm or less, and particularly preferably 20 ppm or less.
- the ash content is too large, the dielectric breakdown resistance of the film is lowered, and the dielectric breakdown strength may be lowered when a capacitor is used.
- contamination from the extrusion system during film formation should be reduced as much as possible. For example, it is possible to employ a method in which the bleed time is taken for 1 hour or longer and the path is sufficiently washed with a polymer before actually starting film formation.
- the type of capacitor that can use the biaxially oriented polypropylene film of the present invention is not limited. Specifically, from the viewpoint of electrode configuration, either a foil wound capacitor or a metal-deposited film capacitor may be used, and it is also preferable for an oil immersion type capacitor impregnated with insulating oil or a dry type capacitor not using insulating oil at all. Used. From the viewpoint of the shape, it may be a wound type or a laminated type. Among these, the metal vapor deposition film capacitor is particularly preferably used because of the characteristics of the film of the present invention.
- a polypropylene film since a polypropylene film usually has a low surface wetting tension and it is difficult to stably deposit metal, it is preferable to perform a surface treatment on the film in advance for the purpose of increasing the adhesion of the metal.
- the surface treatment include corona discharge treatment, plasma treatment, glow treatment, and flame treatment.
- the surface wetting tension of a polypropylene film is about 30 mN / m, but it is preferable that the wetting tension is about 37 to 50 mN / m, preferably about 39 to 48 mN / m by these surface treatments. Within this range of surface wetting tension, the adhesion to the metal film is excellent, and the security is good.
- the biaxially oriented polypropylene film of the present invention is obtained by melt-extruding, forming into a sheet, and biaxially stretching using the raw materials that can give the above-described characteristics.
- the biaxial stretching method can be obtained by any of the simultaneous inflation biaxial stretching method, the tenter simultaneous biaxial stretching method, and the tenter sequential biaxial stretching method, and among them, the stability of the stretching process and the thickness of the obtained film. It is preferable to employ a tenter sequential biaxial stretching method in terms of controlling the uniformity of the film and the surface shape of the film.
- a polypropylene resin A mixture of linear polypropylene and high melt tension polypropylene (branched polypropylene (H)) is preferable.
- polypropylene resin is melt-extruded and passed through a filtration filter, it is extruded from a slit die at a temperature of 230 to 260 ° C. And solidify on a cooling drum to obtain an unstretched sheet.
- the resin in order to efficiently generate ⁇ crystals, it is preferable to maintain the resin for a predetermined time at a temperature at which the ⁇ crystal generation efficiency is maximized, and this temperature is usually 115 to 135 ° C.
- the holding time is preferably 1 second or longer.
- the process can be appropriately determined according to the resin temperature, the extrusion amount, the take-up speed, and the like.
- the diameter of the cooling drum greatly affects the holding time, the diameter of the drum is preferably at least 1 m.
- the cooling drum temperature is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and further 85 ° C. or higher.
- this temperature is 120 degrees C or less, Furthermore, 110 degrees C or less, Furthermore, it is 100 degrees C or less. If the casting drum temperature is too high, the crystallization of the film will proceed excessively, making it difficult to stretch in the subsequent process, and voids may be formed in the film, resulting in a decrease in dielectric breakdown resistance.
- any method of electrostatic application method, adhesion method using surface tension of water, air knife method, press roll method, underwater casting method, etc. can be used. It may be used.
- the air knife method is preferable because it has good flatness and can control the heat shrinkage characteristics and surface roughness of the front and back surfaces.
- the air temperature of the air knife is preferably 35 ° C. or higher, more preferably 40 ° C. or higher, and further 45 ° C. or higher.
- the temperature is preferably 120 ° C. or lower, more preferably 110 ° C. or lower, and further preferably 100 ° C. or lower. If the air temperature of the air knife is too high, crystallization of the film proceeds too much, and stretching in the subsequent process may be difficult, voids may be formed in the film, and the dielectric breakdown resistance may be degraded. On the other hand, if the air temperature of the air knife is too low, crystal formation may be insufficient, and it may be difficult to obtain the desired heat shrinkage stress and surface roughness.
- the air knife blown air speed is preferably 130 to 150 m / s, and preferably has a double-pipe structure in order to improve the uniformity in the width direction. If the air speed is too low, sufficient adhesion with the cast drum cannot be imparted and the film-forming property is lowered, and if it is too large, adhesion to the uniform casting drum cannot be performed, film-forming property, uneven quality, Detrimental effects such as uneven thickness are likely to occur. In order to prevent vibration of the film, it is preferable to adjust the position of the air knife so that air flows downstream of the film formation.
- this unstretched sheet is biaxially stretched to be biaxially oriented.
- the unstretched film is preheated through a roll maintained at 120 to 150 ° C., and then the sheet is maintained at a temperature of 130 ° C. to 150 ° C. In this case, after stretching by 4 to 7 times as a stretching ratio in the longitudinal direction. Cool to room temperature.
- the stretching method and the stretching ratio are not particularly limited and are appropriately selected depending on the polymer characteristics to be used.
- the stretched film is continuously guided to a tenter, stretched 7 to 15 times in the width direction at a temperature of 140 to 165 ° C., and then given a relaxation of 20 to 30% in the width direction, and a temperature of 140 to 165 ° C. After heat setting with, cool at 100-150 ° C. Particularly preferred is a relaxation rate of 22 to 28%, and more preferred is a relaxation rate of 22 to 25%.
- each of the relaxing steps provided in a plurality of stages is hereinafter referred to as “relaxing process (II)”.
- the first stage of the relaxing process (II) has the highest relaxation rate.
- the relaxing step (II) is preferably three or more steps.
- the relaxation process (II) is performed in the heat fixing chamber.
- the overall relaxation rate (hereinafter referred to as “total relaxation rate”) is determined by the first heat fixing chamber inlet width (A) and the last heat fixing chamber outlet. Using the width (B), the definition is as follows.
