WO2013189109A1 - 高能量密度锂离子电池氧化物正极材料及其制备方法 - Google Patents

高能量密度锂离子电池氧化物正极材料及其制备方法 Download PDF

Info

Publication number
WO2013189109A1
WO2013189109A1 PCT/CN2012/078726 CN2012078726W WO2013189109A1 WO 2013189109 A1 WO2013189109 A1 WO 2013189109A1 CN 2012078726 W CN2012078726 W CN 2012078726W WO 2013189109 A1 WO2013189109 A1 WO 2013189109A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
shell
core
hydroxide
Prior art date
Application number
PCT/CN2012/078726
Other languages
English (en)
French (fr)
Inventor
毕玉敬
王德宇
黎军
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2013189109A1 publication Critical patent/WO2013189109A1/zh
Priority to US14/579,824 priority Critical patent/US20150104708A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of energy materials, and relates to a cathode material for a high energy density lithium ion battery and a preparation method thereof.
  • Lithium ion secondary battery is an ideal energy storage system. It has the advantages of high energy density, good cycle, low self-discharge rate and good environmental compatibility. It has been rapidly developed in various fields of consumer electronics, and is used in power tools. The electric vehicle and power generation energy storage fields show great potential.
  • High-capacity cathode materials are the basis and key to the development of high-energy-density lithium-ion batteries, and have become the focus of world research in recent years.
  • Nickel-based materials have obvious cost advantages. As the nickel content increases, the material capacity can be significantly improved.
  • NCA can reach 180 mAh/g at 4.25 V, but the high nickel cathode material has high surface activity and is easy to react with the electrolyte. The reaction causes the battery to swell, so it is necessary to modify these cathode materials.
  • the core-shell structure is an effective modification treatment method to form a shell layer which is more stable than the matrix outside the core particles to improve the overall performance of the material. When the particles are coated, the safety performance is greatly improved.
  • the main research of core-shell structure cathode materials is limited to high manganese materials in the shell layer, and a new type of cathode material is still needed in the field. Summary of the invention
  • a positive electrode material comprising a positive electrode material body and a coating layer on a surface of the positive electrode material body,
  • the coating material is one of Al 2 O 3 , ZrO 2 , MgO, SiO 2 , ZnO 2 , TiO 2 , Y 2 O 3 , LiAlO 2 or a combination thereof;
  • the cathode material body includes a shell layer and a core located in the shell layer, wherein the core material is
  • Lii +x [Ni 1-yz Co y Mn z ]O 2 where -0 ⁇ 1 ⁇ 0 ⁇ 2, 0 ⁇ y ⁇ 0.5, 0 ⁇ 0 ⁇ 5, 0 ⁇ y+z ⁇ 0.7
  • the shell material is Li 1+a [Co 1-b X b ]O 2 , where -0.1 ⁇ a ⁇ 0.2, 0 ⁇ b ⁇ 0.5, X is Al, Mg, Cu, Zr, Ti, Cr, V , one or a combination of Fe, Mn, Ni; or
  • the main body of the positive electrode material is a mixture of LUNii ⁇ COyMi ⁇ and LiCoO 2 , wherein -0.1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.5, 0 ⁇ 0 ⁇ 5, 0 ⁇ y+z ⁇ 0.7.
  • the shell material is Li 1+a [Co 1-b X b ]O 2 , -0.1 ⁇ a ⁇ 0.2, and X is Al, Mg, Cu, Zr, Ti, Cr, V, Fe.
  • each b is independently: 0 ⁇ b ⁇ 0.5.
  • x 0.
  • a 0.
  • the core material and the shell material have a lattice structure of a-NaFeO 2 type, and the space group is R-3m.
  • both the core material and the shell material have ionic deintercalation capabilities.
  • the ratio of the thickness of the shell layer to the radius of the positive electrode material particles is 0.005-0.5;
  • the coating layer has a thickness of 0.2 to 50 nm.
  • the Ni content in the core material is greater than the Ni content in the shell material, and the Co content in the core material is less than the Co content in the shell material.
  • the core is composed of 0.1 to 5 ⁇ m of crystal grains
  • the shell layer is composed of crystal grains of 0.1 to 5 ⁇ m.
  • 0 ⁇ y ⁇ 1.0, 0 ⁇ z ⁇ 1.0, 0 ⁇ y+z ⁇ l; 0 ⁇ b ⁇ 1.0, X, M are independently selected from Al, Mg, One of Cu, Zr, Ti, Cr, V, Fe, Mn, Ni, Y, Zn or a combination thereof.
  • the sintered sample is placed in a buffer solution, the salt solution of the metal M is added, and the pH is adjusted to be alkaline, on the surface of the sintered sample.
  • the hydroxide of the metal M is precipitated.
  • the buffer solution is acetic acid-sodium acetate, acetic acid-potassium acetate, acetic acid-lithium acetate, ammonia-ammonium chloride, ammonia water, ammonium acetate-sodium acetate, acetic acid, ammonia-sodium hydroxide, ammonia.
  • potassium hydroxide, a phosphate buffer solution, a borate buffer solution having a pH of from 4.0 to 14.0 A third aspect of the invention provides the method for preparing a positive electrode material according to the first aspect, comprising the steps of:
  • 0 ⁇ y ⁇ 1.0, 0 ⁇ z ⁇ 1.0, 0 ⁇ y+z ⁇ l; 0 ⁇ b ⁇ 1.0, X, M are independently selected from Al, Mg, Cu, Zr, Ti, Cr, V, One of Fe, Mn, Ni, Y, Zn or a combination thereof.
  • the mass ratio of NiLy.zCOyMn ⁇ OH to Co 3 O 4 is from 0.1:0.9 to 0.9:0.1.
  • the lithium source is one of lithium carbonate, lithium hydroxide monohydrate, lithium acetate, lithium nitrate, or a combination thereof.
  • the Co 3 O 4 has a particle size of 0.1 to 5 ⁇ m.
  • the sintered sample in the step (c), is placed in a buffer solution, the salt solution of the metal ruthenium is added, and the pH is adjusted to be alkaline, on the surface of the sintered sample.
  • the hydroxide of the metal ruthenium is precipitated.
  • the buffer solution is acetic acid-sodium acetate, acetic acid-potassium acetate, acetic acid-lithium acetate, ammonia-ammonium chloride, ammonia water, ammonium acetate-sodium acetate, acetic acid, ammonia-sodium hydroxide, ammonia.
  • potassium hydroxide, a phosphate buffer solution, a borate buffer solution having a pH of from 4.0 to 14.0 a lithium ion battery comprising the positive electrode material of the first aspect is provided.
  • Figure 1 is a scanning electron micrograph of a core-shell precursor prepared in Example 1.
  • Fig. 2 is a scanning electron micrograph of the positive electrode material prepared in Example 1.
  • Figure 3 is a scanning electron micrograph of the core-shell precursor prepared in Example 2.
  • Fig. 4 is a scanning electron micrograph of the positive electrode material prepared in Example 2.
  • Figure 5 is a scanning electron micrograph of the core-shell precursor prepared in Example 3.
  • Fig. 6 is a scanning electron micrograph of the positive electrode material prepared in Example 3.
  • Fig. 7 is a view showing the internal appearance of particles of the positive electrode material prepared in Example 3.
  • Figure 8 is a shell EDS spectrum of Example 3.
  • Figure 9 is a core EDS spectrum of Example 3.
  • Figure 10 is a scanning electron micrograph of the positive electrode material prepared in Example 4.
  • Figure 11 is a scanning electron micrograph of the core-shell precursor prepared in Example 5.
  • Figure 12 is a scanning electron micrograph of the positive electrode material prepared in Example 5.
  • Figure 13 is a scanning electron micrograph of the positive electrode material prepared in Example 6.
  • Figure 14 is a scanning electron micrograph of the positive electrode material prepared in Example 7.
  • Figure 15 is an XRD chart of the positive electrode material prepared in Examples 8 and 9.
  • Figure 16 is a scanning electron micrograph of the positive electrode material prepared in Example 10.
  • Fig. 17 is a graph showing the results of the refinement of the positive electrode material prepared in Example 3.
  • Figure 18 is a discharge curve of the positive electrode material prepared in Examples 1-4.
  • Figure 19 is a discharge curve of the positive electrode materials prepared in Examples 5, 6, and 10.
  • Figure 20 is a discharge curve of the positive electrode material prepared in Examples 7-9.
