WO2013168675A1 - ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置 - Google Patents

ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置 Download PDF

Info

Publication number
WO2013168675A1
WO2013168675A1 PCT/JP2013/062766 JP2013062766W WO2013168675A1 WO 2013168675 A1 WO2013168675 A1 WO 2013168675A1 JP 2013062766 W JP2013062766 W JP 2013062766W WO 2013168675 A1 WO2013168675 A1 WO 2013168675A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
resin composition
mol
general formula
relief pattern
Prior art date
Application number
PCT/JP2013/062766
Other languages
English (en)
French (fr)
Inventor
田村 信史
竜也 平田
吉田 雅彦
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to JP2014514710A priority Critical patent/JP6190805B2/ja
Priority to CN201380022903.3A priority patent/CN104285184B/zh
Priority to KR1020147030018A priority patent/KR101719045B1/ko
Publication of WO2013168675A1 publication Critical patent/WO2013168675A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a photosensitive resin composition, a semiconductor device having a cured relief pattern obtained by curing the photosensitive resin composition, a display device, and the like.
  • polyimide resins having excellent heat resistance, electrical characteristics, and mechanical characteristics have been used for insulating materials for electronic components and passivation films, surface protective films, interlayer insulating films, and the like for semiconductor devices.
  • these polyimide resins those provided in the form of a photosensitive polyimide precursor easily form a heat-resistant relief pattern film by thermal imidization treatment by applying the precursor, exposing, developing, and curing. be able to.
  • Such a photosensitive polyimide precursor has a feature that the process can be greatly shortened as compared with a conventional non-photosensitive polyimide resin.
  • the mounting method of a semiconductor device on a printed wiring board has also been changed from the viewpoint of improving the degree of integration and calculation function and reducing the chip size.
  • the polyimide coating directly contacts the solder bumps, such as BGA (ball grid array) and CSP (chip size packaging), which can be mounted at a higher density than conventional mounting methods using metal pins and lead-tin eutectic solder. Structures are being used. When such a bump structure is formed, the film is required to have high heat resistance and chemical resistance.
  • the problem of wiring delay has become apparent as semiconductor devices become more miniaturized.
  • the gold or aluminum wiring that has been used so far has been changed to a copper or copper alloy wiring having a lower resistance.
  • a method of preventing wiring delay by increasing insulation between wirings is also employed.
  • a low dielectric constant material often constitutes a semiconductor device as this highly insulating material.
  • a low dielectric constant material tends to be brittle and fragile. When mounted on a low dielectric constant material, there is a problem that the low dielectric constant material portion is destroyed by shrinkage due to temperature change.
  • Patent Document 1 discloses a photosensitive polyimide precursor in which a part of a photosensitive group having 4 or more carbon atoms having a terminal ethylene bond is substituted with a hydrocarbon group having 1 to 3 carbon atoms. Is disclosed.
  • the photosensitive resin composition comprising the polyimide precursor described in Patent Document 1 improves the resolution or elongation, but the transparency of the photosensitive resin composition or the hardness (Young's modulus) as a polyimide film. There was room for improvement.
  • the present invention provides a photosensitive resin composition that gives a cured product having high transparency as a resin composition and a high Young's modulus after heat curing, and a method for producing a cured relief pattern using the photosensitive resin composition And a semiconductor device or a display device including the cured relief pattern.
  • the present inventor has intensively studied and repeated experiments, and as a result, by introducing a specific chemical structure into a part of the side chain of the polyimide precursor, a photosensitive material containing the polyimide precursor is obtained.
  • the present inventors have found that a photosensitive resin composition can be obtained in which the transparency when forming the photosensitive resin composition is improved and the Young's modulus of the cured film is improved after thermosetting, and the present invention has been completed. That is, the present invention is as follows.
  • R 1 and R 2 are each independently a hydrogen atom, or the following general formula (2) or (3): (Wherein R 3 , R 4 and R 5 are each independently a hydrogen atom or a monovalent organic group having 1 to 3 carbon atoms, and m is an integer of 2 to 10) -R 6 (3) (Wherein R 6 is a monovalent group selected from an aliphatic group having 5 to 30 carbon atoms which may have a hetero atom, or an aromatic group having 6 to 30 carbon atoms.) A monovalent organic group represented by the general formula (2) and a monovalent organic group represented by the general formula (3) for all of R 1 and R 2 .
  • a negative photosensitive resin composition comprising:
  • [5] The following steps: (1) A step of applying the negative photosensitive resin composition according to any one of [1] to [4] on a substrate to form a photosensitive resin layer on the substrate; (2) exposing the photosensitive resin layer; (3) developing the photosensitive resin layer after the exposure to form a relief pattern; (4) A method for producing a cured relief pattern, comprising: heat-treating the relief pattern to form a cured relief pattern.
  • a semiconductor device comprising a semiconductor element and a cured film provided on the semiconductor element, wherein the cured film is the cured relief pattern according to [6].
  • a display device comprising a display element and a cured film provided on the display element, wherein the cured film is the cured relief pattern according to [6]. .
  • a photosensitive resin composition that gives a cured product having high transparency as a resin composition and a high Young's modulus after thermosetting, and a method for producing a cured relief pattern using the photosensitive resin composition And a semiconductor device or a display device including the cured relief pattern can be provided.
  • the photosensitive resin composition includes (A) a polyimide precursor, (B) an initiator, optionally (C) a thermal crosslinking agent, and optionally other components. Each component will be described in turn below.
  • the (A) polyimide precursor is a resin component contained in the negative photosensitive resin composition, and is a polyamide having a structure represented by the following general formula (1). . ⁇ Wherein X 1 is a tetravalent organic group having 6 to 40 carbon atoms, Y 1 is a divalent organic group having 6 to 40 carbon atoms, and n is an integer of 2 to 150.
  • R 1 and R 2 are each independently a hydrogen atom, or the following general formula (2) or (3): (Wherein R 3 , R 4 and R 5 are each independently a hydrogen atom or a monovalent organic group having 1 to 3 carbon atoms, and m is an integer of 2 to 10) -R 6 (3) (Wherein R 6 is a monovalent group selected from an aliphatic group having 5 to 30 carbon atoms which may have a hetero atom, or an aromatic group having 6 to 30 carbon atoms.) A monovalent organic group represented by the general formula (2) and a monovalent organic group represented by the general formula (3) with respect to all of R 1 and R 2. The total of the groups is 80 mol% or more, and the ratio of the monovalent organic group represented by the general formula (3) to all of R 1 and R 2 is 20 mol% to 80 mol%. ⁇
  • X 1 is not limited as long as it is a tetravalent organic group having 6 to 40 carbon atoms. However, from the viewpoint of achieving both heat resistance and photosensitive properties, it is preferably a —COOR 1 group. And the —COOR 2 group and the —CONH— group are each an aromatic group or an alicyclic aliphatic group in the ortho position. Further, the tetravalent organic group represented by X 1 is more preferably an organic group having 6 to 40 carbon atoms containing an aromatic ring.
  • X 1 is a tetravalent organic group represented by the following general formula (5).
  • X 1 may be one type or a combination of two or more types.
  • Y 1 is not limited as long as it is a divalent organic group having 6 to 40 carbon atoms. However, from the viewpoint of achieving both heat resistance and photosensitive properties, Y 1 may be a substituted fragrance.
  • a cyclic organic group having 1 to 4 aromatic rings or aliphatic rings, or an aliphatic group or siloxane group having no cyclic structure is preferable. More preferably, Y 1 is a structure represented by the following general formula (6) or (7). (In the formula, each A independently represents a methyl group (—CH 3 ), an ethyl group (—C 2 H 5 ), a propyl group (—C 3 H 7 ), or a butyl group (—C 4 H 9 ). . ⁇
  • the structure of Y 1 may be one type or a combination of two or more types.
  • R 1 and R 2 in the general formula (1) are each independently a hydrogen atom or a monovalent organic group represented by the general formula (2) or (3).
  • N in the general formula (1) is not limited as long as it is an integer of 2 to 150, but is preferably an integer of 3 to 100 from the viewpoint of the photosensitive properties and mechanical properties of the photosensitive resin composition. Is more preferable.
  • the monovalent organic group represented by the general formula (2) and the general formula for all of R 1 and R 2 The total ratio of the monovalent organic group represented by (3) is 80 mol% or more, and the monovalent organic group represented by the above general formula (3) with respect to all of R 1 and R 2 . The ratio is 20 mol% to 80 mol%. Furthermore, in the general formula (1), the total of the monovalent organic group represented by the general formula (2) and the monovalent organic group represented by the general formula (3) for all of R 1 and R 2 The ratio of the monovalent organic group represented by the general formula (3) to all of R 1 and R 2 is 25 mol% to 75 mol%. More preferred.
  • R 3 in the general formula (2) is not limited as long as it is a hydrogen atom or a monovalent organic group having 1 to 3 carbon atoms. From the viewpoint of the photosensitive properties of the photosensitive resin composition, R 3 is a hydrogen atom or a methyl group. It is preferable that
  • R 4 and R 5 in the general formula (2) are not limited as long as they are each independently a hydrogen atom or a monovalent organic group having 1 to 3 carbon atoms, but from the viewpoint of the photosensitive properties of the photosensitive resin composition To a hydrogen atom.
  • M in the general formula (2) is an integer of 2 or more and 10 or less, and is preferably an integer of 2 or more and 4 or less from the viewpoint of photosensitive characteristics.
  • R 6 in the general formula (3) may be a monovalent group selected from an aliphatic group having 5 to 30 carbon atoms which may have a hetero atom, or an aromatic group having 6 to 30 carbon atoms. Although not limited, it is preferably an aliphatic group having 5 to 30 carbon atoms, and more preferably an aliphatic group having 5 to 30 carbon atoms having an ethylene glycol structure.
  • the aliphatic group having 5 to 30 carbon atoms may be a saturated hydrocarbon group, and part or all of the hydrogen atoms of the saturated hydrocarbon group may be a monovalent saturated organic group containing a hetero atom, or a monovalent The aromatic group may be substituted.
  • R 6 in the general formula (3) is selected from the group consisting of a neopentyl group, an octyl group, a benzyl group, and a group derived from polyethylene glycol monomethyl ether.
  • the hetero atom in the present invention includes an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom.
  • the polyimide precursor is converted into polyimide by performing a cyclization treatment (for example, 200 ° C. or higher).
  • the polyimide precursor represented by the general formula (1) in the present embodiment includes, for example, the above-described tetracarboxylic dianhydride containing a tetravalent organic group X 1 having 6 to 40 carbon atoms, and (a) the above Alcohols formed by bonding a monovalent organic group represented by the general formula (2) and a hydroxyl group, and (b) a monovalent organic group represented by the general formula (3) and a hydroxyl group are bonded.
  • a partially esterified tetracarboxylic acid hereinafter also referred to as an acid / ester
  • divalent organic group Y 1 having 6 to 40 carbon atoms. It can be obtained by polycondensation with diamines.
  • examples of the tetracarboxylic dianhydride containing a tetravalent organic group X 1 having 6 to 40 carbon atoms include pyromellitic anhydride, diphenyl ether-3,3 ′, 4,4′-tetracarboxylic acid.
  • Acid dianhydride benzophenone-3,3 ′, 4,4′-tetracarboxylic dianhydride, biphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, diphenylsulfone-3,3 ′ , 4,4′-tetracarboxylic dianhydride, diphenylmethane-3,3 ′, 4,4′-tetracarboxylic dianhydride, 2,2-bis (3,4-phthalic anhydride) propane, 2, Examples thereof include 2-bis (3,4-phthalic anhydride) -1,1,1,3,3,3-hexafluoropropane. Moreover, these can be used individually by 1 type or in mixture of 2 or more types.
  • (a) alcohols having a structure represented by the general formula (2) include, for example, 2-acryloyloxyethyl alcohol, 1-acryloyloxy-3-propyl alcohol, methylol vinyl ketone, -Hydroxyethyl vinyl ketone, 2-hydroxy-3-methoxypropyl acrylate, 2-hydroxy-3-butoxypropyl acrylate, 2-hydroxy-3-butoxypropyl acrylate, 2-methacryloyloxyethyl alcohol, 1-methacryloyloxy-3- Examples thereof include propyl alcohol, 2-hydroxy-3-methoxypropyl methacrylate, 2-hydroxy-3-butoxypropyl methacrylate, 2-hydroxy-3-butoxypropyl methacrylate, and the like.
  • Examples of aliphatic having 5 to 30 carbon atoms or aromatic alcohol having 6 to 30 carbon atoms represented by the general formula (3) include 1-pentanol, 2-pentanol, and 3-pentanol. , Neopentyl alcohol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 3-octanol, 1-nonanol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol monomethyl Examples include ether, tetraethylene glycol monoethyl ether, benzyl alcohol and the like.
  • the total content of the component (a) and the component (b) in the negative photosensitive resin composition is 80 mol% or more based on the total content of R 1 and R 2 in the general formula (1).
  • the content of component (b) is preferably 20 mol% to 80 mol% with respect to the total content of R 1 and R 2 .
  • the content of the component (b) is 80 mol% or less, it is preferable because desired photosensitive characteristics can be obtained.
  • the content of the component (b) is 20 mol% or more, transparency is improved. It is preferable because it is easy to express.
  • the above tetracarboxylic dianhydride and the above alcohols are stirred, dissolved and mixed in a reaction solvent at a reaction temperature of 20 to 50 ° C. for 4 to 10 hours in the presence of a basic catalyst such as pyridine.
  • a basic catalyst such as pyridine.
  • the reaction solvent is preferably one that dissolves the acid / ester compound and a polyimide precursor that is a polycondensation product of the acid / ester compound and a diamine, such as N-methyl-2-pyrrolidone, N , N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, tetramethylurea, gammabutyrolactone, ketones, esters, lactones, ethers, halogenated hydrocarbons, hydrocarbons, acetone, methyl ethyl ketone, methyl Isobutyl ketone, cyclohexanone, methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, dichloromethane, 1,2-dichloroethane, 1,4-dichlorobut Emission
  • a known dehydration condensing agent such as dicyclohexylcarbodiimide, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, 1,1-carbonyldioxy-di-1,2,3-benzotriazole, N, N′-disuccinimidyl carbonate and the like are added and mixed to form an acid / ester product as a polyanhydride.
  • a polyimide precursor that can be used in the embodiment by adding dropwise a solution obtained by dissolving or dispersing a diamine containing a divalent organic group Y 1 having 6 to 40 carbon atoms in a solvent and polycondensing it. Can be obtained.
  • diamines containing a divalent organic group Y 1 having 6 to 40 carbon atoms include p-phenylenediamine, m-phenylenediamine, 4,4-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3 '-Diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 4,4'-diaminobenzoph
  • diaminosiloxanes such as 1,3-bis (3-aminopropyl) tetramethyldisiloxane and 1,3-bis (3-aminopropyl) tetraphenyldisiloxane can be copolymerized.
  • the water-absorbing by-product of the dehydrating condensing agent coexisting in the reaction solution is filtered off if necessary, and then a poor solvent such as water, an aliphatic lower alcohol, or a mixture thereof is removed.
  • the polyimide precursor that can be used in the embodiment is charged into the reaction solution to precipitate the polymer component, and further, by re-dissolving, re-precipitation and the like, to purify the polymer and vacuum-dry it. Isolate the body.
  • the polymer solution may be passed through a column packed with an anion and / or cation exchange resin swollen with a suitable organic solvent to remove ionic impurities.
  • the molecular weight of the polyimide precursor is preferably 8,000 to 150,000, preferably 9,000 to 50,000, as measured by polystyrene-reduced weight average molecular weight by gel permeation chromatography. Is more preferable, and 20,000 to 40,000 is particularly preferable. When the weight average molecular weight is 8,000 or more, it is preferable because the mechanical properties are good. On the other hand, when the weight average molecular weight is 150,000 or less, the dispersibility in the developer and the resolution performance of the relief pattern are good. It is preferable because it is good. Tetrahydrofuran and N-methyl-2-pyrrolidone are recommended as developing solvents for gel permeation chromatography.
  • the molecular weight is determined from a calibration curve prepared using standard monodisperse polystyrene.
  • standard monodisperse polystyrene it is recommended to select from standard organic solvent standard sample STANDARD SM-105 manufactured by Showa Denko.
  • (B) Photopolymerization initiator The (B) photopolymerization initiator in this embodiment is demonstrated.
  • (B) As a photoinitiator the compound conventionally used as a photoinitiator for UV hardening can be selected arbitrarily.
  • (B) photopolymerization initiators include benzophenone, methyl o-benzoylbenzoate, 4-benzoyl-4′-methyldiphenyl ketone, dibenzyl ketone, fluorenone and other benzophenone derivatives; 2,2′-diethoxyacetophenone Acetophenone derivatives such as 2-hydroxy-2-methylpropiophenone and 1-hydroxycyclohexyl phenyl ketone; thioxanthone derivatives such as thioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone and diethylthioxanthone; benzyl, benzyldimethyl ketal, benzyl- Benzyl derivatives such as ⁇ -methoxyethyl acetal; benzoin derivatives such as benzoin and benzoin methyl ether; 1-phenyl-1,2-butanedione-2- (O-methoxycarbonyl)
  • the blending amount of the (B) photopolymerization initiator is 0.1 to 20 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor, and 2 to 15 parts by mass from the viewpoint of photosensitivity characteristics. preferable.
  • the photosensitive resin composition is excellent in photosensitivity by mix
  • the photosensitive resin composition is excellent in thick film curability.
  • the negative photosensitive resin composition further contains (C) a thermal crosslinking agent.
  • the thermal crosslinking agent can crosslink (A) the polyimide precursor, or the thermal crosslinking agent itself can form a crosslinked network. Can be an agent.
  • the thermal crosslinking agent is preferable because it can further enhance the heat resistance and chemical resistance of the cured film formed from the negative photosensitive resin composition.
  • amino resins and derivatives thereof are preferably used, and among them, urea resins, glycol urea resins, hydroxyethylene urea resins, melamine resins, benzoguanamine resins, and derivatives thereof are preferably used.
  • Particularly preferred are alkoxymethylated urea compounds and alkoxymethylated melamine compounds, for example, MX-290 (manufactured by Nippon Carbide), UFR-65 (manufactured by Nippon Cytec), and MW-390 (manufactured by Nippon Carbide). ).
  • the blending amount in the case of containing a thermal crosslinking agent is not limited as long as it is 0.1 to 30 parts by mass with respect to 100 parts by mass of (A) polyimide precursor. Among them, the amount is preferably 0.5 to 20 parts by mass, more preferably 2 to 10 parts by mass. When the blending amount is 0.1 part by mass or more, good heat resistance and chemical resistance are expressed, and when it is 30 parts by mass or less, storage stability is excellent, which is preferable.
  • the negative photosensitive resin composition may further contain components other than the above components (A) to (C).
  • Other components include, for example, a solvent, a resin component other than the (A) polyimide precursor, a sensitizer, a monomer having a photopolymerizable unsaturated bond, an adhesion assistant, a thermal polymerization inhibitor, an azole compound, and a hinder.
  • a dophenol compound, an organic titanium compound, etc. are mentioned.
  • a polar organic solvent from the viewpoint of solubility in the (A) polyimide precursor.
  • the solvent is, for example, in the range of 30 parts by weight to 1500 parts by weight, preferably 100 parts, based on 100 parts by weight of the polyimide precursor (A), depending on the desired coating thickness and viscosity of the negative photosensitive resin composition. It can be used in the range of parts by mass to 1000 parts by mass.
  • Alcohols that can be suitably used are typically alcohols having an alcoholic hydroxyl group in the molecule and no olefinic double bond. Specific examples include methyl alcohol, ethyl alcohol, n- Alkyl alcohols such as propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, tert-butyl alcohol; lactic acid esters such as ethyl lactate; propylene glycol-1-methyl ether, propylene glycol-2-methyl ether, propylene glycol Propylene glycol monoalkyl ethers such as -1-ethyl ether, propylene glycol-2-ethyl ether, propylene glycol-1- (n-propyl) ether, propylene glycol-2- (n-propyl) ether Le ethers, ethylene glycol methyl ether, ethylene glycol methyl ether, ethylene glycol
  • lactic acid esters propylene glycol monoalkyl ethers, 2-hydroxyisobutyric acid esters, and ethyl alcohol are preferable, and ethyl lactate, propylene glycol-1-methyl ether, propylene glycol-1-ethyl ether, And propylene glycol-1- (n-propyl) ether is more preferred.
  • the content of the alcohol having no olefinic double bond in the total solvent is 5% by mass to 50% based on the mass of the entire solvent.
  • the mass is preferably 10% by mass, more preferably 10% by mass to 30% by mass.
  • the content of the alcohol having no olefinic double bond is 5% by mass or more, the storage stability of the negative photosensitive resin composition is improved.