- Total relaxation rate (%) final heat fixing chamber outlet width (B) / first heat fixing chamber inlet width (A) ⁇ 100 When the total relaxation rate is set to 20%, the following relaxation rates can be taken. Often, the sum of the relaxation rates at each stage is greater than the total relaxation rate.
- Room 1 1st stage relaxation rate 10.0% Room 2 Second stage relaxation rate 8.0% Room 3 Third stage relaxation rate 3.4%.
- the desired heat-absorbing stress value can be stably obtained by inclining the temperature and magnification. Further, by performing relaxation also in the cooling zone, it becomes possible to further control the heat absorption stress value.
- the film is relaxed in the tenter, and after the film comes out of the tenter, the film is rapidly cooled at room temperature for 3 seconds or more before the film is wound, thereby further improving the dimensional stability of the film. Particularly preferably, it is 5 seconds or more. If the rapid cooling time at room temperature is shorter than 3 seconds, the film is wound before the dimensions of the film are fixed. Therefore, after unwinding the film, the dimensions of the film change and it is difficult to obtain the target heat shrinkage stress value.
- a method of rapidly cooling the film at room temperature it is preferable to blow air or to control the temperature of the film transport roll to room temperature.
- a metal film can be provided on the surface of the biaxially oriented polypropylene film of the present invention to form a metallized film.
- the method is not particularly limited, but, for example, a method of depositing a metal film such as an aluminum vapor deposition film to be an internal electrode of a film capacitor by depositing aluminum on at least one side of a polypropylene film is preferably used.
- a metal film such as an aluminum vapor deposition film to be an internal electrode of a film capacitor by depositing aluminum on at least one side of a polypropylene film is preferably used.
- other metal components such as nickel, copper, gold, silver, chromium and zinc can be deposited simultaneously or sequentially with aluminum.
- a protective layer can be provided on the deposited film with oil or the like.
- the thickness of the metal film is preferably in the range of 20 to 100 nm from the viewpoint of electrical characteristics and self-heeling properties of the film capacitor.
- the surface electrical resistance value of the metal film is preferably in the range of 1 to 20 ⁇ / ⁇ .
- the surface electrical resistance value can be controlled by the type of metal used and the film thickness. The method for measuring the surface electrical resistance value will be described later.
- the metallized film can be subjected to an aging treatment at a specific temperature or a heat treatment. Also, a coating such as polyphenylene oxide can be applied to at least one side of the metallized film for insulation or other purposes.
- the metallized film thus obtained can be laminated or rolled by various methods to obtain a film capacitor.
- An example of a preferred method for producing a wound film capacitor is as follows.
- Aluminum is vacuum-deposited on one side of a polypropylene film to produce a metallized polypropylene film. At that time, aluminum is vapor-deposited so that a striped margin portion (non-deposition portion) is generated in the longitudinal direction of the film.
- a tape-shaped take-up reel having a margin portion continuous in the longitudinal direction at one end in the width direction is formed by inserting a blade into the center of each vapor deposition portion and the center of each margin portion on the surface.
- a two-leaf metallized polypropylene film is drawn out from a take-up reel having a margin part on the left side in the width direction and a take-up reel having a margin part on the right side. Get a round body.
- a metallized propylene film in which the margin part is on the left in the width direction and the deposited metal is present to the right, and a metallized polypropylene film in which the margin part is on the right in the width direction and the deposited metal is present to the left The layers are stacked alternately.
- the core is removed from this wound body, the wound body is pressed, metallized on both ends in the width direction is sprayed to form an external electrode, and a lead wire is welded to the metallized to obtain a wound type film capacitor. .
- Film capacitors are used in a wide variety of applications such as for railway vehicles, for general household appliances (for example, for TVs and refrigerators), for automobiles (including hybrid cars, electric cars, etc.), for wind power generation and for solar power generation.
- the film capacitor of the present invention can also be suitably used for these applications.
- the characteristic value measurement method and evaluation method in the present invention are as follows. *
- Heat shrinkage rate (%) ((L0-L1) / L0) ⁇ 100.
- WMV is the mass method thickness (unit: mm) of the film determined according to JIS-C2330 (2001) 7.4.1.2. The measurement was performed 3 times and the average was obtained.
- Melt flow index (MFR) According to JIS-K7210 (1999), measurement was performed at a measurement temperature of 230 ° C. and a load of 21.18 N.
- Melt tension (MS) Measurement was performed using an apparatus for MFR measurement described in JIS-K7210 (1999). Using a melt tension tester manufactured by Toyo Seiki Seisakusho Co., Ltd., the polypropylene is heated to 230 ° C., the molten polypropylene is discharged at an extrusion speed of 15 mm / min to form a strand, and the tension when the strand is taken up at a speed of 6.5 m / min. was measured as melt tension.
- Peak splitting was performed using WINFIT software (Bruker). At that time, the peak area is divided from the peak area on the high magnetic field side as follows, and the attached software is automatically fitted to optimize the peak area division, and then mmmm and ss (mmmm spinning) The sum of the peak fractions of the sideband peaks was defined as the mesopentad fraction (mmmm). The measurement was performed 5 times, and the average value was defined as the mesopentad fraction.
- Measurement conditions Apparatus: ECX400P type nuclear magnetic resonance apparatus manufactured by JEOL Ltd. Measurement nucleus: 1 H nucleus (resonance frequency: 500 MHz) Measurement concentration: 2% by mass Solvent: Heavy orthodichlorobenzene Measurement temperature: 120 ° C Pulse width: 45 ° Pulse repetition time: 7 seconds Conversion count: 512 times Measurement mode: non decoupling B.
- a blade was put in the center of each vapor deposition section and the center of each margin section and slit, and a take-up reel was formed into a tape having a width of 20 mm and a margin of 0.5 mm on the left or right. Two pieces of each of the left and right margins of the obtained reel are overlapped and rolled so that the vapor deposition part protrudes 0.5 mm from the margin part in the width direction, and a round element having a capacitance of about 10 ⁇ F Got. KAW-4NHB manufactured by Minato Co., Ltd. was used for element winding. After aging in a reduced-pressure atmosphere at 140 ° C.
