WO2016043217A1 - ポリプロピレンフィルムおよびフィルムコンデンサ - Google Patents

ポリプロピレンフィルムおよびフィルムコンデンサ Download PDF

Info

Publication number
WO2016043217A1
WO2016043217A1 PCT/JP2015/076278 JP2015076278W WO2016043217A1 WO 2016043217 A1 WO2016043217 A1 WO 2016043217A1 JP 2015076278 W JP2015076278 W JP 2015076278W WO 2016043217 A1 WO2016043217 A1 WO 2016043217A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
points
polypropylene
breakdown voltage
capacitor
Prior art date
Application number
PCT/JP2015/076278
Other languages
English (en)
French (fr)
Inventor
今西 康之
大倉 正寿
一馬 岡田
久万 琢也
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201580045117.4A priority Critical patent/CN106574061B/zh
Priority to EP15841483.9A priority patent/EP3196234A4/en
Priority to JP2015557268A priority patent/JP6657955B2/ja
Publication of WO2016043217A1 publication Critical patent/WO2016043217A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a polypropylene film suitable for packaging, industrial use, and the like. More specifically, the dielectric for a capacitor has few insulation defects and suppresses variation in dielectric breakdown voltage in a high temperature environment, and is particularly used for a capacitor for high voltage.
  • the present invention relates to a polypropylene film that can exhibit high voltage resistance and reliability.
  • Polypropylene films are excellent in transparency, mechanical properties, electrical properties, etc., and are therefore used in various applications such as packaging applications, tape applications, cable wrapping and electrical applications including capacitors.
  • capacitors are particularly preferably used for high voltage capacitors because of their excellent withstand voltage characteristics and low loss characteristics, not limited to DC applications and AC applications.
  • Such a polypropylene film needs to be stretched at a high magnification at the time of film formation from the viewpoint of voltage resistance, productivity, and workability, and in order to improve voltage resistance, in particular, in-plane uniform stretching is required. It is important to reduce insulation defects that break down with voltage. From the viewpoint of heat resistance, it is said that the temperature of the usage environment will exceed 120 ° C. in the future when considering power semiconductor applications using SiC. Due to the demand for further heat resistance and voltage resistance as a capacitor, film withstand voltage stability at a high temperature of 125 ° C. is required.
  • the upper limit of the use temperature of the polypropylene film is said to be about 110 ° C., and it is difficult to stably maintain the withstand voltage in a temperature environment exceeding 120 ° C., for example, 125 ° C. Met.
  • Voids derived from crystal transformation into crystals are formed, so there are many variations when viewed across the film, such as the withstand voltage being lowered depending on the measurement site, and when using capacitors, the withstand voltage and reliability are improved in a high temperature environment Was not enough.
  • the inventors of the present invention have arrived at the present invention as a result of intensive studies in order to solve the above problems.
  • the present invention relates to a polypropylene film that has few insulation defects and suppresses variations in dielectric breakdown voltage in a high-temperature environment, and provides a polypropylene film that can exhibit high voltage resistance and reliability, particularly in high-voltage capacitor applications.
  • the above-mentioned problem is that the film breakdown voltage (V / ⁇ m) is measured at 30 points in an atmosphere of 125 ° C., and 5 points from the highest breakdown voltage and 5 points from the lowest one are excluded.
  • the percentage (125R%) calculated by dividing the difference between the maximum value and the minimum value by the average value of the 20 points is less than 50%, and the dielectric breakdown voltage (V / ⁇ m) of the film in an atmosphere at 23 ° C. It is calculated by measuring 30 points and dividing the difference between the maximum value and the minimum value among the 20 points excluding 5 points from the highest breakdown voltage and 5 points from the lowest one by the average value of the 20 points.
  • the present invention can provide a polypropylene film that has few insulation defects and suppresses variations in dielectric breakdown voltage in a high temperature environment, it can be used in various applications such as packaging, tape, cable wrapping, and electrical applications including capacitors. In particular, high voltage resistance and reliability can be achieved in high voltage capacitor applications.
  • the polypropylene film of the present invention was measured at 30 points in the dielectric breakdown voltage (V / ⁇ m) of the film in an atmosphere of 125 ° C., and 20 points were obtained by removing 5 points from the highest breakdown voltage and 5 points from the lowest.
  • the percentage (125R%) calculated by dividing the difference between the maximum value and the minimum value among them by the average value of the 20 points is less than 50%, and the dielectric breakdown voltage (V / ⁇ m) of the film in an atmosphere at 23 ° C. ) Is measured at 30 points, and the difference between the maximum value and the minimum value among the 20 points excluding 5 points from the highest breakdown voltage and 5 points from the lowest is divided by the average value of the 20 points.
  • the calculated percentage (23R%) is less than 20%.
  • (125R%) and (23R%) indicate variations in dielectric breakdown voltage values at 125 ° C and 23 ° C, respectively, and the smaller this R%, the more uniform the structure in the film plane. In the case of a capacitor, high voltage resistance and reliability are exhibited.
  • (125R%) is more preferably less than 40%, still more preferably less than 30%.
  • the lower limit is 1%.
  • (125R%) is 50% or more, when a capacitor is used, it causes a decrease in capacity and short-circuit damage in a high temperature environment, leading to a decrease in withstand voltage and a decrease in reliability.
  • (23R%) is more preferably less than 15%, still more preferably less than 10%. The lower limit is 1%.
  • controlling the (125R%) and (23R%) of the polypropylene film within the respective ranges is preferable in terms of conditions such as the raw materials used, the cooling temperature at the time of cooling and solidifying the molten sheet, the laminating structure, and the addition of particles.
  • a treatment process at a temperature lower than the stretching temperature first stage treatment process
  • a heat treatment step second step treatment step
  • the polypropylene film of the present invention was measured at 30 points in the dielectric breakdown voltage (V / ⁇ m) of the film at 125 ° C., and an average of 20 points excluding 5 points from the highest breakdown voltage and 5 points from the lowest breakdown voltage.
  • the value is preferably 500 V / ⁇ m or more, more preferably 525 V / ⁇ m or more, and still more preferably 550 V / ⁇ m or more.
  • the average value of the dielectric breakdown voltage value of the film is less than 500 V / ⁇ m in an atmosphere of 125 ° C., the withstand voltage in a high temperature environment may be insufficient when used as a capacitor.
  • the glossiness of at least one surface of the film is preferably 140% or more, more preferably 143% or more, and further preferably 145% or more.
  • Making the glossiness less than 140%, that is, reducing the glossiness means increasing the density of light scattering on the film surface. Since the surface becomes rough, there is a decrease in dielectric breakdown voltage and variations. It may be likely to occur.
  • the upper limit of the glossiness is 155%. Controlling the glossiness of the polypropylene film of the present invention within a preferable range can be achieved, for example, by controlling the raw materials used later, the cooling temperature at the time of cooling and solidifying the molten sheet, and the conditions such as the layer structure and particle addition within the preferable range. Is possible.
  • the sum of the breaking strength in the film principal axis direction and the breaking strength in the direction perpendicular to the film principal axis at 23 ° C. is preferably 500 MPa or more, more preferably 530 MPa or more, and further preferably 560 MPa or more.
  • the direction in which the maximum value is obtained among the breaking strengths obtained by measuring the film plane in a circumferential shape is defined as the film main axis direction.
  • a direction orthogonal to the main axis direction is defined as a main axis orthogonal direction.
  • Is the direction of the main axis of the film, and the direction orthogonal thereto is the direction of the main axis.
  • the process causes a decrease in dielectric breakdown voltage of the film and a variation in value, or a metal film is formed by vapor deposition. In some cases, film breakage may occur during film conveyance during winding of a capacitor element.
  • the upper limit is 700 MPa.
  • the polypropylene film of the present invention preferably has a breaking strength in the film principal axis direction at 23 ° C. of 150 MPa or more, more preferably 180 MPa or more, and further preferably 200 MPa or more.
  • the polypropylene film of the present invention is suitably roughened without impairing the glossiness of the film surface, from the viewpoint of obtaining uniformity between film interlayer gaps, ease of slipping between films or transport rolls, and reliability as a capacitor.
  • the three-dimensional center plane average roughness SRa on one surface of the film is preferably 30 nm or more, more preferably 50 nm or more, and further preferably 70 nm or more. When the three-dimensional center plane average roughness SRa is less than 30 nm, the slip of the film is extremely lowered, the handling property is inferior or wrinkles are likely to occur, and the capacitance changes due to the influence of wrinkles during continuous use as a capacitor.
  • the upper limit is 300 nm.
  • Controlling the three-dimensional center plane average roughness SRa of the polypropylene film of the present invention within a preferable range is, for example, a preferable range of conditions such as a raw material to be described later, a cooling temperature at the time of cooling and solidifying a molten sheet, a laminating configuration, and particle addition. It is possible by controlling within.
  • the polypropylene film of the present invention forms surface irregularities without impairing the glossiness of the film surface, and is excellent in capacitor element processing suitability even if it is a thin film, and from the viewpoint of exhibiting high voltage resistance even in a high temperature environment, at least one surface is provided. It is preferable that the film layer to be formed contains particles.
  • Examples of particles used in the polypropylene film of the present invention include inorganic particles and organic particles.
  • examples of inorganic particles include metal oxides such as silica, alumina, titania, zirconia, barium sulfate, calcium carbonate, aluminum silicate, calcium phosphate, mica, kaolin, and clay.
  • metal oxides such as silica, alumina, titania, zirconia, and calcium carbonate are preferable.
  • Organic particles include polymethoxysilane-based compound crosslinked particles, polystyrene-based compound crosslinked particles, acrylic-based compound crosslinked particles, polyurethane-based compound crosslinked particles, polyester-based compound crosslinked particles, fluorine-based compound crosslinked particles, or Mention may be made of these mixtures.
  • the average particle diameter of the inorganic particles and organic particles is preferably in the range of 0.03 to 10 ⁇ m.
  • the average particle diameter is more preferably 0.05 to 6 ⁇ m, still more preferably 0.07 to 1 ⁇ m, and most preferably 0.08 to 0.25 ⁇ m. If the average particle size is less than 0.03 ⁇ m, the surface roughness becomes small, and the handling property may be insufficient or the capacitor reliability may be lowered. On the other hand, when the thickness exceeds 10 ⁇ m, the film is easily broken, or the particles are easily dropped from the thin film to cause an insulation defect.
  • the average particle diameter of inorganic particles or organic particles is a circle-equivalent diameter obtained by image processing from a scanning electron micrograph of the particles.
  • the content of the particles is preferably 0.01 to 1 part by mass when the entire polypropylene film is 100 parts by mass. If the content is less than 0.01 parts by mass, handling properties may be insufficient and capacitor reliability may be reduced. When it exceeds 1 part by mass, the film is easily broken or falls off from the thin film, which easily causes an insulation defect.
  • the polypropylene film of the present invention is preferably provided with a constituent layer containing particles on at least one surface or a constituent layer made of a resin in which polypropylene and polypropylene are incompatible with a thermoplastic resin, and is a laminated film. It is preferable.
  • Lamination methods include laminating films by lamination, co-extrusion feed block method and multi-manifold method, coating method, etc. From the viewpoint of production efficiency and cost, lamination method by melt coextrusion, coating Is preferred. Further, the lamination is preferably a construction in which two or more layers are laminated in the film thickness direction.
  • the A layer is defined as a constituent layer containing particles or a constituent layer made of a resin obtained by blending polypropylene and polypropylene with an incompatible thermoplastic resin.
  • a technique using crystal transformation can be preferably used particularly for a capacitor application, and solidified on a casting (cooling) drum after melt extrusion in a film manufacturing process.
  • a ⁇ -crystal spherulite is formed by raising the temperature to 60 ° C. or higher, and irregularities are formed on the film surface by transforming thermally unstable ⁇ -crystals into ⁇ -crystals in the stretching process.
  • voids formed in the process of crystal transformation may occur not only in the surface layer but also in the inner layer, which may become insulation defects and lower the withstand voltage.
  • the polypropylene film of the present invention has a structure containing particles in the surface layer or a structure composed of a resin in which polypropylene and polypropylene are blended with an incompatible thermoplastic resin.
  • the temperature of solidification on the cooling drum is less than 60 ° C., preferably less than 40 ° C., more preferably less than 30 ° C.
  • fine ⁇ -crystal spherulites or mesophases are preferentially formed.
  • the polypropylene film of the present invention is substantially free from void formation due to crystal transformation in the stretching process, and is excellent in capacitor element processing suitability even in a thin film without causing an insulation defect, and is also high in a high temperature environment.
  • the mesophase indicates an ordered state between crystal and amorphous, and is also called smectic crystal or smectic crystal. It is known that the mesophase is generated when solidified at a very high cooling rate from the molten state. Yes. Since the mesophase is an intermediate phase and forms a uniform structure in the stretching process, it is a preferable structure for reducing insulation defects. In addition, in a constituent layer made of a resin in which polypropylene and polypropylene are blended with an incompatible thermoplastic resin, surface irregularities utilizing the domain structure can be imparted, so that voids accompanying crystal transformation in the stretching process.
  • thermoplastic resin incompatible with polypropylene for example, a polymethylpentene resin can be preferably used.
  • the ratio of the thickness of the A layer to the total thickness of the film (if both surface layers have the A layer, the thickness of both the combined surface layers)