  • Figure 21 is a charge and discharge cycle diagram of the positive electrode material prepared in Example 3 and Example 4.
  • Fig. 22 is a charge and discharge cycle diagram of the positive electrode material prepared in Example 5 and Example 6.
  • Example 23 is a charge and discharge cycle diagram of the positive electrode material prepared in Example 7 and Example 8. detailed description
  • the inventors of the present application have extensively and intensively studied and accidentally developed a novel positive electrode material, and deposited an amorphous oxide coating layer on the outside of the positive electrode material body, which can further improve the comprehensive performance of the positive electrode material and can be used for A lithium ion secondary battery is fabricated. On the basis of this, the present invention has been completed.
  • Cathode material
  • the positive electrode material of the present invention comprises a positive electrode material body and a coating layer on the surface of the positive electrode material body, wherein the cladding layer material is Al 2 O 3 , ZrO 2 , MgO, SiO 2 , ZnO 2 , TiO 2 , Y 2 O 3 Or one or a combination of LiAlO 2 ;
  • the cathode material body comprises a shell layer and a core located in the shell layer, wherein the core material is Li 1+x [Ni 1-yz Co y Mn z ]O 2 , wherein -0 ⁇ 1 ⁇ 0 ⁇ 2 , 0 ⁇ y ⁇ 0.5, 0 ⁇ 0 ⁇ 5, 0 ⁇ y+z ⁇ 0.7;
  • the shell material is Li 1+a [Co 1-b X b ]O 2 , where -0.1 ⁇ a ⁇ 0.2 , 0 ⁇ b ⁇ 0.5, X is one of Al, Mg, Cu, Zr, Ti, Cr, V, Fe, Mn, Ni or a combination thereof; or
  • the main body of the positive electrode material is a mixture of Li ⁇ Ni ⁇ COyMigOs and LiCoO 2 , wherein -0.1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.5, 0 ⁇ 0 ⁇ 5, 0 ⁇ y+z ⁇ 0.7.
  • the core portion of the positive electrode material has an ion deintercalation ability with the shell portion, and the structures of the two are the same, but the element composition is different.
  • the shell layer is a high-cobalt material with better electrochemical performance.
  • a layer of amorphous oxide coating is deposited outside the shell layer to further improve the overall performance of the material.
  • both the core and the shell material have a-NaFeO 2 structure, and the space group is R-3m. Li occupies the 3a position, Ni, Co, and Mn occupy the 3b position, and O occupies the 3c position.
  • the material is further characterized in that the core and the shell layer constitute spherical particles, and the spherical particles are composed of 0.1-2 ⁇ m of crystal particles having a size of 2 to 50 ⁇ m.
  • the quality of the coating material is 0.001-10% of the total mass of the active cathode material, and the thickness of the coating layer is 0.2-50 nm.
  • the ratio of the thickness of the shell layer to the particle size of the spherical particles of the entire positive electrode material is 0.005-0.5.
  • 0 ⁇ y ⁇ 1.0, 0 ⁇ z ⁇ 1.0, 0 ⁇ y+z ⁇ l; 0 ⁇ b ⁇ 1.0, X, M are independently selected from Al, Mg, Cu, Zr, Ti, Cr, V, One of Fe, Mn, Ni, Y, Zn or a combination thereof.
  • the precursor prepared has a core-shell structure, and after sintering, the particles form a shell layer having a concentration gradient.
  • the coating material can be uniformly attached to the surface of the core-shell material.
  • the positive electrode material of the present invention can be prepared by the following method: a. precursor ⁇ ⁇ ⁇ ) ⁇ ⁇ ⁇ ( ⁇ ) 2 , 0 ⁇ y ⁇ 1.0, 0 ⁇ z ⁇ 1.0 , 0 ⁇ y+z ⁇ l, added to the solvent S, and stirred to form a dispersion S1.
  • the solvent S may be one or a mixture of water, ethanol, and ethylene glycol.
  • the salt solution of Co or the salt solution of Co and X is added to the SI.
  • the concentration of the Co and X salt solution is 0 to 10 mol/L.
  • the operating atmosphere may be one or more of air, nitrogen, and argon.
  • X is one or more of Al, Mg, Cu, Zr, Ti, Cr, V, Fe, Mn which are soluble in the solvent S I .
  • alkaline solution E to completely precipitate metal ions Co or Co and X.
  • the alkaline solution may be one or more of ammonia water, lithium hydroxide, sodium hydroxide, or potassium hydroxide solution.
  • the lithium salt is one or more selected from the group consisting of lithium carbonate, lithium hydroxide monohydrate, lithium acetate, and lithium nitrate.
  • the sintered sample is added to a buffer solution and stirred to form a dispersion.
  • the buffer solution can be vinegar One or more of acid-sodium acetate, acetic acid-potassium acetate, acetic acid-lithium acetate, ammonia-ammonium chloride, ammonia water, ammonium chloride.
  • the pH of the buffer solution ranges from 4.0 to 14.0.
  • the metal M salt compound must be soluble in solvent S, which may be aluminum, magnesium, zirconium, silicon, zinc, titanium chloride, nitrate, sulfate, acetate One or several.
  • the solvent S may be one or a mixture of water, ethanol, and ethylene glycol.
  • concentration of the M salt solution is 0.01 to 10 mol/L.
  • alkaline solution E to completely precipitate metal M.
  • the alkaline solution may be one or more of ammonia water, lithium hydroxide, sodium hydroxide, and potassium hydroxide solution.
  • the preparation method of the positive electrode material of the invention comprises the steps of:
  • 0 ⁇ y ⁇ 1.0, 0 ⁇ z ⁇ 1.0, 0 ⁇ y+z ⁇ l; 0 ⁇ b ⁇ 1.0, X, M are independently selected from the group consisting of Al, Mg, Cu, Zr, Ti, Cr, One of V, Fe, Mn, Ni, Y, Zn or a combination thereof.
  • the invention is advantageous in that:
  • the present invention provides a positive electrode material of a novel structure and composition.
  • the positive electrode material of the present invention has a uniform shell layer and a controllable thickness.
  • the positive electrode material has the outermost coating layer, which has a good protective effect on the main body of the positive electrode material.
  • the positive electrode material of the present invention has the advantages of high capacity, good cycleability, low surface activity, high pressure resistance, and good safety.
  • a positive electrode material having a core of LiNi 1/3 Co 1/3 Mn 1/3 O 2 and a shell layer of Li[( 1/3 Co 1/3 Mn 1/3 ) 99 Al aQ1 ]O 2 was prepared.
  • lithium hydroxide monohydrate and the dried precursor were uniformly mixed at a molar ratio of 1.10, and the mixture was calcined at 450 ° C for 5 hours in the air, then heated to 900 ° C for 12 hours, and naturally cooled to room temperature.
  • a positive active material having a surface of Li[(Ni 1/3 Co 1/3 Mn 1/3 )a 99 Ala Q1 ]O 2 and an internal matrix of LiNi 1/3 Co 1/3 Mn 1/3 O 2 is obtained, The morphology is shown in Fig. 2, the particle size is 1-21 ⁇ , and the shell thickness is 0.2 ⁇ .
  • Example 2 Example 2
  • a positive electrode material having a core of LiNi 5 Co 2 Mn a3 O 2 and a shell layer of Li[( a 5 Coa 2 Mn 3 ) a99 Al a() 1 ]O 2 was prepared.
  • lithium hydroxide monohydrate and the dried precursor were uniformly mixed at a molar ratio of 1.10, and the mixture was calcined at 900 ° C for 12 hours in an oxygen atmosphere, and naturally cooled to room temperature.
  • a positive electrode active material having a shell layer of I ⁇ iNi sCo ⁇ Mna ⁇ Al ⁇ ]O 2 and a core of LiNia 5 Co a2 Mno. 3 O 2 was obtained, and its morphology was as shown in Fig. 4, and the particle size was 1-25 ⁇ m.
  • the thickness of the shell layer is 0.5 ⁇ m.
  • a positive electrode material having a core of LiNi 5 Co 2 Mna 3 O 2 and a shell layer of LiCoO 2 was prepared.
  • Ni a5 Co a2 Mn 3 (OH) 2 10.0200g forming a dispersion of the precursor, adding 1% ammonia water, adjusting the pH to about 9.0, continuing to adjust the pH to 11 with concentrated ammonia water, stirring for 60 minutes, stopping the stirring After filtration, washed twice, the coated precursor was dried at 120 ° C for 12 hours, its morphology is shown in Figure 5, the particle size is 1-20 ⁇ , then the lithium hydroxide monohydrate and the dried precursor The mixture was uniformly mixed at a molar ratio of 1.10, and the mixture was calcined at 900 ° C for 12 hours in an oxygen atmosphere, and naturally cooled to room temperature.