  • the content is 50% by mass or less, (A ) Since the solubility of a polyimide precursor becomes favorable, it is preferable.
  • the negative photosensitive resin composition may further contain a resin component other than the (A) polyimide precursor.
  • a resin component other than the (A) polyimide precursor examples include polyimide, polyoxazole, polyoxazole precursor, phenol resin, polyamide, epoxy resin, siloxane resin, and acrylic resin.
  • the blending amount of these resin components is preferably in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
  • a sensitizer can be arbitrarily blended in the negative photosensitive resin composition in order to improve photosensitivity.
  • the sensitizer include Michler's ketone, 4,4′-bis (diethylamino) benzophenone, 2,5-bis (4′-diethylaminobenzal) cyclopentane, and 2,6-bis (4′-diethylaminobenzal).
  • the blending amount of the sensitizer is preferably 0.1 to 25 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
  • a monomer having a photopolymerizable unsaturated bond can be arbitrarily added to the negative photosensitive resin composition.
  • a monomer is preferably a (meth) acryl compound that undergoes a radical polymerization reaction with a photopolymerization initiator, and is not particularly limited to the following, but includes ethylene glycol such as diethylene glycol dimethacrylate and tetraethylene glycol dimethacrylate.
  • the amount of the monomer having a photopolymerizable unsaturated bond is preferably 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
  • an adhesion assistant may be arbitrarily added to the negative photosensitive resin composition.
  • the adhesion assistant include ⁇ -aminopropyldimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, 3-methacryloxypropyldimethoxymethylsilane, 3-methacryloxypropyltrimethoxysilane, dimethoxymethyl-3-piperidinopropylsilane, diethoxy-3-glycidoxypropylmethylsilane, N- (3-diethoxymethylsilylpropyl) ) Succinimide, N- [3- (triethoxysilyl) propyl] phthal
  • adhesion assistants it is more preferable to use a silane coupling agent from the viewpoint of adhesive strength.
  • the blending amount of the adhesion assistant is preferably in the range of 0.5 to 25 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
  • a thermal polymerization inhibitor in order to improve the stability of the viscosity and photosensitivity of the negative photosensitive resin composition at the time of storage, particularly in the state of a solution containing a solvent, a thermal polymerization inhibitor can be arbitrarily added.
  • the thermal polymerization inhibitor include hydroquinone, N-nitrosodiphenylamine, p-tert-butylcatechol, phenothiazine, N-phenylnaphthylamine, ethylenediaminetetraacetic acid, 1,2-cyclohexanediaminetetraacetic acid, glycol etherdiaminetetraacetic acid, 2 , 6-Di-tert-butyl-p-methylphenol, 5-nitroso-8-hydroxyquinoline, 1-nitroso-2-naphthol, 2-nitroso-1-naphthol, 2-nitroso-5- (N-ethyl- N-sulfopropylamino) phenol, N-nitroso-
  • the blending amount of the thermal polymerization inhibitor is preferably in the range of 0.005 parts by mass to 12 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor.
  • an azole compound can be arbitrarily added to the negative photosensitive resin composition in order to suppress discoloration of the substrate.
  • the azole compound include 1H-triazole, 5-methyl-1H-triazole, 5-ethyl-1H-triazole, 4,5-dimethyl-1H-triazole, 5-phenyl-1H-triazole, and 4-t-butyl.
  • the compounding amount of the azole compound is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor, and 0.5 to 5 parts by mass from the viewpoint of photosensitivity characteristics. More preferably.
  • the compounding amount of the azole compound with respect to 100 parts by mass of the (A) polyimide precursor is 0.1 parts by mass or more, when the negative photosensitive resin composition is formed on copper or a copper alloy, copper or Discoloration of the surface of the copper alloy is suppressed, and on the other hand, the amount of 20 parts by mass or less is preferable because of excellent photosensitivity.
  • a hindered phenol compound can be arbitrarily added to the negative photosensitive resin composition in order to suppress discoloration on copper.
  • the hindered phenol compound include 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butyl-hydroquinone, and octadecyl-3- (3,5-di-t-butyl.
  • 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H ) -Trione is particularly preferred.
  • the amount of the hindered phenol compound is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the (A) polyimide precursor, and 0.5 to 10 parts by mass from the viewpoint of photosensitivity characteristics. More preferably, it is a part.
  • the compounding quantity with respect to 100 mass parts of (A) polyimide precursor of a hindered phenol compound is 0.1 mass part or more, for example, when forming a negative photosensitive resin composition on copper or a copper alloy, copper Alternatively, discoloration / corrosion of the copper alloy is prevented, and on the other hand, the content of 20 parts by mass or less is preferable because of excellent photosensitivity.
  • the negative photosensitive resin composition may contain an organic titanium compound.
  • an organic titanium compound By containing an organic titanium compound, a photosensitive resin layer having excellent chemical resistance can be formed even when cured at a low temperature of about 250 ° C.
  • Examples of usable organic titanium compounds include those in which an organic chemical substance is bonded to a titanium atom through a covalent bond or an ionic bond.
  • Titanium chelate compound a titanium chelate having two or more alkoxy groups is more preferable because it provides storage stability and a good pattern of the negative photosensitive resin composition, and a specific example is titanium bis (Triethanolamine) diisopropoxide, titanium di (n-butoxide) bis (2,4-pentanedionate), titanium diisopropoxide bis (2,4-pentanedionate), titanium diisopropoxide bis (Tetramethylheptanedionate), titanium diisopropoxide bis (ethylacetoacetate) and the like.
  • titanium bis (Triethanolamine) diisopropoxide titanium di (n-butoxide) bis (2,4-pentanedionate), titanium diisopropoxide bis (2,4-pentanedionate), titanium diisopropoxide bis (Tetramethylheptanedionate), titanium diisopropoxide bis (ethylacetoacetate) and the like.
  • Tetraalkoxytitanium compounds for example, titanium tetra (n-butoxide), titanium tetraethoxide, titanium tetra (2-ethylhexoxide), titanium tetraisobutoxide, titanium tetraisopropoxide, titanium tetramethoxide , Titanium tetramethoxypropoxide, titanium tetramethylphenoxide, titanium tetra (n-nonoxide), titanium tetra (n-propoxide), titanium tetrastearyloxide, titanium tetrakis [bis ⁇ 2,2- (allyloxymethyl) Butoxide ⁇ ] and the like.
  • Titanocene compounds for example, pentamethylcyclopentadienyltitanium trimethoxide, bis ( ⁇ 5 -2,4-cyclopentadien-1-yl) bis (2,6-difluorophenyl) titanium, bis ( ⁇ 5 ⁇ 2,4-cyclopentadien-1-yl) bis (2,6-difluoro-3- (1H-pyrrol-1-yl) phenyl) titanium and the like.
  • Monoalkoxytitanium compound For example, titanium tris (dioctyl phosphate) isopropoxide, titanium tris (dodecylbenzenesulfonate) isopropoxide, and the like.
  • Titanium oxide compound for example, titanium oxide bis (pentanedionate), titanium oxide bis (tetramethylheptanedionate), phthalocyanine titanium oxide, and the like.
  • Titanium tetraacetylacetonate compound For example, titanium tetraacetylacetonate.
  • Titanate coupling agent For example, isopropyltridodecylbenzenesulfonyl titanate.
  • the organic titanium compound is at least one compound selected from the group consisting of I) titanium chelate compound, II) tetraalkoxy titanium compound, and III) titanocene compound, It is preferable from the viewpoint of exhibiting good chemical resistance.
  • titanium diisopropoxide bis (ethyl acetoacetate), titanium tetra (n-butoxide), and bis ( ⁇ 5 -2,4-cyclopentadien-1-yl) bis (2,6-difluoro-3- ( 1H-pyrrol-1-yl) phenyl) titanium is preferred.
  • the blending amount is preferably 0.05 parts by weight to 10 parts by weight and preferably 0.1 parts by weight to 2 parts by weight with respect to 100 parts by weight of the resin (A). More preferred.
  • the blending amount is 0.05 parts by mass or more, good heat resistance and chemical resistance are expressed.
  • it is 10 parts by mass or less, storage stability is excellent, which is preferable.
  • the following steps (1) to (4) are performed: (1) The process of apply
  • a manufacturing method can be provided.
  • substrate the negative photosensitive resin composition of embodiment is formed. It apply
  • a coating method a method conventionally used for coating a photosensitive resin composition, for example, a method of coating with a spin coater, bar coater, blade coater, curtain coater, screen printing machine, etc., spray coating with a spray coater A method or the like can be used.
  • the coating film made of the negative photosensitive resin composition can be dried, and examples of the drying method include air drying, heat drying with an oven or hot plate, and vacuum drying. Moreover, it is desirable to perform drying of a coating film on the conditions that the imidation of the (A) polyimide precursor in a negative photosensitive resin composition does not occur. Specifically, when air drying or heat drying is performed, the drying can be performed at 20 ° C. to 140 ° C. for 1 minute to 1 hour. Thus, a photosensitive resin layer can be formed on the substrate.
  • Step of exposing the photosensitive resin layer the photosensitive resin layer formed in the step (1) is patterned using an exposure apparatus such as a contact aligner, mirror projection, or stepper. Alternatively, exposure is performed with an ultraviolet light source or the like via a reticle or directly.
  • an exposure apparatus such as a contact aligner, mirror projection, or stepper.
  • exposure is performed with an ultraviolet light source or the like via a reticle or directly.
  • post-exposure baking PEB
  • pre-development baking with any combination of temperature and time may be performed as necessary for the purpose of improving photosensitivity.
  • the temperature is preferably 40 ° C. to 120 ° C.
  • the time is preferably 10 seconds to 240 seconds.
  • the various characteristics of the negative photosensitive resin composition are not impaired, It is not restricted to this range.
  • Step of developing the exposed photosensitive resin layer to form a relief pattern the unexposed portion of the exposed photosensitive resin layer is developed and removed.
  • a developing method for developing the photosensitive resin layer after exposure any of conventionally known photoresist developing methods, for example, a rotary spray method, a paddle method, an immersion method with ultrasonic treatment, etc. The method can be selected and used.
  • post-development baking at any combination of temperature and time may be performed as necessary.
  • the developer used for development for example, a good solvent for the negative photosensitive resin composition or a combination of the good solvent and the poor solvent is preferable.
  • the good solvent for example, N-methyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N, N-dimethylacetamide, cyclopentanone, cyclohexanone, ⁇ -butyrolactone, ⁇ -acetyl- ⁇ -butyrolactone and the like are preferable.
  • the poor solvent for example, toluene, xylene, methanol, ethanol, isopropyl alcohol, ethyl lactate, propylene glycol methyl ether acetate and water are preferable.
  • the ratio of the poor solvent to the good solvent depending on the solubility of the polymer in the negative photosensitive resin composition.
  • two or more of each solvent for example, several types may be used in combination.
  • Step of heat-treating the relief pattern to form a cured relief pattern the relief pattern obtained by the development is heated to dilute the photosensitive component, and (A) the polyimide precursor By imidizing, it is converted into a cured relief pattern made of polyimide.
  • a method for heat curing various methods such as a method using a hot plate, a method using an oven, a method using a temperature rising oven capable of setting a temperature program can be selected. The heating can be performed, for example, at 200 ° C. to 400 ° C. for 30 minutes to 5 hours. Air may be used as the atmospheric gas at the time of heat curing, and an inert gas such as nitrogen or argon may be used.
  • the semiconductor device having a cured relief pattern obtained by the above-described method for producing a cured relief pattern. Therefore, the semiconductor device which has the base material which is a semiconductor element, and the hardening relief pattern of the polyimide formed on this base material by the hardening relief pattern manufacturing method mentioned above can be provided.
  • the present invention can also be applied to a method for manufacturing a semiconductor device that uses a semiconductor element as a substrate and includes the above-described method for manufacturing a cured relief pattern as part of the process.
  • the semiconductor device of the present invention is a semiconductor device having a surface relief film, an interlayer insulation film, a rewiring insulation film, a flip chip device protection film, or a bump structure as a cured relief pattern formed by the above-described cured relief pattern production method. And can be manufactured by combining with a known method for manufacturing a semiconductor device.
  • a display body device including a display body element and a cured film provided on the display body element, wherein the cured film is the above-described cured relief pattern is provided.
  • the cured relief pattern may be laminated in direct contact with the display element, or may be laminated with another layer interposed therebetween.
  • the cured film include surface protective films, insulating films, and planarizing films for TFT liquid crystal display elements and color filter elements, protrusions for MVA liquid crystal display devices, and partition walls for organic EL element cathodes. .
  • the negative photosensitive resin composition of the present invention is used for applications such as the above-mentioned semiconductor devices as well as interlayer insulation of multilayer circuits, cover coats of flexible copper-clad plates, solder resist films, and liquid crystal alignment films. Is also useful.
  • Weight average molecular weight The weight average molecular weight (Mw) of each polyimide precursor was measured by the gel permeation chromatography method (standard polystyrene conversion).
  • the column used for the measurement is a trade name Shodex 805M / 806M series manufactured by Showa Denko KK, and the standard monodisperse polystyrene is Shodex STANDARD SM-105 manufactured by Showa Denko KK, and the developing solvent is N-methyl-2- It was pyrrolidone, and the detector used was a trade name Shodex RI-930 manufactured by Showa Denko.
  • the photosensitive resin composition was spin-coated on a 3 cm square quartz substrate and dried to form a 10 ⁇ m thick coating film.
  • the film thickness was measured using a Tencor P-15 type step gauge (manufactured by KLA Tencor).
  • the absorbance at a wavelength of 365 nm was measured on this quartz substrate using a UV measuring device (manufactured by Shimadzu Corporation, UV-1600PC). If the absorbance at 10 ⁇ m thickness was 1.5 or less, it was judged as good.
  • the obtained polyimide coating film was cut into a 3 mm width strip using a dicing saw (DAD3350 type, manufactured by DISCO), and then peeled off from the silicon wafer using 46% hydrofluoric acid to obtain a polyimide tape.
  • the Young's modulus of the obtained polyimide tape was measured according to ASTM D882-09 using a tensile tester (UTM-II-20 type, manufactured by Orientec Corp.). If the Young's modulus was 5.0 GPa or more, it was considered good.
  • the wafer on which the pattern is formed is heat-treated in a nitrogen atmosphere at 200 ° C. for 1 hour and then at 300 ° C. for 2 hours using a temperature-programmed cure furnace (VF-2000 type, manufactured by Koyo Lindberg, Japan).
  • VF-2000 type temperature-programmed cure furnace
  • a polyimide pattern having a thickness of 5 ⁇ m was obtained on the silicon wafer.
  • variety of the pattern shape and the pattern part was observed under the optical microscope, and the resolution was calculated
  • a pattern having a plurality of openings with different areas is formed by the above method by exposing through a reticle with a test pattern, and the area of the obtained pattern opening is equal to the corresponding pattern mask opening area.
  • the resolution is good if it is 10 ⁇ m or less, that is, if the aspect ratio (film thickness after coating / drying) is 1 or more.
  • the resulting reaction solution was added to 3 liters of ethyl alcohol to produce a precipitate consisting of a crude polymer.
  • the produced crude polymer was separated by filtration and dissolved in 1.5 liter of tetrahydrofuran to obtain a crude polymer solution.
  • the obtained crude polymer solution was dropped into 28 liters of water to precipitate a polymer, and the resulting precipitate was filtered off and then vacuum dried to obtain a powdered polymer (polymer A).
  • polymer A weight average molecular weight
  • a negative photosensitive resin composition was prepared by the following method, and the prepared composition was evaluated.
  • Polymer A 100 g ((A) polyimide precursor), which is a polyimide precursor, was converted into 4 g of 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) -oxime ((B) photopolymerization initiator), 0.15 g of triazole, 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione 1.5 g, N-phenyldiethanolamine 10 g, methoxymethylated urea resin (MX-290) 4 g, tetraethylene glycol dimethacrylate 8 g, N- [3- (triethoxysilyl) propyl] phthalamic acid 1.5 g , And 0.05
  • the composition was evaluated according to the above-mentioned method. As a result, the absorbance was 1.36, the Young's modulus was as good as 5.6 GPa, the resolution was 8 ⁇ m, and the pattern accuracy was also good.
  • Example 2 A negative photosensitive resin composition similar to that of Example 1 was prepared except that (A) the polyimide precursor in Example 1 of the present invention was changed to polymer B, and evaluation similar to that of Example 1 was performed. As a result, the absorbance was 1.29, the Young's modulus was as good as 5.5 GPa, the resolution was 8 ⁇ m, and the pattern accuracy was also good.
  • Example 3 A negative photosensitive resin composition similar to that of Example 1 was prepared except that (A) the polyimide precursor in Example 1 of the present invention was changed to polymer C, and evaluation similar to that of Example 1 was performed. As a result, the absorbance was 1.40, the Young's modulus was 5.4 GPa, the resolution was 8 ⁇ m, and the pattern accuracy was also good.
  • Example 4 A negative photosensitive resin composition similar to that of Example 1 was prepared except that (A) the polyimide precursor in Example 1 of the present invention was changed to polymer F, and evaluation similar to that of Example 1 was performed. As a result, the absorbance was 1.48, the Young's modulus was as good as 5.6 GPa, the resolution was 8 ⁇ m, and the pattern accuracy was also good.
  • Example 5 A negative photosensitive resin composition similar to that of Example 1 was prepared except that (A) the polyimide precursor in Example 1 of the present invention was changed to polymer G, and evaluation similar to that of Example 1 was performed. As a result, the absorbance was 1.50, the Young's modulus was good at 6.0 GPa, the resolution was 8 ⁇ m, and the pattern accuracy was also good.
  • Example 6 A negative photosensitive resin composition similar to that of Example 1 was prepared except that (A) the polyimide precursor in Example 1 of the present invention was changed to polymer H, and evaluation similar to that of Example 1 was performed. As a result, the absorbance was 1.48, the Young's modulus was as good as 5.6 GPa, the resolution was 8 ⁇ m, and the pattern accuracy was also good.
  • Example 7 A negative photosensitive resin composition similar to that of Example 1 was prepared except that (A) the polyimide precursor in Example 1 of the present invention was changed to polymer I, and evaluation similar to that of Example 1 was performed. As a result, the absorbance was 1.50, the Young's modulus was good at 5.0 GPa, the resolution was 8 ⁇ m, and the pattern accuracy was also good.
  • Example 8> A negative photosensitive resin composition similar to that of Example 1 was prepared except that (A) the polyimide precursor in Example 1 of the present invention was changed to polymer J, and evaluation similar to that of Example 1 was performed. As a result, the absorbance was 1.27, the Young's modulus was as good as 5.6 GPa, the resolution was 8 ⁇ m, and the pattern accuracy was also good.
  • Example 1 A negative photosensitive resin composition similar to that of Example 1 was prepared except that (A) the polyimide precursor in Example 1 of the present invention was changed to polymer D, and evaluation similar to that of Example 1 was performed. As a result, the absorbance was 1.68, the Young's modulus was 4.8 GPa, and the pattern accuracy was poor.
  • Example 2 A negative photosensitive resin composition similar to that of Example 1 was prepared except that (A) the polyimide precursor in Example 1 of the present invention was changed to polymer E, and evaluation similar to that of Example 1 was performed. As a result, the absorbance was 1.57, the Young's modulus was 4.9 GPa, and the pattern accuracy was poor.
  • Example 3 A negative photosensitive resin composition similar to that of Example 1 was prepared except that (A) the polyimide precursor in Example 1 of the present invention was changed to polymer K, and evaluation similar to that of Example 1 was performed. As a result, the absorbance was 1.58, the Young's modulus was 4.9 GPa, and the pattern accuracy was not satisfactory.
  • Example 4 A negative photosensitive resin composition similar to that of Example 1 was prepared except that (A) the polyimide precursor in Example 1 of the present invention was changed to polymer L, and evaluation similar to that of Example 1 was performed. As a result, the absorbance was 1.25 and the Young's modulus was 5.6 GPa, but the pattern accuracy was poor.
  • Example 5 A negative photosensitive resin composition similar to that of Example 1 was prepared except that (A) the polyimide precursor in Example 1 of the present invention was changed to polymer M, and evaluation similar to that of Example 1 was performed. As a result, the absorbance was 1.63, the Young's modulus was 4.9 GPa, and the pattern accuracy was poor.
  • the negative photosensitive resin composition of the present invention can be suitably used in the field of photosensitive materials useful for the production of electrical / electronic materials such as semiconductor devices and multilayer wiring boards.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Materials For Photolithography (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 (A)下記一般式(1): {式中、R1、R2、X及びYは、明細書において定義された通りである。}で表される構造を有するポリイミド前駆体:100質量部;及び(B)光重合開始剤:0.1質量部~20質量部を含むネガ型感光性樹脂組成物が提供される。

