WO2020150918A1 - 感光性树脂组合物及其应用 - Google Patents

感光性树脂组合物及其应用 Download PDF

Info

Publication number
WO2020150918A1
WO2020150918A1 PCT/CN2019/072808 CN2019072808W WO2020150918A1 WO 2020150918 A1 WO2020150918 A1 WO 2020150918A1 CN 2019072808 W CN2019072808 W CN 2019072808W WO 2020150918 A1 WO2020150918 A1 WO 2020150918A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
trimellitic anhydride
dianhydride
resin composition
tetracarboxylic dianhydride
Prior art date
Application number
PCT/CN2019/072808
Other languages
English (en)
French (fr)
Inventor
黄堂杰
庄朝钦
史谕樵
Original Assignee
律胜科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 律胜科技股份有限公司 filed Critical 律胜科技股份有限公司
Priority to PCT/CN2019/072808 priority Critical patent/WO2020150918A1/zh
Priority to US16/970,546 priority patent/US20210364919A1/en
Priority to CN201980001560.XA priority patent/CN110431483B/zh
Publication of WO2020150918A1 publication Critical patent/WO2020150918A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1025Preparatory processes from tetracarboxylic acids or derivatives and diamines polymerised by radiations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a photosensitive resin composition, in particular to a photosensitive resin composition with low dielectric loss.
  • High-frequency high-speed transmission needs to ensure the integrity of the transmission signal, so in the high-frequency (1GHz or higher) region, materials with low dielectric loss factors are required.
  • the electronic design of printed circuit boards and semiconductors along with technological development and product demand, requires the characteristics of higher performance, smaller volume, and higher wiring density.
  • the photosensitive resin composition has been widely used as a cured film in various electronic components or devices. It has excellent characteristics such as flexibility, good mechanical properties, and good electrical properties, and is affected by semiconductor chips (such as integrated circuits). Circuit (IC) or printed circuit board (Printed Circuit Board, PCB)-related industry preferences. Among them, photosensitive polyimide is most widely used, such as polyimide containing methylacryloyl or acrylic groups. As imide polymers, with the development of photosensitive resins for high-frequency and high-speed transmission, a photosensitive polyimide cured film with a low dielectric loss tangent is an expected subject in the industry.
  • the object of the present invention is to provide a cured film with a low dielectric constant and a low dielectric loss tangent.
  • the present invention provides a resin composition
  • a resin composition comprising: (a) polyamide ester, which is represented by formula (1); (b) polyimide; (c) a photo-radical initiator; (d) Radical polymerizable compound; (e) Solvent for dissolving the polyimide,
  • A is derived from tetracarboxylic dianhydride
  • B is derived from diamine
  • m is a positive integer from 1 to 10,000
  • R 1 and R 2 are each independently (meth)acryloyloxyalkyl or alkyl
  • the (meth)acryloyloxyalkyl group accounts for 50-100 mol% of the entire R 1 and R 2
  • the restriction condition is that the tetracarboxylic dianhydride does not contain pyromellitic dianhydride.
  • the tetracarboxylic dianhydride is 1,4-bis(3,4-dicarboxyphenoxy)phthalic anhydride (HQDEA), 4,4'-bis(3,4-dicarboxyphenoxy) ) Biphenyl dianhydride, 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride, 4,4-(hexafluoroisopropylidene)diphthalic anhydride (BPADA), ethylene glycol double dehydrated trimellitate (TMEG), propylene glycol bis (trimellitic anhydride) (TMPG), 1,2-propylene glycol bis (trimellitic anhydride), butanediol bis (trimellitic anhydride), 2-methyl- 1,3-propanediol bis (trimellitic anhydride), dipropylene glycol bis (trimellitic anhydride), 2-methyl-2,4-pentanediol bis (trimellitic anhydride)
  • the diamine is 2,2-bis(3-aminophenyl)-1,1,1,3,3,3-hexafluoropropane (BAPP), 2,2-bis(4-aminobenzene) Base) hexafluoropropane (APHF), 2,2'-bis(trifluoromethyl)benzidine (TFMB), 2,2'-dimethylbenzidine (m-tolidine), 1,3-bis(3 -Aminophenoxy)benzene (TPE-M), 1,3-bis(4-aminophenoxy)benzene (TPE-R), 1,4-bis(3-aminophenoxy)benzene, 1, 4-bis(4-aminophenoxy)benzene (TPE-Q), 5-amino-2-(p-aminophenyl)benzoxazole (5-ABO), 6-amino-2-(p-aminobenzene) Group) benzoxazole (6-ABO) or a combination of any two or more of the a
  • the polyimide is represented by formula (2):
  • C is derived from tetracarboxylic dianhydride
  • D is derived from diamine
  • n is a positive integer from 1 to 5000.
  • At least one of the C and the D is a structure having at least one of the following divalent groups:
  • R 4 and R 5 are each independently an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heterocyclic group.
  • the radically polymerizable compound is a compound having at least two (meth)acrylate groups.
  • the glass transition temperature of the cured film formed by the resin composition is 200-230°C.
  • the cured film formed by the resin composition has a dielectric loss factor less than 0.015.
  • the present invention also provides a cured film formed by curing the aforementioned resin composition.
  • the cured film has a glass transition temperature of 200-230°C.
  • the hardened film has a dielectric loss factor less than 0.015.
  • the present invention also provides a method for manufacturing a cured film, which includes the following steps: coating the aforementioned resin composition on a substrate; and sequentially pre-baking, exposing, developing and post-baking the composition.
  • the present invention also provides an interlayer insulating film and a circuit board protective film including the aforementioned cured film.
  • the photosensitive resin composition of the present invention is composed of the aforementioned components (a) to (e) in combination, and a cured film with low dielectric loss can be obtained from the composition.
  • the present invention provides a photosensitive resin composition
  • a photosensitive resin composition comprising: (a) polyamide ester, which is represented by formula (1); (b) polyimide; (c) photoradical initiator; (d) Radical polymerizable compound; (e) solvent, used to dissolve the polyimide,
  • A is derived from tetracarboxylic dianhydride
  • B is derived from diamine
  • m is a positive integer from 1 to 10,000
  • R 1 and R 2 are each independently (meth)acryloyloxyalkyl or alkyl
  • the (meth)acryloyloxyalkyl group accounts for 50-100 mol% of the entire R 1 and R 2
  • the restriction condition is that the tetracarboxylic dianhydride does not contain pyromellitic dianhydride.
  • the polyamide ester represented by formula (1) can be selected by monomers of tetracarboxylic dianhydride derived from A and diamine derived from B, thereby increasing non-polar groups (such as alkanes) in the structure. , Halothanes) structure, or the use of ethers, esters, or a planar aromatic ring structure to increase crystallinity and reduce the proportion of imide groups in the overall formulation, which can reduce the dielectric constant and dielectric The characteristic of loss tangent.
  • m is a positive integer from 1 to 10,000, such as: 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000. In some embodiments, m is between any two of the aforementioned values.
  • R 1 and R 2 are each independently a (meth)acryloyloxyalkyl group or an alkyl group, and the (meth)acryloyloxyalkyl group occupies 50- of the total of R 1 and R 2 100 mole%, such as: 55-95 mole%, 60-90 mole%, 65-85 mole%.
  • the alkyl group accounts for 0-50 mol% of the entire R 1 and R 2 , such as 5-45 mol%, 10-40 mol%, 15-35 mol%.
  • the polyamide ester represented by formula (1) is obtained by the reaction of tetracarboxylic dianhydride, alcohol compound and diamine.
  • the alcohol compound can be methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, etc.
  • These alcohol compounds can be used alone or in a mixture of two or more (such as two, three, or four).
  • an alkyl group refers to a straight or branched chain alkyl group, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, and isobutyl.
  • the tetracarboxylic dianhydride is preferably 1,4-bis(3,4-dicarboxyphenoxy)phthalic anhydride (HQDEA), 4,4'-bis(3,4- Dicarboxyphenoxy)biphenyl dianhydride, 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride, 4,4-(hexafluoroisopropylidene) two Phthalic anhydride (BPADA), ethylene glycol double dehydrated trimellitate (TMEG), propylene glycol bis (trimellitic anhydride) (TMPG), 1,2-propylene glycol bis (trimellitic anhydride), butanediol bis (trimellitic anhydride), 2-methyl-1,3-propanediol bis(trimellitic anhydride), dipropylene glycol bis(trimellitic anhydride), 2-methyl-2,4-pentanediol bis(trimellitic anhydride), 2-
  • the diamine is preferably 2,2-bis(3-aminophenyl)-1,1,1,3,3,3-hexafluoropropane (BAPP), 2,2-bis (4-Aminophenyl) hexafluoropropane (APHF), 2,2'-bis(trifluoromethyl)benzidine (TFMB), 2,2'-dimethylbenzidine (m-tolidine), 1, 3-bis(3-aminophenoxy)benzene (TPE-M), 1,3-bis(4-aminophenoxy)benzene (TPE-R), 1,4-bis(3-aminophenoxy) )Benzene, 1,4-bis(4-aminophenoxy)benzene (TPE-Q), 5-amino-2-(p-aminophenyl)benzoxazole (5-ABO), 6-amino-2 -(P-aminophenyl)benzoxazole (6-ABO) or a combination of any two or more of the aforementioned
  • the polyimide of the present invention is a solvent-soluble polyimide that is chemically or thermally closed by reacting diamine and tetracarboxylic dianhydride.
  • the solvent may be ethyl acetate, n-butyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone, diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, Diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and propylene glycol monopropyl ether acetate, methyl ethyl ketone, cyclohexanone, cyclopentanone , N-methylpyrrolidone, dimethylformamide, di
  • the solution solid content of the solvent-soluble polyimide usually accounts for 5% to 70% by weight of the solvent, more preferably 10% to 50% by weight. More specifically, generally, the diamine and tetracarboxylic dianhydride are dissolved in an organic solvent, and the resulting solution is placed under controlled temperature conditions under stirring until the polymerization of the tetracarboxylic dianhydride and the diamine is completed to obtain poly
  • the imide precursor ie, polyamic acid
  • the solution of the polyamic acid thus obtained is usually at a concentration of 5% to 35% by weight, more preferably 10% to 30% by weight. When the concentration is within this range, an appropriate molecular weight and solution viscosity can be obtained.
  • the polymerization method is not particularly limited, and the order of addition, the monomer combination and the amount of addition thereof are also not particularly limited.
  • the polyimide of the present invention is a random polymerization or sequential polymerization that can produce block components by a known polymerization method.
  • the preparation method of the polyimide precursor (ie, polyamic acid) to form a polyimide by ring closure is not particularly limited. More specifically, a chemical method of ring closure can be used, that is, under nitrogen or oxygen, pyridine, triethylamine or N,N-diisopropylethylamine, etc., which are not limited as alkaline reagents, and as dehydrating reagents Adding the acetic anhydride to the polyamic acid, after the reaction, the colloid is washed and filtered with water to obtain polyimide powder.
  • a chemical method of ring closure can be used, that is, under nitrogen or oxygen, pyridine, triethylamine or N,N-diisopropylethylamine, etc., which are not limited as alkaline reagents, and as dehydrating reagents Adding the acetic anhydride to the polyamic acid, after the reaction, the colloid is washed and filtered with water
  • a heating method can be used to close the ring, adding polyamic acid to an azeotropic reagent (such as toluene or xylene, but not limited to this), heating to 180°C, and closing the ring of polyamic acid to water and azeotropic reagent
  • an azeotropic reagent such as toluene or xylene, but not limited to this
  • the solvent-soluble polyimide can be prepared.
  • other reagents can be added to improve the reaction efficiency, including but not limited to: catalysts, inhibitors, azeotropic agents, leveling agents or any two or more of these reagents (such as: three , Four) combination.
  • the polyimide is preferably represented by formula (2):
  • C is derived from tetracarboxylic dianhydride
  • D is derived from diamine
  • n is a positive integer from 1 to 5000, such as: 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500. In some embodiments, n is between any two of the aforementioned values.
  • the polyimide represented by the formula (2) is obtained by the polymerization reaction of tetracarboxylic dianhydride and diamine. That is, in formula (2), C is a tetravalent organic group derived from tetracarboxylic dianhydride, and D is a divalent organic group derived from diamine.
  • the tetracarboxylic dianhydride is not particularly limited, but based on the consideration of exhibiting low dielectric loss, the tetracarboxylic dianhydride is preferably 3,3',4,4'-biphenyl Tetracarboxylic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, bis(3,4-dicarboxyphenyl) ) Methane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 1,3-bis(3 ,4-Dicarboxyphenoxy)phthalic anhydride, 1,4-bis(3,4-dicarboxyphenoxy)phthalic anhydride, 4,4'-bis(3,4-dicarboxyphenoxy) Biphenyl dianhydride, 2,2-
  • the diamine may be an aromatic diamine or an aliphatic diamine.
  • the aromatic diamine is preferably 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-methylenediphenylamine , 4,4'-methylene diphenylamine, 2,2-bis(4-aminophenyl)propane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2'-bis(tri Fluoromethyl)benzidine, 2,2'-dimethylbenzidine, 3,3'-dihydroxybenzidine, 1,3-bis(3-aminophenoxy)benzene, 1,3-bis(4 -Aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 4,4′-bis(4-aminophenoxy)biphenyl, 2,2-bis[4-
  • the aliphatic diamine is preferably 1,4-diaminocyclohexane, 4,4'-diaminodicyclohexylmethane, or a combination thereof.
  • At least one of C and D is a structure having at least one of the following divalent groups:
  • R 4 and R 5 are each independently an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heterocyclic group.
  • soluble polyimides can be used, for example, trade names "PIAD100H”, “PIAD100L”, “PIAD200” (manufactured by Arakawa Chemical).
  • the amount of polyimide added in the present invention is preferably 10% to 100% by weight of the main resin (ie, polyamide ester), more preferably 20% to 80% by weight, particularly preferably 30% to 70% by weight %.
  • the photoradical initiator in the present invention may be an initiator commonly used in known photosensitive resin compositions.
  • photoradical initiators include, but are not limited to: oxime compounds such as oxime derivatives; ketone compounds (including acetophenones, benzophenones and thioxanthones); triazine compounds; benzoins Compounds; metallocene compounds; triazine compounds; acyl phosphine compounds and a combination of any two or more of the foregoing compounds (such as three, four or five).
  • the photoradical initiator is preferably an acylphosphine compound or an oxime compound.
  • oxime compounds such as oxime derivatives include, but are not limited to: O-acyl oxime-based compounds, 2-(ortho-benzoyl oxime)-1-[4-(phenylthio)phenyl]-1,2-octane Dione, 1-(o-acetyloxime)-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethanone, O-ethoxy Carbonyl- ⁇ -oxyamino-1-phenylpropan-1-one, or a combination of any two or more of the foregoing compounds (such as three, four, or five).