  • a positive active material having a surface of LiCoO 2 and an internal matrix of LiNi 5 Co 2 Mn 3 O 2 was obtained, and its morphology was as shown in Fig. 6, and the particle diameter was 1 to 25 ⁇ m.
  • the thickness of the shell layer is 0.5 ⁇ m.
  • Figure 7 is a diagram showing the internal shape of the particles of the positive electrode material.
  • the shell and core of the core-shell material consist of 0.1-2 ⁇ small grains.
  • the shell and core were analyzed by energy spectrum EDS. The results are shown in Figure 8, Figure 9 and Table 1.
  • the content of Ni in the core is larger than the content of Ni in the shell, and the content of Co in the core is smaller than the content of Co in the shell.
  • Shell and core part EDS element analysis results are shown in Figure 8, Figure 9 and Table 1.
  • the content of Ni in the core is larger than the content of Ni in the shell, and the content of Co in the core is smaller than the content of Co in the shell.
  • Shell and core part EDS element analysis results are shown in Figure 8, Figure 9 and Table 1.
  • the preparation is a core material of LiNi Q . 5 Co 2 Mna 3 O 2 , the shell layer is LiCoO 2 , and the coating layer is ⁇ 1 2 ⁇ 3 .
  • the positive electrode material prepared in Example 2 weighed 5 g, added to a 100 mL acetic acid-lithium acetate buffer solution having a pH of 6.0, and gradually added a 0.1 mol/L solution of ⁇ 1( ⁇ 3 ) 3 , and stirred for 30 minutes.
  • the positive electrode active material having a surface of ⁇ 1 3 ⁇ 2 , a shell layer of LiCoO 2 and an inner matrix of LiNi 5 Co Q . 2 Mno. 3 O 2 was obtained, and its morphology was as shown in Fig. 10, and the particle diameter was 1-25 ⁇ m.
  • the thickness of the cladding layer was 25 nm.
  • a positive electrode material having a core of LiNi 5 Co 2 Mna 3 O 2 and a shell layer of LiCo 95 Ala() 5 O 2 was prepared.
  • the particle size was 1-25 ⁇ m, and then the lithium hydroxide monohydrate and the dried precursor were uniformly mixed at a molar ratio of 1.10, and the mixture was mixed in oxygen.
  • the mixture was calcined at 900 ° C for 12 hours in the atmosphere and naturally cooled to room temperature.
  • a positive electrode active material having a surface of LiCoO 2 and an internal matrix of LiNi 5 Coa 2 M 3 ⁇ 43 O 2 was obtained, and its morphology was as shown in Fig. 12, and the particle diameter was 1 to 25 ⁇ m.
  • the thickness of the shell layer is 0.6 ⁇ m.
  • a positive electrode material having a core of LiNi 5 Co 2 Mna 3 O 2 , a shell layer of LiCo 95 Ala() 5 O 2 and a cladding layer of MgO was prepared.
  • Example 7 Using the positive electrode material prepared in Example 5, weighed 5.0204 g, added to 100 mL of water, stirred to form a dispersion, and added a concentration of 0.1 mol/L of MgSO 4 solution, and adjusted the pH with a 1 mol/L NaOH solution. After stirring for 120 minutes, the mixture was filtered and washed with water to obtain a positive electrode material coated with Mg(OH) 2 . The positive electrode material was dried at 120 ° C for 10 hours, and then calcined at 500 ° C for 12 hours to obtain a surface. It is MgO, the shell layer is LiCo Q. 95 Al ()5 O 2 , and the internal matrix is LiNi Q . 5 Co 2 Mn a3 O 2 cathode active material, its morphology is shown in Figure 13, the particle size is 1-25 ⁇ . The thickness of the cladding layer was 30 nm. Example 7
  • the Co 3 O 4 and Ni 5 Coa 2 Mn a3 (OH) 2 precursors were uniformly mixed at a molar ratio of 1:4, and the uniformly mixed precursor was uniformly mixed with lithium carbonate in a molar ratio of 1.0:1.1 at 900 ° C.
  • the sintering atmosphere was oxygen to obtain a positive electrode material, which was a mixture of LiCoO 2 and Li[Ni 5 Co 2 Mna 3 ]O 2 .
  • the morphology of the positive electrode material is shown in Fig. 14, and the particle diameter is 0.5 to 25 ⁇ m.
  • Example 9 5 g of the positive electrode material in Example 7 was added to a 100 mL acetic acid-lithium acetate buffer solution having a pH of 6.0, and a 0.1 mol/L solution of ⁇ 1( ⁇ 3 ) 3 was gradually added, and after stirring for 30 minutes, 5% was added dropwise. Ammonia water, adjusted to pH 8.0, stirred for 30 minutes, stopped stirring, filtered, washed twice with water, and the coated precursor was dried at 120 ° C for 8 hours and then calcined at 450 ° C for 15 hours. A positive electrode material having a surface of ⁇ 1 2 ⁇ 3 and a positive electrode material body of a mixture of LiCoO 2 and Li[Ni 5 Co 2 Mna 3 ]O 2 was obtained.
  • Example 9 5 g of the positive electrode material in Example 7 was added to a 100 mL acetic acid-lithium acetate buffer solution having a pH of 6.0, and a 0.1 mol/L solution of ⁇ 1( ⁇ 3 )
  • the Co 3 O 4 and Ni 5 Co a2 Mn a3 (OH) 2 precursors were uniformly mixed at a molar ratio of 1:3, and the uniformly mixed precursor was uniformly mixed with lithium acetate in a molar ratio of 1.0:1.1 at 950 ° C. After sintering for 12 hours, the sintering atmosphere was oxygen.
  • the sintered cathode material is added to a 100 mL acetic acid-sodium acetate buffer solution having a pH of 6.0, and a 0.1 mol/L solution of ⁇ 1( ⁇ 3 ) 3 is gradually added.
  • a positive electrode material having a surface of ⁇ 1 2 ⁇ 3 and a positive electrode material body of a mixture of LiCoO 2 and Li[Ni Q . 5 Co 2 Mna 3 ]O 2 was obtained.
  • Figure 15 is an XRD chart of the positive electrode material prepared in Examples 8 and 9. The results show that the intensity of the diffraction peak of lithium cobaltate in the positive electrode material increases as the proportion of tricobalt tetroxide in the precursor increases.
  • Example 10
  • the core material was prepared as LiNi Q . 5 Co 2 Mna 3 O 2
  • the shell layer was a positive electrode material of LiCo 95 Ala Q5 O 2
  • the coating layer was a positive electrode material of ZrO 2 .
  • lithium hydroxide monohydrate and the dried precursor were uniformly mixed at a molar ratio of 1.10, and the mixture was baked at 900 ° C for 12 hours in an oxygen atmosphere, and naturally cooled to room temperature.
  • a positive active material having a shell layer of LiCoo.95Alo.05O2 and an inner matrix of LiNi 5 Co 2 Mna 3 O 2 was obtained, and its morphology was as shown in Fig. 16, and the particle diameter was 1-25 ⁇ m.
  • the thickness of the shell layer is 0.5 ⁇ m.
  • the positive electrode material has an a-NaFeO 2 type structure, and the space group is R-3m. Li occupies the 3a position, Ni, Co, and Mn occupy the 3b position, and O occupies the 3c position.
  • the positive electrode materials prepared in Examples ⁇ to ⁇ were separately mixed with the conductive agent acetylene black and the binder polyvinylidene fluoride (PVDF) in a solution of nitrogen methylpyrrolidone (NMP), a positive electrode material, acetylene black and a binder.
  • NMP nitrogen methylpyrrolidone
  • the mass ratio of the agents was 90:5:5, respectively, and then the uniformly mixed slurry was coated on an aluminum foil, and vacuum-dried at 120 ° C for 12 hours to obtain a positive electrode of a lithium ion battery.
  • the above-mentioned pole piece is used as a positive electrode, metal lithium is used as a negative electrode, the electrolyte is made of a solution of 1 mol/L lithium hexafluorophosphate of ethylene carbonate and dimethyl carbonate, and 20 ⁇ m thick polyethylene is used as a separator, and assembled into a CR2032 type button lithium ion battery. .
  • the assembled button battery was tested on a blue electric charge and discharge tester with a voltage range of 2.8-4.3 volts and a charge and discharge current density of 16 mA/g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供一种高能量密度锂离子电池氧化物正极材料、其制备方法及用途。所述正极材料包括正极材料主体和包覆层。所述主体包括壳层和位于壳层内的核心,所述核心的材料为Li1+x[Ni1-y-zCoyMnz]O2其中,-0.1≤x≤0.2,0≤y≤0.5,0≤z≤0.5,0≤y+z≤0.7;所述壳层的材料为Li1+a[Co1-bXb]O2,其中,-0.1≤a≤0.2,0≤b≤0.5,X为Al、Mg、Cu、Zr、Ti、Cr、V、Fe、Mn、Ni中的一种或其组合。或者所述主体为Li1+x[Ni1-y-zCoyMnz]O2和LiCoO2的混合物,其中,-0.1≤x≤0.2,0≤y≤0.5,0≤z≤0.5,0≤y+z≤0.7。所述包覆层的材料为Al2O3、ZrO2、MgO、SiO2、ZnO、TiO2、Y2O3、LiAlO2中的一种或其组合。所述正极材料具有容量高、循环性好、表面活性低、耐高压、安全性好的优点。制备工艺简单,适合大规模生产应用。