Description

ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
 本発明は、感光性樹脂組成物、並びに該感光性樹脂組成物を硬化させることにより得られる硬化レリーフパターンを有する半導体装置及び表示体装置などに関する。
 従来、電子部品の絶縁材料、及び半導体装置のパッシベーション膜、表面保護膜、層間絶縁膜等には、優れた耐熱性、電気特性及び機械特性を併せ持つポリイミド樹脂が用いられている。このポリイミド樹脂の中でも、感光性ポリイミド前駆体の形態で供されるものは、該前駆体の塗布、露光、現像、及びキュアによる熱イミド化処理によって、耐熱性のレリーフパターン皮膜を容易に形成することができる。このような感光性ポリイミド前駆体は、従来の非感光型ポリイミド樹脂と比較して、大幅な工程短縮を可能にするという特徴を有している。
 一方、近年は、集積度及び演算機能の向上、並びにチップサイズの矮小化の観点から、半導体装置のプリント配線基板への実装方法も変化している。従来の金属ピンと鉛-スズ共晶ハンダによる実装方法から、より高密度実装が可能なBGA(ボールグリッドアレイ)、CSP(チップサイズパッケージング)等のように、ポリイミド被膜が、直接ハンダバンプに接触する構造が用いられるようになってきている。このようなバンプ構造を形成するときには、当該被膜には高い耐熱性と耐薬品性が要求される。
 さらに、半導体装置の微細化が進むことで、配線遅延の問題が顕在化している。半導体装置の配線抵抗を改善する手段として、これまで使用されてきた金又はアルミニウム配線から、より抵抗の低い銅又は銅合金の配線への変更が行われている。さらに、配線間の絶縁性を高めることで配線遅延を防ぐ方法も採用されている。近年、この絶縁性の高い材料として低誘電率材料が半導体装置を構成することが多いが、一方で低誘電率材料は脆く、壊れ易い傾向にあり、例えば半田リフロー工程を経て半導体チップとともに基板上に実装されたときには、温度変化による収縮で低誘電率材料部分が破壊されるという問題が存在している。
 この問題を解決する手段として、例えば、特許文献1には、末端エチレン結合を有する炭素数4以上の感光性基の一部を炭素数1ないし3の炭化水素基に置換した感光性ポリイミド前駆体が開示されている。
特開平6-80776号公報
 しかしながら、特許文献1に記載のポリイミド前駆体から成る感光性樹脂組成物は、解像度又は伸度については向上するものの、感光性樹脂組成物の透明性又はポリイミド被膜としての固さ(ヤング率)に改善の余地があった。
 従って、本発明は、樹脂組成物として透明性が高く、かつ熱硬化後にはヤング率の高い硬化体を与える感光性樹脂組成物、該感光性樹脂組成物を用いて硬化レリーフパターンを製造する方法、及び該硬化レリーフパターンを備える半導体装置又は表示体装置を提供することを課題とする。
 本発明者は、上記従来技術が有する課題に鑑みて、鋭意検討し実験を重ねた結果、ポリイミド前駆体における側鎖の一部に特定の化学構造を導入することにより、ポリイミド前駆体を含む感光性樹脂組成物を形成したときの透明性が向上し、さらに熱硬化後に硬化膜のヤング率が向上する感光性樹脂組成物が得られることを見出し、本発明を完成するに至った。すなわち、本発明は以下の通りである。
 [1] (A)下記一般式(1):
Figure JPOXMLDOC01-appb-C000003
{式中、X1は、炭素数6~40の4価の有機基であり、Y1は、炭素数6~40の2価の有機基であり、nは、2~150の整数であり、R1及びR2は、それぞれ独立に、水素原子、又は下記一般式(2)若しくは(3):
Figure JPOXMLDOC01-appb-C000004
(式中、R、R及びRは、それぞれ独立に、水素原子又は炭素数1~3の1価の有機基であり、そしてmは、2~10の整数である。)
  -R   (3)
(式中、Rは、ヘテロ原子を有していてもよい炭素数5~30の脂肪族基、又は炭素数6~30の芳香族基から選択される1価の基である。)
で表される1価の有機基であり、そしてR及びRの全てに対する上記一般式(2)で表される1価の有機基と上記一般式(3)で表される1価の有機基の合計の割合は、80モル%以上であり、かつR及びRの全てに対する上記一般式(3)で表される1価の有機基の割合は、20モル%~80モル%である。}
で表される構造を有するポリイミド前駆体:100質量部;及び
 (B)光重合開始剤:0.1質量部~20質量部;
を含むネガ型感光性樹脂組成物。
 [2] 前記Rは、エチレングリコール構造を有する炭素数5~30の脂肪族基である、[1]に記載のネガ型感光性樹脂組成物。
 [3] 前記一般式(1)において、R及びRの全てに対する前記一般式(2)で表される1価の有機基と前記一般式(3)で表される1価の有機基の合計の割合は、90モル%以上であり、かつR及びRの全てに対する前記一般式(3)で表される1価の有機基の割合は、25モル%~75モル%である、[1]又は[2]に記載のネガ型感光性樹脂組成物。
 [4] 前記(A)ポリイミド前駆体:100質量部に対して、(C)熱架橋剤:0.1質量部~30質量部をさらに含む、[1]~[3]のいずれか1項に記載のネガ型感光性樹脂組成物。
 [5] 以下の工程:
 (1)[1]~[4]のいずれか1項に記載のネガ型感光性樹脂組成物を基板上に塗布して、感光性樹脂層を該基板上に形成する工程と、
 (2)該感光性樹脂層を露光する工程と、
 (3)該露光後の感光性樹脂層を現像して、レリーフパターンを形成する工程と、
 (4)該レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程と
を含む硬化レリーフパターンの製造方法。
 [6] [5]に記載の方法により製造された硬化レリーフパターン。
 [7] 半導体素子と、該半導体素子の上部に設けられた硬化膜とを備える半導体装置であって、該硬化膜は、[6]に記載の硬化レリーフパターンである、半導体装置。
 [8] 表示体素子と、該表示体素子の上部に設けられた硬化膜とを備える表示体装置であって、該硬化膜は、[6]に記載の硬化レリーフパターンである、表示体装置。
 本発明によれば、樹脂組成物として透明性が高く、かつ熱硬化後にはヤング率の高い硬化体を与える感光性樹脂組成物、該感光性樹脂組成物を用いて硬化レリーフパターンを製造する方法、及び該硬化レリーフパターンを備える半導体装置又は表示体装置を提供することができる。
 以下、本発明を実施するための形態(以下、「実施の形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 実施の形態では、感光性樹脂組成物は、(A)ポリイミド前駆体、(B)開始剤、所望により、(C)熱架橋剤、及び所望により、その他の成分を含む。各成分を以下に順に説明する。
 なお、本明細書を通じ、一般式において同一符号で表されている構造は、分子中に複数存在する場合に、互いに同一であるか、又は異なっていてもよい。
(A)ポリイミド前駆体
 実施の形態では、(A)ポリイミド前駆体は、ネガ型感光性樹脂組成物に含まれる樹脂成分であり、下記一般式(1)で表される構造を有するポリアミドである。
Figure JPOXMLDOC01-appb-C000005
{式中、X1は、炭素数6~40の4価の有機基であり、Y1は、炭素数6~40の2価の有機基であり、nは、2~150の整数であり、R1及びR2は、それぞれ独立に、水素原子、又は下記一般式(2)若しくは(3):
Figure JPOXMLDOC01-appb-C000006
(式中、R、R及びRは、それぞれ独立に、水素原子又は炭素数1~3の1価の有機基であり、そしてmは、2~10の整数である。)
  -R   (3)
(式中、Rは、ヘテロ原子を有していてもよい炭素数5~30の脂肪族基、又は炭素数6~30の芳香族基から選択される1価の基である。)
で表される1価の有機基であり、R及びRの全てに対する上記一般式(2)で表される1価の有機基と上記一般式(3)で表される1価の有機基の合計は、80モル%以上であり、かつR及びRの全てに対する上記一般式(3)で表される1価の有機基の割合は、20モル%~80モル%である。}
 上記一般式(1)中、X1は、炭素数6~40の4価の有機基であれば限定されないが、耐熱性と感光特性とを両立するという観点で、好ましくは、-COOR基及び-COOR基と-CONH-基とが互いにオルト位置にある芳香族基、又は脂環式脂肪族基である。また、Xで表される4価の有機基は、芳香族環を含有する炭素原子数6~40の有機基であることがより好ましい。
 さらに好ましくは、X1は、下記一般式(5)で表される4価の有機基である。
Figure JPOXMLDOC01-appb-C000007
 また、X1の構造は1種でも2種以上の組み合わせでもよい。
 上記一般式(1)中、Y1は、炭素数6~40の2価の有機基であれば限定されないが、耐熱性と感光特性とを両立するという観点で、置換されていてもよい芳香族環又は脂肪族環を1~4個有する環状有機基、又は環状構造を持たない脂肪族基又はシロキサン基であることが好ましい。より好ましくは、Y1は、下記一般式(6)又は(7)で表される構造である。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
(式中、Aは、それぞれ独立に、メチル基(-CH)、エチル基(-C)、プロピル基(-C)又はブチル基(-C)を表す。}
 また、Y1の構造は1種でも2種以上の組み合わせでもよい。
 上記一般式(1)におけるR及びRは、それぞれ独立に、水素原子、又は上記一般式(2)若しくは(3)で表される1価の有機基である。
 上記一般式(1)におけるnは、2~150の整数であれば限定されないが、感光性樹脂組成物の感光特性及び機械特性の観点から、3~100の整数が好ましく、5~70の整数がより好ましい。
 上記一般式(1)において、感光性樹脂組成物の感光特性及び機械特性の観点から、R及びRの全てに対する上記一般式(2)で表される1価の有機基と上記一般式(3)で表される1価の有機基の合計の割合は、80モル%以上であり、かつR及びRの全てに対する上記一般式(3)で表される1価の有機基の割合は、20モル%~80モル%である。さらに、一般式(1)において、R及びRの全てに対する上記一般式(2)で表される1価の有機基と上記一般式(3)で表される1価の有機基の合計の割合は、90モル%以上であり、かつR及びRの全てに対する上記一般式(3)で表される1価の有機基の割合は、25モル%~75モル%であることがより好ましい。
 上記一般式(2)中のRは、水素原子又は炭素数1~3の1価の有機基であれば限定されないが、感光性樹脂組成物の感光特性の観点で、水素原子又はメチル基であることが好ましい。
 上記一般式(2)中のR及びRは、それぞれ独立に、水素原子又は炭素数1~3の1価の有機基であれば限定されないが、感光性樹脂組成物の感光特性の観点から水素原子であることが好ましい。
 上記一般式(2)中のmは、2以上10以下の整数であり、感光特性の観点から好ましくは2以上4以下の整数である。
 上記一般式(3)におけるRは、ヘテロ原子を有していてもよい炭素数5~30の脂肪族基、又は炭素数6~30の芳香族基から選択される1価の基であれば限定されないが、炭素数5~30の脂肪族基であることが好ましく、エチレングリコール構造を有する炭素数5~30の脂肪族基であることがより好ましい。また、炭素数5~30の脂肪族基は、飽和炭化水素基でよく、そして該飽和炭化水素基の水素原子の一部又は全部は、ヘテロ原子を含む1価の飽和有機基、又は1価の芳香族基で置換されていてもよい。好ましくは、上記一般式(3)におけるRは、ネオペンチル基、オクチル基、ベンジル基、及びポリエチレングリコールモノメチルエーテルから誘導される基から成る群から選択される。
 なお、本発明におけるヘテロ原子は、酸素原子、硫黄原子、窒素原子、リン原子が挙げられる。
 (A)ポリイミド前駆体は、加熱(例えば200℃以上)環化処理を施すことによってポリイミドに変換される。
[(A)ポリイミド前駆体の調製方法]
 本実施形態における上記一般式(1)で表されるポリイミド前駆体は、例えば、前述の炭素数6~40の4価の有機基Xを含むテトラカルボン酸二無水物と、(a)上記一般式(2)で表される1価の有機基と水酸基とが結合して成るアルコール類、及び(b)上記一般式(3)で表される1価の有機基と水酸基とが結合して成るアルコール類を反応させて、部分的にエステル化したテトラカルボン酸(以下、アシッド/エステル体ともいう)を調製し、続いて前述の炭素数6~40の2価の有機基Yを含むジアミン類と重縮合させることにより得られる。
(アシッド/エステル体の調製)
 本実施形態において、炭素数6~40の4価の有機基X1を含むテトラカルボン酸二無水物としては、例えば、無水ピロメリット酸、ジフェニルエーテル-3,3’,4,4’-テトラカルボン酸二無水物、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸二無水物、ビフェニル-3,3’,4,4’-テトラカルボン酸二無水物、ジフェニルスルホン-3,3’,4,4’-テトラカルボン酸二無水物、ジフェニルメタン-3,3’,4,4’-テトラカルボン酸二無水物、2,2-ビス(3,4-無水フタル酸)プロパン、2,2-ビス(3,4-無水フタル酸)-1,1,1,3,3,3-ヘキサフルオロプロパン等を挙げることができる。また、これらは、1種を単独で、又は2種以上を混合して、使用されることができる。
 本実施形態において、(a)上記一般式(2)で表される構造を有するアルコール類としては、例えば、2-アクリロイルオキシエチルアルコール、1-アクリロイルオキシ-3-プロピルアルコール、メチロールビニルケトン、2-ヒドロキシエチルビニルケトン、2-ヒドロキシ-3-メトキシプロピルアクリレート、2-ヒドロキシ-3-ブトキシプロピルアクリレート、2-ヒドロキシ-3-ブトキシプロピルアクリレート、2-メタクリロイルオキシエチルアルコール、1-メタクリロイルオキシ-3-プロピルアルコール、2-ヒドロキシ-3-メトキシプロピルメタクリレート、2-ヒドロキシ-3-ブトキシプロピルメタクリレート、2-ヒドロキシ-3-ブトキシプロピルメタクリレート、等を挙げることができる。
 (b)上記一般式(3)で表される炭素数5~30の脂肪族又は炭素数6~30の芳香族アルコール類として、例えば、1-ペンタノール、2-ペンタノール、3-ペンタノール、ネオペンチルアルコール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、3-オクタノール、1-ノナノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノメチルエーテル、テトラエチレングリコールモノエチルエーテル、ベンジルアルコール等を挙げることができる。
 ネガ型感光性樹脂組成物中の上記(a)成分と(b)成分の合計した含有量は、上記一般式(1)におけるR及びRの全ての含有量に対し、80モル%以上が好ましく、(b)成分の含有量はR及びRの全ての含有量に対し、20モル%~80モル%が好ましい。(b)成分の含有量が80モル%以下であると、所望の感光特性を得ることができるので好ましく、一方で、(b)成分の含有量が20モル%以上であると、透明性が発現し易くなるので好ましい。
 上記のテトラカルボン酸二無水物と上記のアルコール類とを、ピリジン等の塩基性触媒の存在下、反応溶媒中、反応温度20~50℃で4~10時間に亘って撹拌、溶解及び混合することにより、酸二無水物のハーフエステル化反応が進行し、所望のアシッド/エステル体を得ることができる。
 上記反応溶媒としては、該アシッド/エステル体、及び該アシッド/エステル体とジアミン類との重縮合生成物であるポリイミド前駆体を溶解するものが好ましく、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ガンマブチロラクトン、ケトン類、エステル類、ラクトン類、エーテル類、ハロゲン化炭化水素類、炭化水素類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、ジクロロメタン、1,2-ジクロロエタン、1,4-ジクロロブタン、クロロベンゼン、o-ジクロロベンゼン、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン等が挙げられる。これらは必要に応じて、単独で用いても2種以上混合して用いてもよい。
(ポリイミド前駆体の調製)
 上記アシッド/エステル体(典型的には上記反応溶媒中の溶液)に、氷冷下、既知の脱水縮合剤、例えば、ジシクロヘキシルカルボジイミド、1-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキノリン、1,1-カルボニルジオキシ-ジ-1,2,3-ベンゾトリアゾール、N,N’-ジスクシンイミジルカーボネート等を投入混合してアシッド/エステル体をポリ酸無水物とした後、これに、炭素数6~40の2価の有機基Y1を含むジアミン類を別途溶媒に溶解又は分散させたものを滴下投入し、重縮合させることにより、実施の形態で用いることができるポリイミド前駆体を得ることができる。