  • O-acyl oxime-based compounds include, but are not limited to: 1,2-octanedione, 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholine-4- -Phenyl)-butan-1-one, 1-(4-phenylsulfanylphenyl)-butane-1,2-dione-2-oxime-O-benzoate, 1-( 4-Phenylsulfanylphenyl)-octane-1,2-dione-2-oxime-O-benzoate, 1-(4-phenylsulfanylphenyl)-octane-1- Oxime-O-acetate, 1-(4-phenylsulfanylphenyl)-but-1-oxime-O-acetate, or a combination of any two or more of the foregoing compounds.
  • acyl phosphine compounds include: bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, or a combination thereof, But it is not limited to this.
  • the content of the photo-radical initiator is 0.1% to 30% by weight of the main resin (ie, polyamide ester), preferably 1% to 20% by weight.
  • the content of the photo-radical initiator is within the range, it is fully cured during exposure during the pattern formation process, thereby ensuring excellent reliability, and the pattern may have excellent resolution and close contact heat resistance. Resistance, light resistance and chemical resistance.
  • the photo-radical initiator can be used together with a photosensitizer.
  • the photosensitizer can be excited by absorbing light, causing a chemical reaction, and then transferring its energy.
  • photosensitizers include, but are not limited to: tetraethylene glycol bis-3-mercaptopropionate, pentaerythritol tetra-3-mercaptopropionate, dipentaerythritol tetraalkyl-3-mercaptopropionate, and the like. These photosensitizers can be used alone or in combination of two or more (such as three).
  • the radically polymerizable compound is a photoradical crosslinking agent, and its kind is not particularly limited.
  • the type of the photo-crosslinking agent depends on the type of polyamide ester, soluble polyimide and/or photo radical initiator.
  • the radically polymerizable compound is a compound having at least two (meth)acrylate groups, such as: a compound having two (meth)acrylate groups, a compound having three A compound having a (meth)acrylate group, a compound having four (meth)acrylate groups, a compound having five (meth)acrylate groups, or a compound having six (meth)acrylate groups.
  • the content of the radical polymerizable compound is preferably 1% by mass to the total solid content of the photosensitive resin composition. 50% by mass.
  • the lower limit is more preferably 5% by mass or more.
  • the upper limit is more preferably 30% by mass or less.
  • the radically polymerizable compound may be used singly or in combination of two or more (such as three, four, and five).
  • the mass ratio of the polyamide ester to the radical polymerizable compound is preferably 98/2 to 10/90, more preferably 95/5 to 30/70, and particularly preferably 90/10 to 50/50.
  • the radical polymerizable compound may be used alone or in combination of two or more (such as three, four, and five). When two or more are used, it is preferable that the total amount falls within the aforementioned range.
  • the crosslinking bond generated by the radical reaction induced by the photoradical initiator and UV radiation irradiation can improve the pattern forming ability.
  • exposure and curing can sufficiently occur during pattern formation, and the contrast of the alkaline developer can be improved.
  • the solvent used in the present invention is not particularly limited as long as it can dissolve the polyimide.
  • Specific examples of the solvent include but are not limited to: ethyl acetate, n-butyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone, diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethyl acetate Glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and propylene glycol Monopropyl ether acetate, methyl ethyl ketone, cyclohexanone, cyclopentanone, N-methylpyrrolidone, dimethylformamide, dimethyl sulfoxide or N
  • solvents can be used alone or in combination of two or more (such as two, three or four). From the viewpoint of improving the coating surface state, it is preferable to use a mixture of two or more solvents.
  • the content of the solvent is preferably 5% by mass to 80% by mass of the total solid content of the photosensitive resin composition, more preferably 5% by mass ⁇ 70% by mass, particularly preferably 10% by mass to 60% by mass.
  • the photosensitive resin composition of the present invention is added with or without additives, depending on the user's application requirements.
  • the additives include, but are not limited to: higher fatty acid derivatives, surfactants, inorganic particles, hardeners, hardening catalysts, fillers, antioxidants, ultraviolet absorbers, anti-agglomeration agents, leveling agents, or two or more of these additives The combination.
  • the total blending amount is preferably 10% by mass or less of the solid content of the photosensitive resin composition.
  • the preparation of the interlayer insulating film and the protective film of the present invention can be achieved by coating the photosensitive resin composition on a substrate by a coating method such as spin coating or casting coating, and then prebake it.
  • the solvent is removed to form a pre-baked coating film.
  • the pre-bake conditions vary according to the types and mixing ratios of the ingredients, and usually the temperature is between 80 and 120°C for 5 to 15 minutes.
  • the coating film is exposed under a mask.
  • the light used for the exposure is preferably ultraviolet rays such as g-line, h-line, and i-line.
  • the ultraviolet irradiation device can be (ultra) high pressure mercury lamp and metal halide light.
  • the developer include, but are not limited to: for example, methanol, ethanol, propanol, isopropanol, butanol, ethyl acetate, n-butyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone, diethyl Glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol Monomethyl ether acetate, propylene glycol monoethyl ether acetate, and propylene glycol monopropyl ether acetate, methyl ethyl ketone,
  • the developer composed of the above organic solvent When used, it is usually washed with an organic solvent after development, and then dried with compressed air or compressed nitrogen. Then, a postbake treatment is performed using a heating device such as a hot plate or an oven, and the temperature of the postbake treatment is usually 180 to 250°C. After the above processing steps, a protective film can be formed.
  • the substrate is not particularly limited in the present invention, and can be selected according to subsequent requirements.
  • the substrate can be copper, graphite, aluminum, iron, copper alloy, aluminum alloy, iron alloy, silicon wafer, plastic material, etc.
  • the substrate can also be used in liquid crystal displays such as alkali-free glass, soda lime glass, tempered glass (Pyrex glass), quartz glass, glass with transparent conductive film attached to the surface, etc., or used in solid-state photographic elements And other photoelectric conversion element substrates (such as silicon substrates) and so on.
  • liquid crystal displays such as alkali-free glass, soda lime glass, tempered glass (Pyrex glass), quartz glass, glass with transparent conductive film attached to the surface, etc.
  • other photoelectric conversion element substrates such as silicon substrates
  • the device having an interlayer insulating film and a protective film includes the aforementioned interlayer insulating film and protective film and the aforementioned base material.
  • the device with interlayer insulating film and protective film includes, but is not limited to, a carrier board, a display device, a semiconductor device, a printed circuit board, or an optical waveguide.
  • the present invention also provides a cured film formed by curing the aforementioned resin composition.
  • the hardened film preferably has a glass transition temperature of 200-230°C.
  • the cured film of the present invention preferably has a dielectric loss factor of less than 0.015, more preferably has a dielectric loss factor of 0.01, and particularly preferably has a dielectric loss factor of 0.002 to 0.009.
  • the present invention also provides an interlayer insulating film and a circuit board protective film including the aforementioned cured film.
  • the interlayer insulating film include, but are not limited to: an interlayer insulating film for a rewiring layer or an interlayer insulating film for a carrier-like board.
  • the present invention also provides a method for manufacturing a cured film, which includes the following steps: coating the aforementioned resin composition on a substrate; and sequentially pre-baking, exposing, developing and post-baking the composition.
  • Synthesis Example 1 Synthesis of polyamide ester (A1) by propylene glycol bis(trimellitic anhydride) (TMPG), 2,2′-bis(trifluoromethyl)benzidine (TFMB) and methacrylic acid-2-hydroxyethyl Derived from the reaction of ester (HEMA)
  • reaction mixture was cooled to -10°C, while maintaining the temperature at -10°C ⁇ 4°C, 11.9 g (100.0 mmol) of thionyl chloride was added over 10 minutes. During the addition of thionyl chloride, the viscosity increased. After diluting with 50 mL of dimethylacetamide, the reaction mixture was stirred at room temperature for 2 hours.
  • the polyimide precursor was filtered out, put into 4 liters of water again, and stirred for 30 minutes, and filtered again. Then, the obtained polyimide precursor was dried at 45° C. under reduced pressure for 3 days to obtain a powder of polyamide ester (HEMA-TMPG-TFMB PAE (A1)).
  • HEMA-TMPG-TFMB PAE (A1) The result of 1 H-NMR measurement of the obtained A1 is shown below (the ratio of the hydrogen number is defined by the structural unit that is not repeated).
  • Synthesis Example 2 Synthesis of polyamide ester (A2) by 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride (BPADA), 1,4-bis( Derived from the reaction of 4-aminophenoxy)benzene (TPE-Q) and 2-hydroxyethyl methacrylate (HEMA)
  • Synthesis Example 3 Synthesis of polyamide ester (A3) by 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride (BPADA), 2,2'-bis (Trifluoromethyl)benzidine (TFMB), 2-hydroxyethyl methacrylate (HEMA) and ethanol (EtOH)
  • Synthesis Example 4 Synthesis of polyimide (B1: solvent-soluble polyimide), which is obtained by propylene glycol bis(trimellitic anhydride) (TMPG) and 2,2′-bis(trifluoromethyl)benzidine (TFMB) )
  • 62.12g (0.194 mmol) of TFMB and 500g of DMAc were placed in a three-necked flask. After stirring at 30°C until completely dissolved, 84.86g (0.200 mmol) of TMPG was added, then stirring was continued and reacted at 25°C for 24 hours to obtain a polyamic acid solution; then 23.00g (0.290 mmol) was added ) Pyridine and 59.4 g (0.582 mmol) of acetic anhydride, then continue to stir and react at 25°C for 24 hours. After the reaction, the polyimide was precipitated in 5 liters of water, and the water-polyimide mixture was stirred at a speed of 5000 rpm for 15 minutes.
  • the polyimide was collected by filtration, and it was poured into 4 liters of water again, and further stirred for 30 minutes, and filtered again. Then, the obtained polyimide was dried at 45°C for 3 days under reduced pressure to obtain a powder of dried polyimide (TMPG-TFMB PI (B1)).
  • TMPG-TFMB PI (B1)
  • the result of 1 H-NMR measurement of the obtained B1 is shown below (the ratio of the hydrogen number is defined by the structural unit that is not repeated).
  • Synthesis Example 5 Synthesis of polyimide (B2: soluble polyimide) by 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride (BPADA) , 2,2'-bis(trifluoromethyl)benzidine (TFMB), 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP)
  • the polyimide was precipitated in 5 liters of water, and the water-polyimide mixture was stirred for 15 minutes at a speed of 5000 rpm.
  • the polyimide was collected by filtration, and it was poured into 4 liters of water again, and further stirred for 30 minutes, and filtered again.
  • the obtained polyimide was dried at 45°C for 3 days under reduced pressure to obtain a powder of dried polyimide (BPADA-TFMB-BAPP PI (B2)).
  • B2 powder of dried polyimide
  • the result of 1 H-NMR measurement of the obtained B2 is shown below (the ratio of the hydrogen number is defined by the structural unit that is not repeated).
  • Comparative synthesis example 1 Synthesis of polyamide ester (A4) by pyromellitic dianhydride (PMDA), 2,2'-bis(trifluoromethyl)benzidine (TFMB) and methacrylic acid-2- Derived from the reaction of hydroxyethyl (HEMA)
  • the polyamide ester (HEMA-PMDA-TFMB PAE (A4)) was obtained by the same method as in Synthesis Example 1. The result of 1 H-NMR measurement of the obtained A4 is shown below (the ratio of the hydrogen number is defined by the structural unit that is not repeated).
  • Example 1-5 and Comparative Example 1-3 Preparation of photosensitive resin composition
  • the components used in the photosensitive polyimide resin composition are as follows. The components described below were mixed with a solvent at the weight ratios described in Table 1 to prepare a DMAc solution with a solid content of 30%, which is a coating liquid of the photosensitive resin composition.
  • Component A2 HEMA-BPADA-TPE-Q PAE
  • Component A4 HEMA PMDA-TFMB PAE (comparative synthesis example)
  • Component B2 BPADA-TFMB-BAPP PI
  • composition D2 TMPTA (Aldrich)
  • the photosensitive resin composition is coated on a copper foil substrate, and a 15 ⁇ m film is prepared by surface drying at 90°C for 5 minutes. After exposure through a photomask, the exposed photosensitive resin composition layer is treated with cyclopentanone. Development in 60 seconds.
  • the following criteria are used to evaluate whether the line width has good edge sharpness. The smaller the line width of the photosensitive resin composition layer is, the larger the difference in solubility between the light-irradiated portion and the non-light-irradiated portion in the developer becomes, and it is a better result. In addition, the smaller the change in line width with respect to the change in exposure energy, the wider the exposure latitude, which becomes a better result.
  • the dielectric constant, dielectric loss factor, linear thermal expansion coefficient, and glass transition temperature in Table 1 are obtained by coating, exposing, and developing the photosensitive resin composition, then aging at 250°C to form a thin film, and then using the following methods measuring:
  • thermomechanical analysis in a load of 3 g/film thickness of 20 ⁇ m and a heating rate of 10° C./min, the average value in the range of 50 to 200° C. was calculated from the extension of the test piece as the linear thermal expansion coefficient. Materials with low linear thermal expansion can avoid excessive deformation during the heating and baking process of manufacturing circuit boards, so that the production line can maintain a high yield.
  • the glass transition temperature of the present invention is a value that is read and determined at the first temperature increase or the second temperature increase.
  • the cured film formed by the resin compositions of Examples 1 to 5 has a glass transition temperature of 200-230°C, a linear expansion coefficient of approximately 55-70, and a significantly lower dielectric loss factor At 0.01.
  • the cured film formed by the resin composition of the present invention has a low dielectric constant and a low dielectric loss tangent, and is suitable for substrate-like substrates, liquid crystal displays, organic electroluminescent displays, semiconductor devices or printed circuits On the substrate contained in the board, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Materials For Photolithography (AREA)