Description

高能量密度锂离子电池氧化物正极材料及其制备方法
技术领域
本发明属于能源材料领域, 涉及一种高能量密度锂离子电池用正极材料及其 制备方法。 技术背景
锂离子二次电池是一种理想的储能系统, 具有能量密度高、 循环性好、 自放 电率低和环境兼容性好等优点, 在各类消费电子产品领域获得迅速发展, 并在电 动工具、 电动汽车和发电储能领域显示出巨大的潜力。
高容量正极材料是开发高能量密度锂离子电池的基础与关键, 近年来成为了 世界研究的焦点。 镍基材料具有明显的成本优势, 随着镍含量的增加, 材料容量 能够明显提高, 如 NCA在 4.25V能够达到 180mAh/g, 但高镍正极材料的表面活 性较高, 容易与电解液发生副反应造成电池胀气, 因此需要对这些正极材料进行 改性处理。
核壳结构是一种有效的改性处理方法, 在核心颗粒外形成一层比基体更稳定 的壳层, 提高材料整体性能。 在颗粒在加上包覆层, 安全性能得到大幅提高。 目 前, 核壳结构正极材料的主要研究局限于壳层为高锰材料, 本领域尚需研制新型 的正极材料。 发明内容
本发明的目的在于, 提供一种新型的高能量密度锂离子电池氧化物正极材料 及其制备方法。 本发明的第一方面, 提供一种正极材料, 所述正极材料包括正极材料主体和 位于正极材料主体表面的包覆层,
其中, 包覆层材料为 Al2O3、 ZrO2、 MgO、 SiO2、 ZnO2、 TiO2、 Y2O3、 LiAlO2 中的一种或其组合; 所述正极材料主体包括壳层和位于壳层内的核心, 其中, 核心材料为
Lii+x[Ni1-y-zCoyMnz]O2, 其中, -0· 1≤χ≤0·2, 0≤y≤0.5, 0≤ζ≤0·5, 0<y+z<0.7 ; 壳层 材料为 Li1+a[Co1-bXb]O2, 其中, -0.1≤a≤0.2, 0≤b≤0.5, X为 Al、 Mg、 Cu、 Zr、 Ti、 Cr、 V、 Fe、 Mn、 Ni中的一种或其组合; 或
所述正极材料主体为 LUNii^COyMi ^和 LiCoO2 的混合物, 其中 -0.1<x<0.2, 0≤y≤0.5, 0≤ζ≤0·5, 0≤y+z≤0.7。
在另一优选例中, 壳层材料为 Li1+a[Co1-bXb]O2, -0.1≤a≤0.2, X为 Al、 Mg、 Cu、 Zr、 Ti、 Cr、 V、 Fe、 Mn、 Ni中两种以上的组合时, 各 b独立地为: 0<b≤0.5。
在另一优选例中, x=0。
在另一优选例中, a=0。
在另一优选例中, 所述核心材料和所述壳层材料的晶格结构均为 a-NaFeO2 型, 空间群均为 R-3m。
在另一优选例中, 所述核心材料和所述壳层材料均具有离子脱嵌能力。
在另一优选例中, 所述壳层厚度与所述正极材料颗粒半径的比例为 0.005-0.5; 和 /或
所述包覆层的厚度为 0.2〜50nm。
在另一优选例中, 所述核心材料中 Ni含量大于所述壳层材料中 Ni含量, 所 述核心材料中 Co含量小于所述壳层材料中 Co含量。
在另一优选例中, 所述核心由 0.1-5μιη的晶粒构成, 所述壳层由 0.1〜5μιη的 晶粒构成。 本发明的第二方面, 提供第一方面所述的正极材料的制备方法, 包括步骤:
(a) 在 Ni1-y-zCoyMnz(OH)2表面沉降 Co的氢氧化物, 或 X和 Co的氢氧化物, 得到核壳前驱体 P;
(b) 将所述核壳前驱体 P与锂源按照 Li/P=l-1.2的摩尔比混合后烧结;
(c) 在烧结后的样品的表面沉降金属 M的氢氧化物;
(d) 在 200- 1000 °C烧结 0.5-24小时, 得到所述正极材料,
其中, 0≤y≤1.0, 0≤z≤1.0, 0<y+z<l ; 0≤b≤1.0, X、 M独立地选自为 Al、 Mg、 Cu、 Zr、 Ti、 Cr、 V、 Fe、 Mn、 Ni、 Y、 Zn中的一种或其组合。
在另一优选例中, 所述步骤 (c)中, 将烧结后的样品置于缓冲溶液中, 加入所 述金属 M的盐溶液, 调节 pH至碱性, 在所述烧结后的样品的表面沉降金属 M 的氢氧化物。
在另一优选例中,所述缓冲溶液为醋酸-醋酸钠、醋酸-醋酸钾、醋酸-醋酸锂、 氨-氯化铵、 氨水、 醋酸铵-醋酸钠、 醋酸、 氨 -氢氧化钠、 氨 -氢氧化钾、 磷酸盐缓 冲溶液、 硼酸盐缓冲溶液中的一种或其组合, 所述缓冲溶液的 pH为 4.0-14.0。 本发明的第三方面, 提供第一方面所述的正极材料的制备方法, 包括步骤:
(a) 在 Ni1-y-zCoyMnz(OH)2与 Co3O4混合, 得到核壳前驱体 P;
(b) 将所述核壳前驱体 P与锂源按照 Li/P=l-1.2的摩尔比混合后烧结;
(c) 在烧结后的样品的表面沉降金属 M的氢氧化物;
(d) 在 200- 1000 °C烧结 0.5-24小时, 得到所述正极材料,
其中, 0≤y≤1.0, 0≤z≤1.0, 0<y+z<l ; 0≤b≤1.0, X、 M独立地选自为 Al、 Mg、 Cu、 Zr、 Ti、 Cr、 V、 Fe、 Mn、 Ni、 Y、 Zn中的一种或其组合。
在另一优选例中, NiLy.zCOyMn^OH 与 Co3O4的质量比为 0.1 : 0.9至 0.9:0.1。 在另一优选例中, 锂源采用碳酸锂、 一水氢氧化锂、 醋酸锂、 硝酸锂中的一 种或其组合。
在另一优选例中, 所述 Co3O4的颗粒尺寸为 0.1-5μιη。
在另一优选例中, 所述步骤 (c)中, 将烧结后的样品置于缓冲溶液中, 加入所 述金属 Μ的盐溶液, 调节 pH至碱性, 在所述烧结后的样品的表面沉降金属 Μ 的氢氧化物。
在另一优选例中,所述缓冲溶液为醋酸-醋酸钠、醋酸-醋酸钾、醋酸-醋酸锂、 氨-氯化铵、 氨水、 醋酸铵-醋酸钠、 醋酸、 氨 -氢氧化钠、 氨 -氢氧化钾、 磷酸盐缓 冲溶液、 硼酸盐缓冲溶液中的一种或其组合, 所述缓冲溶液的 pH为 4.0-14.0。 本发明的第四方面, 提供一种锂离子电池, 包括第一方面所述的正极材料。 应理解, 在本发明范围内中, 本发明的上述各技术特征和在下文 (如实施例) 中具体描述的各技术特征之间都可以互相组合, 从而构成新的或优选的技术方 案。 限于篇幅, 在此不再一一累述。 附图说明
图 1为实施例 1制备的核壳前驱体的扫描电镜图。
图 2为实施例 1制备的正极材料的扫描电镜图。
图 3为实施例 2制备的核壳前驱体的扫描电镜图。
图 4为实施例 2制备的正极材料的扫描电镜图。
图 5为实施例 3制备的核壳前驱体的扫描电镜图。
图 6为实施例 3制备的正极材料的扫描电镜图。
图 7为实施例 3制备的正极材料的颗粒内部形貌图。
图 8为实施例 3壳层 EDS谱图。
图 9为实施例 3核心 EDS谱图。
图 10为实施例 4制备的正极材料的扫描电镜图。
图 11为实施例 5制备的核壳前驱体的扫描电镜图。
图 12为实施例 5制备的正极材料的扫描电镜图。
图 13为实施例 6制备的正极材料的扫描电镜图。
图 14实施例 7制备的正极材料的扫描电镜图。
图 15为实施例 8、 9制备的正极材料的 XRD谱图。
图 16实施例 10制备的正极材料的扫描电镜图。
图 17为实施例 3制备的正极材料谱图精修后的结果图。
图 18为实施例 1-4制备的正极材料的放电曲线。
图 19为实施例 5、 6、 10制备的正极材料的放电曲线。
图 20为实施例 7-9制备的正极材料的放电曲线。
图 21为实施例 3、 实施例 4制备的正极材料充放电循环图。
图 22为实施例 5、 实施例 6制备的正极材料充放电循环图。
图 23为实施例 7、 实施例 8制备的正极材料充放电循环图。 具体实施方式
本申请的发明人经过广泛而深入地研究, 意外研发出一种新型的正极材料, 在正极材料主体外沉积一层无定形氧化物包覆层, 可进一步提高正极材料的综合 性能, 能够用于制作锂离子二次电池。 在此基础上, 完成了本发明。 正极材料
本发明的正极材料包括正极材料主体和位于正极材料主体表面的包覆层, 其中, 包覆层材料为 Al2O3、 ZrO2、 MgO、 SiO2、 ZnO2、 TiO2、 Y2O3、 LiAlO2 中的一种或其组合;
所述正极材料主体包括壳层和位于壳层内的核心, 其中, 核心材料为 Li1+x[Ni1-y-zCoyMnz]O2, 其中, -0· 1≤χ≤0·2, 0≤y≤0.5, 0≤ζ≤0·5, 0<y+z<0.7 ; 壳层 材料为 Li1+a[Co1-bXb]O2, 其中, -0.1≤a≤0.2, 0≤b≤0.5, X为 Al、 Mg、 Cu、 Zr、 Ti、 Cr、 V、 Fe、 Mn、 Ni中的一种或其组合; 或
所述正极材料主体为 Li ^Ni^^COyMigOs和 LiCoO2 的混合物, 其中 -0.1<x<0.2, 0≤y≤0.5, 0≤ζ≤0·5, 0≤y+z≤0.7。