- element winding yield The ratio of the number of rejected products to the total number of manufactured products was expressed as a percentage and used as an index of workability (hereinafter this ratio is referred to as “element winding yield”). The higher the element winding yield, the better. 95% or more was designated as “A”, less than 95% as 80% or more as “B”, and less than 80% as “C”. The production number was evaluated with 50 elements.
- the capacitor element was wound with an element winding machine (KAW-4NHB) manufactured by Minato Seisakusho Co., Ltd., metallized, and then heat-treated at 140 ° C. for 10 hours under reduced pressure. A capacitor element was finished by mounting. The capacitance of the capacitor element at this time was 10 ⁇ F.
- KAW-4NHB element winding machine manufactured by Minato Seisakusho Co., Ltd.
- the number of manufactured products was evaluated using 10 elements, and expressed as an average value.
- ⁇ C / C (%) ((C1-C0) / C0) ⁇ 100.
- Example 1 As a linear polypropylene, a branched polypropylene produced by Basell Co., Ltd. was added to 100 parts by mass of a polypropylene polymer manufactured by Prime Polymer Co., Ltd. having a mesopentad fraction of 97.9% and a melt mass flow rate (MFR) of 2.6 g / 10 min. 0.5 parts by mass of resin (high melt tension polypropylene Profax PF-814 meso pentad fraction 91.0%) is blended and supplied to an extruder at a temperature of 250 ° C., and in sheet form from a T-type slit die at a resin temperature of 250 ° C.
- MFR melt mass flow rate
- the molten sheet was melt-extruded and cooled and solidified on a casting drum having a diameter of 1 m held at 90 ° C. at an air knife temperature of 90 ° C. and an air speed of 140 m / s.
- the retention time at 110 to 135 ° C. was 2.8 seconds as a result of measurement with a radiation thermometer.
- the sheet was gradually preheated to 140 ° C., then kept at a temperature of 145 ° C., passed between rolls provided with a difference in peripheral speed, and stretched 4.8 times in the longitudinal direction. At that time, a stretching heater (output 3.5 kW) was used in the stretching section to supplement the amount of heat and stretching.
- the film was guided to a tenter, stretched 10 times in the width direction at a stretching temperature of 160 ° C., and then relaxed in three stages with a relaxation rate of 23% in total in the width direction. (The first stage is 12.0%, the second stage is 9.0%, and the third stage is 3.9%.)
- Heat treatment is performed at a heat setting temperature of 150 ° C. and a cooling temperature of 140 ° C., and then at room temperature.
- the film was quenched for 5 seconds to obtain a biaxially oriented polypropylene film having a film thickness of 3.0 ⁇ m.
- a corona discharge treatment was performed on the surface on one side in the air with a treatment strength of 25 W ⁇ min / m 2 .
- the properties of the biaxially oriented polypropylene film thus obtained were as shown in Tables 1 and 2. Both withstand voltage and device processability were excellent.
- Example 2 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the mesopentad fraction of the linear polypropylene was 95.1%. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
- Example 3 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the film thickness was 1 ⁇ m, the tenter stretching temperature was 145 ° C., the heat setting temperature was 142 ° C., and the cooling temperature was 125 ° C.
- the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
- Example 4 The linear polypropylene has a mesopentad fraction of 97.4%, a film thickness of 2.5 ⁇ m, and a total relaxation rate of 25% (first stage 12.5%, second stage 9.0%, third stage 5.8). %), A film was formed in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
- Example 5 The linear polypropylene has a mesopentad fraction of 97.4%, a film thickness of 2.5 ⁇ m, and a total relaxation rate of 22% (first stage 11.0%, second stage 8.0%, third stage 4.7). %), A film was formed in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
- Example 6 Tenter stretching temperature 165 ° C, heat setting temperature 165 ° C, cooling temperature 150 ° C, total relaxation rate 28% (1st stage 14.0%, second stage 11.0%, third stage 5.9% Except that the film was formed in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film.
- the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
- the linear polypropylene has a mesopentad fraction of 95.1%, a tenter stretching temperature of 140 ° C, a heat setting temperature of 140 ° C, a cooling temperature of 100 ° C, and a total relaxation rate of 20% (1st stage 10.0% The second stage was 8.0%, the third stage was 3.4%), and a film was formed in the same manner as in Example 1 except that the room temperature cooling time was 3 seconds to obtain a biaxially oriented polypropylene film.
- the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
- Example 8 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the mesopentad fraction of the linear polypropylene was 97.4%. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
- Example 9 The film thickness is 2 ⁇ m, the stretching temperature at the tenter is 140 ° C., the heat setting temperature is 140 ° C., the cooling temperature is 100 ° C., and the total relaxation rate is 20% (first stage 11.0%, second stage 7.0%, Film formation was performed in the same manner as in Example 1 except that the third stage (3.3%) and the room temperature cooling time were set to 3 seconds to obtain a biaxially oriented polypropylene film.
- the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
- Example 1 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the mesopentad fraction of the linear polypropylene was 98.5%. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
- Example 2 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the mesopentad fraction of the linear polypropylene was 94.5%. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
- the linear polypropylene has a mesopentad fraction of 97.5%, a total relaxation rate of 15% (1st stage 8.0%, 2nd stage 5.0%, 3rd stage 2.7%), room temperature quenching time Except for 2.5 seconds, a film was formed in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film.
- the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
- Linear polypropylene has a mesopentad fraction of 98.5%, a cooling temperature of 50 ° C., and a relaxation rate of 15% (first stage 5.0%, second stage 5.3%, third stage 5.6%). Except for the above, a film was formed in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
- Example 5 The film thickness was 5 ⁇ m, the stretching temperature was 165 ° C., the heat setting temperature was 165 ° C., and the relaxation rate was 28% (first stage 9.3%, second stage 10.3%, third stage 11.5%). Except for the above, film formation was carried out in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
- the linear polypropylene has a mesopentad fraction of 94.5%, a stretching temperature of 165 ° C., a heat setting temperature of 165 ° C., and a relaxation rate of 25% (first stage 13.0%, second stage 9.0%, second stage A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the three steps were 5.2%.
