WO2021176930A1 - コンデンサ用多層ポリプロピレンフィルム - Google Patents

コンデンサ用多層ポリプロピレンフィルム Download PDF

Info

Publication number
WO2021176930A1
WO2021176930A1 PCT/JP2021/003914 JP2021003914W WO2021176930A1 WO 2021176930 A1 WO2021176930 A1 WO 2021176930A1 JP 2021003914 W JP2021003914 W JP 2021003914W WO 2021176930 A1 WO2021176930 A1 WO 2021176930A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
group
polymer
mass
layer
Prior art date
Application number
PCT/JP2021/003914
Other languages
English (en)
French (fr)
Inventor
尾留川 淳
田村 聡
博貴 志水
Original Assignee
株式会社プライムポリマー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プライムポリマー filed Critical 株式会社プライムポリマー
Priority to JP2022505054A priority Critical patent/JPWO2021176930A1/ja
Priority to CN202180018976.XA priority patent/CN115210833A/zh
Priority to US17/908,896 priority patent/US20230088053A1/en
Priority to KR1020227029929A priority patent/KR20220134612A/ko
Priority to EP21764457.4A priority patent/EP4116997A4/en
Publication of WO2021176930A1 publication Critical patent/WO2021176930A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • B32B27/205Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents the fillers creating voids or cavities, e.g. by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • B32B7/035Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features using arrangements of stretched films, e.g. of mono-axially stretched films arranged alternately
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/246All polymers belonging to those covered by groups B32B27/32 and B32B27/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/414Translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/16Capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/24Crystallisation aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/08Cooling arrangements; Heating arrangements; Ventilating arrangements