  • the ratio is preferably from 1% to 60%, more preferably from 5 to 40%, most preferably from 5 to 25% from the viewpoint of controlling the film forming property and the surface shape. If the proportion of the A layer is too large, the withstand voltage in a high temperature environment may be reduced due to voids. On the other hand, if the proportion of the A layer is too small, unevenness may not be efficiently formed on the film surface. Processing suitability may not be obtained.
  • the A layer can be identified by, for example, creating a film cross section and performing cross-sectional observation using a scanning electron microscope (SEM) or the like.
  • SEM scanning electron microscope
  • Polypropylene is usually used for packaging materials and capacitors, but preferably has a cold xylene soluble part (CXS) of 4% by mass or less. If these conditions are not satisfied, the film forming stability may be inferior, or the dielectric breakdown voltage of the biaxially stretched film may be lowered.
  • CXS cold xylene soluble part
  • CXS refers to a polypropylene component dissolved in xylene when the film is completely dissolved in xylene and then deposited at room temperature, for reasons such as low stereoregularity and low molecular weight. This is considered to correspond to a component that is difficult to crystallize. When such a component is contained in a large amount of resin, problems such as a decrease in the voltage resistance of the film may occur. Therefore, CXS is preferably 4% by mass or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less. In order to obtain such polypropylene having CXS, methods such as a method for increasing the catalytic activity in obtaining a resin and a method for washing the obtained resin with a solvent or propylene monomer itself can be used.
  • the polypropylene preferably has a melt flow rate (MFR) in the range of 1 to 10 g / 10 minutes (230 ° C., 21.18 N load), particularly preferably 2 to 5 g / 10 minutes (230 ° C., 21.18 N load). Is preferable from the viewpoint of film forming property.
  • MFR melt flow rate
  • a method of controlling the average molecular weight or the molecular weight distribution is employed.
  • Polypropylene is mainly composed of a homopolymer of propylene, but may contain other unsaturated hydrocarbon copolymerization components or the like, as long as the object of the present invention is not impaired. May be blended.
  • ethylene propylene (in the case of a copolymerized blend), 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene as monomer components constituting such copolymer components and blends -1,1-hexene, 4-methylpentene-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, vinylcyclohexene, styrene, allylbenzene, cyclopentene, norbornene, 5-methyl-2 -Norbornene and the like.
  • the copolymerization amount or blend amount is preferably less than 1 mol% in terms of copolymerization amount and less than 10
  • additives such as a crystal nucleating agent, an antioxidant, a heat stabilizer, a slipping agent, an antistatic agent, an antiblocking agent, a filler, and a viscosity modifier are added to polypropylene as long as the object of the present invention is not impaired. Further, a coloring inhibitor, a resin other than polypropylene, and the like can also be contained.
  • the selection of the type and amount of antioxidant is important from the viewpoint of long-term heat resistance. That is, the antioxidant is a phenolic compound having steric hindrance, and at least one of them is preferably a high molecular weight type having a molecular weight of 500 or more.
  • BHT 2,6-di-t-butyl-p-cresol
  • 1,3,5-trimethyl-2,4,6- Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene for example, Irganox® 1330 manufactured by BASF: molecular weight 775.2
  • tetrakis [methylene-3 (3,5-di-t -Butyl-4-hydroxyphenyl) propionate] methane for example, Irganox (registered trademark) 1010: molecular weight 1177.7 manufactured by BASF
  • Irganox registered trademark
  • the total content of these antioxidants is preferably in the range of 0.03 to 1.0 mass% with respect to the total amount of polypropylene. If the amount of the antioxidant is too small, the long-term heat resistance may be poor. If the amount of the antioxidant is too large, the capacitor element may be adversely affected by blocking at a high temperature due to bleeding out of these antioxidants.
  • a more preferable content is 0.1 to 0.9% by mass, particularly preferably 0.2 to 0.8% by mass.
  • the polypropylene film of the present invention preferably comprises a polypropylene resin having a mesopentad fraction of 0.95 or more and a melting point exceeding 160 ° C.
  • the mesopentad fraction is more preferably 0.97 or more, and further preferably 0.98 or more.
  • the mesopentad fraction is an index indicating the stereoregularity of the crystalline phase of polypropylene measured by nuclear magnetic resonance (NMR) method. The higher the numerical value, the higher the crystallinity, the higher the melting point, and the higher the temperature. This is preferable because variations in dielectric breakdown voltage can be suppressed.
  • the upper limit of the mesopentad fraction is not particularly specified.
  • a method of appropriately selecting an electron donating component in a so-called Ziegler-Natta catalyst is preferably employed.
  • the mesopentad fraction of the polypropylene resin is less than 0.95, the regularity of the polypropylene is low, leading to a decrease in the strength and dielectric breakdown voltage of the film in a high temperature environment, a process of forming a metal film by vapor deposition, or winding a capacitor element There is a case where the film breaks during film transportation in the preparation process.
  • the melting point of the polypropylene resin is more preferably 163 ° C. or higher, and further preferably 165 ° C. or higher.
  • the melting point is 160 ° C. or lower, the crystallinity is low, leading to a decrease in the dielectric breakdown voltage in a high temperature environment of the film, or breaking during film transport in the process of forming a metal film by vapor deposition or winding of a capacitor element. May form a film.
  • the polypropylene film of the present invention preferably contains a melt type nucleating agent with respect to the polypropylene resin.
  • polypropylene nucleating agents include non-melting nucleating agents such as phosphate, benzoate, and talc and melting nucleating agents.
  • a melting nucleating agent it is preferable to use a melting nucleating agent.
  • the melt-type nucleating agent is a crystal nucleating agent in which the nucleating agent itself melts or melts in molten polypropylene, and indicates a series of heat melting and cooling recrystallization. The method of measuring dissolution and recrystallization can be monitored by using melt rheology in a dynamic mode, as defined by ISO 6271-10: 1999.
  • melt-type nucleating agent examples include sorbitol derivatives, nonitol derivatives, and triamide derivatives.
  • di (alkylbenzylidene) sorbitol such as dibenzylidene sorbitol, 2,4-dimethylbenzylidene sorbitol, 1,3-dimethylbenzylidene sorbitol, 2,4-diethylbenzylidene sorbitol, 1,3-dibutylbenzylidene sorbitol, 2,4-dibutylbenzylidene sorbitol, 1,3-dimethoxybenzylidene sorbitol, 2,4-dimethoxybenzylidene sorbitol, 1,3-diethoxybenzylidene sorbitol, 1,3-chlorobenzylidene, 2,4-methylbenzylidene sorbitol, monomethyldi Benzylidene sorbitol, 2,4-
  • nonitol-based or triamide derivative nucleating agents are known to have high heat resistance and are particularly preferably used among the above melting nucleating agents. Is from 0.01 to 1.0 part by weight, preferably from 0.02 to 0.6 part by weight based on 100 parts by weight of the polypropylene resin.
  • the effect of the nucleating agent may be small.
  • the polypropylene film of the present invention is excellent in transparency, slipperiness, and high temperature characteristics, it is suitably used for general industrial applications and packaging applications. It is of course useful for general capacitors of 30 ⁇ m or less, but is particularly suitable for thin film heat-resistant film capacitors required for automobile applications (including hybrid car applications) used in high temperature environments.
  • the film thickness is preferably in the range of 0.5 ⁇ m or more and less than 15 ⁇ m, more preferably 0.5 ⁇ m or more and less than 10 ⁇ m, still more preferably 0.8 ⁇ m or more and less than 4.0 ⁇ m.
  • the polypropylene film of the present invention is preferably used as a dielectric film for a capacitor, but is not limited to the capacitor type.
  • a foil wound capacitor or a metal vapor deposition film capacitor may be used, and it is also preferably used for an oil immersion type capacitor impregnated with insulating oil or a dry type capacitor not using insulating oil at all. It is done.
  • it may be a winding type or a laminated type.
  • it is particularly preferably used as a metal vapor deposition film capacitor because of the characteristics of the film of the present invention.
  • a polypropylene film usually has a low surface energy and it is difficult to stably deposit metal, it is preferable to perform surface treatment before vapor deposition for the purpose of improving metal adhesion.
  • Specific examples of the surface treatment include corona discharge treatment, plasma treatment, glow treatment, and flame treatment.
  • the surface wet tension of polypropylene film is about 30 mN / m.
  • the surface treatment is performed on the B layer side which does not substantially contain particles, so that the capacitor characteristics can be improved by uniformizing the thickness of the metal deposited film. To preferred.
  • the polypropylene film of the present invention is obtained by biaxially stretching using a raw material that can give the above-described characteristics.
  • the biaxial stretching method it can be obtained by any of the inflation simultaneous biaxial stretching method, the tenter simultaneous biaxial stretching method, and the tenter sequential biaxial stretching method, among them, film formation stability, thickness uniformity, It is preferable to employ a tenter sequential biaxial stretching method in terms of controlling the surface unevenness forming property.
  • a method for producing the polypropylene film of the present invention will be described.
  • a polypropylene resin is melt-extruded on a support to obtain a polypropylene resin sheet.
  • the polypropylene resin sheet is subjected to sequential biaxial stretching of longitudinal stretching and lateral stretching, followed by heat treatment and relaxation treatment to produce a polypropylene film.
  • heat treatment and relaxation treatment to produce a polypropylene film.
  • a polypropylene raw material A containing the above-mentioned particles is supplied to a single-screw extruder for the A layer with respect to 100 parts by mass of a polypropylene resin having a mesopentad fraction of 0.95 or more and a melting point exceeding 160 ° C.
  • a polypropylene raw material B containing substantially no particles is supplied to a single-screw extruder for layer B, and is formed into a three-layer structure of layer A / layer B / layer A by a feed block method by melt coextrusion at 200 to 260 ° C.
  • the laminated resin is extruded from a slit-shaped base and solidified on a cooling drum controlled at a temperature of 10 to 59 ° C.
  • the mesophase fraction is preferably 50% or more, more preferably 70% or more, Preferably it is 90% or more, Most preferably, it is 97% or more.
  • the unstretched sheet is measured by wide-angle X-ray diffraction and calculated using an X-ray diffraction profile.
  • the obtained X-ray diffraction profile is processed with peak separation software to separate the mesophase into an ⁇ -crystal and amorphous profile, and the mesophase fraction is calculated.
  • the diffraction profile derived from the ⁇ crystal is observed at a wide angle X-ray diffraction measurement with a diffraction angle (2 ⁇ ) in the range of 10 to 30 degrees, around 14.1 degrees, around 16.9 degrees, and 18.6 degrees. It consists of five sharp peaks near, 21.6 degrees, and 21.9 degrees.
  • the diffraction profile derived from the mesophase consists of two broad peaks near 15 degrees and 21 degrees.
  • the diffraction profile derived from amorphous is a very broad peak with a diffraction angle of around 16.2 degrees, and can be obtained by measuring a polypropylene resin in a molten state by wide-angle X-ray diffraction.
  • an adhesion method to the casting drum any of an electrostatic application method, an adhesion method using the surface tension of water, an air knife method, a press roll method, an underwater casting method, or the like may be used.
  • the surface of the B layer side is smoothed by extruding from the slit-shaped base so that the B layer of the melt-laminated polymer is in contact with the casting drum surface. Can do.
  • this unstretched film is biaxially stretched.
  • the unstretched film is preheated through a roll maintained at 60 to 150 ° C., and then the sheet is maintained at a temperature of 60 to 150 ° C., stretched 2 to 10 times in the longitudinal direction, and then cooled to room temperature.
  • the unstretched film forms a mesophase, it is preferably maintained at a temperature of 60 to 120 ° C.
  • the stretching ratio in the longitudinal direction is more preferably 4.5 to 9 times, preferably 5.1 to 8 times, more preferably 5.4 to 8 times, and most preferably 5.8 to 8 times.
  • the stretching method and the stretching ratio are not particularly limited and are appropriately selected depending on the polymer characteristics to be used.
  • the longitudinally uniaxially stretched film is guided to a tenter, the end of the film is held by a clip, and the lateral stretching is performed at a temperature of 140 to 170 ° C. in the width direction 5.1 to 15 times, more preferably 6 to 14 times, and still more preferably. Stretch 9 to 13 times.
  • the draw ratio in the width direction is less than 5.1 times, the mechanical strength in the width direction of the polypropylene film may be lowered, or thickness unevenness may be deteriorated, so that the voltage resistance may be lowered.
  • the draw ratio in the width direction exceeds 15 times, film breakage tends to occur and productivity may be reduced.
  • the clip in the subsequent heat treatment and relaxation treatment step, is subjected to the first heat treatment at a temperature of 115 ° C. or higher and 140 ° C. or lower while giving 2 to 20% relaxation in the width direction while holding the tension in the width direction with the clip. It is possible to perform a multi-stage heat treatment in which the heat treatment is performed under the condition that the heat treatment temperature is higher than the first heat treatment temperature and less than the transverse stretching temperature while the width direction is held tightly. This is preferable from the viewpoint of reducing the local thickness unevenness and improving the withstand voltage characteristics.
  • the relaxation rate in the relaxation treatment step is preferably 5 to 18%, more preferably 8 to 15% from the viewpoint of obtaining thermal dimensional stability. If it exceeds 20%, the film may be too slack inside the tenter and wrinkles may occur on the product, causing unevenness during vapor deposition. On the other hand, if the relaxation rate is less than 2%, thermal dimensional stability cannot be obtained and a capacitor is obtained. In some high temperature usage environments, capacity reduction and short circuit damage may occur.
  • the first stage heat treatment temperature is preferably 115 ° C. or higher and 140 ° C. or lower, and 120 ° C. or higher and 138 ° C. or lower. Is more preferable, and 125 ° C. or higher and 135 ° C. or lower is more preferable.
  • the heat treatment temperature is lower than 115 ° C., the capacitance may be reduced or the short circuit may be broken in the capacitor characteristics under a high temperature environment.
  • heat treatment exceeding 140 ° C. molecular chain orientation relaxation proceeds, so that the voltage resistance of the film may be lowered.
  • the second-stage heat treatment temperature is preferably the first-stage heat treatment temperature + 5 ° C. or more and the transverse stretching temperature ⁇ 5 ° C. or less, more preferably the first-stage heat treatment temperature + 8 ° C. or more and the transverse stretching temperature ⁇ 8 ° C. or less.
