WO2016043217A1 - ポリプロピレンフィルムおよびフィルムコンデンサ - Google Patents
ポリプロピレンフィルムおよびフィルムコンデンサ Download PDFInfo
- Publication number
- WO2016043217A1 WO2016043217A1 PCT/JP2015/076278 JP2015076278W WO2016043217A1 WO 2016043217 A1 WO2016043217 A1 WO 2016043217A1 JP 2015076278 W JP2015076278 W JP 2015076278W WO 2016043217 A1 WO2016043217 A1 WO 2016043217A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- points
- polypropylene
- breakdown voltage
- capacitor
- Prior art date
Links
- -1 Polypropylene Polymers 0.000 title claims abstract description 150
- 239000004743 Polypropylene Substances 0.000 title claims abstract description 137
- 229920001155 polypropylene Polymers 0.000 title claims abstract description 136
- 239000003990 capacitor Substances 0.000 title claims abstract description 70
- 230000015556 catabolic process Effects 0.000 claims abstract description 48
- 239000012298 atmosphere Substances 0.000 claims abstract description 19
- 229920005989 resin Polymers 0.000 claims description 43
- 239000011347 resin Substances 0.000 claims description 43
- 239000002245 particle Substances 0.000 claims description 33
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 238000002844 melting Methods 0.000 claims description 19
- 230000008018 melting Effects 0.000 claims description 19
- 239000002667 nucleating agent Substances 0.000 claims description 19
- 230000007547 defect Effects 0.000 abstract description 13
- 238000009413 insulation Methods 0.000 abstract description 13
- 239000010408 film Substances 0.000 description 216
- 239000010410 layer Substances 0.000 description 64
- 238000000034 method Methods 0.000 description 58
- 238000010438 heat treatment Methods 0.000 description 29
- 239000013078 crystal Substances 0.000 description 21
- 238000005259 measurement Methods 0.000 description 20
- 230000008569 process Effects 0.000 description 20
- 238000011282 treatment Methods 0.000 description 18
- 238000007740 vapor deposition Methods 0.000 description 17
- 238000001816 cooling Methods 0.000 description 16
- 239000002994 raw material Substances 0.000 description 13
- 238000005266 casting Methods 0.000 description 12
- 239000000155 melt Substances 0.000 description 11
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 10
- 239000000600 sorbitol Substances 0.000 description 10
- 239000002344 surface layer Substances 0.000 description 8
- 239000003963 antioxidant agent Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 6
- 238000003475 lamination Methods 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229920005992 thermoplastic resin Polymers 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 230000003078 antioxidant effect Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000003851 corona treatment Methods 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000004381 surface treatment Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000010954 inorganic particle Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000011146 organic particle Substances 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000004736 wide-angle X-ray diffraction Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 239000003484 crystal nucleating agent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- JGMMIGGLIIRHFV-UHFFFAOYSA-N nonane-1,2,3,4,5,6,7,8,9-nonol Chemical class OCC(O)C(O)C(O)C(O)C(O)C(O)C(O)CO JGMMIGGLIIRHFV-UHFFFAOYSA-N 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- FMZUHGYZWYNSOA-VVBFYGJXSA-N (1r)-1-[(4r,4ar,8as)-2,6-diphenyl-4,4a,8,8a-tetrahydro-[1,3]dioxino[5,4-d][1,3]dioxin-4-yl]ethane-1,2-diol Chemical compound C([C@@H]1OC(O[C@@H]([C@@H]1O1)[C@H](O)CO)C=2C=CC=CC=2)OC1C1=CC=CC=C1 FMZUHGYZWYNSOA-VVBFYGJXSA-N 0.000 description 2
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical class OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004990 Smectic liquid crystal Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000001906 matrix-assisted laser desorption--ionisation mass spectrometry Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- YWEWWNPYDDHZDI-JJKKTNRVSA-N (1r)-1-[(4r,4ar,8as)-2,6-bis(3,4-dimethylphenyl)-4,4a,8,8a-tetrahydro-[1,3]dioxino[5,4-d][1,3]dioxin-4-yl]ethane-1,2-diol Chemical compound C1=C(C)C(C)=CC=C1C1O[C@H]2[C@@H]([C@H](O)CO)OC(C=3C=C(C)C(C)=CC=3)O[C@H]2CO1 YWEWWNPYDDHZDI-JJKKTNRVSA-N 0.000 description 1
- NVGCTCRBHKNRKP-XLNGHYISSA-N (2R,3R,4S,5R)-7-(2,4-diethoxyphenyl)hept-6-ene-1,2,3,4,5,6-hexol Chemical compound CCOc1ccc(C=C(O)[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)c(OCC)c1 NVGCTCRBHKNRKP-XLNGHYISSA-N 0.000 description 1
- HZVFRKSYUGFFEJ-YVECIDJPSA-N (2r,3r,4s,5r)-7-phenylhept-6-ene-1,2,3,4,5,6-hexol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=CC1=CC=CC=C1 HZVFRKSYUGFFEJ-YVECIDJPSA-N 0.000 description 1
- PIYNPBVOTLQBTC-UHFFFAOYSA-N 1-[8-propyl-2,6-bis(4-propylphenyl)-4,4a,8,8a-tetrahydro-[1,3]dioxino[5,4-d][1,3]dioxin-4-yl]ethane-1,2-diol Chemical compound O1C2C(CCC)OC(C=3C=CC(CCC)=CC=3)OC2C(C(O)CO)OC1C1=CC=C(CCC)C=C1 PIYNPBVOTLQBTC-UHFFFAOYSA-N 0.000 description 1
- SDRZFSPCVYEJTP-UHFFFAOYSA-N 1-ethenylcyclohexene Chemical compound C=CC1=CCCCC1 SDRZFSPCVYEJTP-UHFFFAOYSA-N 0.000 description 1
- LNYGCDOWFJXOSW-UHFFFAOYSA-N 1-n,3-n,5-n-tricyclohexylbenzene-1,3,5-tricarboxamide Chemical compound C=1C(C(=O)NC2CCCCC2)=CC(C(=O)NC2CCCCC2)=CC=1C(=O)NC1CCCCC1 LNYGCDOWFJXOSW-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- ROHFBIREHKPELA-UHFFFAOYSA-N 2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]prop-2-enoic acid;methane Chemical compound C.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O ROHFBIREHKPELA-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 1
- PCBPVYHMZBWMAZ-UHFFFAOYSA-N 5-methylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C)CC1C=C2 PCBPVYHMZBWMAZ-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000000944 Soxhlet extraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 229940087101 dibenzylidene sorbitol Drugs 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 239000011104 metalized film Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920006280 packaging film Polymers 0.000 description 1
- 239000012785 packaging film Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical group 0.000 description 1
- 229930015698 phenylpropene Natural products 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/14—Organic dielectrics
- H01G4/18—Organic dielectrics of synthetic material, e.g. derivatives of cellulose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/441—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/33—Thin- or thick-film capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a polypropylene film suitable for packaging, industrial use, and the like. More specifically, the dielectric for a capacitor has few insulation defects and suppresses variation in dielectric breakdown voltage in a high temperature environment, and is particularly used for a capacitor for high voltage.
- the present invention relates to a polypropylene film that can exhibit high voltage resistance and reliability.
- Polypropylene films are excellent in transparency, mechanical properties, electrical properties, etc., and are therefore used in various applications such as packaging applications, tape applications, cable wrapping and electrical applications including capacitors.
- capacitors are particularly preferably used for high voltage capacitors because of their excellent withstand voltage characteristics and low loss characteristics, not limited to DC applications and AC applications.
- Such a polypropylene film needs to be stretched at a high magnification at the time of film formation from the viewpoint of voltage resistance, productivity, and workability, and in order to improve voltage resistance, in particular, in-plane uniform stretching is required. It is important to reduce insulation defects that break down with voltage. From the viewpoint of heat resistance, it is said that the temperature of the usage environment will exceed 120 ° C. in the future when considering power semiconductor applications using SiC. Due to the demand for further heat resistance and voltage resistance as a capacitor, film withstand voltage stability at a high temperature of 125 ° C. is required.
- the upper limit of the use temperature of the polypropylene film is said to be about 110 ° C., and it is difficult to stably maintain the withstand voltage in a temperature environment exceeding 120 ° C., for example, 125 ° C. Met.
- Voids derived from crystal transformation into crystals are formed, so there are many variations when viewed across the film, such as the withstand voltage being lowered depending on the measurement site, and when using capacitors, the withstand voltage and reliability are improved in a high temperature environment Was not enough.
- the inventors of the present invention have arrived at the present invention as a result of intensive studies in order to solve the above problems.
- the present invention relates to a polypropylene film that has few insulation defects and suppresses variations in dielectric breakdown voltage in a high-temperature environment, and provides a polypropylene film that can exhibit high voltage resistance and reliability, particularly in high-voltage capacitor applications.
- the above-mentioned problem is that the film breakdown voltage (V / ⁇ m) is measured at 30 points in an atmosphere of 125 ° C., and 5 points from the highest breakdown voltage and 5 points from the lowest one are excluded.
- the percentage (125R%) calculated by dividing the difference between the maximum value and the minimum value by the average value of the 20 points is less than 50%, and the dielectric breakdown voltage (V / ⁇ m) of the film in an atmosphere at 23 ° C. It is calculated by measuring 30 points and dividing the difference between the maximum value and the minimum value among the 20 points excluding 5 points from the highest breakdown voltage and 5 points from the lowest one by the average value of the 20 points.