Definitions

  • the present invention relates to a polypropylene film for a capacitor.
  • Biaxially stretched polypropylene film has excellent mechanical properties, heat resistance, chemical stability, insulation properties, etc., and is therefore widely used not only for packaging and tape applications, but also as a film for capacitors.
  • Demand for capacitors for capacitors is increasing mainly in the fields of automobiles and home appliances, and further miniaturization, higher capacity, and higher reliability are required.
  • capacitors are used at high output, such as in hybrid cars and electric vehicles, a large current flows through circuits such as transistors and capacitors, which raises the operating temperature. Sex is also required.
  • Patent Document 1 a method of adding an ⁇ -nucleating agent to polypropylene having excellent stereoregularity to raise the thermal deformation temperature of the biaxially stretched film to improve heat resistance
  • Patent Document 3 a method of adding an organic nucleating agent to polypropylene to improve the high withstand voltage and insulation fracture characteristics of a biaxially stretched film at high temperatures
  • Patent Document 3 a method of adding an organic nucleating agent to polypropylene to improve the high withstand voltage and insulation fracture characteristics of a biaxially stretched film at high temperatures
  • a method in which a surface layer made by adding silica particles to polypropylene having excellent stereoregularity is laminated on at least one surface of a biaxially stretched film obtained by adding an ⁇ -nucleating agent to a film having a surface glossiness of 140% or more (a method).
  • Various improvement methods such as Patent Document 4) have been proposed.
  • high-temperature BDV high-temperature dielectric breakdown strength
  • An object of the present invention is to obtain a film for a capacitor which is excellent in high-temperature dielectric breakdown strength (high-temperature BDV), has blocking resistance, and suppresses bleed-out of a nucleating agent or the like even after long-term storage. ..
  • the propylene-based polymer (X) and the polymer-based ⁇ -crystal nucleating agent (C) are contained on at least one side of a base layer composed of a propylene polymer composition containing 0.0001 to 0.05% by mass.
  • the present invention relates to a multilayer polypropylene film for a capacitor, which has a surface layer or a back layer composed of Y), and the base layer and the surface layer or the back layer are both stretched.
  • the multilayer polypropylene film for a capacitor of the present invention includes a base layer containing a polymer-based ⁇ -crystal nucleating agent and a surface layer and / or a back layer composed of a propylene-based polymer composition (the surface layer and the back layer are layers in contact with the base layer). Since it is a multilayer film, bleed-out of the ⁇ -crystal nucleating agent is suppressed even after long-term storage, and blocking resistance is imparted by increasing the surface roughness, and the spherulite size is also miniaturized. Voids are suppressed and both high temperature BDV and blocking resistance are compatible.
  • the propylene homopolymer (X) which is one of the components contained in the propylene polymer composition forming the base layer of the multilayer polypropylene film for capacitors according to the present invention, is a propylene homopolymer, and preferably has the following requirements ( Satisfy 1) to (5).
  • MFR (ASTM D1238, 230 ° C., under 2.16 kg load) is in the range of 1-10 g / 10 min, preferably 2-6 g / 10 min, more preferably 2.5-5 g / 10 min. If the MFR is less than 1.0 g / 10 minutes, it is difficult to mold the film raw fabric with an extruder, and chuck detachment occurs during film stretching, so that a desired multilayer polypropylene film for capacitors cannot be obtained. Further, when the MFR exceeds 10.0 g / 10 minutes, the productivity of the stretched multilayer film is significantly lowered, for example, the film is frequently broken during stretching.
  • the amount of hydrogenated by MFR can be adjusted during the polymerization of the propylene homopolymer. The MFR can be determined by the method described in Examples described later.
  • the mesopentad fraction (mm mm) determined by C-NMR is in the range of 0.930 to 0.999, preferably 0.940 to 0.998, and more preferably 0.950 to 0.997.
  • the obtained multilayer polypropylene film for capacitors has excellent high-temperature withstand voltage resistance.
  • the mesopentad fraction indicates the abundance ratio of the quintuplet isotactic structure in the molecular chain, and the fraction of the propylene structural unit at the center of the chain in which five propylene monomer units have a continuous meso structure. The rate.
  • the mesopentad fraction can be determined by the method described in Examples described later.
  • the ash content is 50 mass ppm or less, preferably 20 mass ppm or less, and more preferably 10 mass ppm or less.
  • the ash content is determined by placing the pellets in a crucible and burning them completely, ashing the crucible in an electric furnace at 800 ° C. for 2 hours, and measuring the ash remaining in the crucible to determine the ash content (ppm). be.
  • Ash is a component derived from the olefin polymerization catalyst contained in the propylene homopolymer.
  • a propylene homopolymer having a low ash content can be produced by using a highly active catalyst or by decomposing and / or removing the catalyst in the polymerized propylene homopolymer.
  • the chlorine content is 2 mass ppm or less, preferably 1.5 mass ppm or less, and more preferably 1.2 mass ppm or less.
  • Chlorine is caused by the catalyst used when homopolymerizing propylene, and it can be controlled within the above range by controlling the type and amount of the catalyst used and by post-treating the propylene homopolymer. can.
  • the chlorine content is determined by burning 0.8 g of propylene homopolymer using a combustion device manufactured by Mitsubishi Kasei Corp. under an argon / oxygen stream at 400 to 900 ° C., and then collecting the combustion gas with ultrapure water and concentrating it.
  • the sample solution of No. 1 was measured and obtained by using an anion column AS4A-SC (manufactured by Nippon Dionex Corp.) using a Dionex-DX300 type ion chromatograph measuring device manufactured by Nippon Dionex Corp.
  • Chlorine is a component derived from the olefin polymerization catalyst contained in the propylene homopolymer.
  • a propylene homopolymer having a low chlorine content can be obtained by removing chlorine in the polymerized propylene homopolymer by using a highly active catalyst or washing with a suitable solvent.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is 4.5 to 12.0, preferably 4.5 to 11.0. , More preferably in the range of 4.5 to 10.5.
  • Mw / Mn When Mw / Mn is 4.5 or more, the stretchability at the time of molding the stretched film is excellent, and a uniform film can be easily obtained. Further, when Mw / Mn is 12.0 or less, the low molecular weight component contained in the propylene homopolymer is small, stickiness and the like are suppressed during film molding, which is preferable in terms of moldability. That is, when Mw / Mn is within the above range, it is preferable from the viewpoint of moldability and stretchability of the propylene homopolymer and uniformity of the thickness of the obtained capacitor film. Mw / Mn can be determined by the method described in Examples described later.
  • the propylene homopolymer (X) satisfying the above-mentioned requirements (1) to (5) can be obtained, for example, by polymerizing propylene in the presence of a catalyst for olefin polymerization described later.
  • the propylene homopolymer (X) according to the present invention includes a propylene homopolymer (X1) and a propylene homopolymer (X2).
  • the catalyst for olefin polymerization used for producing the propylene homopolymer (X) according to the present invention is not particularly limited as long as the propylene homopolymer can be obtained, and for example, (i) magnesium, titanium, halogen and electrons.
  • the titanium content is 2.5% by mass or less.
  • the content of the electron donor is 8 to 30% by mass.
  • the electron donor / titanium (mass ratio) is 7 or more.
  • R 1 represents a secondary or tertiary hydrocarbon group having 1 to 20 carbon atoms
  • R 2 represents a hydrocarbon group having 1 to 4 carbon atoms
  • R 3 represents a hydrocarbon group having 1 to 12 carbon atoms.
  • Indicates a hydrocarbon group or hydrogen atom in R 4 represents a hydrocarbon group having 1 to 12 carbon atoms.
  • the solid titanium catalyst component (i) is (A) Solid titanium, which contains magnesium, titanium, halogen and electron donors, and titanium is not eliminated by hexane washing at room temperature. (B) Aromatic hydrocarbons, It can be prepared by a method including (c) contacting liquid titanium and (d) an electron donor.
  • the solid titanium (a) is a known method for preparing a solid titanium catalyst component by contacting a magnesium compound, a titanium compound, an electron donor (internal donor), or the like by various methods. For example, it can be produced according to JP-A-4-096111, JP-A-58-83006, JP-A-8-143580, etc.).
  • the magnesium compound is preferably used in a solid state.
  • the magnesium compound in the solid state may be the magnesium compound itself in the solid state, or may be an adduct with an electron donor.
  • Examples of the magnesium compound include magnesium compounds described in JP-A-2004-2742, specifically, magnesium chloride, ethoxymagnesium chloride, butoxymagnesium and the like.
  • Examples of the electron donor include compounds having a magnesium compound solubilizing ability described in JP-A-2004-2742, specifically, alcohols, aldehydes, amines, carboxylic acids, and mixtures thereof.
  • the amount of the magnesium compound and electron donor used varies depending on the type, contact conditions, etc., but 0.1 to 20 mol / liter, preferably 0.5 to 0.5 to 20 mol / liter of the magnesium compound with respect to the liquid electron donor. It can be used in an amount of 5 mol / liter.
  • the titanium compound is preferably used in a liquid state.
  • examples of such a titanium compound include a tetravalent titanium compound represented by the following formula (III).
  • R 5 is a hydrocarbon group
  • X is a halogen atom
  • titanium compound titanium tetrachloride is particularly preferable. Further, the titanium compound may be used in combination of two or more kinds.
  • the electron donor include a compound represented by the following formula (IV) (hereinafter, also referred to as “compound (IV)”).
  • R represents a linear or branched alkyl group having 1 to 10 carbon atoms, preferably 2 to 8, more preferably 3 to 6, and R'has 1 to 10 carbon atoms. It represents a linear or branched alkyl group, where n is an integer from 0 to 4. In the present invention, a compound having n of 0 is preferable.
  • alkyl groups of R and R' are methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group and heptyl.
  • alkyl groups of R and R' are methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group and heptyl.
  • Examples include a group, an octyl group, a nonyl group, and a decyl group.
  • the compound (IV) include dimethyl phthalate, methyl ethyl phthalate, diethyl phthalate, n-propyl phthalate, diisopropyl phthalate, di-butyl phthalate, diisobutyl phthalate, and di-n-phthalate.
  • another electron donor other than the compound (IV) may be used as the electron donor (internal donor).
  • an electron donor for example, a compound having two or more ether bonds existing via a plurality of atoms (hereinafter, also referred to as “polyether compound”) can be mentioned.
  • polyether compound examples include compounds in which the atoms existing between the ether bonds are carbon, silicon, oxygen, nitrogen, sulfur, phosphorus, boron, or two or more kinds of atoms selected from these. ..
  • a compound in which a relatively bulky substituent is bonded to an atom between ether bonds and a plurality of carbon atoms are contained in an atom existing between two or more ether bonds is preferable.
  • a polyether compound represented by the following formula (3) is preferable.
  • m is an integer of 1 to 10, preferably an integer of 3 to 10, and more preferably an integer of 3 to 5.
  • R 11 , R 12 , and R 31 to R 36 are each independently selected from a hydrogen atom or at least one selected from carbon, hydrogen, oxygen, fluorine, chlorine, bromine, iodine, nitrogen, sulfur, phosphorus, boron and silicon. It is a substituent having a seed element.
  • R 11 and R 12 are each independently, preferably a hydrocarbon group having 1 to 10 carbon atoms, and more preferably a hydrocarbon group having 2 to 6 carbon atoms.
  • R 31 to R 36 are each independently, preferably a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • R 11 and R 12 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, isopentyl group, neopentyl group, hexyl group, heptyl group, octyl group, 2 -Ethylhexyl group, decyl group, cyclopentyl group, cyclohexyl group can be mentioned.
  • an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group are preferable.
  • R 31 to R 36 include a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group. Among these, a hydrogen atom and a methyl group are preferable.
  • Any R 11 , R 12 , R 31 to R 36 (preferably R 11 , R 12 ) may jointly form a ring other than the benzene ring, and the main chain contains an atom other than carbon. It may be.
  • polyether compound examples include 2,2-dicyclohexyl-1,3-dimethoxypropane, 2,2-diethyl-1,3-dimethoxypropane, and 2,2-dipropyl-1,3-dimethoxypropane, 2.
  • 1,3-diethers are preferable, 2-isopropyl-2-isobutyl-1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxypropane, 2-isopropyl-2-isopentyl- More preferably, 1,3-dimethoxypropane, 2,2-dicyclohexyl-1,3-dimethoxypropane, and 2,2-bis (cyclohexylmethyl) 1,3-dimethoxypropane.
  • One of these compounds may be used, or two or more of these compounds may be used in combination.
  • the solid titanium (a) can be prepared by contacting the magnesium compound, the titanium compound, and the electron donor.
  • the magnesium compound in a solid state in a hydrocarbon solvent for use.
  • the liquid titanium compound may be used once to generate the solid substance (1), and the obtained solid substance (1) is further contacted with the liquid titanium compound. It may be allowed to generate a solid substance (2). Further, it is preferable to wash the solid (1) or (2) with a hydrocarbon solvent, if necessary, and then prepare the solid titanium (a).
  • each component as described above is usually carried out at a temperature of ⁇ 70 ° C. to + 200 ° C., preferably ⁇ 50 ° C. to + 150 ° C., and more preferably ⁇ 30 ° C. to + 130 ° C.
  • the amount of each component used in preparing the solid titanium (a) varies depending on the preparation method and cannot be unconditionally specified.
  • the electron donor is 0.01 to 10 mol, preferably 0 per mol of the magnesium compound.
  • the titanium compound can be used in an amount of 0.01 to 1000 mol, preferably 0.1 to 200 mol.
  • the solid (1) or (2) thus obtained can be used as it is as the solid titanium (i), and the solid is washed with a hydrocarbon solvent at 0 to 150 ° C. Is preferable.
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents such as hexane, heptane, octane, nonane, decane and cetan, non-halogen aromatic hydrocarbon solvents such as toluene, xylene and benzene, and halogen-containing aromatic solvents.
  • aliphatic hydrocarbon solvents such as hexane, heptane, octane, nonane, decane and cetan
  • non-halogen aromatic hydrocarbon solvents such as toluene, xylene and benzene
  • halogen-containing aromatic solvents examples include halogen-containing aromatic solvents.
  • a hydrocarbon solvent or the like is used.
  • an aliphatic hydrocarbon solvent or a halogen-free aromatic hydrocarbon solvent is preferably used.
  • the hydrocarbon solvent is usually used in an amount of 10 to 500 ml, preferably 20 to 100 ml per 1 g of the solid.
  • the solid titanium (a) thus obtained contains magnesium, titanium, halogen and an electron donor.
  • the electron donor / titanium (mass ratio) is preferably 6 or less.
  • the solid titanium (a) thus obtained is not desorbed by hexane washing at room temperature.
  • Aromatic hydrocarbons examples include benzene, toluene, xylene, ethylbenzene, and halogen-containing hydrocarbons thereof. .. Of these, xylene (particularly paraxylene) is preferred.
  • (C) Liquid Titanium As the liquid titanium (c) used for contact with the solid titanium (a), the same as the titanium compound used when preparing the solid titanium (a) can be mentioned. can. Among them, titanium tetrahalogenate is preferable, and titanium tetrachloride is particularly preferable.
  • (D) Electron Donor Examples of the electron donor (d) used for contact with the solid titanium (a) include the same as those exemplified in the above-mentioned electron donor (internal donor). can. Among them, it is preferable to use the same electron donor used for the preparation of the solid titanium (a).
  • Preparation method of solid titanium catalyst component (i) The contact of the solid titanium (a), the aromatic hydrocarbon (b), the liquid titanium (c) and the electron donor (d) is usually at a temperature of 110 to 160 ° C, preferably 115 ° C to 150 ° C for 1 minute. It is carried out for ⁇ 10 hours, preferably 10 minutes to 5 hours.
  • the aromatic hydrocarbon (b) is usually used in an amount of 1 to 10000 ml, preferably 5 to 5000 ml, more preferably 10 to 1000 ml per 1 g of solid titanium (a).
  • the liquid titanium (c) is usually used in the range of 0.1 to 50 ml, preferably 0.2 to 20 ml, particularly preferably 0.3 to 10 ml with respect to 100 ml of the aromatic hydrocarbon (b).
  • the electron donor (d) is usually used in an amount of 0.01 to 10 ml, preferably 0.02 to 5 ml, particularly preferably 0.03 to 3 ml with respect to 100 ml of the aromatic hydrocarbon (b).
  • the contact order of the solid titanium (a), the aromatic hydrocarbon (b), the liquid titanium (c) and the electron donor (d) is not particularly limited, and can be contacted simultaneously or sequentially. It is preferable that the solid titanium (a), the aromatic hydrocarbon (b), the liquid titanium (c) and the electron donor (d) are brought into contact with each other under an inert gas atmosphere and stirring.
  • a slurry of solid titanium (a), aromatic hydrocarbons (b), liquid titanium (c) and electron donor (d) is placed at the above temperatures. , Stirring the stirrer at 100-1000 rpm, preferably 200-800 rpm for the above time to stir solid titanium (a), aromatic hydrocarbons (b), liquid titanium (c) and electron donors ( It is desirable to bring d) into contact.
  • the solid titanium (a) and the aromatic hydrocarbon (b) after contact can be separated by filtration.
  • the solid titanium catalyst component (i) having a lower titanium content than the solid titanium (a) can be obtained.
  • the solid titanium catalyst component (i) having a titanium content of 25% by mass or more, preferably 30 to 95% by mass or more preferably 40 to 90% by mass is obtained as compared with the solid titanium (a).
  • the solid titanium catalyst component (i) obtained as described above contains magnesium, titanium, halogen and an electron donor, and satisfies the following requirements (k1) to (k4), preferably the following requirements (k5). Is further satisfied.
  • the titanium content of the solid titanium catalyst component (i) is 2.5% by mass or less, preferably 2.2 to 0.1% by mass, more preferably 2.0 to 0.2% by mass, and particularly preferably. Is 1.8 to 0.3% by mass, most preferably 1.5 to 0.4% by mass.
  • the content of the (k2) electron donor is 8 to 30% by mass, preferably 9 to 25% by mass, and more preferably 10 to 20% by mass.
  • the electron donor / titanium (mass ratio) is 7 or more, preferably 7.5 to 35, more preferably 8 to 30, and particularly preferably 8.5 to 25.
  • the solid titanium catalyst component (i) is substantially free of titanium by hexane washing at room temperature.
  • the hexane cleaning of the solid titanium catalyst component (i) means that 1 g of the solid titanium catalyst component (i) is washed with hexane in an amount of usually 10 to 500 ml, preferably 20 to 100 ml for 5 minutes. say. Room temperature is 15 to 25 ° C.
  • the fact that titanium is not substantially desorbed means that the titanium concentration in the hexane cleaning solution is 0.1 g / liter or less.
  • the solid titanium catalyst component (i) has an average particle size of 5 to 70 ⁇ m, preferably 7 to 65 ⁇ m, more preferably 8 to 60 ⁇ m, and particularly preferably 10 to 55 ⁇ m.
  • the amounts of magnesium, halogen, titanium and electron donor are each mass% per unit mass of the solid titanium catalyst component (i), and magnesium, halogen and titanium are obtained by plasma emission spectroscopy (ICP method).
  • the electron donor is quantified by gas chromatography.
  • the average particle size of the catalyst is measured by a centrifugal sedimentation method using a decalin solvent.
  • propylene can be polymerized with high activity, and the amount of propylene homopolymer having low stereoregularity is small. A highly stereoregular propylene homopolymer can be stably produced.
  • Organosilicon compound component (ii) constituting the olefin polymerization catalyst of the present invention is represented by the following formula (II).
  • R 1 represents a secondary or tertiary hydrocarbon group having 1 to 20 carbon atoms
  • R 2 represents a hydrocarbon group having 1 to 4 carbon atoms
  • R 3 represents a hydrocarbon group having 1 to 12 carbon atoms. Indicates a hydrocarbon group or a hydrogen atom of
  • R 4 indicates a hydrocarbon group having 1 to 12 carbon atoms.
  • R 1 examples include an alicyclic hydrocarbon group, for example, a cyclobutyl group, a cyclopentyl group, a cyclopentenyl group, a cyclopentadienyl group, a cyclohexyl group, a cyclohexynyl group, these groups having a substituent and the like.
  • examples of the hydrocarbon group in which the carbon adjacent to Si is a secondary carbon include an i-propyl group, an s-butyl group, an s-amyl group, an ⁇ -methylbenzyl group, and the like.
  • examples of the hydrocarbon group in which the adjacent carbon is a tertiary carbon include a tert-butyl group, a tert-amyl group, an ⁇ , ⁇ '-dimethylbenzyl group, an admantyl group and the like.
  • a cyclopentyl group and a cyclobutyl group are preferable, and a cyclopentyl group is particularly preferable.
  • R 2 include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, ter-butyl group, sec-butyl group, n-pentyl group, and iso-.
  • examples thereof include a pentyl group, a cyclopentyl group, an n-hexyl group and a cyclohexyl group. Of these, methyl and ethyl groups are particularly preferred.
  • R 3 examples include hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, ter-butyl group, sec-butyl group, n-pentyl group, and the like. Examples thereof include iso-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group and octyl group. Of these, the ethyl group is particularly preferred.
  • R 4 examples include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, ter-butyl group, sec-butyl group, n-pentyl group, and iso-. Examples thereof include a pentyl group, a cyclopentyl group, an n-hexyl group, a cyclohexyl group, and an octyl group. Of these, the ethyl group is particularly preferred.
  • organosilicon compound represented by the above formula (II) include cyclopentyldiethylaminodimethoxysilane, cyclopentenyldiethylaminodimethoxysilane, cyclopentadienyldiethylaminodimethoxysilane, cyclohexyldiethylaminodimethoxysilane, isopropyldiethylaminodimethoxysilane, and tert-butyldiethylamino. Examples thereof include dimethoxysilane.
  • cyclopentyldiethylaminodimethoxysilane has a high stereoregularity, in particular, from the viewpoint of increasing the high temperature elution rate in long mesochain length and cross fractional chromatographic analysis (CFC). Is preferable.
  • the above-mentioned organosilicon compound component (ii) may be used alone or in combination of two or more.
  • a propylene-based polymer having an unprecedented level of high stereoregularity can be obtained.
  • the organometallic compound component (iii) constituting the olefin polymerization catalyst of the present invention is an organometallic compound containing a metal belonging to Group 1, Group 2, or Group 13 of the periodic table, and is, for example, an organometallic compound, No. 1 Examples thereof include a complex alkyl compound of a group metal and aluminum, an organometallic compound of a group 2 metal, and the like. Two or more kinds of the organometallic compound component (iii) may be used in combination.
  • ⁇ Organoaluminium compound> The organoaluminum compound is represented by, for example, the following formula.
  • Ra is a hydrocarbon group having 1 to 12 carbon atoms
  • X is a halogen or hydrogen
  • n is 1 to 3.
  • Ra is a hydrocarbon group having 1 to 12 carbon atoms, for example, an alkyl group, a cycloalkyl group or an aryl group, and specifically, methyl, ethyl, n-propyl, isopropyl, isobutyl, pentyl, hexyl, etc. Octyl, cyclopentyl group, cyclohexyl, phenyl, trill and the like.
  • organoaluminum compound a compound represented by the following formula can also be mentioned.
  • R a n AlY 3-n In the formula, R a is the same as above, and Y is -OR b group, -OSiR c 3 group, -OAlR d 2 group, -NR e 2 group, -SiR f 3 group or -N (R g ) AlR.