  • the film After the multi-stage heat treatment, with the clip held tightly in the width direction, the film is guided to the outside of the tenter through the cooling process at 80 to 100 ° C, the clip at the end of the film is released, and the film edge is removed by the winder process. Slit and wind up film product roll.
  • a corona discharge treatment in air, nitrogen, carbon dioxide or a mixed gas thereof.
  • the method for forming a metal film laminated film by providing a metal film on the above-described polypropylene film surface is not particularly limited.
  • aluminum is deposited on at least one surface of a polypropylene film to serve as an internal electrode of a film capacitor.
  • a method of providing a metal film such as a vapor deposition film is preferably used.
  • other metal components such as nickel, copper, gold, silver, chromium, and zinc can be deposited simultaneously or sequentially with aluminum.
  • a protective layer can be provided on the deposited film with oil or the like.
  • the metal film laminated film can be annealed at a specific temperature or heat-treated.
  • a coating of polyphenylene oxide or the like can be applied to at least one surface of the metal film laminated film.
  • the metal film laminated film thus obtained can be laminated or wound by various methods to obtain a film capacitor.
  • An example of a preferred method for producing a wound film capacitor is as follows.
  • Aluminum is evaporated on one side of the polypropylene film under reduced pressure. In that case, it vapor-deposits in the stripe form which has the margin part which runs in a film longitudinal direction.
  • a tape-shaped take-up reel having a margin on one side is prepared by inserting a blade into the center of each vapor deposition section on the surface and the center of each margin section. Two tape-shaped take-up reels with margins on the left or right are wound on each other so that the vapor deposition part protrudes from the margin part in the width direction. Get.
  • the vapor deposition is performed in a stripe shape having a margin portion that runs in the longitudinal direction of one surface, and the other surface is striped so that the longitudinal margin portion is located at the center of the vapor deposition portion on the back side.
  • Vapor deposition Next, a tape-like take-up reel having a margin on one side (for example, a margin on the right side of the front surface and a margin on the left side of the back surface) is prepared on both sides of the front and back margins with a blade. Two each of the obtained reel and undeposited laminated film are overlapped and wound so that the metallized film protrudes from the laminated film in the width direction, and a wound body is obtained.
  • the core material can be removed from the wound body produced as described above and pressed, and the metallicon is sprayed on both end faces to form external electrodes, and lead wires are welded to the metallicon to obtain a wound film capacitor.
  • film capacitors such as those for railway vehicles, automobiles (hybrid cars, electric vehicles), solar power generation / wind power generation, and general household appliances.
  • the film capacitor of the present invention is also suitable for these applications. Can be used. In addition, it can be used in various applications such as packaging films, release films, process films, sanitary products, agricultural products, building products, and medical products.
  • the characteristic value measuring method and the effect evaluating method in the present invention are as follows.
  • Film thickness A total of 10 arbitrary positions of a polypropylene film were measured using an electronic micrometer (K-312A type) manufactured by Anritsu Co., Ltd. in an atmosphere of 23 ° C. and 65% RH, and the average The value was the film thickness of the polypropylene film.
  • Breaking strength of 23 ° C. film (sum of main axis direction and main axis orthogonal direction) A polypropylene film was prepared, and cut into a rectangular shape with a length of 50 mm and a width of 10 mm in an arbitrary direction as a sample ⁇ 1>. Next, it rotated 15 degrees from the long side direction of the rectangular sample, and sample ⁇ 2> was extract
  • the rectangular sample ⁇ 1> was set in a tensile tester (Orientec Tensilon UCT-100) with an initial chuck distance of 20 mm, and the film was subjected to a tensile test at a tensile rate of 300 mm / min in an atmosphere at 23 ° C. went.
  • the load value when the sample broke was read, the value divided by the cross-sectional area (film thickness x width (10 mm)) of the sample before the test was calculated as the stress of breaking strength, and the measurement was performed 5 times for each sample. Evaluation was made with average values.
  • the breaking strength is calculated, and the maximum value among ⁇ 1> to ⁇ 12> is defined as the breaking strength in the film principal axis direction.
  • the sum of the values of the breaking strength in the direction orthogonal to the principal axis was calculated.
  • the value measured by said (1) was used for the film thickness used for fracture strength calculation.
  • Three-dimensional center surface average roughness (SRa) Three-dimensional surface roughness was measured under the following conditions using a surf-order ET-4000A manufactured by Kosaka Laboratory. The sample set was set on the sample stage with the surface on the casting drum contact surface side as the measurement surface (upper surface) so that the X direction of the visual field measurement was the main axis direction of the polypropylene film. The measurement was performed 10 times under different conditions under the following conditions, and the average value of the center line surface roughness of each was calculated to obtain the three-dimensional center plane average roughness (SRa).
  • Peak splitting is performed using WINIT software (manufactured by Bruker). At that time, peak splitting is performed as follows from the peak on the high magnetic field side, soft automatic fitting is performed, peak splitting is optimized, and mmmm and ss (mmmm spinning sideband peak) The sum of the peak fractions is defined as the mesopentad fraction (mmmm).
  • A mrrm
  • B (c) rrrrm (divided as two peaks)
  • I mmmm (J) rmmr.
  • FT-IR measurement conditions FT-IR equipment: IRPrestige-21 (manufactured by Shimadzu Corporation) Detector: DLATGS Measurement mode: Transmission resolution: 4cm -1 Integration count: 64 times Sample preparation: KBr tablet method (4 mm ⁇ ) ⁇ 1 H-NMR measurement conditions> Device name: ECA400 (manufactured by JEOL) Measurement nucleus: 1 H Observation frequency: 400 MHz ⁇ MALDI-MS measurement conditions> Device name: AXIMA-TOF2 (manufactured by Shimadzu Corporation) Ionization method: MALDI (Matrix Assisted Laser Desorption / Ionization) (11) Crystallization peak temperature Using a differential scanning calorimeter (EXSTAR DSC 6220 manufactured by Seiko Instruments Inc.), a 3 mg film sample is heated from 30 ° C.
  • EXSTAR DSC 6220 manufactured by Seiko Instruments Inc.
  • a profile derived from the mesophase exists was calculated as follows.
  • A The diffraction profile is processed with peak separation software to separate it into mesophase, ⁇ -crystal, and amorphous profiles.
  • analysis software IGOR Pro (Ver. 6) software manufactured by WaveMetrics, Inc. was used.
  • B For refinement, diffraction angles used in peak separation are 15 degrees and 21 degrees derived from the mesophase, 14.1, 16.9 degrees, 18.6 degrees, 21. 6 degrees and 21.9 degrees, and 16.2 degrees derived from amorphous were used as fixed values.
  • the capacitor element was wound up with an element winding machine (KAW-4NHB) manufactured by Minato Seisakusho, and after metallization, heat treatment was performed at 120 ° C. for 10 hours under reduced pressure, and the lead wires were connected. The mounting capacitor element was finished.
  • KAW-4NHB element winding machine
  • A can be used without problems, and B can be used depending on conditions. C and D are inferior in practical performance.
  • Example 1 Nonitol-based molten type polymerized with Ziegler-Natta catalyst, 100 parts by mass of polypropylene resin having a mesopentad fraction of 0.98, a melting point of 167 ° C. and a melt flow rate (MFR) of 2.6 g / 10 min.
  • the nucleating agent “Milliken ⁇ crystal nucleating agent: NX8000” was kneaded and extruded with an extruder set at 240 ° C. so that the concentration became 0.3 parts by mass, and the strand was cooled with water to chip into polypropylene resin raw material (B ).
  • polypropylene resin for layer A As a polypropylene resin for layer A, with respect to 100 parts by mass of PP resin having a mesopentad fraction of 0.98, a melting point of 167 ° C. and a melt flow rate (MFR) of 2.6 g / 10 min, “manufactured by Denki Kagaku Kogyo Co., Ltd.
  • MFR melt flow rate
  • the average particle size of 0.3 ⁇ m silica particles: SFP-20MHE (silane coupling surface treatment) ” was kneaded and extruded with an extruder set at 240 ° C. so as to be 0.1 part by mass, and the strands were cooled with water and chipped to obtain a polypropylene resin. It was set as the raw material (A).
  • the polypropylene resin raw material (B) is supplied to a uniaxial melt extruder for the B layer, the polypropylene resin raw material (A) is supplied to a uniaxial melt extruder for the A layer, and melt extrusion is performed at 240 ° C.
  • a feed block is used to laminate A / B / A with a three-layer thickness ratio of 1/8/1 (the ratio of the surface layer A layer to the total film thickness is 20% ),
  • the molten laminated polymer is discharged from a T-die, and the molten sheet is adhered by electrostatic application on a casting drum held at 30 ° C. and cooled and solidified to obtain an unstretched sheet.
  • the sheet was gradually preheated to 143 ° C. by a plurality of roll groups, and subsequently passed through rolls having a peripheral speed difference maintained at a temperature of 143 ° C., and stretched 6.0 times in the longitudinal direction.
  • the film was guided to a tenter, stretched 10 times in the width direction at a temperature of 163 ° C., and then heat treated at 130 ° C. while giving 10% relaxation in the width direction as the first stage heat treatment and relaxation treatment, and further 2
  • heat treatment was performed at 140 ° C. while being held in the width direction by the clip.
  • the film is guided to the outside of the tenter through a cooling process at 100 ° C., the clip at the end of the film is released, and then the corona discharge treatment is performed in the atmosphere at a treatment strength of 25 W ⁇ min / m 2 on the film surface (casting drum contact surface side). And a film having a film thickness of 2.0 ⁇ m was wound up as a film roll.
  • the characteristics of the polypropylene film and the capacitor characteristics of this example were as shown in Table 1, and the voltage resistance and reliability were very excellent.
  • Example 2 A polypropylene film having a thickness of 2.2 ⁇ m was obtained in the same manner as in Example 1 except that the melt type nucleating agent was not contained in the B-layer polypropylene resin.
  • the characteristics and capacitor characteristics of the polypropylene film of this example are as shown in Table 1. The reliability as a capacitor is very excellent, and the withstand voltage is at a level that causes no problem in practical use.
  • Example 3 A polypropylene film was obtained in the same manner as in Example 1 except that the conditions for the heat treatment temperature after biaxial stretching were changed to those shown in Table 1.
  • the characteristics and capacitor characteristics of the polypropylene film of this example are as shown in Table 1, and both the withstand voltage and reliability as a capacitor were at a level where there was no problem in practical use.
  • Example 4 As a polypropylene resin for the A layer, with respect to 100 parts by mass of a polypropylene resin having a mesopentad fraction of 0.98, a melting point of 167 ° C., and a melt flow rate (MFR) of 2.6 g / 10 minutes, “average made by Tokuyama Corporation” Kneaded and extruded with an extruder set at 240 ° C. so that the particle size is 0.1 ⁇ m silica particles: Sunseal SSP-M01 ”at 0.25 parts by mass, and the strands were cooled with water and chipped to obtain polypropylene resin raw material (C). .
  • MFR melt flow rate
  • a polypropylene resin polymerized with a Ziegler-Natta catalyst and having a mesopentad fraction of 0.98, a melting point of 167 ° C., and a melt flow rate (MFR) of 2.6 g / 10 min was used as a uniaxial for the B layer.
  • a polypropylene film having a thickness of 3.5 ⁇ m was obtained in the same manner as in Example 2 except that the polypropylene resin raw material (C) was supplied to a uniaxial melt extruder for the A layer. .
  • the characteristics and capacitor characteristics of the polypropylene film of this example were as shown in Table 1, and were the level with the highest voltage resistance and very excellent reliability.
  • Example 5 The amount of extrusion is adjusted so that the lamination structure is A / B 2 layers and the lamination thickness ratio is 1/8 (the ratio of the surface layer A layer to the total thickness of the film is 11%), and the B layer of the molten laminated polymer is the casting drum surface
  • a polypropylene film having a thickness of 3.5 ⁇ m was obtained in the same manner as in Example 4 except that the film surface was subjected to biaxial stretching and subjected to corona discharge treatment on the B layer side.
  • the properties of the polypropylene film and the capacitor properties of this example were as shown in Table 1 and were the ones with the highest voltage resistance and very excellent reliability (Comparative Example 1).
  • melt extrusion of 100 parts by mass of a polypropylene resin polymerized with a Ziegler-Natta catalyst and having a mesopentad fraction of 0.98, a melting point of 167 ° C. and a melt flow rate (MFR) of 2.6 g / 10 min.
  • the melt-extruded polymer is extruded at 240 ° C., foreign matter is removed by a sintered filter of 80 ⁇ m cut, the molten laminated polymer is discharged from a T-die, and the molten sheet is held on a casting drum held at 90 ° C. Then, it was made to adhere by electrostatic application and solidified by cooling to obtain an unstretched sheet.
  • the sheet was gradually preheated to 143 ° C. by a plurality of roll groups, and subsequently passed through rolls having a peripheral speed difference maintained at a temperature of 143 ° C., and stretched 5.0 times in the longitudinal direction.
  • the film was guided to a tenter, stretched 10 times in the width direction at a temperature of 163 ° C., and then heat-treated at 155 ° C. while giving 10% relaxation in the width direction as a first-stage heat treatment and relaxation treatment.
  • heat treatment at the stage heat treatment was performed at 140 ° C. while being held in the width direction by the clip.
  • the film is guided to the outside of the tenter through a cooling process at 100 ° C., the clip at the end of the film is released, and then the corona discharge treatment is performed in the atmosphere at a treatment strength of 25 W ⁇ min / m 2 on the film surface (casting drum contact surface side). And a film having a film thickness of 2.2 ⁇ m was wound up as a film roll.
  • the characteristics and capacitor characteristics of the polypropylene film of this comparative example are as shown in Table 1. The withstand voltage as the capacitor was extremely low, and the reliability was at a level that caused problems such as element destruction.
  • Example 2 A polypropylene film having a thickness of 2.2 ⁇ m was obtained in the same manner as in Example 1 except that only the polypropylene resin (A) of Example 1 was melt-extruded to obtain a single-layer film.
  • the characteristics and capacitor characteristics of the polypropylene film of this comparative example are as shown in Table 1. The voltage resistance as a capacitor was low, and the reliability was inferior to the performance in practical use because the element shape was deformed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