 炭素数6~40の2価の有機基Y1を含むジアミン類としては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、4,4-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、4,4-ビス(4-アミノフェノキシ)ビフェニル、4,4-ビス(3-アミノフェノキシ)ビフェニル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、1,4-ビス(3-アミノプロピルジメチルシリル)ベンゼン、オルト-トリジンスルホン、9,9-ビス(4-アミノフェニル)フルオレン、及びこれらのベンゼン環上の水素原子の一部が、メチル基、エチル基、ヒドロキシメチル基、ヒドロキシエチル基、ハロゲン等で置換されたもの、例えば3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、2,2’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジメチトキシ-4,4’-ジアミノビフェニル、3,3’-ジクロロ-4,4’-ジアミノビフェニル、及びその混合物等が挙げられるが、これに限定されるものではない。
 実施の形態では、ネガ型感光性樹脂組成物を基板上に塗布することによって基板上に形成される感光性樹脂層と各種の基板との密着性を向上させるために、(A)ポリイミド前駆体の調製時に、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(3-アミノプロピル)テトラフェニルジシロキサン等のジアミノシロキサン類を共重合することもできる。
 上記重縮合反応終了後、当該反応液中に共存している脱水縮合剤の吸水副生物を、必要に応じて濾別した後、水、脂肪族低級アルコール、又はその混合液等の貧溶媒を、反応液に投入して重合体成分を析出させ、さらに、再溶解、再沈析出操作等を繰り返すことにより、重合体を精製し、真空乾燥を行い、実施の形態で用いることのできるポリイミド前駆体を単離する。精製度を向上させるために、陰イオン及び/又は陽イオン交換樹脂を適当な有機溶媒で膨潤させて充填したカラムに、この重合体の溶液を通し、イオン性不純物を除去してもよい。
 (A)ポリイミド前駆体の分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算重量平均分子量で測定した場合に、8,000~150,000であることが好ましく、9,000~50,000であることがより好ましく、20,000~40,000であることが特に好ましい。重量平均分子量が8,000以上である場合には、機械物性が良好であるため好ましく、一方で、150,000以下である場合には、現像液への分散性及びレリーフパターンの解像性能が良好であるため好ましい。ゲルパーミエーションクロマトグラフィーの展開溶媒としては、テトラヒドロフラン、及びN-メチル-2-ピロリドンが推奨される。また分子量は、標準単分散ポリスチレンを用いて作成した検量線から求める。標準単分散ポリスチレンとしては、昭和電工社製 有機溶媒系標準試料 STANDARD SM-105から選ぶことが推奨される。
(B)光重合開始剤
 本実施形態における(B)光重合開始剤について説明する。(B)光重合開始剤としては、UV硬化用の光重合開始剤として従来用いられている化合物を任意に選択できる。例えば、(B)光重合開始剤としては、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、フルオレノン等のベンゾフェノン誘導体;2,2’-ジエトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等のアセトフェノン誘導体;チオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン等のチオキサントン誘導体;ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール等のベンジル誘導体;ベンゾイン、ベンゾインメチルエーテル等のベンゾイン誘導体;1-フェニル-1,2-ブタンジオン-2-(O-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(O-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(O-ベンゾイル)オキシム、1,3-ジフェニルプロパントリオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(O-ベンゾイル)オキシム等のオキシム類;N-フェニルグリシン等のN-アリールグリシン類;ベンゾイルパークロライド等の過酸化物類;芳香族ビイミダゾール類等が好ましく挙げられるが、これらに限定されるものではない。また、これらは、1種を単独で又は2種以上を混合して使用されることができる。上記の(B)光重合開始剤の中では、特に光感度の点で、オキシム類がより好ましい。
 (B)光重合開始剤の配合量は、(A)ポリイミド前駆体100質量部に対し、0.1質量部~20質量部であり、光感度特性の観点から2質量部~15質量部が好ましい。(B)光重合開始剤を(A)ポリイミド前駆体100質量部に対し0.1質量部以上配合することで感光性樹脂組成物は光感度に優れ、一方で、20質量部以下配合することで感光性樹脂組成物は厚膜硬化性に優れる。
(C)熱架橋剤
 実施の形態では、ネガ型感光性樹脂組成物は、更に(C)熱架橋剤を含むことが好ましい。熱架橋剤は、ネガ型感光性樹脂組成物を用いて形成されたレリーフパターンを加熱硬化するときに、(A)ポリイミド前駆体を架橋できるか、又は熱架橋剤自身が架橋ネットワークを形成できる架橋剤であることができる。(C)熱架橋剤は、ネガ型感光性樹脂組成物から形成された硬化膜の耐熱性及び耐薬品性を更に強化することができるため好ましい。(C)熱架橋剤としては、アミノ樹脂及びその誘導体が好適に用いられ、中でも、尿素樹脂、グリコール尿素樹脂、ヒドロキシエチレン尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂、及びこれらの誘導体が好適に用いられる。特に好ましくは、アルコキシメチル化尿素化合物及びアルコキシメチル化メラミン化合物であり、例として、MX-290(日本カーバイド社製)、UFR-65(日本サイテック社製)、及びMW-390(日本カーバイド社製)が挙げられる。
 (C)熱架橋剤を含有する場合の配合量は、(A)ポリイミド前駆体100質量部に対し、0.1質量部~30質量部であれば限定されない。その中で0.5質量部~20質量部であることが好ましく、より好ましくは2質量部~10質量部である。該配合量が0.1質量部以上である場合、良好な耐熱性及び耐薬品性が発現し、一方、30質量部以下である場合、保存安定性に優れるので好ましい。
その他の成分
 実施の形態では、ネガ型感光性樹脂組成物は、上記(A)~(C)成分以外の成分をさらに含有してもよい。その他の成分としては、例えば、溶剤、前記(A)ポリイミド前駆体以外の樹脂成分、増感剤、光重合性の不飽和結合を有するモノマー、接着助剤、熱重合禁止剤、アゾール化合物、ヒンダードフェノール化合物、有機チタン化合物などが挙げられる。
 溶剤としては、(A)ポリイミド前駆体に対する溶解性の点から、極性の有機溶剤を用いることが好ましい。具体的には、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、シクロペンタノン、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン、テトラメチル尿素、1,3-ジメチル-2-イミダゾリノン、N-シクロヘキシル-2-ピロリドン等が挙げられ、これらは単独又は2種以上の組合せで用いることができる。
 上記溶剤は、ネガ型感光性樹脂組成物の所望の塗布膜厚及び粘度に応じて、(A)ポリイミド前駆体100質量部に対し、例えば、30質量部~1500質量部の範囲、好ましくは100質量部~1000質量部の範囲で用いることができる。
 更に、ネガ型感光性樹脂組成物の保存安定性を向上させる観点から、アルコール類を含む溶剤が好ましい。好適に使用できるアルコール類は、典型的には、分子内にアルコール性水酸基を持ち、オレフィン系二重結合を有さないアルコールであり、具体的な例としては、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、tert-ブチルアルコール等のアルキルアルコール類;乳酸エチル等の乳酸エステル類;プロピレングリコール-1-メチルエーテル、プロピレングリコール-2-メチルエーテル、プロピレングリコール-1-エチルエーテル、プロピレングリコール-2-エチルエーテル、プロピレングリコール-1-(n-プロピル)エーテル、プロピレングリコール-2-(n-プロピル)エーテル等のプロピレングリコールモノアルキルエーテル類;エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール-n-プロピルエーテル等のモノアルコール類;2-ヒドロキシイソ酪酸エステル類;エチレングリコール、及びプロピレングリコール等のジアルコール類挙げることができる。これらの中では、乳酸エステル類、プロピレングリコールモノアルキルエーテル類、2-ヒドロキシイソ酪酸エステル類、及びエチルアルコールが好ましく、特に乳酸エチル、プロピレングリコール-1-メチルエーテル、プロピレングリコール-1-エチルエーテル、及びプロピレングリコール-1-(n-プロピル)エーテルがより好ましい。
 溶剤が、オレフィン系二重結合を有さないアルコールを含有する場合、全溶剤中のオレフィン系二重結合を有さないアルコールの含有量は、全溶剤の質量を基準として、5質量%~50質量%であることが好ましく、より好ましくは10質量%~30質量%である。オレフィン系二重結合を有さないアルコールの上記含有量が5質量%以上の場合、ネガ型感光性樹脂組成物の保存安定性が良好になり、一方で、50質量%以下の場合、(A)ポリイミド前駆体の溶解性が良好になるため好ましい。
 実施の形態では、ネガ型感光性樹脂組成物は、前記(A)ポリイミド前駆体以外の樹脂成分をさらに含有してもよい。ネガ型感光性樹脂組成物に含有させることができる樹脂成分としては、例えば、ポリイミド、ポリオキサゾール、ポリオキサゾール前駆体、フェノール樹脂、ポリアミド、エポキシ樹脂、シロキサン樹脂、アクリル樹脂等が挙げられる。これらの樹脂成分の配合量は、(A)ポリイミド前駆体100質量部に対して、好ましくは0.01質量部~20質量部の範囲である。
 実施の形態では、ネガ型感光性樹脂組成物には、光感度を向上させるために増感剤を任意に配合することができる。該増感剤としては、例えば、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2,5-ビス(4’-ジエチルアミノベンザル)シクロペンタン、2,6-ビス(4’-ジエチルアミノベンザル)シクロヘキサノン、2,6-ビス(4’-ジエチルアミノベンザル)-4-メチルシクロヘキサノン、4,4’-ビス(ジメチルアミノ)カルコン、4,4’-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビフェニレン)-ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4’-ジメチルアミノベンザル)アセトン、1,3-ビス(4’-ジエチルアミノベンザル)アセトン、3,3’-カルボニル-ビス(7-ジエチルアミノクマリン)、3-アセチル-7-ジメチルアミノクマリン、3-エトキシカルボニル-7-ジメチルアミノクマリン、3-ベンジロキシカルボニル-7-ジメチルアミノクマリン、3-メトキシカルボニル-7-ジエチルアミノクマリン、3-エトキシカルボニル-7-ジエチルアミノクマリン、N-フェニル-N’-エチルエタノールアミン、N-フェニルジエタノールアミン、N-p-トリルジエタノールアミン、N-フェニルエタノールアミン、4-モルホリノベンゾフェノン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、2-メルカプトベンズイミダゾール、1-フェニル-5-メルカプトテトラゾール、2-メルカプトベンゾチアゾール、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-(p-ジメチルアミノスチリル)ナフト(1,2-d)チアゾール、2-(p-ジメチルアミノベンゾイル)スチレン等が挙げられる。これらは単独で、又は複数(例えば2~5種類)の組合せで用いることができる。
 増感剤の配合量は、(A)ポリイミド前駆体100質量部に対し、0.1質量部~25質量部であることが好ましい。
 実施の形態では、レリーフパターンの解像性を向上させるために、光重合性の不飽和結合を有するモノマーを任意にネガ型感光性樹脂組成物に配合することができる。このようなモノマーとしては、光重合開始剤によりラジカル重合反応する(メタ)アクリル化合物が好ましく、特に以下に限定するものではないが、ジエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレートをはじめとする、エチレングリコール又はポリエチレングリコールのモノ又はジアクリレート及びメタクリレート、プロピレングリコール又はポリプロピレングリコールのモノ又はジアクリレート及びメタクリレート、グリセロールのモノ、ジ又はトリアクリレート及びメタクリレート、シクロヘキサンジアクリレート及びジメタクリレート、1,4-ブタンジオールのジアクリレート及びジメタクリレート、1,6-ヘキサンジオールのジアクリレート及びジメタクリレート、ネオペンチルグリコールのジアクリレート及びジメタクリレート、ビスフェノールAのモノ又はジアクリレート及びメタクリレート、ベンゼントリメタクリレート、イソボルニルアクリレート及びメタクリレート、アクリルアミド及びその誘導体、メタクリルアミド及びその誘導体、トリメチロールプロパントリアクリレート及びメタクリレート、グリセロールのジ又はトリアクリレート及びメタクリレート、ペンタエリスリトールのジ、トリ、又はテトラアクリレート及びメタクリレート、並びにこれら化合物のエチレンオキサイド又はプロピレンオキサイド付加物等の化合物を挙げることができる。
 光重合性の不飽和結合を有するモノマーの配合量は、(A)ポリイミド前駆体100質量部に対し、1質量部~50質量部であることが好ましい。
 実施の形態では、ネガ型感光性樹脂組成物を用いて形成される膜と基材との接着性を向上させるために、接着助剤を任意にネガ型感光性樹脂組成物に配合することができる。接着助剤としては、例えば、γ-アミノプロピルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、3-メタクリロキシプロピルジメトキシメチルシラン、3-メタクリロキシプロピルトリメトキシシラン、ジメトキシメチル-3-ピペリジノプロピルシラン、ジエトキシ-3-グリシドキシプロピルメチルシラン、N-(3-ジエトキシメチルシリルプロピル)スクシンイミド、N-〔3-(トリエトキシシリル)プロピル〕フタルアミド酸、ベンゾフェノン-3,3’-ビス(N-〔3-トリエトキシシリル〕プロピルアミド)-4,4’-ジカルボン酸、ベンゼン-1,4-ビス(N-〔3-トリエトキシシリル〕プロピルアミド)-2,5-ジカルボン酸、3-(トリエトキシシリル)プロピルスクシニックアンハイドライド、N-フェニルアミノプロピルトリメトキシシラン等のシランカップリング剤、及びアルミニウムトリス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、エチルアセトアセテートアルミニウムジイソプロピレート等のアルミニウム系接着助剤等が挙げられる。
 これらの接着助剤のうちでは、接着力の点からシランカップリング剤を用いることがより好ましい。接着助剤の配合量は、(A)ポリイミド前駆体100質量部に対し、0.5質量部~25質量部の範囲が好ましい。
 実施の形態では、特に溶剤を含む溶液の状態での保存時のネガ型感光性樹脂組成物の粘度及び光感度の安定性を向上させるために、熱重合禁止剤を任意に配合することができる。熱重合禁止剤としては、例えば、ヒドロキノン、N-ニトロソジフェニルアミン、p-tert-ブチルカテコール、フェノチアジン、N-フェニルナフチルアミン、エチレンジアミン四酢酸、1,2-シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6-ジ-tert-ブチル-p-メチルフェノール、5-ニトロソ-8-ヒドロキシキノリン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、2-ニトロソ-5-(N-エチル-N-スルフォプロピルアミノ)フェノール、N-ニトロソ-N-フェニルヒドロキシルアミンアンモニウム塩、N-ニトロソ-N(1-ナフチル)ヒドロキシルアミンアンモニウム塩等が用いられる。
 熱重合禁止剤の配合量としては、(A)ポリイミド前駆体100質量部に対し、0.005質量部~12質量部の範囲が好ましい。
 例えば、銅又は銅合金から成る基板を用いる場合には、基板変色を抑制するためにアゾール化合物を任意にネガ型感光性樹脂組成物に配合することができる。アゾール化合物としては、例えば、1H-トリアゾール、5-メチル-1H-トリアゾール、5-エチル-1H-トリアゾール、4,5-ジメチル-1H-トリアゾール、5-フェニル-1H-トリアゾール、4-t-ブチル-5-フェニル-1H-トリアゾール、5-ヒドロキシフェニル-1H-トリアゾール、フェニルトリアゾール、p-エトキシフェニルトリアゾール、5-フェニル-1-(2-ジメチルアミノエチル)トリアゾール、5-ベンジル-1H-トリアゾール、ヒドロキシフェニルトリアゾール、1,5-ジメチルトリアゾール、4,5-ジエチル-1H-トリアゾール、1H-ベンゾトリアゾール、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α―ジメチルベンジル)フェニル]-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-ベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、ヒドロキシフェニルベンゾトリアゾール、トリルトリアゾール、5-メチル-1H-ベンゾトリアゾール、4-メチル-1H-ベンゾトリアゾール、4-カルボキシ-1H-ベンゾトリアゾール、5-カルボキシ-1H-ベンゾトリアゾール、1H-テトラゾール、5-メチル-1H-テトラゾール、5-フェニル-1H-テトラゾール、5-アミノ-1H-テトラゾール、1-メチル-1H-テトラゾール等が挙げられる。特に好ましくは、トリルトリアゾール、5-メチル-1H-ベンゾトリアゾール、及び4-メチル-1H-ベンゾトリアゾールが挙げられる。また、これらのアゾール化合物は、1種で用いても2種以上の混合物で用いてもよい。