  • R h is 2 groups, n is 1 to 2, R b , R c , R d and R h are methyl group, ethyl group, isopropyl group, isobutyl group, cyclohexyl group, phenyl group and the like, and Re is Hydrogen, methyl group, ethyl group, isopropyl group, phenyl group, trimethylsilyl group and the like, and R f and R g are methyl group, ethyl group and the like.
  • organoaluminum compounds include the following compounds.
  • R a n Al ( OR b) a compound represented by 3-n, e.g., dimethylaluminum methoxide, diethylaluminum ethoxide and diisobutylaluminum methoxide.
  • R a n Al ( OSiR c) a compound represented by 3-n, e.g., Et 2 Al (OSiMe 3), (iso-Bu) 2 Al (OSiMe 3), (iso-Bu) 2 Al (OSiEt 3 ) etc.
  • R a n Al ( OAlR d 2) 3-n Et 2 AlOAlEt 2, such as (iso-Bu) 2 AlOAl ( iso-Bu) 2.
  • the organoaluminum compound represented by Ra 3 Al is preferably used.
  • the olefin polymerization catalyst can be produced by a method including a step of contacting the solid titanium catalyst component (i), the organosilicon compound component (ii), and the organometallic compound component (iii). ..
  • the prepolymerization catalyst (p) may be formed from each of the above components.
  • the prepolymerization catalyst (p) is formed by prepolymerizing an olefin such as propylene in the presence of the above-mentioned components (i), (ii), (iii) and other components used as needed. NS.
  • Such a prepolymerization catalyst (p) usually forms a catalyst for olefin polymerization together with the organic silicon compound (ii) and the organic metal compound (iii), but only the prepolymerization catalyst (p) is used as the catalyst for olefin polymerization. In some cases it can be done.
  • the polymerization can be carried out by either a liquid phase polymerization method such as solution polymerization or suspension polymerization or a gas phase polymerization method.
  • a liquid phase polymerization method such as solution polymerization or suspension polymerization
  • a gas phase polymerization method When the polymerization takes the reaction form of slurry polymerization, an inert organic solvent can be used as the reaction solvent, or propylene which is liquid at the reaction temperature can be used.
  • the inert organic solvent include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; alicyclic hydrocarbons; aromatic hydrocarbons; halogenated hydrocarbons. Examples thereof include hydrogen and contact materials thereof. Among these, it is particularly preferable to use an aliphatic hydrocarbon.
  • the solid titanium catalyst component (i) or prepolymerization catalyst (p) is usually about 1 ⁇ 10 -5 to 1 mmol, preferably about 1 ⁇ , in terms of titanium atoms per liter of polymerization volume. It is used in an amount of 10-4 to 0.1 mmol.
  • the organosilicon compound (ii) is usually used in an amount of about 0.001 mol to 10 mol, preferably 0.01 mol to 5 mol, based on 1 mol of the metal atom of the organometallic compound (iii).
  • the organic metal compound (iii) is used in an amount such that the metal atom in the compound (iii) is usually about 1 to 2000 mol, preferably about 2 to 500 mol, based on 1 mol of the titanium atom in the polymerization system. Be done.
  • the prepolymerization catalyst (p) is used during this polymerization, it may not be necessary to add the organosilicon compound (ii) and / or the organometallic compound (iii).
  • the catalyst for olefin polymerization is formed from the prepolymerization catalyst (p), the component (ii) and the component (iii), each of these components (ii) and (iii) can be used in the above amounts.
  • the molecular weight of the obtained propylene homopolymer can be adjusted, and a polymer having a large MFR can be obtained.
  • the polymerization is usually carried out at a temperature of about 20 to 150 ° C., preferably about 50 to 100 ° C., and under a pressure of normal pressure to 100 kg / cm 2 , preferably about 2 to 50 kg / cm 2. ..
  • the polymerization can be carried out by any of a batch method, a semi-continuous method and a continuous method. Further, the polymerization can be carried out in two or more stages by changing the reaction conditions.
  • the polymer-based ⁇ -crystal nucleating agent (C) contained in the propylene polymer composition forming the base layer of the multilayer polypropylene film for capacitors according to the present invention is a nucleating agent composed of a polymer (polymer), and is preferably propylene.
  • a polymer produced by prepolymerization of a catalyst used to obtain a homopolymer more preferably a polymer having a glass transition temperature and / or a melting point (Tm) of 200 ° C. or higher, still more preferably 280 ° C. or higher. Consists of.
  • the polymer-based ⁇ -crystal nucleating agent (C) according to the present invention is produced by prepolymerization and is finely dispersed in the sub-nano order, so that the nucleating agent effect is exhibited in a very small amount.
  • the glass transition temperature and / or the melting point (Tm) is 200 ° C. or higher, the spherulite size of the propylene homopolymer becomes small and the crystallinity becomes high, so that the nucleating agent effect is excellent. Further, when the temperature is 280 ° C. or higher, those effects are more remarkable.
  • the polymer produced by the prepolymerization according to the present invention is a polymer of an olefin formed by the prepolymerization of a catalyst for polymerizing propylene.
  • a catalyst for polymerizing propylene As the olefin used for preparing the prepolymerization catalyst component, a compound represented by the following formula (i) or (ii) is used, and specifically, 3-methyl-1-butene, 3-methyl-1-pentene.
  • 3-Ethyl-1-pentene 4-Methyl-1-pentene, 4-Methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1 It has a branched structure such as -hexene, 3-ethyl-1-hexene, allylnaphthalene, allylnorbornane, vinylnaphthalene, allyltoluene, allylbenzene, vinylcyclohexane, vinylcyclopentene, vinylcycloheptan, and allyltrialkylsilanes. It is an olefin, and the glass transition temperature and / or crystal melting point of the obtained olefin polymer is 200 ° C. or higher.
  • the propylene polymer composition constituting the base layer of the multilayer polypropylene film for capacitors of the present invention contains 0.0001 to 0.05% by mass of the propylene homopolymer (X) and the polymer-based ⁇ -crystal nucleating agent (C). , Preferably 0.0001 to 0.03% by mass, more preferably 0.0001 to 0.01% by mass (provided that the total amount of the propylene homopolymer (X) and the polymer nucleating agent (C) is added. It is 100% by mass.).
  • the propylene polymer composition according to the present invention can be obtained by mixing the propylene homopolymer (X) and the polymer-based ⁇ -crystal nucleating agent (C) in the above range, and is preferably the propylene homopolymer.
  • an olefin polymer (polymer) produced by prepolymerizing an olefin represented by the above formula (i) or (ii) as a prepolymerization catalyst is finely dispersed in the propylene homopolymer (X1), which is particularly preferable.
  • the propylene polymer composition according to the present invention is an olefin polymer (polymer) produced by prepolymerizing an olefin represented by the above formula (i) or (ii) as a prepolymerization catalyst.
  • the propylene polymer composition in which the system ⁇ crystal nucleating agent) is finely dispersed in the propylene homopolymer (X1) may be used alone, but in the method for producing the propylene homopolymer (X), prepolymerization
  • the propylene polymer composition according to the present invention is a weather-resistant stabilizer, a heat-resistant stabilizer, an antistatic agent, an anti-slip agent, an anti-blocking agent, an antifogging agent, a lubricant, a pigment, and a dye, as long as the object of the present invention is not impaired.
  • Plasticizers, antistatic agents, hydrochloric acid absorbers, antioxidants and other additives may be added.
  • it is blended by melt extrusion in the range of 180 to 280 ° C. while adding various additives such as various antioxidants (Irganox 1010, BHT (dibutylhydroxytoluene), Ilgafos 168, etc.) and calcium stearate. Is given as an example.
  • the propylene-based polymer forming the surface layer of the multilayer polypropylene film for capacitors according to the present invention may be the propylene homopolymer (X) forming the base layer, ethylene, ⁇ -olefin having 4 or more carbon atoms, and the like.
  • olefins having 2 to 8 carbon atoms such as 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene and 3-methyl-1-butene. May be a random copolymer usually containing 8 mol% or less, preferably 6 mol% or less.
  • the propylene-based polymer (Y) according to the present invention preferably satisfies the above requirements (1) to (5) satisfied by the propylene homopolymer (X) forming the base layer.
  • a polymer containing no polymer-based ⁇ -crystal nucleating agent (C) for example, propylene alone.
  • a propylene homopolymer having a polymer (X2) or a polymer-based ⁇ -crystal nucleating agent (C) content of less than 0.00001% by mass is used even when the polymer-based ⁇ -crystal nucleating agent (C) is contained. ..
  • the propylene-based polymer (Y) used for the surface layer and the back layer of the multilayer polypropylene film for a capacitor When the propylene-based polymer (Y) according to the present invention is used for the surface layer and the back layer of the multilayer polypropylene film for a capacitor, the propylene-based polymer (Y) used for the surface layer and the propylene-based polymer (Y) used for the back layer are used. ) May be the same, but may be a propylene-based polymer (Y) having different characteristics within the range having the above characteristics.
  • the propylene-based polymer (Y) according to the present invention can be produced by the above-mentioned production method of the propylene homopolymer (X), but can also be produced by various known production methods.
  • the propylene-based polymer (Y) forming the surface layer and the back layer of the multilayer polypropylene film for capacitors according to the present invention is a weather resistant stabilizer, a heat resistant stabilizer, an antistatic agent, and anti-slip, as long as the object of the present invention is not impaired.
  • Additives such as agents, anti-blocking agents, antifogging agents, lubricants, pigments, dyes, plasticizers, antioxidants, hydrochloric acid absorbers, antioxidants and the like may be added.
  • the melt extrusion in the range of 180 to 280 ° C. while adding various additives such as various antioxidants (Irganox 1010, BHT (dibutylhydroxytoluene), Ilgafos 168, etc.) and calcium stearate. Is given as an example.
  • various antioxidants Irganox 1010, BHT (dibutylhydroxytoluene), Ilgafos 168, etc.
  • calcium stearate Is given as an example.
  • the multilayer polypropylene film for capacitors of the present invention is at least a base layer composed of a propylene polymer composition containing 0.0001 to 0.05% by mass of the propylene homopolymer (X) and the polymer-based ⁇ -crystal nucleating agent (C). It is a multilayer film having a surface layer or a back layer made of a propylene-based polymer (Y) on one side, and both a base layer and a surface layer or a back layer are stretched.
  • the multilayer polypropylene film for capacitors of the present invention preferably has a surface layer on one side of the base layer and a back layer on the other side of the base layer.
  • the overall thickness of the multilayer film is usually in the range of 1 to 20 ⁇ m, preferably in the range of 1.5 to 10 ⁇ m, more preferably in the range of 2 to 5 ⁇ m, and the thickness ratio of the base layer to the surface layer or the back layer of the multilayer film is. Usually, it is in the range of 9: 1 to 6: 1, preferably in the range of 9: 1 to 7: 3, and more preferably in the range of 9: 1 to 8: 2.
  • the multilayer polypropylene film for a capacitor of the present invention preferably has a surface roughness Ra of a surface layer or a back layer of 0.2 or more, more preferably 0.3 or more.
  • Ra surface roughness of a surface layer or a back layer of 0.2 or more, more preferably 0.3 or more.
  • the multilayer polypropylene film for a capacitor of the present invention preferably has a breakdown voltage (V / ⁇ m) at 100 ° C. of 540 V / ⁇ m or more.
  • the multilayer polypropylene film for capacitors of the present invention does not bleed out the nucleating agent to the surface.
  • the multilayer polypropylene film for a capacitor of the present invention was obtained by coextruding and molding various known methods, for example, the propylene polymer composition as a base layer and the propylene polymer (Y) as a surface layer or a back layer.
  • the stretching method for this multilayer sheet include a uniaxial stretching method and a biaxial stretching method, but the biaxial stretching method is preferable.
  • the biaxial stretching method includes a sequential biaxial stretching method in which the film is uniaxially stretched in the mechanical direction and then stretched in a direction perpendicular to the mechanical direction, and a simultaneous biaxial stretching method in which the film is simultaneously stretched in the mechanical direction and in the direction perpendicular to it.
  • Axial stretching method and the like can be mentioned.
  • a sequential biaxial stretching method such as a tenter method and a tubular film method, and a simultaneous biaxial stretching method can be used.
  • the tenter method for example, it can be performed by the following method.
  • the molten multilayer sheet melt-extruded from the T-die was solidified with a cooling roll usually in the range of 40 to 120 ° C., preferably 50 to 100 ° C., more preferably 60 to 90 ° C., and the multilayer sheet was preheated if necessary. Introduce to the post-stretch zone. Next, the sheet is stretched 3 to 9 times in the machine direction (longitudinal direction) at a temperature of 120 to 160 ° C., and stretched 5 to 11 times in the direction perpendicular to the machine direction (horizontal direction) at a temperature of 150 to 190 ° C. ..
  • the total stretched surface magnification is 30 to 80 times, preferably 35 to 75 times, more preferably 35 to 70 times, still more preferably 35 to 50 times. If the stretched surface magnification is less than 30 times, it may be difficult to obtain the desired strength and thickness accuracy. Further, when the stretched surface magnification exceeds 80 times, breakage is likely to occur during stretching, which may result in inferior productivity.
  • ⁇ Mesopentad fraction (mmmm (noise removal method))> 1.
  • Equipment Bruker Biospin AVANCE III cryo-500 type nuclear magnetic resonance equipment Measurement nucleus: 13 C (125 MHz) Measurement mode: Single pulse proton broadband decoupling Pulse width: 45 ° (5.00 microseconds) Repeat time: 5.5 seconds Accumulation number: 256 times
  • Measurement solvent o-dichlorobenzene / heavy benzene (80/20% by volume) mixed solvent Sample concentration: 50 mg / 0.6 mL Measurement temperature: 120 ° C Chemical shift criteria: 21.59 ppm (mesopentad methyl peak shifts) 2.
  • the mesopentad fraction (mmmm,%) which is one of the indexes of the stereoregularity of the polymer and whose microtacticity was examined, is the peak intensity ratio of the 13C-NMR spectrum obtained under the measurement condition of 1 above.
  • ⁇ Chlorine content> 0.8 g of the sample was burned at 400 to 900 ° C. under an argon / oxygen air flow using a combustion device manufactured by Mitsubishi Kasei Corp. After that, the combustion gas is captured by ultrapure water, and the concentrated sample liquid is used as a DIONEX-DX300 type ion chromatograph (trade name, manufactured by Nippon Dioneck Co., Ltd.) and an anion column AS4A-SC (trade name, Dioneck Co., Ltd.). The chlorine content was determined by measurement using (manufactured by).
  • the Mw / Mn value which is an index of the molecular weight distribution, was obtained by analyzing a chromatogram measured under the following conditions by a known method.
  • the composition of the obtained solid titanium catalyst component (A) was titanium; 2.2% by weight, chlorine; 61% by weight, magnesium; 19% by weight, and DIBP; 12.7% by weight.
  • ⁇ Preparation of prepolymerization catalyst> In a reactor with an 80 liter stirrer, 40 liters of purified hexane, 3.0 mol of triethylaluminum, 3.0 mol of trimethylmethoxysilane and the solid titanium catalyst component (A) were added to 0.3 in terms of titanium atoms in a nitrogen atmosphere. After the molar addition, 1.5 kg of 3-methyl-1-butene (3MB-1) was supplied to the reactor at a temperature of 20 ° C., and prepolymerization was carried out for 2 hours.
  • 3-methyl-1-butene 3-methyl-1-butene
  • the slurry was depressurized, the slurry containing the produced solid was centrifuged, and dried with a dryer to obtain 200 kg of a white powdery polymer-based ⁇ -crystal nucleating agent-containing propylene polymer composition.
  • the melt flow rate of the obtained polymer-based ⁇ -crystal nucleating agent-containing propylene polymer composition was 2 g / 10 minutes, the value of the stereoregularity index [M5] of the boiling heptane-insoluble component was 0.986, and the polymer.
  • the content of the 3MB-1 polymer, which is an ⁇ -crystal nucleating agent, was 300 ppm, and the density was 0.919 g / cm 3 .
  • the melting point of the 3MB-1 polymer was 310 ° C.
  • the polymer-based ⁇ -crystal nucleating agent-containing propylene polymer composition obtained in Production Example 1 is a propylene homopolymer (X1) which is a propylene homopolymer (X) and a polymer-based ⁇ -crystal nucleating agent (C). It is a composition containing 300 ppm of a certain 3MB-1 polymer. In the examples, the composition was designated as the propylene polymer composition (Z).
  • the propylene polymer composition (Z) contains 0.2 parts by mass of 3,5-di-t-butyl-4-hydroxytoluene as an antioxidant and an antioxidant with respect to 100 parts by mass of the composition.
  • the composition fat was pelletized by melt-kneading at a resin temperature of 230 ° C.
  • Table 1 shows the physical characteristics of the propylene homopolymer (X1-1), which is the propylene homopolymer (X1) contained in the obtained propylene polymer composition (Z).
  • the solid adduct (45 mmol in terms of magnesium atom) was suspended in 20 ml of decane, and then the whole amount was introduced into 195 ml of titanium tetrachloride kept at ⁇ 20 ° C. with stirring. The mixture was heated to 80 ° C. over 5 hours and 1.8 ml (6.2 mmol) of diisobutylphthalate was added. The temperature was subsequently raised to 110 ° C. and the mixture was stirred for 1.5 hours.
  • This solid portion was resuspended in 101 ml of para-xylene, and 1.7 ml (15 mmol) of titanium tetrachloride and 0.22 ml (0.8 mmol) of diisobutylphthalate were further added.
  • ⁇ Preparation of prepolymerization catalyst (p-1)> In a 200 ml glass reactor substituted with nitrogen, 50 ml of hexane, 2.5 mmol of triethylaluminum, 0.5 mmol of cyclopentyldiethylaminodimethoxysilane, and the solid titanium catalyst component (i-1) obtained above were placed in a titanium atom. After charging 0.25 mmol in terms of conversion, propylene was supplied at an amount of 1.47 liters / hour for 1 hour while keeping the temperature in the system at 20 ° C. By this operation, a prepolymerized catalyst (p-1) in which 3 g of propylene was prepolymerized per 1 g of the solid titanium catalyst component (i-1) was obtained.
  • the propylene-based polymer (Y) used for the surface layer contains the propylene homopolymer (X). Therefore, when the propylene homopolymer obtained in Production Example 2 is used for the surface layer, it is propylene-based.
  • the propylene homopolymer is referred to as a polymer (Y1) and the propylene homopolymer is used as a part of a propylene polymer composition containing a polymer-based ⁇ -crystal nucleating agent in the base layer, the propylene homopolymer (X2) is propylene alone. It was described as a polymer (X2-1).
  • Table 1 shows the physical properties of the propylene homopolymer (X2-1), the propylene homopolymer (X1-1), and the propylene-based polymer (Y1).
  • the propylene homopolymer (X2-1) and the propylene-based polymer are shown.
  • the polymer (Y1) is the same propylene homopolymer.
  • Example 1 ⁇ Making raw fabric sheet>
  • the propylene homopolymer (Y1) obtained in Production Example 2 as the propylene polymer (Y) forming the front and back layers was obtained in Production Example 1 as the propylene polymer composition forming the base layer (intermediate layer).
  • a propylene polymer composition (Z) containing a polymer-based ⁇ -crystal nucleating agent melt it at a temperature of 270 ° C. with a multi-layer T die sheet molding machine (manufactured by GM Engineering Co., Ltd.) with 2 types and 3 layers of 25 mm ⁇ / 30 mm ⁇ .
  • the chill roll was extruded and cooled by one cooling roll held at 65 ° C.
  • the thickness ratio of the intermediate layer to the front and back layers was set so that the surface layer: intermediate layer: back layer was 1: 8: 1.
  • Both sides of the 10 cut sheets are washed and recovered with dichloromethane, and the washed and recovered product after desolvation is weighed, and this amount is taken as the total amount of bleed. Further, the nucleating agent is quantified by subjecting the washed and recovered product to HPLC (UV254 nm).
  • ⁇ Surface roughness> The measurement was performed according to JIS B0601-1994.
  • ⁇ Withstand voltage (BDV)> The BDV of the obtained stretched film was measured according to JIS-C2330.
  • the breakdown voltage of the biaxially stretched film was measured at 100 ° C. and 120 ° C.
  • the withstand voltage (BDV, V / ⁇ m) was calculated by dividing the dielectric breakdown voltage by the film thickness.
  • Example 2 Instead of the propylene polymer composition used in Example 1 for forming the base layer (intermediate layer), as a propylene polymer composition, 6 parts by mass of the propylene polymer composition (Z) used in Example 1 was produced. The same procedure as in Example 1 was carried out except that a propylene polymer composition containing 94 parts by mass of the propylene homopolymer (X2-1) obtained in No. 2 was used to obtain a multilayer polypropylene film for a capacitor.
  • Example 3 Instead of the propylene polymer composition used in Example 1 for forming the base layer (intermediate layer), as a propylene polymer composition, 3 parts by mass of the propylene polymer composition (Z) used in Example 1 was produced. The same procedure as in Example 1 was carried out except that a propylene polymer composition containing 97 parts by mass of the propylene homopolymer (X2-1) obtained in No. 2 was used to obtain a multilayer polypropylene film for a capacitor.
  • Example 2 instead of both surface layers and the intermediate layer (base layer) used in Example 1, an organic ⁇ crystal nucleating agent [Milliken Co., Ltd.] was used as a crystal nucleating agent in 100 parts by mass of a propylene-based homopolymer (X2-1).
  • Product name: NX8000J] was added in an amount of 0.05 parts by mass in the same manner as in Example 1 except that the composition (W1) was used for the front and back layers and the intermediate layer (base layer), and the base layer and the front and back layers were the above composition.
  • a multilayer polypropylene film for a capacitor of 1 type and 3 layers was obtained.
  • Example 3 instead of the front and back layers and the intermediate layer (base material layer) used in Example 1, an organic ⁇ -crystal nucleating agent [manufactured by Milliken] was used as a crystal nucleating agent in 100 parts by mass of a propylene-based homopolymer (X2-1). The same procedure as in Example 1 was carried out except that the composition (W2) to which 0.1 part by mass of [trade name: NX8000J] was added was used for the front and back layers and the intermediate layer (base material layer), and the base layer and front and back layers were obtained from the above composition. A multilayer polypropylene film for a capacitor of 1 type and 3 layers was obtained.
  • Example 4 Instead of the front and back layers and the intermediate layer (base material layer) used in Example 1, 3 parts by mass of the propylene polymer composition (Z) used for the base layer (intermediate layer) of Example 3 was obtained in Production Example 2. The same procedure as in Example 1 was carried out except that the propylene polymer composition containing 97 parts by mass of the propylene homopolymer (X2-1) was used for both the surface layer and the intermediate layer (base material layer). A multilayer polypropylene film for capacitors was obtained.
  • Example 5 instead of the propylene polymer composition used in Example 1 for forming the base layer (intermediate layer), 100 parts by weight of the propylene-based homopolymer (X2-1) used in Comparative Example 1 was used as the propylene polymer composition.
  • Organic ⁇ -crystal nucleating agent [Product name: NX8000J manufactured by Milliken] Performed in the same manner as in Example 1 except that the composition (W2) to which 0.1 parts by mass was added was used, and the multilayer polypropylene for a two-kind three-layer capacitor was used. I got a film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本発明の目的は、高温絶縁破壊強度(高温BDV)に優れ、且つ耐ブロッキング性を有し、長期間保存しても造核剤などのブリードアウトが抑制されたコンデンサ用フィルムを得ることにあり、本発明は、プロピレン単独重合体(X)およびポリマー系α晶造核剤(C)を0.0001~0.05質量%含むプロピレン重合体組成物からなる基層の少なくとも片面にプロピレン系重合体(Y)からなる表層または裏層を有し、且つ基層および表層または裏層が延伸されてなることを特徴とするコンデンサ用多層ポリプロピレンフィルムに係る。