Abstract

一种感光性树脂组合物,其包含:(a)聚酰胺酯,其由式(1)所表示;(b)聚酰亚胺;(c)光自由基引发剂;(d)自由基聚合性化合物;(e)溶剂,用于溶解该聚酰亚胺,(1) 其中A、B、R 1、R 2及m如本文中所定义。

Description

感光性树脂组合物及其应用 技术领域
本发明涉及一种感光性树脂组合物,特别涉及一种介电损耗低的感光性树脂组合物。
背景技术
伴随无线传输高频化及通讯数据高速化需求,高频晶片及高频基板为未来发展的产业重点。高频高速传输需确保传输讯号的完整性,所以在高频(1GHz或更高)区域中,需要低介电损耗因子的材料。另外,印刷电路板及半导体的电子设计,随着技术发展及产品需求,其特性要求往高性能化、体积缩小化且配线高密度化等方向进行。
感光性树脂组合物已被广泛应用于各式电子元件或装置中作为硬化膜,其具有可挠性、良好的机械性质及不错的电气性质等优异特性,而受到半导体晶片(如积体电路Integrated circuit,简称IC)或印刷电路板(Printed Circuit Board,简称PCB)相关业界的偏好,其中感光性聚酰亚胺的使用最为广泛,例如含有甲基丙烯酰基(methylacryloyl)或丙烯酸系基团的聚酰亚胺聚合物,所以伴随高频高速传输的感光性树脂开发需求,低介电损耗角正切的感光性聚酰亚胺硬化膜是业界所期盼的课题。
发明内容
有鉴于此,本发明的目的是提供一种介电常数低且介电损耗角正切也低的硬化膜。
为达到上述目的,本发明提供一种树脂组合物,其包含:(a)聚酰胺酯,其由式(1)所表示;(b)聚酰亚胺;(c)光自由基引发剂;(d)自由基聚合性化合物;(e)溶剂,用于溶解该聚酰亚胺,
Figure PCTCN2019072808-appb-000001
其中,A来源于四羧酸二酐,B来源于二胺,m为1-10000中的正整数,R 1及R 2各自独立为(甲基)丙烯酰氧基烷基或烷基,且(甲基)丙烯酰氧基烷基占R 1及R 2整体的50-100摩尔%,其限制条件为该四羧酸二酐不包含均苯四甲酸二酐。
较佳地,该四羧酸二酐为1,4-双(3,4-二羧基苯氧基)苯二酐(HQDEA)、4,4′-双(3,4-二羧基苯氧基)联苯二酐、2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐、4,4-(六氟异亚丙基)二邻苯二甲酸酐(BPADA)、乙二醇双脱水偏苯三酸酯(TMEG)、丙二醇双(偏苯三酸酐)(TMPG)、1,2-丙二醇双(偏苯三酸酐)、丁二醇双(偏苯三酸酐)、2-甲基-1,3-丙二醇双(偏苯三酸酐)、二丙二醇双(偏苯三酸酐)、2-甲基-2,4-戊二醇双(偏苯三酸酐)、二甘醇双(偏苯三酸酐)、四甘醇双(偏苯三酸酐)、六甘醇双(偏苯三酸酐)、新戊二醇双(偏苯三酸酐)、对苯二酚双(偏苯三酸酐)(TAHQ)、对苯二酚双(2-羟乙基)醚双(偏苯三酸酐)、2-苯基-5-(2,4-二甲苯基)-1,4-氢化醌双(偏苯三酸酐)、2,3-二氰基氢醌环丁烷-1,2,3,4-四羧酸二酐、1,2,3,4-环戊烷四羧酸二酐(CPDA)、1,2,4,5-环己烷四羧酸二酐(CHDA)、双环[2.2.1]庚烷-2,3,5,6-四羧酸二酐(BHDA)、双环[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐(BOTDA)、双环[2.2.2]辛烷-2,3,5,6-四羧酸二酐(BODA)、2,3,5-三羧基-环戊基乙酸二酐、双环[2.2.1]庚烷-2,3,5-三羧基-6-乙酸二酐、十氢-1,4,5,8-二甲醇萘-2,3,6,7-四羧酸二酐、丁-1,2,3,4-四羧酸二酐、3,3′,4,4′-二环己基四羧酸二酐或前述四羧酸二酐任意两种以上的组合。
较佳地,该二胺为2,2-二(3-氨基苯基)-1,1,1,3,3,3-六氟丙烷(BAPP)、2,2-双(4-氨基苯基)六氟丙烷(APHF)、2,2′-双(三氟甲基)联苯胺(TFMB)、2,2′-二甲基联苯胺(m-tolidine)、1,3-双(3-氨基苯氧基)苯(TPE-M)、1,3-双(4-氨基苯氧基)苯(TPE-R)、1,4-双(3-氨基苯氧基) 苯、1,4-双(4-氨基苯氧基)苯(TPE-Q)、5-氨基-2-(对氨基苯基)苯并噁唑(5-ABO)、6-氨基-2-(对氨基苯基)苯并噁唑(6-ABO)或前述二胺任意两种以上的组合。
较佳地,该聚酰亚胺由式(2)所表示:
Figure PCTCN2019072808-appb-000002
其中,C来源于四羧酸二酐,D来源于二胺,n为1-5000中的正整数。
较佳地,该C及该D中的至少一个是具有以下二价基团中至少一种的结构:
Figure PCTCN2019072808-appb-000003
其中,R 4及R 5各自独立为烷基、烯基、炔基、芳香基或杂环基。
较佳地,该自由基聚合性化合物为具有至少二个(甲基)丙烯酸酯基的化合物。
较佳地,该树脂组合物所形成的硬化膜的玻璃化转变温度为200~230℃。
较佳地,该树脂组合物所形成的硬化膜具有小于0.015的介电损耗因子。
本发明还提供一种硬化膜,其由前述树脂组合物硬化而成。
较佳地,该硬化膜具有200~230℃的玻璃化转变温度。
较佳地,该硬化膜具有小于0.015的介电损耗因子。
本发明还提供一种硬化膜的制造方法,其包含以下步骤:将前述的树脂组合物涂布在基材上;对该组合物依序进行预烤、曝光、显影及后烤处理。
本发明还提供一种包含前述硬化膜的层间绝缘膜及电路板保护 膜。
本发明的感光性树脂组合物由前述成分(a)至(e)组合而成,通过该组合物可获得介电损耗低的硬化膜。
具体实施方式
本发明提供一种感光性树脂组合物,其包含:(a)聚酰胺酯,其由式(1)所表示;(b)聚酰亚胺;(c)光自由基引发剂;(d)自由基聚合性化合物;(e)溶剂,用于溶解该聚酰亚胺,
Figure PCTCN2019072808-appb-000004
其中,A来源于四羧酸二酐,B来源于二胺,m为1-10000中的正整数,R 1及R 2各自独立为(甲基)丙烯酰氧基烷基或烷基,且(甲基)丙烯酰氧基烷基占R 1及R 2整体的50-100摩尔%,其限制条件为该四羧酸二酐不包含均苯四甲酸二酐。
在本发明中,式(1)所表示的聚酰胺酯可通过A来源的四羧酸二酐及B来源的二胺的单体选择,而增加结构中非极性基团(如:烷类、氟烷类)的结构,或使用醚类、酯类,或具有平面的芳香环结构增加结晶性,并减少酰亚胺基团在整体配方中的比例,都可降低介电常数及介电损耗角正切的特性。
在式(1)中,m为1-10000中的正整数,诸如:1000、2000、3000、4000、5000、6000、7000、8000、9000。在一些实施方式中,m介于前述任意两个数值之间。在式(1)中,R 1及R 2各自独立为(甲基)丙烯酰氧基烷基或烷基,且(甲基)丙烯酰氧基烷基占R 1及R 2整体的50-100摩尔%,诸如:55-95摩尔%、60-90摩尔%、65-85摩尔%。换句话说,烷基占R 1及R 2整体的0-50摩尔%,诸如:5-45摩尔%、10-40摩尔%、15-35摩尔%。
在一个较佳实施方式中,式(1)所表示的聚酰胺酯由四羧酸二酐、醇类化合物及二胺反应而得。该醇类化合物的实例可为甲醇、乙醇、 正丙醇、异丙醇、正丁醇、丙烯酸-2-羟基乙酯、甲基丙烯酸-2-羟基乙酯、丙烯酸-2-羟基丙酯、甲基丙烯酸-2-羟基丙酯等。这些醇类化合物可单独使用,也可混合两种以上(如:两种、三种、四种)使用。
在本发明中,烷基是指直链或支链烷基,诸如:甲基、乙基、正丙基、异丙基、正丁基、异丁基。
在式(1)中,该四羧酸二酐较佳为1,4-双(3,4-二羧基苯氧基)苯二酐(HQDEA)、4,4′-双(3,4-二羧基苯氧基)联苯二酐、2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐、4,4-(六氟异亚丙基)二邻苯二甲酸酐(BPADA)、乙二醇双脱水偏苯三酸酯(TMEG)、丙二醇双(偏苯三酸酐)(TMPG)、1,2-丙二醇双(偏苯三酸酐)、丁二醇双(偏苯三酸酐)、2-甲基-1,3-丙二醇双(偏苯三酸酐)、二丙二醇双(偏苯三酸酐)、2-甲基-2,4-戊二醇双(偏苯三酸酐)、二甘醇双(偏苯三酸酐)、四甘醇双(偏苯三酸酐)、六甘醇双(偏苯三酸酐)、新戊二醇双(偏苯三酸酐)、对苯二酚双(偏苯三酸酐)(TAHQ)、对苯二酚双(2-羟乙基)醚双(偏苯三酸酐)、2-苯基-5-(2,4-二甲苯基)-1,4-氢化醌双(偏苯三酸酐)、2,3-二氰基氢醌环丁烷-1,2,3,4-四羧酸二酐、1,2,3,4-环戊烷四羧酸二酐(CPDA)、1,2,4,5-环己烷四羧酸二酐(CHDA)、双环[2.2.1]庚烷-2,3,5,6-四羧酸二酐(BHDA)、双环[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐(BOTDA)、双环[2.2.2]辛烷-2,3,5,6-四羧酸二酐(BODA)、2,3,5-三羧基-环戊基乙酸二酐、双环[2.2.1]庚烷-2,3,5-三羧基-6-乙酸二酐、十氢-1,4,5,8-二甲醇萘-2,3,6,7-四羧酸二酐、丁-1,2,3,4-四羧酸二酐、3,3′,4,4′-二环己基四羧酸二酐或前述四羧酸二酐任意两种以上(诸如:两种、三种、四种、五种)的组合。
在式(1)中,该二胺较佳为2,2-二(3-氨基苯基)-1,1,1,3,3,3-六氟丙烷(BAPP)、2,2-双(4-氨基苯基)六氟丙烷(APHF)、2,2′-双(三氟甲基)联苯胺(TFMB)、2,2′-二甲基联苯胺(m-tolidine)、1,3-双(3-氨基苯氧基)苯(TPE-M)、1,3-双(4-氨基苯氧基)苯(TPE-R)、1,4-双(3-氨基苯氧基)苯、1,4-双(4-氨基苯氧基)苯(TPE-Q)、5-氨基-2-(对氨基苯基)苯并 噁唑(5-ABO)、6-氨基-2-(对氨基苯基)苯并噁唑(6-ABO)或前述二胺任意两种以上(诸如:两种、三种、四种、五种)的组合。