- the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
- Example 8 Film formation was performed in the same manner as in Example 1 except that the mesopentad fraction of linear polypropylene was 94.5%, the stretching temperature was 140 ° C, the heat setting temperature was 140 ° C, the cooling temperature was 100 ° C, and the film thickness was 5 ⁇ m. And a biaxially oriented polypropylene film was obtained. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 1 and 2.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Metallurgy (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Laminated Bodies (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
(1)ポリプロピレンを含有し、前記ポリプロピレンのメソペンタッド分率が95%以上98%未満であり、マイクロメータ法による厚みが1~3μmであり、幅手方向の140℃での熱収縮応力値が0~1N/mm2である二軸配向ポリプロピレンフィルム。
(3) 長手方向の140℃での熱収縮応力値が0.5~2N/mm2である、前記二軸配向ポリプロピレンフィルム。
(4)長手方向と幅手方向の140℃での熱収縮応力値の総和が、0.5~2.5N/mm2である、前記いずれかの二軸配向ポリプロピレンフィルム。
(5) 140℃15分処理後の熱収縮率が、長手方向において4~7%、幅手方向において0~2%である、前記いずれかの二軸配向ポリプロピレンフィルム。
(6) 長手方向と幅手方向の120℃15分処理後のそれぞれの熱収縮率の和が2.5%以下である、前記いずれかの二軸配向ポリプロピレンフィルム。
(7) 前記いずれかの二軸配向ポリプロピレンフィルムの少なくとも片面に金属膜が設けられてなる金属化フィルム。
(8) 金属膜の表面電気抵抗値が1~20Ω/□の範囲内にある、前記金属化フィルム。
(9)前記いずれかの金属化フィルムを有するフィルムコンデンサ。
(10)ポリプロピレン樹脂を溶融押出しし、未延伸シートを得る工程
前記未延伸シートを二軸延伸し、フィルムを得る工程、
前記フィルムを20~30%弛緩する工程(I)を有する前記何れかの二軸配向フィルムの製造方法。
(11)弛緩する工程(I)が複数の弛緩する工程(II)からなり、最初の工程(II)における弛緩率が他の段の弛緩率に比べて高い、前記二軸配向フィルムの製造方法。
また、本発明の二軸配向ポリプロピレンフィルムの灰分は、50ppm以下(質量基準、以下同じ)であることが好ましく、より好ましくは30ppm以下であり、特に好ましくは20ppm以下である。かかる灰分が多すぎると、該フィルムの耐絶縁破壊特性が低下し、コンデンサとした場合に絶縁破壊強度が低下する場合がある。灰分をこの範囲とするためには、重合触媒残渣の少ない原料を用いることが重要である。その他に製膜時の押出系からの汚染も極力低減するように図るべきである。たとえばブリード時間を1時間以上かけ、実際に製膜を開始する前にポリマーで経路を十分洗浄する方法を採用できる。
トータル弛緩率を20%としようとする場合、下記のような弛緩率をとることができる。各段の弛緩率の和がトータル弛緩率より大きいことはよくあることである。
2室目 第2段階弛緩率8.0%
3室目 第3段階弛緩率3.4% 。
JIS-C-2330(2001)7.4.6.2に準拠し、サンプルフィルムを熱風オーブン中で120℃×15分または140℃×15分で以下の条件で保持した後の寸法変化率を各温度での熱収縮率とした。フィルムの長手方向と幅手方向を測定した。
(a)サンプル:幅10mm×長さ200mm(長さ方向を測定方向に合わせる)
(b)オーブン条件:120℃または140℃、荷重3gf
(c)測定長は処理前長L0=100mmを基準として、処理前後のフィルム長さL1(mm)の精読値を用いて次式で求める。
熱機械分析(TMA)(SII・ナノテクノロジー(株)社製/型式TMA/SS6100)を用いて、以下の条件でフィルム長手方向、幅手方向の熱収縮力曲線を測定した。
(a)サンプル:幅4mm×長さ20mm(長さ方向を測定方向に合わせる)
(b)温度プログラム:30℃から加熱レート10℃/minにて昇温
<140℃での熱収縮応力値>
得られた熱収縮力曲線から140℃の熱収縮力を読みとり、次式により算出した。
140℃での熱収縮応力値(N/mm2)=
140℃の熱収縮力(N)/{4(mm)×WMV(mm)}
ここで、WMVは、JIS-C2330(2001)7.4.1.2により求めたフィルムの質量法厚さ(単位:mm)である。測定は3回行い、平均を求めた。
JIS C2330(2001)の7.4.1.1に従い、マイクロメータ法厚みを測定した。
JIS K7105(1981)に準じ、試料をスガ試験機株式会社製 デジタル変角光沢計UGV-5Dを用いて入射角60°受光角60°の条件で測定した。試料の5点の測定値の平均値を光沢度とした。
JIS-K7210(1999)に準じて、測定温度230℃、荷重21.18Nで測定した。
JIS-K7210(1999)に示されるMFR測定用の装置を使用して測定した。株式会社東洋精機製作所製メルトテンションテスターを用いて、ポリプロピレンを230℃に加熱し、溶融ポリプロピレンを押出速度15mm/分で吐出しストランドとし、このストランドを6.5m/分の速度で引き取る際の張力を測定し、溶融張力とした。
試料を溶媒に溶解し、13C-NMRを用いて、以下の条件にてメソペンタッド分率(mmmm)を求めた(参考文献:新版 高分子分析ハンドブック 社団法人日本分析化学会・高分子分析研究懇談会 編 1995年 P609~611)。
装置:Brukner社製、DRX-500
測定核:13C核(共鳴周波数:125.8MHz)
測定濃度:10wt%
溶媒:ベンゼン/重オルトジクロロベンゼン=質量比1:3混合溶液
測定温度:130℃
スピン回転数:12Hz
NMR試料管:5mm管
パルス幅:45°(4.5μs)
パルス繰り返し時間:10秒
データポイント:64K
換算回数:10,000回
測定モード:complete decoupling
B.解析条件
LB(ラインブロードニングファクター)を1.0としてフーリエ変換を行い、mmmmピークを21.86ppmとした。WINFITソフト(Bruker社製)を用いて、ピーク分割を行った。その際に、高磁場側のピーク面積から以下のようにピーク面積分割を行い、更に付属ソフトの自動フィッテイングを行い、ピーク面積分割の最適化を行った上で、mmmmとss(mmmmのスピニングサイドバンドピーク)のピーク分率の合計をメソペンタッド分率(mmmm)とした。
尚、測定は5回行い、その平均値をメソペンタッド分率とした。
ピーク
(a)mrrm
(b)(c)rrrm(2つのピークとして分割)
(d)rrrr
(e)mrmm+rmrr
(f)mmrr
(g)mmmr
(h)ss(mmmmのスピニングサイドバンドピーク)
(i)mmmm
(j)rmmr 。
試料を溶媒に溶解し、1H-NMRを用いて、以下の条件にて内部3置換オレフィンの個数を求める。
装置:日本電子株式会社製ECX400P型核磁気共鳴装置
測定核:1H核(共鳴周波数:500MHz)
測定濃度:2質量%
溶媒:重オルトジクロロベンゼン
測定温度:120℃
パルス幅:45°
パルス繰り返し時間:7秒
換算回数:512回
測定モード:non decoupling
B.解析条件
オルトジクロロベンゼンの化学シフト7.10ppmを基準とし、5.0~5.2ppm領域の内部3置換オレフィンのプロトンに帰属したピークの面積と、0.5~2.0ppmのピークとの比から内部3置換オレフィンのプロトン比を求める。