Description

コンデンサ用多層ポリプロピレンフィルム
 本発明はコンデンサ用ポリプロピレンフィルムに関する。
 二軸延伸ポリプロピレンフィルムは、機械的特性、耐熱性、化学的安定性および絶縁特性等に優れるため、包装用途およびテープ用途だけでなく、コンデンサ用フィルムとして幅広く利用されている。コンデンサ用フィルムは、主に自動車分野や家電分野などで需要が高まっており、更なる小型化、高容量化および高信頼性が要望されている。特に、ハイブリッドカーおよび電気自動車用途のように高出力化でコンデンサを使用する場合には、トランジスターやコンデンサ等の回路に大電流が流れて使用温度が高くなるため、コンデンサの高温下での耐電圧性も求められている。
 コンデンサ用フィルムの特性を改良する方法として、立体規則性に優れるポリプロピレンにα核形成剤を添加して二軸延伸フィルムの熱変形温度を上げて耐熱性を改良する方法(例えば、特許文献1、特許文献2)、ポリプロピレンに有機系造核剤を添加して二軸延伸フィルムの高温下での高い耐電圧性および絶縁破壊特性を改良する方法(特許文献3)、あるいは立体規則性に優れるポリプロピレンにα核形成剤を添加してなる二軸延伸フィルムの少なくとも片面に、立体規則性に優れるポリプロピレンにシリカ粒子を添加してなる表面層を積層して表面の光沢度が140%以上する方法(特許文献4)など、種々の改良方法が提案されている。
 しかしながら、何れの方法でも、未だ高温絶縁破壊強度(高温BDV)の改良効果は十分ではなく、また、有機系造核剤を添加した場合は、二軸延伸フィルムの表面に有機系造核剤がブリードアウトする場合があり、また、ブリード物によってキャストロールをはじめとする生産設備が汚染される虞がある。
特許第5586784号公報 特表2018-538373号公報 特開2015-201616号公報 国際公開第2016/043217号パンフレット
 本発明の目的は、高温絶縁破壊強度(高温BDV)に優れ、且つ耐ブロッキング性を有し、長期間保存しても造核剤などのブリードアウトが抑制されたコンデンサ用フィルムを得ることにある。
 本発明は、プロピレン単独重合体(X)およびポリマー系α晶造核剤(C)を0.0001~0.05質量%含むプロピレン重合体組成物からなる基層の少なくとも片面にプロピレン系重合体(Y)からなる表層または裏層を有し、且つ基層および表層または裏層がいずれも延伸されてなることを特徴とするコンデンサ用多層ポリプロピレンフィルムに係る。
 本発明のコンデンサ用多層ポリプロピレンフィルムは、ポリマー系α晶造核剤を含む基層と、プロピレン系重合体組成物からなる表層および/または裏層を備える(表層、裏層とは基層に接する層)多層フィルムであるので、長期保存してもα晶造核剤のブリードアウトが抑制され、且つ、表面粗度が大きくなることで耐ブロッキング性が付与され、球晶サイズも微細化されており、ボイドが抑制され高温BDVと耐ブロッキング性の双方が両立している。
 以下、本発明について詳細に説明する。
 [プロピレン単独重合体(X)]
 本発明に係るコンデンサ用多層ポリプロピレンフィルムの基層を形成するプロピレン重合体組成物に含まれる成分の一つであるプロピレン単独重合体(X)は、プロピレンの単独重合体であり、好ましくは下記要件(1)~(5)を満たす。
 <要件(1)>
 MFR(ASTM D1238、230℃、2.16kg荷重下)が1~10g/10分、好ましくは2~6g/10分、より好ましくは2.5~5g/10分の範囲にある。MFRが1.0g/10分未満の場合、押出機でのフィルム原反の成形が困難であり、またフィルム延伸時にチャック外れ等が生じ、所望のコンデンサ用多層ポリプロピレンフィルムが得られない。また、MFRが10.0g/10分を超えると、延伸時にフィルムの破断が多発する等、延伸多層フィルムの生産性が大幅に低下する。なお、MFRは、プロピレン単独重合体の重合時に水素添加量を調整することができる。MFRは、後述する実施例に記載の方法により求めることができる。
 <要件(2)>
 13C-NMRにより求められるメソペンタッド分率(mmmm)が0.930~0.999、好ましくは0.940~0.998、より好ましくは0.950~0.997の範囲にある。
 mmmmが上記範囲にあるプロピレン単独重合体用いることにより、得られるコンデンサ用多層ポリプロピレンフィルムは高温耐電圧性が優れる。ここで、メソペンタッド分率は、分子鎖中の五連子アイソタクティック構造の存在割合を示しており、プロピレンモノマー単位が5個連続してメソ構造を有する連鎖の中心にあるプロピレン構造単位の分率である。メソペンタッド分率は、後述する実施例に記載の方法により求めることができる。
 <要件(3)>
 灰分含有量が50質量ppm以下、好ましくは20質量ppm以下、より好ましくは10質量ppm以下である。
 灰分含有量が50質量ppmを超えると、得られるコンデンサ用多層ポリプロピレンフィルムの耐電圧性が低下するだけでなく、長期的なコンデンサ特性も低下する。灰分含有量は、ペレットをるつぼに入れ完全に燃焼させて、そのるつぼを電気炉内で、800℃で2時間灰化させ、るつぼに残った灰を計測し灰分(ppm)を求めたものである。
 灰分は、プロピレン単独重合体に含まれるオレフィン重合触媒に由来する成分である。灰分含有量が少ないプロピレン単独重合体は高活性の触媒を用いるか、重合したプロピレン単独重合体中の触媒を分解および/または除去することにより製造することができる。
 <要件(4)>
 塩素含有量が2質量ppm以下であり、好ましくは1.5質量ppm以下であり、より好ましくは1.2質量ppm以下である。
 塩素含有量が2質量ppmを超えると、得られるコンデンサ用多層ポリプロピレンフィルムの耐電圧性が低下するだけでなく、長期的なコンデンサ特性も低下する。コンデンサ使用時においてフィルム内部の塩素イオン近傍の電界が局所的に増大し、そこから絶縁破壊が生じやすくなるために耐電圧が低下すると解される。塩素はプロピレンを単独重合する際に用いる触媒に起因するものであり、使用する触媒の種類、量を制御し、且つ、プロピレン単独重合体を後処理することにより、上記範囲内に制御することができる。
 塩素含有量は、プロピレン単独重合体0.8gを三菱化成社製燃焼装置を用いてアルゴン/酸素気流下で、400~900℃で燃焼した後、燃焼ガスを超純水で捕集し濃縮後の試料液を、日本ダイオネクス(株)DIONEX-DX300型イオンクロマト測定装置を用いて、陰イオンカラムAS4A-SC(ダイオネクス社製)を用いて測定し求めたものである。塩素は、プロピレン単独重合体に含まれるオレフィン重合触媒に由来する成分である。塩素含有量が少ないプロピレン単独重合体は高活性の触媒を用いるか、適した溶媒で洗浄することにより、重合したプロピレン単独重合体中の塩素を除去することにより得ることができる。
 <要件(5)>
 ゲルパーミエーションクロマトグラフィー(GPC)により測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.5~12.0、好ましくは4.5~11.0、より好ましくは4.5~10.5の範囲にある。
 Mw/Mnが4.5以上であると、延伸フィルムを成形する際の延伸性に優れ、均一なフィルムが得られやすい。また、Mw/Mnが12.0以下であるとプロピレン単独重合体に含まれる低分子量成分が少なく、フィルム成形時にベトツキ等が抑制され、成形性において好ましい。すなわち、Mw/Mnが前記範囲内であると、プロピレン単独重合体の成形性及び延伸性および得られるコンデンサフィルムの厚みの均一性の観点から好ましい。Mw/Mnは、後述する実施例に記載の方法により求めることができる。
 上述した要件(1)~(5)を満たすプロピレン単独重合体(X)は、例えば、後述するオレフィン重合用触媒の存在下でプロピレンを重合させることにより得ることができる。
 なお、後述するように本発明に係るプロピレン単独重合体(X)はプロピレン単独重合体(X1)およびプロピレン単独重合体(X2)を含む。
 <オレフィン重合用触媒>
 本発明に係わるプロピレン単独重合体(X)を製造するために用いるオレフィン重合用触媒は、前記プロピレン単独重合体を得ることができれば特に限定されないが、例えば、(i)マグネシウム、チタン、ハロゲンおよび電子供与体を含み、かつ、下記要件(k1)~(k4)を満たす固体状チタン触媒成分と、
(ii)下記式(II)で表わされる有機ケイ素化合物成分と、
(iii)周期律表の1族、2族または13族に属する元素を含む有機金属化合物成分とを含む触媒〔A〕、または、
 前記触媒〔A〕にプロピレンが予備重合された予備重合触媒(p)と、前記有機ケイ素化合物成分(ii)と、前記有機金属化合物成分(iii)とを含む触媒〔B〕が挙げられる。
 (k1)チタン含有量が2.5質量%以下である。
 (k2)電子供与体の含有量が8~30質量%である。
 (k3)電子供与体/チタン(質量比)が7以上である。
 (k4)室温でのヘキサン洗浄によってチタンが実質的に脱離されることがない。
 R1Si(OR22(NR34) ・・・(II)
 式(II)中、R1は2級または3級の炭素数1~20の炭化水素基を示し、R2は炭素数1~4の炭化水素基を示し、R3は炭素数1~12の炭化水素基または水素原子を示し、
4は炭素数1~12の炭化水素基を示す。
 以下、前記オレフィン重合用触媒を構成する各成分について説明する。
 ≪固体状チタン触媒成分(i)≫
 前記固体状チタン触媒成分(i)は、
(a)マグネシウム、チタン、ハロゲンおよび電子供与体を含み、かつ室温でのヘキサン洗浄によってチタンが脱離することがない固体状チタン、
(b)芳香族炭化水素、
(c)液状チタン、および
(d)電子供与体
を接触させる工程を含む方法により調製することができる。
 (a)固体状チタン
 前記固体状チタン(a)は、マグネシウム化合物、チタン化合物および電子供与体(内部ドナー)などを種々の方法により接触させることにより、公知の固体状チタン触媒成分の調製法(例えば特開平4-096911号公報、特開昭58-83006号公報、特開平8-143580号公報等参照)により製造することができる。
 前記マグネシウム化合物は固体状態で用いられることが好ましい。この固体状態のマグネシウム化合物は、マグネシウム化合物自体が固体状態であるものであってもよく、または電子供与体との付加物であってもよい。前記マグネシウム化合物としては、特開2004-2742号公報に記載のマグネシウム化合物、具体的には、塩化マグネシウム、エトキシ塩化マグネシウム、ブトキシマグネシウムなどが挙げられる。また、前記電子供与体としては、特開2004-2742号公報に記載のマグネシム化合物可溶化能を有する化合物、具体的には、アルコール、アルデヒド、アミン、カルボン酸及びこれらの混合物などが挙げられる。マグネシウム化合物及び電子供与体の使用量は、その種類、その接触条件等によっても異なるが、マグネシウム化合物を該液状の電子供与体に対して0.1~20モル/リットル、好ましくは0.5~5モル/リットルとなる量で用いることができる。
 前記チタン化合物は液状状態で用いられることが好ましい。このようなチタン化合物としては、例えば、下記式(III)で示される4価のチタン化合物が挙げられる。
  Ti(OR5)g4-g・・・(III)
 式(III)中、R5は炭化水素基であり、Xはハロゲン原子であり、0≦g≦4である。
 前記チタン化合物としては、特に四塩化チタンが好ましい。また、前記チタン化合物は2種以上を組み合わせて用いてもよい。
 前記電子供与体(内部ドナー)としては、例えば、下記式(IV)で表わされる化合物(以下「化合物(IV)」ともいう。)が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(IV)中、Rは、炭素原子数1~10、好ましくは2~8、より好ましくは3~6の直鎖状もしくは分岐状のアルキル基を示し、R’は炭素数1~10の直鎖状もしくは分岐状のアルキル基を示し、nは0~4の整数を示す。本発明では、nが0の化合物が好ましい。
 RおよびR’のアルキル基の例としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などが挙げられる。
 前記化合物(IV)の具体例としては、フタル酸ジメチル、フタル酸メチルエチル、フタル酸ジエチル、フタル酸n-プロピル、フタル酸ジイソプロピル、フタル酸ジn-ブチル、フタル酸ジイソブチル、フタル酸ジn-ペンチル、フタル酸ジネオペンチル、フタル酸ジn-ヘキシル、フタル酸ジn-ヘプチル、フタル酸ジ(メチルヘキシル)、フタル酸ジ(ジメチルペンチル)、フタル酸ジ(エチルペンチル)、フタル酸ジ(2,2,3-トリメチルブチル)、フタル酸ジn-オクチル、フタル酸ジ-2-エチルヘキシルなどが挙げられる。これらの中では、フタル酸ジイソブチルが特に好ましい。
 本発明では、前記電子供与体(内部ドナー)として、前記化合物(IV)以外の別の電子供与体を用いてもよい。別の電子供与体としては、例えば、複数の原子を介して存在する2個以上のエーテル結合を有する化合物(以下「ポリエーテル化合物」ともいう。)が挙げられる。
 前記ポリエーテル化合物としては、エーテル結合間に存在する原子が、炭素、ケイ素、酸素、窒素、イオウ、リン、ホウ素、またはこれらから選択される2種以上の原子である化合物などを挙げることができる。これらのうちエーテル結合間の原子に比較的嵩高い置換基が結合しており、2個以上のエーテル結合間に存在する原子に複数の炭素原子が含まれる化合物が好ましい。例えば、下記式(3)で表されるポリエーテル化合物が好ましい。
Figure JPOXMLDOC01-appb-C000002
 前記式(3)において、mは1~10の整数、好ましくは3~10の整数、より好ましくは3~5の整数である。R11、R12、R31~R36は、それぞれ独立に、水素原子、または炭素、水素、酸素、フッ素、塩素、臭素、ヨウ素、窒素、硫黄、リン、ホウ素およびケイ素から選択される少なくとも1種の元素を有する置換基である。R11およびR12は、それぞれ独立に、好ましくは炭素原子数1~10の炭化水素基であり、より好ましくは炭素原子数2~6の炭化水素基である。R31~R36は、それぞれ独立に、好ましくは水素原子または炭素原子数1~6の炭化水素基である。
 R11およびR12の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、イソペンチル基、ネオペンチル基、ヘキシル基、へプチル基、オクチル基、2-エチルヘキシル基、デシル基、シクロペンチル基、シクロヘキシル基が挙げられる。これらの中では、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基が好ましい。R31~R36の具体例としては、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基が挙げられる。これらの中では、水素原子、メチル基が好ましい。任意のR11、R12、R31~R36(好ましくはR11、R12)は、共同してベンゼン環以外の環を形成していてもよく、主鎖中に炭素以外の原子が含まれていてもよい。