 アゾール化合物の配合量は、(A)ポリイミド前駆体100質量部に対し、0.1質量部~20質量部であることが好ましく、光感度特性の観点から0.5質量部~5質量部であることがより好ましい。アゾール化合物の(A)ポリイミド前駆体100質量部に対する配合量が0.1質量部以上である場合には、ネガ型感光性樹脂組成物を銅又は銅合金の上に形成したときに、銅又は銅合金表面の変色が抑制され、一方、20質量部以下である場合には、光感度に優れるため好ましい。
 実施の形態では、銅上の変色を抑制するためにヒンダードフェノール化合物を任意にネガ型感光性樹脂組成物に配合することができる。ヒンダードフェノール化合物としては、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、2,5-ジ-t-ブチル-ハイドロキノン、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネ-ト、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、4、4’-メチレンビス(2、6-ジ-t-ブチルフェノール)、4,4’-チオ-ビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、N,N’ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、1,3,5-トリス(3-ヒドロキシ-2,6-ジメチル-4-イソプロピルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-s-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス[4-(1-エチルプロピル)-3-ヒドロキシ-2,6-ジメチルベンジル]-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス[4-トリエチルメチル-3-ヒドロキシ-2,6-ジメチルベンジル]-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(3-ヒドロキシ-2,6-ジメチル-4-フェニルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,5,6-トリメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5-エチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-6-エチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-6-エチル-3-ヒドロキシ-2,5-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5,6-ジエチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,5-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5‐エチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン等が挙げられるが、これに限定されるものではない。これらの中でも、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオンが特に好ましい。
 ヒンダードフェノール化合物の配合量は、(A)ポリイミド前駆体100質量部に対し、0.1質量部~20質量部であることが好ましく、光感度特性の観点から0.5質量部~10質量部であることがより好ましい。ヒンダードフェノール化合物の(A)ポリイミド前駆体100質量部に対する配合量が0.1質量部以上である場合、例えば銅又は銅合金の上にネガ型感光性樹脂組成物を形成した場合に、銅又は銅合金の変色・腐食が防止され、一方、20質量部以下である場合には光感度に優れるため好ましい。
 実施の形態では、ネガ型感光性樹脂組成物には、有機チタン化合物を含有させてもよい。有機チタン化合物を含有することにより、約250℃という低温で硬化した場合であっても耐薬品性に優れる感光性樹脂層を形成できる。
 使用可能な有機チタン化合物としては、例えば、チタン原子に有機化学物質が共有結合又はイオン結合を介して結合しているものが挙げられる。
 有機チタン化合物の具体例を以下のI)~VII)に示す:
 I)チタンキレート化合物:中でも、アルコキシ基を2個以上有するチタンキレートが、ネガ型感光性樹脂組成物の保存安定性及び良好なパターンが得られることからより好ましく、具体的な例は、チタニウムビス(トリエタノールアミン)ジイソプロポキサイド、チタニウムジ(n-ブトキサイド)ビス(2,4-ペンタンジオネート)、チタニウムジイソプロポキサイドビス(2,4-ペンタンジオネート)、チタニウムジイソプロポキサイドビス(テトラメチルヘプタンジオネート)、チタニウムジイソプロポキサイドビス(エチルアセトアセテート)等である。
 II)テトラアルコキシチタン化合物:例えば、チタニウムテトラ(n-ブトキサイド)、チタニウムテトラエトキサイド、チタニウムテトラ(2-エチルヘキソキサイド)、チタニウムテトライソブトキサイド、チタニウムテトライソプロポキサイド、チタニウムテトラメトキサイド、チタニウムテトラメトキシプロポキサイド、チタニウムテトラメチルフェノキサイド、チタニウムテトラ(n-ノニロキサイド)、チタニウムテトラ(n-プロポキサイド)、チタニウムテトラステアリロキサイド、チタニウムテトラキス[ビス{2,2-(アリロキシメチル)ブトキサイド}]等である。
 III)チタノセン化合物:例えば、ペンタメチルシクロペンタジエニルチタニウムトリメトキサイド、ビス(η-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロフェニル)チタニウム、ビス(η-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム等である。
 IV)モノアルコキシチタン化合物:例えば、チタニウムトリス(ジオクチルホスフェート)イソプロポキサイド、チタニウムトリス(ドデシルベンゼンスルホネート)イソプロポキサイド等である。
 V)チタニウムオキサイド化合物:例えば、チタニウムオキサイドビス(ペンタンジオネート)、チタニウムオキサイドビス(テトラメチルヘプタンジオネート)、フタロシアニンチタニウムオキサイド等である。
 VI)チタニウムテトラアセチルアセトネート化合物:例えば、チタニウムテトラアセチルアセトネート等である。
 VII)チタネートカップリング剤:例えば、イソプロピルトリドデシルベンゼンスルホニルチタネート等である。
 上記I)~VII)の中でも、有機チタン化合物が、上記I)チタンキレート化合物、II)テトラアルコキシチタン化合物、及びIII)チタノセン化合物から成る群から選ばれる少なくとも1種の化合物であることが、より良好な耐薬品性を奏するという観点から好ましい。特に、チタニウムジイソプロポキサイドビス(エチルアセトアセテート)、チタニウムテトラ(n-ブトキサイド)、及びビス(η-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウムが好ましい。
 有機チタン化合物を配合する場合の配合量は、(A)樹脂100質量部に対し、0.05質量部~10質量部であることが好ましく、0.1質量部~2質量部であることがより好ましい。該配合量が0.05質量部以上である場合には良好な耐熱性及び耐薬品性が発現し、一方10質量部以下である場合には保存安定性に優れるため好ましい。
硬化レリーフパターンの製造方法
 実施の形態では、以下の工程(1)~(4):
 (1)実施の形態のネガ型感光性樹脂組成物を基板上に塗布して、感光性樹脂層を該基板上に形成する工程、
 (2)該感光性樹脂層を露光する工程、
 (3)該露光後の感光性樹脂層を現像して、レリーフパターンを形成する工程、及び
 (4)該レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程
を含む、硬化レリーフパターンの製造方法を提供することができる。
 以下、各工程について説明する。
 (1)実施の形態のネガ型感光性樹脂組成物を基板上に塗布して、感光性樹脂層を該基板上に形成する工程
 本工程では、実施の形態のネガ型感光性樹脂組成物を基材上に塗布し、必要に応じて、その後に乾燥させて、感光性樹脂層を形成する。塗布方法としては、従来から感光性樹脂組成物の塗布に用いられていた方法、例えば、スピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布する方法、スプレーコーターで噴霧塗布する方法等を用いることができる。
 必要に応じて、ネガ型感光性樹脂組成物から成る塗膜を乾燥させることができ、そして乾燥方法としては、例えば、風乾、オーブン又はホットプレートによる加熱乾燥、真空乾燥等の方法が用いられる。また、塗膜の乾燥は、ネガ型感光性樹脂組成物中の(A)ポリイミド前駆体のイミド化が起こらないような条件で行うことが望ましい。具体的には、風乾又は加熱乾燥を行う場合、20℃~140℃で1分~1時間の条件で乾燥を行うことができる。以上により基板上に感光性樹脂層を形成できる。
(2)該感光性樹脂層を露光する工程
 本工程では、上記(1)工程で形成した感光性樹脂層を、コンタクトアライナー、ミラープロジェクション、ステッパー等の露光装置を用いて、パターンを有するフォトマスク又はレチクルを介して又は直接に、紫外線光源等により露光する。
 この後、光感度の向上等の目的で、必要に応じて、任意の温度及び時間の組合せによる露光後ベーク(PEB)及び/又は現像前ベークを施してもよい。ベーク条件の範囲は、温度は40℃~120℃であることが好ましく、時間は10秒~240秒であることが好ましいが、ネガ型感光性樹脂組成物の諸特性を阻害するものでない限り、この範囲に限らない。
(3)該露光後の感光性樹脂層を現像して、レリーフパターンを形成する工程
 本工程では、露光後の感光性樹脂層のうち未露光部を現像除去する。露光(照射)後の感光性樹脂層を現像する現像方法としては、従来知られているフォトレジストの現像方法、例えば、回転スプレー法、パドル法、超音波処理を伴う浸漬法等の中から任意の方法を選択して使用することができる。また、現像の後、レリーフパターンの形状を調整する等の目的で、必要に応じて、任意の温度及び時間の組合せによる現像後ベークを施してもよい。現像に使用される現像液としては、例えば、ネガ型感光性樹脂組成物に対する良溶媒、又は該良溶媒と貧溶媒との組合せが好ましい。良溶媒としては、例えば、N-メチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルアセトアミド、シクロペンタノン、シクロヘキサノン、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン等が好ましい。貧溶媒としては、例えば、トルエン、キシレン、メタノール、エタノール、イソプロピルアルコール、乳酸エチル、プロピレングリコールメチルエーテルアセテート及び水等が好ましい。良溶媒と貧溶媒とを混合して用いる場合には、ネガ型感光性樹脂組成物中のポリマーの溶解性によって良溶媒に対する貧溶媒の割合を調整することが好ましい。また、各溶媒を2種以上、例えば数種類組合せて用いることもできる。
(4)該レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程
 本工程では、上記現像により得られたレリーフパターンを加熱して感光成分を希散させるとともに、(A)ポリイミド前駆体をイミド化させることによって、ポリイミドから成る硬化レリーフパターンに変換する。加熱硬化の方法としては、例えば、ホットプレートによるもの、オーブンを用いるもの、温度プログラムを設定できる昇温式オーブンを用いるもの等種々の方法を選ぶことができる。加熱は、例えば、200℃~400℃で30分~5時間の条件で行うことができる。加熱硬化時の雰囲気気体としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることもできる。
半導体装置
 実施の形態では、上述した硬化レリーフパターンの製造方法により得られる硬化レリーフパターンを有して成る、半導体装置も提供される。したがって、半導体素子である基材と、上述した硬化レリーフパターン製造方法により該基材上に形成されたポリイミドの硬化レリーフパターンとを有する半導体装置が提供されることができる。また、本発明は、基材として半導体素子を用い、上述した硬化レリーフパターンの製造方法を工程の一部として含む半導体装置の製造方法にも適用できる。本発明の半導体装置は、上記硬化レリーフパターン製造方法で形成される硬化レリーフパターンを、表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、又はバンプ構造を有する半導体装置の保護膜等として形成し、既知の半導体装置の製造方法と組合せることで製造することができる。
表示体装置
 実施の形態では、表示体素子と該表示体素子の上部に設けられた硬化膜とを備える表示体装置であって、該硬化膜は上述の硬化レリーフパターンである表示体装置が提供される。ここで、当該硬化レリーフパターンは、当該表示体素子に直接接して積層されていてもよく、別の層を間に挟んで積層されていてもよい。例えば、該硬化膜として、TFT液晶表示素子及びカラーフィルター素子の表面保護膜、絶縁膜、及び平坦化膜、MVA型液晶表示装置用の突起、並びに有機EL素子陰極用の隔壁を挙げることができる。
 本発明のネガ型感光性樹脂組成物は、上記のような半導体装置への適用の他、多層回路の層間絶縁、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、及び液晶配向膜等の用途にも有用である。
 以下、実施例により本実施形態を具体的に説明するが、本実施形態はこれに限定されるものではない。実施例、比較例、及び製造例においては、ポリマー又はネガ型感光性樹脂組成物の物性を以下の方法に従って測定及び評価を行った。
(1)重量平均分子量
 各ポリイミド前駆体の重量平均分子量(Mw)をゲルパーミエーションクロマトグラフィー法(標準ポリスチレン換算)で測定した。測定に用いたカラムは、昭和電工社製 商標名 Shodex 805M/806M直列であり、標準単分散ポリスチレンは、昭和電工(株)製Shodex STANDARD SM-105を選び、展開溶媒はN-メチル-2-ピロリドンであり、検出器は昭和電工製 商標名 Shodex RI-930を使用した。
(2)感光性樹脂組成物の透明性評価
 感光性樹脂組成物を3cm角の石英基板上にスピン塗布し、乾燥して10μm厚の塗膜を形成した。膜厚測定は、Tencor P-15型段差計(ケーエルエーテンコール社製)を用いて行った。この石英基板をUV測定器(島津社製、UV-1600PC)を用いて波長365nmにおける吸光度を測定した。10μm厚における吸光度が1.5以下であれば良好とした。
(3)硬化レリーフパターン(ポリイミド塗膜)のヤング率評価
 6インチシリコンウエハー上に、硬化後の膜厚が約10μmとなるように感光性樹脂組成物をスピン塗布乾燥した後、昇温プログラム式キュア炉(VF-2000型、光洋リンドバーグ社製)を用いて、窒素雰囲気下、200℃で1時間、300℃で2時間加熱して硬化レリーフパターン(熱硬化したポリイミドの塗膜)を得た。得られたポリイミド塗膜をダイシングソー(DAD3350型、DISCO社製)を用いて3mm幅の短冊状にカットした後、46%フッ化水素酸を用いてシリコンウエハーから剥がしてポリイミドテープとした。得られたポリイミドテープのヤング率を引張試験機(UTM-II-20型、オリエンテック社製)を用いて、ASTM D882-09に従って測定した。ヤング率が5.0GPa以上であれば良好とした。
(4)ポリイミドパターンのパターニング特性評価
 感光性樹脂組成物を6インチシリコンウエハー上にスピン塗布し、乾燥して10μm厚の塗膜を形成した。この塗膜にテストパターン付レチクルを用いてi線ステッパーNSR1755i7B(ニコン社製)により、300mJ/cm2のエネルギーを照射した。次いで、ウエハー上に形成した塗膜を、シクロペンタノンを用いて現像機(D-SPIN636型、大日本スクリーン製造社製)でスプレー現像し、プロピレングリコールメチルエーテルアセテートでリンスして、ポリアミド酸エステルのパターンを得た。
 パターンを形成したウエハーを昇温プログラム式キュア炉(VF-2000型、日本国、光洋リンドバーグ社製)を用いて、窒素雰囲気下、200℃で1時間、続いて300℃で2時間熱処理することにより、5μm厚のポリイミドのパターンをシリコンウエハー上に得た。得られた各パターンについて、パターン形状及びパターン部の幅を光学顕微鏡下で観察し、解像度を求めた。
 解像度に関しては、テストパターン付きレチクルを介して露光することにより複数の異なる面積の開口部を有するパターンを上記の方法で形成し、得られたパターン開口部の面積が、対応するパターンマスク開口面積の1/2以上であれば解像されたものとみなし、解像された開口部のうち最小面積を有するものに対応するマスクの開口辺の長さを解像度とした。解像度は、10μm以下、すなわちアスペクト比(塗布乾燥後の膜厚/解像度)が1以上であれば良好である。
(5)ポリイミドのパターンの精度評価
 以下の基準に基づき、上記(4)で形成したポリイミドのパターンの精度を評価した。
 「良好」:パターン断面が裾引きしておらず、アンダーカット、膨潤又はブリッジングが起こっていないパターンであり、且つアスペクト比が1以上であるパターンであり、加熱硬化時にパターン形状が変動しないパターン。
 「不良」:上記「良好」の複数の条件の少なくとも1つを満足していないパターン。
<製造例1>((A)ポリイミド前駆体としてのポリマーAの合成)
 4,4’-オキシジフタル酸二無水物(ODPA)155.1g(0.5mol)を2リットル容量のセパラブルフラスコに入れ、2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)とトリエチレングリコールモノメチルエーテル82.2g(0.5mol)とγ―ブチロラクトン400mlを入れて室温下で攪拌し、攪拌しながらピリジン81.5gを加えて反応混合物を得た。反応による発熱の終了後に室温まで放冷し、16時間放置した。
 次に、氷冷下において、ジシクロヘキシルカルボジイミド(DCC)206.3gをγ-ブチロラクトン180mlに溶解した溶液を攪拌しながら40分かけて反応混合物に加え、続いてp-フェニレンジアミン(PPD)50.2gをγ-ブチロラクトン350mlに懸濁したものを攪拌しながら60分かけて加えた。更に室温で2時間攪拌した後、エチルアルコール30mlを加えて1時間攪拌し、次に、γ-ブチロラクトン400mlを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。
 得られた反応液を3リットルのエチルアルコールに加えて粗ポリマーから成る沈殿物を生成した。生成した粗ポリマーを濾別し、テトラヒドロフラン1.5リットルに溶解して粗ポリマー溶液を得た。得られた粗ポリマー溶液を28リットルの水に滴下してポリマーを沈殿させ、得られた沈殿物を濾別した後、真空乾燥して粉末状のポリマー(ポリマーA)を得た。ポリマーAの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は30,000であった。
<製造例2>((A)ポリイミド前駆体としてのポリマーBの合成)
 製造例1の2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)とトリエチレングリコールモノメチルエーテル82.2g(0.5mol)に代えて2-ヒドロキシエチルメタクリレート(HEMA)32.6g(0.25mol)とトリエチレングリコールモノメチルエーテル123.3g(0.75mol)をそれぞれ用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマーBを得た。ポリマーBの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は32,000であった。
<製造例3>((A)ポリイミド前駆体としてのポリマーCの合成)
 製造例1の2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)とトリエチレングリコールモノメチルエーテル82.2g(0.5mol)に代えて2-ヒドロキシエチルメタクリレート(HEMA)97.7g(0.75mol)とトリエチレングリコールモノメチルエーテル41.1g(0.25mol)をそれぞれ用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマーCを得た。ポリマーCの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は32,000であった。
<製造例4>((A)ポリイミド前駆体としてのポリマーDの合成)
 製造例1の2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)とトリエチレングリコールモノメチルエーテル82.2g(0.5mol)に代えて2-ヒドロキシエチルメタクリレート(HEMA)130.2g(1.0mol)を用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマーDを得た。ポリマーDの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は29,000であった。
<製造例5>((A)ポリイミド前駆体としてのポリマーEの合成)
 製造例1の2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)とトリエチレングリコールモノメチルエーテル82.2g(0.5mol)に代えて2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)とエタノール23.0g(0.5mol)をそれぞれ用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマーEを得た。ポリマーEの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は27,000であった。
<製造例6>((A)ポリイミド前駆体としてのポリマーFの合成)
 製造例1の2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)とトリエチレングリコールモノメチルエーテル82.2g(0.5mol)に代えて2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)とネオペンチルアルコール44.0g(0.5mol)をそれぞれ用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマーFを得た。ポリマーFの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は28,000であった。
<製造例7>((A)ポリイミド前駆体としてのポリマーGの合成)
 製造例1の2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)とトリエチレングリコールモノメチルエーテル82.2g(0.5mol)に代えて2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)と1-オクタノール65.0g(0.5mol)をそれぞれ用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマーGを得た。ポリマーGの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は33,000であった。
<製造例8>((A)ポリイミド前駆体としてのポリマーHの合成)
 製造例1の2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)とトリエチレングリコールモノメチルエーテル82.2g(0.5mol)に代えて2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)とベンジルアルコール54.0g(0.5mol)をそれぞれ用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマーHを得た。ポリマーHの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は35,000であった。
<製造例9>((A)ポリイミド前駆体としてのポリマーIの合成)
 製造例1の2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)とトリエチレングリコールモノメチルエーテル82.2g(0.5mol)に代えて2-ヒドロキシエチルメタクリレート(HEMA)104.1g(0.8mol)とトリエチレングリコールモノメチルエーテル32.8g(0.2mol)をそれぞれ用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマーIを得た。ポリマーIの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は32,000であった。
<製造例10>((A)ポリイミド前駆体としてのポリマーJの合成)
 製造例1の2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)とトリエチレングリコールモノメチルエーテル82.2g(0.5mol)に代えて2-ヒドロキシエチルメタクリレート(HEMA)26.0g(0.2mol)とトリエチレングリコールモノメチルエーテル131.4g(0.8mol)をそれぞれ用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマーJを得た。ポリマーJの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は33,000であった。
<製造例11>((A)ポリイミド前駆体としてのポリマーKの合成)
 製造例1の2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)とトリエチレングリコールモノメチルエーテル82.2g(0.5mol)に代えて2-ヒドロキシエチルメタクリレート(HEMA)13.0g(0.9mol)とトリエチレングリコールモノメチルエーテル147.8g(0.1mol)をそれぞれ用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマーKを得た。ポリマーKの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は30,000であった。
<製造例12>((A)ポリイミド前駆体としてのポリマーLの合成)
 製造例1の2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)とトリエチレングリコールモノメチルエーテル82.2g(0.5mol)に代えて2-ヒドロキシエチルメタクリレート(HEMA)117.1g(0.1mol)とトリエチレングリコールモノメチルエーテル16.4g(0.9mol)をそれぞれ用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマーLを得た。ポリマーLの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は33,000であった。
<製造例13>((A)ポリイミド前駆体としてのポリマーMの合成)
 製造例1の2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)とトリエチレングリコールモノメチルエーテル82.2g(0.5mol)に代えて2-ヒドロキシエチルメタクリレート(HEMA)65.1g(0.5mol)と1-ブタノール37.1g(0.5mol)をそれぞれ用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマーMを得た。ポリマーMの分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は32,000であった。
<実施例1>
 ポリマーAを用いて以下の方法でネガ型感光性樹脂組成物を調製し、調製した組成物の評価を行った。ポリイミド前駆体であるポリマーA100g((A)ポリイミド前駆体)を、1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)-オキシム((B)光重合開始剤)4g、ベンゾトリアゾール0.15g、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン1.5g、N-フェニルジエタノールアミン10g、メトキシメチル化尿素樹脂(MX-290)4g、テトラエチレングリコールジメタクリレート8g、N-[3-(トリエトキシシリル)プロピル]フタルアミド酸1.5g、及び2-ニトロソ-1-ナフト-ル0.05gと共に、N-メチル-2-ピロリドン(以下ではNMPという)80gと乳酸エチル20gから成る混合溶媒に溶解した。得られた溶液の粘度を、少量の該混合溶媒を更に加えることによって約35ポイズに調整し、ネガ型感光性樹脂組成物とした。
 該組成物を、前述の方法に従って評価した結果、吸光度が1.36、ヤング率が5.6GPaと良好であり、解像度は8μmかつパターン精度も良好であった。
<実施例2>
 実施例1の、本発明における(A)ポリイミド前駆体をポリマーBに変えた以外は実施例1と同様のネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。その結果、吸光度が1.29、ヤング率が5.5GPaと良好であり、解像度は8μmかつパターン精度も良好であった。
<実施例3>
 実施例1の、本発明における(A)ポリイミド前駆体をポリマーCに変えた以外は実施例1と同様のネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。その結果、吸光度が1.40、ヤング率が5.4GPaと良好であり、解像度は8μmかつパターン精度も良好であった。
<実施例4>
 実施例1の、本発明における(A)ポリイミド前駆体をポリマーFに変えた以外は実施例1と同様のネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。その結果、吸光度が1.48、ヤング率が5.6GPaと良好であり、解像度は8μmかつパターン精度も良好であった。
<実施例5>
 実施例1の、本発明における(A)ポリイミド前駆体をポリマーGに変えた以外は実施例1と同様のネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。その結果、吸光度が1.50、ヤング率が6.0GPaと良好であり、解像度は8μmかつパターン精度も良好であった。
<実施例6>
 実施例1の、本発明における(A)ポリイミド前駆体をポリマーHに変えた以外は実施例1と同様のネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。その結果、吸光度が1.48、ヤング率が5.6GPaと良好であり、解像度は8μmかつパターン精度も良好であった。
<実施例7>
 実施例1の、本発明における(A)ポリイミド前駆体をポリマーIに変えた以外は実施例1と同様のネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。その結果、吸光度1.50、ヤング率が5.0GPaと良好であり、解像度は8μmかつパターン精度も良好であった。
<実施例8>
 実施例1の、本発明における(A)ポリイミド前駆体をポリマーJに変えた以外は実施例1と同様のネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。その結果、吸光度1.27、ヤング率が5.6GPaと良好であり、解像度は8μmかつパターン精度も良好であった。
<比較例1>
 実施例1の、本発明における(A)ポリイミド前駆体をポリマーDに変えた以外は実施例1と同様のネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。その結果、吸光度が1.68、ヤング率が4.8GPa、パターン精度が不良といずれも基準を満たさなかった。
<比較例2>
 実施例1の、本発明における(A)ポリイミド前駆体をポリマーEに変えた以外は実施例1と同様のネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。その結果、吸光度が1.57、ヤング率が4.9GPa、パターン精度が不良といずれも基準を満たさなかった。
<比較例3>
 実施例1の、本発明における(A)ポリイミド前駆体をポリマーKに変えた以外は実施例1と同様のネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。その結果、吸光度が1.58、ヤング率が4.9GPa、パターン精度が不良といずれも基準を満たさなかった。
<比較例4>
 実施例1の、本発明における(A)ポリイミド前駆体をポリマーLに変えた以外は実施例1と同様のネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。その結果、吸光度が1.25、ヤング率が5.6GPaと良好であったが、パターン精度が不良であった。
<比較例5>
 実施例1の、本発明における(A)ポリイミド前駆体をポリマーMに変えた以外は実施例1と同様のネガ型感光性樹脂組成物を調製し、実施例1と同様の評価を行った。その結果、吸光度が1.63、ヤング率が4.9GPa、パターン精度が不良といずれも基準を満たさなかった。
 本発明のネガ型感光性樹脂組成物は、例えば半導体装置、多層配線基板等の電気・電子材料の製造に有用な感光性材料の分野で好適に利用できる。

Claims (8)

  1.  (A)下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    {式中、X1は、炭素数6~40の4価の有機基であり、Y1は、炭素数6~40の2価の有機基であり、nは、2~150の整数であり、R1及びR2は、それぞれ独立に、水素原子、又は下記一般式(2)若しくは(3):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、R及びRは、それぞれ独立に、水素原子又は炭素数1~3の1価の有機基であり、そしてmは、2~10の整数である。)
      -R   (3)
    (式中、Rは、ヘテロ原子を有していてもよい炭素数5~30の脂肪族基、又は炭素数6~30の芳香族基から選択される1価の基である。)
    で表される1価の有機基であり、そしてR及びRの全てに対する上記一般式(2)で表される1価の有機基と上記一般式(3)で表される1価の有機基の合計の割合は、80モル%以上であり、かつR及びRの全てに対する上記一般式(3)で表される1価の有機基の割合は、20モル%~80モル%である。}
    で表される構造を有するポリイミド前駆体:100質量部;及び
     (B)光重合開始剤:0.1質量部~20質量部;
    を含むネガ型感光性樹脂組成物。
  2.  前記Rは、エチレングリコール構造を有する炭素数5~30の脂肪族基である、請求項1に記載のネガ型感光性樹脂組成物。
  3.  前記一般式(1)において、R及びRの全てに対する前記一般式(2)で表される1価の有機基と前記一般式(3)で表される1価の有機基の合計の割合は、90モル%以上であり、かつR及びRの全てに対する前記一般式(3)で表される1価の有機基の割合は、25モル%~75モル%である、請求項1又は2に記載のネガ型感光性樹脂組成物。
  4.  前記(A)ポリイミド前駆体:100質量部に対して、(C)熱架橋剤:0.1質量部~30質量部をさらに含む、請求項1~3のいずれか1項に記載のネガ型感光性樹脂組成物。
  5.  以下の工程:
     (1)請求項1~4のいずれか1項に記載のネガ型感光性樹脂組成物を基板上に塗布して、感光性樹脂層を該基板上に形成する工程と、
     (2)該感光性樹脂層を露光する工程と、
     (3)該露光後の感光性樹脂層を現像して、レリーフパターンを形成する工程と、
     (4)該レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程と
    を含む硬化レリーフパターンの製造方法。
  6.  請求項5に記載の方法により製造された硬化レリーフパターン。
  7.  半導体素子と、該半導体素子の上部に設けられた硬化膜とを備える半導体装置であって、該硬化膜は、請求項6に記載の硬化レリーフパターンである、半導体装置。
  8.  表示体素子と、該表示体素子の上部に設けられた硬化膜とを備える表示体装置であって、該硬化膜は、請求項6に記載の硬化レリーフパターンである、表示体装置。
PCT/JP2013/062766 2012-05-07 2013-05-02 ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置 WO2013168675A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014514710A JP6190805B2 (ja) 2012-05-07 2013-05-02 ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
CN201380022903.3A CN104285184B (zh) 2012-05-07 2013-05-02 负型感光性树脂组合物、固化浮雕图案的制造方法、及半导体装置
KR1020147030018A KR101719045B1 (ko) 2012-05-07 2013-05-02 네거티브형 감광성 수지 조성물, 경화 릴리프 패턴의 제조 방법, 및 반도체 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012106000 2012-05-07
JP2012-106000 2012-05-07

Publications (1)

Publication Number Publication Date
WO2013168675A1 true WO2013168675A1 (ja) 2013-11-14

Family

ID=49550713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062766 WO2013168675A1 (ja) 2012-05-07 2013-05-02 ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置

Country Status (5)

Country Link
JP (1) JP6190805B2 (ja)
KR (1) KR101719045B1 (ja)
CN (1) CN104285184B (ja)
TW (1) TWI491987B (ja)
WO (1) WO2013168675A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698753A (zh) * 2013-12-09 2015-06-10 罗门哈斯电子材料韩国有限公司 负性光敏性树脂组合物
WO2017002859A1 (ja) * 2015-06-30 2017-01-05 富士フイルム株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス
WO2017110982A1 (ja) 2015-12-25 2017-06-29 富士フイルム株式会社 樹脂、組成物、硬化膜、硬化膜の製造方法および半導体デバイス
EP3235803A1 (en) 2016-04-19 2017-10-25 Shin-Etsu Chemical Co., Ltd. Tetracarboxylic acid diester compound, polyimide precursor polymer and method for producing the same, negative photosensitive resin composition, positive photosensitive resin composition, patterning process, and method for forming cured film
EP3275857A1 (en) 2016-07-25 2018-01-31 Shin-Etsu Chemical Co., Ltd. Tetracarboxylic acid diester compound, polyimide precursor polymer and method for producing the same, negative photosensitive resin composition, patterning process, and method for forming cured film
WO2018043467A1 (ja) * 2016-08-31 2018-03-08 富士フイルム株式会社 樹脂組成物およびその応用
KR20180029873A (ko) 2016-09-13 2018-03-21 도쿄 오카 고교 가부시키가이샤 감광성 수지 조성물, 폴리아미드 수지, 폴리아미드 수지의 제조 방법, 화합물, 화합물의 제조 방법, 경화막의 제조 방법 및 경화막
JP2018045230A (ja) * 2016-09-13 2018-03-22 東京応化工業株式会社 感光性樹脂組成物、ポリアミド樹脂、ポリアミド樹脂の製造方法、化合物、化合物の製造方法、硬化膜の製造方法、及び硬化膜
EP3315504A1 (en) 2016-10-27 2018-05-02 Shin-Etsu Chemical Co., Ltd. Tetracarboxylic acid diester compound, polymer of polyimide precursor and method for producing same, negative photosensitive resin composition, patterning process, and method for forming cured film
JP2018082184A (ja) * 2017-12-06 2018-05-24 味の素株式会社 樹脂シート
KR20180107756A (ko) 2017-03-22 2018-10-02 신에쓰 가가꾸 고교 가부시끼가이샤 폴리이미드 전구체의 중합체, 포지티브형 감광성 수지 조성물, 네거티브형 감광성 수지 조성물, 패턴 형성 방법, 경화 피막 형성 방법, 층간 절연막, 표면 보호막 및 전자 부품
JP2019066754A (ja) * 2017-10-04 2019-04-25 旭化成株式会社 ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
WO2019139028A1 (ja) * 2018-01-10 2019-07-18 日産化学株式会社 絶縁膜用樹脂組成物
EP3604390A1 (en) 2018-08-01 2020-02-05 Shin-Etsu Chemical Co., Ltd. Polymer having a structure of polyamide, polyamide-imide, or polyimide, photosensitive resin composition, patterning process, photosensitive dry film, and protective film for electric and electronic parts
WO2020071201A1 (ja) * 2018-10-03 2020-04-09 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
WO2020111178A1 (ja) * 2018-11-29 2020-06-04 日産化学株式会社 アルコール化合物
TWI728080B (zh) * 2016-03-28 2021-05-21 日商東麗股份有限公司 感光性薄膜及電子零件或半導體裝置之製造方法
WO2024048603A1 (ja) * 2022-08-31 2024-03-07 富士フイルム株式会社 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106104381B (zh) * 2014-03-17 2019-12-13 旭化成株式会社 感光性树脂组合物、固化浮雕图案的制造方法、以及半导体装置
TWI647532B (zh) * 2014-07-01 2019-01-11 南韓商東友精細化工有限公司 光敏樹脂組成物
CN107407875B (zh) * 2015-03-16 2021-08-24 太阳控股株式会社 正型感光性树脂组合物、干膜、固化物和印刷电路板
WO2016194769A1 (ja) * 2015-05-29 2016-12-08 富士フイルム株式会社 ポリイミド前駆体組成物、感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイスおよびポリイミド前駆体組成物の製造方法
TWI625232B (zh) 2016-02-26 2018-06-01 Fujifilm Corp 積層體、積層體的製造方法、半導體元件以及半導體元件的製造方法
KR102268692B1 (ko) * 2016-08-22 2021-06-23 아사히 가세이 가부시키가이샤 감광성 수지 조성물 및 경화 릴리프 패턴의 제조 방법
CN111033379A (zh) * 2017-08-28 2020-04-17 住友电木株式会社 负型感光性树脂组合物、半导体装置和电子设备
JP7076262B2 (ja) * 2018-03-30 2022-05-27 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物及びプリント配線板
JP7405088B2 (ja) * 2018-10-03 2023-12-26 Hdマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
WO2020150918A1 (zh) * 2019-01-23 2020-07-30 律胜科技股份有限公司 感光性树脂组合物及其应用
KR20230069646A (ko) 2021-11-12 2023-05-19 주식회사 파이솔루션테크놀로지 폴리이미드 중합체, 이를 포함한 수지, 상기 중합체의 제조방법 및 이를 포함한 네가티브형 감광성 수지 조성물
WO2024090486A1 (ja) * 2022-10-28 2024-05-02 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126547A (ja) * 2002-08-05 2004-04-22 Toray Ind Inc 感光性樹脂前駆体組成物
JP2004286786A (ja) * 2003-03-19 2004-10-14 Mitsui Chemicals Inc 回路付サスペンション基板
WO2005101125A1 (ja) * 2004-03-31 2005-10-27 Hitachi Chemical Dupont Microsystems Ltd. 耐熱感光性樹脂組成物、該組成物を用いたパターン製造方法、及び電子部品
JP2007187710A (ja) * 2006-01-11 2007-07-26 Toray Ind Inc ポジ型感光性樹脂前駆体組成物
JP2011123219A (ja) * 2009-12-09 2011-06-23 Asahi Kasei E-Materials Corp 感光性ポリアミド樹脂組成物、硬化レリーフパターンの形成方法及び半導体装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680776A (ja) 1992-09-02 1994-03-22 Asahi Chem Ind Co Ltd ポリイミド前駆体及び組成物
US6010825A (en) * 1997-09-11 2000-01-04 Olin Microelectronics Chemicals, Inc. Negatively acting photoresist composition based on polyimide precursors
JP3895945B2 (ja) * 2001-04-24 2007-03-22 ソニーケミカル&インフォメーションデバイス株式会社 樹脂組成物及び樹脂組成物製造方法
KR100548625B1 (ko) * 2003-03-24 2006-01-31 주식회사 엘지화학 고내열성 투명 폴리이미드 전구체 및 이를 이용한 감광성수지 조성물
US7067441B2 (en) * 2003-11-06 2006-06-27 Texas Instruments Incorporated Damage-free resist removal process for ultra-low-k processing
EP2248843A4 (en) * 2008-02-25 2013-07-24 Hitachi Chem Dupont Microsys POLYIMIDE PREPARATION COMPOSITION, POLYIMIDE COATING AND TRANSPARENT FLEXIBLE COATING
US8071273B2 (en) * 2008-03-31 2011-12-06 Dai Nippon Printing Co., Ltd. Polyimide precursor, resin composition comprising the polyimide precursor, pattern forming method using the resin composition, and articles produced by using the resin composition
JP5207907B2 (ja) 2008-10-03 2013-06-12 旭化成イーマテリアルズ株式会社 感光性樹脂組成物、パターン形成方法、並びに半導体装置及びその製造方法
CN102162996B (zh) * 2010-02-16 2013-07-17 旭化成电子材料株式会社 负型感光性树脂组合物、固化浮雕图案的制造方法
TWI430024B (zh) * 2010-08-05 2014-03-11 Asahi Kasei E Materials Corp A photosensitive resin composition, a method for manufacturing a hardened bump pattern, and a semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126547A (ja) * 2002-08-05 2004-04-22 Toray Ind Inc 感光性樹脂前駆体組成物
JP2004286786A (ja) * 2003-03-19 2004-10-14 Mitsui Chemicals Inc 回路付サスペンション基板
WO2005101125A1 (ja) * 2004-03-31 2005-10-27 Hitachi Chemical Dupont Microsystems Ltd. 耐熱感光性樹脂組成物、該組成物を用いたパターン製造方法、及び電子部品
JP2007187710A (ja) * 2006-01-11 2007-07-26 Toray Ind Inc ポジ型感光性樹脂前駆体組成物
JP2011123219A (ja) * 2009-12-09 2011-06-23 Asahi Kasei E-Materials Corp 感光性ポリアミド樹脂組成物、硬化レリーフパターンの形成方法及び半導体装置

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698753B (zh) * 2013-12-09 2022-08-23 罗门哈斯电子材料韩国有限公司 负性光敏性树脂组合物
TWI658330B (zh) * 2013-12-09 2019-05-01 羅門哈斯電子材料韓國公司 負型光敏樹脂組成物
CN104698753A (zh) * 2013-12-09 2015-06-10 罗门哈斯电子材料韩国有限公司 负性光敏性树脂组合物
KR20180005227A (ko) * 2015-06-30 2018-01-15 후지필름 가부시키가이샤 네거티브형 감광성 수지 조성물, 경화막, 경화막의 제조 방법 및 반도체 디바이스
JPWO2017002859A1 (ja) * 2015-06-30 2018-04-12 富士フイルム株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス
WO2017002859A1 (ja) * 2015-06-30 2017-01-05 富士フイルム株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法および半導体デバイス
KR102021305B1 (ko) 2015-06-30 2019-09-16 후지필름 가부시키가이샤 네거티브형 감광성 수지 조성물, 경화막, 경화막의 제조 방법 및 반도체 디바이스
TWI662367B (zh) * 2015-06-30 2019-06-11 日商富士軟片股份有限公司 負型感光性樹脂組成物、硬化膜、硬化膜的製造方法及半導體元件
US10450417B2 (en) 2015-12-25 2019-10-22 Fujifilm Corporation Resin, composition, cured film, method for manufacturing cured film and semiconductor device
WO2017110982A1 (ja) 2015-12-25 2017-06-29 富士フイルム株式会社 樹脂、組成物、硬化膜、硬化膜の製造方法および半導体デバイス
TWI728080B (zh) * 2016-03-28 2021-05-21 日商東麗股份有限公司 感光性薄膜及電子零件或半導體裝置之製造方法
US10457779B2 (en) 2016-04-19 2019-10-29 Shin-Etsu Chemical Co., Ltd. Tetracarboxylic acid diester compound, polyimide precursor polymer and method for producing the same, negative photosensitive resin composition, positive photosensitive resin composition, patterning process, and method for forming cured film
EP3235803A1 (en) 2016-04-19 2017-10-25 Shin-Etsu Chemical Co., Ltd. Tetracarboxylic acid diester compound, polyimide precursor polymer and method for producing the same, negative photosensitive resin composition, positive photosensitive resin composition, patterning process, and method for forming cured film
KR20170119643A (ko) 2016-04-19 2017-10-27 신에쓰 가가꾸 고교 가부시끼가이샤 테트라카르복실산디에스테르 화합물, 폴리이미드 전구체의 중합체 및 그 제조 방법, 네거티브형 감광성 수지 조성물, 포지티브형 감광성 수지 조성물, 패턴 형성 방법 및 경화 피막 형성 방법
JP2018016554A (ja) * 2016-07-25 2018-02-01 信越化学工業株式会社 テトラカルボン酸ジエステル化合物、ポリイミド前駆体の重合体及びその製造方法、ネガ型感光性樹脂組成物、パターン形成方法、及び硬化被膜形成方法
EP3275857A1 (en) 2016-07-25 2018-01-31 Shin-Etsu Chemical Co., Ltd. Tetracarboxylic acid diester compound, polyimide precursor polymer and method for producing the same, negative photosensitive resin composition, patterning process, and method for forming cured film
US10216085B2 (en) 2016-07-25 2019-02-26 Shin-Etsu Chemical Co., Ltd. Tetracarboxylic acid diester compound, polyimide precursor polymer and method for producing the same, negative photosensitive resin composition, patterning process, and method for forming cured film
WO2018043467A1 (ja) * 2016-08-31 2018-03-08 富士フイルム株式会社 樹脂組成物およびその応用
JPWO2018043467A1 (ja) * 2016-08-31 2019-08-08 富士フイルム株式会社 樹脂組成物およびその応用
KR20190033582A (ko) 2016-08-31 2019-03-29 후지필름 가부시키가이샤 수지 조성물 및 그 응용
JP2018045230A (ja) * 2016-09-13 2018-03-22 東京応化工業株式会社 感光性樹脂組成物、ポリアミド樹脂、ポリアミド樹脂の製造方法、化合物、化合物の製造方法、硬化膜の製造方法、及び硬化膜
KR20180029873A (ko) 2016-09-13 2018-03-21 도쿄 오카 고교 가부시키가이샤 감광성 수지 조성물, 폴리아미드 수지, 폴리아미드 수지의 제조 방법, 화합물, 화합물의 제조 방법, 경화막의 제조 방법 및 경화막
US10527940B2 (en) 2016-09-13 2020-01-07 Tokyo Ohka Kogyo Co., Ltd. Photosensitive resin composition, polyamide resin, method for producing polyamide resin, compound, method for producing compound, method for producing cured film, and cured film
KR20180046385A (ko) 2016-10-27 2018-05-08 신에쓰 가가꾸 고교 가부시끼가이샤 테트라카르복실산디에스테르 화합물, 폴리이미드 전구체의 중합체 및 그 제조 방법, 네거티브형 감광성 수지 조성물, 패턴 형성 방법, 및 경화 피막 형성 방법
US20190018320A1 (en) * 2016-10-27 2019-01-17 Shin-Etsu Chemical Co., Ltd. Tetracarboxylic acid diester compound, polymer of polyimide precursor and method for producing same, negative photosensitive resin composition, patterning process, and method for forming cured film
EP3315504A1 (en) 2016-10-27 2018-05-02 Shin-Etsu Chemical Co., Ltd. Tetracarboxylic acid diester compound, polymer of polyimide precursor and method for producing same, negative photosensitive resin composition, patterning process, and method for forming cured film
US10816900B2 (en) 2016-10-27 2020-10-27 Shin-Etsu Chemical Co., Ltd. Tetracarboxylic acid diester compound, polymer of polyimide precursor and method for producing same, negative photosensitive resin composition, patterning process, and method for forming cured film
US10203601B2 (en) 2016-10-27 2019-02-12 Shin-Etsu Chemical Co., Ltd. Tetracarboxylic acid diester compound, polymer of polyimide precursor and method for producing same, negative photosensitive resin composition, patterning process, and method for forming cured film
JP2018070486A (ja) * 2016-10-27 2018-05-10 信越化学工業株式会社 テトラカルボン酸ジエステル化合物、ポリイミド前駆体の重合体及びその製造方法、ネガ型感光性樹脂組成物、パターン形成方法、及び硬化被膜形成方法
KR20180107756A (ko) 2017-03-22 2018-10-02 신에쓰 가가꾸 고교 가부시끼가이샤 폴리이미드 전구체의 중합체, 포지티브형 감광성 수지 조성물, 네거티브형 감광성 수지 조성물, 패턴 형성 방법, 경화 피막 형성 방법, 층간 절연막, 표면 보호막 및 전자 부품
EP3398983A1 (en) 2017-03-22 2018-11-07 Shin-Etsu Chemical Co., Ltd. Polymer of polyimide precursor, positive type photosensitive resin composition, negative type photosensitive resin composition, patterning process, method for forming cured film, interlayer insulating film, surface protective film, and electronic parts
US11150556B2 (en) 2017-03-22 2021-10-19 Shin-Etsu Chemical Co., Ltd. Polymer of polyimide precursor, positive type photosensitive resin composition, negative type photosensitive resin composition, patterning process, method for forming cured film, interlayer insulating film, surface protective film, and electronic parts
JP2019066754A (ja) * 2017-10-04 2019-04-25 旭化成株式会社 ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
JP7156786B2 (ja) 2017-10-04 2022-10-19 旭化成株式会社 ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
JP2018082184A (ja) * 2017-12-06 2018-05-24 味の素株式会社 樹脂シート
WO2019139028A1 (ja) * 2018-01-10 2019-07-18 日産化学株式会社 絶縁膜用樹脂組成物
KR20200014709A (ko) 2018-08-01 2020-02-11 신에쓰 가가꾸 고교 가부시끼가이샤 폴리아미드, 폴리아미드이미드, 폴리이미드 구조를 포함하는 중합체, 감광성 수지 조성물, 패턴 형성 방법, 감광성 드라이 필름 및 전기·전자 부품 보호용 피막
EP3604390A1 (en) 2018-08-01 2020-02-05 Shin-Etsu Chemical Co., Ltd. Polymer having a structure of polyamide, polyamide-imide, or polyimide, photosensitive resin composition, patterning process, photosensitive dry film, and protective film for electric and electronic parts
US11768434B2 (en) 2018-08-01 2023-09-26 Shin-Etsu Chemical Co., Ltd. Polymer having a structure of polyamide, polyamide-imide, or polyimide, photosensitive resin composition, patterning process, photosensitive dry film, and protective film for electric and electronic parts
WO2020071201A1 (ja) * 2018-10-03 2020-04-09 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JPWO2020071201A1 (ja) * 2018-10-03 2021-09-24 Hdマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
WO2020111178A1 (ja) * 2018-11-29 2020-06-04 日産化学株式会社 アルコール化合物
WO2024048603A1 (ja) * 2022-08-31 2024-03-07 富士フイルム株式会社 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス

Also Published As

Publication number Publication date
JPWO2013168675A1 (ja) 2016-01-07
TW201351047A (zh) 2013-12-16
CN104285184B (zh) 2018-09-25
JP6190805B2 (ja) 2017-08-30
KR101719045B1 (ko) 2017-03-22
TWI491987B (zh) 2015-07-11
CN104285184A (zh) 2015-01-14
KR20140148451A (ko) 2014-12-31

Similar Documents

Publication Publication Date Title
JP6190805B2 (ja) ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
JP6491704B2 (ja) 感光性樹脂組成物
JP6367456B2 (ja) 感光性樹脂組成物、ポリイミドの製造方法および半導体装置
JP5657414B2 (ja) ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、並びに半導体装置
JP5571990B2 (ja) ネガ型感光性樹脂組成物、硬化レリーフパターン形成・製造方法、並びに半導体装置
JP5415861B2 (ja) 感光性樹脂組成物、パターン形成方法、及び半導体装置
JP5620691B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、並びに半導体装置
WO2018037997A1 (ja) 感光性樹脂組成物及び硬化レリーフパターンの製造方法
JP6636707B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP6935982B2 (ja) 樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
JP6427383B2 (ja) 樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
WO2022158359A1 (ja) 感光性樹脂組成物、並びにこれを用いたポリイミド硬化膜の製造方法及びポリイミド硬化膜
JP2007206423A (ja) ポリアミド酸エステル組成物
JP7502384B2 (ja) ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
JP6643824B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、並びに半導体装置
JP2021173787A (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、硬化レリーフパターン、半導体装置及び表示体装置
JP2020064205A (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法
JP7471480B2 (ja) 樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
JP7488659B2 (ja) ネガ型感光性樹脂組成物、並びにこれを用いたポリイミド及び硬化レリーフパターンの製造方法
WO2024090486A1 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
JP2021117442A (ja) 感光性樹脂組成物
JP2024031928A (ja) ネガ型感光性樹脂組成物及び硬化レリーフパターンの製造方法
JP2023158657A (ja) ネガ型感光性樹脂組成物及びその製造方法、並びに硬化レリーフパターンの製造方法
JP2020097747A (ja) 樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788285

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514710

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147030018

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13788285

Country of ref document: EP

Kind code of ref document: A1