本发明的聚酰亚胺为通过二胺和四羧酸二酐反应,经化学闭环或热闭环的溶剂可溶型聚酰亚胺,所述溶剂可以为乙酸乙酯、乙酸-正丁酯、γ-丁内酯、ε-己内酯、二乙二醇二甲醚、四氢呋喃、乙二醇单甲醚、乙二醇单乙醚、二乙二醇单甲醚、二乙二醇单乙醚、二乙二醇单丁醚、丙二醇单甲醚、丙二醇单甲醚乙酸酯、丙二醇单乙醚乙酸酯、及丙二醇单丙醚乙酸酯、甲基乙基酮、环己酮、环戊酮、N-甲基吡咯啶酮、二甲基甲酰胺、二甲基亚砜、N,N-二甲基乙酰胺或前述溶剂两种以上的组合。该溶剂可溶型聚酰亚胺的溶液固含量,通常占溶剂的5重量%至70重量%,更优选10重量%至50重量%。更具体地,通常,将二胺和四羧酸二酐溶解在有机溶剂中,并且在搅拌下将所得溶液置于受控温度条件下直至四羧酸二酐和二胺的聚合完成,得到聚酰亚胺前驱体(即聚酰胺酸),由此得到的聚酰胺酸的溶液通常以5重量%至35重量%,更优选10重量%至30重量%的浓度。当浓度在该范围内时,可获得适当的分子量和溶液粘度。聚合方法并无特别限制,并且添加顺序,单体组合及其添加量也无特别限制。例如,本发明的聚酰亚胺是可通过已知的聚合方法而产生嵌段组分的无规聚合或序列聚合。
该聚酰亚胺前驱体(即聚酰胺酸)闭环成聚酰亚胺的制备方法并无特别的限制。更具体地,可使用化学方式的闭环方法,即在氮气或氧气下,将不限定的作为碱性试剂的吡啶、三乙胺或N,N-二异丙基乙基胺等及作为脱水试剂的醋酸酐加入聚酰胺酸中,反应结束后,胶体经由水洗过滤,即可得到聚酰亚胺粉末。另外,可使用加热方式的闭环方法,将聚酰胺酸加入共沸试剂(诸如:甲苯或二甲苯等,但不限于此),升温至180℃,将聚酰胺酸闭环产生的水及共沸试剂去除,反应结束后,即可制得溶剂可溶型聚酰亚胺。制备溶剂可溶型聚酰亚胺过程中,可添加增进反应效率的其他试剂,包含但不限于:催化剂、抑制剂、共沸剂、流平剂或这些试剂任意二种 以上(诸如:三种、四种)的组合。
在本发明中,该聚酰亚胺较佳地由式(2)所表示:
Figure PCTCN2019072808-appb-000005
其中,C来源于四羧酸二酐,D来源于二胺,n为1-5000中的正整数,诸如:500、1000、1500、2000、2500、3000、3500、4000、4500。在一些实施方式中,n介于前述任意两个数值之间。
本发明中,式(2)所表示的聚酰亚胺由四羧酸二酐与二胺进行聚合反应而得。也就是说,在式(2)中,C是衍生自四羧酸二酐的四价有机基团,D是衍生自二胺的二价有机基团。
在式(2)中,该四羧酸二酐并无特别限制,但基于表现出低介电损耗的考虑,该四羧酸二酐较佳是3,3′,4,4′-联苯四羧酸二酐、3,3′,4,4′-二苯甲酮四羧酸二酐、4,4′-氧联二邻苯二甲酸酐、双(3,4-二羧基苯基)甲烷二酐、2,2-二(3,4-二羧基苯基)丙烷二酐、2,2-双(3,4-二羧基苯基)丙烷二酐、1,3-双(3,4-二羧基苯氧基)苯二酐、1,4-双(3,4-二羧基苯氧基)苯二酐、4,4′-双(3,4-二羧基苯氧基)联苯二酐、2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐、乙二醇双(偏苯三酸酐)(TMEG)、丙二醇双(偏苯三酸酐)(TMPG)、1,2-丙二醇双(偏苯三酸酐)、丁二醇双(偏苯三酸酐)、2-甲基-1,3-丙二醇双(偏苯三酸酐)、二丙二醇双(偏苯三酸酐)、2-甲基-2,4-戊二醇双(偏苯三酸酐)、二甘醇双(偏苯三酸酐)、四甘醇双(偏苯三酸酐)、六甘醇双(偏苯三酸酐)、新戊二醇双(偏苯三酸酐)、对苯二酚双(2-羟乙基)醚双(偏苯三酸酐)、2-苯基-5-(2,4-二甲苯基)-1,4-氢化醌双(偏苯三酸酐)、2,3-二氰基氢醌环丁烷-1,2,3,4-四羧酸二酐、1,2,3,4-环戊烷四羧酸二酐、1,2,4,5-环己烷四羧酸二酐、双环[2.2.1]庚烷-2,3,5,6-四羧酸二酐、双环[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐、双环[2.2.2]辛烷-2,3,5,6-四羧酸二酐、2,3,5-三羧基-环戊基乙酸二酐、双环[2.2.1]庚烷-2,3,5-三羧基-6-乙酸二酐、十氢-1,4,5,8-二甲醇萘-2,3,6,7-四羧酸二酐、丁-1,2,3,4-四羧酸二酐、3,3′,4,4′-二环己 基四羧酸二酐、或前述四羧酸二酐任意两种以上(诸如:两种、三种、四种、五种)的组合。
在式(2)中,该二胺可为芳香族二胺或脂肪族二胺。基于表现出低介电损耗的考虑,该芳香族二胺较佳是3,3′-二氨基二苯砜、4,4′-二氨基二苯砜、3,3′-亚甲基二苯胺、4,4′-亚甲基二苯胺、2,2-双(4-氨基苯基)丙烷、2,2-双(4-氨基苯基)六氟丙烷、2,2′-双(三氟甲基)联苯胺,2,2′-二甲基联苯胺、3,3′-二羟基联苯胺、1,3-双(3-氨基苯氧基)苯、1,3-双(4-氨基苯氧基)苯、1,4-双(4-氨基苯氧基)苯、4,4′-双(4-氨基苯氧基)联苯、2,2-双[4-(4-氨基苯氧基)苯基]丙烷、2,2-双[4-(4-氨基苯氧基)苯基]-1,1,1,3,3,3-六氟丙烷、1,3-双[4-(3-氨基苯氧基)苯甲酰基]苯、4,4′-二氨基苯甲酰苯胺、2,2-双(3-氨基-4-羟基苯基)六氟丙烷、5-氨基-2-(对氨基苯基)苯并噁唑、6-氨基-2-(对氨基苯基)苯并噁唑或前述芳香族二胺任意两种以上的组合。另外,基于表现出低介电损耗的考虑,脂肪族二胺较佳为1,4-二氨基环己烷、4,4′-二氨基二环己基甲烷或其组合。
在式(2)中,较佳地,C及D中的至少一个是具有下列二价基团中至少一种的结构:
Figure PCTCN2019072808-appb-000006
其中,R 4及R 5各自独立为烷基、烯基、炔基、芳香基或杂环基。
在本发明中,可溶性聚酰亚胺可使用市售品,例如,商品名″PIAD100H″,″PIAD100L″,″PIAD200″(荒川化学制造)。
本发明中的聚酰亚胺添加量较佳为主要树脂(即聚酰胺酯)的10重量%至100重量%,更佳为20重量%至80重量%,特佳为30重量%至70重量%。
本发明中的光自由基引发剂可为已知感光性树脂组合物中常用 的引发剂。光自由基引发剂的实例包括但不限于:肟衍生物等肟化合物;酮化合物(包含苯乙酮类、二苯甲酮类及噻吨酮类化合物);三嗪类化合物;苯偶姻类化合物;茂金属化合物;三嗪类化合物;酰基膦化合物及前述化合物任意两种以上(诸如:三种、四种或五种)的组合。就曝光感度的观点而言,光自由基引发剂优选为酰基膦化合物或肟化合物。
肟衍生物等肟化合物的实例包括但不限于:基于O-酰基肟的化合物、2-(邻苯甲酰基肟)-1-[4-(苯硫基)苯基]-1,2-辛二酮、1-(邻-乙酰基肟)-1-[9-乙基-6-(2-甲基苯甲酰基)-9H-咔唑-3-基]乙酮、O-乙氧基羰基-α-氧基氨基-1-苯基丙-1-酮、或前述化合物任意两种以上(诸如:三种、四种、五种)的组合。基于O-酰基肟的化合物的实例包括但不限于:1,2-辛二酮、2-二甲基氨基-2-(4-甲基苄基)-1-(4-吗啉-4-基-苯基)-丁-1-酮、1-(4-苯基硫烷基苯基)-丁烷-1,2-二酮-2-肟-O-苯甲酸酯、1-(4-苯基硫烷基苯基)-辛烷-1,2-二酮-2-肟-O-苯甲酸酯、1-(4-苯基硫烷基苯基)-辛-1-肟-O-乙酸酯、1-(4-苯基硫烷基苯基)-丁-1-肟-O-乙酸酯、或前述化合物任意两种以上的组合。酰基膦化合物的实例包含:双(2,4,6-三甲基苯甲酰基)苯基膦氧化物、2,4,6-三甲基苯甲酰基-二苯基氧膦或其组合,但不限于此。
光自由基引发剂的含量为主要树脂(即聚酰胺酯)的0.1重量%至30重量%,优选为1重量%至20重量%。当光自由基引发剂的含量介于所述范围内时,则因在图案形成过程中曝光期间充分固化,而可确保优异的可靠性,图案可具有较优异的分辨率和紧密接触的耐热性、耐光性及耐化学性。
该光自由基引发剂可与光敏剂一起使用。该光敏剂能够通过吸收光而受激发,进而引起化学反应,然后传递其能量。光敏剂的实例包括但不限于:四乙二醇双-3-巯基丙酸酯、季戊四醇四-3-巯基丙酸酯、二季戊四醇四烷基-3-巯基丙酸酯等。这些光敏剂可单独使用或两种以上(诸如:三种)组合使用。
自由基聚合性化合物为光自由基交联剂,其种类并无特别的限 制。较佳地,该光交联剂的种类是依据聚酰胺酯、可溶型聚酰亚胺和/或光自由基引发剂的种类而定。在本发明的一个较佳实施方式中,该自由基聚合性化合物为具有至少二个(甲基)丙烯酸酯基的化合物,诸如:具有二个(甲基)丙烯酸酯基的化合物、具有三个(甲基)丙烯酸酯基的化合物、具有四个(甲基)丙烯酸酯基的化合物、具有五个(甲基)丙烯酸酯基的化合物或具有六个(甲基)丙烯酸酯基的化合物。该具有至少二个(甲基)丙烯酸酯基的化合物的实例包括但不限于:二甲基丙烯酸乙二醇酯;双酚A的EO修饰二丙烯酸酯(n=2-50)(EO是环氧乙烷,n是所加入的环氧乙烷的摩尔数);双酚F的EO修饰二丙烯酸酯;Aronix
Figure PCTCN2019072808-appb-000007
和/或
Figure PCTCN2019072808-appb-000008
(东亚合成化学工业株式会社制);KAYARAD
Figure PCTCN2019072808-appb-000009
和/或
Figure PCTCN2019072808-appb-000010
(Nippon Kayaku Co.,Ltd.);
Figure PCTCN2019072808-appb-000011
和/或
Figure PCTCN2019072808-appb-000012
(Osaka Organic Chemical Ind.,Ltd.);BLEMMER
Figure PCTCN2019072808-appb-000013
Figure PCTCN2019072808-appb-000014
Figure PCTCN2019072808-appb-000015
(NOF Co.,Ltd.);三羟甲基丙烷三丙烯酸酯(TMPTA);羟甲基丙烷四丙烯酸酯;甘油三羟丙基醚三丙烯酸酯;三乙氧基三羟甲基丙烷三丙烯酸酯;三羟甲基丙烷三甲基丙烯酸酯;三(2-羟基乙基)异氰酸酯三丙烯酸酯(THEICTA);季戊四醇三丙烯酸酯;季戊四醇六丙烯酸酯;Aronix
Figure PCTCN2019072808-appb-000016
和/或
Figure PCTCN2019072808-appb-000017