 前記ポリエーテル化合物の具体例としては、2,2-ジシクロヘキシル-1,3-ジメトキシプロパン、2,2-ジエチル-1,3-ジメトキシプロパン、2,2-ジプロピル-1,3-ジメトキシプロパン、2,2-ジブチル-1,3-ジメトキシプロパン、2-メチル-2-プロピル-1,3-ジメトキシプロパン、2-メチル-2-エチル-1,3-ジメトキシプロパン、2-メチル-2-イソプロピル-1,3-ジメトキシプロパン、2-メチル-2-シクロヘキシル-1,3-ジメトキシプロパン、2,2-ビス(2-シクロヘキシルエチル)-1,3-ジメトキシプロパン、2-メチル-2-イソブチル-1,3-ジメトキシプロパン、2-メチル-2-(2-エチルヘキシル)-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジメトキシプロパン、2,2-ビス(シクロヘキシルメチル)-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジエトキシプロパン、2,2-ジイソブチル-1,3-ジブトキシプロパン、2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン、2,2-ジ-s-ブチル-1,3-ジメトキシプロパン、2,2-ジ-t-ブチル-1,3-ジメトキシプロパン、2,2-ジネオペンチル-1,3-ジメトキシプロパン、2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン、2-シクロヘキシル-2-シクロヘキシルメチル-1,3-ジメトキシプロパン、2,3-ジシクロヘキシル-1,4-ジエトキシブタン、2,3-ジイソプロピル-1,4-ジエトキシブタン、2,4-ジイソプロピル-1,5-ジメトキシペンタン、2,4-ジイソブチル-1,5-ジメトキシペンタン、2,4-ジイソアミル-1,5-ジメトキシペンタン、3-メトキシメチルテトラヒドロフラン、3-メトキシメチルジオキサン、1,2-ジイソブトキシプロパン、1,2-ジイソブトキシエタン、1,3-ジイソアミロキシエタン、1,3-ジイソアミロキシプロパン、1,3-ジイソネオペンチロキシエタン、1,3-ジネオペンチロキシプロパン、2,2-テトラメチレン-1,3-ジメトキシプロパン、2,2-ペンタメチレン-1,3-ジメトキシプロパン、2,2-ヘキサメチレン-1,3-ジメトキシプロパン、1,2-ビス(メトキシメチル)シクロヘキサン、2-シクロヘキシル-2-エトキシメチル-1,3-ジエトキシプロパン、2-シクロヘキシル-2-メトキシメチル-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジメトキシシクロヘキサン、2-イソプロピル-2-イソアミル-1,3-ジメトキシシクロヘキサン、2-シクロヘキシル-2-メトキシメチル-1,3-ジメトキシシクロヘキサン、2-イソプロピル-2-メトキシメチル-1,3-ジメトキシシクロヘキサン、2-イソブチル-2-メトキシメチル-1,3-ジメトキシシクロヘキサン、2-シクロヘキシル-2-エトキシメチル-1,3-ジエトキシシクロヘキサン、2-シクロヘキシル-2-エトキシメチル-1,3-ジメトキシシクロヘキサン、2-イソプロピル-2-エトキシメチル-1,3-ジエトキシシクロヘキサン、2-イソプロピル-2-エトキシメチル-1,3-ジメトキシシクロヘキサン、2-イソブチル-2-エトキシメチル-1,3-ジエトキシシクロヘキサン、2-イソブチル-2-エトキシメチル-1,3-ジメトキシシクロヘキサン等を例示することができる。
 これらの中では、1,3-ジエーテル類が好ましく、2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジメトキシプロパン、2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン、2,2-ジシクロヘキシル-1,3-ジメトキシプロパン、2,2-ビス(シクロヘキシルメチル)1,3-ジメトキシプロパンがより好ましい。これらの化合物は一種を用いてもよく、二種以上を併用してもよい。
《固体状チタン(a)の調製》
 前記固体状チタン(a)は、前記マグネシウム化合物と、前記チタン化合物と、前記電子供与体との接触により調製することができる。この際、固体状態のマグネシウム化合物を炭化水素溶媒に懸濁して用いることが好ましい。また、これら各成分を接触させる際に、液状形態のチタン化合物を1回用いて固形物(1)を生成させてもよく、得られた固形物(1)にさらに液状形態のチタン化合物を接触させて固形物(2)を生成させてもよい。さらに、この固形物(1)または(2)を必要に応じて炭化水素溶媒で洗浄してから固体状チタン(a)を調製することが好ましい。
 上記のような各成分の接触は、通常-70℃~+200℃、好ましくは-50℃~+150℃、より好ましくは-30℃~+130℃の温度で行われる。固体状チタン(a)を調製する際に用いられる各成分の量は、調製方法によって異なり一概に規定できないが、例えばマグネシウム化合物1モル当り、電子供与体は0.01~10モル、好ましくは0.1~5モルの量で、チタン化合物は0.01~1000モル、好ましくは0.1~200モルの量で用いることができる。
 本発明では、このようにして得られた固形物(1)または(2)をそのまま固体状チタン(i)として用いることができるが、この固形物を0~150℃の炭化水素溶媒で洗浄することが好ましい。
 この炭化水素溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカン、セタンなどの脂肪族炭化水素溶媒、トルエン、キシレン、ベンゼンなどの非ハロゲン系芳香族炭化水素溶媒、または、ハロゲン含有芳香族炭化水素溶媒などが用いられる。これらのうち、脂肪族炭化水素溶媒またはハロゲンを含まない芳香族炭化水素溶媒が好ましく用いられる。
 固形物の洗浄に際しては、炭化水素溶媒は、固形物1gに対して通常10~500ml好ましくは20~100mlの量で用いられる。このようにして得られる固体状チタン(a)は、マグネシウム、チタン、ハロゲンおよび電子供与体を含有している。この固体状チタン(a)では、電子供与体/チタン(質量比)が6以下であることが好ましい。
 このようにして得られた固体状チタン(a)は、室温でのヘキサン洗浄によってチタンが脱離することがない。
(b)芳香族炭化水素
 前記固体状チタン(a)との接触に用いられる芳香族炭化水素(b)としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、これらのハロゲン含有炭化水素などが挙げられる。これらの中では、キシレン(特にパラキシレン)が好ましい。前記固体状チタン(a)を、このような芳香族炭化水素(b)と接触させることにより、低立体規則性成分を副生する、いわゆる「剰余チタン化合物」を低減することができる。
(c)液状チタン
 前記固体状チタン(a)との接触に用いられる液状チタン(c)としては、該固体状チタン(a)を調製する際に用いたチタン化合物と同様のものを挙げることができる。それらの中でも、テトラハロゲン化チタンが好ましく、特に四塩化チタンが好ましい。
(d)電子供与体
 前記固体状チタン(a)との接触に用いられる電子供与体(d)の例としては、上述した電子供与体(内部ドナー)で例示したものと同じものを挙げることができる。それらの中でも、前記固体状チタン(a)の調製に使用した電子供与体と同じものを用いることが好ましい。
 ≪固体状チタン触媒成分(i)の調製方法≫
 固体状チタン(a)、芳香族炭化水素(b)、液状チタン(c)および電子供与体(d)の接触は、通常110~160℃、好ましくは115℃~150℃の温度で、1分間~10時間、好ましくは10分間~5時間行われる。
 この接触では、芳香族炭化水素(b)は、固体状チタン(a)1gに対して通常1~10000ml、好ましくは5~5000mlより好ましくは10~1000mlの量で用いられる。液状チタン(c)は、芳香族炭化水素(b)100mlに対して通常0.1~50ml、好ましくは0.2~20ml、特に好ましくは0.3~10mlの範囲で用いられる。電子供与体(d)は、芳香族炭化水素(b)100mlに対して通常0.01~10ml、好ましくは0.02~5ml、特に好ましくは0.03~3mlの量で用いられる。
 固体状チタン(a)、芳香族炭化水素(b)、液状チタン(c)および電子供与体(d)の接触順序は、特に限定されることなく、同時または逐次に接触させることができる。
 固体状チタン(a)、芳香族炭化水素(b)、液状チタン(c)および電子供与体(d)は、不活性ガス雰囲気下、攪拌下に接触させることが好ましい。例えば、充分に窒素置換された攪拌機付きガラス製フラスコ中で、固体状チタン(a)、芳香族炭化水素(b)、液状チタン(c)および電子供与体(d)のスラリーを、上記温度で、攪拌機を100~1000rpm、好ましくは200~800rpmの回転数で、上記の時間、攪拌して、固体状チタン(a)、芳香族炭化水素(b)、液状チタン(c)および電子供与体(d)を接触させることが望ましい。
 接触後の固体状チタン(a)と芳香族炭化水素(b)とは、濾過により分離することができる。
 このような固体状チタン(a)と芳香族炭化水素(b)との接触により、固体状チタン(a)よりもチタン含有量が減少された固体状チタン触媒成分(i)が得られる。具体的には、チタン含有量が固体状チタン(a)よりも25質量%以上、好ましくは30~95質量%より好ましくは40~90質量%少ない固体状チタン触媒成分(i)が得られる。
 上記のようにして得られる固体状チタン触媒成分(i)は、マグネシウム、チタン、ハロゲンおよび電子供与体を含み、かつ、下記要件(k1)~(k4)を満たし、好ましくは下記要件(k5)をさらに満たしている。
(k1)固体状チタン触媒成分(i)のチタン含有量は2.5質量%以下、好ましくは2.2~0.1質量%、より好ましくは2.0~0.2質量%、特に好ましくは1.8~0.3質量%、最も好ましくは1.5~0.4質量%である。
(k2)電子供与体の含有量は8~30質量%、好ましくは9~25質量%、より好ましくは10~20質量%である。
(k3)電子供与体/チタン(質量比)は7以上、好ましくは7.5~35、より好ましくは8~30、特に好ましくは8.5~25である。
(k4)固体状チタン触媒成分(i)は、室温でのヘキサン洗浄によってチタンが実質的に脱離されることがない。なお、固体状チタン触媒成分(i)のヘキサン洗浄とは、固体状チタン触媒成分(i)1gに対して、通常10~500ml、好ましくは20~100mlの量のヘキサンで5分間洗浄することをいう。室温とは15~25℃である。また、チタンが実質的に脱離されることがないとは、ヘキサン洗浄液中のチタン濃度が0.1g/リットル以下であることを意味する。
(k5)固体状チタン触媒成分(i)は、平均粒径が5~70μmであり、好ましくは7~65μmであり、より好ましくは8~60μmであり、特に好ましくは10~55μmである。
 ここで、マグネシウム、ハロゲン、チタンおよび電子供与体の量は、それぞれ固体状チタン触媒成分(i)の単位質量あたりの質量%であり、マグネシウム、ハロゲンおよびチタンはプラズマ発光分光分析(ICP法)により、電子供与体はガスクロマトグラフィーにより定量される。また、触媒の平均粒径は、デカリン溶媒を用いた遠心沈降法により測定される。
 上記のような固体状チタン触媒成分(i)は、オレフィン重合用触媒成分として用いると、プロピレンを高活性で重合させることができるとともに、立体規則性の低いプロピレン単独重合体の生成量が少なく、高立体規則性のプロピレン単独重合体を安定に製造することができる。
 ≪有機ケイ素化合物成分(ii)≫
 本発明のオレフィン重合用触媒を構成する有機ケイ素化合物成分(ii)は、下記式(II)で表わされる。
 R1Si(OR22(NR34) ・・・(II)
 式(II)中、R1は2級または3級の炭素数1~20の炭化水素基を示し、R2は炭素数1~4の炭化水素基を示し、R3は炭素数1~12の炭化水素基または水素原子を示し、R4は炭素数1~12の炭化水素基を示す。
 R1としては、脂環式炭化水素基、例えば、シクロブチル基、シクロペンチル基、シクロペンテニル基、シクロペンタジエニル基、シクロヘキシル基、シクロヘキシニル基、置換基を有するこれらの基などが挙げられる。
 また、R1として、Siに隣接する炭素が2級炭素である炭化水素基としては、i-プロピル基、s-ブチル基、s-アミル基、α-メチルベンジル基などが挙げられ、Siに隣接する炭素が3級炭素である炭化水素基としては、tert-ブチル基、tert-アミル基、α,α'-ジメチルベンジル基、アドマンチル基などが挙げられる。
 これらの中では、シクロペンチル基およびシクロブチル基が好ましく、特にシクロペンチル基が好ましい。
 R2としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、ter-ブチル基、sec-ブチル基、n-ペンチル基、iso-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基などが挙げられる。これらの中ではメチル基およびエチル基が特に好ましい。
 R3としては、例えば、水素、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、ter-ブチル基、sec-ブチル基、n-ペンチル基、iso-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、オクチル基などが挙げられる。これらの中では、エチル基が特に好ましい。
 R4としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、ter-ブチル基、sec-ブチル基、n-ペンチル基、iso-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、オクチル基などが挙げられる。これらの中では、エチル基が特に好ましい。
 前記式(II)で表わされる有機ケイ素化合物の具体例としては、シクロペンチルジエチルアミノジメトキシシラン、シクロペンテニルジエチルアミノジメトキシシラン、シクロペンタジエニルジエチルアミノジメトキシシラン、シクロヘキシルジエチルアミノジメトキシシラン、イソプロピルジエチルアミノジメトキシシラン、tert-ブチルジエチルアミノジメトキシシランなどが挙げられる。
 前記式(II)で表わされる有機ケイ素化合物の中では、高立体規則性、特に、長いメソ連鎖長及びクロス分別クロマトグラフ分析(CFC)での高温溶出量割合を高める観点から、シクロペンチルジエチルアミノジメトキシシランが好ましい。
 上述した有機ケイ素化合物成分(ii)は、1種単独で用いてもよく、2種以上を併用してもよい。
 前記固体状チタン触媒成分(i)と前記有機ケイ素化合物成分(ii)とを組み合わせて用いることにより、これまでにないレベルの高立体規則性を有するプロピレン系重合体を得ることができる。
 ≪有機金属化合物成分(iii)≫
 本発明のオレフィン重合用触媒を構成する有機金属化合物成分(iii)は、周期律表の1族、2族または13族に属する金属を含む有機金属化合物であり、例えば、有機アルミニウム化合物、第1族金属とアルミニウムとの錯アルキル化合物、第2族金属の有機金属化合物などが挙げられる。なお、有機金属化合物成分(iii)は、2種以上を併用してもよい。
〈有機アルミニウム化合物〉
 前記有機アルミニウム化合物は、例えば下記式で示される。
 Ra nAlX3-n
 式中、Raは炭素原子数1~12の炭化水素基であり、Xはハロゲンまたは水素であり、nは1~3である。
 Raは、炭素原子数1~12の炭化水素基、例えばアルキル基、シクロアルキル基またはアリール基であるが、具体的には、メチル、エチル、n‐プロピル、イソプロピル、イソブチル、ペンチル、ヘキシル、オクチル、シクロペンチル基、シクロヘキシル、フェニル、トリルなどである。
 また、前記有機アルミニウム化合物として、下記式で示される化合物を挙げることもできる。
 Ra nAlY3-n
 式中、Raは上記と同様であり、Yは-ORb基、-OSiRc 3基、-OAlRd 2基、-NRe 2基、-SiRf 3基または-N(Rg)AlRh 2基であり、nは1~2であり、Rb、Rc、RdおよびRhはメチル基、エチル基、イソプロピル基、イソブチル基、シクロヘキシル基、フェニル基などであり、Reは水素、メチル基、エチル基、イソプロピル基、フェニル基、トリメチルシリル基などであり、RfおよびRgはメチル基、エチル基などである。
 このような有機アルミニウム化合物としては、具体的には、以下のような化合物が挙げられる。
(1)Ra nAl(ORb)3-n で表される化合物、例えばジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジイソブチルアルミニウムメトキシドなど。
(2)Ra nAl(OSiRc)3-n で表される化合物、例えばEt2Al(OSiMe3)、(iso-Bu)2Al(OSiMe3)、(iso-Bu)2Al(OSiEt3)など。
(3)Ra nAl(OAlRd 2)3-nEt2AlOAlEt2、(iso-Bu)2AlOAl(iso-Bu)2 など。
 上記のような有機アルミニウム化合物のうちでも、Ra 3Alで表される有機アルミニウム化合物が好ましく用いられる。
 《オレフィン重合用触媒の製造方法》
 前記オレフィン重合用触媒は、前記固体状チタン触媒成分(i)と、前記有機ケイ素化合物成分(ii)と、前記有機金属化合物成分(iii)とを接触させる工程を含む方法により製造することができる。
 本発明では、これら各成分(i)、(ii)、(iii)からオレフィン重合用触媒を形成する際に、必要に応じて他の成分を用いることもできる。