该正极材料核心部分组成与壳层部分都有离子脱嵌能力, 两者的结构相同, 但元素组成不同。 壳层为高钴材料, 具有更好的电化学性能, 在壳层外沉积一层 无定形氧化物包覆层, 可进一步提高材料的综合性能。
从壳层至核心, Ni的浓度逐渐增加, Co的浓度逐渐减小。 根据合成的正极 材料 XRD谱图解析, 核心和壳层材料均具有 a-NaFeO2结构, 空间群为 R-3m。 Li占据 3a位置, Ni、 Co、 Mn占据 3b位置, O占据 3c位置。
该材料的特征还在于, 核心和壳层组成球形颗粒, 球形颗粒由 0.1-2μιη的晶 粒构成, 该球形颗粒的尺寸为 2-50μιη。
包覆层材料的质量占活性正极材料总质量的 0.001-10%, 包覆层厚度为 0.2-50nm。 壳层厚度与整个正极材料球形颗粒粒径的比值为 0.005-0.5。 制备方法 本发明的的正极材料的制备方法, 包括步骤:
(a) 在 Ni1-y-zCoyMnz(OH)2表面沉降 Co的氢氧化物, 或 X和 Co的氢氧化物, 得到核壳前驱体 P;
(b) 将所述核壳前驱体 P与锂源按照 Li/P=l-1.2的摩尔比混合后烧结;
(c) 在烧结后的样品的表面沉降金属 M的氢氧化物;
(d) 在 200- 1000 °C烧结 0.5-24小时, 得到所述正极材料,
其中, 0≤y≤1.0, 0≤z≤1.0, 0<y+z<l ; 0≤b≤1.0, X、 M独立地选自为 Al、 Mg、 Cu、 Zr、 Ti、 Cr、 V、 Fe、 Mn、 Ni、 Y、 Zn中的一种或其组合。
本发明中, Li/P=l-1.2的摩尔比是指 Li的摩尔数与核壳前驱体的摩尔数之比 为 1-1.2。
本发明的方法, 制备的前驱体具有核壳结构, 烧结后, 颗粒形成一个具有浓 度梯度的壳层。 采用本制备方法, 能够使包覆层物质均匀附着在核壳材料表面。
在一优选实施方式中, 本发明的正极材料可以通过以下方法制备: a. 将前驱体 Νί^ζΟ)γΜηζ(ΟΗ)2, 0<y<1.0, 0<z<1.0 , 0<y+z<l , 加入到溶剂 S中, 搅拌形成分散液 S l。 溶剂 S可以是水、 乙醇、 乙二醇中的一种或几种的混 合物。
b. 将 Co的盐溶液或 Co、 X的盐溶液加入到 SI中。 Co、 X盐溶液的浓度为 0〜10 mol/L。 操作气氛可以是空气、 氮气、 氩气中的一种或几种。 X为 Al、 Mg、 Cu、 Zr、 Ti、 Cr、 V、 Fe、 Mn中的一种或几种能溶于溶剂 S I的盐。
c. 在 b步骤操作的同时, 加入碱性溶液 E, 使金属离子 Co或 Co和 X完全 沉淀。 碱性溶液可以是氨水、 氢氧化锂、 氢氧化钠、 氢氧化钾溶液中的一种或几 种。
d. 过滤、 干燥得核壳前驱体 Pl。 干燥温度为 50-200 °C。
e. 将包覆前驱体 PI与锂盐按摩尔比 Li/Pl=1.0〜 1.2进行混合。 锂盐采用碳 酸锂、 一水氢氧化锂、 醋酸锂、 硝酸锂中的一种或几种。
f. 高温煅烧。化合物在 T 1温度下预烧 0-20小时,然后在 T2温度下保温 5-50 小时, 其中 T1=100-1000°C, T2=400-1000°C o
g. 烧结后的样品加入到缓冲溶液中, 搅拌形成分散液。该缓冲溶液可以是醋 酸-醋酸钠、 醋酸-醋酸钾、 醋酸-醋酸锂、 氨-氯化铵、 氨水、 氯化铵中的一种或几 种。 缓冲溶液 pH范围在 4.0- 14.0之内。
h. 加入包覆金属 M的盐溶液, 金属 M盐类化合物必须能溶于溶剂 S, 可以 是铝、 镁、 锆、 硅、 锌、 钛的氯化物、 硝酸盐、 硫酸盐、 醋酸盐中的一种或几种。 溶剂 S 可以是水、 乙醇、 乙二醇中的一种或几种的混合物。 M盐溶液的浓度为 0.01〜10 mol/L。
i. 加入碱性溶液 E, 使金属 M完全沉淀。 碱性溶液可以是氨水、 氢氧化锂、 氢氧化钠、 氢氧化钾溶液中的一种或几种。
j . 过滤后干燥, 干燥温度为 50-200 °C。
k. 高温焙烧, 焙烧温度为 300- 100°C, 焙烧时间为 1 -24小时。 包覆金属盐化 合物的重量为含锂活性物质重量的 0.5- 10%。 本发明的正极材料的制备方法, 包括步骤:
(a) 在 Ni1-y-zCoyMnz(OH)2与 Co3O4混合, 得到核壳前驱体 P ;
(b) 将所述核壳前驱体 P与锂源按照 Li/P=l - 1.2的摩尔比混合后烧结;
(c) 在烧结后的样品的表面沉降金属 M的氢氧化物;
(d) 在 200- 1000 °C烧结 0.5-24小时, 得到所述正极材料,
其中, 0≤y≤1.0, 0≤z≤1.0, 0<y+z<l ; 0≤b≤1 .0, X、 M独立地选自为 Al、 Mg、 Cu、 Zr、 Ti、 Cr、 V、 Fe、 Mn、 Ni、 Y、 Zn中的一种或其组合。 本发明的有益之处在于:
(1) 本发明提供了一种新型结构和组成的正极材料。
(2) 本发明的正极材料壳层均匀, 厚度可控。
(3) 正极材料具有最外层的包覆层, 对正极材料主体起到良好的保护作用。
(4) 本发明的正极材料具有容量高、 循环性好、 表面活性低、 耐高压、 安全 性好等优点。
(5) 本发明的制备工艺简单, 适合大规模应用。 下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明 本发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方法, 通常按照常规条件或按照制造厂商所建议的条件。 除非另行定义, 文中所使用的所有专业与科学用语与本领域熟练人员所熟悉 的意义相同。 此外, 任何与所记载内容相似或均等的方法及材料皆可应用于本发 明方法中。 文中所述的较佳实施方法与材料仅作示范之用。 实施例 1
制备核心为 LiNi1/3Co1/3Mn1/3O2,壳层为 Li[( 1/3Co1/3Mn1/3) 99AlaQ1]O2的正极 材料。
称取 13.3234g Al2(SO4)3-18H2O, 加入到 100g 水中完全溶解, 加入前驱体 Ni1/3Co1/3Mn1/3(OH)2 18.3083g , 搅拌形成前驱体的分散液, 加入浓度为 2%的 ΝΗ3·Η2Ο, 使 Α1(ΟΗ)3完全沉淀出来, 终点 pH值在 9左右, 滴加完后, 继续搅 拌 60分钟, 停止搅拌后过滤, 水洗两次, 将被包覆的前驱体在 120°C下干燥 12 小时, 其形貌如图 1 所示, 粒径为 1-20μιη。 然后将一水氢氧化锂与干燥的前驱 体按照摩尔比 1.10混合均匀, 将混合物在空气中 450°C预烧 5 小时后, 升温至 900°C焙烧 12小时, 自然冷却至室温。得到表面为 Li[(Ni1/3Co1/3Mn1/3)a99AlaQ1]O2, 内部基体为 LiNi1/3Co1/3Mn1/3O2的正极活性材料, 其形貌如图 2 所示, 粒径为 1-21 μιη, 壳层厚度为 0.2μιη。 实施例 2
制备核心为 LiNi 5Co 2Mna3O2,壳层为 Li[( a5Coa2Mn 3)a99Ala()1]O2的正极 材料。
称取 Α1(ΝΟ3)3·9Η2Ο L4450g, 溶于 100 mL水中, 加入 Nio.5CoQ.2MnQ.3(OH)2 10.0420g, 形成前驱体的分散液, 滴加浓度为 1%氨水, 调节 pH值至 9.0左右, 继续用浓氨水调节 pH至 11, 搅拌 60分钟, 停止搅拌后过滤, 水洗两次, 将被 包覆的前驱体在 120°C下干燥 12小时, 其形貌如图 3所示, 粒径为 1-20μιη。 然 后将一水氢氧化锂与干燥的前驱体按照摩尔比 1.10混合均匀,将混合物在氧气气 氛中 900°C焙烧 12小时,自然冷却至室温。得到壳层为 I^iNi sCo^Mna^^Al ^ ]O2, 核心为 LiNia5Coa2Mno.3O2的正极活性材料, 其形貌如图 4 所示, 粒径为 1-25μιη。 壳层厚度为 0.5μιη。 实施例 3
制备核心为 LiNi 5Co 2Mna3O2, 壳层为 LiCoO2的正极材料。
称取 Co(CH3COO)2*4H2O 1.4411g , 溶于 100 mL 水 中 , 力口 入
Nia5Coa2Mn 3(OH)2 10.0200g, 形成前驱体的分散液, 滴加浓度为 1%氨水, 调节 pH值至 9.0左右, 继续用浓氨水调节 pH至 11, 搅拌 60分钟, 停止搅拌后过滤, 水洗两次, 将被包覆的前驱体在 120°C下干燥 12小时, 其形貌如图 5所示, 粒径 为 1-20μιη, 然后将一水氢氧化锂与干燥的前驱体按照摩尔比 1.10混合均匀, 将 混合物在氧气气氛中 900°C焙烧 12小时, 自然冷却至室温。 得到表面为 LiCoO2, 内部基体为 LiNi 5Co 2Mn 3O2的正极活性材料, 其形貌如图 6 所示, 粒径为 1-25μιη。 壳层厚度为 0.5μιη。