(东亚合成化学工业株式会社);KAYARAD
Figure PCTCN2019072808-appb-000018
Figure PCTCN2019072808-appb-000019
和/或
Figure PCTCN2019072808-appb-000020
(日本化药株式会社);
Figure PCTCN2019072808-appb-000021
和/或
Figure PCTCN2019072808-appb-000022
(Osaka Yuki Kayaku Kogyo Co.,Ltd.)等。
在感光性树脂组合物中,就良好的自由基聚合性与耐热性的观点而言,相对于感光性树脂组合物的总固体成分,自由基聚合性化合物的含量较佳为1质量%~50质量%。下限更佳为5质量%以上。上限更佳为30质量%以下。自由基聚合性化合物可单独使用一种,也可将两种以上(诸如:三种、四种、五种)混合使用。另外,该 聚酰胺酯与该自由基聚合性化合物的质量比例较佳为98/2~10/90,更佳为95/5~30/70,特佳为90/10~50/50。若聚酰胺酯与自由基聚合性化合物的质量比例介于所述范围内,则可形成硬化性及耐热性更优异的硬化膜。在本发明中,该自由基聚合性化合物可单独使用一种,也可将两种以上(诸如:三种、四种、五种)混合使用。当使用两种以上时,较佳为总量成为所述范围。
当自由基聚合性化合物的含量在上述范围内时,其通过光自由基引发剂及UV辐射照射所引发的自由基反应而产生的交联键,可以改善图案形成能力。另外,在图案形成过程中可以充分发生曝光固化,并且可以改善碱性显影液的对比性。
本发明所用的溶剂并无特别限制,只要其能溶解该聚酰亚胺。该溶剂的具体实例包括但不限于:乙酸乙酯、乙酸-正丁酯、γ-丁内酯、ε-己内酯、二乙二醇二甲醚、四氢呋喃、乙二醇单甲醚、乙二醇单乙醚、二乙二醇单甲醚、二乙二醇单乙醚、二乙二醇单丁醚、丙二醇单甲醚、丙二醇单甲醚乙酸酯、丙二醇单乙醚乙酸酯、及丙二醇单丙醚乙酸酯、甲基乙基酮、环己酮、环戊酮、N-甲基吡咯啶酮、二甲基甲酰胺、二甲基亚砜或N,N-二甲基乙酰胺(DMAc)。这些溶剂可单独使用或两种以上(诸如:两种、三种或四种)组合使用。就改良涂布表面状态的观点而言,较佳是将两种以上的溶剂混合使用。当感光性树脂组合物含有溶剂时,就涂布性的观点而言,溶剂的含量较佳为感光性树脂组合物的总固体成分5质量%~80质量%的量,更佳为5质量%~70质量%,特佳为10质量%~60质量%。溶剂可仅为一种,也可为两种以上。当含有两种以上的溶剂时,较佳为总量在所述的范围内。
在不影响本发明的效果的范围内,本发明的感光性树脂组合物添加添加剂或不添加添加剂,取决于使用者的应用需求。该添加剂的实例包括但不限于:高级脂肪酸衍生物、界面活性剂、无机粒子、硬化剂、硬化触媒、填充剂、抗氧化剂、紫外线吸收剂、抗凝聚剂、流平剂或这些添加剂两种以上的组合。当调配这些添加剂时,较佳 为将其总调配量设为感光性树脂组合物的固体成分的10质量%以下。
本发明层间绝缘膜及保护膜的制备,可以通过旋转涂布或流延涂布等涂布方法,将该感光性树脂组合物涂布在基材上,再经预烤(prebake)方式将溶剂去除而形成预烤涂膜。其中,预烤的条件,依各成分的种类、配合比率而异,通常为温度在80~120℃间,进行5~15分钟。预烤后,将该涂膜在光罩下进行曝光,曝光所使用的光线,以g线、h线、i线等的紫外线为佳,而紫外线照射装置可为(超)高压水银灯及金属卤素灯。然后在20~40℃的温度下浸渍于显影液中,历时1~2分钟,以去除不要的部分而形成特定的图案。该显影液的具体实例包括但不限于:例如甲醇、乙醇、丙醇、异丙醇、丁醇、乙酸乙酯、乙酸-正丁酯、γ-丁内酯、ε-己内酯、二乙二醇二甲醚、四氢呋喃、乙二醇单甲醚、乙二醇单乙醚、二乙二醇单甲醚、二乙二醇单乙醚、二乙二醇单丁醚、丙二醇单甲醚、丙二醇单甲醚乙酸酯、丙二醇单乙醚乙酸酯、及丙二醇单丙醚乙酸酯、甲基乙基酮、环己酮、环戊酮、N-甲基吡咯啶酮、二甲基甲酰胺、二甲基亚砜、N,N-二甲基乙酰胺或这些有机溶剂任意两种以上的组合。
使用上述有机溶剂所构成的显影液时,通常在显影后以有机溶剂洗净,再以压缩空气或压缩氮气风干。然后,使用热板或烘箱等加热装置进行后烤(postbake)处理,该后烤处理的温度通常为180~250℃。经过以上的处理步骤后即可形成保护膜。
该基材在本发明中并未被特别限制,可依据后续需求来选用。该基材可为铜、石墨、铝、铁、铜合金、铝合金、铁合金、硅晶圆、塑胶材料等。
该基材也可为应用在液晶显示器中的无碱玻璃、钠钙玻璃、强化玻璃(Pyrex玻璃)、石英玻璃、表面上已附着透明导电膜的玻璃等的基材、或用于固体摄影元件等的光电变换元件基板(如:硅基板)等。
该具有层间绝缘膜及保护膜的元件包含如上所述的层间绝缘膜 及保护膜及上述的基材。
该具有层间绝缘膜及保护膜的元件包含但不限于类载板、显示元件、半导体元件、印刷电路板或光波导路等。
因此,本发明还提供一种硬化膜,其由前述的树脂组合物硬化而成。在一个较佳实施方式中,该硬化膜较佳地具有200~230℃的玻璃化转变温度。本发明的硬化膜较佳是具有小于0.015的介电损耗因子,更佳是具有0.01的介电损耗因子,特佳是具有0.002~0.009的介电损耗因子。
本发明还提供一种包含前述硬化膜的层间绝缘膜及电路板保护膜。该层间绝缘膜的实例包括但不限于:再配线层用层间绝缘膜或用于类载板的层间绝缘膜。
本发明还提供一种硬化膜的制造方法,其包含以下步骤:将前述的树脂组合物涂布在基材上;对该组合物依序进行预烤、曝光、显影及后烤处理。
为突显本案功效,发明人特依下文所载方式完成实施例及比较例,以下实施例及比较例均为发明人的实验数据,不属于先前技术的范畴。以下实施例及比较例将对本发明做进一步说明,但这些实施例及比较例并非用于限制本发明的范围,任何熟悉本发明技术领域者,在不违背本发明的精神下所做的改变及修饰,均属本发明的范围。
合成例1:聚酰胺酯(A1)的合成,其通过丙二醇双(偏苯三酸酐)(TMPG)、2,2′-双(三氟甲基)联苯胺(TFMB)及甲基丙烯酸-2-羟基乙酯(HEMA)的反应而得
在四颈烧瓶中,将16.97g(40.0毫摩尔)的丙二醇双(偏苯三酸酐)(TMPG)、10.94g(84.0毫摩尔)甲基丙烯酸-2-羟基乙酯(HEMA)、0.04g(0.4毫摩尔)的对苯二酚、3.16g(84.0毫摩尔)的吡啶及80mL的四氢呋喃依序加入,在50℃下搅拌3小时,自加热开始几分钟后获得透明的溶液。将反应混合物冷却至室温。然后,将反应混合物冷却至-10℃,一面将温度保持为-10℃±4℃,一面历时 10分钟添加11.9g(100.0毫摩尔)的氯化亚砜。在添加氯化亚砜期间,粘度增加。利用50mL的二甲基乙酰胺进行稀释后,在室温下将反应混合物搅拌2小时。继续将温度保持为-10℃±4℃,使用11.62g(200.0毫摩尔)的作为中和剂的环氧丙烷中和多余盐酸,再历时20分钟将使12.75g(39.8毫摩尔)的2,2′-双(三氟甲基)联苯胺(TFMB)溶解于100mL的二甲基乙酰胺而成的溶液滴加至反应混合物中,在室温下将反应混合物搅拌15小时。反应结束后,在5升的水中使聚酰亚胺前驱体沉淀,并以5000rpm的速度将水-聚酰亚胺前驱体混合物搅拌15分钟。对聚酰亚胺前驱体进行滤取,再次投入至4升的水中进而搅拌30分钟并再次进行过滤。然后,在减压下,在45℃下将所获得的聚酰亚胺前驱体干燥3日,获得聚酰胺酯(HEMA-TMPG-TFMB PAE(A1))的粉体。将所得的A1以 1H-NMR测定的结果显示于下(以不重复的结构单元定义其氢数比例)。 1H-NMR(500MHz,DMSO-d 6,δppm):11.10-11.07(2H,m,NH),8.46-8.43(2H,m),8.39-8.32(2H,m),8.12-8.01(2H,m),7.60-7.38(4H,m),7.30-7.23(2H,m),4.49-4.30(12H,m),2.49-2.40(2H,m),1.84-1.80(6H,m);FT-IR(cm -1):2923,2821(C-H),1780(C=O),1725(C=O),1648(CH2=CH),1615,1485,1425,1366,1273,1241,1198,1134,1078,842,742.
合成例2:聚酰胺酯(A2)的合成,其通过2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐(BPADA)、1,4-双(4-氨基苯氧基)苯(TPE-Q)及甲基丙烯酸-2-羟基乙酯(HEMA)的反应而得
在四颈烧瓶中,将20.82g(40.0毫摩尔)的BPADA、10.94g(84.0毫摩尔)HEMA、0.04g(0.4毫摩尔)的对苯二酚、3.16g(84.0毫摩尔)的吡啶及80mL的四氢呋喃依序加入,在50℃下搅拌3小时,制备出丙二醇双(偏苯三酸酐)与甲基丙烯酸-2-羟基乙酯的二酯。通过氯化亚砜将所获得的二酯酰氯化后,利用与合成例1相同的方法,通过1,4-双(4-氨基苯氧基)苯(TPE-Q)变换为聚酰亚胺前驱体,利用与合成例1相同的方法来获得聚酰胺酯(HEMA-BPADA-TPE-Q PAE (A2))的粉体。将所得的A2以 1H-NMR测定的结果显示于下(以不重复的结构单元定义其氢数比例)。 1H-NMR(500MHz,DMSO-d 6,δppm):10.41-10.40(2H,m,NH),8.30-8.24(2H,m),7.98-7.85(2H,m),7.78-7.61(6H,m),7.39-7.20(8H,m),7.13-6.95(12H,m),6.00-5.93(2H,m),5.61-5.55(2H,m),4.44-4.41(4H,m),4.27-4.17(4H,m),1.81-1.68(12H,m);FT-IR(cm -1):2927(C-H),2824,1726(C=O),1651(CH2=CH),1615,1483,1435,1370,1132,1078,842,743.
合成例3:聚酰胺酯(A3)的合成,其通过2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐(BPADA)、2,2′-双(三氟甲基)联苯胺(TFMB)、甲基丙烯酸-2-羟基乙酯(HEMA)及乙醇(EtOH)的反应而得