- the present invention can provide a polypropylene film that has few insulation defects and suppresses variations in dielectric breakdown voltage in a high temperature environment, it can be used in various applications such as packaging, tape, cable wrapping, and electrical applications including capacitors. In particular, high voltage resistance and reliability can be achieved in high voltage capacitor applications.
- the polypropylene film of the present invention was measured at 30 points in the dielectric breakdown voltage (V / ⁇ m) of the film in an atmosphere of 125 ° C., and 20 points were obtained by removing 5 points from the highest breakdown voltage and 5 points from the lowest.
- the percentage (125R%) calculated by dividing the difference between the maximum value and the minimum value among them by the average value of the 20 points is less than 50%, and the dielectric breakdown voltage (V / ⁇ m) of the film in an atmosphere at 23 ° C. ) Is measured at 30 points, and the difference between the maximum value and the minimum value among the 20 points excluding 5 points from the highest breakdown voltage and 5 points from the lowest is divided by the average value of the 20 points.
- the calculated percentage (23R%) is less than 20%.
- (125R%) and (23R%) indicate variations in dielectric breakdown voltage values at 125 ° C and 23 ° C, respectively, and the smaller this R%, the more uniform the structure in the film plane. In the case of a capacitor, high voltage resistance and reliability are exhibited.
- (125R%) is more preferably less than 40%, still more preferably less than 30%.
- the lower limit is 1%.
- (125R%) is 50% or more, when a capacitor is used, it causes a decrease in capacity and short-circuit damage in a high temperature environment, leading to a decrease in withstand voltage and a decrease in reliability.
- (23R%) is more preferably less than 15%, still more preferably less than 10%. The lower limit is 1%.
- controlling the (125R%) and (23R%) of the polypropylene film within the respective ranges is preferable in terms of conditions such as the raw materials used, the cooling temperature at the time of cooling and solidifying the molten sheet, the laminating structure, and the addition of particles.
- a treatment process at a temperature lower than the stretching temperature first stage treatment process
- a heat treatment step second step treatment step
- the polypropylene film of the present invention was measured at 30 points in the dielectric breakdown voltage (V / ⁇ m) of the film at 125 ° C., and an average of 20 points excluding 5 points from the highest breakdown voltage and 5 points from the lowest breakdown voltage.
- the value is preferably 500 V / ⁇ m or more, more preferably 525 V / ⁇ m or more, and still more preferably 550 V / ⁇ m or more.
- the average value of the dielectric breakdown voltage value of the film is less than 500 V / ⁇ m in an atmosphere of 125 ° C., the withstand voltage in a high temperature environment may be insufficient when used as a capacitor.
- the glossiness of at least one surface of the film is preferably 140% or more, more preferably 143% or more, and further preferably 145% or more.
- Making the glossiness less than 140%, that is, reducing the glossiness means increasing the density of light scattering on the film surface. Since the surface becomes rough, there is a decrease in dielectric breakdown voltage and variations. It may be likely to occur.
- the upper limit of the glossiness is 155%. Controlling the glossiness of the polypropylene film of the present invention within a preferable range can be achieved, for example, by controlling the raw materials used later, the cooling temperature at the time of cooling and solidifying the molten sheet, and the conditions such as the layer structure and particle addition within the preferable range. Is possible.
- the sum of the breaking strength in the film principal axis direction and the breaking strength in the direction perpendicular to the film principal axis at 23 ° C. is preferably 500 MPa or more, more preferably 530 MPa or more, and further preferably 560 MPa or more.
- the direction in which the maximum value is obtained among the breaking strengths obtained by measuring the film plane in a circumferential shape is defined as the film main axis direction.
- a direction orthogonal to the main axis direction is defined as a main axis orthogonal direction.
- Is the direction of the main axis of the film, and the direction orthogonal thereto is the direction of the main axis.
- the process causes a decrease in dielectric breakdown voltage of the film and a variation in value, or a metal film is formed by vapor deposition. In some cases, film breakage may occur during film conveyance during winding of a capacitor element.
- the upper limit is 700 MPa.
- the polypropylene film of the present invention preferably has a breaking strength in the film principal axis direction at 23 ° C. of 150 MPa or more, more preferably 180 MPa or more, and further preferably 200 MPa or more.
- the polypropylene film of the present invention is suitably roughened without impairing the glossiness of the film surface, from the viewpoint of obtaining uniformity between film interlayer gaps, ease of slipping between films or transport rolls, and reliability as a capacitor.
- the three-dimensional center plane average roughness SRa on one surface of the film is preferably 30 nm or more, more preferably 50 nm or more, and further preferably 70 nm or more. When the three-dimensional center plane average roughness SRa is less than 30 nm, the slip of the film is extremely lowered, the handling property is inferior or wrinkles are likely to occur, and the capacitance changes due to the influence of wrinkles during continuous use as a capacitor.
- the upper limit is 300 nm.
- Controlling the three-dimensional center plane average roughness SRa of the polypropylene film of the present invention within a preferable range is, for example, a preferable range of conditions such as a raw material to be described later, a cooling temperature at the time of cooling and solidifying a molten sheet, a laminating configuration, and particle addition. It is possible by controlling within.
- the polypropylene film of the present invention forms surface irregularities without impairing the glossiness of the film surface, and is excellent in capacitor element processing suitability even if it is a thin film, and from the viewpoint of exhibiting high voltage resistance even in a high temperature environment, at least one surface is provided. It is preferable that the film layer to be formed contains particles.
- Examples of particles used in the polypropylene film of the present invention include inorganic particles and organic particles.
- examples of inorganic particles include metal oxides such as silica, alumina, titania, zirconia, barium sulfate, calcium carbonate, aluminum silicate, calcium phosphate, mica, kaolin, and clay.
- metal oxides such as silica, alumina, titania, zirconia, and calcium carbonate are preferable.
- Organic particles include polymethoxysilane-based compound crosslinked particles, polystyrene-based compound crosslinked particles, acrylic-based compound crosslinked particles, polyurethane-based compound crosslinked particles, polyester-based compound crosslinked particles, fluorine-based compound crosslinked particles, or Mention may be made of these mixtures.
- the average particle diameter of the inorganic particles and organic particles is preferably in the range of 0.03 to 10 ⁇ m.
- the average particle diameter is more preferably 0.05 to 6 ⁇ m, still more preferably 0.07 to 1 ⁇ m, and most preferably 0.08 to 0.25 ⁇ m. If the average particle size is less than 0.03 ⁇ m, the surface roughness becomes small, and the handling property may be insufficient or the capacitor reliability may be lowered. On the other hand, when the thickness exceeds 10 ⁇ m, the film is easily broken, or the particles are easily dropped from the thin film to cause an insulation defect.
- the average particle diameter of inorganic particles or organic particles is a circle-equivalent diameter obtained by image processing from a scanning electron micrograph of the particles.
- the content of the particles is preferably 0.01 to 1 part by mass when the entire polypropylene film is 100 parts by mass. If the content is less than 0.01 parts by mass, handling properties may be insufficient and capacitor reliability may be reduced. When it exceeds 1 part by mass, the film is easily broken or falls off from the thin film, which easily causes an insulation defect.
- the polypropylene film of the present invention is preferably provided with a constituent layer containing particles on at least one surface or a constituent layer made of a resin in which polypropylene and polypropylene are incompatible with a thermoplastic resin, and is a laminated film. It is preferable.
- Lamination methods include laminating films by lamination, co-extrusion feed block method and multi-manifold method, coating method, etc. From the viewpoint of production efficiency and cost, lamination method by melt coextrusion, coating Is preferred. Further, the lamination is preferably a construction in which two or more layers are laminated in the film thickness direction.
- the A layer is defined as a constituent layer containing particles or a constituent layer made of a resin obtained by blending polypropylene and polypropylene with an incompatible thermoplastic resin.
- a technique using crystal transformation can be preferably used particularly for a capacitor application, and solidified on a casting (cooling) drum after melt extrusion in a film manufacturing process.
- a ⁇ -crystal spherulite is formed by raising the temperature to 60 ° C. or higher, and irregularities are formed on the film surface by transforming thermally unstable ⁇ -crystals into ⁇ -crystals in the stretching process.
- voids formed in the process of crystal transformation may occur not only in the surface layer but also in the inner layer, which may become insulation defects and lower the withstand voltage.
- the polypropylene film of the present invention has a structure containing particles in the surface layer or a structure composed of a resin in which polypropylene and polypropylene are blended with an incompatible thermoplastic resin.
- the temperature of solidification on the cooling drum is less than 60 ° C., preferably less than 40 ° C., more preferably less than 30 ° C.
- fine ⁇ -crystal spherulites or mesophases are preferentially formed.
- the polypropylene film of the present invention is substantially free from void formation due to crystal transformation in the stretching process, and is excellent in capacitor element processing suitability even in a thin film without causing an insulation defect, and is also high in a high temperature environment.
- the mesophase indicates an ordered state between crystal and amorphous, and is also called smectic crystal or smectic crystal. It is known that the mesophase is generated when solidified at a very high cooling rate from the molten state. Yes. Since the mesophase is an intermediate phase and forms a uniform structure in the stretching process, it is a preferable structure for reducing insulation defects. In addition, in a constituent layer made of a resin in which polypropylene and polypropylene are blended with an incompatible thermoplastic resin, surface irregularities utilizing the domain structure can be imparted, so that voids accompanying crystal transformation in the stretching process.
- thermoplastic resin incompatible with polypropylene for example, a polymethylpentene resin can be preferably used.