图 7为正极材料的颗粒内部形貌图。核壳材料的壳层和核心部分均由 0.1-2μιη 小晶粒组成。
采用能谱 EDS分别对壳层、 核心进行分析, 结果如图 8、 图 9和表 1所示。 核心中 Ni含量大于壳层中 Ni含量, 核心中 Co含量小于壳层中 Co含量。 壳层和核心部分 EDS元素分析结果
Figure imgf000011_0001
实施例 4
制备核心为 LiNiQ.5Co 2Mna3O2,壳层为 LiCoO2,包覆层为 Α12Ο3的正极材料。 采用实施例 2中制备的正极材料, 称取 5g, 加入到 pH为 6.0的 lOOmL醋酸 -醋酸锂缓冲溶液中, 逐渐加入 O.lmol/L的 Α1(ΝΟ3)3溶液, 搅拌 30分钟后, 滴加 5%氨水, 调节 pH至 8.0, 搅拌 30分钟, 停止搅拌后过滤, 水洗两次, 将被包覆 的前驱体在 120°C下干燥 12小时,然后在 550°C下焙烧 8小时。得到表面为 Α13Ο2, 壳层为 LiCoO2, 内部基体为 LiNi 5CoQ.2Mno.3O2的正极活性材料, 其形貌如图 10 所示, 粒径为 1-25μιη。 包覆层的厚度 25nm。 实施例 5
制备核心为 LiNi 5Co 2Mna3O2, 壳层为 LiCo 95Ala()5O2的正极材料。
称取 Co(CH3COO)2*4H2O 5.4360g, Α1(ΝΟ3)3·9Η2Ο 0.9097g, 溶于 lOOmL水 中, 加入 NiQ.5Co 2Mn 3(OH)2 20.0100g, 搅拌形成前驱体的分散液, 滴加浓度 为 5%氨水,调节 pH至 9.0左右,然后用 lmol/L的 NaOH溶液调节 pH值至 11.0, 搅拌 30分钟, 停止搅拌后过来, 水洗两次, 将此前驱体在 120°C下干燥 12小时, 其形貌如图 11所示,粒径为 1-25μιη然后将一水氢氧化锂与干燥的前驱体按照摩 尔比 1.10混合均匀, 将混合物在氧气气氛中 900°C焙烧 12小时, 自然冷却至室 温。 得到表面为 LiCoO2, 内部基体为 LiNi 5Coa2M¾3O2的正极活性材料, 其形 貌如图 12所示, 粒径为 1-25μιη。 壳层厚度为 0.6μιη。 实施例 6
制备核心为 LiNi 5Co 2Mna3O2, 壳层为 LiCo 95Ala()5O2, 包覆层为 MgO的 正极材料。
采用实施例 5中制备的正极材料, 称取 5.0204g, 加入到 lOOmL水中, 搅拌 后形成分散液, 加入浓度为 O.lmol/L的 MgSO4溶液, 用 1 mol/L的 NaOH溶液 调节 pH值至 12, 搅拌 120min后, 过滤、 水洗, 得到表面包覆有 Mg(OH)2的正 极材料, 将该正极材料在 120°C下干燥 10小时, 然后在 500°C下焙烧 12小时, 得到表面为 MgO,壳层为 LiCoQ.95Al ()5O2, 内部基体为 LiNiQ.5Co 2Mna3O2的正极 活性材料, 其形貌如图 13所示, 粒径为 1-25μιη。 包覆层的厚度 30nm。 实施例 7
将 Co3O4与 Ni 5Coa2Mna3(OH)2前驱体按照摩尔比 1:4混合均匀, 混合均匀 的前驱体与碳酸锂按照摩尔比 1.0: 1.1的比例混合均匀, 在 900°C下烧结 12小时, 烧结气氛为氧气, 得到正极材料, 为 LiCoO2和 Li[Ni 5Co 2Mna3]O2的混合物。 正极材料的形貌如图 14所示, 粒径为 0.5-25μιη。 实施例 8
将实施例 7中的正极材料 5g, 加入到 pH为 6.0的 100mL醋酸 -醋酸锂缓冲 溶液中, 逐渐加入 O.lmol/L的 Α1(ΝΟ3)3溶液, 搅拌 30分钟后, 滴加 5%氨水, 调节 pH至 8.0, 搅拌 30分钟, 停止搅拌后过滤, 水洗两次, 将被包覆的前驱体 在 120°C下干燥 8小时, 然后在 450°C下焙烧 15小时。 得到表面为 Α12Ο3, 正极 材料主体为 LiCoO2和 Li[Ni 5Co 2Mna3]O2的混合物的正极材料。 实施例 9
将 Co3O4与 Ni 5Coa2Mna3(OH)2前驱体按照摩尔比 1:3混合均匀, 混合均匀 的前驱体与醋酸锂按照摩尔比 1.0: 1.1的比例混合均匀, 在 950°C下烧结 12小时, 烧结气氛为氧气。烧结后的正极材料加入到 pH为 6.0的 lOOmL醋酸 -醋酸钠缓冲 溶液中, 逐渐加入 O.lmol/L的 Α1(ΝΟ3)3溶液, 搅拌 60分钟后, 滴加 1%氨水, 调节 pH至 8.0, 搅拌 50分钟, 停止搅拌后过滤, 水洗两次, 将被包覆的前驱体 在 120°C下干燥 8小时, 然后在 450°C下焙烧 12小时。 得到表面为 Α12Ο3, 正极 材料主体为 LiCoO2和 Li[NiQ.5Co 2Mna3]O2的混合物的正极材料。
图 15为实施例 8、 9制备的正极材料的 XRD谱图。 结果表明, 正极材料中 钴酸锂的衍射峰强度随前驱体中四氧化三钴的比例增加而增加。 实施例 10
制备核心为 LiNiQ.5Co 2Mna3O2, 壳层为 LiCo 95AlaQ5O2的正极材料, 包覆层 为 ZrO2的正极材料。
称取 Co(CH3COO)2*4H2O 5.4380g, Α1(ΝΟ3)3·9Η2Ο 0.9085g, 溶于 lOOmL水 中, 加入 Ni 5Co 2Mn 3(OH)2 20.0120g, 搅拌形成前驱体的分散液, 滴加浓度 为 5%氨水,调节 pH至 9.0左右,然后用 lmol/L的 NaOH溶液调节 pH值至 11.0, 搅拌 30分钟,停止搅拌后过滤,水洗两次,将此前驱体在 120°C下干燥 12小时,, 粒径为 1-20μιη。然后将一水氢氧化锂与干燥的前驱体按照摩尔比 1.10混合均匀, 将混合物在氧气气氛中 900 °C焙烧 12 小时, 自然冷却至室温。 得到壳层为 LiCoo.95Alo.05O2 , 内部基体为 LiNi 5Co 2Mna3O2的正极活性材料, 其形貌如图 16 所示, 粒径为 1-25μιη。 壳层厚度为 0.5μιη。
配制 ρΗ=5.5的 HAc-NaAc缓冲溶液 50mL,上述合成的正极材料加入缓冲溶 液中, 然后将 0.1 mol/L的 Zr(Ac)4溶液加入到缓冲溶液中, 逐渐沉降 Zr(OH)4, 搅拌 60分钟后过滤, 水洗三次。 在干燥箱中 110°C下, 干燥 5个小时, 然后在 550°C煅烧 6小时, 冷却到室温, 得到三层结构的正极材料。 颗粒直径 1-25μιη, 壳层厚度为 0.5μιη。 结构表征及性能测试:
以实施例 3制备的正极材料为例, 对其 XRD图谱进行解析, 结果如图 17所 示。 根据解析结果可知, 该正极材料具有 a-NaFeO2型结构, 空间群为 R-3m。 Li 占据 3a位置, Ni、 Co、 Mn占据 3b位置, O占据 3c位置。 解析的晶胞参数为, a=b=2.8662, c=14.2302, 精修结果中 Rp=0.99%, wp=1.36%, GOF=1.32%。
将实施例 ι〜ιο 制备的正极材料分别与导电剂乙炔黑、 粘结剂聚偏氟乙烯 (PVDF) 在氮甲基吡咯垸酮 (NMP) 溶液中混合均匀, 正极材料、 乙炔黑和粘 结剂的质量比分别为 90: 5: 5, 然后将混合均匀的料浆涂覆在铝箔上, 120°C下 真空干燥 12小时, 制得锂离子电池正极。
使用上述极片为正极, 以金属锂为负极, 电解液采用 1 mol/L六氟磷酸锂的 碳酸乙烯酯和碳酸二甲酯的溶液, 20微米厚的聚乙烯为隔膜, 组装成 CR2032型 纽扣锂离子电池。
组装成的纽扣电池在蓝电充放电测试仪上, 进行充放电测试, 电压范围为 2.8-4.3伏, 充放电电流密度采用 16 mA/g。
图 18、 19、 20为实施例 1〜10制备的正极材料的放电曲线。 表 2显示各实施例制备的正极材料的初始放电容量。
结果表明, 核壳正极材料容量与核心材料容量基本一致, 核壳材料表面包覆 氧化物后, 容量较包覆之前略有减小。 表 2初始放电容量对比
Figure imgf000015_0001
以实施例 3〜8制备正极材料为例, 对表面未包覆氧化物的正极材料和表面包 覆氧化物的正极材料的充放电循环结果进行比较, 如图 21-23所示。 结果表明, 表面包覆氧化物的核壳正极材料较未包覆的正极材料容量保持率高, 循环性较 好。 在本发明提及的所有文献都在本申请中引用作为参考, 就如同每一篇文献被 单独引用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容之后, 本 领域技术人员可以对本发明作各种改动或修改, 这些等价形式同样落于本申请所 附权利要求书所限定的范围。