在四颈烧瓶中,将20.82g(40.0毫摩尔)的BPADA、5.47g(42.0毫摩尔)HEMA、1.93g(42.0毫摩尔)的乙醇、0.04g(0.4毫摩尔)的对苯二酚、3.16g(84.0毫摩尔)的吡啶及80mL的四氢呋喃依序加入,在50℃下搅拌3小时,制备出丙二醇双(偏苯三酸酐)、甲基丙烯酸-2-羟基乙酯与乙醇的二酯。通过氯化亚砜将所获得的二酯酰氯化后,利用与合成例1相同的方法,通过2,2′-双(三氟甲基)联苯胺(TFMB)变换为聚酰亚胺前驱体,利用与合成例1相同的方法来获得聚酰胺酯(1∶1 HEMA-EtOH-BPADA-TFMB PAE(A3))的粉体。将所得的A3以 1H-NMR测定的结果显示于下(以不重复的结构单元定义其氢数比例)。 1H-NMR(500MHz,DMSO-d 6,δppm):10.84-10.82(2H,m,NH),8.28-8.26(2H,m),7.98-7.85(2H,m),7.77-7.68(2H,m),7.40-7.26(8H,m),7.24-7.03(6H,m),6.00-5.93(1H,m),5.61-5.55(1H,m),4.46-4.41(2H,m),4.27-4.18(4H,m),1.81-1.76(9H,m),1.12-1.08(3H,m);FT-IR(cm -1):2927(C-H),1780,1726(C=O),1650(CH2=CH),1615,1484,1434,1370,1132,1078,742.
合成例4:聚酰亚胺(B1:溶剂可溶型聚酰亚胺)的合成,其通过丙二醇双(偏苯三酸酐)(TMPG)与2,2′-双(三氟甲基)联苯胺(TFMB)的反应而得
将62.12g(0.194毫摩尔)的TFMB及500g的DMAc置入三颈烧瓶内。在30℃下搅拌至完全溶解后,再加入84.86g(0.200毫摩尔)的TMPG,然后持续搅拌并在25℃下反应24小时,可得到聚酰胺酸溶液;然后再添加23.00g(0.290毫摩尔)的吡啶及59.4g(0.582毫摩尔)的醋酸酐,然后持续搅拌并在25℃下反应24小时。反应结束后,在5升的水中使聚酰亚胺沉淀,并以5000rpm的速度将水-聚酰亚胺混合物搅拌15分钟。对聚酰亚胺进行滤取,再次投入至4升的水中进而搅拌30分钟并再次进行过滤。然后,在减压下,在45℃下将所获得的聚酰亚胺干燥3日,获得经干燥的聚酰亚胺(TMPG-TFMB PI(B1))的粉体。将所得的B1以 1H-NMR测定的结果显示于下(以不重复的结构单元定义其氢数比例)。 1H-NMR(500MHz,DMSO-d 6,δppm):8.47-8.20(4H,m),8.15-7.70(6H,m),7.47-7.41(2H,m),4.45-4.38(4H,m),2.48-2.39(2H,m);FT-IR(cm -1):3066,2971,1785,1722,1605,1490,1431,1315,1278,1145,840,722.
合成例5:聚酰亚胺的合成(B2:可溶性聚酰亚胺),其通过2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐(BPADA)、2,2′-双(三氟甲基)联苯胺(TFMB)、2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)的反应而得
将15.53g(0.0485毫摩尔)的TFMB、19.91g(0.0485毫摩尔)的BAPP及234g的DMAc置入三颈烧瓶内。在30℃下搅拌至完全溶解后,再加入52.04g(0.100毫摩尔)的BPADA,然后持续搅拌并在25℃下反应24小时,可得到聚酰胺酸溶液;然后再添加11.50g(0.146毫摩尔)的吡啶及29.7g(0.291毫摩尔)的醋酸酐,然后持续搅拌并在25℃下反应24小时。反应结束后,在5升的水中使聚酰亚胺沉淀,并以5000rpm的速度将水-聚酰亚胺的混合物搅拌15分钟。对聚酰亚胺进行滤取,再次投入至4升的水中进而搅拌30分钟并再次进行过滤。然后,在减压下,在45℃下将所获得的聚酰亚胺干燥3日,获得经干燥的聚酰亚胺(BPADA-TFMB-BAPP PI(B2))的粉体。将 所得的B2以 1H-NMR测定的结果显示于下(以不重复的结构单元定义其氢数比例)。 1H-NMR(500MHz,DMSO-d 6,δppm):8.02-7.95(8H,m),7.83-7.81(2H,m),7.66-7.61(2H,m),7.47-7.24(22H,m),7.18-6.81(16H,m),1.70-1.64(18H,m);FT-IR(cm -1):3066,2971,1778,1726,1601,1486,1426,1310,1273,1138,1078,840,722.
比较合成例1:聚酰胺酯(A4)的合成,其通过均苯四甲酸二酐(PMDA)、2,2′-双(三氟甲基)联苯胺(TFMB)及甲基丙烯酸-2-羟基乙酯(HEMA)的反应而得
在四颈烧瓶中,将8.72g(40.0毫摩尔)的PMDA、10.94g(84.0毫摩尔)的HEMA、0.04g(0.4毫摩尔)的对苯二酚、3.16g(84.0毫摩尔)的吡啶及80mL的四氢呋喃依序加入,在50℃下搅拌3小时,制备出均苯四甲酸二酐与甲基丙烯酸-2-羟基乙酯的二酯。通过氯化亚砜将所获得的二酯酰氯化后,利用与合成例1相同的方法,通过2,2′-双(三氟甲基)联苯胺(TFMB)变换为聚酰亚胺前驱体,利用与合成例1相同的方法来获得聚酰胺酯(HEMA-PMDA-TFMB PAE(A4))。将所得的A4以 1H-NMR测定的结果显示于下(以不重复的结构单元定义其氢数比例)。 1H-NMR(500MHz,DMSO-d 6,δppm):11.10-11.02(2H,m,NH),8.38-8.12(4H,m),7.94(2H,s),7.38(2H,s),6.01-6.00(2H,m),5.62-5.55(2H,m),4.52-4.56(4H,m),4.36-4.35(4H,m),1.84-1.80(6H,m);FT-IR(cm -1):2975(CH),1730,1628(CH2=C),1605,1548,1499,1446,1306,1262,1113,896,845,745.
实施例1-5及比较例1-3:感光性树脂组合物的制备
感光性聚酰亚胺树脂组合物所用的成分如下所示。将下述记载的成分按表1所记载的重量比与溶剂混合,制成固含量30%的DMAc溶液,即为感光性树脂组合物的涂布液。
成分A1:HEMA-TMPG-TFMB PAE
成分A2:HEMA-BPADA-TPE-Q PAE
成分A3:1∶1 HEMA-EtOH BPADA-TFMB PAE
成分A4:HEMA PMDA-TFMB PAE(比较合成例)
成分B1:TMPG-TFMB PI
成分B2:BPADA-TFMB-BAPP PI
成分C:Irgacure OXE01(BASF)
成分D1:THEICTA(Aldrich)
成分D2:TMPTA(Aldrich)
成分D3:PDBE-450A(NOF)
评价结果
[图案形成性]
感光性树脂组合物经涂膜在铜箔基材上,经由90℃、5分钟表干制得15μm的膜,经由光罩曝光后,利用环戊酮对经曝光的感光性树脂组合物层进行60秒钟显影。通过以下的基准来评价是否具有良好的边缘的锐度的线宽。感光性树脂组合物层的线宽越小,表示光照射部与非光照射部对于显影液的溶解性的差变得越大,而成为较佳的结果。另外,相对于曝光能量的变化而线宽的变化越小,表示曝光宽容度越广,而成为较佳的结果。
以光学显微镜来观察所形成的粘着剂图案后,将形成有线宽/间距宽=15μm/15μm以下的细线图案的情形设为A,将形成有线宽/间距宽=超过15μm/15μm且30μm/30μm以下的细线图案的情形设为B,进行图案形成性的评估。评估结果如表1所示。
表1中介电常数、介电耗损因子、线性热膨胀系数及玻璃化转变温度,是将感光性树脂组合物经涂膜、曝光、显影制程后,经由250℃熟化制成薄膜后,再以下列方法测量:
[介电常数(dielectric constant,Dk)]
使用测量仪(厂牌:Agilent;型号:HP4291),在10GHz的条件下,采用IPC-TM-650-2.5.5.9标准方法进行测量。
[介电耗损因子(dissipation factor,Df)]
使用测量仪(厂牌:Agilent;型号:HP4291),在10GHz的条件下,采用IPC-TM-650-2.5.5.9标准方法进行测量。
[线性热膨胀系数(Coefficient of thermal expansion,CTE)]
通过热机械分析,在负重3g/膜厚20μm、升温速度10℃/分中,由试验片的延伸,计算在50至200℃范围的平均值作为线性热膨胀系数。线性热膨胀较低的材料,在制造电路板的加热烘烤制程中可避免过度变形,使产线维持高良率。
[玻璃化转变温度(glass transition temperature,Tg)]
使用SII Nano Technology制差示扫描型热量计装置(DSC-6220)测定。在氮气环境下,使感光性树脂组合物的薄膜承受下述条件的热处理。热处理的条件是第1次升温(升温速度10℃/min),随后冷却(冷却速度30℃/min),随后第2次升温(升温速度10℃/min)。本发明的玻璃化转变温度是读取且决定在第1次升温、或第2次升温所观测的值。
表1
Figure PCTCN2019072808-appb-000023
Figure PCTCN2019072808-appb-000024
注1:表1中配方组成的单位为重量份。
如表1所示,实施例1~5的树脂组合物所形成的硬化膜具有200~230℃的玻璃化转变温度,线性膨胀系数约介于55~70之间,介电耗损因子则明显低于0.01。
综上所述,本发明的树脂组合物所形成的硬化膜具备较低介电常数及低介电损耗角正切,适用于类载板、液晶显示器、有机电激发光显示器、半导体元件或印刷电路板等所含的基材上。
以上所述内容,仅为本发明的较佳实施例而已,不能以此限定本发明实施的范围,即只要依本发明权利要求及发明说明内容所作的简单的变化与修饰,都仍属于本发明专利涵盖的范围内。