ポリプロピレンフィルム試料0.5gを沸騰キシレン100mlに溶解して放冷後、20℃の恒温水槽で1時間かけて再結晶化させた後にろ過し、ろ液に溶解しているポリプロピレン成分を液体クロマトグラフ法にて定量する(X(g))。試料0.5gの精量値(X0(g))を用いて以下の式で求める。
JIS B-0601(1982)により、株式会社小坂研究所製「非接触三次元微細形状測定器(ET-30HK)」及び「三次元粗さ分析装置(MODEL SPA-11)」を用いて測定した。測定は長手方向に10回繰り返し、その平均値として中心線平均粗さ(SRa)を求めた。
金属化フィルムを長さ方向に10mm幅方向に全幅(50mm)の長方形にカットして試料とし、4端子法により、幅方向30mm間の金属膜の抵抗を測定し、得られた測定値に測定幅(10mm)を乗じて電極間距離(30mm)を除して、10mm×10mm当たりの電気抵抗値を算出した。(単位:Ω/□)
(12)フィルム絶縁破壊電圧(V/μm)
JIS C2330(2001)7.4.11.2 B法(平板電極法)に準じて、平均値を求め、測定したサンプルのマイクロメータ法フィルム厚み(μm)(上述)で除し、V/μmで表記した。
後述する各実施例および比較例で得られたポリプロピレンフィルムの片面に、ULVAC製真空蒸着機でアルミニウムを膜抵抗が8Ω/□となるようにアルミニウムを真空蒸着した。その際、長手方向に走るマージン部を有するストライプ状に蒸着した(蒸着部の幅39.0mm、マージン部の幅1.0mmの繰り返し)。
後述する各実施例および比較例で得られたフィルムに、ULVAC製真空蒸着機でアルミニウムを膜抵抗が8Ω/□で長手方向に垂直な方向にマージン部を設けた所謂T型マージンパターンを有する蒸着パターンを施し、幅50mmの蒸着リールを得た。
直鎖状ポリプロピレンとしてメソペンタッド分率が97.9%で、メルトマスフローレイト(MFR)が2.6g/10分であるプライムポリマー(株)製ポリプロピレン樹脂100質量部に、Basell社製分岐鎖状ポリプロピレン樹脂(高溶融張力ポリプロピレンProfax PF-814 メソペンタッド分率91.0%)を0.5質量部ブレンドし、温度250℃の押出機に供給し、樹脂温度250℃でT型スリットダイよりシート状に溶融押出し、該溶融シートを90℃に保持された直径1mのキャスティングドラム上で、エアーナイフ温度90℃、エアー速度140m/sで冷却固化した。110~135℃の保持時間は放射温度計による測定の結果、2.8秒であった。次いで、該シートを徐々に140℃に予熱し、引き続き145℃の温度に保ち周速差を設けたロール間に通し、長手方向に4.8倍に延伸した。その際、延伸部でラジエーションヒーター(出力3.5kW)を用い熱量を補い延伸した。引き続き該フィルムをテンターに導き、延伸温度160℃で幅方向に10倍延伸し、次いで幅方向にトータル23%の弛緩率で3段階に弛緩した。(第1段階は12.0%、第2段階は9.0%、第3段階は3.9%である。)、熱固定温度150℃、冷却温度140℃で熱処理を行ない、その後室温で5秒間急冷して、フィルム厚みが3.0μmの二軸配向ポリプロピレンフィルムを得た。さらに片側の表面に25W・min/m2の処理強度で大気中でコロナ放電処理を行った。こうして得られた二軸配向ポリプロピレンフィルムの特性は表1、表2に示すとおりであった。耐電圧、素子加工性とも優れるものであった。
直鎖状ポリプロピレンのメソペンタッド分率を95.1%とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
フィルム厚みを1μm、テンター延伸温度を145℃、熱固定温度を142℃、冷却温度を125℃以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
直鎖状ポリプロピレンのメソペンタッド分率を97.4%、フィルム厚みを2.5μm、トータル弛緩率を25%(第1段階12.5%、第2段階9.0%、第3段階5.8%)とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
直鎖状ポリプロピレンのメソペンタッド分率を97.4%、フィルム厚みを2.5μm、トータル弛緩率を22%(第1段階11.0%、第2段階8.0%、第3段階4.7%)とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
テンター延伸温度を165℃、熱固定温度を165℃、冷却温度を150℃、トータル弛緩率を28%(第1段階14.0%、第2段階11.0%、第3段階5.9%)とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
直鎖状ポリプロピレンのメソペンタッド分率を95.1%、テンターでの延伸温度を140℃、熱固定温度を140℃、冷却温度を100℃、トータル弛緩率を20%(第1段階10.0%、第2段階8.0%、第3段階3.4%)、室温冷却時間を3秒とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
直鎖状ポリプロピレンのメソペンタッド分率を97.4%とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
フィルム厚みを2μm、テンターでの延伸温度を140℃、熱固定温度を140℃、冷却温度を100℃、トータル弛緩率を20%(第1段階11.0%、第2段階7.0%、第3段階3.3%)、室温冷却時間を3秒とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
直鎖状ポリプロピレンのメソペンタッド分率を98.5%とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
直鎖状ポリプロピレンのメソペンタッド分率を94.5%とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
直鎖状ポリプロピレンのメソペンタッド分率を97.5%、トータル弛緩率を15%(第1段階8.0%、第2段階5.0%、第3段階2.7%)、室温急冷時間を2.5秒以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
直鎖状ポリプロピレンのメソペンタッド分率を98.5%、冷却温度を50℃、弛緩率を15%(第1段階5.0%、第2段階5.3%、第3段階5.6%)とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
フィルム厚みを5μm、延伸温度を165℃、熱固定温度を165℃、弛緩率を28%(第1段階9.3%、第2段階10.3%、第3段階11.5%)とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
フィルム厚みを4μm以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
直鎖状ポリプロピレンのメソペンタッド分率を94.5%、延伸温度を165℃、熱固定温度を165℃、弛緩率を25%(第1段階13.0%、第2段階9.0%、第3段階5.2%)とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
直鎖状ポリプロピレンのメソペンタッド分率を94.5%、延伸温度を140℃、熱固定温度を140℃、冷却温度を100℃、フィルム厚みを5μmとした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表1、表2に示す。
Claims (11)
- ポリプロピレンを含有し、前記ポリプロピレンのメソペンタッド分率が95%以上98%未満であり、マイクロメータ法による厚みが1~3μmであり、幅手方向の140℃での熱収縮応力値が0~1N/mm2である二軸配向ポリプロピレンフィルム。
- メソペンタッド分率が95%以上98%未満であるポリプロピレンが直鎖状のポリプロピレンである請求項1記載のポリプロピレンフィルム。
- 長手方向の140℃での熱収縮応力値が0.5~2N/mm2である、請求項1または2に記載の二軸配向ポリプロピレンフィルム。
- 長手方向と幅手方向の140℃での熱収縮応力値の総和が、0.5~2.5N/mm2である、請求項1~3いずれかに記載の二軸配向ポリプロピレンフィルム。