Claims

权 利 要 求
1.一种正极材料, 其特征在于, 所述正极材料包括正极材料主体和位于正极 材料主体表面的包覆层,
其中, 包覆层材料为 Al2O3、 ZrO2、 MgO、 SiO2、 ZnO2、 TiO2、 Y2O3、 LiAlO2 中的一种或其组合;
所述正极材料主体包括壳层和位于壳层内的核心, 其中, 核心材料为 Lii+x[Ni1-y-zCoyMnz]O2, 其中, -0.1<x<0.2 , 0≤y≤0.5, 0≤ζ≤0·5, 0<y+z<0.7 ; 壳层 材料为 Li1+a[Co1-bXb]O2, 其中, -0.1≤a≤0.2, 0≤b≤0.5, X为 Al、 Mg、 Cu、 Zr、 Ti、 Cr、 V、 Fe、 Mn、 Ni中的一种或其组合; 或
所述正极材料主体为 LUNii^COyMi ^和 LiCoO2 的混合物, 其中 -0.1<x<0.2, 0≤y≤0.5, 0≤ζ≤0·5, 0≤y+z≤0.7。
2. 如权利要求 1所述的正极材料, 其特征在于, 所述核心材料和所述壳层材 料的晶格结构均为 a-NaFeO2型, 空间群均为 R-3m。
3. 如权利要求 1所述的正极材料, 其特征在于, 所述壳层厚度与所述正极材 料颗粒半径的比例为 0.005-0.5 ; 和 /或
所述包覆层的厚度为 0.2〜50nm。
4. 如权利要求 1所述的正极材料, 其特征在于, 所述核心材料中 Ni含量大 于所述壳层材料中 Ni含量, 所述核心材料中 Co含量小于所述壳层材料中 Co含
5. 如权利要求 1所述的正极材料, 其特征在于, 所述核心由 0.1-5μιη的晶粒 构成, 所述壳层由 0.1〜5μιη的晶粒构成。
6. 如权利要求 1〜5任一项所述的正极材料的制备方法,其特征在于,包括步 骤:
(a) 在 Ni1-y-zCoyMnz(OH)2表面沉降 Co的氢氧化物, 或 X和 Co的氢氧化物, 得到核壳前驱体 P;
(b) 将所述核壳前驱体 P与锂源按照 Li/P=l-1.2的摩尔比混合后烧结;
(c) 在烧结后的样品的表面沉降金属 M的氢氧化物; (d) 在 200- 1000 °C烧结 0.5-24小时, 得到所述正极材料,
其中, 0≤y≤1.0, 0≤z≤1.0, 0<y+z<l ; 0≤b≤1.0, X、 M独立地选自为 Al、 Mg、 Cu、 Zr、 Ti、 Cr、 V、 Fe、 Mn、 Ni、 Y、 Zn中的一种或其组合。
7. 如权利要求 1所述的正极材料的制备方法, 其特征在于, 包括步骤:
(a) 在 Ni1-y-zCoyMnz(OH)2与 Co3O4混合, 得到核壳前驱体 P;
(b) 将所述核壳前驱体 P与锂源按照 Li/P=l-1.2的摩尔比混合后烧结;
(c) 在烧结后的样品的表面沉降金属 M的氢氧化物;
(d) 在 200- 1000 °C烧结 0.5-24小时, 得到所述正极材料,
其中, 0≤y≤1.0, 0≤z≤1.0, 0<y+z<l ; 0≤b≤1.0, X、 M独立地选自为 Al、 Mg、 Cu、 Zr、 Ti、 Cr、 V、 Fe、 Mn、 Ni、 Y、 Zn中的一种或其组合。
8. 如权利要求 6或 7所述的方法, 其特征在于, 所述步骤 (c)中, 将烧结后的 样品置于缓冲溶液中, 加入所述金属 M的盐溶液, 调节 pH至碱性, 在所述烧结 后的样品的表面沉降金属 M的氢氧化物。
9. 如权利要求 8所述的方法, 其特征在于, 所述缓冲溶液为醋酸-醋酸钠、 醋酸-醋酸钾、 醋酸-醋酸锂、 氨-氯化铵、 氨水、 醋酸铵-醋酸钠、 醋酸、 氨 -氢氧 化钠、 氨 -氢氧化钾、 磷酸盐缓冲溶液、 硼酸盐缓冲溶液中的一种或其组合, 所述 缓冲溶液的 pH为 4.0-14.0。
10. 一种锂离子电池, 其特征在于, 包括权利要求 1〜5任一项所述的正极材
PCT/CN2012/078726 2012-06-21 2012-07-16 高能量密度锂离子电池氧化物正极材料及其制备方法 WO2013189109A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/579,824 US20150104708A1 (en) 2012-06-21 2014-12-22 Oxide cathode material for lithium ion battery having high energy density and preparation process thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210211960.3 2012-06-21
CN201210211960.3A CN103515606B (zh) 2012-06-21 2012-06-21 高能量密度锂离子电池氧化物正极材料及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/579,824 Continuation US20150104708A1 (en) 2012-06-21 2014-12-22 Oxide cathode material for lithium ion battery having high energy density and preparation process thereof

Publications (1)

Publication Number Publication Date
WO2013189109A1 true WO2013189109A1 (zh) 2013-12-27

Family

ID=49768059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078726 WO2013189109A1 (zh) 2012-06-21 2012-07-16 高能量密度锂离子电池氧化物正极材料及其制备方法

Country Status (3)

Country Link
US (1) US20150104708A1 (zh)
CN (1) CN103515606B (zh)
WO (1) WO2013189109A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746114A (zh) * 2014-01-29 2014-04-23 厦门钨业股份有限公司 一种钴酸锂正极材料的制备方法
KR20150134161A (ko) * 2014-05-21 2015-12-01 삼성에스디아이 주식회사 복합 양극 활물질, 이를 포함하는 리튬 전지, 및 이의 제조방법
US20160218359A1 (en) * 2015-01-22 2016-07-28 Samsung Sdi Co., Ltd. Positive electrode active material, preparing method thereof, and lithium secondary battery employing positive electrode comprising positive electrode active material
EP3248233A4 (en) * 2015-01-23 2018-11-21 Umicore Lithium metal oxide cathode powders for high voltage lithium-ion batteries
CN110921786A (zh) * 2019-11-23 2020-03-27 同济大学 一种去除邻苯二甲酸酯类的光电催化阳极材料及处理方法
CN112467099A (zh) * 2020-10-31 2021-03-09 浙江锋锂新能源科技有限公司 一种TiNb2O7材料的制备方法