- the ratio of the thickness of the A layer to the total thickness of the film (if both surface layers have the A layer, the thickness of both the combined surface layers)
- the ratio is preferably from 1% to 60%, more preferably from 5 to 40%, most preferably from 5 to 25% from the viewpoint of controlling the film forming property and the surface shape. If the proportion of the A layer is too large, the withstand voltage in a high temperature environment may be reduced due to voids. On the other hand, if the proportion of the A layer is too small, unevenness may not be efficiently formed on the film surface. Processing suitability may not be obtained.
- the A layer can be identified by, for example, creating a film cross section and performing cross-sectional observation using a scanning electron microscope (SEM) or the like.
- SEM scanning electron microscope
- Polypropylene is usually used for packaging materials and capacitors, but preferably has a cold xylene soluble part (CXS) of 4% by mass or less. If these conditions are not satisfied, the film forming stability may be inferior, or the dielectric breakdown voltage of the biaxially stretched film may be lowered.
- CXS cold xylene soluble part
- CXS refers to a polypropylene component dissolved in xylene when the film is completely dissolved in xylene and then deposited at room temperature, for reasons such as low stereoregularity and low molecular weight. This is considered to correspond to a component that is difficult to crystallize. When such a component is contained in a large amount of resin, problems such as a decrease in the voltage resistance of the film may occur. Therefore, CXS is preferably 4% by mass or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less. In order to obtain such polypropylene having CXS, methods such as a method for increasing the catalytic activity in obtaining a resin and a method for washing the obtained resin with a solvent or propylene monomer itself can be used.
- the polypropylene preferably has a melt flow rate (MFR) in the range of 1 to 10 g / 10 minutes (230 ° C., 21.18 N load), particularly preferably 2 to 5 g / 10 minutes (230 ° C., 21.18 N load). Is preferable from the viewpoint of film forming property.
- MFR melt flow rate
- a method of controlling the average molecular weight or the molecular weight distribution is employed.
- Polypropylene is mainly composed of a homopolymer of propylene, but may contain other unsaturated hydrocarbon copolymerization components or the like, as long as the object of the present invention is not impaired. May be blended.
- ethylene propylene (in the case of a copolymerized blend), 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene as monomer components constituting such copolymer components and blends -1,1-hexene, 4-methylpentene-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, vinylcyclohexene, styrene, allylbenzene, cyclopentene, norbornene, 5-methyl-2 -Norbornene and the like.
- the copolymerization amount or blend amount is preferably less than 1 mol% in terms of copolymerization amount and less than 10
- additives such as a crystal nucleating agent, an antioxidant, a heat stabilizer, a slipping agent, an antistatic agent, an antiblocking agent, a filler, and a viscosity modifier are added to polypropylene as long as the object of the present invention is not impaired. Further, a coloring inhibitor, a resin other than polypropylene, and the like can also be contained.
- the selection of the type and amount of antioxidant is important from the viewpoint of long-term heat resistance. That is, the antioxidant is a phenolic compound having steric hindrance, and at least one of them is preferably a high molecular weight type having a molecular weight of 500 or more.
- BHT 2,6-di-t-butyl-p-cresol
- 1,3,5-trimethyl-2,4,6- Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene for example, Irganox® 1330 manufactured by BASF: molecular weight 775.2
- tetrakis [methylene-3 (3,5-di-t -Butyl-4-hydroxyphenyl) propionate] methane for example, Irganox (registered trademark) 1010: molecular weight 1177.7 manufactured by BASF
- Irganox registered trademark
- the total content of these antioxidants is preferably in the range of 0.03 to 1.0 mass% with respect to the total amount of polypropylene. If the amount of the antioxidant is too small, the long-term heat resistance may be poor. If the amount of the antioxidant is too large, the capacitor element may be adversely affected by blocking at a high temperature due to bleeding out of these antioxidants.
- a more preferable content is 0.1 to 0.9% by mass, particularly preferably 0.2 to 0.8% by mass.
- the polypropylene film of the present invention preferably comprises a polypropylene resin having a mesopentad fraction of 0.95 or more and a melting point exceeding 160 ° C.
- the mesopentad fraction is more preferably 0.97 or more, and further preferably 0.98 or more.
- the mesopentad fraction is an index indicating the stereoregularity of the crystalline phase of polypropylene measured by nuclear magnetic resonance (NMR) method. The higher the numerical value, the higher the crystallinity, the higher the melting point, and the higher the temperature. This is preferable because variations in dielectric breakdown voltage can be suppressed.
- the upper limit of the mesopentad fraction is not particularly specified.
- a method of appropriately selecting an electron donating component in a so-called Ziegler-Natta catalyst is preferably employed.
- the mesopentad fraction of the polypropylene resin is less than 0.95, the regularity of the polypropylene is low, leading to a decrease in the strength and dielectric breakdown voltage of the film in a high temperature environment, a process of forming a metal film by vapor deposition, or winding a capacitor element There is a case where the film breaks during film transportation in the preparation process.
- the melting point of the polypropylene resin is more preferably 163 ° C. or higher, and further preferably 165 ° C. or higher.
- the melting point is 160 ° C. or lower, the crystallinity is low, leading to a decrease in the dielectric breakdown voltage in a high temperature environment of the film, or breaking during film transport in the process of forming a metal film by vapor deposition or winding of a capacitor element. May form a film.
- the polypropylene film of the present invention preferably contains a melt type nucleating agent with respect to the polypropylene resin.
- polypropylene nucleating agents include non-melting nucleating agents such as phosphate, benzoate, and talc and melting nucleating agents.
- a melting nucleating agent it is preferable to use a melting nucleating agent.
- the melt-type nucleating agent is a crystal nucleating agent in which the nucleating agent itself melts or melts in molten polypropylene, and indicates a series of heat melting and cooling recrystallization. The method of measuring dissolution and recrystallization can be monitored by using melt rheology in a dynamic mode, as defined by ISO 6271-10: 1999.
- melt-type nucleating agent examples include sorbitol derivatives, nonitol derivatives, and triamide derivatives.
- di (alkylbenzylidene) sorbitol such as dibenzylidene sorbitol, 2,4-dimethylbenzylidene sorbitol, 1,3-dimethylbenzylidene sorbitol, 2,4-diethylbenzylidene sorbitol, 1,3-dibutylbenzylidene sorbitol, 2,4-dibutylbenzylidene sorbitol, 1,3-dimethoxybenzylidene sorbitol, 2,4-dimethoxybenzylidene sorbitol, 1,3-diethoxybenzylidene sorbitol, 1,3-chlorobenzylidene, 2,4-methylbenzylidene sorbitol, monomethyldi Benzylidene sorbitol, 2,4-
- nonitol-based or triamide derivative nucleating agents are known to have high heat resistance and are particularly preferably used among the above melting nucleating agents. Is from 0.01 to 1.0 part by weight, preferably from 0.02 to 0.6 part by weight based on 100 parts by weight of the polypropylene resin.
- the effect of the nucleating agent may be small.
- the polypropylene film of the present invention is excellent in transparency, slipperiness, and high temperature characteristics, it is suitably used for general industrial applications and packaging applications. It is of course useful for general capacitors of 30 ⁇ m or less, but is particularly suitable for thin film heat-resistant film capacitors required for automobile applications (including hybrid car applications) used in high temperature environments.
- the film thickness is preferably in the range of 0.5 ⁇ m or more and less than 15 ⁇ m, more preferably 0.5 ⁇ m or more and less than 10 ⁇ m, still more preferably 0.8 ⁇ m or more and less than 4.0 ⁇ m.
- the polypropylene film of the present invention is preferably used as a dielectric film for a capacitor, but is not limited to the capacitor type.
- a foil wound capacitor or a metal vapor deposition film capacitor may be used, and it is also preferably used for an oil immersion type capacitor impregnated with insulating oil or a dry type capacitor not using insulating oil at all. It is done.
- it may be a winding type or a laminated type.
- it is particularly preferably used as a metal vapor deposition film capacitor because of the characteristics of the film of the present invention.
- a polypropylene film usually has a low surface energy and it is difficult to stably deposit metal, it is preferable to perform surface treatment before vapor deposition for the purpose of improving metal adhesion.
- Specific examples of the surface treatment include corona discharge treatment, plasma treatment, glow treatment, and flame treatment.
- the surface wet tension of polypropylene film is about 30 mN / m.
- the surface treatment is performed on the B layer side which does not substantially contain particles, so that the capacitor characteristics can be improved by uniformizing the thickness of the metal deposited film. To preferred.
- the polypropylene film of the present invention is obtained by biaxially stretching using a raw material that can give the above-described characteristics.
- the biaxial stretching method it can be obtained by any of the inflation simultaneous biaxial stretching method, the tenter simultaneous biaxial stretching method, and the tenter sequential biaxial stretching method, among them, film formation stability, thickness uniformity, It is preferable to employ a tenter sequential biaxial stretching method in terms of controlling the surface unevenness forming property.
- a method for producing the polypropylene film of the present invention will be described.
- a polypropylene resin is melt-extruded on a support to obtain a polypropylene resin sheet.
- the polypropylene resin sheet is subjected to sequential biaxial stretching of longitudinal stretching and lateral stretching, followed by heat treatment and relaxation treatment to produce a polypropylene film.
- heat treatment and relaxation treatment to produce a polypropylene film.
- a polypropylene raw material A containing the above-mentioned particles is supplied to a single-screw extruder for the A layer with respect to 100 parts by mass of a polypropylene resin having a mesopentad fraction of 0.95 or more and a melting point exceeding 160 ° C.