125℃雰囲気でフィルムの絶縁破壊電圧(V/μm)を30点測定し、破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の中の最大値と最小値の差を該20点の平均値で除して算出される百分率(125R%)が50%未満であり、かつ、23℃雰囲気でフィルムの絶縁破壊電圧(V/μm)を30点測定し、破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の中の最大値と最小値の差を該20点の平均値で除して算出される百分率(23R%)が20%未満である、ポリプロピレンフィルム。 絶縁欠陥が少なく高温環境における絶縁破壊電圧のバラツキを抑制したポリプロピレンフィルムに関し、特に高電圧用コンデンサ用途において高い耐電圧性と信頼性を発現できるポリプロピレンフィルムを提供する。

Description

ポリプロピレンフィルムおよびフィルムコンデンサ
 本発明は、包装用や工業用等に好適なポリプロピレンフィルムに関するものであり、さらに詳しくはコンデンサ用誘電体として絶縁欠陥が少なく高温環境における絶縁破壊電圧のバラツキを抑制し、特に高電圧用コンデンサ用途において高い耐電圧性と信頼性を発現できるポリプロピレンフィルムに関する。
 ポリプロピレンフィルムは、透明性、機械特性、電気特性等に優れるため、包装用途、テープ用途、ケーブルラッピングやコンデンサをはじめとする電気用途等の様々な用途に用いられている。
 この中でもコンデンサ用途は、その優れた耐電圧特性、低損失特性から直流用途、交流用途に限らず高電圧コンデンサ用に特に好ましく用いられている。
 最近では、各種電気設備がインバーター化されつつあり、それに伴いコンデンサの小型化、大容量化の要求が一層強まってきている。そのような市場、特に自動車用途(ハイブリッドカー用途含む)や太陽光発電、風力発電用途の要求を受け、ポリプロピレンフィルムの耐電圧性を向上させ、生産性、加工性を維持させつつ、一層の薄膜化が必須な状況となってきている。
 かかるポリプロピレンフィルムは、耐電圧性、生産性、加工性の観点から製膜時において高倍率延伸が必要であり、特に耐電圧性を向上させるためには、面内で均一な延伸をさせ、低電圧で破壊する絶縁欠陥を低減させることが重要である。また、耐熱性という観点では、将来的に、SiCを用いたパワー半導体用途を考えた場合、使用環境の温度が120℃を超えると言われている。コンデンサとしてさらなる耐熱化と耐電圧性の要求から、125℃という高温化でのフィルムの耐電圧安定性が求められている。しかしながら、非特許文献1に記載のように、ポリプロピレンフィルムの使用温度上限は約110℃といわれており、120℃を超える温度、例えば、125℃という温度環境では耐電圧を安定維持することは困難であった。
 これまでポリプロピレンフィルムにおいて125℃という温度環境下での性能を得るための手法として、例えば、分子量分布を制御したポリプロピレン樹脂に長鎖分岐ポリプロピレンを有することで耐熱性を向上させる提案がなされている(例えば、特許文献1)。さらに前記で構成されたフィルムの表層にカバー層を設け表面を荒らしたフィルムの提案もなされている(例えば、特許文献2)。しかしながら、分子量分布を制御したポリプロピレン樹脂に長鎖分岐ポリプロピレンを添加することで125℃耐電圧の向上は認められるも、延伸倍率が低いこと、溶融シート冷却固化温度が高い故に延伸時にβ晶からα晶への結晶変態由来のボイドを形成するため、測定部位によっては耐電圧が低くなるなどフィルム全体でみたときにバラツキも多く、さらにコンデンサとしたときには高温環境下で耐電圧性や信頼性の向上は十分とは言い難いものであった。
特表2010-501712号公報 特表2010-501382号公報
日経エレクトロニクス、2012年9月17日、p.57-62
 本発明者らは、上記の課題を解決するため鋭意検討の結果、本発明に至ったものである。本発明は、絶縁欠陥が少なく高温環境における絶縁破壊電圧のバラツキを抑制したポリプロピレンフィルムに関し、特に高電圧用コンデンサ用途において高い耐電圧性と信頼性を発現できるポリプロピレンフィルムを提供する。
 上記した課題は、125℃雰囲気でフィルムの絶縁破壊電圧(V/μm)を30点測定し、破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の中の最大値と最小値の差を該20点の平均値で除して算出される百分率(125R%)が50%未満であり、かつ、23℃雰囲気でフィルムの絶縁破壊電圧(V/μm)を30点測定し、破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の中の最大値と最小値の差を該20点の平均値で除して算出される百分率(23R%)が20%未満である、ポリプロピレンフィルムによって達成可能である。
 本発明は、絶縁欠陥が少なく高温環境における絶縁破壊電圧のバラツキを抑制したポリプロピレンフィルムを提供することができるので、包装用途、テープ用途、ケーブルラッピングやコンデンサをはじめとする電気用途等の様々な用途に適用でき、特に高電圧用コンデンサ用途において高い耐電圧性と信頼性を発現できる。
 本発明のポリプロピレンフィルムは、125℃雰囲気でフィルムの絶縁破壊電圧(V/μm)を30点測定し、破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の中の最大値と最小値の差を該20点の平均値で除して算出される百分率(125R%)が50%未満であり、かつ、23℃雰囲気でフィルムの絶縁破壊電圧(V/μm)を30点測定し、破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の中の最大値と最小値の差を該20点の平均値で除して算出される百分率(23R%)が20%未満である。ここで(125R%)および(23R%)はそれぞれ125℃、23℃での絶縁破壊電圧値のバラツキを示すものであり、このR%が小さいほどフィルム面内で均一な構造を有し絶縁欠陥の存在が少ないことを意味し、コンデンサとした場合には高い耐電圧性と信頼性を発現するものである。本発明のポリプロピレンフィルムにおいて(125R%)はより好ましくは40%未満、さらに好ましくは30%未満である。下限は1%とするものである。(125R%)が50%以上の場合は、コンデンサとした場合に高温環境下において容量低下やショート破壊を引き起こし、耐電圧性の低下を招き、信頼性も低くなる。また、(23R%)はより好ましくは15%未満、さらに好ましくは10%未満である。下限は1%とするものである。(23R%)が20%以上の場合、室温状態でのフィルム構造の不均一性を示し、コンデンサとした場合に室温での容量低下やショート破壊を引き起こし、耐電圧性の低下を招き、信頼性も低くなることは勿論、高温環境において大幅な耐電圧性の低下が生じ、信頼性が大きく損なわれるものとなる。本発明者らは鋭意検討することにより、(125R%)および(23R%)のそれぞれの百分率と高温環境下でのコンデンサ耐電圧性に高い相関性があり、コンデンサ特性の高温環境下での耐電圧および信頼性の向上には、(125R%)および(23R%)それぞれが小さい百分率となるよう制御することが重要であることを見出したものである。ここで、ポリプロピレンフィルムの(125R%)および(23R%)をそれぞれ範囲内に制御することは、後述する使用原料や溶融シート冷却固化時の冷却温度および積層構成および粒子添加などの条件を好ましい範囲内で制御したり、二軸延伸後の熱処理および弛緩処理工程において、まず延伸温度より低温での処理工程(1段目処理工程)を経て、再度、前記処理温度より高温でかつ二軸延伸時の幅方向延伸温度未満の熱処理工程(2段目処理工程)を適宜施すことにより可能である。
 本発明のポリプロピレンフィルムは125℃雰囲気でフィルムの絶縁破壊電圧(V/μm)を30点測定し、破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の平均値が500V/μm以上であることが好ましく、より好ましくは525V/μm以上、さらに好ましくは550V/μm以上である。125℃雰囲気でフィルムの絶縁破壊電圧値の上記平均値が500V/μmより小さい場合は、コンデンサとしたとき高温環境下での耐電圧性が不足する場合がある。
 本発明のポリプロピレンフィルムは、少なくともフィルムの片表面の光沢度が140%以上であることが好ましく、より好ましくは143%以上、さらに好ましくは145%以上である。光沢度を140%未満とすること、すなわち光沢度を低下せしめることはフィルム表面での光散乱の密度をアップすることを意味し、表面粗面化になるため、絶縁破壊電圧の低下やバラツキが生じ易くなる場合がある。光沢度の上限は155%とするものである。本発明のポリプロピレンフィルムの光沢度を好ましい範囲内に制御することはたとえば、後述する使用原料や溶融シート冷却固化時の冷却温度および積層構成および粒子添加などの条件を好ましい範囲内で制御することにより可能である。
 本発明のポリプロピレンフィルムは、23℃におけるフィルム主軸方向の破断強度とフィルム主軸直交方向の破断強度との和が500MPa以上であることが好ましく、より好ましくは530MPa以上、さらに好ましくは560MPa以上である。詳細は後述するが、フィルム平面を円周状に測定した破断強度の中で最大の値をとる方向を、そのフィルム主軸方向と定義する。また、その主軸方向に対して直交する方向を主軸直交方向と定義する。フィルムサンプルが短冊、リール、ロール等の形状で、サンプルの幅が50mm未満で主軸方向が破断強度にて測定不可の場合は、広角X線によるポリプロピレンフィルムのα晶(110)面の結晶配向を次のように測定し、主軸方向および主軸直交方向を定義する。詳しくは、フィルム表面に対して垂直方向にX線を入射し、2θ=約14°(α晶(110)面)における結晶ピークを円周方向にスキャンし、得られた回折強度分布の回折強度が高い方向をフィルム主軸方向、それと直交する方向を主軸直交方向とする。23℃におけるフィルム主軸方向の破断強度とフィルム主軸直交方向の破断強度との和が500MPa未満の場合は、フィルムの絶縁破壊電圧の低下や値のバラツキを招いたり、金属膜を蒸着により形成する工程やコンデンサ素子巻き取り加工での、フィルム搬送中に破膜する場合がある。他方上限は700MPaとするものである。23℃で測定した場合の破断強度をかかる範囲に制御する方法としては、たとえば、使用原料や縦・横延伸倍率、延伸温度を後述する範囲に制御したり、二軸延伸後の熱処理および弛緩処理工程において、まず延伸温度より低温での処理工程(1段目処理工程)を経て、再度、前記処理温度より高温でかつ二軸延伸時の幅方向延伸温度未満の熱処理工程(2段目処理工程)を施すことが挙げられる。また本発明のポリプロピレンフィルムは、23℃におけるフィルム主軸方向の破断強度が150MPa以上であることが好ましく、より好ましくは180MPa以上、さらに好ましくは200MPa以上である。
 本発明のポリプロピレンフィルムは、フィルム表面の光沢度を損なわず適度に粗面化しフィルム層間間隙の均一性、フィルム同士あるいは搬送ロールとのすべり易さをおよびコンデンサとしての信頼性を得る観点から、少なくともフィルムの片表面の3次元中心面平均粗さSRaが30nm以上であることが好ましく、より好ましくは50nm以上、さらに好ましくは70nm以上である。3次元中心面平均粗さSRaが30nm未満であるとフィルムの滑りが極端に低下し、ハンドリング性に劣ったり、シワが発生しやすくなり、またコンデンサとして連続使用時にシワ等の影響で容量変化が大きくなったり、フィルムを積層したコンデンサとした場合にフィルム層間の適度な隙間がないため自己回復機能(セルフヒーリング)が動作し難くコンデンサの信頼性が低下する場合がある。上限は300nmとするものである。本発明のポリプロピレンフィルムの3次元中心面平均粗さSRaを好ましい範囲内に制御することはたとえば、後述する使用原料や溶融シート冷却固化時の冷却温度および積層構成および粒子添加などの条件を好ましい範囲内で制御することにより可能である。
 本発明のポリプロピレンフィルムはフィルム表面の光沢度を損なわず表面凹凸を形成させ、薄いフィルムであってもコンデンサ素子加工適性に優れ、高温環境でも高い耐電圧性を発揮させる観点から、少なくとも片表面を形成するフィルム層内に粒子を含むことが好ましい。
 本発明のポリプロピレンフィルムに用いる粒子としては、無機粒子や有機粒子が挙げられる。無機粒子としては、シリカ、アルミナ、チタニア、ジルコニアなどの金属酸化物や硫酸バリウム、炭酸カルシウム、ケイ酸アルミニウム、リン酸カルシウム、マイカ、カオリン、クレーなどを挙げることができる。これらの中でも、シリカ、アルミナ、チタニア、ジルコニアなどの金属酸化物や炭酸カルシウムが好ましい。有機粒子としては、ポリメトキシシラン系化合物の架橋粒子、ポリスチレン系化合物の架橋粒子、アクリル系化合物の架橋粒子、ポリウレタン系化合物の架橋粒子、ポリエステル系化合物の架橋粒子、フッソ系化合物の架橋粒子、もしくはこれらの混合物を挙げることができる。
 上記無機粒子および有機粒子の平均粒子径は、0.03~10μmの範囲であることが好ましい。平均粒子径は、より好ましくは0.05~6μm、更に好ましくは0.07~1μm、最も好ましくは0.08~0.25μmである。平均粒子径が0.03μm未満では表面粗さが小さくなり、ハンドリング性の不足やコンデンサ信頼性が低下する場合がある。他方10μmを超えるとフィルムが破れやすくなったり、粒子が薄膜フィルムから脱落し、絶縁欠陥を生じ易くなる。ここで、無機粒子や有機粒子の平均粒子径は、粒子の走査型電子顕微鏡写真から画像処理により得られる円相当径である。
 上記粒子の含有量としては、ポリプロピレンフィルム全体を100質量部としたとき、0.01~1質量部であることが好ましい。含有量が0.01質量部未満では、ハンドリング性の不足やコンデンサ信頼性が低下する場合がある。1質量部を超えるとフィルムが破れやすくなったり、薄膜フィルムから脱落し、絶縁欠陥を生じ易くなる。