 本発明では、上記のような各成分から予備重合触媒(p)が形成されていてもよい。予備重合触媒(p)は、上述した各成分(i)、(ii)、(iii)および必要に応じて用いられる他の成分の存在下に、プロピレンなどのオレフィンを予備重合させることにより形成される。このような予備重合触媒(p)は、通常、有機ケイ素化合物(ii)および有機金属化合物(iii)とともにオレフィン重合用触媒を形成するが、予備重合触媒(p)のみをオレフィン重合用触媒として用いることができる場合もある。
 <プロピレン単独重合体(X)の製造方法>
 前記プロピレン単独重合体(X)の製造方法では、上述したオレフィン重合用触媒の存在下でプロピレンを重合させる。
 本発明では、重合は溶液重合、懸濁重合などの液相重合法または気相重合法いずれにおいても実施することができる。重合がスラリー重合の反応形態を採る場合、反応溶媒として、不活性有機溶媒を用いることもできるし、反応温度において液状のプロピレンを用いることもできる。
 不活性有機溶媒としては、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;脂環族炭化水素;芳香族炭化水素;ハロゲン化炭化水素、あるいはこれらの接触物などを挙げることができる。これらの中では、特に脂肪族炭化水素を用いることが好ましい。
 重合に際しては、固体状チタン触媒成分(i)または予備重合触媒(p)は、重合容積1リットル当りチタン原子に換算して、通常は約1×10-5~1ミリモル、好ましくは約1×10-4~0.1ミリモルの量で用いられる。
 有機ケイ素化合物(ii)は、有機金属化合物(iii)の金属原子1モルに対し、通常約0.001モル~10モル、好ましくは0.01モル~5モルの量で用いられる。
 有機金属化合物(iii)は、該化合物(iii)中の金属原子が重合系中のチタン原子1モルに対し、通常約1~2000モル、好ましくは約2~500モルとなるような量で用いられる。
 なお、この重合時に予備重合触媒(p)を用いると、有機ケイ素化合物(ii)および/または有機金属化合物(iii)を添加しなくてもよい場合がある。予備重合触媒(p)、成分(ii)および成分(iii)からオレフィン重合用触媒が形成されるときには、これら各成分(ii)および(iii)は上記のような量で用いることができる。
 重合時に水素を用いれば、得られるプロピレン単独重合体の分子量を調節することができ、MFRの大きい重合体が得られる。
 本発明では、重合は、通常、約20~150℃、好ましくは約50~100℃の温度で、また常圧~100kg/cm2、好ましくは約2~50kg/cm2の圧力下で行われる。
 本発明では、重合を、バッチ式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を、反応条件を変えて2段以上に分けて行うこともできる。
 <ポリマー系α晶造核剤(C)>
 本発明に係るコンデンサ用多層ポリプロピレンフィルムの基層を形成するプロピレン重合体組成物に含まれるポリマー系α晶造核剤(C)は、ポリマー(重合体)からなる造核剤であり、好ましくはプロピレン単独重合体を得る際に用いる触媒の予備重合により製造される重合体であり、より好ましくはガラス転移温度および/または融点(Tm)が200℃以上であり、更に好ましくは280℃以上の重合体からなる。
 本発明に係わるポリマー系α晶造核剤(C)は、予備重合により製造されることにより、サブナノオーダーに微分散しているので、極少量で核剤効果を発揮する。ガラス転移温度および/または融点(Tm)が200℃以上の場合はプロピレン単独重合体の球晶サイズが小さくなり、結晶化度が高くなるので、核剤効果に優れる。また280℃以上の場合はそれらの効果はさらに顕著に得られる。
 〈予備重合により製造される重合体〉
 本発明に係わる予備重合により製造される重合体は、プロピレンを重合する触媒の予備重合により形成されるオレフィンの重合体である。予備重合触媒成分の調製に用いられるオレフィンとしては、下記式(i)または(ii)で表される化合物が用いられ、具体的には3‐メチル‐1‐ブテン、3‐メチル‐1‐ペンテン、3‐エチル‐1‐ペンテン、4‐メチル‐1‐ペンテン、4‐メチル‐1‐ヘキセン、4,4‐ジメチル‐1‐ヘキセン、4,4‐ジメチル‐1‐ペンテン、4‐エチル‐1‐ヘキセン、3‐エチル‐1‐ヘキセン、アリルナフタレン、アリルノルボルナン、ビニルナフタレン類、アリルトルエン類、アリルベンゼン、ビニルシクロヘキサン、ビニルシクロペンタン、ビニルシクロヘプタン、アリルトリアルキルシラン類などの分岐構造を有するオレフィンであり、得られるオレフィン重合体のガラス転移温度、および、または結晶融点が200℃以上である。
Figure JPOXMLDOC01-appb-C000003
 <プロピレン重合体組成物>
 本発明のコンデンサ用多層ポリプロピレンフィルムの基層を構成するプロピレン重合体組成物は、上記プロピレン単独重合体(X)および上記ポリマー系α晶造核剤(C)を0.0001~0.05質量%、好ましくは0.0001~0.03質量%、より好ましくは0.0001~0.01質量%を含む組成物(但し、プロピレン単独重合体(X)とポリマー核剤(C)の合計量を100質量%とする。)である。
 本発明に係わるプロピレン重合体組成物は、上記プロピレン単独重合体(X)と上記ポリマー系α晶造核剤(C)を上記範囲で混合することにより得られるが、好ましくは上記プロピレン単独重合体(X)を製造する際のオレフィン重合用触媒の製造方法において、予備重合触媒として、上記式(i)または(ii)で表されるオレフィンを予備重合させることにより製造されるオレフィン重合体(ポリマー系α晶造核剤)がプロピレン単独重合体(X1)中に微分散されるので特に好ましい。
 本発明に係わるプロピレン重合体組成物は、上記記載したように、予備重合触媒として、上記式(i)または(ii)で表されるオレフィンを予備重合させることにより製造されるオレフィン重合体(ポリマー系α晶造核剤)がプロピレン単独重合体(X1)中に微分散されたプロピレン重合体組成物を単独で用いてもよいが、上記プロピレン単独重合体(X)の製造方法において、予備重合触媒(p)として、上記式(i)または(ii)で表される化合物以外のオレフィン、例えばプロピレンなどのオレフィンを用いて得られる、プロピレン単独重合体(X2)を、上記オレフィン重合体(ポリマー系α晶造核剤)を含むプロピレン単独重合体(X1)に配合することにより、含まれるポリマー系α晶造核剤の量を適宜、調整して用い得る。
 本発明に係わるプロピレン重合体組成物は、発明の目的を損なわない範囲で、耐候性安定剤、耐熱安定剤、帯電防止剤、スリップ防止剤、アンチブロッキング剤、防曇剤、滑剤、顔料、染料、可塑剤、老化防止剤、塩酸吸収剤、酸化防止剤などの添加剤を添加してもよい。好ましくは、各種酸化防止剤(イルガノックス1010、BHT(ジブチルヒドロキシトルエン)、イルガフォス168など)、ステアリン酸カルシウムなどの各種添加剤を添加しながら、180~280℃の範囲で溶融押出しにて配合することが例として挙げられる。
 [プロピレン系重合体(Y)]
 本発明に係るコンデンサ用多層ポリプロピレンフィルムの表層を形成するプロピレン系重合体は、上記基層を形成するプロピレン単独重合体(X)であってもよいし、エチレン、炭素数4以上のα‐オレフィン、例えば、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル‐1-ペンテン、3-メチル‐1-ペンテン、1-オクテン、3-メチル‐1-ブテンなどの炭素数2~8のオレフィンを通常8モル%以下、好ましくは6モル%以下を含むランダム共重合体であってもよい。
 本発明に係るプロピレン系重合体(Y)は、好ましくは上記基層を形成するプロピレン単独重合体(X)が満たす上記要件(1)~(5)を具備する。
 ただし、プロピレン単独重合体(X)を本発明のコンデンサ用多層ポリプロピレンフィルムの表層あるいは裏層に用いる場合は、上記ポリマー系α晶造核剤(C)を含まない重合体、例えば、上記プロピレン単独重合体(X2)であるか、上記ポリマー系α晶造核剤(C)含む場合もポリマー系α晶造核剤(C)の含有量が0.00001質量%未満のプロピレン単独重合体を用いる。
 なお、本発明に係るプロピレン系重合体(Y)をコンデンサ用多層ポリプロピレンフィルムの表層および裏層に用いる場合は、表層に用いるプロピレン系重合体(Y)と裏層に用いるプロピレン系重合体(Y)は同一であってもよいが、上記特性を有する範囲で異なる特性を有するプロピレン系重合体(Y)であってもよい。
 本発明に係わるプロピレン系重合体(Y)は、上記プロピレン単独重合体(X)の製造方法でも製造し得るが、種々公知の製造方法でも製造し得る。
 本発明に係るコンデンサ用多層ポリプロピレンフィルムの表層および裏層を形成するプロピレン系重合体(Y)は、発明の目的を損なわない範囲で、耐候性安定剤、耐熱安定剤、帯電防止剤、スリップ防止剤、アンチブロッキング剤、防曇剤、滑剤、顔料、染料、可塑剤、老化防止剤、塩酸吸収剤、酸化防止剤などの添加剤を添加してもよい。好ましくは、各種酸化防止剤(イルガノックス1010、BHT(ジブチルヒドロキシトルエン)、イルガフォス168など)、ステアリン酸カルシウムなどの各種添加剤を添加しながら、180~280℃の範囲で溶融押出しにて配合することが例として挙げられる。
 [コンデンサ用多層ポリプロピレンフィルム]
 本発明のコンデンサ用多層ポリプロピレンフィルムは、上記プロピレン単独重合体(X)およびポリマー系α晶造核剤(C)を0.0001~0.05質量%含むプロピレン重合体組成物からなる基層の少なくとも片面にプロピレン系重合体(Y)からなる表層または裏層を有し、且つ基層および表層または裏層がいずれも延伸されてなる多層フィルムである。
 本発明のコンデンサ用多層ポリプロピレンフィルムは好ましくは基層の片面に表層および基層の他の片面に裏層を有する。
 多層フィルムの全体の厚さは、通常、1~20μmの範囲、好ましくは1.5~10μmの範囲、より好ましくは2~5μmの範囲、多層フィルムの基層と表層または裏層の厚さ比率は、通常、9:1~6:1の範囲、好ましくは9:1~7:3の範囲、より好ましくは9:1~8:2の範囲にある。
 本発明のコンデンサ用多層ポリプロピレンフィルムは、好ましくは、表層あるいは裏層の表面粗さRaが0.2以上、さらに好ましくは0.3以上である。表面粗さRaが0.2以上あると、フィルム同士の接触面積が小さくなるため、耐ブロッキング性において好ましい。
 本発明のコンデンサ用多層ポリプロピレンフィルムは、好ましくは、100℃における絶縁破壊電圧(V/μm)が、540V/μm以上である。
 本発明のコンデンサ用多層ポリプロピレンフィルムは、表面への造核剤のブリードアウトがない。
 <コンデンサ用多層ポリプロピレンフィルムの製造方法>
 本発明のコンデンサ用多層ポリプロピレンフィルムは、種々公知の方法、例えば、基層となる上記プロピレン重合体組成物、表層あるいは裏層となる上記プロピレン系重合体(Y)とを共押出し成形して得た多層シートを延伸することで、コンデンサ用多層ポリプロピレンフィルムを作製することができる。この多層シートは、延伸方法としては、一軸延伸法、二軸延伸法が挙げられるが、二軸延伸法が好ましい。二軸延伸法としては、フィルムに対して機械方向へ一軸延伸を行い、次いで機械方向に対して直角方向へ延伸する逐次二軸延伸法、機械方向とそれに対して直角方向へ同時に延伸する同時二軸延伸法などが挙げられる。具体的には、テンター法、チューブラーフィルム法などの逐次二軸延伸法、同時二軸延伸法を用いることができる。
 テンター法では、例えば以下の方法により行うことができる。Tダイから溶融押出された溶融多層シートを、通常、40~120℃、好ましくは50~100℃、より好ましく60~90℃の範囲にある冷却ロールで固化させ、該多層シートを必要により予熱した後延伸ゾーンに導入する。次いで、該シートを機械方向(縦方向)に120~160℃の温度で3~9倍延伸し、機械方向の直角方向(横方向)に150~190℃の温度で5~11倍で延伸する。合計の延伸面倍率は、30~80倍、好ましくは35~75倍、より好ましくは35~70倍、更に好ましくは35~50倍である。延伸面倍率が30倍未満である場合、所望の強度や厚み精度を得ることが困難となる場合がある。また、延伸面倍率が80倍を超える場合、延伸時に破断が生じやすくなり、生産性に劣る場合がある。
 また、必要に応じて、二軸延伸されたコンデンサ用多層ポリプロピレンフィルムに対して160~190℃で熱固定することもできる。これにより、熱寸法安定性、耐摩耗性などがより向上したコンデンサ用多層ポリプロピレンフィルムを得ることができる。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、実施例に記載された各種物性の測定方法は以下のとおりである。
 〔プロピレン単独重合体およびプロピレン系重合体の物性〕
 <メルトフローレート(MFR)>
 ASTM D1238Eに準拠し、測定温度は230℃、荷重は2.16kgとした。
 <メソペンタッド分率(mmmm(ノイズ除去法))>
 1.測定条件
 装置:ブルカー・バイオスピン製AVANCE III cryo-500型核磁気共鳴装置
 測定核:13C(125MHz)
 測定モード:シングルパルスプロトンブロードバンドデカップリング
 パルス幅:45°(5.00マイクロ秒)
 繰り返し時間:5.5秒
 積算回数:256回
 測定溶媒:o-ジクロロベンゼン/重ベンゼン(80/20体積%)混合溶媒
 試料濃度:50mg/0.6mL
 測定温度:120℃
 ケミカルシフト基準:21.59ppm(メソpentad methyl peak shifts)
 2.算出法
 重合体の立体規則性の指標の1つであり、そのミクロタクティシティーを調べたメソペンタッド分率(mmmm, %)は、上記1の測定条件により得られた13C-NMRスペクトルのピーク強度比より算出した。
 ここで、本発明における測定対象のような、これまでにないレベルの高い立体規則性を有するポリプロピレンの場合、rmmr、mmrm、rmrr、rmrm、mrrr領域を積分値に含めると、「ノイズ」の積分値への影響度が大きくなり、一般的な算出方法におけるS2を過大評価、即ちmmmm(%)を過少評価してしまうという問題があると考える。Prog. Polym. Sci. 26(2001), 443-533においても、95%以上の立体規則性を有するポリプロピレンの場合、一定要件を満たせば、rmmr、mmrm、rmrr、rmrm、mrrr領域の積分値は、理論上、合計0.1%以下となることが報告されており、一般的な算出方法におけるS2の過大評価に繋がることを示唆している。
 そこで、本発明では、下記(式1)に従い算出した。rmmr,mmrm,rmrr,rmrm,mrrr領域については、Prog.Polym.Sci.26(2001),443-533の示唆に従い計算から除いた。以下、本明細書での算出法を「ノイズ除去法」と称する。
 mmmm(ノイズ除去法)(%)=S1/S2*100 ・・・(式1)
 S1=(mmmm,mmmrを含むピーク)-(n-プロピル末端)-(n-ブチル末端)-mrrm*2
 S2=S1+mmmr+mmrr+mrrm+rrrr
   =S1+5*mrrm+rrrr
 上記(式1)で算出するにあたり、例として、下記の如く帰属した。なお、mmmmのピークには、mmmrと(n-プロピル末端)及び(n-ブチル末端)の各ピークが重複している。
 mmmm,mmmrを含むピーク:21.2~22.0ppmのピーク面積
 mmmr=mrrm*2
 mmrr=mrrm*2
 mrrm:19.5~19.7ppmのピーク面積
 rrrr:20.0~20.2ppmのピーク面積
 n-プロピル末端:(A1+A3)/2
 A1:14.2ppmのピーク面積
 A3:39.4ppmのピーク面積
 n-ブチル末端:36.7ppmのピーク面積
 <灰分含有量>
 灰分含有量は、ペレットをるつぼに入れ完全に燃焼させて、そのるつぼを電気炉内で、800℃で2時間灰化させ、るつぼに残った灰を計測し灰分(ppm)を求めたものである。
 <塩素含有量>
 試料0.8gを、三菱化成社製燃焼装置を用いてアルゴン/酸素気流下で、400~900℃で燃焼した。その後、燃焼ガスを超純水で捕捉し、濃縮後の試料液を、DIONEX-DX300型イオンクロマト装置(商品名、日本ダイオネック(株)製)および陰イオンカラムAS4A-SC(商品名、ダイオネック社製)を用いて測定して塩素含有量を求めた。
 <分子量分布>
 分子量分布の指標であるMw/Mn値は、下記条件で測定したクロマトグラムを公知の方法によって解析することによって得た。