Claims (14)

  1. 一种感光性树脂组合物,其包含:(a)聚酰胺酯,其由式(1)所表示;(b)聚酰亚胺;(c)光自由基引发剂;(d)自由基聚合性化合物;(e)溶剂,用于溶解该聚酰亚胺,
    Figure PCTCN2019072808-appb-100001
    其中,A来源于四羧酸二酐,B来源于二胺,m为1-10000中的正整数,R 1及R 2各自独立为(甲基)丙烯酰氧基烷基或烷基,且(甲基)丙烯酰氧基烷基占R 1及R 2整体的50-100摩尔%,其限制条件为该四羧酸二酐不包含均苯四甲酸二酐。
  2. 如权利要求1所述的树脂组合物,其中该四羧酸二酐为1,4-双(3,4-二羧基苯氧基)苯二酐、4,4′-双(3,4-二羧基苯氧基)联苯二酐、2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐、4,4-(六氟异亚丙基)二邻苯二甲酸酐(BPADA)、乙二醇双脱水偏苯三酸酯(TMEG)、丙二醇双(偏苯三酸酐)(TMPG)、1,2-丙二醇双(偏苯三酸酐)、丁二醇双(偏苯三酸酐)、2-甲基-1,3-丙二醇双(偏苯三酸酐)、二丙二醇双(偏苯三酸酐)、2-甲基-2,4-戊二醇双(偏苯三酸酐)、二甘醇双(偏苯三酸酐)、四甘醇双(偏苯三酸酐)、六甘醇双(偏苯三酸酐)、新戊二醇双(偏苯三酸酐)、对苯二酚双(偏苯三酸酐)(TAHQ)、对苯二酚双(2-羟乙基)醚双(偏苯三酸酐)、2-苯基-5-(2,4-二甲苯基)-1,4-氢化醌双(偏苯三酸酐)、2,3-二氰基氢醌环丁烷-1,2,3,4-四羧酸二酐、1,2,3,4-环戊烷四羧酸二酐(CPDA)、1,2,4,5-环己烷四羧酸二酐(CHDA)、双环[2.2.1]庚烷-2,3,5,6-四羧酸二酐(BHDA)、双环[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐(BOTDA)、双环[2.2.2]辛烷-2,3,5,6-四羧酸二酐(BODA)、2,3,5-三羧基-环戊基乙酸二酐、双环[2.2.1]庚烷-2,3,5-三羧基-6-乙酸二酐、十氢-1,4,5,8-二甲醇萘-2,3,6,7-四羧酸二酐、丁-1,2,3,4-四羧酸二酐、3,3′,4,4′-二环己基四羧酸二酐或前述四羧酸二酐任意两种以上的组合。
  3. 如权利要求1所述的树脂组合物,其中该二胺为2,2-二(3-氨基苯基)-1,1,1,3,3,3-六氟丙烷、2,2-双(4-氨基苯基)六氟丙烷、2,2′-双(三氟甲基)联苯胺、2,2′-二甲基联苯胺、1,3-双(3-氨基苯氧基)苯、1,3-双(4-氨基苯氧基)苯、1,4-双(3-氨基苯氧基)苯、1,4-双(4-氨基苯氧基)苯、5-氨基-2-(对氨基苯基)苯并噁唑、6-氨基-2-(对氨基苯基)苯并噁唑或前述二胺任意两种以上的组合。
  4. 如权利要求1所述的树脂组合物,其中该聚酰亚胺由式(2)所表示:
    Figure PCTCN2019072808-appb-100002
    其中,C来源于四羧酸二酐,D来源于二胺,n为1-5000中的正整数。
  5. 如权利要求4所述的树脂组合物,其中C及D中的至少一个是具有以下二价基团中至少一种的结构:
    Figure PCTCN2019072808-appb-100003
    其中,R 4及R 5各自独立为烷基、烯基、炔基、芳香基或杂环基。
  6. 如权利要求1所述的树脂组合物,其中该自由基聚合性化合物为具有至少二个(甲基)丙烯酸酯基的化合物。
  7. 如权利要求1所述的树脂组合物,其所形成的硬化膜的玻璃化转变温度为200~230℃。
  8. 如权利要求1所述的树脂组合物,其所形成的硬化膜具有小于0.015的介电损耗因子。
  9. 一种硬化膜,其由如权利要求1~6中任一项所述的树脂组合物硬化而成。
  10. 如权利要求9所述的硬化膜,其具有200~230℃的玻璃化转变温度。
  11. 如权利要求9所述的硬化膜,其具有小于0.015的介电损耗因子。
  12. 一种层间绝缘膜,其包含如权利要求9所述的硬化膜。
  13. 一种电路板保护膜,其包含如权利要求9所述的硬化膜。
  14. 一种硬化膜的制造方法,其包含以下步骤:
    将如权利要求1~8中任一项所述的树脂组合物涂布在基材上;和对该组合物依序进行预烤、曝光、显影及后烤处理。
PCT/CN2019/072808 2019-01-23 2019-01-23 感光性树脂组合物及其应用 WO2020150918A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/072808 WO2020150918A1 (zh) 2019-01-23 2019-01-23 感光性树脂组合物及其应用
US16/970,546 US20210364919A1 (en) 2019-01-23 2019-01-23 Photosensitive resin composition and application thereof
CN201980001560.XA CN110431483B (zh) 2019-01-23 2019-01-23 感光性树脂组合物及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072808 WO2020150918A1 (zh) 2019-01-23 2019-01-23 感光性树脂组合物及其应用