- 140℃15分処理後の熱収縮率が、長手方向において4~7%、幅手方向において0~2%である、請求項1~4のいずれかに記載の二軸配向ポリプロピレンフィルム。
- 長手方向と幅手方向の120℃15分処理後のそれぞれの熱収縮率の和が2.5%以下である、請求項1~5のいずれかに記載の二軸配向ポリプロピレンフィルム。
- 請求項1~6のいずれかに記載の二軸配向ポリプロピレンフィルムの少なくとも片面に金属膜が設けられてなる金属化フィルム。
- 金属膜の表面電気抵抗値が1~20Ω/□の範囲内にある、請求項7に記載の金属化フィルム。
- 請求項7または請求項8に記載の金属化フィルムを有するフィルムコンデンサ。
- ポリプロピレン樹脂を溶融押出しし、未延伸シートを得る工程
前記未延伸シートを二軸延伸し、フィルムを得る工程、
前記フィルムを20~30%弛緩する工程(I)を有する請求項1~6いずれかの二軸配向フィルムの製造方法。 - 弛緩する工程(I)が複数の弛緩する工程(II)からなり、最初の工程(II)における弛緩率が他の段の弛緩率に比べて高い請求項10記載の二軸配向フィルムの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014542041A JP5660261B1 (ja) | 2013-03-22 | 2014-03-19 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
CN201480016554.9A CN105143321B (zh) | 2013-03-22 | 2014-03-19 | 双轴取向聚丙烯膜、金属化膜和膜电容器 |
US14/773,516 US20160024641A1 (en) | 2013-03-22 | 2014-03-19 | Biaxially oriented polypropylene film, metallized film and film capacitor |
EP14770169.2A EP2977398B1 (en) | 2013-03-22 | 2014-03-19 | Biaxially oriented polypropylene film, metallized film and film capacitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-059847 | 2013-03-22 | ||
JP2013059847 | 2013-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014148547A1 true WO2014148547A1 (ja) | 2014-09-25 |
Family
ID=51580221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/057517 WO2014148547A1 (ja) | 2013-03-22 | 2014-03-19 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160024641A1 (ja) |
EP (1) | EP2977398B1 (ja) |
JP (1) | JP5660261B1 (ja) |
CN (1) | CN105143321B (ja) |
WO (1) | WO2014148547A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016043217A1 (ja) * | 2014-09-19 | 2016-03-24 | 東レ株式会社 | ポリプロピレンフィルムおよびフィルムコンデンサ |
JP2016195250A (ja) * | 2015-03-31 | 2016-11-17 | 王子ホールディングス株式会社 | フィルムコンデンサ用二軸延伸ポリプロピレンフィルム |
CN107531924A (zh) * | 2015-05-12 | 2018-01-02 | 东丽株式会社 | 聚丙烯膜、金属膜层叠膜和膜电容器以及它们的制造方法 |
WO2019044758A1 (ja) * | 2017-08-29 | 2019-03-07 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
JP2019044171A (ja) * | 2017-08-29 | 2019-03-22 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
JP2019172972A (ja) * | 2018-03-29 | 2019-10-10 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
JP2019172973A (ja) * | 2018-03-29 | 2019-10-10 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
WO2020196602A1 (ja) * | 2019-03-28 | 2020-10-01 | 東レ株式会社 | ポリプロピレンフィルム |
US11021597B2 (en) | 2015-10-16 | 2021-06-01 | Borealis Ag | Biaxially oriented films made of propylene polymer compositions |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015091829A1 (en) * | 2013-12-18 | 2015-06-25 | Borealis Ag | Bopp film having low shrinkage |
KR101813706B1 (ko) | 2014-12-04 | 2017-12-29 | 주식회사 엘지화학 | 무연신 폴리프로필렌계 필름 |
EP3332961B1 (en) * | 2015-08-03 | 2020-02-19 | Toray Industries, Inc. | Olefin multilayer film and film capacitor |
WO2018124300A1 (ja) | 2016-12-28 | 2018-07-05 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム、金属化フィルム及びコンデンサ |
KR20210047870A (ko) * | 2018-08-29 | 2021-04-30 | 오지 홀딩스 가부시키가이샤 | 금속층 일체형 폴리프로필렌 필름, 필름 콘덴서, 및 금속층 일체형 폴리프로필렌 필름의 제조 방법 |
CN110165122B (zh) * | 2019-05-15 | 2022-03-04 | 乐凯胶片股份有限公司 | 聚乙烯微孔膜及其制备方法和应用 |
WO2021166994A1 (ja) * | 2020-02-21 | 2021-08-26 | 東レ株式会社 | ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ |
WO2021166993A1 (ja) * | 2020-02-21 | 2021-08-26 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
CN111763913A (zh) * | 2020-07-07 | 2020-10-13 | 江苏伟业铝材有限公司 | 一种门窗用铝型材表面喷涂方法 |
CN112175220B (zh) * | 2020-09-03 | 2023-01-03 | 广东以色列理工学院 | 耐高温的改性聚丙烯薄膜及其制备方法和应用 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08294962A (ja) | 1995-02-28 | 1996-11-12 | Toray Ind Inc | 耐熱耐電圧性コンデンサ用ポリプロピレンフィルム |
JPH10119127A (ja) | 1996-10-17 | 1998-05-12 | Toray Ind Inc | 二軸配向ポリプロピレンフィルムおよびコンデンサー |