 装置:Waters製ゲル浸透クロマトグラフAllianceGPC2000型
 カラム:東ソー製TSKgel GMH6-HTx2+TSKgel GMH6-HTLx2
 移動相:o-ジクロロベンゼン(0.025%BHT含有)
 流速:1.0ml/min
 温度:140℃
 カラム校正:東ソー製単分散ポリスチレン
 試料濃度:0.15%(w/v)
 注入量:0.4ミリリットル
《プロピレン単独重合体およびポリマー系α晶造核剤を含有するプロピレン重合体組成物の製造》
 実施例で用いたポリマー系α晶造核剤を含有するプロピレン重合体組成物は、以下の製造例で製造した。
 [製造例1]
 <固体状チタン触媒成分の調製>
 4.5m3の反応器に無水塩化マグネシウム240kg、デカン1100リットルおよび2-エチルヘキシルアルコール990kgを装入し130℃で加熱して均一溶液とした後、この溶液中に無水フタル酸54kgを添加し、さらに、130℃にて攪拌し、無水フタル酸を溶解させた。このようにして得られた均一溶液を室温に冷却した後、-25℃に保持した四塩化チタン6.7m3中に攪拌しながらこの均一溶液を全量滴下装入した。装入終了後の温度は約-20℃であった。次に、この混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)13kgを添加し、これより2時間同温度にて攪拌保持した。2時間の反応終了後、熱濾過にて固体部を採取し、この固体部を7.3m3の四塩化チタンに再懸濁させた後、再び110℃で2時間、加熱反応を行った。反応終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンにて溶液中に遊離のチタン化合物が検出されなくなるまで、充分洗浄した。以上の操作によって固体状チタン触媒成分(A)を得た。
 得られた固体状チタン触媒成分(A)の組成は、チタン;2.2重量%、塩素;61重量%、マグネシウム;19重量%、DIBP;12.7重量%であった。
 <予備重合触媒の調製>
 80リットルの攪拌機付き反応器に、窒素雰囲気下、精製ヘキサン40リットル、トリエチルアルミニウム3.0モル、トリメチルメトキシシラン3.0モルおよび上記固体状チタン触媒成分(A)をチタン原子換算で0.3モル添加した後、20℃の温度で3-メチル-1-ブテン(3MB-1)1.5kgを反応器に供給し、2時間予備重合を行った。反応終了後、反応器内を窒素で置換し、上澄液の除去および精製ヘキサンの添加からなる洗浄操作を3回行いポリマーα晶造核剤である3MB-1を含む予備重合触媒(B)を得た。この予備重合触媒(B)は、精製ヘキサンで再懸濁して保存した。
 <プロピレンの重合>
 内容積1000リットルの攪拌機付き反応器に精製n-ヘキサン450リットルを装入し、60℃、プロピレン雰囲気にてトリエチルアルミニウム500ミリモル、ジシクロペンチルジメトキシシラン500ミリモルおよび予備重合触媒(B)をチタン原子換算で10ミリモルTi装入した。水素250リットルを導入し、80℃に昇温した後、これを4時間保持してプロピレン重合を行った。重合中の圧力は6kg/cm2Gに保った。重合終了後、脱圧し、生成固体を含むスラリーを遠心分離し、ドライヤーにて乾燥することで白色粉末状のポリマー系α晶造核剤含有プロピレン重合体組成物200kgを得た。
 得られたポリマー系α晶造核剤含有プロピレン重合体組成物のメルトフローレートは2g/10分であり、沸騰ヘプタン不溶成分の立体規則性指標[M5]の値は0.986であり、ポリマーα晶造核剤である3MB-1重合体の含有量は300ppmであり、密度は0.919g/cm3であった。
 3MB-1重合体の融点は310℃であった。
 本製造例1で得たポリマー系α晶造核剤含有プロピレン重合体組成物は、プロピレン単独重合体(X)であるプロピレン単独重合体(X1)とポリマー系α晶造核剤(C)である3MB-1重合体を300ppm含有する組成物である。実施例では、当該組成物をプロピレン重合体組成物(Z)とした。
 なお、プロピレン重合体組成物(Z)は、当該組成物100質量部に対して、酸化防止剤として3,5-ジ-t-ブチル-4-ヒドロキシトルエンを0.2質量部、酸化防止剤としてテトラキス[メチレン-3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンを0.65質量部、中和剤としてステアリン酸カルシウムを0.005重量部を配合し、単軸押出機を用いて、樹脂温度230℃で溶融混練して組成物脂をペレット化した。なお、単軸押出機は、(株)ジーエムエンジニアリング製GMZ50-32(L/D=32)を使用した。
 得られたプロピレン重合体組成物(Z)に含まれるプロピレン単独重合体(X1)であるプロピレン単独重合体(X1‐1)の物性を表1に示す。
 〔実施例および比較例で用いたプロピレン重合体〕
《プロピレン単独重合体の製造》
 [製造例2]
 <固体状チタン(a-1)の調製>
 内容積2リットルの高速撹拌装置(特殊機化工業製)を充分窒素置換した後、該装置に精製灯油700ml、塩化マグネシウム10g、エタノール24.2gおよびソルビタンジステアレート(花王アトラス(株)製「エマゾール320」)3gを装入した。この系を撹拌下で昇温し、120℃および800rpmの条件で30分間撹拌した。高速撹拌下、内径5mmのテフロン(登録商標)製チューブを用いて、予め-10℃に冷却された精製灯油1リットルを張り込んである2リットルのガラスフラスコ(攪拌機付)に移液した。得られた固体を濾過し、精製n-ヘキサンで充分洗浄することにより、塩化マグネシウム1モルに対してエタノールが2.8モル配位した固体状付加物を得た。
 次いで、前記固体状付加物(マグネシウム原子に換算して45ミリモル)をデカン20mlに懸濁させた後、-20℃に保持した四塩化チタン195ml中に、攪拌下で全量導入した。この混合液を5時間かけて80℃に昇温し、ジイソブチルフタレート1.8ml(6.2ミリモル)を添加した。引き続き110℃まで昇温して1.5時間攪拌した。
 1.5時間の反応終了後、熱濾過にて固体部を採取し、100℃のデカンおよび室温のヘキサンによって、ろ液中にチタンが検出されなくなるまで洗浄した。このようにして、チタン3.8質量%、マグネシウム16質量%、ジイソブチルフタレ-ト18.2質量%、エタノ-ル残基1.1質量%を含有する固体状チタン(a-1)を得た。
 <固体状チタン触媒成分(i-1)の調製>
 充分に窒素置換された200mlのガラス製反応器に、得られた固体状チタン(a-1)6.8g、パラキシレン113ml、デカン11ml、四塩化チタン2.5ml(23ミリモル)及びジイソブチルフタレ-ト0.34ml(1.2ミリモル)を入れた。反応器内の温度を130℃に昇温し、その温度で1時間攪拌して接触処理した後、熱ろ過により固体部を採取した。この固体部を101mlのパラキシレンに再懸濁させ、さらに四塩化チタン1.7ml(15ミリモル)及びジイソブチルフタレート0.22ml(0.8ミリモル)を添加した。
 次いで、130℃に昇温し、該温度を保持しながら1時間攪拌して反応させた。反応終了後、再び熱ろ過にて固液分離を行い、得られた固体部を100℃のデカン及び室温のヘキサンによって触媒中のパラキシレンが1質量%以下となるまで洗浄した。このようにして、チタン1.3質量%、マグネシウム20質量%、ジイソブチルフタレート13.8質量%を含有する固体状チタン触媒成分(i-1)を得た。
 <予備重合触媒(p-1)の調製>
 窒素置換された200mlのガラス製反応器に、ヘキサン50ml、トリエチルアルミニウム2.5ミリモル、シクロペンチルジエチルアミノジメトキシシラン0.5ミリモル、および上記で得られた固体状チタン触媒成分(i-1)をチタン原子換算で0.25ミリモル装入した後、系内の温度を20℃に保ちながら、1.47リットル/時間の量でプロピレンを1時間供給した。この操作により、固体状チタン触媒成分(i-1)1g当り3gのプロピレンが予備重合された予備重合触媒(p-1)を得た。
 <本重合>
 内容積2リットルのオートクレーブに、プロピレン500gと水素3.5リットルとを装入し、系内の温度を60℃に昇温した。その後、トリエチルアルミニウムを1.4ミリモル、シクロペンチルジエチルアミノジメトキシシランを0.7ミリモルおよび上記で得られた予備重合触媒(p-1)をチタン原子換算で0.0028ミリモル添加することにより重合を開始した。系内の温度を70℃に保ちながら1時間重合を行った。次いで、エタノールを添加することにより重合を停止し、未反応のプロピレンをパージしてプロピレン単独重合体248gを得た。
 同様の操作を複数回実施し、計5kgのプロピレン単独重合体を得た。得られたプロピレン単独重合体1キログラムに対し、純水0.6グラムとプロピレンオキサイド5.4ミリリットルを添加して、90℃で2時間脱塩素処理を行った後に80℃にて真空乾燥を行い、プロピレン単独重合体のパウダーを得た。得られたプロピレン単独重合体の物性を評価した結果を表1に示す。
 なお、本発明では、表層に用いるプロピレン系重合体(Y)は、プロピレン単独重合体(X)を含むので、製造例2で得られたプロピレン単独重合体を表層に用いた場合は、プロピレン系重合体(Y1)と表記し、プロピレン単独重合体を基層のポリマー系α晶造核剤を含有するプロピレン重合体組成物の一部に用いた場合は、プロピレン単独重合体(X2)はプロピレン単独重合体(X2‐1)と表記した。
 表1に、プロピレン単独重合体(X2‐1)、プロピレン単独重合体(X1‐1)、およびプロピレン系重合体(Y1)の物性を示すが、プロピレン単独重合体(X2‐1)とプロピレン系重合体(Y1)は同一のプロピレン単独重合体である。
 <添加剤の配合・造粒>
 次に、得られたプロピレン単独重合体100質量部に対して、酸化防止剤として3,5-ジ-tert-ブチル-4-ヒドロキシトルエンを0.2質量部、酸化防止剤としてテトラキス[メチレン-3(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンを0.2質量部、中和剤としてステアリン酸カルシウムを0.01質量部配合してドライブレンドした。ついで、単軸押出機を用いて、樹脂温度230℃で溶融混練して組成物脂をペレット化した。なお、単軸押出機は、(株)ジーエムエンジニアリング製GMZ50-32(L/D=32)を使用した。
 上記製造例1および製造例2で得られたプロピレン単独重合体(X1)、プロピレン重合体組成物(Z)およびプロピレン単独重合体(X2)の物性を上記記載の測定方法で測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 〔実施例1〕
 〈原反シートの作製〉
 表裏層を形成するプロピレン重合体(Y)として、製造例2で得られたプロピレン単独重合体(Y1)を、基層(中間層)を形成するプロピレン重合体組成物として、製造例1で得られたポリマー系α晶造核剤を含有するプロピレン重合体組成物(Z)を用い、2種3層25mmφ/30mmφの多層Tダイシート成形機(株式会社ジーエムエンジニアリング製)で温度270℃に溶融後、押し出し、チルロール65℃に保持された1個の冷却ロールにより、引張り速度1.0m/分の条件で冷却し、厚み315μmの原反シートを得た。その際、中間層と表裏層の厚み比は、表層:中間層:裏層が1:8:1になるようにした。
 〈コンデンサ用多層ポリプロピレンフィルムの作製〉
 得られた原反シートを95mm×95mmにカットし、下記の条件で二軸延伸し、厚さ7μmの多層二軸延伸フィルム(コンデンサ用多層ポリプロピレンフィルム)を得た。厚みは予熱温度を変えて調整した。
 <延伸条件>
  延伸装置:KARO IV(商品名、ブルックナー社製)
  予熱温度:153~162℃
  予熱時間:60秒
  延伸倍率:縦方向(機械方向)5倍×横方向9倍の逐次二軸延伸(延伸面倍率:45倍)
  延伸速度:6m/分
 得られたフィルムについて下記記載の方法に従い物性を評価した。結果を表2に示す。
 〔コンデンサ用多層ポリプロピレンフィルムの物性〕
 <ブリード量>
 25mmφ/30mmφの多層Tダイシート成形機(株式会社ジーエムエンジニアリング製)で270℃に溶融後、押し出し、65℃に保持された1個の冷却ロールにより、引張り速度1.0m/分で冷却し、厚み315μmの原反シートを得る。得られた原反シートを120℃に加温したオーブン内で48時間エージングする。エージング後の原反シート縦×横、30cm×18cmにカット。このカットシート10枚の両面をジクロロメタンで洗浄・回収し、脱溶媒後の洗浄回収物を秤量、この量をブリード総量とする。また洗浄回収物をHPLC(UV254nm)に供することで核剤を定量する。
 <表面粗さ>
 JIS B0601-1994に準じて測定を行った。
 <耐電圧(BDV)>
 得られた延伸フィルムのBDVをJIS-C2330に準拠して測定した。二軸延伸フィルムの絶縁破壊電圧を100℃および120℃で測定した。耐電圧(BDV、V/μm)は、絶縁破壊電圧をフィルム厚みで除して算出した。
 <内部ヘイズ>
 得られた延伸フィルムシクロヘキサノールを入れたガラスセルに試験片を浸漬し、JIS K7136に準じてヘイズを測定した。
 <表面粗さ>
 得られた延伸フィルムの表面層の、MD方向の平均表面粗度Raを、JIS-B0601:1994に準じて表面粗さ測定機を用い、測定速度0.15mm/分でn=3測定し、算術平均した。
 〔実施例2〕
 実施例1で用いた基層(中間層)を形成するプロピレン重合体組成物に替えて、プロピレン重合体組成物として、実施例1で用いたプロピレン重合体組成物(Z)6質量部に製造例2で得られたプロピレン単独重合体(X2‐1)を94質量部配合したプロピレン重合体組成物を用いる以外は実施例1と同様に行い、コンデンサ用多層ポリプロピレンフィルムを得た。
 評価結果を表2に示す。
 〔実施例3〕
 実施例1で用いた基層(中間層)を形成するプロピレン重合体組成物に替えて、プロピレン重合体組成物として、実施例1で用いたプロピレン重合体組成物(Z)3質量部に製造例2で得られたプロピレン単独重合体(X2‐1)を97質量部配合したプロピレン重合体組成物を用いる以外は実施例1と同様に行い、コンデンサ用多層ポリプロピレンフィルムを得た。
 評価結果を表2に示す。
 〔比較例1〕
 実施例1で用いた基層(中間層)を形成するプロピレン重合体組成物に替えて、製造例2で得たプロピレン系単独重合体(X2‐1)を単独で用いる以外は実施例1と同様に行い、基層および表裏層がプロピレン系単独重合体(X2‐1)からなる1種3層のコンデンサ用多層ポリプロピレンフィルムを得た。
 評価結果を表2に示す。
 〔比較例2〕
 実施例1で用いた両表面層および中間層(基材層)に替えて、プロピレン系単独重合体(X2‐1)100質量部に結晶核剤として、有機系α晶造核剤〔ミリケン社製 商品名:NX8000J〕を0.05質量部添加した組成物(W1)を表裏層および中間層(基材層)に用いる以外は実施例1と同様に行い、基層および表裏層が上記組成物からなる1種3層のコンデンサ用多層ポリプロピレンフィルムを得た。
 評価結果を表2に示す。
 〔比較例3〕
 実施例1で用いた表裏層および中間層(基材層)に替えて、プロピレン系単独重合体(X2‐1)100質量部に結晶核剤として、有機系α晶造核剤〔ミリケン社製 商品名:NX8000J〕を0.1質量部添加した組成物(W2)を表裏層および中間層(基材層)に用いる以外は実施例1と同様に行い、基層および表裏層が上記組成物からなる1種3層のコンデンサ用多層ポリプロピレンフィルムを得た。
 評価結果を表2に示す。
 〔比較例4〕
 実施例1で用いた表裏層および中間層(基材層)に替えて、実施例3の基層(中間層)に用いたプロピレン重合体組成物(Z)3質量部に製造例2で得られたプロピレン単独重合体(X2‐1)を97質量部配合したプロピレン重合体組成物を両表面層および中間層(基材層)に用いる以外は実施例1と同様に行い、1種3層のコンデンサ用多層ポリプロピレンフィルムを得た。
 評価結果を表2に示す。
 〔比較例5〕
 実施例1で用いた基層(中間層)を形成するプロピレン重合体組成物に替えて、プロピレン重合体組成物として、比較例1で用いたプロピレン系単独重合体(X2‐1)100重量部に有機系α晶造核剤〔ミリケン社製 商品名:NX8000J〕0.1質量部を添加した組成物(W2)を用いる以外は実施例1と同様に行い、2種3層のコンデンサ用多層ポリプロピレンフィルムを得た。
 評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005