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226271B (zh) * 2014-05-30 2017-12-12 宁德时代新能源科技股份有限公司 复合正极活性材料及锂离子二次电池
CN105244490A (zh) * 2014-07-11 2016-01-13 北京当升材料科技股份有限公司 一种高镍正极材料及其制备方法
CN105449196B (zh) * 2014-08-28 2019-01-08 宁德时代新能源科技股份有限公司 复合正极活性物质及锂离子二次电池
CN104201374A (zh) * 2014-09-11 2014-12-10 海宁美达瑞新材料科技有限公司 一种高容量的锂离子电池正极材料及其制备方法
CN104362295B (zh) * 2014-11-13 2016-06-29 四川浩普瑞新能源材料有限公司 一种锂离子电池用镍基正极材料及其制备方法
KR20160081545A (ko) * 2014-12-31 2016-07-08 주식회사 에코프로 양극활물질 및 이의 제조 방법
WO2016115404A1 (en) * 2015-01-15 2016-07-21 Envia Systems, Inc. Positive electrode active materials with composite coatings for high energy density secondary batteries and corresponding processes
US10833321B2 (en) * 2015-03-06 2020-11-10 Uchicago Argonne, Llc Cathode materials for lithium ion batteries
CN104766959B (zh) * 2015-03-24 2017-01-25 江苏乐能电池股份有限公司 一种Li(Ni0.8Co0.1Mn0.1)O2三元材料的制备方法
CN105161679B (zh) * 2015-06-30 2018-01-16 中国人民解放军国防科学技术大学 富锂正极材料及其制备方法和应用
KR102007496B1 (ko) 2015-06-30 2019-08-06 주식회사 엘지화학 양극 활물질 입자 및 이를 포함하는 이차 전지
KR101913897B1 (ko) * 2015-09-30 2018-12-28 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR101982790B1 (ko) * 2015-10-20 2019-05-27 주식회사 엘지화학 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극
KR102065716B1 (ko) * 2015-10-20 2020-02-11 주식회사 엘지화학 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
KR102088508B1 (ko) * 2015-10-22 2020-03-12 주식회사 엘지화학 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
CN105655566B (zh) * 2016-04-12 2019-06-28 北京工业大学 一种二氧化硅包覆富锂锰基正极材料的合成方法
CN105938917A (zh) * 2016-07-01 2016-09-14 深圳市振华新材料股份有限公司 锂离子二次电池钴酸锂正极材料及其制法和应用
CN106395920B (zh) * 2016-08-29 2018-02-06 青海泰丰先行锂能科技有限公司 一种元素共掺杂改性三元锂离子电池正极材料及制备方法
JP6903742B2 (ja) * 2017-03-31 2021-07-14 パナソニック株式会社 非水電解質二次電池用正極活物質
CN108878873B (zh) * 2017-05-11 2021-07-30 中国科学院宁波材料技术与工程研究所 磷酸铁锂正极材料改性表面结构及其制备方法和应用
CN108878794B (zh) * 2017-05-11 2021-11-05 中国科学院宁波材料技术与工程研究所 具有复合包覆层的尖晶石结构锂离子电池正极材料及其制法
CN107240690A (zh) * 2017-06-16 2017-10-10 广东工业大学 一种包覆型锂离子电池三元正极材料的制备方法
US12021226B2 (en) * 2017-06-30 2024-06-25 Uchicago Argonne, Llc Cathode materials for secondary batteries
KR20190003110A (ko) 2017-06-30 2019-01-09 삼성전자주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
CN109428060A (zh) * 2017-08-28 2019-03-05 中国科学院宁波材料技术与工程研究所 一种包覆型多层前驱体的制备方法及应用
CN109428061B (zh) * 2017-08-28 2021-05-25 中国科学院宁波材料技术与工程研究所 一种核壳材料
US11081693B2 (en) 2017-08-30 2021-08-03 Samsung Electronics Co., Ltd. Composite cathode active material, method of preparing the same, and cathode and lithium battery including the composite cathode active material
KR102400050B1 (ko) 2017-10-20 2022-05-19 비에이에스에프 산산 배터리 머터리얼즈 컴퍼니 리미티드 리튬 코발트 금속 산화물 분말, 이의 제조방법, 및 코발트(ii,iii) 산화물의 함량 결정 방법
CN109696520B (zh) * 2017-10-20 2023-01-24 巴斯夫杉杉电池材料有限公司 一种锂离子电池正极活性材料中Co3O4含量的测定方法
KR102500085B1 (ko) * 2017-10-26 2023-02-15 주식회사 엘지에너지솔루션 리튬-결핍 전이금속 산화물을 포함하는 코팅층이 형성된 리튬 과잉의 리튬 망간계 산화물을 포함하는 양극 활물질 및 이를 포함하는 리튬 이차전지용 양극
KR102268079B1 (ko) * 2017-11-21 2021-06-23 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
CN110034274B (zh) * 2018-01-11 2022-07-15 宁波纳微新能源科技有限公司 改性三元正极材料、其制备方法及锂离子电池
US20210234164A1 (en) * 2018-05-04 2021-07-29 Lg Chem, Ltd. Method of Washing Positive Electrode Active Material, and Positive Electrode Active Material Prepared Thereby
KR20190138196A (ko) * 2018-06-04 2019-12-12 삼성전자주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
TWI682575B (zh) * 2018-08-21 2020-01-11 美商林奈股份有限公司 核-殼電活性材料
KR102141059B1 (ko) * 2018-09-28 2020-08-04 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN109659518A (zh) * 2018-11-30 2019-04-19 林奈(中国)新能源有限公司 四元核-三元壳正极材料、制备方法和用途
CN109659542B (zh) * 2018-12-22 2021-08-27 中国科学院青岛生物能源与过程研究所 一种核壳结构的高电压钴酸锂正极材料及其制备方法
EP3960708A4 (en) * 2019-04-26 2022-06-29 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN112054172B (zh) * 2019-06-12 2021-12-31 江苏翔鹰新能源科技有限公司 一种核壳型高镍单晶镍钴锰酸锂正极材料的制备方法
CN112054173B (zh) * 2019-06-12 2022-01-28 江苏翔鹰新能源科技有限公司 一种核壳型高电压单晶镍钴锰酸锂正极材料的制备方法
CN110224124A (zh) * 2019-06-13 2019-09-10 浙江天能能源科技股份有限公司 一种Co-Al活性材料包覆镍钴锰三元层状正极材料及制备方法
CN114258600B (zh) 2019-07-03 2024-05-24 尤米科尔公司 作为用于可再充电锂离子电池的正电极活性材料的锂镍锰钴复合氧化物
CN112047393A (zh) * 2020-09-10 2020-12-08 江西智锂科技有限公司 一种制备内核为镍基复合氧化物锂电池正极材料的方法
CN112838208B (zh) * 2021-01-09 2023-09-12 厦门厦钨新能源材料股份有限公司 锂离子电池正极材料的制备方法及应用
TWI747735B (zh) * 2021-02-08 2021-11-21 台灣立凱電能科技股份有限公司 正極材料顆粒結構及其製造方法
CN113023792A (zh) * 2021-03-02 2021-06-25 昆山宝创新能源科技有限公司 包覆型镍钴锰酸锂正极材料及其制备方法和锂离子电池
GB202103815D0 (en) * 2021-03-19 2021-05-05 Johnson Matthey Plc Cathode material and process
CN113264560A (zh) * 2021-05-17 2021-08-17 青海师范大学 一种双重包覆ncm811正极材料及其制备方法
CN113247964B (zh) * 2021-06-29 2021-09-28 湖南长远锂科股份有限公司 一种高倍率、高压实、高电压钴酸锂正极材料的制备方法
CN113871583A (zh) * 2021-08-31 2021-12-31 蜂巢能源科技有限公司 一种包覆型三元前驱体及其制备方法和包含其的正极材料
CN113753972B (zh) * 2021-10-13 2023-06-23 青岛大学 多元金属氧化物包覆改性镍钴锰三元正极材料及其制备方法和应用
CN114349071A (zh) * 2021-12-22 2022-04-15 广州大学 一种单晶核壳结构高镍富钴正极材料的合成方法
CN116387511B (zh) * 2023-06-06 2023-08-18 江门市科恒实业股份有限公司 一种正极材料及其制备方法和电池
CN116759583B (zh) * 2023-08-23 2023-11-10 浙江帕瓦新能源股份有限公司 包覆改性的前体及其制备方法、正极材料和锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1416189A (zh) * 2001-11-02 2003-05-07 中国科学院物理研究所 以纳米表面包覆复合材料为正极活性物质的锂二次电池
CN1627550A (zh) * 2003-12-11 2005-06-15 比亚迪股份有限公司 锂离子电池正极材料及其制备方法
CN101944599A (zh) * 2010-09-15 2011-01-12 宁波科博特钴镍有限公司 钴基材料的制备方法
CN102324504A (zh) * 2011-10-24 2012-01-18 中南大学 一种表面包覆钴酸锂的锂离子电池正极材料及其制备方法
CN102354750A (zh) * 2011-10-11 2012-02-15 北京化工大学 一种钴铝酸锂包覆镍酸锂电极材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332577B (zh) * 2011-09-21 2016-03-23 东莞新能源科技有限公司 一种锂离子电池及其正极材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1416189A (zh) * 2001-11-02 2003-05-07 中国科学院物理研究所 以纳米表面包覆复合材料为正极活性物质的锂二次电池
CN1627550A (zh) * 2003-12-11 2005-06-15 比亚迪股份有限公司 锂离子电池正极材料及其制备方法
CN101944599A (zh) * 2010-09-15 2011-01-12 宁波科博特钴镍有限公司 钴基材料的制备方法
CN102354750A (zh) * 2011-10-11 2012-02-15 北京化工大学 一种钴铝酸锂包覆镍酸锂电极材料及其制备方法
CN102324504A (zh) * 2011-10-24 2012-01-18 中南大学 一种表面包覆钴酸锂的锂离子电池正极材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FU, L.J. ET AL.: "Surface modifications of electrode materials for lithium ion batteries", SOLID STATE SCIENCES, vol. 8, 20 January 2006 (2006-01-20), pages 113 - 128, XP028072709, DOI: doi:10.1016/j.solidstatesciences.2005.10.019 *
SON, J.T. ET AL.: "Characterization of LiCo02 coated Li1.05Ni0.35Co0.25Mn0.4O2 cathode material for lithium secondary cells", JOURNAL OF POWER SOURCES, vol. 166, 12 January 2007 (2007-01-12), pages 343 - 347, XP022002599, DOI: doi:10.1016/j.jpowsour.2006.12.069 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746114A (zh) * 2014-01-29 2014-04-23 厦门钨业股份有限公司 一种钴酸锂正极材料的制备方法
CN103746114B (zh) * 2014-01-29 2016-11-16 厦门钨业股份有限公司 一种钴酸锂正极材料的制备方法
KR20150134161A (ko) * 2014-05-21 2015-12-01 삼성에스디아이 주식회사 복합 양극 활물질, 이를 포함하는 리튬 전지, 및 이의 제조방법
US9991511B2 (en) * 2014-05-21 2018-06-05 Samsung Sdi Co., Ltd. Composite cathode active material, lithium battery including the same, and method of preparing the same
KR102273772B1 (ko) * 2014-05-21 2021-07-06 삼성에스디아이 주식회사 복합 양극 활물질, 이를 포함하는 리튬 전지, 및 이의 제조방법
US20160218359A1 (en) * 2015-01-22 2016-07-28 Samsung Sdi Co., Ltd. Positive electrode active material, preparing method thereof, and lithium secondary battery employing positive electrode comprising positive electrode active material
EP3248233A4 (en) * 2015-01-23 2018-11-21 Umicore Lithium metal oxide cathode powders for high voltage lithium-ion batteries
US10854874B2 (en) 2015-01-23 2020-12-01 Umicore Lithium metal oxide cathode powders for high voltage lithium-ion batteries
CN110921786A (zh) * 2019-11-23 2020-03-27 同济大学 一种去除邻苯二甲酸酯类的光电催化阳极材料及处理方法
CN110921786B (zh) * 2019-11-23 2021-11-09 同济大学 一种去除邻苯二甲酸酯类的光电催化阳极材料及处理方法
CN112467099A (zh) * 2020-10-31 2021-03-09 浙江锋锂新能源科技有限公司 一种TiNb2O7材料的制备方法

Also Published As

Publication number Publication date
CN103515606B (zh) 2016-09-14
US20150104708A1 (en) 2015-04-16
CN103515606A (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
WO2013189109A1 (zh) 高能量密度锂离子电池氧化物正极材料及其制备方法
WO2020043135A1 (zh) 三元正极材料及其制备方法、锂离子电池
CN104485452B (zh) 一种动力锂离子电池用高温型锰酸锂正极材料及其制备方法
CN110380024B (zh) P3结构的钠过渡金属氧化物及其制备方法和钠离子电池
CN103855380B (zh) 正极活性物质、用于制备其的方法和包含其的锂二次电池
JP7204049B2 (ja) リチウムマンガンリッチ材料、その製造方法及び使用
CN103779554B (zh) 改性高能量密度锂离子电池正极材料及其制备方法
WO2017025007A1 (zh) 锂离子二次电池的正极活性材料及其制备方法和应用
CN108878794B (zh) 具有复合包覆层的尖晶石结构锂离子电池正极材料及其制法
JP5987401B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法および二次電池
CN104134790B (zh) 一种镍钴锰酸锂改性材料及其制备方法及其应用
CN111689528B (zh) 一种三元材料前驱体及其制备方法和用途
Nie et al. Effects of precursor particle size on the performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode material
CN109461928A (zh) 一种高能量密度多元正极材料及其制备方法
WO2020258764A1 (zh) 一种正极活性材料及其制备方法和锂电池
KR20160041039A (ko) 리튬복합금속산화물 및 이를 포함하는 리튬이차전지
WO2019041788A1 (zh) 一种核壳材料
CN110459764B (zh) 一种锂离子电池正极材料及其制备方法与应用
CN106299255A (zh) 一种大粒径尖晶石镍锰酸锂的制备方法
Wang et al. Surface modification of Li rich Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode particles
CN104241634B (zh) 一种锂离子电池富锂锰正极材料及其制备方法
CN108878840A (zh) 一种快离子导体包覆的正极材料及锂离子电池
CN113078316B (zh) 钼酸锂包覆的富锂锰基正极材料及其制备方法和应用
CN112952056B (zh) 一种富锂锰基复合正极材料及其制备方法和应用
WO2024066809A1 (zh) 正极材料及其制备方法、正极极片、二次电池和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879207

Country of ref document: EP

Kind code of ref document: A1