- a polypropylene raw material B containing substantially no particles is supplied to a single-screw extruder for layer B, and is formed into a three-layer structure of layer A / layer B / layer A by a feed block method by melt coextrusion at 200 to 260 ° C.
- the laminated resin is extruded from a slit-shaped base and solidified on a cooling drum controlled at a temperature of 10 to 59 ° C.
- the mesophase fraction is preferably 50% or more, more preferably 70% or more, Preferably it is 90% or more, Most preferably, it is 97% or more.
- the unstretched sheet is measured by wide-angle X-ray diffraction and calculated using an X-ray diffraction profile.
- the obtained X-ray diffraction profile is processed with peak separation software to separate the mesophase into an ⁇ -crystal and amorphous profile, and the mesophase fraction is calculated.
- the diffraction profile derived from the ⁇ crystal is observed at a wide angle X-ray diffraction measurement with a diffraction angle (2 ⁇ ) in the range of 10 to 30 degrees, around 14.1 degrees, around 16.9 degrees, and 18.6 degrees. It consists of five sharp peaks near, 21.6 degrees, and 21.9 degrees.
- the diffraction profile derived from the mesophase consists of two broad peaks near 15 degrees and 21 degrees.
- the diffraction profile derived from amorphous is a very broad peak with a diffraction angle of around 16.2 degrees, and can be obtained by measuring a polypropylene resin in a molten state by wide-angle X-ray diffraction.
- an adhesion method to the casting drum any of an electrostatic application method, an adhesion method using the surface tension of water, an air knife method, a press roll method, an underwater casting method, or the like may be used.
- the surface of the B layer side is smoothed by extruding from the slit-shaped base so that the B layer of the melt-laminated polymer is in contact with the casting drum surface. Can do.
- this unstretched film is biaxially stretched.
- the unstretched film is preheated through a roll maintained at 60 to 150 ° C., and then the sheet is maintained at a temperature of 60 to 150 ° C., stretched 2 to 10 times in the longitudinal direction, and then cooled to room temperature.
- the unstretched film forms a mesophase, it is preferably maintained at a temperature of 60 to 120 ° C.
- the stretching ratio in the longitudinal direction is more preferably 4.5 to 9 times, preferably 5.1 to 8 times, more preferably 5.4 to 8 times, and most preferably 5.8 to 8 times.
- the stretching method and the stretching ratio are not particularly limited and are appropriately selected depending on the polymer characteristics to be used.
- the longitudinally uniaxially stretched film is guided to a tenter, the end of the film is held by a clip, and the lateral stretching is performed at a temperature of 140 to 170 ° C. in the width direction 5.1 to 15 times, more preferably 6 to 14 times, and still more preferably. Stretch 9 to 13 times.
- the draw ratio in the width direction is less than 5.1 times, the mechanical strength in the width direction of the polypropylene film may be lowered, or thickness unevenness may be deteriorated, so that the voltage resistance may be lowered.
- the draw ratio in the width direction exceeds 15 times, film breakage tends to occur and productivity may be reduced.
- the clip in the subsequent heat treatment and relaxation treatment step, is subjected to the first heat treatment at a temperature of 115 ° C. or higher and 140 ° C. or lower while giving 2 to 20% relaxation in the width direction while holding the tension in the width direction with the clip. It is possible to perform a multi-stage heat treatment in which the heat treatment is performed under the condition that the heat treatment temperature is higher than the first heat treatment temperature and less than the transverse stretching temperature while the width direction is held tightly. This is preferable from the viewpoint of reducing the local thickness unevenness and improving the withstand voltage characteristics.
- the relaxation rate in the relaxation treatment step is preferably 5 to 18%, more preferably 8 to 15% from the viewpoint of obtaining thermal dimensional stability. If it exceeds 20%, the film may be too slack inside the tenter and wrinkles may occur on the product, causing unevenness during vapor deposition. On the other hand, if the relaxation rate is less than 2%, thermal dimensional stability cannot be obtained and a capacitor is obtained. In some high temperature usage environments, capacity reduction and short circuit damage may occur.
- the first stage heat treatment temperature is preferably 115 ° C. or higher and 140 ° C. or lower, and 120 ° C. or higher and 138 ° C. or lower. Is more preferable, and 125 ° C. or higher and 135 ° C. or lower is more preferable.
- the heat treatment temperature is lower than 115 ° C., the capacitance may be reduced or the short circuit may be broken in the capacitor characteristics under a high temperature environment.
- heat treatment exceeding 140 ° C. molecular chain orientation relaxation proceeds, so that the voltage resistance of the film may be lowered.
- the second-stage heat treatment temperature is preferably the first-stage heat treatment temperature + 5 ° C. or more and the transverse stretching temperature ⁇ 5 ° C. or less, more preferably the first-stage heat treatment temperature + 8 ° C. or more and the transverse stretching temperature ⁇ 8 ° C. or less.
- the film After the multi-stage heat treatment, with the clip held tightly in the width direction, the film is guided to the outside of the tenter through the cooling process at 80 to 100 ° C, the clip at the end of the film is released, and the film edge is removed by the winder process. Slit and wind up film product roll.
- a corona discharge treatment in air, nitrogen, carbon dioxide or a mixed gas thereof.
- the method for forming a metal film laminated film by providing a metal film on the above-described polypropylene film surface is not particularly limited.
- aluminum is deposited on at least one surface of a polypropylene film to serve as an internal electrode of a film capacitor.
- a method of providing a metal film such as a vapor deposition film is preferably used.
- other metal components such as nickel, copper, gold, silver, chromium, and zinc can be deposited simultaneously or sequentially with aluminum.
- a protective layer can be provided on the deposited film with oil or the like.
- the metal film laminated film can be annealed at a specific temperature or heat-treated.
- a coating of polyphenylene oxide or the like can be applied to at least one surface of the metal film laminated film.
- the metal film laminated film thus obtained can be laminated or wound by various methods to obtain a film capacitor.
- An example of a preferred method for producing a wound film capacitor is as follows.
- Aluminum is evaporated on one side of the polypropylene film under reduced pressure. In that case, it vapor-deposits in the stripe form which has the margin part which runs in a film longitudinal direction.
- a tape-shaped take-up reel having a margin on one side is prepared by inserting a blade into the center of each vapor deposition section on the surface and the center of each margin section. Two tape-shaped take-up reels with margins on the left or right are wound on each other so that the vapor deposition part protrudes from the margin part in the width direction. Get.
- the vapor deposition is performed in a stripe shape having a margin portion that runs in the longitudinal direction of one surface, and the other surface is striped so that the longitudinal margin portion is located at the center of the vapor deposition portion on the back side.
- Vapor deposition Next, a tape-like take-up reel having a margin on one side (for example, a margin on the right side of the front surface and a margin on the left side of the back surface) is prepared on both sides of the front and back margins with a blade. Two each of the obtained reel and undeposited laminated film are overlapped and wound so that the metallized film protrudes from the laminated film in the width direction, and a wound body is obtained.
- the core material can be removed from the wound body produced as described above and pressed, and the metallicon is sprayed on both end faces to form external electrodes, and lead wires are welded to the metallicon to obtain a wound film capacitor.
- film capacitors such as those for railway vehicles, automobiles (hybrid cars, electric vehicles), solar power generation / wind power generation, and general household appliances.
- the film capacitor of the present invention is also suitable for these applications. Can be used. In addition, it can be used in various applications such as packaging films, release films, process films, sanitary products, agricultural products, building products, and medical products.
- the characteristic value measuring method and the effect evaluating method in the present invention are as follows.
- Film thickness A total of 10 arbitrary positions of a polypropylene film were measured using an electronic micrometer (K-312A type) manufactured by Anritsu Co., Ltd. in an atmosphere of 23 ° C. and 65% RH, and the average The value was the film thickness of the polypropylene film.
- Breaking strength of 23 ° C. film (sum of main axis direction and main axis orthogonal direction) A polypropylene film was prepared, and cut into a rectangular shape with a length of 50 mm and a width of 10 mm in an arbitrary direction as a sample ⁇ 1>. Next, it rotated 15 degrees from the long side direction of the rectangular sample, and sample ⁇ 2> was extract
- the rectangular sample ⁇ 1> was set in a tensile tester (Orientec Tensilon UCT-100) with an initial chuck distance of 20 mm, and the film was subjected to a tensile test at a tensile rate of 300 mm / min in an atmosphere at 23 ° C. went.
- the load value when the sample broke was read, the value divided by the cross-sectional area (film thickness x width (10 mm)) of the sample before the test was calculated as the stress of breaking strength, and the measurement was performed 5 times for each sample. Evaluation was made with average values.
- the breaking strength is calculated, and the maximum value among ⁇ 1> to ⁇ 12> is defined as the breaking strength in the film principal axis direction.
- the sum of the values of the breaking strength in the direction orthogonal to the principal axis was calculated.
- the value measured by said (1) was used for the film thickness used for fracture strength calculation.
- Three-dimensional center surface average roughness (SRa) Three-dimensional surface roughness was measured under the following conditions using a surf-order ET-4000A manufactured by Kosaka Laboratory. The sample set was set on the sample stage with the surface on the casting drum contact surface side as the measurement surface (upper surface) so that the X direction of the visual field measurement was the main axis direction of the polypropylene film. The measurement was performed 10 times under different conditions under the following conditions, and the average value of the center line surface roughness of each was calculated to obtain the three-dimensional center plane average roughness (SRa).
- Peak splitting is performed using WINIT software (manufactured by Bruker). At that time, peak splitting is performed as follows from the peak on the high magnetic field side, soft automatic fitting is performed, peak splitting is optimized, and mmmm and ss (mmmm spinning sideband peak) The sum of the peak fractions is defined as the mesopentad fraction (mmmm).