JPH11147962A (ja) | 1997-11-18 | 1999-06-02 | Oji Paper Co Ltd | 粗面化二軸延伸ポリプロピレンおよびその製造方法 |
JPH11273991A (ja) * | 1998-03-20 | 1999-10-08 | Toray Ind Inc | コンデンサ用ポリプロピレンフィルム及びそれからなるコンデンサ |
JP2001072778A (ja) | 1999-07-08 | 2001-03-21 | Toray Ind Inc | 二軸配向ポリプロピレンフィルム |
JP2001129944A (ja) | 1999-11-02 | 2001-05-15 | Toray Ind Inc | 二軸配向ポリプロピレンフィルム |
JP2001324607A (ja) | 2000-05-16 | 2001-11-22 | Kimoto & Co Ltd | 光拡散性シート |
JP2007308604A (ja) | 2006-05-18 | 2007-11-29 | Oji Paper Co Ltd | 微細粗面化ポリプロピレンフィルム |
JP2008127460A (ja) * | 2006-11-21 | 2008-06-05 | Toray Ind Inc | コンデンサー用二軸配向ポリプロピレンフィルム、それを用いてなる金属化フィルムおよびコンデンサー |
JP2009088492A (ja) * | 2007-09-11 | 2009-04-23 | Toray Ind Inc | コンデンサ用ポリプロピレンフィルムおよびコンデンサ |
WO2009060944A1 (ja) * | 2007-11-07 | 2009-05-14 | Oji Paper Co., Ltd. | コンデンサー用二軸延伸ポリプロピレンフィルムおよびそれを用いた蒸着フィルム並びにコンデンサー |
WO2012002123A1 (ja) * | 2010-06-29 | 2012-01-05 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3654541B2 (ja) * | 1995-11-29 | 2005-06-02 | 東レ株式会社 | 耐熱性コンデンサ用ポリプロピレンフィルム |
US6094337A (en) * | 1996-08-09 | 2000-07-25 | Toray Industries Inc. | Polypropylene film and capacitor made by using it as a dielectric |
JP4715390B2 (ja) * | 2004-08-26 | 2011-07-06 | 東レ株式会社 | コンデンサ用ポリプロピレンフィルム及びそれからなるコンデンサ |
CN101374891B (zh) * | 2006-02-17 | 2011-11-30 | 东丽株式会社 | 双轴取向聚丙烯薄膜 |
DE502006008283D1 (de) * | 2006-08-31 | 2010-12-23 | Treofan Germany Gmbh & Co Kg | Biaxial orientierte Elektroisolierfolie |
JP2010129560A (ja) * | 2008-11-25 | 2010-06-10 | Toray Ind Inc | コンデンサ用ポリプロピレンフィルムおよびこれからなる金属化フィルムコンデンサ |
-
2014
- 2014-03-19 CN CN201480016554.9A patent/CN105143321B/zh active Active
- 2014-03-19 EP EP14770169.2A patent/EP2977398B1/en active Active
- 2014-03-19 US US14/773,516 patent/US20160024641A1/en not_active Abandoned
- 2014-03-19 WO PCT/JP2014/057517 patent/WO2014148547A1/ja active Application Filing
- 2014-03-19 JP JP2014542041A patent/JP5660261B1/ja active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08294962A (ja) | 1995-02-28 | 1996-11-12 | Toray Ind Inc | 耐熱耐電圧性コンデンサ用ポリプロピレンフィルム |
JPH10119127A (ja) | 1996-10-17 | 1998-05-12 | Toray Ind Inc | 二軸配向ポリプロピレンフィルムおよびコンデンサー |
JPH11147962A (ja) | 1997-11-18 | 1999-06-02 | Oji Paper Co Ltd | 粗面化二軸延伸ポリプロピレンおよびその製造方法 |
JPH11273991A (ja) * | 1998-03-20 | 1999-10-08 | Toray Ind Inc | コンデンサ用ポリプロピレンフィルム及びそれからなるコンデンサ |
JP2001072778A (ja) | 1999-07-08 | 2001-03-21 | Toray Ind Inc | 二軸配向ポリプロピレンフィルム |
JP2001129944A (ja) | 1999-11-02 | 2001-05-15 | Toray Ind Inc | 二軸配向ポリプロピレンフィルム |
JP2001324607A (ja) | 2000-05-16 | 2001-11-22 | Kimoto & Co Ltd | 光拡散性シート |
JP2007308604A (ja) | 2006-05-18 | 2007-11-29 | Oji Paper Co Ltd | 微細粗面化ポリプロピレンフィルム |
JP2008127460A (ja) * | 2006-11-21 | 2008-06-05 | Toray Ind Inc | コンデンサー用二軸配向ポリプロピレンフィルム、それを用いてなる金属化フィルムおよびコンデンサー |
JP2009088492A (ja) * | 2007-09-11 | 2009-04-23 | Toray Ind Inc | コンデンサ用ポリプロピレンフィルムおよびコンデンサ |
WO2009060944A1 (ja) * | 2007-11-07 | 2009-05-14 | Oji Paper Co., Ltd. | コンデンサー用二軸延伸ポリプロピレンフィルムおよびそれを用いた蒸着フィルム並びにコンデンサー |
WO2012002123A1 (ja) * | 2010-06-29 | 2012-01-05 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
Non-Patent Citations (2)
Title |
---|
"High Polymer Analysis Handbook", 1995, RESEARCH SOCIETY OF POLYMER ANALYSIS, pages: 609 - 611 |
M. FUJIYAMA, JOURNAL OF APPLIED POLYMER SCIENCE, vol. 36, 1988, pages 985 - 1048 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016043217A1 (ja) * | 2014-09-19 | 2017-06-29 | 東レ株式会社 | ポリプロピレンフィルムおよびフィルムコンデンサ |
WO2016043217A1 (ja) * | 2014-09-19 | 2016-03-24 | 東レ株式会社 | ポリプロピレンフィルムおよびフィルムコンデンサ |
JP2016195250A (ja) * | 2015-03-31 | 2016-11-17 | 王子ホールディングス株式会社 | フィルムコンデンサ用二軸延伸ポリプロピレンフィルム |
CN107531924A (zh) * | 2015-05-12 | 2018-01-02 | 东丽株式会社 | 聚丙烯膜、金属膜层叠膜和膜电容器以及它们的制造方法 |