 ここで本発明のポリプロピレンフィルムは少なくとも片表面に粒子を含む構成層もしくは、ポリプロピレンとポリプロピレンとは非相溶の熱可塑性樹脂とをブレンドした樹脂からなる構成層を設けることが好ましく、積層フィルムとすることが好ましい。積層の方法としては、ラミネートによるフィルム同士を貼り合わせる方法、共押出によるフィードブロック方式やマルチマニホールド方式、コーティングによる方法などがあげられるが、生産効率およびコストの観点から溶融共押出による積層方法、コーティングによる積層方法が好ましい。また積層はフィルム厚さ方向に2層以上積層されてなる構成が好ましく、具体的には少なくとも一方の表層をA層とする2層以上の構成であり、たとえばA層/B層の2層構成、より好ましくはA層/B層/A層の3層構成およびA層をフィルム両表面の最外層とする4層以上の構成である。ここでA層とは粒子を含む構成層もしくは、ポリプロピレンとポリプロピレンとは非相溶の熱可塑性樹脂とをブレンドした樹脂からなる構成層と定義するものである。一般的にポリプロピレンフィルムの表面を粗面化形成する方法として、特にコンデンサ用途などでは結晶変態を利用する手法を好ましく用いることができ、フィルム製造工程において溶融押出後のキャスティング(冷却)ドラム上で固化させる温度を60℃以上に高温にすることでβ晶系球晶を形成し、延伸工程で、熱的に不安定なβ晶をα晶に結晶変態させることで、フィルム表面に凹凸を形成するが、結晶変態の過程で形成されるボイドが表層のみならず内層にまで発生し、それが絶縁欠陥となり耐電圧が低下する場合がある。一方で、本発明のポリプロピレンフィルムは表層に粒子を含む構成もしくは、ポリプロピレンとポリプロピレンとは非相溶の熱可塑性樹脂とをブレンドした樹脂からなる構成とすることで、フィルム製造工程において溶融押出後の冷却ドラム上で固化させる温度を60℃未満、好ましくは40℃未満、より好ましくは30℃未満にすることで優先的に微少なα晶系球晶、もしくはメゾ相を形成する。このため、本発明のポリプロピレンフィルムは、延伸工程で結晶変態によるボイド形成が実質的になく、絶縁欠陥を発生させることなく、薄いフィルムであっても、コンデンサ素子加工適性に優れ、高温環境でも高い耐電圧性を発揮する。ここでメゾ相とは結晶と非晶の中間の秩序状態を示し、スメクチック晶やスメチカ晶とも呼ばれ、メゾ相は溶融状態から非常に速い冷却速度で固化させた際に生じることが知られている。該メゾ相は中間相のため延伸工程において均一構造を形成するため、絶縁欠陥の低減に好ましい構造である。また、ポリプロピレンとポリプロピレンとは非相溶の熱可塑性樹脂とをブレンドした樹脂からなる構成層においては、そのドメイン構造を利用した表面凹凸を付与することができるため、延伸工程で結晶変態に伴うボイド形成などの、絶縁欠陥を発生させることなく、薄いフィルムであってもコンデンサ素子加工適性に優れ、高温環境でも高い耐電圧性を発揮する。ポリプロピレンとは非相溶の熱可塑性樹脂として、例えば、ポリメチルペンテン系樹脂などを好ましく用いることができる。
 ここで本発明のポリプロピレンフィルムは厚さ方向に2層以上積層した構成である場合に、フィルム全厚みに対するA層の厚みの割合(両表層にA層がある場合はそれら合わせた両表層の厚み割合)は製膜性や表面形状を制御する点から1%~60%であることが好ましく、5~40%がより好ましく、5~25%が最も好ましい。A層の割合が大きすぎるとボイド起因で高温環境での耐電圧性を低下させてしまったり、他方、A層の割合が小さすぎるとフィルム表面に凹凸を効率良く形成できない場合があり、コンデンサ素子加工適性が得られなくなる場合がある。ここでA層は、例えば、フィルム断面を作成し、走査型電子顕微鏡(SEM)などを用いた断面観察を行うことにより、識別できる。断面観察で、粒子を含有する、もしくはポリプロピレンとポリプロピレンとは非相溶の熱可塑性樹脂とをブレンドした樹脂からなる構成層のA層もしくはA層とB層との樹脂界面を判定することが可能である。
 次に、本発明のポリプロピレンフィルムに用いると好ましいポリプロピレンについて説明する。ポリプロピレンは、通常、包装材やコンデンサ用に使用されるものであるが、好ましくは冷キシレン可溶部(CXS)が4質量%以下であることが好ましい。これらを満たさないと製膜安定性に劣る場合があったり、二軸延伸したフィルムの絶縁破壊電圧が低下する場合がある。
 ここでCXSとはフィルムをキシレンで完全溶解せしめた後、室温で析出させたときに、キシレン中に溶解しているポリプロピレン成分のことをいい、立体規則性の低い、分子量が低い等の理由で結晶化し難い成分に該当していると考えられる。このような成分が多く樹脂中に含まれているとフィルムの耐電圧性が低下する等の問題を生じることがある。従って、CXSは4質量%以下であることが好ましいが、更に好ましくは3質量%以下であり、特に好ましくは2質量%以下である。このようなCXSを有するポリプロピレンとするには、樹脂を得る際の触媒活性を高める方法、得られた樹脂を溶媒あるいはプロピレンモノマー自身で洗浄する方法等の方法が使用できる。
 ポリプロピレンとしては、より好ましくはメルトフローレート(MFR)が1~10g/10分(230℃、21.18N荷重)、特に好ましくは2~5g/10分(230℃、21.18N荷重)の範囲のものが、製膜性の点から好ましい。メルトフローレート(MFR)を上記の値とするためには、平均分子量や分子量分布を制御する方法などが採用される。
 またポリプロピレンとしては、主としてプロピレンの単独重合体からなるが、本発明の目的を損なわない範囲で他の不飽和炭化水素による共重合成分などを含有してもよいし、プロピレンが単独ではない重合体がブレンドされていてもよい。このような共重合成分やブレンド物を構成する単量体成分として例えばエチレン、プロピレン(共重合されたブレンド物の場合)、1-ブテン、1-ペンテン、3-メチルペンテン-1、3-メチルブテン-1、1-ヘキセン、4-メチルペンテン-1、5-エチルヘキセン-1、1-オクテン、1-デセン、1-ドデセン、ビニルシクロヘキセン、スチレン、アリルベンゼン、シクロペンテン、ノルボルネン、5-メチル-2-ノルボルネンなどが挙げられる。共重合量またはブレンド量は、耐電圧性、耐熱性の点から、共重合量では1mol%未満とし、ブレンド量では10質量%未満とするのが好ましい。
 また、ポリプロピレンには、本発明の目的を損なわない範囲で種々の添加剤、例えば結晶核剤、酸化防止剤、熱安定剤、すべり剤、帯電防止剤、ブロッキング防止剤、充填剤、粘度調整剤、着色防止剤、ポリプロピレン以外の樹脂などを含有せしめることもできる。
 これらの中で、酸化防止剤の種類および添加量の選定は長期耐熱性の観点から重要である。すなわち、かかる酸化防止剤としては立体障害性を有するフェノール系のもので、そのうち少なくとも1種は分子量500以上の高分子量型のものが好ましい。その具体例としては種々のものが挙げられるが、例えば2,6-ジ-t-ブチル-p-クレゾール(BHT:分子量220.4)とともに1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン(例えば、BASF社製Irganox(登録商標)1330:分子量775.2)またはテトラキス[メチレン-3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(例えばBASF社製Irganox(登録商標)1010:分子量1177.7)等を併用することが好ましい。これら酸化防止剤の総含有量はポリプロピレン全量に対して0.03~1.0質量%の範囲が好ましい。酸化防止剤が少なすぎると長期耐熱性に劣る場合がある。酸化防止剤が多すぎるとこれら酸化防止剤のブリードアウトによる高温下でのブロッキングにより、コンデンサ素子に悪影響を及ぼす場合がある。より好ましい含有量は0.1~0.9質量%であり、特に好ましくは0.2~0.8質量%である。
 本発明のポリプロピレンフィルムは、メソペンタッド分率が0.95以上であり、融点が160℃を超えるポリプロピレン樹脂を含んでなることが好ましい。メソペンタッド分率は0.97以上がより好ましく、0.98以上がさらに好ましい。メソペンタッド分率は核磁気共鳴法(NMR法)で測定されるポリプロピレンの結晶相の立体規則性を示す指標であり、該数値が高いものほど結晶化度が高く、融点が高くなり、高温環境における絶縁破壊電圧のバラツキを抑制できるので好ましい。メソペンタッド分率の上限については特に規定するものではない。このように、高メソペンタッド分率、高融点のポリプロピレンを得る為には、いわゆるチーグラー・ナッタ触媒において、電子供与成分の選定を適宜行う方法等が好ましく採用される。ポリプロピレン樹脂のメソペンタッド分率が0.95未満の場合、ポリプロピレンの規則性が低い為、フィルムの高温環境における強度や絶縁破壊電圧の低下を招いたり、金属膜を蒸着により形成する工程やコンデンサ素子巻き取り加工での、フィルム搬送中に破膜する場合がある。ポリプロピレン樹脂の融点は163℃以上がより好ましく、165℃以上がさらに好ましい。融点が160℃以下の場合、結晶性が低い為、フィルムの高温環境における絶縁破壊電圧の低下を招いたり、金属膜を蒸着により形成する工程やコンデンサ素子巻き取り加工での、フィルム搬送中に破膜する場合がある。
 本発明のポリプロピレンフィルムは、ポリプロピレン樹脂に対して、溶融型核剤を含有せしめることが好ましい。ポリプロピレンの核剤としては、リン酸塩、安息香酸塩、タルクなどの非溶融型核剤と溶融型核剤があるが、本発明では溶融型核剤を用いることが好ましい。溶融型核剤とは、溶融ポリプロピレン中で核剤自体が融解又は溶融する結晶核剤であり、一連の加熱溶融及び冷却再結晶化を示す。上記溶解及び再結晶化を測定する方法は、ISO6271-10:1999によって定義されているように、動的モードでの溶融レオロジーを用いることによってモニターすることができる。溶融型核剤は、ソルビトール誘導体、ノニトール誘導体、トリアミド誘導体等が挙げられる。具体的には、ジ(アルキルベンジリデン)ソルビトール、例えば、ジベンジリデンソルビトール、2,4-ジメチルベンジリデンソルビトール、1,3-ジメチルベンジリデンソルビトール、2,4-ジエチルベンジリデンソルビトール、1,3-ジブチルベンジリデンソルビトール、2,4-ジブチルベンジリデンソルビトール、1,3-ジメトキシベンジリデンソルビトール、2,4-ジメトキシベンジリデンソルビトール、1,3-ジエトキシベンジリデンソルビトール、1,3-クロルベンジリデン、2,4-メチルベンジリデンソルビトール、モノメチルジベンジリデンソルビトール、2,4-ジエトキシベンジリデンソルビトール、1,3:2,4-ジベンジリデンソルビトール、1,3:2,4-ジメトキシベンジリデンソルビトール、1,3:2,4-ジエトキシベンジリデンソルビトール、ビス-(3,4-ジメチルベンジリデン)ソルビトール、1,2,3-トリデオキシ-4,6:5,7-ビス-O-[(4-プロピルフェニル)メチレン]-ノニトール、N,N’,N”-トリス-シクロヘキシル-l,3,5-ベンゼン-トリカルボキサミド、N,N’,N”-トリス-tert-ブチル-l,3,5-ベンゼントリカルボキシアミド、N,N’,N”-トリス-(2-メチルシクロヘキサン-1-イル)プロパン-1,2,3-トリイルカルボキサミドなどが挙げられる。一般的に、上記のソルビトール系核剤は、核剤の耐熱温度が高くない為、ポリプロピレン樹脂の押出温度が高い場合、核剤の熱分解ガスが発生し、フィルムにエア噛み欠点等を発生させる場合がある。そういった観点から、上記溶融型核剤の中でもノニトール系、もしくは、トリアミド誘導体の核剤は耐熱温度が高いことが知られており、特に好ましく用いられる。溶融型核剤の含有量は前記ポリプロピレン樹脂100質量部に対し、0.01~1.0質量部、好ましくは、0.02~0.6質量部である。含有量が1.0質量部より高い場合、フィルム表面からにじみ出し、フィルムの製造過程でロール等へ付着転移し、フィルム表面を汚す場合がある。含有量が0.01質量部未満の場合、核剤の効果が小さい場合がある。なお本発明の効果を発現する上では規則性、結晶性の非常に高いポリプロピレンに溶融型核剤を添加することが、特に好ましい。
 本発明のポリプロピレンフィルムは、透明性、易滑性、高温特性に優れる為、一般工業用途、包装用途に好適に用いられる。通常30μm以下の一般コンデンサに有用であるのは勿論だが、特に高温環境下で用いられる自動車用途(ハイブリッドカー用途含む)等に要求される薄膜の耐熱フィルムコンデンサ用に好適である。特にフィルム厚みは0.5μm以上15μm未満の範囲であることが好ましく、より好ましくは0.5μm以上10μm未満、さらに好ましくは0.8μm以上4.0μm未満である。
 本発明のポリプロピレンフィルムは、コンデンサ用誘電体フィルムとして好ましく用いられるものであるが、コンデンサのタイプに限定されるものではない。具体的には電極構成の観点では箔巻きコンデンサ、金属蒸着膜コンデンサのいずれであってもよいし、絶縁油を含浸させた油浸タイプのコンデンサや絶縁油を全く使用しない乾式コンデンサにも好ましく用いられる。また、形状の観点では、捲巻式であっても積層式であっても構わない。しかしながら本発明のフィルムの特性から特に金属蒸着膜コンデンサとして好ましく使用される。
 なお、ポリプロピレンフィルムは通常、表面エネルギーが低く、金属蒸着を安定的に施すことが困難であるために、金属付着力を良好とする目的で、蒸着前に表面処理を行うことが好ましい。表面処理とは具体的にコロナ放電処理、プラズマ処理、グロー処理、火炎処理等が例示される。通常ポリプロピレンフィルムの表面濡れ張力は30mN/m程度であるが、これらの表面処理によって、濡れ張力を37~50mN/m、好ましくは39~48mN/m程度とすることが、金属膜との接着性に優れ、保安性も良好となるので好ましい。ここでA層/B層の2層構成フィルムの場合には、実質的に粒子を含有しないB層側に表面処理を行うことが、金属蒸着膜厚みの均一化によるコンデンサ特性向上効果を得る観点から好ましい。      
 本発明のポリプロピレンフィルムは、上述した特性を与えうる原料を用い、二軸延伸されることによって得られる。二軸延伸の方法としては、インフレーション同時二軸延伸法、テンター同時二軸延伸法、テンター逐次二軸延伸法のいずれによっても得られるが、その中でも、フィルムの製膜安定性、厚み均一性、表面凹凸形成性を制御する点においてテンター逐次二軸延伸法を採用することが好ましい。
 次に本発明のポリプロピレンフィルムの製造方法を説明する。まず、ポリプロピレン樹脂を支持体上に溶融押出してポリプロピレン樹脂シートとし、このポリプロピレン樹脂シートを縦延伸、横延伸の逐次二軸延伸した後に熱処理および弛緩処理を施してポリプロピレンフィルムを製造する。以下、より具体的に説明するが、必ずしもこれに限定されるものではない。
 まず、メソペンタッド分率が0.95以上であり、融点が160℃を超えるポリプロピレン樹脂100質量部に対して前記記載の粒子を含有したポリプロピレン原料AをA層用の単軸押出機に供給し、実質的に粒子を含有しないポリプロピレン原料BをB層用の単軸押出機に供給し、200~260℃にて溶融共押出によるフィードブロック方式でA層/B層/A層の3層構成に積層された樹脂をスリット状口金から押出し、10~59℃の温度に制御された冷却ドラム上で固化させ未延伸シートを得る。本発明のポリプロピレンフィルムでは、絶縁欠陥を低減させる観点から、未延伸シートではメゾ相を形成していることがより好ましく、メゾ相分率として50%以上が好ましく、より好ましくは70%以上、さらに好ましくは90%以上、最も好ましくは97%以上である。ここで未延伸シートのメゾ相分率を算出するには、未延伸シートを広角X線回折で測定し、X線回折プロファイルを用いて算出する。得られたX線回折プロファイルをピーク分離ソフトウェアで処理してメゾ相とα晶、非晶のプロファイルとに分離し、メゾ相分率を算出する。α晶に由来する回折プロファイルとは、回折角(2θ)が10~30度の範囲での広角X線回折測定において観測される、14.1度付近、16.9度付近、18.6度付近、21.6度付近および21.9度付近の5つのシャープなピークからなるものである。メゾ相に由来する回折プロファイルとは、15度付近と21度付近の2つのブロードなピークからなるものである。非晶に由来する回折プロファイルとは、回折角が16.2度付近の非常にブロードなピークであり、溶融状態のポリプロピレン樹脂を広角X線回折で測定することで求められる。キャスティングドラムへの密着方法としては静電印加法、水の表面張力を利用した密着方法、エアーナイフ法、プレスロール法、水中キャスト法などのうちいずれの手法を用いてもよい。ここでA層/B層の2層構成とする場合には、溶融積層ポリマーのB層がキャスティングドラム面に接触するようにスリット状口金から押出すことでB層側の表面を平滑化することができる。
 次に、この未延伸フィルムを二軸延伸する。まず未延伸フィルムを60~150℃に保たれたロールに通して予熱し、引き続き該シートを60~150℃の温度に保ち、長手方向に2~10倍に延伸した後、室温まで冷却する。ここで未延伸フィルムがメゾ相を形成している場合は、60~120℃の温度に保つことが好ましい。より好ましい長手方向の延伸倍率としては4.5~9倍であり、好ましくは5.1~8倍、更に好ましくは5.4~8倍、最も好ましくは5.8~8倍である。延伸方法や延伸倍率は、とくに限定されず用いるポリマー特性により適宜選択される。
 次いで縦一軸延伸フィルムをテンターに導いてフィルムの端部をクリップで把持し横延伸を140~170℃の温度で幅方向に5.1~15倍、より好ましくは6~14倍、さらに好ましくは9~13倍に延伸する。幅方向の延伸倍率が5.1倍未満の場合、ポリプロピレンフィルムの幅方向の機械強度が低下したり、厚み斑が悪化する為、耐電圧性が低下する場合がある。一方、幅方向の延伸倍率が15倍を超えると、破膜しやすくなり生産性が低下する場合がある。
 本発明においては続く熱処理および弛緩処理工程ではクリップで幅方向を緊張把持したまま幅方向に2~20%の弛緩を与えつつ、115℃以上140℃以下の温度で1段目熱処理した後に、クリップで幅方向を緊張把持したまま前記1段目の熱処理温度を超えて横延伸温度未満の条件で熱固定を施す2段目熱処理を施すといった多段方式の熱処理を行うことが、フィルム面内を均一に緩和させ局所的な厚みムラを低減させ耐電圧特性を向上させる観点から好ましい。
 弛緩処理工程における弛緩率は、熱寸法安定性を得る観点から5~18%が好ましく、8~15%がより好ましい。20%を超える場合はテンター内部でフィルムが弛みすぎ製品にシワが入り蒸着時にムラを発生させる場合があり、他方弛緩率が2%より小さい場合は熱寸法安定性が得られず、コンデンサとしたときの高温使用環境下で容量低下やショート破壊を引き起こす場合がある。
 1段目熱処理温度は延伸時の分子鎖配向を維持でき耐電圧性を高められる観点から、1段目の熱処理温度は115℃以上140℃以下とすることが好ましく、120℃以上、138℃以下がより好ましく、125℃以上、135℃以下がさらに好ましい。115℃未満の熱処理温度では高温環境下でのコンデンサ特性において容量減少やショート破壊を引き起こす場合がある。他方、140℃を越えての熱処理の場合は分子鎖配向緩和が進行するため、フィルムの耐電圧性が低くなる場合がある。
 2段目熱処理温度は1段目の熱処理温度を超えて横延伸温度未満とすることで、1段目の熱処理工程で緩和不十分な運動性の高い非晶分子鎖を緩和させることができ、フィルム面内構造の均一性を得るものである。この観点から2段目熱処理温度は1段目の熱処理温度+5℃以上、横延伸温度-5℃以下が好ましく、1段目の熱処理温度+8℃以上、横延伸温度-8℃以下がさらに好ましい。
 多段式の熱処理を経た後はクリップで幅方向を緊張把持したまま80~100℃での冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、ワインダ工程にてフィルムエッジ部をスリットし、フィルム製品ロールを巻き取る。ここでフィルムを巻取る前に蒸着を施す面に蒸着金属の接着性を良くするために、空気中、窒素中、炭酸ガス中あるいはこれらの混合気体中でコロナ放電処理を行うことが好ましい。
 本発明において、上記したポリプロピレンフィルム表面に金属膜を設けて金属膜積層フィルムとする方法は特に限定されないが、例えば、ポリプロピレンフィルムの少なくとも片面に、アルミニウムを蒸着してフィルムコンデンサの内部電極となるアルミニウム蒸着膜等の金属膜を設ける方法が好ましく用いられる。このとき、アルミニウムと同時あるいは逐次に、例えば、ニッケル、銅、金、銀、クロムおよび亜鉛などの他の金属成分を蒸着することもできる。また、蒸着膜上にオイルなどで保護層を設けることもできる。
 本発明では、必要により、金属膜を形成後、金属膜積層フィルムを特定の温度でアニール処理を行なったり、熱処理を行なったりすることができる。また、絶縁もしくは他の目的で、金属膜積層フィルムの少なくとも片面に、ポリフェニレンオキサイドなどのコーティングを施すこともできる。
 このようして得られた金属膜積層フィルムは、種々の方法で積層もしくは巻回してフィルムコンデンサを得ることができる。巻回型フィルムコンデンサの好ましい製造方法を例示すると、次のとおりである。
 ポリプロピレンフィルムの片面にアルミニウムを減圧状態で蒸着する。その際、フィルム長手方向に走るマージン部を有するストライプ状に蒸着する。次に、表面の各蒸着部の中央と各マージン部の中央に刃を入れてスリットし、表面が一方にマージンを有した、テープ状の巻取リールを作成する。左もしくは右にマージンを有するテープ状の巻取リールを左マージンおよび右マージンのもの各1本ずつを、幅方向に蒸着部分がマージン部よりはみ出すように2枚重ね合わせて巻回し、巻回体を得る。
 両面に蒸着を行う場合は、一方の面の長手方向に走るマージン部を有するストライプ状に蒸着し、もう一方の面には長手方向のマージン部が裏面側蒸着部の中央に位置するようにストライプ状に蒸着する。次に表裏それぞれのマージン部中央に刃を入れてスリットし、両面ともそれぞれ片側にマージン(例えば表面右側にマージンがあれば裏面には左側にマージン)を有するテープ状の巻取リールを作製する。得られたリールと未蒸着の合わせフィルム各1本ずつを、幅方向に金属化フィルムが合わせフィルムよりはみ出すように2枚重ね合わせて巻回し、巻回体を得る。
 以上のようにして作成した巻回体から芯材を抜いてプレスし、両端面にメタリコンを溶射して外部電極とし、メタリコンにリード線を溶接して巻回型フィルムコンデンサを得ることができる。フィルムコンデンサの用途は、鉄道車輌用、自動車用(ハイブリットカー、電気自動車)、太陽光発電・風力発電用および一般家電用等、多岐に亘っており、本発明のフィルムコンデンサもこれら用途に好適に用いることができる。その他、包装用フィルム、離型用フィルム、工程フィルム、衛生用品、農業用品、建築用品、医療用品など様々な用途でも用いることができる。
 本発明における特性値の測定方法、並びに効果の評価方法は次のとおりである。
 (1)フィルム厚み
 ポリプロピレンフィルムの任意の場所の合計10箇所を23℃65%RHの雰囲気下で接触式のアンリツ(株)製電子マイクロメータ(K-312A型)を用いて測定し、その平均値をポリプロピレンフィルムのフィルム厚みとした。
 (2)23℃雰囲気でのフィルム絶縁破壊電圧のバラツキ(23R%)
 JIS C2330(2001)7.4.11.2 B法(平板電極法)に準じて、絶縁破壊電圧試験を30回行い、得られた値をフィルムの厚み(上記(1))で除し、(V/μm)に換算し、計30点の測定値(算出値)のうち破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の中の最大値と最小値の差を該20点の平均値で除して算出される百分率を23℃雰囲気での絶縁破壊電圧のバラツキ(23R%)と定義した。
 (3)125℃雰囲気でのフィルム絶縁破壊電圧のバラツキ(125R%)
 125℃に保温されたオーブン内で、フィルムを1分間加熱後にその雰囲気中でJIS C2330(2001)7.4.11.2 B法(平板電極法)に準じて、絶縁破壊電圧試験を30回行い、得られた値をフィルムの厚み(上記(1))で除し、(V/μm)に換算し、計30点の測定値(算出値)のうち破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の中の最大値と最小値の差を該20点の平均値で除して算出される百分率を125℃雰囲気での絶縁破壊電圧のバラツキ(125R%)と定義した。
 (4)125℃雰囲気でのフィルム絶縁破壊電圧(V/μm)
 上記(3)の絶縁破壊電圧試験を30回行い、得られた値をフィルムの厚み(上記(1))で除し、(V/μm)に換算し、計30点の測定値(算出値)のうち破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の平均値を125℃雰囲気でのフィルム絶縁破壊電圧とした。
 (5)23℃フィルムの破断強度(主軸方向と主軸直交方向の和)
 ポリプロピレンフィルムを準備し、任意の方向に、長さ50mm×幅10mmの矩形に切り出しサンプル<1>とした。次に、矩形のサンプルの長辺方向から15°回転させ、サンプル<2>を採取した。以下同様に、矩形のサンプルの長辺方向を15°ずつ回転させ、サンプル<3>~<12>を採取した。次に、矩形のサンプル<1>を引張試験機(オリエンテック製テンシロンUCT-100)に、初期チャック間距離20mmでセットし、23℃雰囲気下で引張速度を300mm/分としてフィルムの引張試験を行った。サンプルが破断した時の荷重値を読み取り、試験前の試料の断面積(フィルム厚み×幅(10mm))で除した値を破断強度の応力として算出し、測定は各サンプル5回ずつ行い、その平均値で評価を行った。同様にサンプル<2>~<12>について、それぞれ破断強度を算出し、<1>~<12>の中での最大値をフィルム主軸方向の破断強度と定義し、該主軸方向の破断強度とその主軸直交方向の破断強度の値の和を算出した。
 なお、破断強度算出の為に用いるフィルム厚みは上記(1)で測定した値を用いた。
 (6)光沢度
 JIS K-7105(1981)に準じ、スガ試験機株式会社製 デジタル変角光沢計UGV-5Dを用いて入射角60°受光角60°の条件でキャスティングドラム接触面側の表面を測定した5点のデータの平均値を光沢度とした。
 (7)3次元中心面平均粗さ(SRa) 小坂研究所製のsurf-corder ET-4000Aを用いて下記条件にて3次元表面粗さを測定した。サンプルセットは、視野測定のX方向がポリプロピレンフィルムの主軸方向になるようにし、キャスティングドラム接触面側の表面を測定面(上面)として試料台にセットした。下記条件にて場所を変えて10回測定し、それぞれの中心線表面粗さの平均値を算出し、3次元中心面平均粗さ(SRa)とした。
  装置:小坂研究所製“surf-corder ET-4000A”
  解析ソフト:i-Face model TDA31
  触針先端半径:0.5μm
  測定視野  :X方向:1000μm ピッチ:5μm
         Y方向:250μm ピッチ:10μm
  針圧    :50μN
  測定速度  :0.1mm/s
  カットオフ値:低域0.2mm、高域-なし
  レベリング :全域
  フィルター :ガウシアンフィルタ(空間型)
  倍率    :2万倍
 (8)メソペンタッド分率
 フィルムのポリプロピレンを60℃のn-ヘプタンで2時間抽出し、ポリプロピレン中の不純物・添加物を除去した後、130℃で2時間以上減圧乾燥したものをサンプルとする。該サンプルを溶媒に溶解し、13C-NMRを用いて、以下の条件にてメソペンタッド分率(mmmm)を求めた。
測定条件
・装置:Bruker製DRX-500
・測定核:13C核(共鳴周波数:125.8MHz)
・測定濃度:10質量%
・溶媒:ベンゼン:重オルトジクロロベンゼン=1:3混合溶液(体積比)
・測定温度:130℃
・スピン回転数:12Hz
・NMR試料管:5mm管
・パルス幅:45°(4.5μs)
・パルス繰り返し時間:10秒
・データポイント:64K
・積算回数:10000回
・測定モード:complete decoupling
 解析条件
 LB(ラインブロードニングファクター)を1としてフーリエ変換を行い、mmmmピークを21.86ppmとした。WINFITソフト(Bruker製)を用いて、ピーク分割を行う。その際に、高磁場側のピークから以下のようにピーク分割を行い、更にソフトの自動フィッテイングを行い、ピーク分割の最適化を行った上で、mmmmとss(mmmmのスピニングサイドバンドピーク)のピーク分率の合計をメソペンタッド分率(mmmm)とする。
(a)mrrm
(b)(c)rrrm(2つのピークとして分割)
(d)rrrr
(e)mrmm+rmrr
(f)mmrr
(g)mmmr
(h)ss(mmmmのスピニングサイドバンドピーク)
(i)mmmm
(j)rmmr。
 同じサンプルについて同様の測定を5回行い、得られたメソペンタッド分率の平均値を当該サンプルのメソペンタッド分率とした。
 (9)ポリプロピレン樹脂の融点
 示差走査熱量計(セイコーインスツル製EXSTAR DSC6220)を用いて、窒素雰囲気中で3mgのポリプロピレンチップを30℃から260℃まで40℃/minの条件で昇温した。次いで、260℃で5min保持した後、40℃/minの条件で30℃まで降温した。さらに、30℃で5min保持した後、30℃から260℃まで40℃/minの条件で昇温した。この昇温時に得られた吸熱カーブのピーク温度をポリプロピレン樹脂の融点とした。
 (10)溶融型核剤の含有分析
 ポリプロピレンフィルム試料を3~4g細断した後、凍結粉砕し、この粉砕物について、メタノール/クロロホルム(=1/1(v/v))混液でソックスレー抽出を行い、抽出物について、FT-IR,H-NMR,MALDI-MS測定を実施。溶融型核剤の有無について分析した。
<FT-IR測定条件>
FT-IR装置   :IRPrestige-21(島津製作所製)
検出器      :DLATGS
測定モード  :透過
分解能      :4cm-1
積算回数    :64回
試料調製    :KBr錠剤法 (4 mmφ)
H-NMR測定条件>
装置名      :ECA400 (日本電子製)
測定核      :
観測周波数  :400 MHz
<MALDI-MS測定条件>
装置名      :AXIMA-TOF2(島津製作所製)
イオン化法  :MALDI(マトリックス支援レーザー脱離イオン化)
 (11)結晶化ピーク温度
 示差走査熱量計(セイコーインスツル製EXSTAR DSC6220)を用いて、窒素雰囲気中で3mgのフィルムサンプルを30℃から260℃まで40℃/minの条件で昇温する。次いで、260℃で5min保持した後、40℃/minの条件で30℃まで降温する。この降温時に得られる放熱カーブのピーク温度を結晶化温度とした。
 (12)粒子の平均粒子径
 走査型電子顕微鏡の試料台に固定した測定フィルム表面に、スパッタリング装置を用いて真空度10-3Torr、電圧0.25kV、電流12.5mAの条件にて10分間、イオンエッチング処理を施す。次に同装置にて該表面に金スパッタを施し、走査型電子顕微鏡にて10000~30000倍の写真を撮影した。フィルム中の粒子の平均粒子径は、上記写真から100個以上n個の粒子の面積円相当径(Di)を求め、下記式により求めた。ここで面積円相当径(Di)は個々の外接円の直径である。
Figure JPOXMLDOC01-appb-M000001
 (13)未延伸シートのメゾ相分率(広角X線回折)
 未延伸シートを室温中で、株式会社リガク製nanoviewerを用いて、回折角(2θ)が10~30度の範囲で測定を行った。得られた回折プロファイルを以下の手順で解析した。
 メゾ相に由来するプロファイルが存在するか否かは下記のようにして算出した。
(a)回折プロファイルをピーク分離ソフトウェアで処理してメゾ相、α晶、非晶のプロファイルとに分離する。解析ソフトウェアとして、WaveMetrics,inc社製のIGOR Pro(Ver.6)ソフトウェアを用いた。
(b)精密化のために、ピーク分離で用いる回折角度は、メゾ相に由来する15度と21度、α晶に由来する14.1度、16.9度、18.6度、21.6度および21.9度、非晶に由来する16.2度とし、これらを固定値とした。
(c)さらに、精密化の変数として、高さ、半値幅、計定数、非対称を選択して、最適化を実行し、メゾ相に由来する15度と21度にピークを有する回折プロファイルの面積(m15とm21)を算出し、α晶に由来する14.1度、16.9度、18.6度、21.6度および21.9度にピークを有する回折プロファイルの面積(α14.1とα16.9とα18.6とα21.6とα21.9)を算出しこれを次式のとおり算出することにより、メゾ相に由来するプロファイルの面積の割合を求め、これをメゾ相分率とした。
 (式)メゾ相分率(%)=100×(m15+m21)/(m15+m21+α14.1+α16.9+α18.6+α21.6+α21.9
 (14)蒸着コンデンサ特性の評価(110℃での耐電圧性および信頼性)
 後述する各実施例および比較例で得られたフィルム(キャスティングドラム接触面側)に、ULVAC製真空蒸着機でアルミニウムを膜抵抗が8Ω/sqで長手方向に垂直な方向にマージン部を設けた所謂T型マージンパターンを有する蒸着パターンを施し、幅50mmの蒸着リールを得た。
 次いで、このリールを用いて皆藤製作所製素子巻機(KAW-4NHB)にてコンデンサ素子を巻き取り、メタリコンを施した後、減圧下、120℃の温度で10時間の熱処理を施し、リード線を取り付けコンデンサ素子を仕上げた。
 こうして得られたコンデンサ素子10個を用いて、110℃高温下でコンデンサ素子に300VDCの電圧を印加し、該電圧で10分間経過後にステップ状に50VDC/1分で印加電圧を上昇させることを繰り返す所謂ステップアップ試験を行なった。
 <耐電圧性>
 この際の静電容量変化を測定しグラフ上にプロットして、該容量が初期値の70%になった電圧をフィルムの厚み(上記(1))で割り返して耐電圧性評価とし、以下の通り評価した。
 S:550V/μm以上
 A:500V/μm以上550V/μm未満
 B:450V/μm以上500V/μm未満
 C:400V/μm以上450V/μm未満
 D:400V/μm未満。
 S、A、Bは使用可能である。C、Dでは実用上の性能に劣る。
 <信頼性>
 静電容量が初期値に対して10%以下に減少するまで電圧を上昇させた後に、コンデンサ素子を解体し破壊の状態を調べて、信頼性を以下の通り評価した。
 A:素子形状の変化は無く貫通状の破壊は観察されない。
 B:素子形状の変化は無くフィルム10層以内の貫通状破壊が観察される。
 C:素子形状に変化が認められる、若しくは10層を超える貫通状破壊が観察される。
 D:素子形状が破壊する。
 Aは問題なく使用でき、Bでは条件次第で使用可能である。C、Dでは実用上の性能に劣る。
 以下、実施例を挙げて本発明の効果をさらに説明する。
 (実施例1)
 チーグラー・ナッタ触媒にて重合された、メソペンタッド分率が0.98、融点が167℃で、メルトフローレイト(MFR)が2.6g/10分であるポリプロピレン樹脂100質量部に対しノニトール系溶融型核剤である「Milliken社製α晶核剤;NX8000」を濃度が0.3質量部となるように240℃に設定した押出機で混練押出し、ストランドを水冷後チップ化し、ポリプロピレン樹脂原料(B)とした。A層用のポリプロピレン樹脂としてメソペンタッド分率が0.98、融点が167℃で、メルトフローレイト(MFR)が2.6g/10分であるPP樹脂100質量部に対し、「電気化学工業社製 平均粒子径0.3μmシリカ粒子:SFP-20MHE(シランカップリング表面処理)」を0.1質量部となるように240℃に設定した押出機で混練押出し、ストランドを水冷後チップ化し、ポリプロピレン樹脂原料(A)とした。ポリプロピレン樹脂原料(B)をB層用の単軸の溶融押出機に供給し、ポリプロピレン樹脂原料(A)をA層用の単軸の溶融押出機に供給し、240℃で溶融押出を行い、80μmカットの焼結フィルターで異物を除去後、フィードブロックを用いてA/B/Aの3層積層で積層厚み比が1/8/1(フィルム全厚みに対する表面層A層の割合は20%)となるよう押出量を調節し、その溶融積層ポリマーをTダイより吐出させ、該溶融シートを30℃に保持されたキャスティングドラム上で、静電印加により密着させ冷却固化し未延伸シートを得た。次いで、該シートを複数のロール群にて徐々に143℃に予熱し、引き続き143℃の温度に保ち周速差を設けたロール間に通し、長手方向に6.0倍に延伸した。引き続き該フィルムをテンターに導き、163℃の温度で幅方向に10倍延伸し、次いで1段目の熱処理および弛緩処理として幅方向に10%の弛緩を与えながら130℃で熱処理を行ない、さらに2段目の熱処理としてクリップで幅方向把持したまま140℃で熱処理を行った。その後100℃で冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、次いでフィルム表面(キャスティングドラム接触面側)に25W・min/mの処理強度で大気中でコロナ放電処理を行い、フィルム厚み2.0μmのフィルムをフィルムロールとして巻き取った。本実施例のポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで耐電圧性、信頼性ともに非常に優れるレベルのものであった。
 (実施例2)
 B層のポリプロピレン樹脂に溶融型核剤を含有させないこと以外は実施例1と同様にして厚み2.2μmのポリプロピレンフィルムを得た。本実施例のポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで、コンデンサとしての信頼性が非常に優れ、耐電圧性は実使用上問題のないレベルであった。
 (実施例3)
 二軸延伸後の熱処理温度の条件を表1に記した条件とした以外は実施例1と同様にしてポリプロピレンフィルムを得た。本実施例のポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで、コンデンサとしての耐電圧性および信頼性ともに実使用上問題のないレベルであった。
 (実施例4)
 A層用のポリプロピレン樹脂としてメソペンタッド分率が0.98、融点が167℃で、メルトフローレイト(MFR)が2.6g/10分であるポリプロピレン樹脂100質量部に対し、「株式会社トクヤマ製 平均粒子径0.1μmシリカ粒子:サンシールSSP-M01」を0.25質量部となるように240℃に設定した押出機で混練押出し、ストランドを水冷後チップ化し、ポリプロピレン樹脂原料(C)とした。次いで、チーグラー・ナッタ触媒にて重合された、メソペンタッド分率が0.98、融点が167℃で、メルトフローレイト(MFR)が2.6g/10分であるポリプロピレン樹脂をB層用の単軸の溶融押出機に供給し、前記ポリプロピレン樹脂原料(C)をA層用の単軸の溶融押出機に供給したこと以外は、実施例2と同様にして厚み3.5μmのポリプロピレンフィルムを得た。本実施例のポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで、耐電圧性が最も優れ、信頼性も非常に優れるレベルであった。
 (実施例5)
 積層構成をA/B2層で積層厚み比が1/8(フィルム全厚みに対する表面層A層の割合は11%)となるよう押出量を調節し、その溶融積層ポリマーのB層がキャスティングドラム面に接触するように吐出させ、二軸延伸後のフィルム表面コロナ放電処理をB層側に施した以外は、実施例4と同様にして厚み3.5μmのポリプロピレンフィルムを得た。本実施例のポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで耐電圧性が最も優れ、信頼性も非常に優れるレベルのものであった
 (比較例1)
 チーグラー・ナッタ触媒にて重合された、メソペンタッド分率が0.98、融点が167℃で、メルトフローレイト(MFR)が2.6g/10分であるポリプロピレン樹脂100質量部を単軸の溶融押出機に供給し、240℃で溶融押出を行い、80μmカットの焼結フィルターで異物を除去後、その溶融積層ポリマーをTダイより吐出させ、該溶融シートを90℃に保持されたキャスティングドラム上で、静電印加により密着させ冷却固化し未延伸シートを得た。次いで、該シートを複数のロール群にて徐々に143℃に予熱し、引き続き143℃の温度に保ち周速差を設けたロール間に通し、長手方向に5.0倍に延伸した。引き続き該フィルムをテンターに導き、163℃の温度で幅方向に10倍延伸し、次いで1段目の熱処理および弛緩処理として幅方向に10%の弛緩を与えながら155℃で熱処理を行ない、さらに2段目の熱処理としてクリップで幅方向把持したまま140℃で熱処理を行った。その後100℃で冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、次いでフィルム表面(キャスティングドラム接触面側)に25W・min/mの処理強度で大気中でコロナ放電処理を行い、フィルム厚み2.2μmのフィルムをフィルムロールとして巻き取った。本比較例のポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで、コンデンサとしての耐電圧性が極めて低く、信頼性は素子破壊しているなど問題が生じるレベルのものであった。
 (比較例2)
 実施例1のポリプロピレン樹脂(A)のみ溶融押出しして単層構成のフィルムとした以外は実施例1と同様にして厚み2.2μmのポリプロピレンフィルムを得た。本比較例のポリプロピレンフィルムの特性およびコンデンサ特性は表1に示す通りで、コンデンサとしての耐電圧性が低く、信頼性は素子形状に変形が見られ実使用上の性能に劣るものであった。
Figure JPOXMLDOC01-appb-T000002

Claims (8)

  1. 125℃雰囲気でフィルムの絶縁破壊電圧(V/μm)を30点測定し、破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の中の最大値と最小値の差を該20点の平均値で除して算出される百分率(125R%)が50%未満であり、かつ、23℃雰囲気でフィルムの絶縁破壊電圧(V/μm)を30点測定し、破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の中の最大値と最小値の差を該20点の平均値で除して算出される百分率(23R%)が20%未満である、ポリプロピレンフィルム。
  2. 少なくともフィルムの片表面の光沢度が140%以上である、請求項1に記載のポリプロピレンフィルム。
  3. 23℃におけるフィルム主軸方向の破断強度とフィルム主軸直交方向の破断強度との和が500MPa以上である、請求項1または2に記載のポリプロピレンフィルム。
  4. 少なくともフィルムの片表面の3次元中心面平均粗さSRaが30nm以上である、請求項1~3のいずれかに記載のポリプロピレンフィルム。
  5. 少なくともフィルムの片表面に粒子を含む層を有する、請求項1~4のいずれかに記載のポリプロピレンフィルム。
  6. メソペンタッド分率が0.95以上であり、融点が160℃を超えるポリプロピレン樹脂に対して溶融型核剤を含有している、請求項1~5のいずれかに記載のポリプロピレンフィルム。
  7. 請求項1~6のいずれかに記載のポリプロピレンフィルムの少なくとも片面に金属膜が設けられてなる金属膜積層フィルム。
  8. 請求項7に記載の金属膜積層フィルムを用いてなるフィルムコンデンサ。
PCT/JP2015/076278 2014-09-19 2015-09-16 ポリプロピレンフィルムおよびフィルムコンデンサ WO2016043217A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580045117.4A CN106574061B (zh) 2014-09-19 2015-09-16 聚丙烯膜和膜电容器
EP15841483.9A EP3196234A4 (en) 2014-09-19 2015-09-16 Polypropylene film and film capacitor
JP2015557268A JP6657955B2 (ja) 2014-09-19 2015-09-16 ポリプロピレンフィルムおよびフィルムコンデンサ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014191077 2014-09-19
JP2014-191077 2014-09-19
JP2015120199 2015-06-15
JP2015-120199 2015-06-15

Publications (1)

Publication Number Publication Date
WO2016043217A1 true WO2016043217A1 (ja) 2016-03-24

Family

ID=55533253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076278 WO2016043217A1 (ja) 2014-09-19 2015-09-16 ポリプロピレンフィルムおよびフィルムコンデンサ

Country Status (4)

Country Link
EP (1) EP3196234A4 (ja)
JP (1) JP6657955B2 (ja)
CN (1) CN106574061B (ja)
WO (1) WO2016043217A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016182003A1 (ja) * 2015-05-12 2016-11-17 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法
JP2018034510A (ja) * 2016-08-30 2018-03-08 東レ株式会社 オレフィン系積層フィルムおよびフィルムコンデンサ
WO2019044758A1 (ja) 2017-08-29 2019-03-07 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP2019044171A (ja) * 2017-08-29 2019-03-22 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
WO2020039638A1 (ja) * 2018-08-20 2020-02-27 株式会社村田製作所 フィルムコンデンサ、フィルムコンデンサ用フィルム及びフィルムコンデンサ用フィルムの製造方法
JP2020033550A (ja) * 2018-08-23 2020-03-05 東レ株式会社 ポリプロピレンフィルムならびにこれを用いた金属膜積層フィルムおよびフィルムコンデンサ
WO2021176930A1 (ja) 2020-03-06 2021-09-10 株式会社プライムポリマー コンデンサ用多層ポリプロピレンフィルム
CN113382839A (zh) * 2019-02-21 2021-09-10 东丽株式会社 聚丙烯膜和使用它的金属膜层叠膜、膜电容器
WO2021205908A1 (ja) * 2020-04-07 2021-10-14 王子ホールディングス株式会社 二軸延伸ポリプロピレンフィルム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107739470A (zh) * 2017-10-17 2018-02-27 富通集团(天津)超导技术应用有限公司 超导电缆用聚丙烯复合绝缘薄膜材料、薄膜及其制备方法
BR112021000962A2 (pt) * 2018-07-19 2021-04-20 Polymerplus Llc filme dielétrico em camadas de múltiplos componentes com modificação de superfície
CN109887746B (zh) * 2019-03-06 2021-01-01 无锡鑫聚电子科技有限公司 一种用于高可靠大功率电容器的金属化薄膜及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191207A (ja) * 1983-04-14 1984-10-30 東レ株式会社 電気物品用ポリプロピレンフイルム
JPH04163042A (ja) * 1990-10-24 1992-06-08 Toray Ind Inc 電気物品用ポリプロピレンフィルム
JPH11246683A (ja) * 1998-03-02 1999-09-14 Mitsui Chem Inc ポリプロピレン延伸フィルム
JP2001250738A (ja) * 2000-03-03 2001-09-14 Toray Ind Inc コンデンサ用ポリプロピレンフィルム及びそれを用いたコンデンサ
JP2004161799A (ja) * 2002-11-08 2004-06-10 Toray Ind Inc 二軸延伸ポリプロピレンフィルム
WO2012002123A1 (ja) * 2010-06-29 2012-01-05 東レ株式会社 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
WO2014148547A1 (ja) * 2013-03-22 2014-09-25 東レ株式会社 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
JP2014205799A (ja) * 2013-04-15 2014-10-30 王子ホールディングス株式会社 二軸延伸ポリプロピレンフィルム
JP2015201616A (ja) * 2014-03-31 2015-11-12 王子ホールディングス株式会社 コンデンサ用二軸延伸ポリプロピレンフィルム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3740449A1 (de) * 1987-11-28 1989-06-08 Hoechst Ag Coextrudierte, biaxial orientierte mehrschichtfolie
JP4742398B2 (ja) * 1999-11-02 2011-08-10 東レ株式会社 二軸配向ポリプロピレンフィルム
JP2006143975A (ja) * 2004-11-25 2006-06-08 Prime Polymer:Kk ポリプロピレン及び該ポリプロピレンの電気材料への応用
JP5224568B2 (ja) * 2005-01-20 2013-07-03 東レ株式会社 コンデンサ用ポリプロピレンフイルム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191207A (ja) * 1983-04-14 1984-10-30 東レ株式会社 電気物品用ポリプロピレンフイルム
JPH04163042A (ja) * 1990-10-24 1992-06-08 Toray Ind Inc 電気物品用ポリプロピレンフィルム
JPH11246683A (ja) * 1998-03-02 1999-09-14 Mitsui Chem Inc ポリプロピレン延伸フィルム
JP2001250738A (ja) * 2000-03-03 2001-09-14 Toray Ind Inc コンデンサ用ポリプロピレンフィルム及びそれを用いたコンデンサ
JP2004161799A (ja) * 2002-11-08 2004-06-10 Toray Ind Inc 二軸延伸ポリプロピレンフィルム
WO2012002123A1 (ja) * 2010-06-29 2012-01-05 東レ株式会社 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
WO2014148547A1 (ja) * 2013-03-22 2014-09-25 東レ株式会社 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
JP2014205799A (ja) * 2013-04-15 2014-10-30 王子ホールディングス株式会社 二軸延伸ポリプロピレンフィルム
JP2015201616A (ja) * 2014-03-31 2015-11-12 王子ホールディングス株式会社 コンデンサ用二軸延伸ポリプロピレンフィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3196234A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021120456A (ja) * 2015-05-12 2021-08-19 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法
JPWO2016182003A1 (ja) * 2015-05-12 2018-02-22 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法
WO2016182003A1 (ja) * 2015-05-12 2016-11-17 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法
JP7173202B2 (ja) 2015-05-12 2022-11-16 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法
JP2018034510A (ja) * 2016-08-30 2018-03-08 東レ株式会社 オレフィン系積層フィルムおよびフィルムコンデンサ
JP2019044171A (ja) * 2017-08-29 2019-03-22 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
CN111051400B (zh) * 2017-08-29 2022-08-26 东丽株式会社 聚丙烯膜、金属膜叠层膜及膜电容器
CN111051400A (zh) * 2017-08-29 2020-04-21 东丽株式会社 聚丙烯膜、金属膜叠层膜及膜电容器
KR20200041878A (ko) 2017-08-29 2020-04-22 도레이 카부시키가이샤 폴리프로필렌 필름, 금속막 적층 필름 및 필름 콘덴서
US11440292B2 (en) 2017-08-29 2022-09-13 Toray Industries, Inc. Polypropylene film, metal layer laminated film, and film capacitor
JP7318187B2 (ja) 2017-08-29 2023-08-01 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
WO2019044758A1 (ja) 2017-08-29 2019-03-07 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
WO2020039638A1 (ja) * 2018-08-20 2020-02-27 株式会社村田製作所 フィルムコンデンサ、フィルムコンデンサ用フィルム及びフィルムコンデンサ用フィルムの製造方法
JPWO2020039638A1 (ja) * 2018-08-20 2021-08-10 株式会社村田製作所 フィルムコンデンサ、フィルムコンデンサ用フィルム及びフィルムコンデンサ用フィルムの製造方法
US11710602B2 (en) 2018-08-20 2023-07-25 Murata Manufacturing Co., Ltd. Film capacitor, film-capacitor film, and method for manufacturing film-capacitor film
JP7200997B2 (ja) 2018-08-20 2023-01-10 株式会社村田製作所 フィルムコンデンサ、フィルムコンデンサ用フィルム及びフィルムコンデンサ用フィルムの製造方法
JP7434751B2 (ja) 2018-08-23 2024-02-21 東レ株式会社 ポリプロピレンフィルムならびにこれを用いた金属膜積層フィルムおよびフィルムコンデンサ
JP2020033550A (ja) * 2018-08-23 2020-03-05 東レ株式会社 ポリプロピレンフィルムならびにこれを用いた金属膜積層フィルムおよびフィルムコンデンサ
CN113382839A (zh) * 2019-02-21 2021-09-10 东丽株式会社 聚丙烯膜和使用它的金属膜层叠膜、膜电容器
JPWO2021176930A1 (ja) * 2020-03-06 2021-09-10
CN115210833A (zh) * 2020-03-06 2022-10-18 普瑞曼聚合物株式会社 电容器用多层聚丙烯膜
US20230088053A1 (en) * 2020-03-06 2023-03-23 Prime Polymer Co., Ltd. Multilayer polypropylene film for capacitor
KR20220134612A (ko) 2020-03-06 2022-10-05 가부시키가이샤 프라임 폴리머 콘덴서용 다층 폴리프로필렌 필름
WO2021176930A1 (ja) 2020-03-06 2021-09-10 株式会社プライムポリマー コンデンサ用多層ポリプロピレンフィルム
CN115210833B (zh) * 2020-03-06 2024-08-13 普瑞曼聚合物株式会社 电容器用多层聚丙烯膜
WO2021205908A1 (ja) * 2020-04-07 2021-10-14 王子ホールディングス株式会社 二軸延伸ポリプロピレンフィルム

Also Published As

Publication number Publication date
JP6657955B2 (ja) 2020-03-04
JPWO2016043217A1 (ja) 2017-06-29
EP3196234A1 (en) 2017-07-26
CN106574061B (zh) 2019-09-27
CN106574061A (zh) 2017-04-19
EP3196234A4 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
JP7173202B2 (ja) ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法
JP6657955B2 (ja) ポリプロピレンフィルムおよびフィルムコンデンサ
JP7135320B2 (ja) 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP6070864B2 (ja) ポリプロピレンフィルムおよびフィルムコンデンサ
JP7088019B2 (ja) ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法
JP6319293B2 (ja) コンデンサ用二軸配向ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ
JPWO2019044758A1 (ja) ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP6658953B1 (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
JP2016188360A (ja) 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
WO2015146894A1 (ja) 二軸配向ポリプロピレンフィルム
WO2016158590A1 (ja) コンデンサ用二軸配向ポリプロピレンフィルム、金属積層フィルムおよびフィルムコンデンサ
WO2021166993A1 (ja) ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP6682937B2 (ja) コンデンサ用二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ
WO2021166994A1 (ja) ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ
WO2020171163A1 (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
JP2019172921A (ja) ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP6885484B2 (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
JP7318187B2 (ja) ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP2020132884A (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
JP2019172922A (ja) ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP6992919B2 (ja) ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP7247918B2 (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
JP2021134352A (ja) ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015557268

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015841483

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015841483

Country of ref document: EP