Claims (6)

  1.  プロピレン単独重合体(X)およびポリマー系α晶造核剤(C)を0.0001~0.05質量%含むプロピレン重合体組成物からなる基層の少なくとも片面にプロピレン系重合体(Y)からなる表層または裏層を有し、且つ基層および表層または裏層がいずれも延伸されてなることを特徴とするコンデンサ用多層ポリプロピレンフィルム。
  2.  基層の片面に表層および基層の他の片面に裏層を有してなる請求項1に記載のコンデンサ用多層ポリプロピレンフィルム。
  3.  表層および裏層を形成するプロピレン系重合体(Y)が、ポリマー系α晶造核剤の含有量が0.00001質量%未満である請求項1または2に記載のコンデンサ用多層ポリプロピレンフィルム。
  4.  ポリマー系α晶造核剤が、ガラス転移温度および/または融点(Tm)が280℃以上の重合体である請求項1~3のいずれか一項に記載のコンデンサ用多層ポリプロピレンフィルム。
  5.  表層および裏層の表面粗さRaが0.2以上である請求項1~4のいずれか一項に記載のコンデンサ用多層ポリプロピレンフィルム。
  6.  プロピレン単独重合体(X)が下記要件(1)~(5)を満たす請求項1~5のいずれか一項に記載のコンデンサ用多層ポリプロピレンフィルム。
    (1)メルトフローレート(MFR)(ASTM D1238、230℃、2.16kg荷重下)が1~10g/10分の範囲、
    (2)13C‐NMRを用いて測定したmmmmが0.930~0.999の範囲、
    (3)灰分含有量が50質量ppm以下、
    (4)塩素含有量が5質量ppm以下、および
    (5)ゲルパーミエーションクロマトグラフィー(GPC)により測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.5~12.0の範囲。
PCT/JP2021/003914 2020-03-06 2021-02-03 コンデンサ用多層ポリプロピレンフィルム WO2021176930A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022505054A JPWO2021176930A1 (ja) 2020-03-06 2021-02-03
CN202180018976.XA CN115210833A (zh) 2020-03-06 2021-02-03 电容器用多层聚丙烯膜
US17/908,896 US20230088053A1 (en) 2020-03-06 2021-02-03 Multilayer polypropylene film for capacitor
KR1020227029929A KR20220134612A (ko) 2020-03-06 2021-02-03 콘덴서용 다층 폴리프로필렌 필름
EP21764457.4A EP4116997A4 (en) 2020-03-06 2021-02-03 MULTI-LAYER POLYPROPYLENE LAYER FOR CAPACITOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-038760 2020-03-06
JP2020038760 2020-03-06

Publications (1)

Publication Number Publication Date
WO2021176930A1 true WO2021176930A1 (ja) 2021-09-10

Family

ID=77614233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003914 WO2021176930A1 (ja) 2020-03-06 2021-02-03 コンデンサ用多層ポリプロピレンフィルム

Country Status (6)

Country Link
US (1) US20230088053A1 (ja)
EP (1) EP4116997A4 (ja)
JP (1) JPWO2021176930A1 (ja)
KR (1) KR20220134612A (ja)
CN (1) CN115210833A (ja)
WO (1) WO2021176930A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188598A1 (ja) * 2022-03-30 2023-10-05 東レ株式会社 ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883006A (ja) 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPS62275143A (ja) * 1986-05-23 1987-11-30 Mitsubishi Petrochem Co Ltd ポリ−3−メチル−1−ブテン強化組成物
JPH0496911A (ja) 1990-08-10 1992-03-30 Mitsui Petrochem Ind Ltd オレフィン重合用固体状チタン触媒成分、オレフイン重合用触媒およびオレフィンの重合方法
JPH08143580A (ja) 1994-11-18 1996-06-04 Toho Titanium Co Ltd 有機ケイ素化合物および電子供与体
JP2004002742A (ja) 2002-04-04 2004-01-08 Mitsui Chemicals Inc オレフィン重合用固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JP5586784B2 (ja) 2010-08-06 2014-09-10 ボレアリス・アクチェンゲゼルシャフト 高ac破壊強度を有するboppフィルム
JP2015201616A (ja) 2014-03-31 2015-11-12 王子ホールディングス株式会社 コンデンサ用二軸延伸ポリプロピレンフィルム
WO2016043217A1 (ja) 2014-09-19 2016-03-24 東レ株式会社 ポリプロピレンフィルムおよびフィルムコンデンサ
WO2016159044A1 (ja) * 2015-03-31 2016-10-06 株式会社プライムポリマー フィルムコンデンサ用ポリプロピレン、フィルムコンデンサ用二軸延伸フィルム、フィルムコンデンサ、およびこれらの製造方法
JP2018001450A (ja) * 2016-06-28 2018-01-11 三菱ケミカル株式会社 積層多孔フィルム及びその製造方法
JP2018538373A (ja) 2015-10-16 2018-12-27 ボレアリス エージー プロピレンポリマー組成物で作られた二軸配向フィルム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154187A (ja) * 2000-09-05 2002-05-28 Toray Ind Inc ポリプロピレンフィルムおよびフィルムコンデンサー
CN106574091B (zh) * 2014-07-31 2019-04-02 三井化学株式会社 电容器膜用丙烯均聚物组合物及其制造方法、以及电容器膜
EP3184587B1 (en) * 2015-12-21 2020-03-18 Borealis AG Extruded articles with improved optical properties
JP6843529B2 (ja) * 2016-06-14 2021-03-17 株式会社プライムポリマー シーラント用ポリプロピレン系樹脂組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883006A (ja) 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPS62275143A (ja) * 1986-05-23 1987-11-30 Mitsubishi Petrochem Co Ltd ポリ−3−メチル−1−ブテン強化組成物
JPH0496911A (ja) 1990-08-10 1992-03-30 Mitsui Petrochem Ind Ltd オレフィン重合用固体状チタン触媒成分、オレフイン重合用触媒およびオレフィンの重合方法
JPH08143580A (ja) 1994-11-18 1996-06-04 Toho Titanium Co Ltd 有機ケイ素化合物および電子供与体
JP2004002742A (ja) 2002-04-04 2004-01-08 Mitsui Chemicals Inc オレフィン重合用固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JP5586784B2 (ja) 2010-08-06 2014-09-10 ボレアリス・アクチェンゲゼルシャフト 高ac破壊強度を有するboppフィルム
JP2015201616A (ja) 2014-03-31 2015-11-12 王子ホールディングス株式会社 コンデンサ用二軸延伸ポリプロピレンフィルム
WO2016043217A1 (ja) 2014-09-19 2016-03-24 東レ株式会社 ポリプロピレンフィルムおよびフィルムコンデンサ
WO2016159044A1 (ja) * 2015-03-31 2016-10-06 株式会社プライムポリマー フィルムコンデンサ用ポリプロピレン、フィルムコンデンサ用二軸延伸フィルム、フィルムコンデンサ、およびこれらの製造方法
JP2018538373A (ja) 2015-10-16 2018-12-27 ボレアリス エージー プロピレンポリマー組成物で作られた二軸配向フィルム
JP2018001450A (ja) * 2016-06-28 2018-01-11 三菱ケミカル株式会社 積層多孔フィルム及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PROG. POLYM. SCI., vol. 26, 2001, pages 443 - 533
See also references of EP4116997A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188598A1 (ja) * 2022-03-30 2023-10-05 東レ株式会社 ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ
JP7424517B1 (ja) 2022-03-30 2024-01-30 東レ株式会社 ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ

Also Published As

Publication number Publication date
EP4116997A4 (en) 2024-03-06
EP4116997A1 (en) 2023-01-11
CN115210833A (zh) 2022-10-18
US20230088053A1 (en) 2023-03-23
JPWO2021176930A1 (ja) 2021-09-10
KR20220134612A (ko) 2022-10-05

Similar Documents

Publication Publication Date Title
JP6848059B2 (ja) プロピレン系重合体、その製造方法、プロピレン系樹脂組成物および成形体
WO2010032793A1 (ja) プロピレン系ブロック共重合体、該共重合体を含む組成物およびこれらから得られる成形体
EP1219645B1 (en) Polybutene resin and pipe material and pipe comprising the same
JP5159215B2 (ja) ポリプロピレン樹脂からなるキャパシタフィルム用原反シート、キャパシタフィルム及びそれらの製造方法
RU2570793C2 (ru) Кабель электропитания, включающий полипропилен
DE10217841B4 (de) Verfahren zur Herstellung einer Ethylenpolymer-Zusammensetzung, Teilchen aus Ethylenpolymer-Zusammensetzung und aus den Teilchen der Ethylenpolymer-Zusammensetzung erhaltene Folie
JP7207997B2 (ja) プロピレン系重合体を含む延伸フィルム
WO2021176930A1 (ja) コンデンサ用多層ポリプロピレンフィルム
JP6445562B2 (ja) コンデンサフィルム用プロピレン単独重合体組成物およびその製造方法、並びにコンデンサフィルム
JP7241532B2 (ja) コンデンサフィルムおよびその製造方法
EP3176215B1 (en) Propylene homopolymer composition for capacitor film, method for producing same, and capacitor film
JP3824738B2 (ja) オレフィン重合用固体状チタン触媒成分の製造方法
JP7134743B2 (ja) プロピレン系重合体、オレフィン重合用触媒および成形体
JP4163220B2 (ja) オレフィン重合用触媒およびこの触媒を用いるオレフィンの重合方法
US6339128B1 (en) Polyolefin resin modifier, polyolefin resin composition and oriented polyolefin film
JP3580639B2 (ja) ポリプロピレン樹脂
JP7291479B2 (ja) 成形体
JP7186594B2 (ja) プロピレン系重合体の製造方法
JP7345257B2 (ja) プロピレン重合体組成物からなる微多孔フィルム
JP2020084134A (ja) プロピレン系樹脂組成物および成形体
JP2022148047A (ja) ポリプロピレン系樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505054

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227029929

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021764457

Country of ref document: EP

Effective date: 20221006

NENP Non-entry into the national phase

Ref country code: DE