CN107531924B (zh) * | 2015-05-12 | 2021-01-26 | 东丽株式会社 | 聚丙烯膜、金属膜层叠膜和膜电容器以及它们的制造方法 |
US11021597B2 (en) | 2015-10-16 | 2021-06-01 | Borealis Ag | Biaxially oriented films made of propylene polymer compositions |
WO2019044758A1 (ja) * | 2017-08-29 | 2019-03-07 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
JP2019044171A (ja) * | 2017-08-29 | 2019-03-22 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
JP6521189B1 (ja) * | 2017-08-29 | 2019-05-29 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
JP7318187B2 (ja) | 2017-08-29 | 2023-08-01 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
US11440292B2 (en) | 2017-08-29 | 2022-09-13 | Toray Industries, Inc. | Polypropylene film, metal layer laminated film, and film capacitor |
JP2019172973A (ja) * | 2018-03-29 | 2019-10-10 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
JP7218618B2 (ja) | 2018-03-29 | 2023-02-07 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
JP7234698B2 (ja) | 2018-03-29 | 2023-03-08 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
JP2019172972A (ja) * | 2018-03-29 | 2019-10-10 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
KR20210148096A (ko) | 2019-03-28 | 2021-12-07 | 도레이 카부시키가이샤 | 폴리프로필렌 필름 |
WO2020196602A1 (ja) * | 2019-03-28 | 2020-10-01 | 東レ株式会社 | ポリプロピレンフィルム |
Also Published As
Publication number | Publication date |
---|---|
US20160024641A1 (en) | 2016-01-28 |
JP5660261B1 (ja) | 2015-01-28 |
CN105143321A (zh) | 2015-12-09 |
CN105143321B (zh) | 2019-05-03 |
EP2977398B1 (en) | 2019-09-18 |
EP2977398A4 (en) | 2016-10-26 |
EP2977398A1 (en) | 2016-01-27 |
JPWO2014148547A1 (ja) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5660261B1 (ja) | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ | |
JP6120180B2 (ja) | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ | |
JP5472461B2 (ja) | 二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ | |
JP5825103B2 (ja) | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ | |
JP6319293B2 (ja) | コンデンサ用二軸配向ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ | |
KR20180005670A (ko) | 폴리프로필렌 필름, 금속막 적층 필름 및 필름 콘덴서 그리고 이들의 제조 방법 | |
JP6724457B2 (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP5664137B2 (ja) | コンデンサ用二軸延伸ポリプロピレンフィルムおよび金属化フィルム、フィルムコンデンサ | |
JP6477909B2 (ja) | ポリプロピレンフィルムロール | |
JP6032386B1 (ja) | コンデンサ用二軸配向ポリプロピレンフィルム、金属積層フィルムおよびフィルムコンデンサ | |
US11795282B2 (en) | Polypropylene film, metal film laminated film using same, and film capacitor | |
JP6682937B2 (ja) | コンデンサ用二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ | |
KR102451416B1 (ko) | 2축 배향 폴리프로필렌 필름, 금속막 적층 필름 및 필름 콘덴서 | |
JP6885484B2 (ja) | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ | |
JP6988243B2 (ja) | ポリプロピレンフィルムロール | |
JP2020132884A (ja) | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ | |
JP2019172922A (ja) | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP6992919B2 (ja) | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP2022142713A (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ | |
JP2024035063A (ja) | 二軸配向ポリプロピレンフィルム | |
JP2023082646A (ja) | 二軸配向ポリプロピレンフィルム | |
JP2022114442A (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ | |
JP2020132883A (ja) | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ | |
JP2021152131A (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480016554.9 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2014542041 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14770169 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014770169 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14773516 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |