WO2018043467A1 - 樹脂組成物およびその応用 - Google Patents

樹脂組成物およびその応用 Download PDF

Info

Publication number
WO2018043467A1
WO2018043467A1 PCT/JP2017/030879 JP2017030879W WO2018043467A1 WO 2018043467 A1 WO2018043467 A1 WO 2018043467A1 JP 2017030879 W JP2017030879 W JP 2017030879W WO 2018043467 A1 WO2018043467 A1 WO 2018043467A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
group
photosensitive resin
acid
less
Prior art date
Application number
PCT/JP2017/030879
Other languages
English (en)
French (fr)
Inventor
健志 川端
健太 吉田
悠 岩井
渋谷 明規
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020197005320A priority Critical patent/KR102189432B1/ko
Priority to JP2018537289A priority patent/JP6782298B2/ja
Publication of WO2018043467A1 publication Critical patent/WO2018043467A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0387Polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to a resin composition, a photosensitive resin composition, a cured film, a method for producing a cured film, a semiconductor device, and a method for producing a resin composition.
  • polyimide and polybenzoxazole are excellent in heat resistance and insulation, they are used for insulating films of semiconductor devices.
  • polyimide and polybenzoxazole it is used in the state of a precursor (polyimide precursor or polybenzoxazole precursor) before cyclization reaction with higher solvent solubility, applied to a substrate and then heated. Then, the precursor is cyclized to form a cured film.
  • Patent Document 1 discloses negative photosensitive material containing 100 parts by mass of a polyimide precursor having a predetermined structure and (B) 0.1 to 20 parts by mass of a photopolymerization initiator. A resin composition is disclosed.
  • the upper part shows a partial structure of an example of a polyimide precursor (repeating unit represented by formula (1) described later),
  • a 2 represents an oxygen atom or NH, and
  • R 111 represents a divalent organic compound.
  • R 115 represents a tetravalent organic group, and
  • R 113 represents a hydrogen atom or a monovalent organic group.
  • the lower part shows a partial structure of an example of a polybenzoxazole precursor (repeating unit represented by formula (2) described later), R 121 represents a divalent organic group, and R 122 represents 4 R 123 represents a hydrogen atom or a monovalent organic group.
  • An object of the present invention is to solve such a problem, and is a resin composition capable of providing a photosensitive resin composition having excellent storage stability and high resolving power, and the above resin composition. It aims at providing the manufacturing method of the photosensitive resin composition used, the cured film, the manufacturing method of a cured film, a semiconductor device, and a resin composition.
  • the above problems can be solved by using an acidic compound having a pKa of 4 or less.
  • the above problem has been solved by the following means ⁇ 1>, preferably ⁇ 2> to ⁇ 23>.
  • a resin composition comprising a heterocyclic-containing polymer precursor selected from a polyimide precursor and a polybenzoxazole precursor, and an acidic compound having a pKa of 4.0 or less, and the resin composition having a thickness of 10 ⁇ m
  • the cured resin film has a conductivity of 1.0 ⁇ 10 5 ⁇ ⁇ cm or less after being heated at 350 ° C. for 60 minutes.
  • Formula (1) Formula (2)
  • a 1 and A 2 each independently represent an oxygen atom or NH
  • R 111 represents a divalent organic group
  • R 115 represents a tetravalent organic group
  • R 113 and R 114 each independently represents a hydrogen atom or a monovalent organic group
  • R 121 represents a divalent organic group
  • R 122 represents a tetravalent organic group
  • R 123 and R 124 each independently represents a hydrogen atom or a monovalent organic group.
  • ⁇ 3> The resin composition according to ⁇ 1> or ⁇ 2>, wherein the acidic compound has a pKa of 3.5 or less.
  • ⁇ 4> The resin composition according to any one of ⁇ 1> to ⁇ 3>, wherein the acidic compound has a molecular weight of 100 to 300.
  • ⁇ 5> The resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the acidic compound is selected from sulfonic acid and carboxylic acid.
  • ⁇ 6> The resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the acidic compound is sulfonic acid.
  • a heterocyclic resin-containing polymer precursor selected from a polyimide precursor and a polybenzoxazole precursor, a resin composition containing an acidic compound having a pKa of 4.0 or less, and a photosensitive resin composition containing a photopolymerization initiator
  • the conductivity of the cured film after heating the photosensitive resin composition to a thickness of 10 ⁇ m for 60 minutes at 350 ° C. is 1.0 ⁇ 10 5 ⁇ ⁇ cm or less.
  • Photosensitive resin composition. The photosensitive resin composition according to ⁇ 9>, wherein the resin composition is the resin composition according to any one of ⁇ 2> to ⁇ 7>.
  • ⁇ 11> The photosensitive resin composition according to ⁇ 9> or ⁇ 10>, which is for negative development.
  • ⁇ 12> The photosensitive resin composition according to any one of ⁇ 9> to ⁇ 11>, which is used for a development using a developer containing an organic solvent.
  • ⁇ 13> The photosensitive resin composition according to any one of ⁇ 9> to ⁇ 12>, which is used for forming an interlayer insulating film for a rewiring layer.
  • ⁇ 14> A cured film obtained by curing the photosensitive resin composition according to any one of ⁇ 9> to ⁇ 13>.
  • ⁇ 15> The cured film according to ⁇ 14>, which is an interlayer insulating film for a rewiring layer.
  • ⁇ 16> A cured film comprising a step of applying the photosensitive resin composition according to any one of ⁇ 9> to ⁇ 13> to a substrate, and a step of curing the photosensitive resin composition applied to the substrate Manufacturing method.
  • ⁇ 17> The method for producing a cured film according to ⁇ 16>, further comprising a step of exposing the cured film and performing negative development.
  • ⁇ 18> The method for producing a cured film according to ⁇ 17>, which includes using a developer containing an organic solvent in the development.
  • a method for producing a resin composition comprising a heterocyclic-containing polymer precursor selected from a polyimide precursor and a polybenzoxazole precursor, comprising a step of adding an acidic compound having a pKa of 4.0 or less, The manufacturing method of the resin composition whose said resin composition is a powder form.
  • the method for producing a resin composition according to any one of ⁇ 1> to ⁇ 8>, wherein an acidic compound having a pKa of 4.0 or less is added in the synthesis step of the heterocyclic ring-containing polymer precursor The manufacturing method of the resin composition including doing.
  • ⁇ 22> The method for producing a resin composition according to any one of ⁇ 1> to ⁇ 8>, wherein an acidic compound having a pKa of 4.0 or less is added after a heterocyclic-containing polymer precursor is synthesized.
  • the manufacturing method of the resin composition including doing.
  • ⁇ 23> The method for producing a resin composition according to any one of ⁇ 20> to ⁇ 22>, comprising adding a carbodiimide compound in the synthesis step of the heterocyclic ring-containing polymer precursor.
  • a resin composition that can provide a photosensitive resin composition having excellent storage stability and high resolution, and production of a photosensitive resin composition, a cured film, and a cured film using the resin composition. It has become possible to provide a method, a semiconductor device, and a method for producing a resin composition.
  • the description of the components in the present invention described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
  • the description which does not describe substitution and unsubstituted includes the thing which has a substituent with the thing which does not have a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • active light means, for example, an emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer laser, extreme ultraviolet rays (EUV light), X-rays, electron beams, and the like.
  • light means actinic rays or radiation.
  • exposure in this specification is not only exposure with far-ultraviolet rays such as mercury lamps and excimer lasers, X-rays, EUV light, but also drawing with particle beams such as electron beams and ion beams. Are also included in the exposure.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • (meth) acrylate represents both and / or “acrylate” and “methacrylate”
  • (meth) acryl represents both “acryl” and “methacryl”
  • (Meth) acryloyl” represents either or both of “acryloyl” and “methacryloyl”.
  • process is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes.
  • solid content concentration is the mass percentage of the mass of the other component except a solvent with respect to the gross mass of a composition. Moreover, solid content concentration says the density
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are defined as polystyrene conversion values by gel permeation chromatography (GPC measurement) unless otherwise specified.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are, for example, HLC-8220GPC (manufactured by Tosoh Corp.), guard columns HZ-L, TSKgel Super HZM-M, TSKgel. It can be determined by using any one or more of Super HZ4000, TSKgel Super HZ3000, and TSKgel Super HZ2000 (manufactured by Tosoh Corporation). Unless otherwise stated, the eluent was measured using THF (tetrahydrofuran). Unless otherwise specified, detection is performed using a UV ray (ultraviolet) wavelength 254 nm detector.
  • the resin composition of the present invention comprises a heterocyclic-containing polymer precursor selected from a polyimide precursor and a polybenzoxazole precursor (hereinafter sometimes simply referred to as “heterocyclic-containing polymer precursor”), and a pKa of 4
  • the resin composition of the present invention is a cured film having a thickness of 10 ⁇ m, and the conductivity of the cured film after heating at 350 ° C. for 60 minutes is 1.0 ⁇ 10 5 ⁇ ⁇ cm or less. By setting it as such a structure, the insulation of a cured film can be maintained. The conductivity is measured according to the method described in Examples described later.
  • the heterocyclic ring-containing polymer precursor used in the present invention is at least one selected from a polyimide precursor and a polybenzoxazole precursor, and is preferably a polyimide precursor.
  • Each of the polyimide precursor and the polybenzoxazole precursor may contain one kind or two or more kinds.
  • a 1 and A 2 each independently represent an oxygen atom or NH
  • R 111 represents a divalent organic group
  • R 115 represents a tetravalent organic group
  • R 113 and R 114 each independently represents a hydrogen atom or a monovalent organic group.
  • a 1 and A 2 in Formula (1) are preferably an oxygen atom or NH, and more preferably an oxygen atom.
  • R 111 in Formula (1) represents a divalent organic group.
  • divalent organic group examples include a linear or branched aliphatic group, a group containing a cyclic aliphatic group and an aromatic group, a straight chain aliphatic group having 2 to 20 carbon atoms, A group consisting of 20 branched aliphatic groups, a cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 6 to 20 carbon atoms, or a combination thereof is preferable, and an aromatic group having 6 to 20 carbon atoms More preferred is a group consisting of
  • R 111 is preferably derived from a diamine.
  • the diamine used in the production of the polyimide precursor include linear or branched aliphatic, cyclic aliphatic or aromatic diamine. Only one type of diamine may be used, or two or more types may be used. Specifically, a group consisting of a linear or branched aliphatic group having 2 to 20 carbon atoms, a cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 6 to 20 carbon atoms, or a combination thereof.
  • a diamine containing is preferable, and a diamine containing a group consisting of an aromatic group having 6 to 20 carbon atoms is more preferable. The following are mentioned as an example of an aromatic group.
  • A is a single bond or an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, —C ( ⁇ O) —, —S—, —S ( ⁇ O) 2 —, —NHCO—, and a group selected from these combinations are preferable, a single bond, an alkylene group having 1 to 3 carbon atoms which may be substituted with a fluorine atom, —O— , —C ( ⁇ O) —, —S—, —SO 2 — is more preferable, and —CH 2 —, —O—, —S—, —SO 2 —, —C ( More preferably, it is a divalent group selected from the group consisting of CF 3 ) 2 — and —C (CH 3 ) 2 —.
  • diamine examples include 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane and 1,6-diaminohexane; 1,2- or 1 , 3-diaminocyclopentane, 1,2-, 1,3- or 1,4-diaminocyclohexane, 1,2-, 1,3- or 1,4-bis (aminomethyl) cyclohexane, bis- (4- Aminocyclohexyl) methane, bis- (3-aminocyclohexyl) methane, 4,4'-diamino-3,3'-dimethylcyclohexylmethane and isophoronediamine; meta and paraphenylenediamine, diaminotoluene, 4,4'- and 3 , 3'-diaminobiphenyl, 4,4'-diaminodiphenyl ether
  • diamines (DA-1) to (DA-18) shown below are also preferable.
  • a diamine having at least two alkylene glycol units in the main chain is also a preferred example.
  • Preferred is a diamine containing two or more ethylene glycol chains or propylene glycol chains in one molecule, and more preferred is a diamine containing no aromatic ring.
  • Specific examples include Jeffermin (registered trademark) KH-511, Jeffermin (registered trademark) ED-600, Jeffermin (registered trademark) ED-900, Jeffermin (registered trademark) ED-2003, Jeffermin (registered trademark).
  • x, y, and z are average values.
  • R 111 is preferably a divalent organic group represented by the following formula (51) or formula (61) from the viewpoint of i-line transmittance.
  • a divalent organic group represented by the formula (61) is more preferable from the viewpoint of i-line transmittance and availability.
  • Formula (51) In formula (51), R 10 to R 17 are each independently a hydrogen atom, a fluorine atom or a monovalent organic group, and at least one of R 10 to R 17 is a fluorine atom, a methyl group, a fluoromethyl group, A difluoromethyl group or a trifluoromethyl group.
  • Examples of the monovalent organic group represented by R 10 to R 17 include an unsubstituted alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms) and a fluorine atom having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms). Alkyl group and the like.
  • Formula (61) In formula (61), R 18 and R 19 are each independently a fluorine atom, a fluoromethyl group, a difluoromethyl group, or a trifluoromethyl group.
  • Diamine compounds that give the structure of formula (51) or (61) include dimethyl-4,4′-diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 2,2 Examples include '-bis (fluoro) -4,4'-diaminobiphenyl, 4,4'-diaminooctafluorobiphenyl, and the like. One of these may be used, or two or more may be used in combination.
  • R 115 in formula (1) represents a tetravalent organic group.
  • a tetravalent organic group containing an aromatic ring is preferable, and a group represented by the following formula (5) or formula (6) is more preferable.
  • R 112 represents a single bond or an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, —CO—, —S—, —SO.
  • -, - NHCO- is preferably a group selected from these combinations, a single bond, an alkylene group which ⁇ 1 carbon atoms which may be 3-substituted by fluorine atoms, -O -, - CO- More preferably a group selected from -S- and -SO 2- , -CH 2- , -C (CF 3 ) 2- , -C (CH 3 ) 2- , -O-, -CO More preferred is a divalent group selected from the group consisting of —, —S— and —SO 2 —.
  • tetravalent organic group represented by R 115 in Formula (1) include a tetracarboxylic acid residue remaining after the acid dianhydride group is removed from the tetracarboxylic dianhydride. Only one tetracarboxylic dianhydride may be used, or two or more tetracarboxylic dianhydrides may be used.
  • the tetracarboxylic dianhydride is preferably a compound represented by the following formula (O).
  • tetracarboxylic dianhydride examples include pyromellitic dianhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′- Diphenyl sulfide tetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′ , 4,4′-diphenylmethanetetracarboxylic dianhydride, 2,2 ′, 3,3′-diphenylmethanetetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-benzophenonetetracarboxylic dianhydride, 4,4′-PM
  • tetracarboxylic dianhydrides (DAA-1) to (DAA-5) shown below are also preferable examples.
  • R 113 and R 114 each independently represent a hydrogen atom or a monovalent organic group, and at least one of R 113 and R 114 preferably contains a radical polymerizable group, and both contain a radical polymerizable group. Is more preferable.
  • the radical polymerizable group is a group capable of undergoing a crosslinking reaction by the action of a radical, and a preferable example includes a group having an ethylenically unsaturated bond. Examples of the group having an ethylenically unsaturated bond include a vinyl group, a (meth) allyl group, a group represented by the following formula (III), and the like.
  • R 200 represents a hydrogen atom or a methyl group, and a methyl group is more preferable.
  • R 201 represents an alkylene group having 2 to 12 carbon atoms, —CH 2 CH (OH) CH 2 — or a polyoxyalkylene group having 4 to 30 carbon atoms.
  • suitable R 201 are ethylene group, propylene group, trimethylene group, tetramethylene group, 1,2-butanediyl group, 1,3-butanediyl group, pentamethylene group, hexamethylene group, octamethylene group, dodecamethylene group.
  • R 200 is a methyl group and R 201 is an ethylene group.
  • R 201 is an ethylene group.
  • a substituent that improves the solubility of the developer is preferably used.
  • R 113 or R 114 may be a hydrogen atom or a monovalent organic group.
  • the monovalent organic group include aromatic groups and aralkyl groups having one, two or three, preferably one acidic group, bonded to the carbon constituting the aryl group. Specific examples include an aromatic group having 6 to 20 carbon atoms having an acidic group and an aralkyl group having 7 to 25 carbon atoms having an acidic group. More specifically, a phenyl group having an acidic group and a benzyl group having an acidic group can be mentioned.
  • the acidic group is preferably an OH group.
  • R 113 or R 114 is more preferably a hydrogen atom, 2-hydroxybenzyl, 3-hydroxybenzyl or 4-hydroxybenzyl from the viewpoint of solubility in an aqueous developer.
  • R 113 or R 114 is preferably a monovalent organic group.
  • the monovalent organic group preferably includes a linear or branched alkyl group, a cyclic alkyl group, or an aromatic group, and more preferably an alkyl group substituted with an aromatic group.
  • the alkyl group preferably has 1 to 30 carbon atoms.
  • the alkyl group may be linear, branched or cyclic.
  • linear or branched alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, a tetradecyl group, and an octadecyl group.
  • the cyclic alkyl group may be a monocyclic cyclic alkyl group or a polycyclic cyclic alkyl group.
  • Examples of the monocyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the polycyclic alkyl group include an adamantyl group, a norbornyl group, a bornyl group, a camphenyl group, a decahydronaphthyl group, a tricyclodecanyl group, a tetracyclodecanyl group, a camphoroyl group, a dicyclohexyl group, and a pinenyl group. Is mentioned. Among these, a cyclohexyl group is most preferable from the viewpoint of achieving high sensitivity. Moreover, as an alkyl group substituted by the aromatic group, the linear alkyl group substituted by the aromatic group mentioned later is preferable.
  • aromatic group examples include substituted or unsubstituted benzene ring, naphthalene ring, pentalene ring, indene ring, azulene ring, heptalene ring, indacene ring, perylene ring, pentacene ring, acenaphthene ring, phenanthrene ring, anthracene.
  • R 114 may form a counter salt with a tertiary amine compound having a hydrogen ethylenically unsaturated bond.
  • tertiary amine compounds having an ethylenically unsaturated bond include N, N-dimethylaminopropyl methacrylate.
  • the polyimide precursor preferably has a fluorine atom in the structural unit.
  • the fluorine atom content in the polyimide precursor is preferably 10% by mass or more, and preferably 20% by mass or less.
  • an aliphatic group having a siloxane structure may be copolymerized for the purpose of improving the adhesion to the substrate.
  • the diamine component include bis (3-aminopropyl) tetramethyldisiloxane and bis (paraaminophenyl) octamethylpentasiloxane.
  • the repeating unit represented by the formula (1) is preferably a repeating unit represented by the formula (1-A). That is, at least one of the polyimide precursors used in the present invention is preferably a precursor having a repeating unit represented by the formula (1-A). By adopting such a structure, it becomes possible to further widen the width of the exposure latitude.
  • a 1, A 2, R 111 , R 113 and R 114 are each independently the same meaning as A 1, A 2, R 111 , R 113 and R 114 in formula (1), and preferred ranges are also the same .
  • R 112 has the same meaning as R 112 in formula (5), and the preferred range is also the same.
  • the polyimide precursor may be one type of repeating structural unit represented by the formula (1), but may be two or more types. Moreover, the structural isomer of the repeating unit represented by Formula (1) may be included. The polyimide precursor may also contain other types of repeating structural units in addition to the repeating unit of the above formula (1).
  • a polyimide precursor in which 50 mol% or more, further 70 mol% or more, particularly 90 mol% or more of all repeating units is a repeating unit represented by the formula (1).
  • the weight average molecular weight (Mw) of the polyimide precursor is preferably from 2,000 to 500,000, more preferably from 5,000 to 100,000, and even more preferably from 10,000 to 50,000.
  • the number average molecular weight (Mn) is preferably 800 to 250,000, more preferably 2000 to 50000, still more preferably 4000 to 25000, still more preferably 4000 to 15000, and much more. Preferably, it is 5000 to 10,000.
  • the degree of dispersion is preferably 1.5 to 4.0, more preferably 2.0 to 3.5.
  • the polyimide precursor is obtained by reacting dicarboxylic acid or a dicarboxylic acid derivative with diamine. Preferably, it is obtained by halogenating a dicarboxylic acid or a dicarboxylic acid derivative with a halogenating agent and then reacting with a diamine.
  • an organic solvent is preferably used for the reaction.
  • One or more organic solvents may be used.
  • the organic solvent can be appropriately determined according to the raw material, and examples thereof include pyridine, diethylene glycol dimethyl ether (diglyme), N-methylpyrrolidone and N-ethylpyrrolidone.
  • the polyimide precursor may be sealed with an end-capping agent such as an acid dianhydride, a monocarboxylic acid, a monoacid chloride compound, or a monoactive ester compound.
  • an end-capping agent such as an acid dianhydride, a monocarboxylic acid, a monoacid chloride compound, or a monoactive ester compound.
  • an end-capping agent such as an acid dianhydride, a monocarboxylic acid, a monoacid chloride compound, or a monoactive ester compound.
  • an end-capping agent such as an acid dianhydride, a monocarboxylic acid, a monoacid chloride compound, or a monoactive ester compound.
  • the monoamine include aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, and 1-hydroxy-7.
  • -Aminonaphthalene 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2, -Hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6- Aminonaphthalene, 2-carbo Ci-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzenesulfonic acid, 3-amino Benzenesulfonic acid, 4-amino
  • a step of depositing a solid may be included. Specifically, solid precipitation can be achieved by precipitating the polyimide precursor in the reaction solution in water and dissolving it in a solvent in which the polyimide precursor such as tetrahydrofuran is soluble. Then, a polyimide precursor can be dried and a powdery polyimide precursor can be obtained.
  • the polybenzoxazole precursor used in the present invention preferably contains a repeating unit represented by the following formula (2).
  • R 121 represents a divalent organic group
  • R 122 represents a tetravalent organic group
  • R 123 and R 124 each independently represents a hydrogen atom or a monovalent organic group.
  • R 121 represents a divalent organic group.
  • the divalent organic group is preferably a group containing at least one of an aliphatic group and an aromatic group.
  • aliphatic group a linear aliphatic group is preferable.
  • R 122 represents a tetravalent organic group.
  • the tetravalent organic group has the same meaning as R 115 in the formula (1), and preferred ranges are also the same.
  • the polybenzoxazole precursor may contain other types of repeating structural units in addition to the repeating unit of the above formula (2).
  • the diamine residue represented by the following formula (SL) is included as another type of repeating structural unit in that the occurrence of warpage accompanying ring closure can be suppressed.
  • Z has a structure and b structure
  • R 1s is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • R 2s is a hydrocarbon group having 1 to 10 carbon atoms
  • R 3s , R 4s , R 5s , R 6s are aromatic groups
  • the rest are hydrogen atoms or organic groups having 1 to 30 carbon atoms, which may be the same or different.
  • the polymerization of the a structure and the b structure may be block polymerization or random polymerization.
  • the mol% of the Z moiety is 5 to 95 mol% for the a structure, 95 to 5 mol% for the b structure, and a + b is 100 mol%.
  • preferred Z includes those in which R 5s and R 6s in the b structure are phenyl groups.
  • the molecular weight of the structure represented by the formula (SL) is preferably 400 to 4,000, and more preferably 500 to 3,000.
  • the molecular weight can be determined by commonly used gel permeation chromatography. By setting the molecular weight within the above range, it is possible to reduce both the elastic modulus after dehydration and ring closure of the polybenzoxazole precursor and to suppress the warp and to improve the solubility.
  • the diamine residue represented by the formula (SL) When the diamine residue represented by the formula (SL) is included as another type of repeating structural unit, it remains after removing the acid dianhydride group from the tetracarboxylic dianhydride in terms of improving alkali solubility. It is preferable that the tetracarboxylic acid residue to be included is included as a repeating structural unit. Examples of such tetracarboxylic acid residue, and examples of R 115 in formula (1).
  • Polybenzoxazole precursor obtained from 4,4′-oxydiphthalic dianhydride, 2-hydroxyethyl methacrylate and 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl as polybenzoxazole precursor
  • polybenzoxazole precursors obtained from 4,4′-oxydibenzoyl chloride, 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane and methacrylic acid chloride.
  • the weight average molecular weight (Mw) of the polybenzoxazole precursor is preferably 2,000 to 500,000, more preferably 5,000 to 100,000, and still more preferably 10,000 to 50,000.
  • the number average molecular weight (Mn) is preferably 800 to 250,000, more preferably 2000 to 50000, still more preferably 4000 to 25000, still more preferably 4000 to 15000, and much more. Preferably, it is 5000 to 10,000.
  • the degree of dispersion is preferably 1.5 to 4.0, more preferably 2.0 to 3.5.
  • the resin composition of the present invention contains an acidic compound having a pKa of 4.0 or less.
  • pKa represents the reciprocal of the logarithm ( ⁇ Log 10 Ka) of the proton dissociation constant (Ka) of the acidic compound.
  • the pKa value of the acidic compound is measured according to the method described in Examples described later. By including such an acidic compound, it is possible to provide a photosensitive resin composition having excellent storage stability and high resolution.
  • the pKa of the acidic compound used in the present invention is preferably 3.5 or less, more preferably 3.0 or less, further preferably 2.5 or less, and 2.0 or less. More preferably, it is 1.0 or less, and further preferably 0.0 or less.
  • the lower limit of the pKa is not particularly defined, but is preferably ⁇ 3.0 or more, more preferably ⁇ 2.0 or more, and further preferably ⁇ 1.0 or more.
  • the acidic compound having a pKa of 4.0 or less preferably has a molecular weight of 500 or less, more preferably 400 or less, further preferably 300 or less, still more preferably 250 or less, and further preferably 200 or less. Is more preferable.
  • the acidic compound is volatilized at the time of curing, and corrosion of the metal can be more effectively suppressed when the cured film is used as an insulating film.
  • the lower limit of the molecular weight is not particularly defined, but is preferably 45 or more, more preferably 80 or more, and even more preferably 100 or more.
  • the acidic compound having a pKa of 4.0 or less is not specifically defined, but is preferably selected from sulfonic acid, carboxylic acid, imide acid, methide acid, hydrochloric acid, nitric acid and sulfuric acid. More preferably selected from acids, more preferably selected from sulfonic acids and divalent or higher polyvalent carboxylic acids, more preferably sulfonic acids.
  • the acidic compound having a pKa of 4.0 or less may be a hydrate or may not be a hydrate.
  • the sulfonic acid a monovalent sulfonic acid having one sulfo group in one molecule is preferable.
  • the sulfonic acid include toluenesulfonic acid (eg, p-toluenesulfonic acid, p-toluenesulfonic acid monohydrate), camphorsulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, nonafluoro-1-butanesulfone.
  • acids Preferably selected from acids, benzene sulfonic acids, poly (p-styrene sulfonic acids) and 2-naphthalene sulfonic acids, more preferably selected from toluene sulfonic acids, camphor sulfonic acids and methane sulfonic acids, at least More preferably, it contains toluenesulfonic acid.
  • the carboxylic acid may be a monovalent carboxylic acid having one carboxyl group in one molecule or a polyvalent carboxylic acid having two carboxyl groups in one molecule. Is preferred. In the case of polyvalent carboxylic acid, the number of carboxyl groups in one molecule is preferably 2 to 4, and more preferably 2.
  • carboxylic acids are selected from formic acid, oxalic acid (eg oxalic acid dihydrate), maleic acid, malonic acid, pyruvic acid, DL-lactic acid, trifluoroacetic acid, glyoxylic acid and maleic acid methyl ester More preferably, it is selected from formic acid, oxalic acid, maleic acid, malonic acid, pyruvic acid and DL-lactic acid, and is selected from oxalic acid, maleic acid, malonic acid, pyruvic acid and DL-lactic acid More preferably, it is more preferably selected from oxalic acid, maleic acid and malonic acid, and more preferably at least oxalic acid is contained.
  • oxalic acid eg oxalic acid dihydrate
  • maleic acid, malonic acid, pyruvic acid, DL-lactic acid trifluoroacetic acid
  • glyoxylic acid and maleic acid methyl ester More preferably, it is selected from formic
  • the resin composition of the present invention preferably contains an acidic compound having a pKa of 4.0 or less at a ratio of 10 to 0.001 parts by mass with respect to 100 parts by mass in total of the heterocyclic ring-containing polymer precursor. More preferably, it is contained in a proportion of 0.001 part by mass, and more preferably in a proportion of 0.1 to 0.005 part by mass.
  • the resin composition of the present invention may contain only one kind of acidic compound having a pKa of 4.0 or less, or may contain two or more kinds. When 2 or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present invention may contain an acidic compound having a pKa of more than 4.0, but it is preferable that the resin composition does not substantially contain it. “Substantially free” means, for example, that the amount of such an acidic compound is 1% by mass or less of the total amount of acidic compounds having a pKa of 4.0 or less contained in the resin composition, preferably 0.8. It is 1 mass% or less, More preferably, it is 0.01 mass% or less.
  • the resin composition of the present invention may contain components other than the heterocyclic ring-containing polymer precursor and an acidic compound having a pKa of 4.0 or less. Specific examples include solvents and polymerization inhibitors. For details of the solvent and the polymerization inhibitor, the description of the solvent and polymerization inhibitor in the other components of the photosensitive resin composition described later can be referred to. Further, it may contain impurities derived from raw materials used in the synthesis of the heterocyclic ring-containing polymer precursor. It is preferable that the resin composition of the present invention does not substantially contain an acid generator. “Substantially free” refers to, for example, 1% by mass or less, preferably 0.1% by mass or less, more preferably, of the total amount of the heterocyclic-containing polymer precursor contained in the resin composition. 0.01% by mass or less.
  • the form of the resin composition of the present invention may be liquid or powder.
  • the resin composition of the present invention is liquid, it is preferable that 10 to 90% by mass of the resin composition is a solvent.
  • the content of the heterocyclic ring-containing polymer precursor in the resin composition is preferably 1 to 80% by mass.
  • the resin composition of the present invention is in a powder form, it is preferable that 80% by mass or more of the resin composition is a heterocyclic-containing polymer precursor.
  • the powder form means that a fine solid substance is a main component.
  • the main component means a component having the highest content in the resin composition, preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and further preferably 98% by mass or more.
  • the fine solid substance in the present invention preferably has an average maximum length of 10 mm or less, and more preferably 5 mm or less.
  • commercially available powdered resins and polymerizable monomers are included in the fine solid material of the present invention.
  • a powdery resin composition may contain the solvent, content of a solvent is 20 mass% or less of a resin composition, 10 mass% or less is preferable and 5 mass% or less is more preferable.
  • the method for producing a resin composition of the present invention is a method for producing a resin composition containing a heterocyclic-containing polymer precursor selected from a polyimide precursor and a polybenzoxazole precursor, and has an acidity with a pKa of 4.0 or less. Adding a compound.
  • the acidic compound having a pKa of 4.0 or less may be added in the synthesis step of the heterocyclic ring-containing polymer precursor, or may be added after synthesizing the heterocyclic ring-containing polymer precursor.
  • the process of synthesizing the heterocyclic ring-containing polymer precursor refers to a process from the start of the reaction of the raw material monomer to the end of the reaction of the raw material monomer.
  • the term “end” refers to, for example, a step of filtering the reaction solution or performing precipitation with a solvent. Therefore, the process does not include a process in which a trace amount of components continues to react.
  • “after synthesizing the heterocyclic ring-containing polymer precursor” means after the synthesis step is completed.
  • the acidic compound having a pKa of 4.0 or less is preferably a compound that does not react with the raw material monomer of the heterocyclic ring-containing polymer precursor.
  • an acidic compound having a pKa of 4.0 or less is added in the step of synthesizing the heterocyclic ring-containing polymer precursor, the amount of the acidic compound having a pKa of 4.0 or lower is determined as the finally obtained heterocyclic-containing polymer precursor. 50 to 0.1 parts by mass is preferable with respect to 100 parts by mass, and 20 to 1 part by mass is more preferable.
  • a carbodiimide compound in the synthesis step of the heterocyclic ring-containing polymer precursor.
  • the carbodiimide compound can contribute as a condensing agent of a carboxyl group and an amino group in the reaction of the raw material monomer of the heterocyclic ring-containing polymer.
  • an acid dianhydride, a compound having a polymerizable group, and a carbodiimide compound are added and reacted, and then a diamine compound is added and further reacted to obtain a polyimide precursor. The mode to obtain is illustrated.
  • the carbodiimide compound is more than the acidic compound having a pKa of 4.0 or less. It is preferable to add at an early stage.
  • carbodiimide compound examples include dicyclohexylcarbodiimide, diisopropylcarbodiimide, diethylcarbodiimide, ethylcyclohexylcarbodiimide, diphenylcarbodiimide, and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, and at least one of dicyclohexylcarbodiimide and diisopropylcarbodiimide Species are preferred.
  • the molecular weight of the carbodiimide compound is preferably 100 to 400.
  • the addition amount of the carbodiimide compound is preferably 500 to 50 parts by mass, and more preferably 250 to 90 parts by mass with respect to 100 parts by mass of the finally obtained heterocyclic-containing polymer precursor.
  • the photosensitive resin composition of the present invention is a cured film having a thickness of 10 ⁇ m, and the conductivity of the cured film after heating at 350 ° C. for 60 minutes is 1.0 ⁇ 10 5 ⁇ ⁇ cm or less. By setting it as such a structure, the insulation of a cured film can be maintained. The conductivity is measured according to the method described in Examples described later.
  • the photosensitive resin composition of the present invention includes a resin composition containing a heterocyclic-containing polymer precursor selected from a polyimide precursor and a polybenzoxazole precursor, and an acidic compound having a pKa of 4.0 or less.
  • the resin composition contained in the photosensitive resin composition is a cured film having a thickness of 10 ⁇ m, and the conductivity of the cured film after heating at 350 ° C. for 60 minutes is 1.0 ⁇ 10 5 ⁇ ⁇ cm or less.
  • the resin composition contained in the photosensitive resin composition does not necessarily have to satisfy the above-described conductivity.
  • the details of the heterocyclic ring-containing polymer precursor contained in the photosensitive resin composition and the acidic compound having a pKa of 4.0 or less are the same as those in the above-described resin composition, and the preferred range is also the same.
  • the resin composition contained in the photosensitive resin composition is a resin composition satisfying the above-described predetermined conductivity.
  • the photosensitive resin composition of the present invention contains a photopolymerization initiator
  • the photosensitive resin composition of the present invention is applied to a substrate such as a semiconductor wafer to form a photosensitive resin composition layer, and then irradiated with light.
  • a substrate such as a semiconductor wafer
  • the photosensitive resin composition layer is formed by exposing the photosensitive resin composition layer through a photomask having a pattern that masks only the electrode portion, there is an advantage that regions having different solubility can be easily produced according to the electrode pattern. is there.
  • halogenated hydrocarbon derivatives for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having a trihalomethyl group
  • acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazoles, oxime derivatives, etc.
  • ketone compounds include the compounds described in paragraph 0087 of JP-A-2015-087611, the contents of which are incorporated herein.
  • Kaya Cure DETX manufactured by Nippon Kayaku Co., Ltd.
  • Nippon Kayaku Co., Ltd. is also preferably used.
  • hydroxyacetophenone compounds As the photopolymerization initiator, hydroxyacetophenone compounds, aminoacetophenone compounds, and acylphosphine compounds can also be suitably used. More specifically, for example, aminoacetophenone initiators described in JP-A-10-291969 and acylphosphine oxide initiators described in Japanese Patent No. 4225898 can also be used.
  • hydroxyacetophenone-based initiator IRGACURE 184 (IRGACURE is a registered trademark), DAROCUR 1173, IRGACURE 500, IRGACURE-2959, IRGACURE 127 (trade names: all manufactured by BASF) can be used.
  • aminoacetophenone-based initiator commercially available products IRGACURE 907, IRGACURE 369, and IRGACURE 379 (trade names: all manufactured by BASF) can be used.
  • aminoacetophenone-based initiator compounds described in JP-A-2009-191179 in which the absorption maximum wavelength is matched with a wavelength light source of 365 nm or 405 nm can also be used.
  • the acylphosphine initiator include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
  • IRGACURE-819 and IRGACURE-TPO which are commercially available products can be used.
  • the metallocene compound include IRGACURE-784 (manufactured by BASF).
  • More preferred examples of the photopolymerization initiator include oxime compounds.
  • the exposure latitude can be improved more effectively.
  • the oxime compound has a wide exposure latitude (exposure margin) and is preferable.
  • Specific examples of the oxime compound include compounds described in JP-A No. 2001-233842, compounds described in JP-A No. 2000-80068, and compounds described in JP-A No. 2006-342166.
  • Preferable oxime compounds include, for example, compounds having the following structures, 3-benzooxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxy Iminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutan-2-one And 2-ethoxycarbonyloxyimino-1-phenylpropan-1-one.
  • DFI-091 (manufactured by Daitokemix Co., Ltd.) can be used. Furthermore, it is also possible to use an oxime compound having a fluorine atom. Specific examples of such oxime compounds include compounds described in JP2010-262028A, compounds 24 and 36-40 described in paragraphs 0345 to 0348 of JP2014-500852A, And compound (C-3) described in paragraph 0101 of JP2013-164471A. As the most preferred oxime compounds, there are oxime compounds having a specific substituent as disclosed in JP-A-2007-267979, oxime compounds having a thioaryl group as disclosed in JP-A-2009-191061, and the like.
  • Photopolymerization initiators are trihalomethyltriazine compounds, benzyldimethylketal compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triarylimidazoles from the viewpoint of exposure sensitivity. Selected from the group consisting of dimers, onium salt compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complexes and salts thereof, halomethyloxadiazole compounds, and 3-aryl substituted coumarin compounds Compounds are preferred.
  • More preferred photopolymerization initiators are trihalomethyltriazine compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triarylimidazole dimers, onium salt compounds, benzophenone compounds, acetophenone compounds, and trihalo
  • At least one compound selected from the group consisting of a methyltriazine compound, an ⁇ -aminoketone compound, an oxime compound, a triarylimidazole dimer, and a benzophenone compound is more preferable, and a metallocene compound or an oxime compound is more preferable, and an oxime compound is more preferable. Particularly preferred.
  • Photopolymerization initiators include N, N′-tetraalkyl-4,4′-diaminobenzophenone, 2-benzyl-, such as benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), and the like.
  • Aromatic ketones such as 2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1, alkyl anthraquinones, etc.
  • benzoin ether compounds such as benzoin alkyl ether
  • benzoin compounds such as benzoin and alkylbenzoin
  • benzyl derivatives such as benzyldimethyl ketal.
  • a compound represented by the following formula (I) can also be used.
  • R 50 represents an alkyl group having 1 to 20 carbon atoms, an alkyl group having 2 to 20 carbon atoms interrupted by one or more oxygen atoms, an alkoxy group having 1 to 12 carbon atoms, a phenyl group, At least one of a halogen atom, a cyclopentyl group, a cyclohexyl group, an alkenyl group having 2 to 12 carbon atoms, an alkyl group having 2 to 18 carbon atoms and an alkyl group having 1 to 4 carbon atoms interrupted by one or more oxygen atoms
  • R 51 is a group represented by the formula (II) or the same group as R 50, and R 52 to R 54 each independently has 1 to 12 carbon atoms; Alkyl, alkoxy having 1 to 12 carbon atoms or halogen.
  • R 55 to R 57 are the same as R 52 to R 54 in the above formula (I).
  • the content of the photopolymerization initiator is preferably from 0.1 to 30% by mass, more preferably from 0.1 to 20% by mass, even more preferably 5%, based on the total solid content of the photosensitive resin composition of the present invention. To 15% by mass.
  • the photoinitiator may contain only 1 type and may contain 2 or more types. When two or more photopolymerization initiators are contained, the total is preferably in the above range.
  • the photosensitive resin composition of the present invention may contain components other than the above heterocycle-containing polymer precursor, an acidic compound having a pKa of 4.0 or less, and a photopolymerization initiator. Specific examples include solvents and polymerization inhibitors. Further, it may contain impurities derived from raw materials used in the synthesis of the heterocyclic ring-containing polymer precursor. It is preferable that the resin composition of the present invention does not substantially contain an acid generator.
  • “substantially free” means, for example, that the content of the acid generator contained in the resin composition is 1% by mass or less of the total amount of the heterocyclic-containing polymer precursor, preferably 0. .1% by mass or less, and more preferably 0.01% by mass or less.
  • the photosensitive resin composition of the present invention may contain a thermal base generator.
  • a thermal base generator By using a thermal base generator, a base species that promotes the ring-closing reaction can be generated during the heating step for carrying out the ring-closing reaction of the heterocyclic ring-containing polymer precursor, and therefore the ring-closing rate tends to be further improved.
  • the type of the thermal base generator is not particularly defined, but is an acidic compound that generates a base when heated to 40 ° C.
  • the thermal base generator containing at least 1 sort (s) chosen from the ammonium salt which has the anion and ammonium cation of these is included.
  • pKa1 represents the logarithm ( ⁇ Log 10 Ka) of the reciprocal of the dissociation constant (Ka) of the first proton of the acid.
  • the base generated from these compounds can promote the cyclization reaction of the heterocyclic-containing polymer precursor, and the heterocyclic-containing polymer Cyclization of the precursor can be performed at low temperatures.
  • the cyclization of the heterocyclic-containing polymer precursor hardly proceeds unless heated, so that storage stability is improved.
  • An excellent photosensitive resin composition can be prepared.
  • the solution obtained by stirring means a compound having a value measured at 20 ° C. of less than 7 using a pH (power of hydrogen) meter.
  • the base generation temperature of the acidic compound (A1) and the ammonium salt (A2) is preferably 40 ° C. or higher, more preferably 120 to 200 ° C.
  • the upper limit of the base generation temperature is preferably 190 ° C. or lower, more preferably 180 ° C. or lower, and further preferably 165 ° C. or lower.
  • the lower limit of the base generation temperature is preferably 130 ° C or higher, and more preferably 135 ° C or higher. If the base generation temperature of the acidic compound (A1) and the ammonium salt (A2) is 120 ° C. or higher, a base is unlikely to be generated during storage, and thus a photosensitive resin composition having excellent storage stability can be prepared. .
  • the base generation temperature of the acidic compound (A1) and the ammonium salt (A2) is 200 ° C. or lower, the cyclization temperature of the heterocyclic-containing polymer precursor can be lowered.
  • the base generation temperature is measured, for example, by using differential scanning calorimetry, heating the compound to 250 ° C. at 5 ° C./min in a pressure capsule, reading the peak temperature of the lowest exothermic peak, and measuring the peak temperature as the base generation temperature. can do.
  • the base generated by the thermal base generator is preferably a secondary amine or a tertiary amine, more preferably a tertiary amine. Since tertiary amine has high basicity, cyclization temperature of a polyimide precursor, a polybenzoxazole precursor, etc. can be made lower.
  • the base generated by the thermal base generator preferably has a boiling point of 80 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 140 ° C. or higher.
  • the molecular weight of the generated base is preferably 80 to 2000.
  • the lower limit is more preferably 100 or more.
  • the upper limit is more preferably 500 or less.
  • the molecular weight value is a theoretical value obtained from the structural formula.
  • the acidic compound (A1) preferably contains one or more selected from an ammonium salt and a compound having an ammonium structure represented by the formula (101) or (102) described later.
  • the ammonium salt (A2) is preferably an acidic compound.
  • the ammonium salt (A2) may be a compound containing an acidic compound that generates a base when heated to 40 ° C. or higher (preferably 120 to 200 ° C.), or 40 ° C. or higher (preferably 120 to 200 ° C.). ) May be a compound excluding an acidic compound that generates a base when heated.
  • the ammonium salt means a salt of an ammonium cation represented by the following formula (101) or formula (102) and an anion.
  • the anion may be bonded to any part of the ammonium cation via a covalent bond, and may be outside the molecule of the ammonium cation, but may be outside the molecule of the ammonium cation. preferable.
  • numerator of an ammonium cation means the case where an ammonium cation and an anion are not couple
  • the anion outside the molecule of the cation moiety is also referred to as a counter anion.
  • R 1 to R 6 each independently represents a hydrogen atom or a hydrocarbon group
  • R 7 represents a hydrocarbon group
  • R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 5 and R 7 in Formula (101) and Formula (102) may be bonded to form a ring.
  • the ammonium cation is preferably represented by any of the following formulas (Y1-1) to (Y1-5).
  • R 101 represents an n-valent organic group
  • R 1 and R 7 are synonymous with R 1 and R 7 in the formula (101) or formula (102) It is.
  • Ar 101 and Ar 102 each independently represent an aryl group
  • n represents an integer of 1 or more
  • m represents an integer of 0 to 5 .
  • the ammonium salt preferably has an anion having an pKa1 of 0 to 4 and an ammonium cation.
  • the upper limit of the anion pKa1 is more preferably 3.5 or less, and even more preferably 3.2 or less.
  • the lower limit is preferably 0.5 or more, and more preferably 1.0 or more.
  • the kind of anion is preferably one selected from a carboxylate anion, a phenol anion, a phosphate anion, and a sulfate anion, and a carboxylate anion is more preferable because both the stability of the salt and the thermal decomposability can be achieved. That is, the ammonium salt is more preferably a salt of an ammonium cation and a carboxylate anion.
  • the carboxylic acid anion is preferably a divalent or higher carboxylic acid anion having two or more carboxyl groups, and more preferably a divalent carboxylic acid anion.
  • a thermal base generator that can further improve the stability, curability and developability of the photosensitive resin composition.
  • the stability, curability and developability of the photosensitive resin composition can be further improved by using an anion of a divalent carboxylic acid.
  • the carboxylic acid anion is preferably a carboxylic acid anion having a pKa1 of 4 or less.
  • pKa1 is more preferably 3.5 or less, and even more preferably 3.2 or less.
  • the stability of the photosensitive resin composition can be further improved.
  • the value calculated from the structural formula using the software of ACD / pKa manufactured by ACD / Labs
  • the carboxylate anion is preferably represented by the following formula (X1).
  • EWG represents an electron withdrawing group.
  • the electron withdrawing group means a group in which Hammett's substituent constant ⁇ m exhibits a positive value.
  • ⁇ m is a review by Yusuke Tono, Journal of Synthetic Organic Chemistry, Vol. 631-642.
  • the electron withdrawing group in this embodiment is not limited to the substituent described in the said literature.
  • Me represents a methyl group
  • Ac represents an acetyl group
  • Ph represents a phenyl group (hereinafter the same).
  • EWG is preferably a group represented by the following formulas (EWG-1) to (EWG-6).
  • R x1 to R x3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a hydroxyl group or a carboxyl group, and Ar represents an aromatic group Represents.
  • the carboxylate anion is preferably represented by the following formula (XA).
  • Formula (XA) In the formula (XA), L 10 represents a single bond or a divalent linking group selected from an alkylene group, an alkenylene group, an aromatic group, —NR X —, and a combination thereof, and R X represents a hydrogen atom Represents an alkyl group, an alkenyl group or an aryl group.
  • carboxylate anion examples include a maleate anion, a phthalate anion, an N-phenyliminodiacetic acid anion, and an oxalate anion.
  • thermal base generator examples include the following compounds.
  • the content of the thermal base generator is preferably 0.1 to 50% by mass with respect to the total solid content of the photosensitive resin composition of the present invention.
  • the lower limit is more preferably 0.5% by mass or more, further preferably 0.85% by mass or more, and further preferably 1% by mass or more.
  • the upper limit is more preferably 30% by mass or less, further preferably 20% by mass or less, further preferably 10% by mass or less, or 5% by mass or less, or 4% by mass or less.
  • 1 type (s) or 2 or more types can be used for a thermal base generator. When using 2 or more types, it is preferable that a total amount is the said range.
  • the photosensitive resin composition of the present invention preferably contains a solvent.
  • a known solvent can be arbitrarily used as the solvent.
  • the solvent is preferably an organic solvent. Examples of the organic solvent include compounds such as esters, ethers, ketones, aromatic hydrocarbons, sulfoxides, and amides.
  • esters include ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone, and ⁇ -caprolactone , ⁇ -valerolactone, alkyl oxyacetates (for example, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (for example, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, etc.
  • alkyl oxyacetates for example, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl al
  • 3-alkyloxypropionic acid alkyl esters for example, methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc. (for example, methyl 3-methoxypropionate, 3-methoxypropionate)) Ethyl acetate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, etc.)
  • 2-alkyloxypropionic acid alkyl esters for example, methyl 2-alkyloxypropionate, ethyl 2-alkyloxypropionate, 2 -Propyl alkyloxypropionate and the like (for example, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate)
  • ethers include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol Preferred examples include monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate and the like.
  • Suitable ketones include, for example, methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone and the like.
  • Suitable examples of aromatic hydrocarbons include toluene, xylene, anisole, limonene and the like.
  • the sulfoxides for example, dimethyl sulfoxide is preferable.
  • Preferred examples of the amide include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and the like.
  • the solvent is preferably in the form of a mixture of two or more from the viewpoint of improving the properties of the coated surface.
  • a mixed solution composed of two or more selected from dimethyl sulfoxide, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol methyl ether, and propylene glycol methyl ether acetate is preferable.
  • the combined use of dimethyl sulfoxide and ⁇ -butyrolactone is particularly preferred.
  • the content of the solvent is preferably such that the total solid concentration of the photosensitive resin composition of the present invention is 5 to 80% by mass, more preferably 5 to 70% by mass, from the viewpoint of applicability. From 60% to 60% by weight is particularly preferred.
  • the solvent content may be adjusted depending on the desired thickness and coating method. For example, if the coating method is spin coating or slit coating, the content of the solvent having a solid content concentration in the above range is preferable. In the case of spray coating, the amount is preferably 0.1% by mass to 50% by mass, and more preferably 1.0% by mass to 25% by mass.
  • a photosensitive resin composition layer having a desired thickness can be uniformly formed by adjusting the amount of solvent by the coating method.
  • the solvent may contain only 1 type and may contain 2 or more types. When two or more solvents are contained, the total is preferably in the above range.
  • the photosensitive resin composition of the present invention preferably contains a polymerizable compound (hereinafter also referred to as “polymerizable monomer”). By setting it as such a structure, the cured film excellent in heat resistance can be formed.
  • a polymerizable compound hereinafter also referred to as “polymerizable monomer”.
  • a compound having a radical polymerizable group (radical polymerizable compound) can be used as the polymerizable monomer.
  • the radical polymerizable group include groups having an ethylenically unsaturated bond such as a styryl group, a vinyl group, a (meth) acryloyl group, and an allyl group.
  • the radical polymerizable group is preferably a (meth) acryloyl group.
  • the radically polymerizable group contained in the polymerizable monomer may be one or two or more, but preferably has two or more radically polymerizable groups, and more preferably has three or more.
  • the upper limit is preferably 15 or less, more preferably 10 or less, and even more preferably 8 or less.
  • the molecular weight of the polymerizable monomer is preferably 2000 or less, more preferably 1500 or less, and even more preferably 900 or less.
  • the lower limit of the molecular weight of the polymerizable monomer is preferably 100 or more.
  • the photosensitive resin composition of the present invention preferably contains at least one bifunctional or more polymerizable monomer containing two or more polymerizable groups, and preferably contains at least one trifunctional or more polymerizable monomer. More preferably, seeds are included. Further, it may be a mixture of a bifunctional polymerizable monomer and a trifunctional or higher functional polymerizable monomer.
  • the number of functional groups of the polymerizable monomer means the number of radical polymerizable groups in one molecule.
  • the polymerizable monomer examples include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof, and amides. These are esters of saturated carboxylic acids and polyhydric alcohol compounds, and amides of unsaturated carboxylic acids and polyvalent amine compounds. Also, addition reaction products of monofunctional or polyfunctional isocyanates or epoxies with unsaturated carboxylic acid esters or amides having a nucleophilic substituent such as hydroxyl group, amino group, mercapto group, monofunctional or polyfunctional. A dehydration condensation reaction product with a functional carboxylic acid is also preferably used.
  • unsaturated carboxylic acids for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters thereof are esters of saturated carboxylic acids and polyhydric alcohol compounds
  • an addition reaction product of an unsaturated carboxylic acid ester or amide having an electrophilic substituent such as an isocyanate group or an epoxy group with a monofunctional or polyfunctional alcohol, amine, or thiol, and a halogen group A substitution reaction product of an unsaturated carboxylic acid ester or amide having a detachable substituent such as a tosyloxy group and a monofunctional or polyfunctional alcohol, amine or thiol is also suitable.
  • the description in paragraphs 0113 to 0122 of JP-A-2016-027357 can be referred to, and the contents thereof are incorporated in the present specification.
  • the polymerizable monomer is also preferably a compound having a boiling point of 100 ° C. or higher under normal pressure.
  • Examples include polyethylene glycol di (meth) acrylate, trimethylolethane tri (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol.
  • polyfunctional acrylates and methacrylates such as polyester acrylates and epoxy acrylates which are reaction products of epoxy resins and (meth) acrylic acid, and mixtures thereof described in JP-B 52-30490. it can. Also suitable are the compounds described in paragraphs 0254 to 0257 of JP-A-2008-292970.
  • polyfunctional (meth) acrylate etc. which are obtained by making the compound which has cyclic ether groups, such as glycidyl (meth) acrylate, and an ethylenically unsaturated group, react with polyfunctional carboxylic acid can also be mentioned.
  • preferable polymerizable monomers include groups having a fluorene ring and an ethylenically unsaturated bond described in JP2010-160418A, JP2010-129825A, Japanese Patent No. 4364216, and the like. It is also possible to use a compound having two or more or a cardo resin. Other examples include specific unsaturated compounds described in JP-B-46-43946, JP-B-1-40337, JP-B-1-40336, and JP-A-2-25493. And vinyl phosphonic acid compounds. Also, compounds containing a perfluoroalkyl group described in JP-A-61-22048 can be used. Furthermore, Journal of Japan Adhesion Association vol. 20, no. 7, pages 300 to 308 (1984), which are introduced as photopolymerizable monomers and oligomers, can also be used.
  • dipentaerythritol triacrylate (as a commercial product, KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (as a commercially available product, KAYARAD D-320; Nippon Kayaku Co., Ltd.) ), A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd.), dipentaerythritol penta (meth) acrylate (as a commercial product, KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (As commercial products, KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., A-DPH; manufactured by Shin-Nakamura Chemical Co., Ltd.), and these (meth) acryloyl groups are bonded via ethylene glyco
  • Examples of commercially available polymerizable monomers include SR-494, a tetrafunctional acrylate having four ethyleneoxy chains, manufactured by Sartomer, SR-209, manufactured by Sartomer, which is a bifunctional methacrylate having four ethyleneoxy chains, DPCA-60, a 6-functional acrylate having 6 pentyleneoxy chains, TPA-330, a 3-functional acrylate having 3 isobutyleneoxy chains, NK ester M-40G, NK ester 4G manufactured by Nippon Kayaku Co., Ltd.
  • NK ester M-9300, NK ester A-9300, UA-7200 (manufactured by Shin-Nakamura Chemical Co., Ltd.), DPHA-40H (manufactured by Nippon Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, T-600, AI-600 (manufactured by Kyoeisha Chemical Co., Ltd.), Blemmer PME 00 (manufactured by NOF Co., Ltd.), and the like.
  • Polymerizable monomers include urethane acrylates such as those described in JP-B-48-41708, JP-A-51-37193, JP-B-2-32293, and JP-B-2-16765.
  • Urethane compounds having an ethylene oxide skeleton described in JP-B-58-49860, JP-B-56-17654, JP-B-62-39417, and JP-B-62-39418 are also suitable.
  • compounds having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-1-105238 are used as polymerizable monomers. You can also.
  • the polymerizable monomer may be a polymerizable monomer having an acid group such as a carboxyl group, a sulfo group, or a phosphoric acid group.
  • the polymerizable monomer having an acid group is preferably an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and an acid is obtained by reacting a non-aromatic carboxylic dianhydride with an unreacted hydroxyl group of the aliphatic polyhydroxy compound.
  • a polymerizable monomer having a group is more preferable.
  • the aliphatic polyhydroxy compound is pentaerythritol and / or It is a compound that is dipentaerythritol.
  • examples of commercially available products include M-510 and M-520 as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
  • the polymerizable monomer having an acid group one kind may be used alone, or two or more kinds may be mixed and used.
  • a preferable acid value of the polymerizable monomer having an acid group is 0.1 to 40 mgKOH / g, and particularly preferably 5 to 30 mgKOH / g.
  • the acid value of the polymerizable monomer is within the above range, the production and handling properties are excellent, and further, the developability is excellent. Also, the polymerizability is good.
  • the content of the polymerizable monomer is preferably 1 to 50% by mass with respect to the total solid content of the photosensitive resin composition of the present invention, from the viewpoint of good polymerizability and heat resistance.
  • the lower limit is more preferably 5% by mass or more.
  • the upper limit is more preferably 30% by mass or less.
  • As the polymerizable monomer one kind may be used alone, or two or more kinds may be mixed and used.
  • the mass ratio of the heterocyclic ring-containing polymer precursor and the polymerizable monomer is preferably 98/2 to 10/90, more preferably 95/5 to 30/70. 90/10 to 50/50 is most preferable. When the mass ratio between the heterocyclic ring-containing polymer precursor and the polymerizable monomer is in the above range, a cured film that is superior in polymerizability and heat resistance can be formed.
  • a monofunctional polymerizable monomer can be preferably used from the viewpoint of suppressing warpage accompanying the control of the elastic modulus of the cured film.
  • Monofunctional polymerizable monomers include n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, carbitol (meth) acrylate, cyclohexyl (meth) ) Acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, N-methylol (meth) acrylamide, glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, etc.
  • N-vinyl compounds such as N-vinylpyrrolidone, N-vinylcaprolactam, allyl glycidyl ether, diallyl phthalate, triallyl trimellitate, etc. Goods and the like are preferably used.
  • the monofunctional polymerizable monomer a compound having a boiling point of 100 ° C. or higher under normal pressure is also preferable in order to suppress volatilization before exposure.
  • the photosensitive resin composition of the present invention can further contain a polymerizable compound other than the above-described heterocyclic-containing polymer precursor and radical polymerizable compound.
  • a polymerizable compound include compounds having a hydroxymethyl group, alkoxymethyl group or acyloxymethyl group; epoxy compounds; oxetane compounds; benzoxazine compounds.
  • R 4 represents a t-valent organic group having 1 to 200 carbon atoms
  • R 5 represents a group represented by —OR 6 or —OCO—R 7.
  • R 6 represents a hydrogen atom or an organic group having 1 to 10 carbon atoms
  • R 7 represents an organic group having 1 to 10 carbon atoms.
  • the content of the compound represented by the formula (AM1) with respect to 100 parts by mass of the heterocyclic-containing polymer precursor is preferably 5 to 40 parts by mass. More preferably, it is 10 to 35 parts by mass. Further, the compound represented by the following formula (AM4) is contained in the total amount of other polymerizable compounds in an amount of 10 to 90% by mass, and the compound represented by the following formula (AM5) is contained in an amount of 10 to 90% by mass Is also preferable.
  • R 4 represents a divalent organic group having 1 to 200 carbon atoms
  • R 5 represents a group represented by —OR 6 or —OCO—R 7
  • R 6 represents a hydrogen atom or a carbon atom.
  • R 7 represents an organic group having 1 to 10 carbon atoms.
  • R 4 represents a u-valent organic group having 1 to 200 carbon atoms
  • R 5 represents a group represented by —OR 6 or —OCO—R 7.
  • R 6 represents a hydrogen atom or an organic group having 1 to 10 carbon atoms
  • R 7 represents an organic group having 1 to 10 carbon atoms.
  • the occurrence of cracks can be more effectively suppressed when the photosensitive resin composition of the present invention is applied to an uneven substrate. Moreover, it is excellent in pattern workability and can form the cured film which has high heat resistance from which 5% mass reduction
  • Specific examples of the compound represented by the formula (AM4) include 46DMOC, 46DMOEP (trade name, manufactured by Asahi Organic Materials Co., Ltd.), DML-MBPC, DML-MBOC, DML-OCHP, DML-PCHP, DML.
  • Specific examples of the compound represented by the formula (AM5) include TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPA, TMOM-BP, HML-TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPPHAP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), TM-BIP-A (trade name, manufactured by Asahi Organic Materials Co., Ltd.), NIKALAC MX-280, NIKALAC MX-270, NIKALAC MW-100LM (trade name, manufactured by Sanwa Chemical Co., Ltd.).
  • Epoxy compound compound having an epoxy group
  • the epoxy compound is preferably a compound having two or more epoxy groups in one molecule.
  • the epoxy group undergoes a cross-linking reaction at 200 ° C. or less and does not cause a dehydration reaction derived from the cross-linking, so that film shrinkage hardly occurs. For this reason, containing an epoxy compound is effective for low-temperature curing and warping of the photosensitive resin composition.
  • the epoxy compound preferably contains a polyethylene oxide group. Thereby, an elasticity modulus falls more and also curvature can be suppressed. Moreover, the film
  • the polyethylene oxide group means that the number of repeating units of ethylene oxide is 2 or more, and the number of repeating units is preferably 2 to 15.
  • epoxy compounds include: bisphenol A type epoxy resin; bisphenol F type epoxy resin; alkylene glycol type epoxy resin such as propylene glycol diglycidyl ether; polyalkylene glycol type epoxy resin such as polypropylene glycol diglycidyl ether; polymethyl (glycidyl Examples include, but are not limited to, epoxy group-containing silicones such as (roxypropyl) siloxane.
  • Epicron (registered trademark) 850-S Epicron (registered trademark) HP-4032, Epicron (registered trademark) HP-7200, Epicron (registered trademark) HP-820, Epicron (registered trademark) HP-4700, Epicron (registered trademark) EXA-4710, Epicron (registered trademark) HP-4770, Epicron (registered trademark) EXA-859CRP, Epicron (registered trademark) EXA-1514, Epicron (registered trademark) EXA-4880, Epicron (registered trademark) EXA-4850-150, Epicron (registered trademark) EXA-4850-1000, Epicron (registered trademark) EXA-4816, Epicron (registered trademark) EXA-4822 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), Rica Resin (registered trademark) BEO-60E (trade name, Nippon Rika (Ltd.)), EP-4003S, EP-4000S
  • an epoxy resin containing a polyethylene oxide group is preferable in terms of suppressing warpage and excellent heat resistance.
  • Epicron (registered trademark) EXA-4880, Epicron (registered trademark) EXA-4822, and Licaredin (registered trademark) BEO-60E are preferable because they contain a polyethylene oxide group.
  • the content of the epoxy compound is preferably 5 to 50 parts by mass, more preferably 10 to 50 parts by mass, and still more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the heterocyclic-containing polymer precursor. If the content of the epoxy compound is 5 parts by mass or more, warpage of the resulting cured film can be further suppressed, and if it is 50 parts by mass or less, pattern filling caused by reflow during curing can be further suppressed.
  • oxetane compound compound having oxetanyl group
  • examples of the oxetane compound include compounds having two or more oxetane rings in one molecule, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, Examples include 3-ethyl-3- (2-ethylhexylmethyl) oxetane and 1,4-benzenedicarboxylic acid-bis [(3-ethyl-3-oxetanyl) methyl] ester.
  • Aron Oxetane series (for example, OXT-121, OXT-221, OXT-191, OXT-223) manufactured by Toagosei Co., Ltd. can be preferably used. Two or more kinds may be mixed.
  • the content of the oxetane compound is preferably 5 to 50 parts by mass, more preferably 10 to 50 parts by mass, and further preferably 10 to 40 parts by mass with respect to 100 parts by mass of the heterocyclic-containing polymer precursor.
  • a benzoxazine compound (compound having a benzoxazolyl group))
  • a benzoxazine compound is preferable because it is a cross-linking reaction derived from a ring-opening addition reaction, so that degassing does not occur at the time of curing, and thermal contraction is further reduced to suppress warpage.
  • benzoxazine compound examples include Ba type benzoxazine, Bm type benzoxazine (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.), benzoxazine adduct of polyhydroxystyrene resin, phenol novolac type dihydrobenzo An oxazine compound is mentioned. These may be used alone or in combination of two or more.
  • the content of the benzoxazine compound is preferably 5 to 50 parts by mass, more preferably 10 to 50 parts by mass, and still more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the heterocyclic-containing polymer precursor.
  • the photosensitive resin composition further contains a migration inhibitor.
  • the migration inhibitor is not particularly limited, but a heterocyclic ring (pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole ring, isothiazole ring, tetrazole ring, pyridine ring, Compounds having pyridazine ring, pyrimidine ring, pyrazine ring, piperidine ring, piperazine ring, morpholine ring, 2H-pyran ring and 6H-pyran ring, triazine ring), compounds having thioureas and mercapto groups, hindered phenol compounds , Salicylic acid derivative compounds
  • an ion trapping agent that traps anions such as halogen ions can be used.
  • Examples of other migration inhibitors include rust inhibitors described in paragraph 0094 of JP2013-15701A, compounds described in paragraphs 0073 to 0076 of JP2009-283711A, and JP2011-95956A.
  • the compounds described in paragraph 0052 and the compounds described in paragraphs 0114, 0116 and 0118 of JP2012-194520A can be used.
  • the migration inhibitor examples include 1H-1,2,3-triazole and 1H-tetrazole.
  • the content of the migration inhibitor is preferably 0.01 to 5.0% by mass with respect to the total solid content of the photosensitive resin composition, 0.05 to 2.0% by mass is more preferable, and 0.1 to 1.0% by mass is more preferable. Only one type of migration inhibitor may be used, or two or more types may be used. When there are two or more migration inhibitors, the total is preferably within the above range.
  • the photosensitive resin composition of the present invention preferably contains a polymerization inhibitor.
  • the polymerization inhibitor include hydroquinone, paramethoxyphenol (1,4-methoxyphenol), di-tert-butyl-paracresol, pyrogallol, p-tert-butylcatechol, parabenzoquinone (1,4-benzoquinone), Diphenyl-parabenzoquinone, 4,4'-thiobis (3-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-methyl-6-tert-butylphenol), N-nitroso-N-phenylhydroxyamine Aluminum salt, phenothiazine, N-nitrosodiphenylamine, N-phenylnaphthylamine, ethylenediaminetetraacetic acid, 1,2-cyclohexanediaminetetraacetic acid, glycol etherdiaminetetraacetic acid, 2,6-di-tert-buty
  • a polymerization inhibitor described in paragraph 0060 of JP-A-2015-127817 and compounds described in paragraphs 0031 to 0046 of international publication WO2015 / 125469 can also be used.
  • the following compound can be used (Me is a methyl group).
  • the content of the polymerization inhibitor is preferably 0.01 to 5% by mass with respect to the total solid content of the photosensitive resin composition of the present invention. Only one polymerization inhibitor may be used, or two or more polymerization inhibitors may be used. When two or more polymerization inhibitors are used, the total is preferably within the above range.
  • the photosensitive resin composition of the present invention preferably contains a metal adhesion improver for improving the adhesion with a metal material used for electrodes and wirings.
  • metal adhesion improvers include silane coupling agents.
  • silane coupling agent examples include compounds described in paragraphs 0062 to 0073 of JP2014-191002, compounds described in paragraphs 0063 to 0071 of international publication WO2011 / 080992A1, and JP2014-191252A. Examples thereof include compounds described in paragraphs 0060 to 0061, compounds described in paragraphs 0045 to 0052 of JP 2014-41264 A, and compounds described in paragraph 0055 of international publication WO 2014/097594. It is also preferable to use two or more different silane coupling agents as described in paragraphs 0050 to 0058 of JP2011-128358A. Moreover, it is also preferable to use the following compound for a silane coupling agent. In the following formula, Et represents an ethyl group.
  • the content of the metal adhesion improving agent is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the heterocyclic-containing polymer precursor. Adhesiveness between the cured film and the metal layer after the curing process becomes good by setting it to 0.1 parts by mass or more, and heat resistance and mechanical properties of the cured film after the curing process are good by setting it to 30 parts by mass or less. Become. Only one type of metal adhesion improver may be used, or two or more types may be used. When using 2 or more types, it is preferable that the sum total is the said range.
  • the photosensitive resin composition of the present invention is various additives, for example, a thermal acid generator, a sensitizing dye, a chain transfer agent, a surfactant, a high grade, as necessary, as long as the effects of the present invention are not impaired.
  • Fatty acid derivatives, inorganic particles, curing agents, curing catalysts, fillers, antioxidants, ultraviolet absorbers, anti-aggregation agents, and the like can be blended.
  • blending these additives it is preferable that the total compounding quantity shall be 3 mass% or less of solid content of the photosensitive resin composition.
  • the photosensitive resin composition of the present invention may contain a thermal acid generator.
  • the thermal acid generator generates an acid by heating, promotes cyclization of the heterocyclic ring-containing polymer precursor, and further improves the mechanical properties of the cured film.
  • Examples of the thermal acid generator include compounds described in paragraph 0059 of JP2013-167742A.
  • the content of the thermal acid generator is preferably 0.01 parts by mass or more and more preferably 0.1 parts by mass or more with respect to 100 parts by mass of the heterocyclic ring-containing polymer precursor. By containing 0.01 part by mass or more of the thermal acid generator, the cross-linking reaction and the cyclization of the heterocyclic ring-containing polymer precursor are promoted, so that the mechanical properties and chemical resistance of the cured film can be further improved. .
  • the content of the thermal acid generator is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and particularly preferably 10 parts by mass or less from the viewpoint of electrical insulation of the cured film.
  • One type of thermal acid generator may be used, or two or more types may be used. When using 2 or more types, it is preferable that a total amount becomes the said range.
  • the photosensitive resin composition of the present invention may contain a sensitizing dye.
  • a sensitizing dye absorbs specific actinic radiation and enters an electronically excited state.
  • the sensitizing dye in an electronically excited state comes into contact with a thermal base generator, a thermal radical polymerization initiator, a radical polymerization initiator, and the like, and effects such as electron transfer, energy transfer, and heat generation occur.
  • a thermal base generator, a thermal radical polymerization initiator, and a radical polymerization initiator cause a chemical change and are decomposed to generate radicals, acids, or bases. Details of the sensitizing dye can be referred to the descriptions in paragraphs 0161 to 0163 of JP-A-2016-027357, the contents of which are incorporated herein.
  • the content of the sensitizing dye is preferably 0.01 to 20% by mass with respect to the total solid content of the photosensitive resin composition of the present invention. More preferably, it is 1 to 15% by mass, and further preferably 0.5 to 10% by mass.
  • a sensitizing dye may be used individually by 1 type, and may use 2 or more types together.
  • the photosensitive resin composition of the present invention may contain a chain transfer agent.
  • the chain transfer agent is defined, for example, in Polymer Dictionary 3rd Edition (edited by the Polymer Society, 2005) pages 683-684.
  • As the chain transfer agent for example, a compound group having SH, PH, SiH, GeH in the molecule is used. These can generate hydrogen by donating hydrogen to a low activity radical to generate a radical, or after being oxidized and deprotonated.
  • thiol compounds for example, 2-mercaptobenzimidazoles, 2-mercaptobenzthiazoles, 2-mercaptobenzoxazoles, 3-mercaptotriazoles, 5-mercaptotetrazoles, etc.
  • 2-mercaptobenzimidazoles, 2-mercaptobenzthiazoles, 2-mercaptobenzoxazoles, 3-mercaptotriazoles, 5-mercaptotetrazoles, etc. can be preferably used.
  • the content of the chain transfer agent is 0.01 to 20 parts by mass with respect to 100 parts by mass of the total solid content of the photosensitive resin composition of the present invention.
  • 1 to 10 parts by mass is more preferable, and 1 to 5 parts by mass is more preferable.
  • Only one type of chain transfer agent may be used, or two or more types may be used. When there are two or more chain transfer agents, the total is preferably in the above range.
  • surfactant Various types of surfactants may be added to the photosensitive resin composition of the present invention from the viewpoint of further improving coatability.
  • the surfactant various types of surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used.
  • the following surfactants are also preferable.
  • the content of the surfactant is 0.001 to 2.0% by mass with respect to the total solid content of the photosensitive resin composition of the present invention. Preferably, it is 0.005 to 1.0% by mass. Only one surfactant may be used, or two or more surfactants may be used. When there are two or more surfactants, the total is preferably in the above range.
  • the photosensitive resin composition of the present invention includes a higher fatty acid derivative such as behenic acid or behenic acid amide, and the photosensitive resin composition in the drying process after coating. It may be unevenly distributed on the surface of the object.
  • the content of the higher fatty acid derivative is preferably 0.1 to 10% by mass with respect to the total solid content of the photosensitive resin composition of the present invention. Only one higher fatty acid derivative may be used, or two or more higher fatty acid derivatives may be used. When two or more higher fatty acid derivatives are used, the total is preferably within the above range.
  • the water content of the photosensitive resin composition of the present invention is preferably less than 5% by mass, more preferably less than 1% by mass, and particularly preferably less than 0.6% by mass from the viewpoint of the coated surface properties.
  • the metal content of the photosensitive resin composition of the present invention is preferably less than 5 ppm by weight (parts per million), more preferably less than 1 ppm by weight, and particularly preferably less than 0.5 ppm by weight from the viewpoint of insulation.
  • the metal include sodium, potassium, magnesium, calcium, iron, chromium, nickel and the like. When a plurality of metals are included, the total of these metals is preferably in the above range.
  • a raw material having a low metal content is selected as a raw material constituting the photosensitive resin composition of the present invention.
  • Examples include a method in which the raw material constituting the photosensitive resin composition of the invention is subjected to filter filtration, the inside of the apparatus is lined with polytetrafluoroethylene or the like, and distillation is performed under the conditions in which contamination is suppressed as much as possible. be able to.
  • the content of halogen atoms is preferably less than 500 ppm by mass, more preferably less than 300 ppm by mass, and particularly preferably less than 200 ppm by mass from the viewpoint of wiring corrosion.
  • a halogen ion is less than 5 mass ppm, More preferably, it is less than 1 mass ppm, Especially less than 0.5 mass ppm is preferable.
  • the halogen atom include a chlorine atom and a bromine atom. The total of chlorine atoms and bromine atoms, or chlorine ions and bromine ions is preferably in the above range.
  • the photosensitive resin composition of the present invention can be prepared by mixing the above components.
  • the mixing method is not particularly limited, and can be performed by a conventionally known method.
  • the filter pore size is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and even more preferably 0.1 ⁇ m or less.
  • the material of the filter is preferably polytetrafluoroethylene, polyethylene or nylon. A filter that has been washed in advance with an organic solvent may be used. In the filter filtration step, a plurality of types of filters may be connected in series or in parallel.
  • filters having different pore diameters and / or materials may be used in combination.
  • Various materials may be filtered a plurality of times.
  • circulation filtration may be used.
  • you may pressurize and filter.
  • the pressure applied is preferably 0.05 MPa or more and 0.3 MPa or less.
  • impurities may be removed using an adsorbent. Filter filtration and impurity removal treatment using an adsorbent may be combined.
  • the adsorbent a known adsorbent can be used. Examples thereof include inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon.
  • the photosensitive resin composition of the present invention is cured and can be used as a cured film. Fields to which the method for producing a cured film of the present invention can be applied include insulating films for semiconductor devices, particularly interlayer insulating films for rewiring layers.
  • the photosensitive resin composition of the present invention is suitable for negative development. Moreover, it is suitable for the use which develops using the developing solution containing the organic solvent. As an organic solvent used for a developing solution, the organic solvent which may be mix
  • the present invention includes a cured film obtained by curing the photosensitive resin composition of the present invention, and a semiconductor device having the cured film.
  • this invention discloses the manufacturing method of the cured film including the process of applying the photosensitive resin composition of this invention to a board
  • the method for producing a cured film preferably includes a step of exposing the cured film and performing negative development, and more preferably, the development is performed using a developer containing an organic solvent.
  • the cured film in the present invention can also be used for a photoresist for electronics (galvanic resist, galvanic resist, etching resist, solder top resist).
  • the cured film of the present invention can also be used for the production of printing plates such as offset printing plates or screen printing plates, the use for etching molded parts, the production of protective lacquers and dielectric layers in electronics, in particular microelectronics.
  • a semiconductor device 100 shown in FIG. 1 is a so-called three-dimensional mounting device, and a stacked body 101 in which a plurality of semiconductor elements (semiconductor chips) 101 a to 101 d are stacked is arranged on a wiring board 120.
  • the case where the number of stacked semiconductor elements (semiconductor chips) is four will be mainly described.
  • the number of stacked semiconductor elements (semiconductor chips) is not particularly limited. It may be a layer, 8 layers, 16 layers, 32 layers, or the like. Moreover, one layer may be sufficient.
  • Each of the plurality of semiconductor elements 101a to 101d is made of a semiconductor wafer such as a silicon substrate.
  • the uppermost semiconductor element 101a does not have a through electrode, and an electrode pad (not shown) is formed on one surface thereof.
  • the semiconductor elements 101b to 101d have through electrodes 102b to 102d, and connection pads (not shown) provided integrally with the through electrodes are provided on both surfaces of each semiconductor element.
  • the stacked body 101 has a structure in which a semiconductor element 101a having no through electrode and semiconductor elements 101b to 101d having through electrodes 102b to 102d are flip-chip connected. That is, the electrode pad of the semiconductor element 101a having no through electrode and the connection pad on the semiconductor element 101a side of the semiconductor element 101b having the adjacent through electrode 102b are connected by the metal bump 103a such as a solder bump, The connection pad on the other side of the semiconductor element 101b having the electrode 102b is connected to the connection pad on the semiconductor element 101b side of the semiconductor element 101c having the penetrating electrode 102c adjacent thereto by a metal bump 103b such as a solder bump.
  • connection pad on the other side of the semiconductor element 101c having the through electrode 102c is connected to the connection pad on the semiconductor element 101c side of the semiconductor element 101d having the adjacent through electrode 102d by the metal bump 103c such as a solder bump. ing.
  • An underfill layer 110 is formed in the gaps between the semiconductor elements 101a to 101d, and the semiconductor elements 101a to 101d are stacked via the underfill layer 110.
  • the stacked body 101 is stacked on the wiring board 120.
  • the wiring substrate 120 for example, a multilayer wiring substrate using an insulating substrate such as a resin substrate, a ceramic substrate, or a glass substrate as a base material is used.
  • the wiring board 120 to which the resin board is applied include a multilayer copper-clad laminate (multilayer printed wiring board).
  • a surface electrode 120 a is provided on one surface of the wiring board 120.
  • An insulating film 115 on which a rewiring layer 105 is formed is disposed between the wiring substrate 120 and the stacked body 101, and the wiring substrate 120 and the stacked body 101 are electrically connected via the rewiring layer 105. It is connected.
  • the insulating film 115 is formed using the photosensitive resin composition in the present invention. That is, one end of the rewiring layer 105 is connected to an electrode pad formed on the surface of the semiconductor element 101d on the rewiring layer 105 side through a metal bump 103d such as a solder bump.
  • the other end of the rewiring layer 105 is connected to the surface electrode 120a of the wiring board via a metal bump 103e such as a solder bump.
  • An underfill layer 110 a is formed between the insulating film 115 and the stacked body 101.
  • an underfill layer 110 b is formed between the insulating film 115 and the wiring substrate 120.
  • the cured film in the present invention can be widely used in various applications using polyimide or polybenzoxazole.
  • polyimide and polybenzoxazole are resistant to heat
  • the cured film in the present invention is suitable for transparent plastic substrates, display parts such as liquid crystal displays and electronic paper, automotive parts, heat resistant paints, coating agents, and films. Available to:
  • reaction mixture was cooled to ⁇ 10 ° C., and a solution of 34.35 g dicyclohexylcarbodiimide dissolved in 80 mL of ⁇ -butyrolactone was added dropwise to the reaction mixture over 60 minutes at ⁇ 10 ⁇ 5 ° C. Stir for minutes.
  • a solution prepared by dissolving 76.0 g of the diamine (a) shown below in 200 mL of ⁇ -butyrolactone was added dropwise to the reaction mixture at ⁇ 10 ⁇ 5 ° C. over 60 minutes, and the mixture was stirred for 1 hour. 20 mL of ethyl alcohol and 200 mL of ⁇ -butyrolactone were added.
  • reaction mixture was cooled to ⁇ 10 ° C., and a solution of 34.35 g dicyclohexylcarbodiimide dissolved in 80 mL of ⁇ -butyrolactone was added dropwise to the reaction mixture over 60 minutes at ⁇ 10 ⁇ 5 ° C. Stir for minutes.
  • a solution prepared by dissolving 76.0 g of diamine (a) in 200 mL of ⁇ -butyrolactone was added dropwise to the reaction mixture at ⁇ 10 ⁇ 5 ° C. over 60 minutes, and the mixture was stirred for 1 hour.
  • 0 g oxalic acid, 20 mL ethyl alcohol and 200 mL ⁇ -butyrolactone were added.
  • the precipitate generated in the reaction mixture was removed by filtration to obtain a reaction solution. 14 L of water was added to the resulting reaction solution to precipitate a polyimide precursor, which was filtered and dried at 45 ° C. under reduced pressure for 2 days.
  • the obtained powdery polyimide precursor had a weight average molecular weight of 25,100 and a number average molecular weight of 8,500.
  • reaction mixture was then cooled to ⁇ 10 ° C., and a solution of 34.35 g diisopropylcarbodiimide in 80 mL ⁇ -butyrolactone was added dropwise to the reaction mixture over 60 minutes at ⁇ 10 ⁇ 5 ° C. Stir for minutes. Subsequently, a solution prepared by dissolving 76.0 g of diamine (a) in 200 mL of ⁇ -butyrolactone was added dropwise to the reaction mixture at ⁇ 10 ⁇ 5 ° C. over 60 minutes, and the mixture was stirred for 1 hour. 0 g methanesulfonic acid, 20 mL ethyl alcohol and 200 mL ⁇ -butyrolactone were added.
  • the precipitate generated in the reaction mixture was removed by filtration to obtain a reaction solution. 14 L of water was added to the resulting reaction solution to precipitate a polyimide precursor, which was filtered and dried at 45 ° C. under reduced pressure for 2 days.
  • the obtained powdery polyimide precursor had a weight average molecular weight of 26800 and a number average molecular weight of 9400.
  • reaction mixture was cooled to ⁇ 10 ° C., and a solution of 34.35 g dicyclohexylcarbodiimide dissolved in 80 mL of ⁇ -butyrolactone was added dropwise to the reaction mixture over 60 minutes at ⁇ 10 ⁇ 5 ° C. Stir for minutes. Subsequently, a solution in which 40.2 g of 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl was dissolved in 200 mL of ⁇ -butyrolactone was reacted at ⁇ 10 ⁇ 5 ° C. over 60 minutes.
  • the obtained powdery polyimide precursor had a weight average molecular weight of 24,900 and a number average molecular weight of 8,400.
  • reaction mixture was cooled to ⁇ 10 ° C., and a solution of 34.35 g dicyclohexylcarbodiimide dissolved in 80 mL of ⁇ -butyrolactone was added dropwise to the reaction mixture over 60 minutes at ⁇ 10 ⁇ 5 ° C. Stir for minutes. Subsequently, a solution in which 40.2 g of 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl was dissolved in 200 mL of ⁇ -butyrolactone was reacted at ⁇ 10 ⁇ 5 ° C. over 60 minutes.
  • Synthesis Example 6 [Synthesis of polyimide precursor composition A-6 from pyromellitic dianhydride, 2-hydroxyethyl methacrylate and 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl] ] 14.9 g of pyromellitic dianhydride, 18.0 g of 2-hydroxyethyl methacrylate, 23.9 g of pyridine and 250 mL of diglyme (diethylene glycol dimethyl ether) were mixed and stirred at a temperature of 60 ° C. for 4 hours. . The reaction mixture was then cooled to ⁇ 10 ° C.
  • the obtained powdery polyimide precursor had a weight average molecular weight of 23,900 and a number average molecular weight of 8,000.
  • reaction mixture was then cooled to ⁇ 10 ° C., and a solution of 34.35 g diisopropylcarbodiimide in 80 mL ⁇ -butyrolactone was added dropwise to the reaction mixture over 60 minutes at ⁇ 10 ⁇ 5 ° C. Stir for minutes. Subsequently, a solution obtained by dissolving 25.1 g of 4,4′-diaminodiphenyl ether in 200 mL of ⁇ -butyrolactone was added dropwise to the reaction mixture over 60 minutes at ⁇ 10 ⁇ 5 ° C., and the mixture was stirred for 1 hour. 20 mL of ethyl alcohol and 200 mL of ⁇ -butyrolactone were added.
  • the precipitate generated in the reaction mixture was removed by filtration to obtain a reaction solution. 14 L of water was added to the resulting reaction solution to precipitate a polyimide precursor, which was filtered and dried at 45 ° C. under reduced pressure for 2 days.
  • the obtained powdery polyimide precursor had a weight average molecular weight of 25400 and a number average molecular weight of 8500.
  • the obtained powdery polyimide precursor had a weight average molecular weight of 24400 and a number average molecular weight of 8400.
  • the obtained powdery polyimide precursor had a weight average molecular weight of 24400 and a number average molecular weight of 8400.
  • the obtained powdery polybenzoxazole precursor had a weight average molecular weight of 28,500 and a number average molecular weight of 9,800.
  • the obtained powdery polybenzoxazole precursor had a weight average molecular weight of 26,900 and a number average molecular weight of 9,700.
  • the obtained powdery polybenzoxazole precursor had a weight average molecular weight of 26,900 and a number average molecular weight of 9,700.
  • the resin composition When the resin composition was liquid, it was applied onto a substrate, the solvent was dried to obtain a cured film having the above thickness, and the conductivity after the above heating was measured.
  • the viscosity When the viscosity is high, after the resin composition is dissolved in a solvent that dissolves at 25 ° C., it is applied onto a substrate, the solvent is dried to form a cured film having the above thickness, and the conductive material after the above heating is performed. The rate was measured.
  • the resin composition When the resin composition is in a powder form, the resin composition is dissolved in a solvent that dissolves at 25 ° C., and then applied onto the substrate, the solvent is dried to obtain a cured film having the above thickness, and the heating is performed. The later conductivity was measured. Even when any resin composition was used, the heterocyclic-containing polymer precursor was sufficiently cyclized in the obtained cured film, and the conductivity was 1.0 ⁇ 10 5 ⁇ ⁇ cm or less.
  • the photosensitive resin composition was applied by spinning (1200 rpm, 30 seconds) onto a silicon wafer having a thickness of 250 ⁇ m and a diameter of 100 mm.
  • the silicon wafer to which the photosensitive resin composition was applied was dried on a hot plate at 100 ° C. for 5 minutes to form a film having a thickness of 10 ⁇ m on the silicon wafer.
  • the photosensitive resin composition was applied by spinning (1200 rpm, 30 seconds) onto a copper substrate having a thickness of 250 ⁇ m.
  • the copper substrate to which the photosensitive resin composition was applied was dried on a hot plate at 100 ° C. for 5 minutes to form a 10 ⁇ m thick film on the copper substrate.
  • the temperature was raised at a rate of 10 ° C./min in a nitrogen atmosphere, and after reaching 230 ° C., the temperature was maintained for 3 hours.
  • the film on the copper substrate was physically peeled off.
  • the copper substrate was visually observed, the area ratio colored in rust color was calculated, and the metal corrosivity was evaluated. A smaller area ratio means less metal corrosivity.
  • B More than 1% and 5% or less.
  • C More than 5% and 10% or less.
  • D More than 10%.
  • A Resin (heterocycle-containing polymer precursor composition) A-1 to A-13: Heterocycle-containing polymer precursor composition produced in Synthesis Examples 1 to 13
  • C Photopolymerization initiator
  • C-1 IRGACURE OXE 01 (manufactured by BASF)
  • C-2 IRGACURE OXE 02 (manufactured by BASF)
  • C-3 IRGACURE OX 04 (manufactured by BASF)
  • C-4 IRGACURE-784 (manufactured by BASF)
  • C-5 NCI-831 (manufactured by ADEKA Corporation)
  • the photosensitive resin composition using the resin composition of the present invention had high resolution and excellent storage stability.
  • the effect of the present invention was further improved by using an acidic compound having a pKa of 3.5 or less, further 3.0 or less, particularly 2.0 or less.
  • the suppression effect of metal corrosivity was more effectively improved by using an acidic compound having a molecular weight of 100 or more.

Abstract

保存安定性に優れ、かつ、解像力の高い感光性樹脂組成物を提供可能な樹脂組成物、ならびに、上記樹脂組成物を用いた感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイスおよび樹脂組成物の製造方法の提供。ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択される複素環含有ポリマー前駆体と、pKaが4.0以下の酸性化合物を含む樹脂組成物であって、上記樹脂組成物を10μmの厚さの硬化膜とし、350℃で60分間加熱した後の硬化膜の導電率が、1.0×10Ω・cm以下である、樹脂組成物。

Description

樹脂組成物およびその応用
 本発明は、樹脂組成物、感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイスおよび樹脂組成物の製造方法に関する。
 ポリイミドおよびポリベンゾオキサゾールは、耐熱性及び絶縁性に優れるため、半導体デバイスの絶縁膜などに用いられている。
 また、ポリイミドおよびポリベンゾオキサゾールに変えて、より溶剤溶解性が高い環化反応前の前駆体(ポリイミド前駆体あるいはポリベンゾオキサゾール前駆体)の状態で使用し、基板などに適用した後、加熱して上記前駆体を環化して硬化膜を形成することも行われている。
 このようなポリイミド前駆体として、例えば、特許文献1には、所定の構造のポリイミド前駆体100質量部、および(B)光重合開始剤0.1質量部~20質量部を含むネガ型感光性樹脂組成物が開示されている。
国際公開WO2013/168675号パンフレット
 ここで、ポリイミド前駆体やポリベンゾオキサゾール前駆体は、安定性に劣り、長期間保存すると時間の経過に伴い、閉環反応が進んでしまう場合があることが分かった。例えば、以下のような反応が進行してしまう。
Figure JPOXMLDOC01-appb-C000003
 上段は、ポリイミド前駆体の一例(後述する式(1)で表される繰り返し単位)の部分構造を示したものであって、Aは酸素原子またはNHを表し、R111は2価の有機基を表し、R115は4価の有機基を表し、R113は水素原子または1価の有機基を表す。
 下段は、ポリベンゾオキサゾール前駆体の一例(後述する式(2)で表される繰り返し単位)の部分構造を示したものであって、R121は2価の有機基を表し、R122は4価の有機基を表し、R123は水素原子または1価の有機基を表す。
 このようなポリイミド前駆体やポリベンゾオキサゾール前駆体を含む感光性樹脂組成物を長期間保存すると、固体が析出し、感光性樹脂組成物の保存安定性に欠けるという問題がある。
 また、保存安定性に優れていても、感光性樹脂組成物の解像力が劣っていれば、露光現像してパターンを形成する場合に問題となる。
 本発明は、かかる課題を解決することを目的とするものであって、保存安定性に優れ、かつ、解像力の高い感光性樹脂組成物を提供可能な樹脂組成物、ならびに、上記樹脂組成物を用いた感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイスおよび樹脂組成物の製造方法を提供することを目的とする。
 上記課題のもと、本発明者が鋭意検討を行った結果、pKaが4以下の酸性化合物を用いることにより、上記課題を解決しうることを見出した。具体的には、下記手段<1>により、好ましくは<2>~<23>により、上記課題は解決された。
<1>ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択される複素環含有ポリマー前駆体と、pKaが4.0以下の酸性化合物を含む樹脂組成物であって、上記樹脂組成物を10μmの厚さの硬化膜とし、350℃で60分間加熱した後の硬化膜の導電率が、1.0×10Ω・cm以下である、樹脂組成物。
<2>上記複素環含有ポリマー前駆体が、下記式(1)で表される繰り返し単位または式(2)で表される繰り返し単位を含む、<1>に記載の樹脂組成物;
式(1)
Figure JPOXMLDOC01-appb-C000004
式(2)
Figure JPOXMLDOC01-appb-C000005
式(1)中、AおよびAは、それぞれ独立に酸素原子またはNHを表し、R111は、2価の有機基を表し、R115は、4価の有機基を表し、R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表す;式(2)中、R121は、2価の有機基を表し、R122は、4価の有機基を表し、R123およびR124は、それぞれ独立に、水素原子または1価の有機基を表す。
<3>上記酸性化合物のpKaが3.5以下である、<1>または<2>に記載の樹脂組成物。
<4>上記酸性化合物の分子量が100~300である、<1>~<3>のいずれか1つに記載の樹脂組成物。
<5>上記酸性化合物が、スルホン酸およびカルボン酸から選択される、<1>~<4>のいずれか1つに記載の樹脂組成物。
<6>上記酸性化合物がスルホン酸である、<1>~<4>のいずれか1つに記載の樹脂組成物。
<7>上記酸性化合物がp-トルエンスルホン酸、カンファースルホン酸およびメタンスルホン酸から選択される、<1>~<4>のいずれか1つに記載の樹脂組成物。
<8>粉末状である、<1>~<7>のいずれか1つに記載の樹脂組成物。
<9>ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択される複素環含有ポリマー前駆体と、pKaが4.0以下の酸性化合物を含む樹脂組成物と、光重合開始剤を含む感光性樹脂組成物であって、上記感光性樹脂組成物を10μmの厚さの硬化膜とし、350℃で60分間加熱した後の硬化膜の導電率が、1.0×10Ω・cm以下である、感光性樹脂組成物。
<10>上記樹脂組成物が、<2>~<7>のいずれか1つに記載の樹脂組成物である、<9>に記載の感光性樹脂組成物。
<11>ネガ型現像用である、<9>または<10>に記載の感光性樹脂組成物。
<12>有機溶剤を含む現像液を用いて現像する用途に用いられる、<9>~<11>のいずれか1つに記載の感光性樹脂組成物。
<13>再配線層用層間絶縁膜形成用である、<9>~<12>のいずれか1つに記載の感光性樹脂組成物。
<14><9>~<13>のいずれか1つに記載の感光性樹脂組成物を硬化してなる硬化膜。
<15>再配線層用層間絶縁膜である、<14>に記載の硬化膜。
<16><9>~<13>のいずれか1つに記載の感光性樹脂組成物を基板に適用する工程と、基板に適用された感光性樹脂組成物を硬化する工程とを含む硬化膜の製造方法。
<17>さらに、上記硬化膜を露光し、ネガ型現像する工程を含む、<16>に記載の硬化膜の製造方法。
<18>上記現像において、有機溶剤を含む現像液を用いることを含む、<17>に記載の硬化膜の製造方法。
<19><14>または<15>に記載の硬化膜を有する半導体デバイス。
<20>ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択される複素環含有ポリマー前駆体を含む樹脂組成物の製造方法であって、pKaが4.0以下の酸性化合物を添加する工程を含み、上記樹脂組成物が粉末状である、樹脂組成物の製造方法。
<21><1>~<8>のいずれか1つに記載の樹脂組成物の製造方法であって、複素環含有ポリマー前駆体の合成工程において、pKaが4.0以下の酸性化合物を添加することを含む、樹脂組成物の製造方法。
<22><1>~<8>のいずれか1つに記載の樹脂組成物の製造方法であって、複素環含有ポリマー前駆体を合成した後に、pKaが4.0以下の酸性化合物を添加することを含む、樹脂組成物の製造方法。
<23>複素環含有ポリマー前駆体の合成工程において、カルボジイミド化合物を添加することを含む、<20>~<22>のいずれか1つに記載の樹脂組成物の製造方法。
 本発明により、保存安定性に優れ、かつ、解像力の高い感光性樹脂組成物を提供可能な樹脂組成物、ならびに、上記樹脂組成物を用いた感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイスおよび樹脂組成物の製造方法を提供可能になった。
半導体デバイスの一実施形態の構成を示す概略図である。
 以下に記載する本発明における構成要素の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 本明細書における基(原子団)の表記に於いて、置換および無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書において、「活性光線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等を意味する。また、本発明において光とは、活性光線または放射線を意味する。本明細書中における「露光」とは、特に断らない限り、水銀灯、エキシマレーザーに代表される遠紫外線、X線、EUV光などによる露光のみならず、電子線、イオンビーム等の粒子線による描画も露光に含める。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「(メタ)アクリレート」は、「アクリレート」および「メタクリレート」の双方、または、いずれかを表し、「(メタ)アクリル」は、「アクリル」および「メタクリル」の双方、または、いずれかを表し、「(メタ)アクリロイル」は、「アクリロイル」および「メタクリロイル」の双方、または、いずれかを表す。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書において、固形分濃度とは、組成物の総質量に対する、溶剤を除く他の成分の質量の質量百分率である。また、固形分濃度は、特に述べない限り25℃における濃度をいう。
 本明細書において、重量平均分子量(Mw)・数平均分子量(Mn)は、特に述べない限り、ゲル浸透クロマトグラフィ(GPC測定)によるポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)および数平均分子量(Mn)は、例えば、HLC-8220GPC(東ソー(株)製)を用い、カラムとしてガードカラムHZ-L、TSKgel Super HZM-M、TSKgel Super HZ4000、TSKgel Super HZ3000およびTSKgel Super HZ2000(東ソー(株)製)のいずれか1つ以上を用いることによって求めることができる。溶離液は特に述べない限り、THF(テトラヒドロフラン)を用いて測定したものとする。また、検出は特に述べない限り、UV線(紫外線)の波長254nm検出器を使用したものとする。
[樹脂組成物]
 本発明の樹脂組成物は、ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択される複素環含有ポリマー前駆体(以下、単に、「複素環含有ポリマー前駆体」ということがある)と、pKaが4.0以下の酸性化合物を含む樹脂組成物であって、上記樹脂組成物を10μmの厚さの硬化膜とし、350℃で60分間加熱した後の硬化膜の導電率が、1.0×10Ω・cm以下であることを特徴とする。このような構成とすることにより、保存安定性に優れ、かつ、解像力の高い感光性樹脂組成物を提供可能になる。
 このメカニズムは推定であるが、pKa4.0以下の酸性化合物の添加によって、複素環含有ポリマー前駆体の閉環反応を遅くすることができ、保存安定性を向上させることができると推定される。さらに、感光性樹脂組成物中の閉環体の割合を少なくすることにより、感光性樹脂組成物の粘度が上昇しにくくなり、解像力を高めることができると推定される。さらに、酸性化合物として、分子量100以上の化合物を用いることにより、金属腐食をより効果的に抑制できる。
<樹脂組成物の硬化膜の導電率>
 本発明の樹脂組成物は、10μmの厚さの硬化膜とし、350℃で60分間加熱した後の硬化膜の導電率が、1.0×10Ω・cm以下である。このような構成とすることにより、硬化膜の絶縁性を保つことができる。
 導電率は、後述する実施例に記載の方法に従って測定される。
<複素環含有ポリマー前駆体>
 本発明で用いる複素環含有ポリマー前駆体は、ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択される少なくとも1種であり、ポリイミド前駆体であることが好ましい。
 ポリイミド前駆体およびポリベンゾオキサゾール前駆体は、それぞれ、1種のみ含んでいてもよいし、2種以上含んでいてもよい。
<<ポリイミド前駆体>>
 本発明で用いるポリイミド前駆体はその種類等特に定めるものではないが、下記式(1)で表される繰り返し単位を含むことが好ましい。
式(1)
Figure JPOXMLDOC01-appb-C000006
 式(1)中、AおよびAは、それぞれ独立に酸素原子またはNHを表し、R111は、2価の有機基を表し、R115は、4価の有機基を表し、R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表す。
 式(1)におけるAおよびAは、酸素原子またはNHが好ましく、酸素原子がより好ましい。
 式(1)におけるR111は、2価の有機基を表す。2価の有機基としては、直鎖または分岐の脂肪族基、環状の脂肪族基および芳香族基を含む基が例示され、炭素数2~20の直鎖の脂肪族基、炭素数3~20の分岐の脂肪族基、炭素数3~20の環状の脂肪族基、炭素数6~20の芳香族基、または、これらの組み合わせからなる基が好ましく、炭素数6~20の芳香族基からなる基がより好ましい。
 R111は、ジアミンから誘導されることが好ましい。ポリイミド前駆体の製造に用いられるジアミンとしては、直鎖または分岐の脂肪族、環状の脂肪族または芳香族ジアミンなどが挙げられる。ジアミンは、1種のみ用いてもよいし、2種以上用いてもよい。
 具体的には、炭素数2~20の直鎖または分岐の脂肪族基、炭素数3~20の環状の脂肪族基、炭素数6~20の芳香族基、または、これらの組み合わせからなる基を含むジアミンであることが好ましく、炭素数6~20の芳香族基からなる基を含むジアミンであることがより好ましい。芳香族基の例としては、下記が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 
 式中、Aは、単結合、または、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-C(=O)-、-S-、-S(=O)-、-NHCO-ならびに、これらの組み合わせから選択される基であることが好ましく、単結合、フッ素原子で置換されていてもよい炭素数1~3のアルキレン基、-O-、-C(=O)-、-S-、-SO-から選択される基であることがより好ましく、-CH-、-O-、-S-、-SO-、-C(CF-、および、-C(CH-からなる群から選択される2価の基であることがさらに好ましい。
 ジアミンとしては、具体的には、1,2-ジアミノエタン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタンおよび1,6-ジアミノヘキサン;1,2-または1,3-ジアミノシクロペンタン、1,2-、1,3-または1,4-ジアミノシクロヘキサン、1,2-、1,3-または1,4-ビス(アミノメチル)シクロヘキサン、ビス-(4-アミノシクロヘキシル)メタン、ビス-(3-アミノシクロヘキシル)メタン、4,4’-ジアミノ-3,3’-ジメチルシクロヘキシルメタンおよびイソホロンジアミン;メタおよびパラフェニレンジアミン、ジアミノトルエン、4,4’-および3,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、4,4’-および3,3’-ジアミノジフェニルメタン、4,4’-および3,3’-ジアミノジフェニルスルホン、4,4’-および3,3’-ジアミノジフェニルスルフィド、4,4’-および3,3’-ジアミノベンゾフェノン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)プロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、4,4’-ジアミノパラテルフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(2-アミノフェノキシ)フェニル]スルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、3,3’-ジメチル-4,4’-ジアミノジフェニルスルホン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノオクタフルオロビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、9,9-ビス(4-アミノフェニル)-10-ヒドロアントラセン、3,3’,4,4’-テトラアミノビフェニル、3,3’,4,4’-テトラアミノジフェニルエーテル、1,4-ジアミノアントラキノン、1,5-ジアミノアントラキノン、3,3-ジヒドロキシ-4,4’-ジアミノビフェニル、9,9’-ビス(4-アミノフェニル)フルオレン、4,4’-ジメチル-3,3’-ジアミノジフェニルスルホン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、2,4-および2,5-ジアミノクメン、2,5-ジメチル-パラフェニレンジアミン、アセトグアナミン、2,3,5,6-テトラメチル-パラフェニレンジアミン、2,4,6-トリメチル-メタフェニレンジアミン、ビス(3-アミノプロピル)テトラメチルジシロキサン、2,7-ジアミノフルオレン、2,5-ジアミノピリジン、1,2-ビス(4-アミノフェニル)エタン、ジアミノベンズアニリド、ジアミノ安息香酸のエステル、1,5-ジアミノナフタレン、ジアミノベンゾトリフルオライド、1,3-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,4-ビス(4-アミノフェニル)オクタフルオロブタン、1,5-ビス(4-アミノフェニル)デカフルオロペンタン、1,7-ビス(4-アミノフェニル)テトラデカフルオロヘプタン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(2-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ビス(トリフルオロメチル)フェニル]ヘキサフルオロプロパン、パラビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-3-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4’-ビス(3-アミノ-5-トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2-ビス[4-(4-アミノ-3-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’,5,5’-テトラメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、2,2’,5,5’,6,6’-ヘキサフルオロトリジンおよび4,4’-ジアミノクアテルフェニルから選ばれる少なくとも1種のジアミンが挙げられる。
 また、下記に示すジアミン(DA-1)~(DA-18)も好ましい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 また、少なくとも2つ以上のアルキレングリコール単位を主鎖にもつジアミンも好ましい例として挙げられる。好ましくは、エチレングリコール鎖、プロピレングリコール鎖のいずれか一方または両方を一分子中にあわせて2つ以上含むジアミン、より好ましくは芳香環を含まないジアミンである。具体例としては、ジェファーミン(登録商標)KH-511、ジェファーミン(登録商標)ED-600、ジェファーミン(登録商標)ED-900、ジェファーミン(登録商標)ED-2003、ジェファーミン(登録商標)EDR-148、ジェファーミン(登録商標)EDR-176、ジェファーミン(登録商標)D-200、ジェファーミン(登録商標)D-400、ジェファーミン(登録商標)D-2000、ジェファーミン(登録商標)D-4000(以上商品名、HUNTSMAN社製)、1-(2-(2-(2-アミノプロポキシ)エトキシ)プロポキシ)プロパン-2-アミン、1-(1-(1-(2-アミノプロポキシ)プロパン-2-イル)オキシ)プロパン-2-アミンなどが挙げられるが、これらに限定されない。
 ジェファーミン(登録商標)KH-511、ジェファーミン(登録商標)ED-600、ジェファーミン(登録商標)ED-900、ジェファーミン(登録商標)ED-2003、ジェファーミン(登録商標)EDR-148、ジェファーミン(登録商標)EDR-176の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000010
 上記において、x、y、zは平均値である。
 R111は、得られる硬化膜の柔軟性の観点から、-Ar-L-Ar-で表されることが好ましい。但し、Arは、それぞれ独立に、芳香族基であり、Lは、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-または-NHCO-、ならびに、上記の2つ以上の組み合わせからなる基である。Arは、フェニレン基が好ましく、Lは、フッ素原子で置換されていてもよい炭素数1または2の脂肪族炭化水素基、-O-、-CO-、-S-または-SO-がさらに好ましい。ここでの脂肪族炭化水素基は、アルキレン基が好ましい。
 R111は、i線透過率の観点から下記式(51)または式(61)で表わされる2価の有機基であることが好ましい。特に、i線透過率、入手のし易さの観点から式(61)で表わされる2価の有機基であることがより好ましい。
 式(51)
Figure JPOXMLDOC01-appb-C000011
式(51)中、R10~R17は、それぞれ独立に水素原子、フッ素原子または1価の有機基であり、R10~R17の少なくとも1つはフッ素原子、メチル基、フルオロメチル基、ジフルオロメチル基、または、トリフルオロメチル基である。
 R10~R17の1価の有機基として、炭素数1~10(好ましくは炭素数1~6)の無置換のアルキル基、炭素数1~10(好ましくは炭素数1~6)のフッ化アルキル基等が挙げられる。
 式(61)
Figure JPOXMLDOC01-appb-C000012
式(61)中、R18およびR19は、それぞれ独立にフッ素原子、フルオロメチル基、ジフルオロメチル基、または、トリフルオロメチル基である。
 式(51)または(61)の構造を与えるジアミン化合物としては、ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ビス(フルオロ)-4,4’-ジアミノビフェニル、4,4’-ジアミノオクタフルオロビフェニル等が挙げられる。これらの1種を用いるか、2種以上を組み合わせて用いてもよい。
 式(1)におけるR115は、4価の有機基を表す。4価の有機基としては、芳香環を含む4価の有機基が好ましく、下記式(5)または式(6)で表される基がより好ましい。
式(5)
Figure JPOXMLDOC01-appb-C000013
 式(5)中、R112は、単結合、または、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-、-NHCO-ならびに、これらの組み合わせから選択される基であることが好ましく、単結合、フッ素原子で置換されていてもよい炭素数1~3のアルキレン基、-O-、-CO-、-S-および-SO-から選択される基であることがより好ましく、-CH-、-C(CF-、-C(CH-、-O-、-CO-、-S-および-SO-からなる群から選択される2価の基がさらに好ましい。
式(6)
Figure JPOXMLDOC01-appb-C000014
 式(1)におけるR115が表す4価の有機基は、具体的には、テトラカルボン酸二無水物から酸二無水物基を除去した後に残存するテトラカルボン酸残基などが挙げられる。テトラカルボン酸二無水物は、1種のみ用いてもよいし、2種以上用いてもよい。テトラカルボン酸二無水物は、下記式(O)で表される化合物が好ましい。
式(O)
Figure JPOXMLDOC01-appb-C000015
 式(O)中、R115は、4価の有機基を表す。R115は式(1)のR115と同義である。
 テトラカルボン酸二無水物の具体例としては、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルフィドテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメタンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルメタンテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,7-ナフタレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、1,3-ジフェニルヘキサフルオロプロパン-3,3,4,4-テトラカルボン酸二無水物、1,4,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、1,2,4,5-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,8,9,10-フェナントレンテトラカルボン酸二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、ならびに、これらの炭素数1~6のアルキル誘導体および/または炭素数1~6のアルコキシ誘導体から選ばれる少なくとも1種が例示される。
 また、下記に示すテトラカルボン酸二無水物(DAA-1)~(DAA-5)も好ましい例として挙げられる。
Figure JPOXMLDOC01-appb-C000016
 R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表し、R113およびR114の少なくとも一方がラジカル重合性基を含むことが好ましく、両方がラジカル重合性基を含むことがより好ましい。ラジカル重合性基としては、ラジカルの作用により、架橋反応することが可能な基であって、好ましい例として、エチレン性不飽和結合を有する基が挙げられる。
 エチレン性不飽和結合を有する基としては、ビニル基、(メタ)アリル基、下記式(III)で表される基などが挙げられる。
Figure JPOXMLDOC01-appb-C000017
 式(III)において、R200は、水素原子またはメチル基を表し、メチル基がより好ましい。
 式(III)において、R201は、炭素数2~12のアルキレン基、-CHCH(OH)CH-または炭素数4~30のポリオキシアルキレン基を表す。
 好適なR201の例は、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、1,2-ブタンジイル基、1,3-ブタンジイル基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、ドデカメチレン基、-CHCH(OH)CH-が挙げられ、エチレン基、プロピレン基、トリメチレン基、-CHCH(OH)CH-がより好ましい。
 特に好ましくは、R200がメチル基で、R201がエチレン基である。
 R113またはR114が表す1価の有機基としては、現像液の溶解度を向上させる置換基が好ましく用いられる。
 水性現像液への溶解度の観点からは、R113またはR114は、水素原子または1価の有機基であってもよい。1価の有機基としては、アリール基を構成する炭素に結合している1、2または3つの、好ましくは1つの酸性基を有する、芳香族基およびアラルキル基などが挙げられる。具体的には、酸性基を有する炭素数6~20の芳香族基、酸性基を有する炭素数7~25のアラルキル基が挙げられる。より具体的には、酸性基を有するフェニル基および酸性基を有するベンジル基が挙げられる。酸性基は、OH基が好ましい。
 R113またはR114が、水素原子、2-ヒドロキシベンジル、3-ヒドロキシベンジルおよび4-ヒドロキシベンジルであることが、水性現像液に対する溶解性の点からは、より好ましい。
 有機溶剤への溶解度の観点からは、R113またはR114は、1価の有機基であることが好ましい。1価の有機基としては、直鎖または分岐のアルキル基、環状アルキル基、芳香族基を含むことが好ましく、芳香族基で置換されたアルキル基がより好ましい。
 アルキル基の炭素数は1~30が好ましい。アルキル基は直鎖、分岐、環状のいずれであってもよい。直鎖または分岐のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、オクタデシル基、イソプロピル基、イソブチル基、sec-ブチル基、t-ブチル基、1-エチルペンチル基、および2-エチルヘキシル基が挙げられる。環状のアルキル基は、単環の環状のアルキル基であってもよく、多環の環状のアルキル基であってもよい。単環の環状のアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基およびシクロオクチル基が挙げられる。多環の環状のアルキル基としては、例えば、アダマンチル基、ノルボルニル基、ボルニル基、カンフェニル基、デカヒドロナフチル基、トリシクロデカニル基、テトラシクロデカニル基、カンホロイル基、ジシクロヘキシル基およびピネニル基が挙げられる。中でも、高感度化との両立の観点から、シクロヘキシル基が最も好ましい。また、芳香族基で置換されたアルキル基としては、後述する芳香族基で置換された直鎖アルキル基が好ましい。
 芳香族基としては、具体的には、置換または無置換のベンゼン環、ナフタレン環、ペンタレン環、インデン環、アズレン環、ヘプタレン環、インダセン環、ペリレン環、ペンタセン環、アセナフテン環、フェナントレン環、アントラセン環、ナフタセン環、クリセン環、トリフェニレン環、フルオレン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環またはフェナジン環である。ベンゼン環が最も好ましい。
 式(1)において、R113が水素原子である場合、R114が水素エチレン性不飽和結合を有する3級アミン化合物と対塩を形成していてもよい。このようなエチレン性不飽和結合を有する3級アミン化合物の例としては、N,N-ジメチルアミノプロピルメタクリレートが挙げられる。
 また、ポリイミド前駆体は、構造単位中にフッ素原子を有することも好ましい。ポリイミド前駆体中のフッ素原子含有量は10質量%以上が好ましく、20質量%以下が好ましい。
 また、基板との密着性を向上させる目的で、シロキサン構造を有する脂肪族基を共重合してもよい。具体的には、ジアミン成分として、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(パラアミノフェニル)オクタメチルペンタシロキサンなどが挙げられる。
 式(1)で表される繰り返し単位は、式(1-A)で表される繰り返し単位であることが好ましい。すなわち、本発明で用いるポリイミド前駆体の少なくとも1種が、式(1-A)で表される繰り返し単位を有する前駆体であることが好ましい。このような構造とすることにより、露光ラチチュードの幅をより広げることが可能になる。
式(1-A)
Figure JPOXMLDOC01-appb-C000018
 式(1-A)中、AおよびAは、酸素原子を表し、R111およびR112は、それぞれ独立に、2価の有機基を表し、R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表し、R113およびR114の少なくとも一方は、重合性基を含む基であり、重合性基であることが好ましい。
 A、A、R111、R113およびR114は、それぞれ独立に、式(1)におけるA、A、R111、R113およびR114と同義であり、好ましい範囲も同様である。
112は、式(5)におけるR112と同義であり、好ましい範囲も同様である。
 ポリイミド前駆体は、式(1)で表される繰り返し構造単位が1種であってもよいが、2種以上であってもよい。また、式(1)で表される繰り返し単位の構造異性体を含んでいてもよい。また、ポリイミド前駆体は、上記の式(1)の繰り返し単位のほかに、他の種類の繰り返し構造単位も含んでもよい。
 本発明におけるポリイミド前駆体の一実施形態として、全繰り返し単位の50モル%以上、さらには70モル%以上、特には90モル%以上が式(1)で表される繰り返し単位であるポリイミド前駆体が例示される。
 ポリイミド前駆体の重量平均分子量(Mw)は、好ましくは2000~500000であり、より好ましくは5000~100000であり、さらに好ましくは10000~50000である。また、数平均分子量(Mn)は、好ましくは800~250000であり、より好ましくは、2000~50000であり、さらに好ましくは、4000~25000であり、一層好ましくは、4000~15000であり、より一層好ましくは、5000~10000である。
 分散度は、1.5~4.0が好ましく、2.0~3.5がより好ましい。
 ポリイミド前駆体は、ジカルボン酸またはジカルボン酸誘導体とジアミンを反応させて得られる。好ましくは、ジカルボン酸またはジカルボン酸誘導体を、ハロゲン化剤を用いてハロゲン化させた後、ジアミンと反応させて得られる。
 ポリイミド前駆体の製造方法では、反応に際し、有機溶剤を用いることが好ましい。有機溶剤は1種でもよいし、2種以上でもよい。
 有機溶剤としては、原料に応じて適宜定めることができるが、ピリジン、ジエチレングリコールジメチルエーテル(ジグリム)、N-メチルピロリドンおよびN-エチルピロリドンが例示される。
 ポリイミド前駆体の製造に際し、保存安定性をより向上させるため、酸二無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物などの末端封止剤でポリイミド前駆体を封止することが好ましい。これらのうち、モノアミンを用いることがより好ましく、モノアミンの好ましい化合物としては、アニリン、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどが挙げられる。これらを2種以上用いてもよく、複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。
 ポリイミド前駆体の製造に際し、固体を析出する工程を含んでいてもよい。具体的には、反応液中のポリイミド前駆体を、水中に沈殿させ、テトラヒドロフラン等のポリイミド前駆体が可溶な溶剤に溶解させることによって、固体析出することができる。
 その後、ポリイミド前駆体を乾燥して、粉末状のポリイミド前駆体を得ることができる。
<<ポリベンゾオキサゾール前駆体>>
 本発明で用いられるポリベンゾオキサゾール前駆体は、下記式(2)で表される繰り返し単位を含むことが好ましい。
式(2)
Figure JPOXMLDOC01-appb-C000019
 式(2)中、R121は、2価の有機基を表し、R122は、4価の有機基を表し、R123およびR124は、それぞれ独立に、水素原子または1価の有機基を表す。
 式(2)において、R121は、2価の有機基を表す。2価の有機基としては、脂肪族基および芳香族基の少なくとも一方を含む基が好ましい。脂肪族基としては、直鎖の脂肪族基が好ましい。
 式(2)において、R122は、4価の有機基を表す。4価の有機基としては、上記式(1)におけるR115と同義であり、好ましい範囲も同様である。
 ポリベンゾオキサゾール前駆体は上記の式(2)の繰り返し単位のほかに、他の種類の繰り返し構造単位も含んでよい。
 閉環に伴う反りの発生を抑制できる点で、下記式(SL)で表されるジアミン残基を他の種類の繰り返し構造単位として含むことが好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(SL)中、Zは、a構造とb構造を有し、R1sは水素原子または炭素数1~10の炭化水素基であり、R2sは炭素数1~10の炭化水素基であり、R3s、R4s、R5s、R6sのうち少なくとも1つは芳香族基で、残りは水素原子または炭素数1~30の有機基で、それぞれ同一でも異なっていてもよい。a構造およびb構造の重合は、ブロック重合でもランダム重合でもよい。Z部分のモル%は、a構造は5~95モル%、b構造は95~5モル%であり、a+bは100モル%である。
 式(SL)において、好ましいZとしては、b構造中のR5sおよびR6sがフェニル基であるものが挙げられる。また、式(SL)で示される構造の分子量は、400~4,000であることが好ましく、500~3,000がより好ましい。分子量は、一般的に用いられるゲル浸透クロマトグラフィによって求めることができる。上記分子量を上記範囲とすることで、ポリベンゾオキサゾール前駆体の脱水閉環後の弾性率を下げ、反りを抑制できる効果と溶解性を向上させる効果を両立することができる。
 他の種類の繰り返し構造単位として式(SL)で表されるジアミン残基を含む場合、アルカリ可溶性を向上させる点で、さらに、テトラカルボン酸二無水物から酸二無水物基を除去した後に残存するテトラカルボン酸残基を繰り返し構造単位として含むことが好ましい。このようなテトラカルボン酸残基の例としては、式(1)中のR115の例が挙げられる。
 ポリベンゾオキサゾール前駆体として、4,4’-オキシジフタル酸二無水物、2-ヒドロキシエチルメタクリレートおよび4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニルから得られるポリベンゾオキサゾール前駆体および4,4’-オキシジベンゾイルクロリド、2,2'-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンおよびメタクリル酸クロリドから得られるポリベンゾオキサゾール前駆体が例示される。
 ポリベンゾオキサゾール前駆体の重量平均分子量(Mw)は、好ましくは2000~500000であり、より好ましくは5000~100000であり、さらに好ましくは10000~50000である。また、数平均分子量(Mn)は、好ましくは800~250000であり、より好ましくは、2000~50000であり、さらに好ましくは、4000~25000であり、一層好ましくは、4000~15000であり、より一層好ましくは、5000~10000である。
 分散度は、1.5~4.0が好ましく、2.0~3.5がより好ましい。
<酸性化合物>
 本発明の樹脂組成物は、pKaが4.0以下の酸性化合物を含む。ここで、pKaとは、酸性化合物のプロトンの解離定数(Ka)の対数の逆数(-Log10Ka)を表す。酸性化合物のpKaの値は、後述する実施例に記載の方法に従って測定される。
 このような酸性化合物を含むことにより、保存安定性に優れ、解像力が高い感光性樹脂組成物の提供が可能になる。
 本発明で用いる酸性化合物のpKaは、3.5以下であることが好ましく、3.0以下であることがより好ましく、2.5以下であることがさらに好ましく、2.0以下であることが一層好ましく、1.0以下であることがより一層好ましく、0.0以下であることがさらに一層好ましい。上記pKaの下限値は、特に定めるものではないが、-3.0以上であることが好ましく、-2.0以上であることがより好ましく、-1.0以上であることがさらに好ましい。
 pKaが4.0以下の酸性化合物は、分子量が500以下であることが好ましく、400以下であることがより好ましく、300以下であることがさらに好ましく、250以下であることが一層好ましく、200以下であることがより一層好ましい。このような酸性化合物を用いることにより、酸性化合物が硬化時に揮発し、硬化膜を絶縁膜として用いる場合等の、金属の腐食をより効果的に抑制できる。上記分子量の下限値としては、特に定めるものではないが、45以上であることが好ましく、80以上であることがより好ましく、100以上であることがさらに好ましい。
 pKaが4.0以下の酸性化合物は、その種類は特に定めるものではないが、スルホン酸、カルボン酸、イミド酸、メチド酸、塩酸、硝酸および硫酸から選択されることが好ましく、スルホン酸およびカルボン酸から選択されることがより好ましく、スルホン酸および2価以上の多価カルボン酸から選択されることがさらに好ましく、スルホン酸が一層好ましい。
 また、pKaが4.0以下の酸性化合物は、水和物であってもよいし、水和物でなくてもよい。
 スルホン酸としては、一分子中に1つのスルホ基を有する1価のスルホン酸が好ましい。
 スルホン酸の具体例としては、トルエンスルホン酸(例えば、p-トルエンスルホン酸、p-トルエンスルホン酸一水和物)、カンファースルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ノナフルオロ-1-ブタンスルホン酸、ベンゼンスルホン酸、ポリ(p-スチレンスルホン酸)および、2-ナフタレンスルホン酸から選択されることが好ましく、トルエンスルホン酸、カンファースルホン酸およびメタンスルホン酸から選択されることがより好ましく、少なくともトルエンスルホン酸を含むことがさらに好ましい。
 カルボン酸としては、一分子中に1つのカルボキシル基を有する1価のカルボン酸であっても、一分子中に2つのカルボキシル基を有する多価のカルボン酸であってもよく、多価カルボン酸が好ましい。多価カルボン酸の場合、一分子中のカルボキシル基の数は、2~4つが好ましく、2つがより好ましい。
 カルボン酸の具体例としては、ギ酸、シュウ酸(例えば、シュウ酸二水和物)、マレイン酸、マロン酸、ピルビン酸、DL-乳酸、トリフルオロ酢酸、グリオキシル酸およびマレイン酸メチルエステルから選択されることが好ましく、ギ酸、シュウ酸、マレイン酸、マロン酸、ピルビン酸およびDL-乳酸から選択されることがより好ましく、シュウ酸、マレイン酸、マロン酸、ピルビン酸およびDL-乳酸から選択されることがさらに好ましく、シュウ酸、マレイン酸およびマロン酸から選択されることが一層好ましく、少なくともシュウ酸を含むことがより一層好ましい。
 本発明の樹脂組成物は、pKaが4.0以下の酸性化合物を、複素環含有ポリマー前駆体の合計100質量部に対し、10~0.001質量部の割合で含むことが好ましく、1~0.001質量部の割合で含むことがより好ましく、0.1~0.005質量部の割合で含むことがさらに好ましい。
 本発明の樹脂組成物は、pKaが4.0以下の酸性化合物を、1種のみ含んでいてもよく、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 また、本発明の樹脂組成物は、pKaが4.0を超える酸性化合物を含んでいてもよいが、実質的に含まない方が好ましい。実質的に含まないとは、例えば、そのような酸性化合物の量が、樹脂組成物に含まれるpKa4.0以下の酸性化合物の合計量の1質量%以下であることをいい、好ましくは0.1質量%以下であり、より好ましくは0.01質量%以下である。
<樹脂組成物のその他の成分>
 本発明の樹脂組成物は、上記複素環含有ポリマー前駆体およびpKaが4.0以下の酸性化合物以外の成分を含んでいてもよい。具体的には、溶剤、重合禁止剤などが例示される。溶剤および重合禁止剤の詳細は、後述の感光性樹脂組成物のその他の成分における溶剤、重合禁止剤の記載を参酌できる。
 また、複素環含有ポリマー前駆体の合成に用いられた原料由来の不純物等を含みうる。
 本発明の樹脂組成物は、酸発生剤を実質的に含まないことが好ましい。実質的に含まないとは、例えば、樹脂組成物に含まれる複素環含有ポリマー前駆体の合計量の1質量%以下であることをいい、好ましくは0.1質量%以下であり、より好ましくは0.01質量%以下である。
<樹脂組成物の形態>
 本発明の樹脂組成物の形態は、液体状であってもよいし、粉末状であってもよい。
 本発明の樹脂組成物が液体状の場合、樹脂組成物の10~90質量%が溶剤であることが好ましい。また、樹脂組成物中の複素環含有ポリマー前駆体の含有量は、1~80質量%であることが好ましい。
 本発明の樹脂組成物が粉末状の場合、樹脂組成物の80質量%以上が複素環含有ポリマー前駆体であることが好ましい。
 ここで、粉末状とは、微細な固体物質を主成分とすることをいう。主成分とは、樹脂組成物のうち、最も含有量が多い成分をいい、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、一層好ましくは98質量%以上を占める成分をいう。本発明における微細な固体物質は、その最大長さの平均が10mm以下であることが好ましく、5mm以下であることがより好ましい。例えば、市販品の粉末状の樹脂や重合性モノマーなどは、本発明における微細な固体物質に含まれる。
 また、粉末状の樹脂組成物は溶剤を含んでいてもよいが、溶剤の含有量は、樹脂組成物の20質量%以下であり、10質量%以下が好ましく、5質量%以下がより好ましい。
[樹脂組成物の製造方法]
 本発明の樹脂組成物の製造方法は、ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択される複素環含有ポリマー前駆体を含む樹脂組成物の製造方法であって、pKaが4.0以下の酸性化合物を添加する工程を含む。
 pKaが4.0以下の酸性化合物は、複素環含有ポリマー前駆体の合成工程において添加してもよいし、複素環含有ポリマー前駆体を合成した後に、添加してもよい。
 ここで、複素環含有ポリマー前駆体の合成工程とは、原料モノマーを反応させ始めてから、原料のモノマーの反応が終了となるまでの工程をいう。終了とは、例えば、反応液をろ過したり、溶剤による析出を行う工程をいう。従って、微量の成分が反応し続ける工程などは含まない趣旨である。一方、複素環含有ポリマー前駆体を合成した後とは、合成工程が終了した後をいう。
 pKaが4.0以下の酸性化合物を、複素環含有ポリマー前駆体の合成工程において添加すると、ポリマー中に存在する酸性化合物の位置依存性を低減できる。
 pKaが4.0以下の酸性化合物は、複素環含有ポリマー前駆体の原料モノマーと反応しない化合物であることが好ましい。
 pKaが4.0以下の酸性化合物を、複素環含有ポリマー前駆体の合成工程において添加する場合、pKaが4.0以下の酸性化合物の添加量は、最終的に得られる複素環含有ポリマー前駆体100質量部に対し、50~0.1質量部が好ましく、20~1質量部がより好ましい。
 また、本発明では、複素環含有ポリマー前駆体の合成工程において、カルボジイミド化合物を添加することも好ましい。カルボジイミド化合物は、複素環含有ポリマーの原料モノマーの反応に際し、カルボキシル基とアミノ基の縮合剤として寄与しうる。
 カルボジイミド化合物を用いる第一の実施形態としては、酸二無水物と、重合性基を有する化合物、カルボジイミド化合物を添加し反応させた後、ジアミン化合物を添加して更に反応させて、ポリイミド前駆体を得る態様が例示される。
 pKaが4.0以下の酸性化合物を、複素環含有ポリマー前駆体の合成工程において添加する場合であって、カルボジイミド化合物を添加する場合、カルボジイミド化合物を、pKaが4.0以下の酸性化合物よりも早い段階で添加することが好ましい。
 カルボジイミド化合物としては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジエチルカルボジイミド、エチルシクロヘキシルカルボジイミド、ジフェニルカルボジイミド、および1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩が例示され、ジシクロヘキシルカルボジイミドおよびジイソプロピルカルボジイミドの少なくとも1種が好ましい。
 カルボジイミド化合物の分子量は、100~400が好ましい。
 カルボジイミド化合物の添加量は、最終的に得られる複素環含有ポリマー前駆体100質量部に対し、500~50質量部が好ましく、250~90質量部がより好ましい。
[感光性樹脂組成物]
 本発明の感光性樹脂組成物は、ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択される複素環含有ポリマー前駆体と、pKaが4.0以下の酸性化合物を含む樹脂組成物と、光重合開始剤を含む感光性樹脂組成物であって、上記感光性樹脂組成物を10μmの厚さの硬化膜とし、350℃で60分間加熱した後の硬化膜の導電率が、1.0×10Ω・cm以下であることを特徴とする。
 以下、本発明の感光性樹脂組成物の詳細について説明する。
<感光性樹脂組成物の硬化膜の導電率>
 本発明の感光性樹脂組成物は、10μmの厚さの硬化膜とし、350℃で60分間加熱した後の硬化膜の導電率が、1.0×10Ω・cm以下である。このような構成とすることにより、硬化膜の絶縁性を保つことができる。
 導電率は、後述する実施例に記載の方法に従って測定される。
<樹脂組成物>
 本発明の感光性樹脂組成物は、ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択される複素環含有ポリマー前駆体と、pKaが4.0以下の酸性化合物を含む樹脂組成物を含む。
 感光性樹脂組成物に含まれる樹脂組成物は、10μmの厚さの硬化膜とし、350℃で60分間加熱した後の硬化膜の導電率が、1.0×10Ω・cm以下であることが好ましいが、感光性樹脂組成物自体が、上記導電率の条件を満たしていれば、感光性樹脂組成物に含まれる樹脂組成物が必ずしも、上記導電率を満たしている必要はない。
 感光性樹脂組成物に含まれる複素環含有ポリマー前駆体およびpKaが4.0以下の酸性化合物の詳細は、上述した樹脂組成物の場合と同義であり、好ましい範囲も同様である。また、感光性樹脂組成物に含まれる樹脂組成物は、上述の所定の導電率を満たす樹脂組成物であることが好ましい。
 本発明の感光性樹脂組成物における、複素環含有ポリマー前駆体の含有量は、感光性樹脂組成物の全固形分に対し20~100質量%が好ましく、50~99質量%がより好ましく、60~98質量%がさらに好ましく、70~95質量%が特に好ましい。
 複素環含有ポリマーは1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 また、本発明の感光性樹脂組成物は、pKaが4.0以下の酸性化合物を、複素環含有ポリマー前駆体の合計100質量部に対し、100~0.0001質量部の割合で含むことが好ましく、10~0.001質量部の割合で含むことがより好ましく、1~0.01質量部の割合で含むことがさらに好ましい。
 本発明の感光性樹脂組成物は、pKaが4.0以下の酸性化合物を、1種のみ含んでいてもよく、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<光重合開始剤>
 本発明で用いることができる光重合開始剤としては、特に制限はなく、公知の光重合開始剤の中から適宜選択することができる。例えば、紫外線領域から可視領域の光線に対して感光性を有する光重合開始剤が好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよい。
 光重合開始剤は、約300~800nm(好ましくは330~500nm)の範囲内に少なくとも約50のモル吸光係数を有する化合物を、少なくとも1種含有していることが好ましい。化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、紫外可視分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチル溶剤を用い、0.01g/Lの濃度で測定することが好ましい。
 本発明の感光性樹脂組成物が光重合開始剤を含むことにより、本発明の感光性樹脂組成物を半導体ウェハなどの基板に適用して感光性樹脂組成物層を形成した後、光を照射することで、発生するラジカルに起因する硬化が起こり、光照射部における溶解性を低下させることができる。このため、例えば、電極部のみをマスクするパターンを持つフォトマスクを介して感光性樹脂組成物層を露光することで、電極のパターンにしたがって、溶解性の異なる領域を簡便に作製できるという利点がある。
 光重合開始剤としては、公知の化合物を任意に使用できる。例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物、トリハロメチル基を有する化合物など)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノン化合物、ヒドロキシアセトフェノン、アゾ系化合物、アジド化合物、メタロセン化合物、有機ホウ素化合物、鉄アレーン錯体などが挙げられる。これらの詳細については、特開2016-027357号公報の段落0165~0182の記載を参酌でき、この内容は本明細書に組み込まれる。
 ケトン化合物としては、例えば、特開2015-087611号公報の段落0087に記載の化合物が例示され、この内容は本明細書に組み込まれる。市販品では、カヤキュアーDETX(日本化薬(株)製)も好適に用いられる。
 光重合開始剤としては、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、および、アシルホスフィン化合物も好適に用いることができる。より具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、特許第4225898号に記載のアシルホスフィンオキシド系開始剤も用いることができる。
 ヒドロキシアセトフェノン系開始剤としては、IRGACURE 184(IRGACUREは登録商標)、DAROCUR 1173、IRGACURE 500、IRGACURE-2959、IRGACURE 127(商品名:いずれもBASF社製)を用いることができる。
 アミノアセトフェノン系開始剤としては、市販品であるIRGACURE 907、IRGACURE 369、および、IRGACURE 379(商品名:いずれもBASF社製)を用いることができる。
 アミノアセトフェノン系開始剤として、365nmまたは405nm等の波長光源に吸収極大波長がマッチングされた特開2009-191179号公報に記載の化合物も用いることができる。
 アシルホスフィン系開始剤としては、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイドなどが挙げられる。また、市販品であるIRGACURE-819やIRGACURE-TPO(商品名:いずれもBASF社製)を用いることができる。
 メタロセン化合物としては、IRGACURE-784(BASF社製)などが例示される。
 光重合開始剤として、より好ましくはオキシム化合物が挙げられる。オキシム化合物を用いることにより、露光ラチチュードをより効果的に向上させることが可能になる。オキシム化合物は、露光ラチチュード(露光マージン)が広く好ましい。
 オキシム化合物の具体例としては、特開2001-233842号公報に記載の化合物、特開2000-80068号公報に記載の化合物、特開2006-342166号公報に記載の化合物を用いることができる。
 好ましいオキシム化合物としては、例えば、下記の構造の化合物や、3-ベンゾオキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイルオキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、および2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オンなどが挙げられる。
Figure JPOXMLDOC01-appb-C000021
 市販品ではIRGACURE OXE 01、IRGACURE OXE 02、IRGACURE OXE 03、IRGACURE OXE 04(以上、BASF社製)、アデカオプトマーN-1919((株)ADEKA製、特開2012-14052号公報に記載の光重合開始剤2)も好適に用いられる。また、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831およびアデカアークルズNCI-930((株)ADEKA製)も用いることができる。また、DFI-091(ダイトーケミックス株式会社製)を用いることができる。
 さらに、また、フッ素原子を有するオキシム化合物を用いることも可能である。そのようなオキシム化合物の具体例としては、特開2010-262028号公報に記載されている化合物、特表2014-500852号公報の段落0345~0348に記載されている化合物24、36~40、特開2013-164471号公報の段落0101に記載されている化合物(C-3)などが挙げられる。
 最も好ましいオキシム化合物としては、特開2007-269779号公報に示される特定置換基を有するオキシム化合物や、特開2009-191061号公報に示されるチオアリール基を有するオキシム化合物などが挙げられる。
 光重合開始剤は、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物およびその誘導体、シクロペンタジエン-ベンゼン-鉄錯体およびその塩、ハロメチルオキサジアゾール化合物、3-アリール置換クマリン化合物からなる群より選択される化合物が好ましい。
 さらに好ましい光重合開始剤は、トリハロメチルトリアジン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾフェノン化合物、アセトフェノン化合物であり、トリハロメチルトリアジン化合物、α-アミノケトン化合物、オキシム化合物、トリアリールイミダゾールダイマー、ベンゾフェノン化合物からなる群より選ばれる少なくとも1種の化合物が一層好ましく、メタロセン化合物またはオキシム化合物を用いるのがより一層好ましく、オキシム化合物が特に好ましい。
 また、光重合開始剤は、ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)等のN,N’-テトラアルキル-4,4’-ジアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパノン-1等の芳香族ケトン、アルキルアントラキノン等の芳香環と縮環したキノン類、ベンゾインアルキルエーテル等のベンゾインエーテル化合物、ベンゾイン、アルキルベンゾイン等のベンゾイン化合物、ベンジルジメチルケタール等のベンジル誘導体などを用いることもできる。また、下記式(I)で表される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000022
 式(I)中、R50は、炭素数1~20のアルキル基、1個以上の酸素原子によって中断された炭素数2~20のアルキル基、炭素数1~12のアルコキシ基、フェニル基、ハロゲン原子、シクロペンチル基、シクロヘキシル基、炭素数2~12のアルケニル基、1個以上の酸素原子によって中断された炭素数2~18のアルキル基および炭素数1~4のアルキル基の少なくとも1つで置換されたフェニル基、またはビフェニリルであり、R51は、式(II)で表される基であるか、R50と同じ基であり、R52~R54は各々独立に炭素数1~12のアルキル、炭素数1~12のアルコキシまたはハロゲンである。
Figure JPOXMLDOC01-appb-C000023
式中、R55~R57は、上記式(I)のR52~R54と同じである。
 また、光重合開始剤は、国際公開WO2015/125469号の段落0048~0055に記載の化合物を用いることもできる。
 光重合開始剤の含有量は、本発明の感光性樹脂組成物の全固形分に対し0.1~30質量%が好ましく、より好ましくは0.1~20質量%であり、さらに好ましくは5~15質量%である。光重合開始剤は1種のみ含有していてもよいし、2種以上含有していてもよい。光重合開始剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
<感光性樹脂組成物のその他の成分>
 本発明の感光性樹脂組成物は、上記複素環含有ポリマー前駆体、pKaが4.0以下の酸性化合物および光重合開始剤以外の成分を含んでいてもよい。具体的には、溶剤、重合禁止剤などが例示される。また、複素環含有ポリマー前駆体の合成に用いられた原料由来の不純物等を含みうる。
 本発明の樹脂組成物は、酸発生剤を実質的に含まないことが好ましい。ここで、実質的に含まないとは、例えば、樹脂組成物に含まれる酸発生剤の含有量が、複素環含有ポリマー前駆体の合計量の1質量%以下であることをいい、好ましくは0.1質量%以下であり、より好ましくは0.01質量%以下である。
<<熱塩基発生剤>>
 本発明の感光性樹脂組成物は、熱塩基発生剤を含んでいてもよい。熱塩基発生剤を用いることにより、複素環含有ポリマー前駆体の閉環反応を行う加熱工程時に、閉環反応を促進させる塩基種を発生させることができるため、閉環率がより向上する傾向にある。
 熱塩基発生剤としては、その種類等は特に定めるものではないが、40℃以上に加熱すると塩基を発生する酸性化合物(ただし、pKaが4を超える化合物である)、および、pKa1が0~4のアニオンとアンモニウムカチオンとを有するアンモニウム塩から選ばれる少なくとも1種を含む熱塩基発生剤を含むことが好ましい。ここで、pKa1とは、酸の第一のプロトンの解離定数(Ka)の逆数の対数(-Log10Ka)を表す。
 上記酸性化合物(A1)および上記アンモニウム塩(A2)は、加熱すると塩基を発生するので、これらの化合物から発生した塩基により、複素環含有ポリマー前駆体の環化反応を促進でき、複素環含有ポリマー前駆体の環化を低温で行うことができる。また、これらの化合物は、塩基により環化して硬化する複素環含有ポリマー前駆体などと共存させても、加熱しなければ複素環含有ポリマー前駆体の環化が殆ど進行しないので、保存安定性に優れた感光性樹脂組成物を調製することができる。
 なお、本明細書において、酸性化合物とは、化合物を容器に1g採取し、イオン交換水とテトラヒドロフランとの混合液(質量比は水/テトラヒドロフラン=1/4)を50mL加えて、室温で1時間撹拌して得られた溶液を、pH(power of hydrogen)メーターを用いて、20℃にて測定した値が7未満である化合物を意味する。
 本実施形態において、酸性化合物(A1)およびアンモニウム塩(A2)の塩基発生温度は、40℃以上が好ましく、120~200℃がより好ましい。塩基発生温度の上限は、190℃以下が好ましく、180℃以下がより好ましく、165℃以下がさらに好ましい。塩基発生温度の下限は、130℃以上が好ましく、135℃以上がより好ましい。
 酸性化合物(A1)およびアンモニウム塩(A2)の塩基発生温度が120℃以上であれば、保存中に塩基が発生しにくいので、保存安定性に優れた感光性樹脂組成物を調製することができる。酸性化合物(A1)およびアンモニウム塩(A2)の塩基発生温度が200℃以下であれば、複素環含有ポリマー前駆体の環化温度を低くできる。塩基発生温度は、例えば、示差走査熱量測定を用い、化合物を耐圧カプセル中5℃/分で250℃まで加熱し、最も温度が低い発熱ピークのピーク温度を読み取り、ピーク温度を塩基発生温度として測定することができる。
 本実施形態において、熱塩基発生剤により発生する塩基は、2級アミンまたは3級アミンが好ましく、3級アミンがより好ましい。3級アミンは、塩基性が高いので、ポリイミド前駆体およびポリベンゾオキサゾール前駆体などの環化温度をより低くできる。また、熱塩基発生剤により発生する塩基の沸点は、80℃以上であることが好ましく、100℃以上であることがより好ましく、140℃以上であることがさらに好ましい。また、発生する塩基の分子量は、80~2000が好ましい。下限は100以上がより好ましい。上限は500以下がより好ましい。なお、分子量の値は、構造式から求めた理論値である。
 本実施形態において、上記酸性化合物(A1)は、アンモニウム塩および後述する式(101)または(102)で表されるアンモニウム構造を有する化合物から選ばれる1種以上を含むことが好ましい。
 本実施形態において、上記アンモニウム塩(A2)は、酸性化合物であることが好ましい。なお、上記アンモニウム塩(A2)は、40℃以上(好ましくは120~200℃)に加熱すると塩基を発生する酸性化合物を含む化合物であってもよいし、40℃以上(好ましくは120~200℃)に加熱すると塩基を発生する酸性化合物を除く化合物であってもよい。
 本実施形態において、アンモニウム塩とは、下記式(101)または式(102)で表されるアンモニウムカチオンと、アニオンとの塩を意味する。アニオンは、アンモニウムカチオンのいずれかの一部と共有結合を介して結合していてもよく、アンモニウムカチオンの分子外に有していてもよいが、アンモニウムカチオンの分子外に有していることが好ましい。なお、アニオンが、アンモニウムカチオンの分子外に有するとは、アンモニウムカチオンとアニオンが共有結合を介して結合していない場合をいう。以下、カチオン部の分子外のアニオンを対アニオンともいう。
式(101)    式(102)
Figure JPOXMLDOC01-appb-C000024
 式(101)および式(102)中、R~Rは、それぞれ独立に、水素原子または炭化水素基を表し、Rは炭化水素基を表す。式(101)および式(102)におけるRとR、RとR、RとR、RとRはそれぞれ結合して環を形成してもよい。
 アンモニウムカチオンは、下記式(Y1-1)~(Y1-5)のいずれかで表されることが好ましい。
Figure JPOXMLDOC01-appb-C000025
 式(Y1-1)~(Y1-5)において、R101は、n価の有機基を表し、RおよびRは、式(101)または式(102)におけるRおよびRと同義である。
 式(Y1-1)~(Y1-4)において、Ar101およびAr102は、それぞれ独立に、アリール基を表し、nは、1以上の整数を表し、mは、0~5の整数を表す。
 本実施形態において、アンモニウム塩は、pKa1が0~4のアニオンとアンモニウムカチオンとを有することが好ましい。アニオンのpKa1の上限は、3.5以下がより好ましく、3.2以下が一層好ましい。下限は、0.5以上が好ましく、1.0以上がより好ましい。アニオンのpKa1が上記範囲であれば、複素環含有ポリマー前駆体をより低温で環化でき、さらには、感光性樹脂組成物の安定性を向上できる。pKa1が4以下であれば、熱塩基発生剤の安定性が良好で、加熱なしに塩基が発生することを抑制でき、感光性樹脂組成物の安定性が良好である。pKa1が0以上であれば、発生した塩基が中和されにくく、複素環含有ポリマー前駆体などの環化効率が良好である。
 アニオンの種類は、カルボン酸アニオン、フェノールアニオン、リン酸アニオンおよび硫酸アニオンから選ばれる1種が好ましく、塩の安定性と熱分解性を両立させられるという理由からカルボン酸アニオンがより好ましい。すなわち、アンモニウム塩は、アンモニウムカチオンとカルボン酸アニオンとの塩がより好ましい。
 カルボン酸アニオンは、2個以上のカルボキシル基を持つ2価以上のカルボン酸のアニオンが好ましく、2価のカルボン酸のアニオンがより好ましい。この態様によれば、感光性樹脂組成物の安定性、硬化性および現像性をより向上できる熱塩基発生剤とすることができる。特に、2価のカルボン酸のアニオンを用いることで、感光性樹脂組成物の安定性、硬化性および現像性をさらに向上できる。
 本実施形態において、カルボン酸アニオンは、pKa1が4以下のカルボン酸のアニオンであることが好ましい。pKa1は、3.5以下がより好ましく、3.2以下が一層好ましい。この態様によれば、感光性樹脂組成物の安定性をより向上できる。
 ここでpKa1は、ACD/pKa(ACD/Labs社製)のソフトを用いて構造式より算出した値を用いることとする。
 カルボン酸アニオンは、下記式(X1)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000026
 式(X1)において、EWGは、電子求引性基を表す。
 本実施形態において電子求引性基とは、ハメットの置換基定数σmが正の値を示すものを意味する。ここでσmは、都野雄甫総説、有機合成化学協会誌第23巻第8号(1965)p.631-642に詳しく説明されている。なお、本実施形態における電子求引性基は、上記文献に記載された置換基に限定されるものではない。
 σmが正の値を示す置換基の例としては例えば、CF基(σm=0.43)、CFCO基(σm=0.63)、HC≡C基(σm=0.21)、CH=CH基(σm=0.06)、Ac基(σm=0.38)、MeOCO基(σm=0.37)、MeCOCH=CH基(σm=0.21)、PhCO基(σm=0.34)、HNCOCH基(σm=0.06)などが挙げられる。なお、Meはメチル基を表し、Acはアセチル基を表し、Phはフェニル基を表す(以下、同じ)。
 EWGは、下記式(EWG-1)~(EWG-6)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000027
 式(EWG-1)~(EWG-6)中、Rx1~Rx3は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アリール基、ヒドロキシル基またはカルボキシル基を表し、Arは芳香族基を表す。
 本実施形態において、カルボン酸アニオンは、下記式(XA)で表されることが好ましい。
式(XA)
Figure JPOXMLDOC01-appb-C000028
 式(XA)において、L10は、単結合、または、アルキレン基、アルケニレン基、芳香族基、-NR-およびこれらの組み合わせから選ばれる2価の連結基を表し、Rは、水素原子、アルキル基、アルケニル基またはアリール基を表す。
 カルボン酸アニオンの具体例としては、マレイン酸アニオン、フタル酸アニオン、N-フェニルイミノ二酢酸アニオンおよびシュウ酸アニオンが挙げられる。
 熱塩基発生剤の具体例としては、以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 本発明の感光性樹脂組成物が熱塩基発生剤を含む場合、熱塩基発生剤の含有量は、本発明の感光性樹脂組成物の全固形分に対し、0.1~50質量%が好ましい。下限は、0.5質量%以上がより好ましく、0.85質量%以上がさらに好ましく、1質量%以上が一層好ましい。上限は、30質量%以下がより好ましく、20質量%以下がさらに好ましく、10質量%以下が一層好ましく、5質量%以下であってもよく、4質量%以下であってもよい。
 熱塩基発生剤は、1種または2種以上を用いることができる。2種以上を用いる場合は、合計量が上記範囲であることが好ましい。
<<溶剤>>
 本発明の感光性樹脂組成物は、溶剤を含有することが好ましい。溶剤は、公知の溶剤を任意に使用できる。溶剤は有機溶剤が好ましい。有機溶剤としては、エステル類、エーテル類、ケトン類、芳香族炭化水素類、スルホキシド類、アミド類などの化合物が挙げられる。
 エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、アルキルオキシ酢酸アルキル(例えば、アルキルオキシ酢酸メチル、アルキルオキシ酢酸エチル、アルキルオキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-アルキルオキシプロピオン酸アルキルエステル類(例えば、3-アルキルオキシプロピオン酸メチル、3-アルキルオキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-アルキルオキシプロピオン酸アルキルエステル類(例えば、2-アルキルオキシプロピオン酸メチル、2-アルキルオキシプロピオン酸エチル、2-アルキルオキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-アルキルオキシ-2-メチルプロピオン酸メチルおよび2-アルキルオキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等が好適なものとして挙げられる。
 エーテル類として、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等が好適なものとして挙げられる。
 ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン等が好適なものとして挙げられる。
 芳香族炭化水素類として、例えば、トルエン、キシレン、アニソール、リモネン等が好適なものとして挙げられる。
 スルホキシド類として、例えば、ジメチルスルホキシドが好適なものとして挙げられる。
 アミド類として、N-メチル-2-ピロリドン、N -エチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等が好適なものとして挙げられる。
 溶剤は、塗布面性状の改良などの観点から、2種以上を混合する形態も好ましい。なかでも、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、γ-ブチロラクトン、ジメチルスルホキシド、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテル、およびプロピレングリコールメチルエーテルアセテートから選択される2種以上で構成される混合溶液が好ましい。ジメチルスルホキシドとγ-ブチロラクトンとの併用が特に好ましい。
 溶剤の含有量は、塗布性の観点から、本発明の感光性樹脂組成物の全固形分濃度が5~80質量%になる量とすることが好ましく、5~70質量%がさらに好ましく、10~60質量%が特に好ましい。溶剤含有量は、所望の厚さと塗布方法によって調節すればよい。例えば塗布方法がスピンコートやスリットコートであれば上記範囲の固形分濃度となる溶剤の含有量が好ましい。スプレーコートであれば0.1質量%~50質量%になる量とすることが好ましく、1.0質量%~25質量%になる量とすることがより好ましい。塗布方法によって溶剤量を調節することで、所望の厚さの感光性樹脂組成物層を均一に形成することができる。
 溶剤は1種のみ含有していてもよいし、2種以上含有していてもよい。溶剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
<<重合性化合物>>
 本発明の感光性樹脂組成物は、重合性化合物(以下、「重合性モノマー」ともいう)を含むことが好ましい。このような構成とすることにより、耐熱性に優れた硬化膜を形成することができる。
 重合性モノマーは、ラジカル重合性基を有する化合物(ラジカル重合性化合物)を用いることができる。ラジカル重合性基としては、スチリル基、ビニル基、(メタ)アクリロイル基およびアリル基などのエチレン性不飽和結合を有する基が挙げられる。ラジカル重合性基は、(メタ)アクリロイル基が好ましい。
 重合性モノマーが有するラジカル重合性基は、1個でも、2個以上でもよいが、ラジカル重合性基を2個以上有することが好ましく、3個以上有することがより好ましい。上限は、15個以下が好ましく、10個以下がより好ましく、8個以下がさらに好ましい。
 重合性モノマーの分子量は、2000以下が好ましく、1500以下がより好ましく、900以下がさらに好ましい。重合性モノマーの分子量の下限は、100以上が好ましい。
 本発明の感光性樹脂組成物は、現像性の観点から、重合性基を2個以上含む2官能以上の重合性モノマーを少なくとも1種含むことが好ましく、3官能以上の重合性モノマーを少なくとも1種含むことがより好ましい。また、2官能の重合性モノマーと3官能以上の重合性モノマーとの混合物であってもよい。なお、重合性モノマーの官能基数は、一分子中におけるラジカル重合性基の数を意味する。
 重合性モノマーの具体例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)やそのエステル類、アミド類が挙げられ、好ましくは、不飽和カルボン酸と多価アルコール化合物とのエステル、および不飽和カルボン酸と多価アミン化合物とのアミド類である。また、ヒドロキシル基やアミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能イソシアネート類或いはエポキシ類との付加反応物や、単官能若しくは多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基やエポキシ基等の親電子性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との付加反応物、さらに、ハロゲン基やトシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等のビニルベンゼン誘導体、ビニルエーテル、アリルエーテル等に置き換えた化合物群を使用することも可能である。具体例としては、特開2016-027357号公報の段落0113~0122の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 また、重合性モノマーは、常圧下で100℃以上の沸点を持つ化合物も好ましい。その例としては、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、グリセリンやトリメチロールエタン等の多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後、(メタ)アクリレート化した化合物、特公昭48-41708号公報、特公昭50-6034号公報、特開昭51-37193号各公報に記載されているようなウレタン(メタ)アクリレート類、特開昭48-64183号、特公昭49-43191号、特公昭52-30490号各公報に記載されているポリエステルアクリレート類、エポキシ樹脂と(メタ)アクリル酸との反応生成物であるエポキシアクリレート類等の多官能のアクリレートやメタクリレートおよびこれらの混合物を挙げることができる。また、特開2008-292970号公報の段落0254~0257に記載の化合物も好適である。また、多官能カルボン酸にグリシジル(メタ)アクリレート等の環状エーテル基とエチレン性不飽和基を有する化合物を反応させて得られる多官能(メタ)アクリレートなども挙げることができる。
 また、その他の好ましい重合性モノマーとして、特開2010-160418号公報、特開2010-129825号公報、特許第4364216号等に記載される、フルオレン環を有し、エチレン性不飽和結合を有する基を2個以上有する化合物や、カルド樹脂も使用することが可能である。
 さらに、その他の例としては、特公昭46-43946号公報、特公平1-40337号公報、特公平1-40336号公報に記載の特定の不飽和化合物や、特開平2-25493号公報に記載のビニルホスホン酸系化合物等もあげることができる。また、特開昭61-22048号公報に記載のペルフルオロアルキル基を含む化合物を用いることもできる。さらに日本接着協会誌 vol.20、No.7、300~308ページ(1984年)に光重合性モノマーおよびオリゴマーとして紹介されているものも使用することができる。
 上記のほか、特開2015-034964号公報の段落0048~0051に記載の化合物も好ましく用いることができ、これらの内容は本明細書に組み込まれる。
 また、特開平10-62986号公報において式(1)および式(2)としてその具体例と共に記載の、多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後に(メタ)アクリレート化した化合物も、重合性モノマーとして用いることができる。
 さらに、特開2015-187211号公報の段落0104~0131に記載の化合物も重合性モノマーとして用いることができ、これらの内容は本明細書に組み込まれる。
 重合性モノマーとしては、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330;日本化薬(株)製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320;日本化薬(株)製、A-TMMT;新中村化学工業社製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310;日本化薬(株)製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA;日本化薬(株)製、A-DPH;新中村化学工業社製)、およびこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介して結合している構造が好ましい。これらのオリゴマータイプも使用できる。
 重合性モノマーの市販品としては、例えばサートマー社製のエチレンオキシ鎖を4個有する4官能アクリレートであるSR-494、エチレンオキシ鎖を4個有する2官能メタクリレートであるサートマー社製のSR-209、日本化薬(株)製のペンチレンオキシ鎖を6個有する6官能アクリレートであるDPCA-60、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA-330、NKエステル M-40G、NKエステル 4G、NKエステル M-9300、NKエステル A-9300、UA-7200(新中村化学工業社製)、DPHA-40H(日本化薬(株)製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600(共栄社化学社製)、ブレンマーPME400(日油(株)製)などが挙げられる。
 重合性モノマーは、特公昭48-41708号公報、特開昭51-37193号公報、特公平2-32293号公報、特公平2-16765号公報に記載されているようなウレタンアクリレート類や、特公昭58-49860号公報、特公昭56-17654号公報、特公昭62-39417号公報、特公昭62-39418号公報に記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。さらに、重合性モノマーとして、特開昭63-277653号公報、特開昭63-260909号公報、特開平1-105238号公報に記載される、分子内にアミノ構造やスルフィド構造を有する化合物を用いることもできる。
 重合性モノマーは、カルボキシル基、スルホ基、リン酸基等の酸基を有する重合性モノマーであってもよい。酸基を有する重合性モノマーは、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましく、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシル基に非芳香族カルボン酸二無水物を反応させて酸基を持たせた重合性モノマーがより好ましい。特に好ましくは、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシル基に非芳香族カルボン酸二無水物を反応させて酸基を持たせた重合性モノマーにおいて、脂肪族ポリヒドロキシ化合物がペンタエリスリトールおよび/またはジペンタエリスリトールである化合物である。市販品としては、例えば、東亞合成株式会社製の多塩基酸変性アクリルオリゴマーとして、M-510、M-520などが挙げられる。
 酸基を有する重合性モノマーは、1種を単独で用いてもよいが、2種以上を混合して用いてもよい。また、必要に応じて酸基を有しない重合性モノマーと酸基を有する重合性モノマーを併用してもよい。
 酸基を有する重合性モノマーの好ましい酸価は、0.1~40mgKOH/gであり、特に好ましくは5~30mgKOH/gである。重合性モノマーの酸価が上記範囲であれば、製造や取扱性に優れ、さらには、現像性に優れる。また、重合性が良好である。
 重合性モノマーの含有量は、良好な重合性と耐熱性の観点から、本発明の感光性樹脂組成物の全固形分に対して、1~50質量%が好ましい。下限は5質量%以上がより好ましい。上限は、30質量%以下がより好ましい。重合性モノマーは1種を単独で用いてもよいが、2種以上を混合して用いてもよい。
 また、複素環含有ポリマー前駆体と重合性モノマーとの質量割合(複素環含有ポリマー前駆体/重合性モノマー)は、98/2~10/90が好ましく、95/5~30/70がより好ましく、90/10~50/50が最も好ましい。複素環含有ポリマー前駆体と重合性モノマーとの質量割合が上記範囲であれば、重合性および耐熱性により優れた硬化膜を形成できる。
 本発明の感光性樹脂組成物は、硬化膜の弾性率制御に伴う反り抑制の観点から、単官能重合性モノマーを好ましく用いることができる。単官能重合性モノマーとしては、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、カルビトール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等の(メタ)アクリル酸誘導体、N-ビニルピロリドン、N-ビニルカプロラクタム等のN-ビニル化合物類、アリルグリシジルエーテル、ジアリルフタレート、トリアリルトリメリテート等のアリル化合物類等が好ましく用いられる。単官能重合性モノマーとしては、露光前の揮発を抑制するため、常圧下で100℃以上の沸点を持つ化合物も好ましい。
 本発明の感光性樹脂組成物は、上述した複素環含有ポリマー前駆体およびラジカル重合性化合物以外の他の重合性化合物をさらに含むことができる。他の重合性化合物としては、ヒドロキシメチル基、アルコキシメチル基またはアシルオキシメチル基を有する化合物;エポキシ化合物;オキセタン化合物;ベンゾオキサジン化合物が挙げられる。
(ヒドロキシメチル基、アルコキシメチル基またはアシルオキシメチル基を有する化合物)
 ヒドロキシメチル基、アルコキシメチル基またはアシルオキシメチル基を有する化合物としては、下記式(AM1)で示される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000033
(式中、tは、1~20の整数を示し、Rは炭素数1~200のt価の有機基を示し、Rは、-ORまたは、-OCO-Rで示される基を示し、Rは、水素原子または炭素数1~10の有機基を示し、Rは、炭素数1~10の有機基を示す。)
 複素環含有ポリマー前駆体100質量部に対して、式(AM1)で示される化合物の含有量は、5~40質量部であることが好ましい。さらに好ましくは、10~35質量部である。また、他の重合性化合物の全量中に、下記式(AM4)で表される化合物を10~90質量%含有し、下記式(AM5)で表される化合物を10~90質量%含有することも好ましい。
Figure JPOXMLDOC01-appb-C000034
(式中、Rは炭素数1~200の2価の有機基を示し、Rは、-ORまたは、-OCO-Rで示される基を示し、Rは、水素原子または炭素数1~10の有機基を示し、Rは、炭素数1~10の有機基を示す。)
Figure JPOXMLDOC01-appb-C000035
(式中uは3~8の整数を示し、Rは炭素数1~200のu価の有機基を示し、Rは、-ORまたは、-OCO-Rで示される基を示し、Rは、水素原子または炭素数1~10の有機基を示し、Rは、炭素数1~10の有機基を示す。)
 上述のヒドロキシメチル基等を有する化合物を用いることで、凹凸のある基板上に本発明の感光性樹脂組成物を適用した際に、クラックの発生をより効果的に抑制できる。また、パターン加工性に優れ、5%質量減少温度が350℃以上、より好ましくは380℃以上となる高い耐熱性を有する硬化膜を形成することができる。式(AM4)で示される化合物の具体例としては、46DMOC、46DMOEP(以上、商品名、旭有機材工業(株)製)、DML-MBPC、DML-MBOC、DML-OCHP、DML-PCHP、DML-PC、DML-PTBP、DML-34X、DML-EP、DML-POP、dimethylolBisOC-P、DML-PFP、DML-PSBP、DML-MTrisPC(以上、商品名、本州化学工業(株)製)、NIKALAC MX-290(商品名、(株)三和ケミカル製)、2,6-dimethoxymethyl-4-t-buthylphenol、2,6-dimethoxymethyl-p-cresol、2,6-diacethoxymethyl-p-cresolなどが挙げられる。
 また、式(AM5)で示される化合物の具体例としては、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPA、TMOM-BP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、TM-BIP-A(商品名、旭有機材工業(株)製)、NIKALAC MX-280、NIKALAC MX-270、NIKALAC MW-100LM(以上、商品名、(株)三和ケミカル製)が挙げられる。
(エポキシ化合物(エポキシ基を有する化合物))
 エポキシ化合物としては、一分子中にエポキシ基を2以上有する化合物であることが好ましい。エポキシ基は、200℃以下で架橋反応し、かつ、架橋に由来する脱水反応が起こらないため膜収縮が起きにくい。このため、エポキシ化合物を含有することは、感光性樹脂組成物の低温硬化および反りの抑制に効果的である。
 エポキシ化合物は、ポリエチレンオキサイド基を含有することが好ましい。これにより、より弾性率が低下し、また反りを抑制することができる。また膜の柔軟性を高くして、伸度等にも優れた硬化膜を得ることができる。ポリエチレンオキサイド基は、エチレンオキサイドの繰り返し単位数が2以上のものを意味し、繰り返し単位数が2~15であることが好ましい。
 エポキシ化合物の例としては、ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;プロピレングリコールジグリシジルエーテル等のアルキレングリコール型エポキシ樹脂;ポリプロピレングリコールジグリシジルエーテル等のポリアルキレングリコール型エポキシ樹脂;ポリメチル(グリシジロキシプロピル)シロキサン等のエポキシ基含有シリコーンなどを挙げることができるが、これらに限定されない。具体的には、エピクロン(登録商標)850-S、エピクロン(登録商標)HP-4032、エピクロン(登録商標)HP-7200、エピクロン(登録商標)HP-820、エピクロン(登録商標)HP-4700、エピクロン(登録商標)EXA-4710、エピクロン(登録商標)HP-4770、エピクロン(登録商標)EXA-859CRP、エピクロン(登録商標)EXA-1514、エピクロン(登録商標)EXA-4880、エピクロン(登録商標)EXA-4850-150、エピクロン(登録商標)EXA-4850-1000、エピクロン(登録商標)EXA-4816、エピクロン(登録商標)EXA-4822(以上商品名、大日本インキ化学工業(株)製)、リカレジン(登録商標)BEO-60E(商品名、新日本理化(株))、EP-4003S、EP-4000S(以上商品名、(株)ADEKA社製)などが挙げられる。この中でも、ポリエチレンオキサイド基を含有するエポキシ樹脂が、反りの抑制および耐熱性に優れる点で好ましい。例えば、エピクロン(登録商標)EXA-4880、エピクロン(登録商標)EXA-4822、リカレジン(登録商標)BEO-60Eは、ポリエチレンオキサイド基を含有するので好ましい。
 エポキシ化合物の含有量は、複素環含有ポリマー前駆体100質量部に対し、5~50質量部が好ましく、10~50質量部がより好ましく、10~40質量部がさらに好ましい。エポキシ化合物の含有量が5質量部以上であれば、得られる硬化膜の反りをより抑制でき、50質量部以下であれば、硬化時のリフローを原因とするパターン埋まりをより抑制できる。
(オキセタン化合物(オキセタニル基を有する化合物))
 オキセタン化合物としては、一分子中にオキセタン環を2つ以上有する化合物、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、3-エチル-3-(2-エチルヘキシルメチル)オキセタン、1,4-ベンゼンジカルボン酸-ビス[(3-エチル-3-オキセタニル)メチル]エステル等を挙げることができる。具体的な例としては、東亞合成株式会社製のアロンオキセタンシリーズ(例えば、OXT-121、OXT-221、OXT-191、OXT-223)が好適に使用することができ、これらは単独で、あるいは2種以上混合してもよい。
 オキセタン化合物の含有量は、複素環含有ポリマー前駆体100質量部に対し、5~50質量部が好ましく、10~50質量部がより好ましく、10~40質量部がさらに好ましい。
(ベンゾオキサジン化合物(ベンゾオキサゾリル基を有する化合物))
 ベンゾオキサジン化合物は、開環付加反応に由来する架橋反応のため、硬化時に脱ガスが発生せず、さらに熱収縮を小さくして反りの発生が抑えられることから好ましい。
 ベンゾオキサジン化合物の好ましい例としては、B-a型ベンゾオキサジン、B-m型ベンゾオキサジン(以上、商品名、四国化成工業社製)、ポリヒドロキシスチレン樹脂のベンゾオキサジン付加物、フェノールノボラック型ジヒドロベンゾオキサジン化合物が挙げられる。これらは単独で、あるいは2種以上混合してもよい。
 ベンゾオキサジン化合物の含有量は、複素環含有ポリマー前駆体100質量部に対し、5~50質量部が好ましく、10~50質量部がより好ましく、10~40質量部がさらに好ましい。
<<マイグレーション抑制剤>>
 感光性樹脂組成物は、さらにマイグレーション抑制剤を含むことが好ましい。マイグレーション抑制剤を含むことにより、金属層(金属配線)由来の金属イオンが感光性樹脂組成物層内へ移動することを効果的に抑制可能となる。
 マイグレーション抑制剤としては、特に制限はないが、複素環(ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾール環、テトラゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペリジン環、ピペラジン環、モルホリン環、2H-ピラン環および6H-ピラン環、トリアジン環)を有する化合物、チオ尿素類およびメルカプト基を有する化合物、ヒンダードフェノール系化合物、サリチル酸誘導体系化合物、ヒドラジド誘導体系化合物が挙げられる。特に、トリアゾール(例えば、1,2,4-トリアゾール)、ベンゾトリアゾール等のトリアゾール系化合物、テトラゾール、ベンゾテトラゾール等のテトラゾール系化合物が好ましく使用できる。
 また、ハロゲンイオンなどの陰イオンを捕捉するイオントラップ剤を使用することもできる。
 その他のマイグレーション抑制剤としては、特開2013-15701号公報の段落0094に記載の防錆剤、特開2009-283711号公報の段落0073~0076に記載の化合物、特開2011-59656号公報の段落0052に記載の化合物、特開2012-194520号公報の段落0114、0116および0118に記載の化合物などを使用することができる。
 マイグレーション抑制剤の具体例としては、1H-1,2,3-トリアゾール、1H-テトラゾールを挙げることができる。
 感光性樹脂組成物がマイグレーション抑制剤を有する場合、マイグレーション抑制剤の含有量は、感光性樹脂組成物の全固形分に対して、0.01~5.0質量%が好ましく、0.05~2.0質量%がより好ましく、0.1~1.0質量%がさらに好ましい。
 マイグレーション抑制剤は1種のみでもよいし、2種以上であってもよい。マイグレーション抑制剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<<重合禁止剤>>
 本発明の感光性樹脂組成物は、重合禁止剤を含むことが好ましい。
 重合禁止剤としては、例えば、ヒドロキノン、パラメトキシフェノール(1,4-メトキシフェノール)、ジ-tert-ブチル-パラクレゾール、ピロガロール、p-tert-ブチルカテコール、パラベンゾキノン(1,4-ベンゾキノン)、ジフェニル-パラベンゾキノン、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、N-ニトロソ-N-フェニルヒドロキシアミンアルミニウム塩、フェノチアジン、N-ニトロソジフェニルアミン、N-フェニルナフチルアミン、エチレンジアミン四酢酸、1,2-シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6-ジ-tert-ブチル-4-メチルフェノール、5-ニトロソ-8-ヒドロキシキノリン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、2-ニトロソ-5-(N-エチル-N-スルフォプロピルアミノ)フェノール、N-ニトロソ-N-(1-ナフチル)ヒドロキシアミンアンモニウム塩、ビス(4-ヒドロキシ-3,5-tert-ブチル)フェニルメタンなどが好適に用いられる。また、特開2015-127817号公報の段落0060に記載の重合禁止剤、および、国際公開WO2015/125469号の段落0031~0046に記載の化合物を用いることもできる。
 また、下記化合物を用いることができる(Meはメチル基である)。
Figure JPOXMLDOC01-appb-C000036
 本発明の感光性樹脂組成物が重合禁止剤を有する場合、重合禁止剤の含有量は、本発明の感光性樹脂組成物の全固形分に対して、0.01~5質量%が好ましい。
 重合禁止剤は1種のみでもよいし、2種以上であってもよい。重合禁止剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<<金属接着性改良剤>>
 本発明の感光性樹脂組成物は、電極や配線などに用いられる金属材料との接着性を向上させるための金属接着性改良剤を含んでいることが好ましい。金属接着性改良剤としては、シランカップリング剤などが挙げられる。
 シランカップリング剤の例としては、特開2014-191002号公報の段落0062~0073に記載の化合物、国際公開WO2011/080992A1号の段落0063~0071に記載の化合物、特開2014-191252号公報の段落0060~0061に記載の化合物、特開2014-41264号公報の段落0045~0052に記載の化合物、国際公開WO2014/097594号の段落0055に記載の化合物が挙げられる。また、特開2011-128358号公報の段落0050~0058に記載のように異なる2種以上のシランカップリング剤を用いることも好ましい。また、シランカップリング剤は、下記化合物を用いることも好ましい。以下の式中、Etはエチル基を表す。
Figure JPOXMLDOC01-appb-C000037
 また、金属接着性改良剤は、特開2014-186186号公報の段落0046~0049に記載の化合物、特開2013-072935号公報の段落0032~0043に記載のスルフィド系化合物を用いることもできる。
 金属接着性改良剤の含有量は複素環含有ポリマー前駆体100質量部に対して好ましくは0.1~30質量部であり、さらに好ましくは0.5~15質量部の範囲である。0.1質量部以上とすることで硬化工程後の硬化膜と金属層との接着性が良好となり、30質量部以下とすることで硬化工程後の硬化膜の耐熱性、機械特性が良好となる。金属接着性改良剤は1種のみでもよいし、2種以上であってもよい。2種以上用いる場合は、その合計が上記範囲であることが好ましい。
<<その他の添加剤>>
 本発明の感光性樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、各種の添加物、例えば、熱酸発生剤、増感色素、連鎖移動剤、界面活性剤、高級脂肪酸誘導体、無機粒子、硬化剤、硬化触媒、充填剤、酸化防止剤、紫外線吸収剤、凝集防止剤等を配合することができる。これらの添加剤を配合する場合、その合計配合量は感光性樹脂組成物の固形分の3質量%以下とすることが好ましい。
(熱酸発生剤)
 本発明の感光性樹脂組成物は、熱酸発生剤を含んでいてもよい。熱酸発生剤は、加熱により酸を発生し、複素環含有ポリマー前駆体の環化を促進し硬化膜の機械特性をより向上させる。熱酸発生剤は、特開2013-167742号公報の段落0059に記載の化合物などが挙げられる。
 熱酸発生剤の含有量は、複素環含有ポリマー前駆体100質量部に対して0.01質量部以上が好ましく、0.1質量部以上がより好ましい。熱酸発生剤を0.01質量部以上含有することで、架橋反応および複素環含有ポリマー前駆体の環化が促進されるため、硬化膜の機械特性および耐薬品性をより向上させることができる。また、熱酸発生剤の含有量は、硬化膜の電気絶縁性の観点から、20質量部以下が好ましく、15質量部以下がより好ましく、10質量部以下が特に好ましい。
 熱酸発生剤は、1種のみ用いても、2種以上用いてもよい。2種以上用いる場合は、合計量が上記範囲となることが好ましい。
(増感色素)
 本発明の感光性樹脂組成物は、増感色素を含んでいてもよい。増感色素は、特定の活性放射線を吸収して電子励起状態となる。電子励起状態となった増感色素は、熱塩基発生剤、熱ラジカル重合開始剤、ラジカル重合開始剤などと接触して、電子移動、エネルギー移動、発熱などの作用が生じる。これにより、熱塩基発生剤、熱ラジカル重合開始剤、ラジカル重合開始剤は化学変化を起こして分解し、ラジカル、酸或いは塩基を生成する。増感色素の詳細については、特開2016-027357号公報の段落0161~0163の記載を参酌でき、この内容は本明細書に組み込まれる。
 本発明の感光性樹脂組成物が増感色素を含む場合、増感色素の含有量は、本発明の感光性樹脂組成物の全固形分に対し、0.01~20質量%が好ましく、0.1~15質量%がより好ましく、0.5~10質量%がさらに好ましい。増感色素は、1種単独で用いてもよいし、2種以上を併用してもよい。
(連鎖移動剤)
 本発明の感光性樹脂組成物は、連鎖移動剤を含有してもよい。連鎖移動剤は、例えば高分子辞典第三版(高分子学会編、2005年)683-684頁に定義されている。連鎖移動剤としては、例えば、分子内にSH、PH、SiH、GeHを有する化合物群が用いられる。これらは、低活性のラジカルに水素を供与して、ラジカルを生成するか、もしくは、酸化された後、脱プロトンすることによりラジカルを生成しうる。特に、チオール化合物(例えば、2-メルカプトベンズイミダゾール類、2-メルカプトベンズチアゾール類、2-メルカプトベンズオキサゾール類、3-メルカプトトリアゾール類、5-メルカプトテトラゾール類等)を好ましく用いることができる。
 本発明の感光性樹脂組成物が連鎖移動剤を有する場合、連鎖移動剤の含有量は、本発明の感光性樹脂組成物の全固形分100質量部に対し、0.01~20質量部が好ましく、1~10質量部がより好ましく、1~5質量部がさらに好ましい。連鎖移動剤は1種のみでもよいし、2種以上であってもよい。連鎖移動剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
(界面活性剤)
 本発明の感光性樹脂組成物には、塗布性をより向上させる観点から、各種類の界面活性剤を添加してもよい。界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種類の界面活性剤を使用できる。また、下記界面活性剤も好ましい。
Figure JPOXMLDOC01-appb-C000038
 本発明の感光性樹脂組成物が界面活性剤を有する場合、界面活性剤の含有量は、本発明の感光性樹脂組成物の全固形分に対して、0.001~2.0質量%が好ましく、より好ましくは0.005~1.0質量%である。界面活性剤は1種のみでもよいし、2種以上であってもよい。界面活性剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
(高級脂肪酸誘導体)
 本発明の感光性樹脂組成物は、酸素に起因する重合阻害を防止するために、ベヘン酸やベヘン酸アミドのような高級脂肪酸誘導体を添加して、塗布後の乾燥の過程で感光性樹脂組成物の表面に偏在させてもよい。
 本発明の感光性樹脂組成物が高級脂肪酸誘導体を有する場合、高級脂肪酸誘導体の含有量は、本発明の感光性樹脂組成物の全固形分に対して、0.1~10質量%が好ましい。高級脂肪酸誘導体は1種のみでもよいし、2種以上であってもよい。高級脂肪酸誘導体が2種以上の場合は、その合計が上記範囲であることが好ましい。
<<その他の含有物質についての制限>>
 本発明の感光性樹脂組成物の水分含有量は、塗布面性状の観点から、5質量%未満が好ましく、1質量%未満がさらに好ましく、0.6質量%未満が特に好ましい。
 本発明の感光性樹脂組成物の金属含有量は、絶縁性の観点から、5質量ppm(parts per million)未満が好ましく、1質量ppm未満がさらに好ましく、0.5質量ppm未満が特に好ましい。金属としては、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、クロム、ニッケルなどが挙げられる。金属を複数含む場合は、これらの金属の合計が上記範囲であることが好ましい。
 また、本発明の感光性樹脂組成物に意図せずに含まれる金属不純物を低減する方法としては、本発明の感光性樹脂組成物を構成する原料として金属含有量が少ない原料を選択する、本発明の感光性樹脂組成物を構成する原料に対してフィルターろ過を行う、装置内をポリテトラフロロエチレン等でライニングしてコンタミネーションを可能な限り抑制した条件下で蒸留を行う等の方法を挙げることができる。
 本発明の感光性樹脂組成物は、ハロゲン原子の含有量が、配線腐食性の観点から、500質量ppm未満が好ましく、300質量ppm未満がより好ましく、200質量ppm未満が特に好ましい。中でも、ハロゲンイオンの状態で存在するものは、5質量ppm未満が好ましく、1質量ppm未満がさらに好ましく、0.5質量ppm未満が特に好ましい。ハロゲン原子としては、塩素原子および臭素原子が挙げられる。塩素原子および臭素原子、あるいは塩素イオンおよび臭素イオンの合計がそれぞれ上記範囲であることが好ましい。
<感光性樹脂組成物の調製>
 本発明の感光性樹脂組成物は、上記各成分を混合して調製することができる。混合方法は特に限定はなく、従来公知の方法で行うことができる。
 また、感光性樹脂組成物中のゴミや微粒子等の異物を除去する目的で、フィルターを用いたろ過を行うことが好ましい。フィルター孔径は、1μm以下が好ましく、0.5μm以下がより好ましく、0.1μm以下がさらに好ましい。フィルターの材質は、ポリテトラフロロエチレン、ポリエチレンまたはナイロンが好ましい。フィルターは、有機溶剤であらかじめ洗浄したものを用いてもよい。フィルターろ過工程では、複数種のフィルターを直列または並列に接続して用いてもよい。複数種のフィルターを使用する場合は、孔径および/または材質が異なるフィルターを組み合わせて使用してもよい。また、各種材料を複数回ろ過してもよい。複数回ろ過する場合は、循環ろ過であってもよい。また、加圧してろ過を行ってもよい。加圧してろ過を行う場合、加圧する圧力は0.05MPa以上0.3MPa以下が好ましい。
 フィルターを用いたろ過の他、吸着材を用いた不純物の除去処理を行ってもよい。フィルターろ過と吸着材を用いた不純物除去処理とを組み合わせてもよい。吸着材としては、公知の吸着材を用いることができる。例えば、シリカゲル、ゼオライトなどの無機系吸着材、活性炭などの有機系吸着材が挙げられる。
[硬化膜および硬化膜の製造方法、ならびに、硬化膜の応用]
 本発明の感光性樹脂組成物は硬化して、硬化膜として用いることができる。本発明の硬化膜の製造方法が適用可能な分野には、半導体デバイスの絶縁膜、特に、再配線層用層間絶縁膜などが挙げられる。
 本発明の感光性樹脂組成物は、ネガ型現像用に適している。また、有機溶剤を含む現像液を用いて現像する用途に適している。現像液に用いる有機溶剤としては、上記感光性樹脂組成物に配合してもよい有機溶剤が例示され、シクロペンタノンが好ましい。
 すなわち、本発明は、本発明の感光性樹脂組成物を硬化してなる硬化膜、上記硬化膜を有する半導体デバイスも含む。
 また、本発明では、本発明の感光性樹脂組成物を基板に適用する工程と、基板に適用された感光性樹脂組成物を硬化する工程とを含む硬化膜の製造方法を開示する。さらに、上記硬化膜の製造方法は、硬化膜を露光し、ネガ型現像する工程を含むことが好ましく、上記現像を、有機溶剤を含む現像液を用いて行うことがより好ましい。
 また、本発明における硬化膜は、エレクトロニクス用のフォトレジスト(ガルバニック(電解)レジスト(galvanic resist)、エッチングレジスト、ソルダートップレジスト(solder top resist))などに用いることもできる。
 また、本発明における硬化膜は、オフセット版面またはスクリーン版面などの版面の製造、成形部品のエッチングへの使用、エレクトロニクス、特にマイクロエレクトロニクスにおける保護ラッカーおよび誘電層の製造などに用いることもできる。
 次に、上記感光性樹脂組成物を再配線層用層間絶縁膜に用いた半導体デバイスの一実施形態について説明する。
 図1に示す半導体デバイス100は、いわゆる3次元実装デバイスであり、複数の半導体素子(半導体チップ)101a~101dが積層した積層体101が、配線基板120に配置されている。
 なお、この実施形態では、半導体素子(半導体チップ)の積層数が4層である場合を中心に説明するが、半導体素子(半導体チップ)の積層数は特に限定されるものではなく、例えば、2層、8層、16層、32層等であってもよい。また、1層であってもよい。
 複数の半導体素子101a~101dは、いずれもシリコン基板等の半導体ウェハからなる。
 最上段の半導体素子101aは、貫通電極を有さず、その一方の面に電極パッド(図示せず)が形成されている。
 半導体素子101b~101dは、貫通電極102b~102dを有し、各半導体素子の両面には、貫通電極に一体に設けられた接続パッド(図示せず)が設けられている。
 積層体101は、貫通電極を有さない半導体素子101aと、貫通電極102b~102dを有する半導体素子101b~101dとをフリップチップ接続した構造を有している。
 すなわち、貫通電極を有さない半導体素子101aの電極パッドと、これに隣接する貫通電極102bを有する半導体素子101bの半導体素子101a側の接続パッドが、半田バンプ等の金属バンプ103aで接続され、貫通電極102bを有する半導体素子101bの他側の接続パッドが、それに隣接する貫通電極102cを有する半導体素子101cの半導体素子101b側の接続パッドと、半田バンプ等の金属バンプ103bで接続されている。同様に、貫通電極102cを有する半導体素子101cの他側の接続パッドが、それに隣接する貫通電極102dを有する半導体素子101dの半導体素子101c側の接続パッドと、半田バンプ等の金属バンプ103cで接続されている。
 各半導体素子101a~101dの間隙には、アンダーフィル層110が形成されており、各半導体素子101a~101dは、アンダーフィル層110を介して積層している。
 積層体101は、配線基板120に積層されている。
 配線基板120としては、例えば樹脂基板、セラミックス基板、ガラス基板等の絶縁基板を基材として用いた多層配線基板が使用される。樹脂基板を適用した配線基板120としては、多層銅張積層板(多層プリント配線板)等が挙げられる。
 配線基板120の一方の面には、表面電極120aが設けられている。
 配線基板120と積層体101との間には、再配線層105が形成された絶縁膜115が配置されており、配線基板120と積層体101とは、再配線層105を介して電気的に接続されている。絶縁膜115は、本発明における感光性樹脂組成物を用いて形成してなるものである。
 すなわち、再配線層105の一端は、半田バンプ等の金属バンプ103dを介して、半導体素子101dの再配線層105側の面に形成された電極パッドに接続されている。また、再配線層105の他端は、配線基板の表面電極120aと、半田バンプ等の金属バンプ103eを介して接続している。
 そして、絶縁膜115と積層体101との間には、アンダーフィル層110aが形成されている。また、絶縁膜115と配線基板120との間には、アンダーフィル層110bが形成されている。
 上記の他、本発明における硬化膜は、ポリイミドやポリベンゾオキサゾールを用いる各種用途に広く採用できる。
 また、ポリイミドやポリベンゾオキサゾールは熱に強いため、本発明における硬化膜等は、液晶ディスプレイ、電子ペーパーなどの表示装置用の透明プラスチック基板、自動車部品、耐熱塗料、コーティング剤、フィルム用途としても好適に利用できる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
<酸性化合物>
 以下の酸性化合物を用いた。
<<酸性化合物のpKaの測定>>
 pKaの測定は、ACD/pKa(ACD/Labs社製)のソフトを用いて構造式より算出した値を用いた。
Figure JPOXMLDOC01-appb-T000039
<複素環含有ポリマー前駆体組成物(樹脂組成物)の合成>
(合成例1)
[4,4’-オキシジフタル酸二無水物、2-ヒドロキシエチルメタクリレートおよび下記に示すジアミン(a)からのポリイミド前駆体組成物A-1の合成]
 42.4gの4,4’-オキシジフタル酸二無水物と、36.4gの2-ヒドロキシエチルメタクリレートと、22.07gのピリジンと、100mLのテトラヒドロフランを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、80mLのγ-ブチロラクトンに34.35gのジシクロヘキシルカルボジイミドを溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を30分撹拌した。続いて、200mLのγ-ブチロラクトンに76.0gの下記に示すジアミン(a)を溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を1時間撹拌した後、20mLのエチルアルコールと200mLのγ-ブチロラクトンを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。得られた反応液に14Lの水を投入してポリイミド前駆体を沈殿させてろ過し、減圧下45℃で2日間乾燥した。得られた粉末状のポリイミド前駆体は、重量平均分子量26500、数平均分子量9300であった。
ジアミン(a)
Figure JPOXMLDOC01-appb-C000040
(合成例2)
[4,4’-オキシジフタル酸二無水物、2-ヒドロキシエチルメタクリレートおよびジアミン(a)からのポリイミド前駆体組成物A-2の合成]
 42.4gの4,4’-オキシジフタル酸二無水物と、36.4gの2-ヒドロキシエチルメタクリレートと、22.07gのピリジンと、100mLのテトラヒドロフランを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、80mLのγ-ブチロラクトンに34.35gのジシクロヘキシルカルボジイミドを溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を30分撹拌した。続いて、200mLのγ-ブチロラクトンに76.0gのジアミン(a)を溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を1時間撹拌した後、3.0gのシュウ酸と20mLのエチルアルコールと200mLのγ-ブチロラクトンを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。得られた反応液に14Lの水を投入してポリイミド前駆体を沈殿させてろ過し、減圧下45℃で2日間乾燥した。得られた粉末状のポリイミド前駆体は、重量平均分子量25100、数平均分子量8500であった。
(合成例3)
[4,4’-オキシジフタル酸二無水物、2-ヒドロキシエチルメタクリレートおよびジアミン(a)からのポリイミド前駆体組成物A-3の合成]
 42.4gの4,4’-オキシジフタル酸二無水物と、36.4gの2-ヒドロキシエチルメタクリレートと、22.07gのピリジンと、100mLのテトラヒドロフランを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、80mLのγ-ブチロラクトンに34.35gのジイソプロピルカルボジイミドを溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を30分撹拌した。続いて、200mLのγ-ブチロラクトンに76.0gのジアミン(a)を溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を1時間撹拌した後、3.0gのメタンスルホン酸と20mLのエチルアルコールと200mLのγ-ブチロラクトンを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。得られた反応液に14Lの水を投入してポリイミド前駆体を沈殿させてろ過し、減圧下45℃で2日間乾燥した。得られた粉末状のポリイミド前駆体は、重量平均分子量26800、数平均分子量9400であった。
(合成例4)
[ピロメリット酸二無水物、2-ヒドロキシエチルメタクリレートおよび4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニルからのポリイミド前駆体組成物A-4の合成]
 29.8gのピロメリット酸二無水物と、36.4gの2-ヒドロキシエチルメタクリレートと、22.07gのピリジンと、100mLのテトラヒドロフランを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、80mLのγ-ブチロラクトンに34.35gのジシクロヘキシルカルボジイミドを溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を30分撹拌した。続いて、200mLのγ-ブチロラクトンに40.2gの4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニルを溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を1時間撹拌した後、20mLのエチルアルコールと200mLのγ-ブチロラクトンを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。得られた反応液に14Lの水を投入してポリイミド前駆体を沈殿させてろ過し、減圧下45℃で2日間乾燥した。得られた粉末状のポリイミド前駆体は、重量平均分子量24900、数平均分子量8400であった。
(合成例5)
[ピロメリット酸二無水物、2-ヒドロキシエチルメタクリレートおよび4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニルからのポリイミド前駆体組成物A-5の合成]
 29.8gのピロメリット酸二無水物と、36.4gの2-ヒドロキシエチルメタクリレートと、22.07gのピリジンと、100mLのテトラヒドロフランを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、80mLのγ-ブチロラクトンに34.35gのジシクロヘキシルカルボジイミドを溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を30分撹拌した。続いて、200mLのγ-ブチロラクトンに40.2gの4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニルを溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を1時間撹拌した後、3.0gのギ酸と20mLのエチルアルコールと200mLのγ-ブチロラクトンを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。得られた反応液に14Lの水を投入してポリイミド前駆体を沈殿させてろ過し、減圧下45℃で2日間乾燥した。得られた粉末状のポリイミド前駆体は、重量平均分子量25200、数平均分子量8800であった。
(合成例6)[ピロメリット酸二無水物、2-ヒドロキシエチルメタクリレートおよび4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニルからのポリイミド前駆体組成物A-6の合成]
 14.9gのピロメリット酸二無水物と、18.0gの2-ヒドロキシエチルメタクリレートと、23.9gのピリジンと、250mLのジグリム(ジエチレングリコールジメチルエーテル)を混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、温度を-10±5℃に保ちながら17.0gのSOClを60分かけて加えた。50mLのN-メチルピロリドンで希釈した後、100mLのN-メチルピロリドンに20.1gの4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニルを溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を1時間撹拌した後、3.0gの10-カンファースルホン酸とエチルアルコール20mLを加えた。得られた反応液に6Lの水を投入してポリイミド前駆体を沈殿させ、固体をろ過してテトラヒドロフラン380gに溶解させた。得られた溶液に6Lの水を投入してポリイミド前駆体を沈殿させ、固体を再びろ過して減圧下で、45℃で2日間乾燥した。得られた粉末状のポリイミド前駆体は、重量平均分子量23900、数平均分子量8000であった。
(合成例7)
[4,4’-オキシジフタル酸二無水物、2-ヒドロキシエチルメタクリレートおよび4,4’-ジアミノジフェニルエーテルからのポリイミド前駆体組成物A-7の合成]
 42.4gの4,4’-オキシジフタル酸二無水物と、36.4gの2-ヒドロキシエチルメタクリレートと、22.07gのピリジンと、100mLのテトラヒドロフランを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、80mLのγ-ブチロラクトンに34.35gのジイソプロピルカルボジイミドを溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を30分撹拌した。続いて、200mLのγ-ブチロラクトンに25.1gの4,4’-ジアミノジフェニルエーテルを溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を1時間撹拌した後、20mLのエチルアルコールと200mLのγ-ブチロラクトンを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。得られた反応液に14Lの水を投入してポリイミド前駆体を沈殿させてろ過し、減圧下45℃で2日間乾燥した。得られた粉末状のポリイミド前駆体は、重量平均分子量25400、数平均分子量8500であった。
(合成例8)
[4,4’-オキシジフタル酸二無水物、2-ヒドロキシエチルメタクリレートおよび4,4’-ジアミノジフェニルエーテルからのポリイミド前駆体組成物A-8の合成]
 42.4gの4,4’-オキシジフタル酸二無水物と、36.4gの2-ヒドロキシエチルメタクリレートと、22.07gのピリジンと、100mLのテトラヒドロフランを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、80mLのγ-ブチロラクトンに34.35gのジイソプロピルカルボジイミドを溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を30分撹拌した。続いて、200mLのγ-ブチロラクトンに25.1gの4,4’-ジアミノジフェニルエーテルを溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を1時間撹拌した後、3.0gのp-トルエンスルホン酸一水和物と20mLのエチルアルコールと200mLのγ-ブチロラクトンを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。得られた反応液に14Lの水を投入してポリイミド前駆体を沈殿させてろ過し、減圧下45℃で2日間乾燥した。得られた粉末状のポリイミド前駆体は、重量平均分子量24800、数平均分子量8800であった。
(合成例9)
[4,4’-オキシジフタル酸二無水物、2-ヒドロキシエチルメタクリレートおよび4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニルからのポリイミド前駆体組成物A-9の合成]
 21.2gの4,4’-オキシジフタル酸二無水物と、18.0gの2-ヒドロキシエチルメタクリレートと、23.9gのピリジンと、250mLのジグリムを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、温度を-10±5℃に保ちながら17.0gのSOClを60分かけて加えた。50mLのN-メチルピロリドンで希釈した後、100mLのN-メチルピロリドンに20.1gの4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニルを溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を1時間撹拌した後、エチルアルコール20mLを加えた。得られた反応液に6Lの水を投入してポリイミド前駆体を沈殿させ、固体をろ過してテトラヒドロフラン380gに溶解させた。得られた溶液に6Lの水を投入してポリイミド前駆体を沈殿させ、固体を再びろ過して減圧下で、45℃で2日間乾燥した。得られた粉末状のポリイミド前駆体は、重量平均分子量24400、数平均分子量8400であった。
(合成例10)
[4,4’-オキシジフタル酸二無水物、2-ヒドロキシエチルメタクリレートおよび4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニルからのポリイミド前駆体組成物A-10の合成]
 21.2gの4,4’-オキシジフタル酸二無水物と、18.0gの2-ヒドロキシエチルメタクリレートと、23.9gのピリジンと、250mLのジグリムを混合し、60℃の温度で4時間撹拌した。次いで、反応混合物を-10℃に冷却し、温度を-10±5℃に保ちながら17.0gのSOClを60分かけて加えた。50mLのN-メチルピロリドンで希釈した後、100mLのN-メチルピロリドンに20.1gの4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニルを溶解させた溶液を-10±5℃で60分かけて反応混合物に滴下して、混合物を1時間撹拌した後、3.0gのp-トルエンスルホン酸一水和物とエチルアルコール20mLを加えた。得られた反応液に6Lの水を投入してポリイミド前駆体を沈殿させ、固体をろ過してテトラヒドロフラン380gに溶解させた。得られた溶液に6Lの水を投入してポリイミド前駆体を沈殿させ、固体を再びろ過して減圧下で、45℃で2日間乾燥した。得られた粉末状のポリイミド前駆体は、重量平均分子量24400、数平均分子量8400であった。
(合成例11)
[2,2'-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンおよび
4,4’-オキシジベンゾイルクロリドからのからのポリベンゾオキサゾール前駆体組成物A-11の合成]
 28.0gの2,2'-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンを200mLのN-メチルピロリドンに撹拌溶解した。続いて、温度を0~5℃に保ちながら、25.0gの4,4’-オキシジベンゾイルクロリドを10分間で滴下した後、60分間撹拌を続けた。得られた反応液に6Lの水を投入してポリベンゾオキサゾール前駆体を沈殿させ、固体をろ過して減圧下で、45℃で2日間乾燥した。得られた粉末状のポリベンゾオキサゾール前駆体は、重量平均分子量28500、数平均分子量9800であった。
(合成例12)
[2,2'-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンおよび
4,4’-オキシジベンゾイルクロリドからのからのポリベンゾオキサゾール前駆体組成物A-12の合成]
 28.0gの2,2'-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンを200mLのN-メチルピロリドンに撹拌溶解した。続いて、温度を0~5℃に保ちながら、25.0gの4,4’-オキシジベンゾイルクロリドを10分間で滴下した後、60分間撹拌を続け、3.0gのマレイン酸を加えた。得られた反応液に6Lの水を投入してポリベンゾオキサゾール前駆体を沈殿させ、固体をろ過して減圧下で、45℃で2日間乾燥した。得られた粉末状のポリベンゾオキサゾール前駆体は、重量平均分子量26900、数平均分子量9700であった。
(合成例13)
[2,2'-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンおよび
4,4’-オキシジベンゾイルクロリドからのからのポリベンゾオキサゾール前駆体組成物A-13の合成]
 28.0gの2,2'-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンを200mLのN-メチルピロリドンに撹拌溶解した。続いて、温度を0~5℃に保ちながら、25.0gの4,4’-オキシジベンゾイルクロリドを10分間で滴下した後、60分間撹拌を続け、3.0gのp-トルエンスルホン酸一水和物を加えた。得られた反応液に6Lの水を投入してポリベンゾオキサゾール前駆体を沈殿させ、固体をろ過して減圧下で、45℃で2日間乾燥した。得られた粉末状のポリベンゾオキサゾール前駆体は、重量平均分子量26900、数平均分子量9700であった。
<樹脂組成物の導電率>
 合成例1~13で調製した各樹脂組成物を10μmの厚さの硬化膜とし、350℃で60分間加熱した後の硬化膜の導電率を測定した。
 導電率は、絶縁抵抗率計(株式会社アドバンテスト製、商品名R8340)を用いて、二重リング電極法で測定した。塗布膜を円形電極に置き、絶縁抵抗計により電気抵抗を測定し、電極形状から体積抵抗率を求めた。絶縁抵抗率計は、株式会社アドバンテスト製、商品名R8340を用いた。
 樹脂組成物が液状の場合、基板上に塗布し、溶剤を乾燥させて上記厚さの硬化膜とし、さらに、上記加熱を行った後の導電率を測定した。粘度が高い場合は、樹脂組成物が25℃で溶解する溶剤に溶解した後、基板上に塗布し、溶剤を乾燥させて上記厚さの硬化膜とし、さらに、上記加熱を行った後の導電率を測定した。
 樹脂組成物が粉末状の場合、樹脂組成物が25℃において溶解する溶剤に溶解した後、基板上に塗布し、溶剤を乾燥させて上記厚さの硬化膜とし、さらに、上記加熱を行った後の導電率を測定した。
 いずれの樹脂組成物を用いた場合も、得られた硬化膜について、複素環含有ポリマー前駆体が十分に環化しており、導電率が1.0×10Ω・cm以下であった。
<感光性樹脂組成物の調製>
 下記表2または表3に記載の各成分を混合し、均一な溶液として、感光性樹脂組成物を調製した。上記で得られた感光性樹脂組成物を、細孔の幅が0.8μmのフィルターを通して加圧ろ過した。
<<感光性樹脂組成物の導電率>>
 上記樹脂組成物の導電率と同様に行って、感光性樹脂組成物の導電率を測定した。いずれの感光性樹脂組成物を用いた場合も、得られた硬化膜は、複素環含有ポリマー前駆体が十分に環化しており、かつ、導電率が1.0×10Ω・cm以下であった。
<<解像力>>
 上記感光性樹脂組成物を、厚み250μm、直径100mmのシリコンウェハ上にスピニング(1200rpm、30秒)して適用した。感光性樹脂組成物を適用したシリコンウェハをホットプレート上で、100℃で5分間乾燥し、シリコンウェハ上に厚さ10μmの膜を形成した。次に、シリコンウェハ上に塗布された膜に対して、アライナー(Karl-Suss MA150)を用い、露光マスク(ライン/スペース=1/1)を使用してパターン露光を行った。露光は高圧水銀ランプで行い、波長365nmでの露光エネルギー換算で500mJ/cm照射した。照射後、シクロペンタノンで75秒間画像を現像した。得られたパターンを観測し、ラインとスペースとが分離解像する最小の線幅を解像力とした。
<<保存安定性>>
 上記感光性樹脂組成物10gを容器(容器の材質:遮光ガラス、容量:100mL)に密閉し、25℃、相対湿度65%の環境下に静置した。感光性樹脂組成物から固体が析出するまでの時間で安定性を評価した。時間が長ければ長いほど、感光性樹脂組成物の安定性が高く、好ましい結果となる。固体の析出は、孔径0.8μmのメッシュで加圧ろ過し、メッシュ上の異物の有無を目視で観察した。
A:120日を超えても固体の析出が見られなかった。
B:60日を超えて、120日以内に固体が析出した。
C:30日を超えて、60日以内に固体が析出した。
D:30日以内に固体が析出した。
<<金属腐食性>>
 上記感光性樹脂組成物を、厚み250μmの銅基板上にスピニング(1200rpm、30秒)して適用した。感光性樹脂組成物を適用した銅基板をホットプレート上にて、100℃で5分間乾燥し、銅基板上に厚さ10μmの膜を形成した。次いで、窒素雰囲気下で、10℃/分の昇温速度で昇温し、230℃に達した後、3時間保持した。冷却後、銅基板上の膜を物理的に剥離した。銅基板を目視で観察して、錆色に着色した面積比率を算出し、金属腐食性を評価した。面積比率が少ないほど、金属腐食性が少ないことを意味する。
A:1%以下。
B:1%よりも多く、5%以下。
C:5%よりも多く、10%以下。
D:10%よりも多い。
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
(A)樹脂(複素環含有ポリマー前駆体組成物)
A-1~A-13:合成例1~13で製造した複素環含有ポリマー前駆体組成物
(B)重合性化合物
B-1:NKエステル M-40G(新中村化学工業社製)
B-2:SR-209(サートマー社製)
B-3:NKエステル A-9300(新中村化学工業社製)
B-4:A-TMMT(新中村化学工業社製)
(C)光重合開始剤
C-1:IRGACURE OXE 01(BASF社製)
C-2:IRGACURE OXE 02(BASF社製)
C-3:IRGACURE OXE 04(BASF社製)
C-4:IRGACURE-784(BASF社製)
C-5:NCI-831((株)ADEKA社製)
(D)熱塩基発生剤
D-1:下記化合物
D-2:下記化合物
D-3:下記化合物
Figure JPOXMLDOC01-appb-C000043
(E)重合禁止剤
E-1:1,4-ベンゾキノン
E-2:1,4-メトキシフェノール
(F)添加剤
F-1:1,2,4-トリアゾール
F-2:1H-テトラゾール
(G)シランカップリング剤
G-1:下記化合物
G-2:下記化合物
G-3:下記化合物
Figure JPOXMLDOC01-appb-C000044
(H)溶剤
H-1:γ-ブチロラクトン
H-2:ジメチルスルホキシド
H-3:N-メチル-2-ピロリドン
H-4:乳酸エチル
 尚、表2または表3における溶剤について、例えば、種類の欄が「H-1/H-2」、質量%の欄が「48+12」となっている場合、H-1を48質量%、H-2を12質量%含んでいることを意味する。
(I)酸性化合物
I-1:ギ酸
I-2:シュウ酸
I-3:マレイン酸
I-4:マロン酸
I-5:ピルビン酸
I-6:DL-乳酸
I-7:p-トルエンスルホン酸一水和物
I-8:10-カンファースルホン酸
I-9:メタンスルホン酸
I-10:酢酸
 上記表2または表3の結果から明らかな通り、本発明の樹脂組成物を用いた感光性樹脂組成物は、解像力が高く、かつ、保存安定性に優れていた。
 特に、酸性化合物として、pKa3.5以下のもの、さらには、3.0以下のもの、特には2.0以下のものを用いることにより、本発明の効果がより向上した。
 また、酸性化合物として、分子量が100以上のものを用いることにより、金属腐食性の抑制効果がより効果的に向上した。
100:半導体デバイス
101a~101d:半導体素子
101:積層体
102b~102d:貫通電極
103a~103e:金属バンプ
105:再配線層
110、110a、110b:アンダーフィル層
115:絶縁膜
120:配線基板
120a:表面電極

Claims (23)

  1.  ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択される複素環含有ポリマー前駆体と、pKaが4.0以下の酸性化合物を含む樹脂組成物であって、
     前記樹脂組成物を10μmの厚さの硬化膜とし、350℃で60分間加熱した後の硬化膜の導電率が、1.0×10Ω・cm以下である、樹脂組成物。
  2.  前記複素環含有ポリマー前駆体が、下記式(1)で表される繰り返し単位または式(2)で表される繰り返し単位を含む、請求項1に記載の樹脂組成物;
    式(1)
    Figure JPOXMLDOC01-appb-C000001
    式(2)
    Figure JPOXMLDOC01-appb-C000002
    式(1)中、AおよびAは、それぞれ独立に酸素原子またはNHを表し、
    111は、2価の有機基を表し、R115は、4価の有機基を表し、R113およびR114は、それぞれ独立に、水素原子または1価の有機基を表す;
    式(2)中、R121は、2価の有機基を表し、R122は、4価の有機基を表し、R123およびR124は、それぞれ独立に、水素原子または1価の有機基を表す。
  3.  前記酸性化合物のpKaが3.5以下である、請求項1または2に記載の樹脂組成物。
  4.  前記酸性化合物の分子量が100~300である、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記酸性化合物が、スルホン酸およびカルボン酸から選択される、請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  前記酸性化合物がスルホン酸である、請求項1~4のいずれか1項に記載の樹脂組成物。
  7.  前記酸性化合物がp-トルエンスルホン酸、カンファースルホン酸およびメタンスルホン酸から選択される、請求項1~4のいずれか1項に記載の樹脂組成物。
  8.  粉末状である、請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択される複素環含有ポリマー前駆体と、pKaが4.0以下の酸性化合物を含む樹脂組成物と、光重合開始剤を含む感光性樹脂組成物であって、
     前記感光性樹脂組成物を10μmの厚さの硬化膜とし、350℃で60分間加熱した後の硬化膜の導電率が、1.0×10Ω・cm以下である、感光性樹脂組成物。
  10.  前記樹脂組成物が、請求項2~7のいずれか1項に記載の樹脂組成物である、請求項9に記載の感光性樹脂組成物。
  11.  ネガ型現像用である、請求項9または10に記載の感光性樹脂組成物。
  12.  有機溶剤を含む現像液を用いて現像する用途に用いられる、請求項9~11のいずれか1項に記載の感光性樹脂組成物。
  13.  再配線層用層間絶縁膜形成用である、請求項9~12のいずれか1項に記載の感光性樹脂組成物。
  14.  請求項9~13のいずれか1項に記載の感光性樹脂組成物を硬化してなる硬化膜。
  15.  再配線層用層間絶縁膜である、請求項14に記載の硬化膜。
  16.  請求項9~13のいずれか1項に記載の感光性樹脂組成物を基板に適用する工程と、基板に適用された感光性樹脂組成物を硬化する工程とを含む硬化膜の製造方法。
  17.  さらに、前記硬化膜を露光し、ネガ型現像する工程を含む、請求項16に記載の硬化膜の製造方法。
  18.  前記現像において、有機溶剤を含む現像液を用いることを含む、請求項17に記載の硬化膜の製造方法。
  19.  請求項14または15に記載の硬化膜を有する半導体デバイス。
  20.  ポリイミド前駆体およびポリベンゾオキサゾール前駆体から選択される複素環含有ポリマー前駆体を含む樹脂組成物の製造方法であって、pKaが4.0以下の酸性化合物を添加する工程を含み、前記樹脂組成物が粉末状である、樹脂組成物の製造方法。
  21.  請求項1~8のいずれか1項に記載の樹脂組成物の製造方法であって、
     複素環含有ポリマー前駆体の合成工程において、pKaが4.0以下の酸性化合物を添加することを含む、樹脂組成物の製造方法。
  22.  請求項1~8のいずれか1項に記載の樹脂組成物の製造方法であって、
     複素環含有ポリマー前駆体を合成した後に、pKaが4.0以下の酸性化合物を添加することを含む、樹脂組成物の製造方法。
  23.  複素環含有ポリマー前駆体の合成工程において、カルボジイミド化合物を添加することを含む、請求項20~22のいずれか1項に記載の樹脂組成物の製造方法。
     
PCT/JP2017/030879 2016-08-31 2017-08-29 樹脂組成物およびその応用 WO2018043467A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197005320A KR102189432B1 (ko) 2016-08-31 2017-08-29 수지 조성물 및 그 응용
JP2018537289A JP6782298B2 (ja) 2016-08-31 2017-08-29 樹脂組成物およびその応用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016170284 2016-08-31
JP2016-170284 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043467A1 true WO2018043467A1 (ja) 2018-03-08

Family

ID=61300923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030879 WO2018043467A1 (ja) 2016-08-31 2017-08-29 樹脂組成物およびその応用

Country Status (4)

Country Link
JP (1) JP6782298B2 (ja)
KR (1) KR102189432B1 (ja)
TW (1) TWI751190B (ja)
WO (1) WO2018043467A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146778A1 (ja) * 2018-01-29 2019-08-01 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法、半導体デバイス
WO2019189110A1 (ja) * 2018-03-29 2019-10-03 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
WO2020031976A1 (ja) * 2018-08-06 2020-02-13 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
WO2020080207A1 (ja) * 2018-10-15 2020-04-23 日産化学株式会社 感光性絶縁膜組成物
JP2020064205A (ja) * 2018-10-18 2020-04-23 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法
JPWO2021024464A1 (ja) * 2019-08-08 2021-02-11
CN112888714A (zh) * 2018-10-19 2021-06-01 富士胶片株式会社 固化膜的制造方法、树脂组合物、固化膜、层叠体的制造方法及半导体元件的制造方法
JPWO2021132578A1 (ja) * 2019-12-27 2021-07-01
JPWO2021157643A1 (ja) * 2020-02-04 2021-08-12
JPWO2021157571A1 (ja) * 2020-02-03 2021-08-12
WO2021200815A1 (ja) * 2020-03-30 2021-10-07 株式会社Adeka ラジカル重合開始剤、組成物、硬化物及び硬化物の製造方法
WO2022045060A1 (ja) * 2020-08-26 2022-03-03 富士フイルム株式会社 硬化性樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス
WO2022045123A1 (ja) * 2020-08-25 2022-03-03 富士フイルム株式会社 ポリイミド前駆体の製造方法、及び、硬化性樹脂組成物の製造方法
CN114685792A (zh) * 2020-12-31 2022-07-01 财团法人工业技术研究院 聚合物及包含其的树脂组合物
US11848249B2 (en) 2019-09-26 2023-12-19 Fujifilm Corporation Manufacturing method for thermal conductive layer, manufacturing method for laminate, and manufacturing method for semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193618A (ja) * 1984-03-16 1985-10-02 Ube Ind Ltd 芳香族ポリイミドフイルムの製造方法
US5153307A (en) * 1991-07-31 1992-10-06 International Business Machines Corporation Stabilization of polyamide alkyl ester solutions
JPH07138479A (ja) * 1993-02-26 1995-05-30 Toshiba Corp ポリアミド酸組成物および液晶素子
JPH0844060A (ja) * 1994-07-28 1996-02-16 Hitachi Chem Co Ltd 感光性樹脂組成物およびパターンの製造法
WO2012018121A1 (ja) * 2010-08-05 2012-02-09 日産化学工業株式会社 樹脂組成物、液晶配向材および位相差材
WO2013168675A1 (ja) * 2012-05-07 2013-11-14 旭化成イーマテリアルズ株式会社 ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104803A2 (en) * 2005-03-25 2006-10-05 Fujifilm Electronic Materials U.S.A., Inc. Novel photosensitive resin compositions
JP4849362B2 (ja) * 2008-03-14 2012-01-11 ナガセケムテックス株式会社 感放射線性樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193618A (ja) * 1984-03-16 1985-10-02 Ube Ind Ltd 芳香族ポリイミドフイルムの製造方法
US5153307A (en) * 1991-07-31 1992-10-06 International Business Machines Corporation Stabilization of polyamide alkyl ester solutions
JPH07138479A (ja) * 1993-02-26 1995-05-30 Toshiba Corp ポリアミド酸組成物および液晶素子
JPH0844060A (ja) * 1994-07-28 1996-02-16 Hitachi Chem Co Ltd 感光性樹脂組成物およびパターンの製造法
WO2012018121A1 (ja) * 2010-08-05 2012-02-09 日産化学工業株式会社 樹脂組成物、液晶配向材および位相差材
WO2013168675A1 (ja) * 2012-05-07 2013-11-14 旭化成イーマテリアルズ株式会社 ネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146778A1 (ja) * 2018-01-29 2019-08-01 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法、半導体デバイス
JPWO2019189110A1 (ja) * 2018-03-29 2021-03-11 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
WO2019189110A1 (ja) * 2018-03-29 2019-10-03 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
KR102461621B1 (ko) * 2018-03-29 2022-11-01 후지필름 가부시키가이샤 감광성 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 및 반도체 디바이스
JP7134224B2 (ja) 2018-03-29 2022-09-09 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
KR20200124714A (ko) * 2018-03-29 2020-11-03 후지필름 가부시키가이샤 감광성 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 및 반도체 디바이스
CN111936930A (zh) * 2018-03-29 2020-11-13 富士胶片株式会社 感光性树脂组合物、固化膜、层叠体、固化膜的制造方法及半导体器件
WO2020031976A1 (ja) * 2018-08-06 2020-02-13 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JPWO2020080207A1 (ja) * 2018-10-15 2021-10-07 日産化学株式会社 感光性絶縁膜組成物
JP7331860B2 (ja) 2018-10-15 2023-08-23 日産化学株式会社 感光性絶縁膜組成物
WO2020080207A1 (ja) * 2018-10-15 2020-04-23 日産化学株式会社 感光性絶縁膜組成物
JP2020064205A (ja) * 2018-10-18 2020-04-23 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法
JP7241502B2 (ja) 2018-10-18 2023-03-17 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法
CN112888714A (zh) * 2018-10-19 2021-06-01 富士胶片株式会社 固化膜的制造方法、树脂组合物、固化膜、层叠体的制造方法及半导体元件的制造方法
CN114207038A (zh) * 2019-08-08 2022-03-18 艾曲迪微系统股份有限公司 树脂组合物、固化物的制造方法、固化物、图案固化物、层间绝缘膜、覆盖涂层、表面保护膜和电子部件
WO2021024464A1 (ja) * 2019-08-08 2021-02-11 Hdマイクロシステムズ株式会社 樹脂組成物、硬化物の製造方法、硬化物、パターン硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP7363901B2 (ja) 2019-08-08 2023-10-18 Hdマイクロシステムズ株式会社 樹脂組成物、硬化物の製造方法、硬化物、パターン硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
CN114207038B (zh) * 2019-08-08 2024-03-22 艾曲迪微系统股份有限公司 树脂组合物、固化物的制造方法、固化物、图案固化物、层间绝缘膜、覆盖涂层、表面保护膜和电子部件
JPWO2021024464A1 (ja) * 2019-08-08 2021-02-11
US11848249B2 (en) 2019-09-26 2023-12-19 Fujifilm Corporation Manufacturing method for thermal conductive layer, manufacturing method for laminate, and manufacturing method for semiconductor device
JP7334268B2 (ja) 2019-12-27 2023-08-28 富士フイルム株式会社 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
CN114981360A (zh) * 2019-12-27 2022-08-30 富士胶片株式会社 固化性树脂组合物、固化膜、层叠体、固化膜的制造方法及半导体器件
WO2021132578A1 (ja) * 2019-12-27 2021-07-01 富士フイルム株式会社 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JPWO2021132578A1 (ja) * 2019-12-27 2021-07-01
JP7453260B2 (ja) 2020-02-03 2024-03-19 富士フイルム株式会社 硬化性樹脂組成物、樹脂膜、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
WO2021157571A1 (ja) * 2020-02-03 2021-08-12 富士フイルム株式会社 硬化性樹脂組成物、樹脂膜、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JPWO2021157571A1 (ja) * 2020-02-03 2021-08-12
WO2021157643A1 (ja) * 2020-02-04 2021-08-12 富士フイルム株式会社 樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JPWO2021157643A1 (ja) * 2020-02-04 2021-08-12
JP7331155B2 (ja) 2020-02-04 2023-08-22 富士フイルム株式会社 樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
CN115151579A (zh) * 2020-03-30 2022-10-04 株式会社艾迪科 自由基聚合引发剂、组合物、固化物及固化物的制造方法
CN115151579B (zh) * 2020-03-30 2023-12-08 株式会社艾迪科 自由基聚合引发剂、组合物、固化物及固化物的制造方法
WO2021200815A1 (ja) * 2020-03-30 2021-10-07 株式会社Adeka ラジカル重合開始剤、組成物、硬化物及び硬化物の製造方法
WO2022045123A1 (ja) * 2020-08-25 2022-03-03 富士フイルム株式会社 ポリイミド前駆体の製造方法、及び、硬化性樹脂組成物の製造方法
WO2022045060A1 (ja) * 2020-08-26 2022-03-03 富士フイルム株式会社 硬化性樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス
CN114685792A (zh) * 2020-12-31 2022-07-01 财团法人工业技术研究院 聚合物及包含其的树脂组合物

Also Published As

Publication number Publication date
JP6782298B2 (ja) 2020-11-11
TW201815964A (zh) 2018-05-01
TWI751190B (zh) 2022-01-01
JPWO2018043467A1 (ja) 2019-08-08
KR20190033582A (ko) 2019-03-29
KR102189432B1 (ko) 2020-12-11

Similar Documents

Publication Publication Date Title
JP6782298B2 (ja) 樹脂組成物およびその応用
JP6813602B2 (ja) 感光性樹脂組成物、複素環含有ポリマー前駆体、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
WO2018025738A1 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法および半導体デバイス
JP6837063B2 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体
JP6808831B2 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイスおよび化合物
JP6704048B2 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体
WO2018221457A1 (ja) 感光性樹脂組成物、ポリマー前駆体、硬化膜、積層体、硬化膜の製造方法および半導体デバイス
JP6751159B2 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法および半導体デバイス
JP7008732B2 (ja) 感光性樹脂組成物、樹脂、硬化膜、積層体、硬化膜の製造方法、半導体デバイス
JP7065120B2 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法、半導体デバイス
WO2020066416A1 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
JP2023003421A (ja) 硬化膜の製造方法、樹脂組成物、硬化膜、積層体の製造方法および半導体デバイスの製造方法
WO2020054226A1 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
WO2019189327A1 (ja) 感光性樹脂組成物、硬化膜、積層体およびこれらの応用
JP7083392B2 (ja) 感光性樹脂組成物、硬化膜、積層体、これらの製造方法、半導体デバイス、これらに用いられる熱塩基発生剤
WO2020066244A1 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、および熱塩基発生剤
JPWO2019013241A1 (ja) 熱硬化性樹脂組成物、およびその硬化膜、積層体、半導体デバイス、ならびにそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197005320

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018537289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846472

Country of ref document: EP

Kind code of ref document: A1