- A mrrm
- B (c) rrrrm (divided as two peaks)
- I mmmm (J) rmmr.
- FT-IR measurement conditions FT-IR equipment: IRPrestige-21 (manufactured by Shimadzu Corporation) Detector: DLATGS Measurement mode: Transmission resolution: 4cm -1 Integration count: 64 times Sample preparation: KBr tablet method (4 mm ⁇ ) ⁇ 1 H-NMR measurement conditions> Device name: ECA400 (manufactured by JEOL) Measurement nucleus: 1 H Observation frequency: 400 MHz ⁇ MALDI-MS measurement conditions> Device name: AXIMA-TOF2 (manufactured by Shimadzu Corporation) Ionization method: MALDI (Matrix Assisted Laser Desorption / Ionization) (11) Crystallization peak temperature Using a differential scanning calorimeter (EXSTAR DSC 6220 manufactured by Seiko Instruments Inc.), a 3 mg film sample is heated from 30 ° C.
- EXSTAR DSC 6220 manufactured by Seiko Instruments Inc.
- a profile derived from the mesophase exists was calculated as follows.
- A The diffraction profile is processed with peak separation software to separate it into mesophase, ⁇ -crystal, and amorphous profiles.
- analysis software IGOR Pro (Ver. 6) software manufactured by WaveMetrics, Inc. was used.
- B For refinement, diffraction angles used in peak separation are 15 degrees and 21 degrees derived from the mesophase, 14.1, 16.9 degrees, 18.6 degrees, 21. 6 degrees and 21.9 degrees, and 16.2 degrees derived from amorphous were used as fixed values.
- the capacitor element was wound up with an element winding machine (KAW-4NHB) manufactured by Minato Seisakusho, and after metallization, heat treatment was performed at 120 ° C. for 10 hours under reduced pressure, and the lead wires were connected. The mounting capacitor element was finished.
- KAW-4NHB element winding machine
- A can be used without problems, and B can be used depending on conditions. C and D are inferior in practical performance.
- Example 1 Nonitol-based molten type polymerized with Ziegler-Natta catalyst, 100 parts by mass of polypropylene resin having a mesopentad fraction of 0.98, a melting point of 167 ° C. and a melt flow rate (MFR) of 2.6 g / 10 min.
- the nucleating agent “Milliken ⁇ crystal nucleating agent: NX8000” was kneaded and extruded with an extruder set at 240 ° C. so that the concentration became 0.3 parts by mass, and the strand was cooled with water to chip into polypropylene resin raw material (B ).
- polypropylene resin for layer A As a polypropylene resin for layer A, with respect to 100 parts by mass of PP resin having a mesopentad fraction of 0.98, a melting point of 167 ° C. and a melt flow rate (MFR) of 2.6 g / 10 min, “manufactured by Denki Kagaku Kogyo Co., Ltd.
- MFR melt flow rate
- the average particle size of 0.3 ⁇ m silica particles: SFP-20MHE (silane coupling surface treatment) ” was kneaded and extruded with an extruder set at 240 ° C. so as to be 0.1 part by mass, and the strands were cooled with water and chipped to obtain a polypropylene resin. It was set as the raw material (A).
- the polypropylene resin raw material (B) is supplied to a uniaxial melt extruder for the B layer, the polypropylene resin raw material (A) is supplied to a uniaxial melt extruder for the A layer, and melt extrusion is performed at 240 ° C.
- a feed block is used to laminate A / B / A with a three-layer thickness ratio of 1/8/1 (the ratio of the surface layer A layer to the total film thickness is 20% ),
- the molten laminated polymer is discharged from a T-die, and the molten sheet is adhered by electrostatic application on a casting drum held at 30 ° C. and cooled and solidified to obtain an unstretched sheet.
- the sheet was gradually preheated to 143 ° C. by a plurality of roll groups, and subsequently passed through rolls having a peripheral speed difference maintained at a temperature of 143 ° C., and stretched 6.0 times in the longitudinal direction.
- the film was guided to a tenter, stretched 10 times in the width direction at a temperature of 163 ° C., and then heat treated at 130 ° C. while giving 10% relaxation in the width direction as the first stage heat treatment and relaxation treatment, and further 2
- heat treatment was performed at 140 ° C. while being held in the width direction by the clip.
- the film is guided to the outside of the tenter through a cooling process at 100 ° C., the clip at the end of the film is released, and then the corona discharge treatment is performed in the atmosphere at a treatment strength of 25 W ⁇ min / m 2 on the film surface (casting drum contact surface side). And a film having a film thickness of 2.0 ⁇ m was wound up as a film roll.
- the characteristics of the polypropylene film and the capacitor characteristics of this example were as shown in Table 1, and the voltage resistance and reliability were very excellent.
- Example 2 A polypropylene film having a thickness of 2.2 ⁇ m was obtained in the same manner as in Example 1 except that the melt type nucleating agent was not contained in the B-layer polypropylene resin.
- the characteristics and capacitor characteristics of the polypropylene film of this example are as shown in Table 1. The reliability as a capacitor is very excellent, and the withstand voltage is at a level that causes no problem in practical use.
- Example 3 A polypropylene film was obtained in the same manner as in Example 1 except that the conditions for the heat treatment temperature after biaxial stretching were changed to those shown in Table 1.
- the characteristics and capacitor characteristics of the polypropylene film of this example are as shown in Table 1, and both the withstand voltage and reliability as a capacitor were at a level where there was no problem in practical use.
- Example 4 As a polypropylene resin for the A layer, with respect to 100 parts by mass of a polypropylene resin having a mesopentad fraction of 0.98, a melting point of 167 ° C., and a melt flow rate (MFR) of 2.6 g / 10 minutes, “average made by Tokuyama Corporation” Kneaded and extruded with an extruder set at 240 ° C. so that the particle size is 0.1 ⁇ m silica particles: Sunseal SSP-M01 ”at 0.25 parts by mass, and the strands were cooled with water and chipped to obtain polypropylene resin raw material (C). .
- MFR melt flow rate
- a polypropylene resin polymerized with a Ziegler-Natta catalyst and having a mesopentad fraction of 0.98, a melting point of 167 ° C., and a melt flow rate (MFR) of 2.6 g / 10 min was used as a uniaxial for the B layer.
- a polypropylene film having a thickness of 3.5 ⁇ m was obtained in the same manner as in Example 2 except that the polypropylene resin raw material (C) was supplied to a uniaxial melt extruder for the A layer. .
- the characteristics and capacitor characteristics of the polypropylene film of this example were as shown in Table 1, and were the level with the highest voltage resistance and very excellent reliability.
- Example 5 The amount of extrusion is adjusted so that the lamination structure is A / B 2 layers and the lamination thickness ratio is 1/8 (the ratio of the surface layer A layer to the total thickness of the film is 11%), and the B layer of the molten laminated polymer is the casting drum surface
- a polypropylene film having a thickness of 3.5 ⁇ m was obtained in the same manner as in Example 4 except that the film surface was subjected to biaxial stretching and subjected to corona discharge treatment on the B layer side.
- the properties of the polypropylene film and the capacitor properties of this example were as shown in Table 1 and were the ones with the highest voltage resistance and very excellent reliability (Comparative Example 1).
- melt extrusion of 100 parts by mass of a polypropylene resin polymerized with a Ziegler-Natta catalyst and having a mesopentad fraction of 0.98, a melting point of 167 ° C. and a melt flow rate (MFR) of 2.6 g / 10 min.
- the melt-extruded polymer is extruded at 240 ° C., foreign matter is removed by a sintered filter of 80 ⁇ m cut, the molten laminated polymer is discharged from a T-die, and the molten sheet is held on a casting drum held at 90 ° C. Then, it was made to adhere by electrostatic application and solidified by cooling to obtain an unstretched sheet.
- the sheet was gradually preheated to 143 ° C. by a plurality of roll groups, and subsequently passed through rolls having a peripheral speed difference maintained at a temperature of 143 ° C., and stretched 5.0 times in the longitudinal direction.
- the film was guided to a tenter, stretched 10 times in the width direction at a temperature of 163 ° C., and then heat-treated at 155 ° C. while giving 10% relaxation in the width direction as a first-stage heat treatment and relaxation treatment.
- heat treatment at the stage heat treatment was performed at 140 ° C. while being held in the width direction by the clip.
- the film is guided to the outside of the tenter through a cooling process at 100 ° C., the clip at the end of the film is released, and then the corona discharge treatment is performed in the atmosphere at a treatment strength of 25 W ⁇ min / m 2 on the film surface (casting drum contact surface side). And a film having a film thickness of 2.2 ⁇ m was wound up as a film roll.
- the characteristics and capacitor characteristics of the polypropylene film of this comparative example are as shown in Table 1. The withstand voltage as the capacitor was extremely low, and the reliability was at a level that caused problems such as element destruction.
- Example 2 A polypropylene film having a thickness of 2.2 ⁇ m was obtained in the same manner as in Example 1 except that only the polypropylene resin (A) of Example 1 was melt-extruded to obtain a single-layer film.
- the characteristics and capacitor characteristics of the polypropylene film of this comparative example are as shown in Table 1. The voltage resistance as a capacitor was low, and the reliability was inferior to the performance in practical use because the element shape was deformed.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
ポリプロピレンフィルムの任意の場所の合計10箇所を23℃65%RHの雰囲気下で接触式のアンリツ(株)製電子マイクロメータ(K-312A型)を用いて測定し、その平均値をポリプロピレンフィルムのフィルム厚みとした。
JIS C2330(2001)7.4.11.2 B法(平板電極法)に準じて、絶縁破壊電圧試験を30回行い、得られた値をフィルムの厚み(上記(1))で除し、(V/μm)に換算し、計30点の測定値(算出値)のうち破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の中の最大値と最小値の差を該20点の平均値で除して算出される百分率を23℃雰囲気での絶縁破壊電圧のバラツキ(23R%)と定義した。
125℃に保温されたオーブン内で、フィルムを1分間加熱後にその雰囲気中でJIS C2330(2001)7.4.11.2 B法(平板電極法)に準じて、絶縁破壊電圧試験を30回行い、得られた値をフィルムの厚み(上記(1))で除し、(V/μm)に換算し、計30点の測定値(算出値)のうち破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の中の最大値と最小値の差を該20点の平均値で除して算出される百分率を125℃雰囲気での絶縁破壊電圧のバラツキ(125R%)と定義した。
上記(3)の絶縁破壊電圧試験を30回行い、得られた値をフィルムの厚み(上記(1))で除し、(V/μm)に換算し、計30点の測定値(算出値)のうち破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の平均値を125℃雰囲気でのフィルム絶縁破壊電圧とした。
ポリプロピレンフィルムを準備し、任意の方向に、長さ50mm×幅10mmの矩形に切り出しサンプル<1>とした。次に、矩形のサンプルの長辺方向から15°回転させ、サンプル<2>を採取した。以下同様に、矩形のサンプルの長辺方向を15°ずつ回転させ、サンプル<3>~<12>を採取した。次に、矩形のサンプル<1>を引張試験機(オリエンテック製テンシロンUCT-100)に、初期チャック間距離20mmでセットし、23℃雰囲気下で引張速度を300mm/分としてフィルムの引張試験を行った。サンプルが破断した時の荷重値を読み取り、試験前の試料の断面積(フィルム厚み×幅(10mm))で除した値を破断強度の応力として算出し、測定は各サンプル5回ずつ行い、その平均値で評価を行った。同様にサンプル<2>~<12>について、それぞれ破断強度を算出し、<1>~<12>の中での最大値をフィルム主軸方向の破断強度と定義し、該主軸方向の破断強度とその主軸直交方向の破断強度の値の和を算出した。
JIS K-7105(1981)に準じ、スガ試験機株式会社製 デジタル変角光沢計UGV-5Dを用いて入射角60°受光角60°の条件でキャスティングドラム接触面側の表面を測定した5点のデータの平均値を光沢度とした。
解析ソフト:i-Face model TDA31
触針先端半径:0.5μm
測定視野 :X方向:1000μm ピッチ:5μm
Y方向:250μm ピッチ:10μm
針圧 :50μN
測定速度 :0.1mm/s
カットオフ値:低域0.2mm、高域-なし
レベリング :全域
フィルター :ガウシアンフィルタ(空間型)
倍率 :2万倍
(8)メソペンタッド分率
フィルムのポリプロピレンを60℃のn-ヘプタンで2時間抽出し、ポリプロピレン中の不純物・添加物を除去した後、130℃で2時間以上減圧乾燥したものをサンプルとする。該サンプルを溶媒に溶解し、13C-NMRを用いて、以下の条件にてメソペンタッド分率(mmmm)を求めた。
測定条件
・装置:Bruker製DRX-500
・測定核:13C核(共鳴周波数:125.8MHz)
・測定濃度:10質量%
・溶媒:ベンゼン:重オルトジクロロベンゼン=1:3混合溶液(体積比)
・測定温度:130℃
・スピン回転数:12Hz
・NMR試料管:5mm管
・パルス幅:45°(4.5μs)
・パルス繰り返し時間:10秒
・データポイント:64K
・積算回数:10000回
・測定モード:complete decoupling
解析条件
LB(ラインブロードニングファクター)を1としてフーリエ変換を行い、mmmmピークを21.86ppmとした。WINFITソフト(Bruker製)を用いて、ピーク分割を行う。その際に、高磁場側のピークから以下のようにピーク分割を行い、更にソフトの自動フィッテイングを行い、ピーク分割の最適化を行った上で、mmmmとss(mmmmのスピニングサイドバンドピーク)のピーク分率の合計をメソペンタッド分率(mmmm)とする。
(a)mrrm
(b)(c)rrrm(2つのピークとして分割)
(d)rrrr
(e)mrmm+rmrr
(f)mmrr
(g)mmmr
(h)ss(mmmmのスピニングサイドバンドピーク)
(i)mmmm
(j)rmmr。
示差走査熱量計(セイコーインスツル製EXSTAR DSC6220)を用いて、窒素雰囲気中で3mgのポリプロピレンチップを30℃から260℃まで40℃/minの条件で昇温した。次いで、260℃で5min保持した後、40℃/minの条件で30℃まで降温した。さらに、30℃で5min保持した後、30℃から260℃まで40℃/minの条件で昇温した。この昇温時に得られた吸熱カーブのピーク温度をポリプロピレン樹脂の融点とした。
ポリプロピレンフィルム試料を3~4g細断した後、凍結粉砕し、この粉砕物について、メタノール/クロロホルム(=1/1(v/v))混液でソックスレー抽出を行い、抽出物について、FT-IR,1H-NMR,MALDI-MS測定を実施。溶融型核剤の有無について分析した。
<FT-IR測定条件>
FT-IR装置 :IRPrestige-21(島津製作所製)
検出器 :DLATGS
測定モード :透過
分解能 :4cm-1
積算回数 :64回
試料調製 :KBr錠剤法 (4 mmφ)
<1H-NMR測定条件>
装置名 :ECA400 (日本電子製)
測定核 :1H
観測周波数 :400 MHz
<MALDI-MS測定条件>
装置名 :AXIMA-TOF2(島津製作所製)
イオン化法 :MALDI(マトリックス支援レーザー脱離イオン化)
(11)結晶化ピーク温度
示差走査熱量計(セイコーインスツル製EXSTAR DSC6220)を用いて、窒素雰囲気中で3mgのフィルムサンプルを30℃から260℃まで40℃/minの条件で昇温する。次いで、260℃で5min保持した後、40℃/minの条件で30℃まで降温する。この降温時に得られる放熱カーブのピーク温度を結晶化温度とした。
走査型電子顕微鏡の試料台に固定した測定フィルム表面に、スパッタリング装置を用いて真空度10-3Torr、電圧0.25kV、電流12.5mAの条件にて10分間、イオンエッチング処理を施す。次に同装置にて該表面に金スパッタを施し、走査型電子顕微鏡にて10000~30000倍の写真を撮影した。フィルム中の粒子の平均粒子径は、上記写真から100個以上n個の粒子の面積円相当径(Di)を求め、下記式により求めた。ここで面積円相当径(Di)は個々の外接円の直径である。
未延伸シートを室温中で、株式会社リガク製nanoviewerを用いて、回折角(2θ)が10~30度の範囲で測定を行った。得られた回折プロファイルを以下の手順で解析した。
(a)回折プロファイルをピーク分離ソフトウェアで処理してメゾ相、α晶、非晶のプロファイルとに分離する。解析ソフトウェアとして、WaveMetrics,inc社製のIGOR Pro(Ver.6)ソフトウェアを用いた。
(b)精密化のために、ピーク分離で用いる回折角度は、メゾ相に由来する15度と21度、α晶に由来する14.1度、16.9度、18.6度、21.6度および21.9度、非晶に由来する16.2度とし、これらを固定値とした。
(c)さらに、精密化の変数として、高さ、半値幅、計定数、非対称を選択して、最適化を実行し、メゾ相に由来する15度と21度にピークを有する回折プロファイルの面積(m15とm21)を算出し、α晶に由来する14.1度、16.9度、18.6度、21.6度および21.9度にピークを有する回折プロファイルの面積(α14.1とα16.9とα18.6とα21.6とα21.9)を算出しこれを次式のとおり算出することにより、メゾ相に由来するプロファイルの面積の割合を求め、これをメゾ相分率とした。
(14)蒸着コンデンサ特性の評価(110℃での耐電圧性および信頼性)
後述する各実施例および比較例で得られたフィルム(キャスティングドラム接触面側)に、ULVAC製真空蒸着機でアルミニウムを膜抵抗が8Ω/sqで長手方向に垂直な方向にマージン部を設けた所謂T型マージンパターンを有する蒸着パターンを施し、幅50mmの蒸着リールを得た。
この際の静電容量変化を測定しグラフ上にプロットして、該容量が初期値の70%になった電圧をフィルムの厚み(上記(1))で割り返して耐電圧性評価とし、以下の通り評価した。
A:500V/μm以上550V/μm未満
B:450V/μm以上500V/μm未満
C:400V/μm以上450V/μm未満
D:400V/μm未満。
静電容量が初期値に対して10%以下に減少するまで電圧を上昇させた後に、コンデンサ素子を解体し破壊の状態を調べて、信頼性を以下の通り評価した。
チーグラー・ナッタ触媒にて重合された、メソペンタッド分率が0.98、融点が167℃で、メルトフローレイト(MFR)が2.6g/10分であるポリプロピレン樹脂100質量部に対しノニトール系溶融型核剤である「Milliken社製α晶核剤;NX8000」を濃度が0.3質量部となるように240℃に設定した押出機で混練押出し、ストランドを水冷後チップ化し、ポリプロピレン樹脂原料(B)とした。A層用のポリプロピレン樹脂としてメソペンタッド分率が0.98、融点が167℃で、メルトフローレイト(MFR)が2.6g/10分であるPP樹脂100質量部に対し、「電気化学工業社製 平均粒子径0.3μmシリカ粒子:SFP-20MHE(シランカップリング表面処理)」を0.1質量部となるように240℃に設定した押出機で混練押出し、ストランドを水冷後チップ化し、ポリプロピレン樹脂原料(A)とした。ポリプロピレン樹脂原料(B)をB層用の単軸の溶融押出機に供給し、ポリプロピレン樹脂原料(A)をA層用の単軸の溶融押出機に供給し、240℃で溶融押出を行い、80μmカットの焼結フィルターで異物を除去後、フィードブロックを用いてA/B/Aの3層積層で積層厚み比が1/8/1(フィルム全厚みに対する表面層A層の割合は20%)となるよう押出量を調節し、その溶融積層ポリマーをTダイより吐出させ、該溶融シートを30℃に保持されたキャスティングドラム上で、静電印加により密着させ冷却固化し未延伸シートを得た。次いで、該シートを複数のロール群にて徐々に143℃に予熱し、引き続き143℃の温度に保ち周速差を設けたロール間に通し、長手方向に6.0倍に延伸した。引き続き該フィルムをテンターに導き、163℃の温度で幅方向に10倍延伸し、次いで1段目の熱処理および弛緩処理として幅方向に10%の弛緩を与えながら130℃で熱処理を行ない、さらに2段目の熱処理としてクリップで幅方向把持したまま140℃で熱処理を行った。その後100℃で冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、次いでフィルム表面(キャスティングドラム接触面側)に25W・min/m2の処理強度で大気中でコロナ放電処理を行い、フィルム厚み2.0μmのフィルムをフィルムロールとして巻き取った。本実施例のポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで耐電圧性、信頼性ともに非常に優れるレベルのものであった。
B層のポリプロピレン樹脂に溶融型核剤を含有させないこと以外は実施例1と同様にして厚み2.2μmのポリプロピレンフィルムを得た。本実施例のポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで、コンデンサとしての信頼性が非常に優れ、耐電圧性は実使用上問題のないレベルであった。
二軸延伸後の熱処理温度の条件を表1に記した条件とした以外は実施例1と同様にしてポリプロピレンフィルムを得た。本実施例のポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで、コンデンサとしての耐電圧性および信頼性ともに実使用上問題のないレベルであった。
A層用のポリプロピレン樹脂としてメソペンタッド分率が0.98、融点が167℃で、メルトフローレイト(MFR)が2.6g/10分であるポリプロピレン樹脂100質量部に対し、「株式会社トクヤマ製 平均粒子径0.1μmシリカ粒子:サンシールSSP-M01」を0.25質量部となるように240℃に設定した押出機で混練押出し、ストランドを水冷後チップ化し、ポリプロピレン樹脂原料(C)とした。次いで、チーグラー・ナッタ触媒にて重合された、メソペンタッド分率が0.98、融点が167℃で、メルトフローレイト(MFR)が2.6g/10分であるポリプロピレン樹脂をB層用の単軸の溶融押出機に供給し、前記ポリプロピレン樹脂原料(C)をA層用の単軸の溶融押出機に供給したこと以外は、実施例2と同様にして厚み3.5μmのポリプロピレンフィルムを得た。本実施例のポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで、耐電圧性が最も優れ、信頼性も非常に優れるレベルであった。
積層構成をA/B2層で積層厚み比が1/8(フィルム全厚みに対する表面層A層の割合は11%)となるよう押出量を調節し、その溶融積層ポリマーのB層がキャスティングドラム面に接触するように吐出させ、二軸延伸後のフィルム表面コロナ放電処理をB層側に施した以外は、実施例4と同様にして厚み3.5μmのポリプロピレンフィルムを得た。本実施例のポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで耐電圧性が最も優れ、信頼性も非常に優れるレベルのものであった
(比較例1)
チーグラー・ナッタ触媒にて重合された、メソペンタッド分率が0.98、融点が167℃で、メルトフローレイト(MFR)が2.6g/10分であるポリプロピレン樹脂100質量部を単軸の溶融押出機に供給し、240℃で溶融押出を行い、80μmカットの焼結フィルターで異物を除去後、その溶融積層ポリマーをTダイより吐出させ、該溶融シートを90℃に保持されたキャスティングドラム上で、静電印加により密着させ冷却固化し未延伸シートを得た。次いで、該シートを複数のロール群にて徐々に143℃に予熱し、引き続き143℃の温度に保ち周速差を設けたロール間に通し、長手方向に5.0倍に延伸した。引き続き該フィルムをテンターに導き、163℃の温度で幅方向に10倍延伸し、次いで1段目の熱処理および弛緩処理として幅方向に10%の弛緩を与えながら155℃で熱処理を行ない、さらに2段目の熱処理としてクリップで幅方向把持したまま140℃で熱処理を行った。その後100℃で冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、次いでフィルム表面(キャスティングドラム接触面側)に25W・min/m2の処理強度で大気中でコロナ放電処理を行い、フィルム厚み2.2μmのフィルムをフィルムロールとして巻き取った。本比較例のポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで、コンデンサとしての耐電圧性が極めて低く、信頼性は素子破壊しているなど問題が生じるレベルのものであった。
実施例1のポリプロピレン樹脂(A)のみ溶融押出しして単層構成のフィルムとした以外は実施例1と同様にして厚み2.2μmのポリプロピレンフィルムを得た。本比較例のポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで、コンデンサとしての耐電圧性が低く、信頼性は素子形状に変形が見られ実使用上の性能に劣るものであった。
Claims (8)
- 125℃雰囲気でフィルムの絶縁破壊電圧(V/μm)を30点測定し、破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の中の最大値と最小値の差を該20点の平均値で除して算出される百分率(125R%)が50%未満であり、かつ、23℃雰囲気でフィルムの絶縁破壊電圧(V/μm)を30点測定し、破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の中の最大値と最小値の差を該20点の平均値で除して算出される百分率(23R%)が20%未満である、ポリプロピレンフィルム。
- 少なくともフィルムの片表面の光沢度が140%以上である、請求項1に記載のポリプロピレンフィルム。
- 23℃におけるフィルム主軸方向の破断強度とフィルム主軸直交方向の破断強度との和が500MPa以上である、請求項1または2に記載のポリプロピレンフィルム。
- 少なくともフィルムの片表面の3次元中心面平均粗さSRaが30nm以上である、請求項1~3のいずれかに記載のポリプロピレンフィルム。
- 少なくともフィルムの片表面に粒子を含む層を有する、請求項1~4のいずれかに記載のポリプロピレンフィルム。
- メソペンタッド分率が0.95以上であり、融点が160℃を超えるポリプロピレン樹脂に対して溶融型核剤を含有している、請求項1~5のいずれかに記載のポリプロピレンフィルム。
- 請求項1~6のいずれかに記載のポリプロピレンフィルムの少なくとも片面に金属膜が設けられてなる金属膜積層フィルム。
- 請求項7に記載の金属膜積層フィルムを用いてなるフィルムコンデンサ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580045117.4A CN106574061B (zh) | 2014-09-19 | 2015-09-16 | 聚丙烯膜和膜电容器 |
EP15841483.9A EP3196234A4 (en) | 2014-09-19 | 2015-09-16 | Polypropylene film and film capacitor |
JP2015557268A JP6657955B2 (ja) | 2014-09-19 | 2015-09-16 | ポリプロピレンフィルムおよびフィルムコンデンサ |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014191077 | 2014-09-19 | ||
JP2014-191077 | 2014-09-19 | ||
JP2015120199 | 2015-06-15 | ||
JP2015-120199 | 2015-06-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016043217A1 true WO2016043217A1 (ja) | 2016-03-24 |
Family
ID=55533253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/076278 WO2016043217A1 (ja) | 2014-09-19 | 2015-09-16 | ポリプロピレンフィルムおよびフィルムコンデンサ |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3196234A4 (ja) |
JP (1) | JP6657955B2 (ja) |
CN (1) | CN106574061B (ja) |
WO (1) | WO2016043217A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016182003A1 (ja) * | 2015-05-12 | 2016-11-17 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法 |
JP2018034510A (ja) * | 2016-08-30 | 2018-03-08 | 東レ株式会社 | オレフィン系積層フィルムおよびフィルムコンデンサ |
WO2019044758A1 (ja) | 2017-08-29 | 2019-03-07 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
JP2019044171A (ja) * | 2017-08-29 | 2019-03-22 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
WO2020039638A1 (ja) * | 2018-08-20 | 2020-02-27 | 株式会社村田製作所 | フィルムコンデンサ、フィルムコンデンサ用フィルム及びフィルムコンデンサ用フィルムの製造方法 |
JP2020033550A (ja) * | 2018-08-23 | 2020-03-05 | 東レ株式会社 | ポリプロピレンフィルムならびにこれを用いた金属膜積層フィルムおよびフィルムコンデンサ |
WO2021176930A1 (ja) | 2020-03-06 | 2021-09-10 | 株式会社プライムポリマー | コンデンサ用多層ポリプロピレンフィルム |
CN113382839A (zh) * | 2019-02-21 | 2021-09-10 | 东丽株式会社 | 聚丙烯膜和使用它的金属膜层叠膜、膜电容器 |
WO2021205908A1 (ja) * | 2020-04-07 | 2021-10-14 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107739470A (zh) * | 2017-10-17 | 2018-02-27 | 富通集团(天津)超导技术应用有限公司 | 超导电缆用聚丙烯复合绝缘薄膜材料、薄膜及其制备方法 |
BR112021000962A2 (pt) * | 2018-07-19 | 2021-04-20 | Polymerplus Llc | filme dielétrico em camadas de múltiplos componentes com modificação de superfície |
CN109887746B (zh) * | 2019-03-06 | 2021-01-01 | 无锡鑫聚电子科技有限公司 | 一种用于高可靠大功率电容器的金属化薄膜及其制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59191207A (ja) * | 1983-04-14 | 1984-10-30 | 東レ株式会社 | 電気物品用ポリプロピレンフイルム |
JPH04163042A (ja) * | 1990-10-24 | 1992-06-08 | Toray Ind Inc | 電気物品用ポリプロピレンフィルム |
JPH11246683A (ja) * | 1998-03-02 | 1999-09-14 | Mitsui Chem Inc | ポリプロピレン延伸フィルム |
JP2001250738A (ja) * | 2000-03-03 | 2001-09-14 | Toray Ind Inc | コンデンサ用ポリプロピレンフィルム及びそれを用いたコンデンサ |
JP2004161799A (ja) * | 2002-11-08 | 2004-06-10 | Toray Ind Inc | 二軸延伸ポリプロピレンフィルム |
WO2012002123A1 (ja) * | 2010-06-29 | 2012-01-05 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
WO2014148547A1 (ja) * | 2013-03-22 | 2014-09-25 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
JP2014205799A (ja) * | 2013-04-15 | 2014-10-30 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム |
JP2015201616A (ja) * | 2014-03-31 | 2015-11-12 | 王子ホールディングス株式会社 | コンデンサ用二軸延伸ポリプロピレンフィルム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3740449A1 (de) * | 1987-11-28 | 1989-06-08 | Hoechst Ag | Coextrudierte, biaxial orientierte mehrschichtfolie |
JP4742398B2 (ja) * | 1999-11-02 | 2011-08-10 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム |
JP2006143975A (ja) * | 2004-11-25 | 2006-06-08 | Prime Polymer:Kk | ポリプロピレン及び該ポリプロピレンの電気材料への応用 |
JP5224568B2 (ja) * | 2005-01-20 | 2013-07-03 | 東レ株式会社 | コンデンサ用ポリプロピレンフイルム |
-
2015
- 2015-09-16 WO PCT/JP2015/076278 patent/WO2016043217A1/ja active Application Filing
- 2015-09-16 EP EP15841483.9A patent/EP3196234A4/en active Pending
- 2015-09-16 JP JP2015557268A patent/JP6657955B2/ja active Active
- 2015-09-16 CN CN201580045117.4A patent/CN106574061B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59191207A (ja) * | 1983-04-14 | 1984-10-30 | 東レ株式会社 | 電気物品用ポリプロピレンフイルム |
JPH04163042A (ja) * | 1990-10-24 | 1992-06-08 | Toray Ind Inc | 電気物品用ポリプロピレンフィルム |
JPH11246683A (ja) * | 1998-03-02 | 1999-09-14 | Mitsui Chem Inc | ポリプロピレン延伸フィルム |
JP2001250738A (ja) * | 2000-03-03 | 2001-09-14 | Toray Ind Inc | コンデンサ用ポリプロピレンフィルム及びそれを用いたコンデンサ |
JP2004161799A (ja) * | 2002-11-08 | 2004-06-10 | Toray Ind Inc | 二軸延伸ポリプロピレンフィルム |
WO2012002123A1 (ja) * | 2010-06-29 | 2012-01-05 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
WO2014148547A1 (ja) * | 2013-03-22 | 2014-09-25 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
JP2014205799A (ja) * | 2013-04-15 | 2014-10-30 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム |
JP2015201616A (ja) * | 2014-03-31 | 2015-11-12 | 王子ホールディングス株式会社 | コンデンサ用二軸延伸ポリプロピレンフィルム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3196234A4 * |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021120456A (ja) * | 2015-05-12 | 2021-08-19 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法 |
JPWO2016182003A1 (ja) * | 2015-05-12 | 2018-02-22 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法 |
WO2016182003A1 (ja) * | 2015-05-12 | 2016-11-17 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法 |
JP7173202B2 (ja) | 2015-05-12 | 2022-11-16 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法 |
JP2018034510A (ja) * | 2016-08-30 | 2018-03-08 | 東レ株式会社 | オレフィン系積層フィルムおよびフィルムコンデンサ |
JP2019044171A (ja) * | 2017-08-29 | 2019-03-22 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
CN111051400B (zh) * | 2017-08-29 | 2022-08-26 | 东丽株式会社 | 聚丙烯膜、金属膜叠层膜及膜电容器 |
CN111051400A (zh) * | 2017-08-29 | 2020-04-21 | 东丽株式会社 | 聚丙烯膜、金属膜叠层膜及膜电容器 |
KR20200041878A (ko) | 2017-08-29 | 2020-04-22 | 도레이 카부시키가이샤 | 폴리프로필렌 필름, 금속막 적층 필름 및 필름 콘덴서 |
US11440292B2 (en) | 2017-08-29 | 2022-09-13 | Toray Industries, Inc. | Polypropylene film, metal layer laminated film, and film capacitor |
JP7318187B2 (ja) | 2017-08-29 | 2023-08-01 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
WO2019044758A1 (ja) | 2017-08-29 | 2019-03-07 | 東レ株式会社 | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
WO2020039638A1 (ja) * | 2018-08-20 | 2020-02-27 | 株式会社村田製作所 | フィルムコンデンサ、フィルムコンデンサ用フィルム及びフィルムコンデンサ用フィルムの製造方法 |
JPWO2020039638A1 (ja) * | 2018-08-20 | 2021-08-10 | 株式会社村田製作所 | フィルムコンデンサ、フィルムコンデンサ用フィルム及びフィルムコンデンサ用フィルムの製造方法 |
US11710602B2 (en) | 2018-08-20 | 2023-07-25 | Murata Manufacturing Co., Ltd. | Film capacitor, film-capacitor film, and method for manufacturing film-capacitor film |
JP7200997B2 (ja) | 2018-08-20 | 2023-01-10 | 株式会社村田製作所 | フィルムコンデンサ、フィルムコンデンサ用フィルム及びフィルムコンデンサ用フィルムの製造方法 |
JP7434751B2 (ja) | 2018-08-23 | 2024-02-21 | 東レ株式会社 | ポリプロピレンフィルムならびにこれを用いた金属膜積層フィルムおよびフィルムコンデンサ |
JP2020033550A (ja) * | 2018-08-23 | 2020-03-05 | 東レ株式会社 | ポリプロピレンフィルムならびにこれを用いた金属膜積層フィルムおよびフィルムコンデンサ |
CN113382839A (zh) * | 2019-02-21 | 2021-09-10 | 东丽株式会社 | 聚丙烯膜和使用它的金属膜层叠膜、膜电容器 |
JPWO2021176930A1 (ja) * | 2020-03-06 | 2021-09-10 | ||
CN115210833A (zh) * | 2020-03-06 | 2022-10-18 | 普瑞曼聚合物株式会社 | 电容器用多层聚丙烯膜 |
US20230088053A1 (en) * | 2020-03-06 | 2023-03-23 | Prime Polymer Co., Ltd. | Multilayer polypropylene film for capacitor |
KR20220134612A (ko) | 2020-03-06 | 2022-10-05 | 가부시키가이샤 프라임 폴리머 | 콘덴서용 다층 폴리프로필렌 필름 |
WO2021176930A1 (ja) | 2020-03-06 | 2021-09-10 | 株式会社プライムポリマー | コンデンサ用多層ポリプロピレンフィルム |
CN115210833B (zh) * | 2020-03-06 | 2024-08-13 | 普瑞曼聚合物株式会社 | 电容器用多层聚丙烯膜 |
WO2021205908A1 (ja) * | 2020-04-07 | 2021-10-14 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム |
Also Published As
Publication number | Publication date |
---|---|
JP6657955B2 (ja) | 2020-03-04 |
JPWO2016043217A1 (ja) | 2017-06-29 |
EP3196234A1 (en) | 2017-07-26 |
CN106574061B (zh) | 2019-09-27 |
CN106574061A (zh) | 2017-04-19 |
EP3196234A4 (en) | 2018-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7173202B2 (ja) | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法 | |
JP6657955B2 (ja) | ポリプロピレンフィルムおよびフィルムコンデンサ | |
JP7135320B2 (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP6070864B2 (ja) | ポリプロピレンフィルムおよびフィルムコンデンサ | |
JP7088019B2 (ja) | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法 | |
JP6319293B2 (ja) | コンデンサ用二軸配向ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ | |
JPWO2019044758A1 (ja) | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP6658953B1 (ja) | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ | |
JP2016188360A (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
WO2015146894A1 (ja) | 二軸配向ポリプロピレンフィルム | |
WO2016158590A1 (ja) | コンデンサ用二軸配向ポリプロピレンフィルム、金属積層フィルムおよびフィルムコンデンサ | |
WO2021166993A1 (ja) | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP6682937B2 (ja) | コンデンサ用二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ | |
WO2021166994A1 (ja) | ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ | |
WO2020171163A1 (ja) | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ | |
JP2019172921A (ja) | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP6885484B2 (ja) | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ | |
JP7318187B2 (ja) | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP2020132884A (ja) | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ | |
JP2019172922A (ja) | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP6992919B2 (ja) | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP7247918B2 (ja) | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ | |
JP2021134352A (ja) | ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015557268 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15841483 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015841483 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015841483 Country of ref document: EP |