Publications (1)

Publication Number Publication Date
WO2020150918A1 true WO2020150918A1 (zh) 2020-07-30

Family

ID=68419114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072808 WO2020150918A1 (zh) 2019-01-23 2019-01-23 感光性树脂组合物及其应用

Country Status (3)

Country Link
US (1) US20210364919A1 (zh)
CN (1) CN110431483B (zh)
WO (1) WO2020150918A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685792A (zh) * 2020-12-31 2022-07-01 财团法人工业技术研究院 聚合物及包含其的树脂组合物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182267A1 (ja) * 2020-03-13 2021-09-16 日産化学株式会社 ポリイミドワニス
US20230091093A1 (en) * 2020-10-20 2023-03-23 Microcosm Technology Co., Ltd. Curable composition for inkjet, cured product and flexible printed circuit board
TWI776586B (zh) * 2021-07-09 2022-09-01 律勝科技股份有限公司 聚苯并噁唑前驅物及其應用
WO2023190063A1 (ja) * 2022-03-29 2023-10-05 富士フイルム株式会社 硬化物の製造方法、半導体デバイスの製造方法、処理液、及び、樹脂組成物

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120543A (ja) * 1990-09-12 1992-04-21 Sumitomo Bakelite Co Ltd 感光性樹脂組成物
US5310625A (en) * 1992-03-13 1994-05-10 International Business Machines Corporation Process for forming negative tone images of polyimides using base treatment of crosslinked polyamic ester
US5756260A (en) * 1993-02-16 1998-05-26 Sumitomo Bakelite Company Limited Photosensitive polyimide resin composition containing a stabilizer and method for formation of relief pattern using same
WO2008123583A1 (ja) * 2007-04-04 2008-10-16 Asahi Kasei Emd Corporation 感光性ポリアミド酸エステル組成物
CN104285184A (zh) * 2012-05-07 2015-01-14 旭化成电子材料株式会社 负型感光性树脂组合物、固化浮雕图案的制造方法、及半导体装置
CN106104381A (zh) * 2014-03-17 2016-11-09 旭化成株式会社 感光性树脂组合物、固化浮雕图案的制造方法、以及半导体装置
CN106164132A (zh) * 2014-01-31 2016-11-23 富士胶片电子材料美国有限公司 新颖的聚酰亚胺组合物
CN107817649A (zh) * 2016-09-13 2018-03-20 东京应化工业株式会社 感光性树脂组合物、聚酰胺树脂及其制造方法、化合物及其制造方法、固化膜及其制造方法
CN107850844A (zh) * 2016-03-31 2018-03-27 旭化成株式会社 感光性树脂组合物、固化浮雕图案的制造方法和半导体装置
CN108022977A (zh) * 2016-11-02 2018-05-11 律胜科技股份有限公司 薄膜晶体管的积层体结构

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1004490B (zh) * 1985-04-27 1989-06-14 旭化成工业株式会社 可固化组合物
KR100905682B1 (ko) * 2001-09-26 2009-07-03 닛산 가가쿠 고교 가부시키 가이샤 포지티브형 감광성 폴리이미드 수지 조성물
KR101249686B1 (ko) * 2009-07-16 2013-04-05 주식회사 엘지화학 폴리이미드 및 이를 포함하는 감광성 수지 조성물
JP5887172B2 (ja) * 2011-07-29 2016-03-16 富士フイルム株式会社 感光性樹脂組成物、レリーフパターン形成材料、感光性膜、ポリイミド膜、硬化レリーフパターンの製造方法、及び半導体装置
CN105085911B (zh) * 2014-05-07 2017-10-31 台虹科技股份有限公司 光感性聚酰亚胺组成物、其主剂、其主剂的制法及其制得的聚酰亚胺防焊薄膜
JP6297757B2 (ja) * 2015-08-21 2018-03-20 旭化成株式会社 感光性樹脂組成物、ポリイミドの製造方法および半導体装置
WO2017057281A1 (ja) * 2015-09-30 2017-04-06 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び表示装置、並びにその製造方法
KR20180023781A (ko) * 2016-08-26 2018-03-07 제이엔씨 주식회사 폴리에스테르아미드산 및 이것을 함유하는 감광성 조성물
JP6909093B2 (ja) * 2016-09-13 2021-07-28 東京応化工業株式会社 感光性樹脂組成物、ポリアミド樹脂、ポリアミド樹脂の製造方法、化合物、化合物の製造方法、硬化膜の製造方法、及び硬化膜
KR20180061572A (ko) * 2016-11-29 2018-06-08 (주)덕산테코피아 네거티브 감광성 수지 조성물, 필름 및 전자장치
JP2018165346A (ja) * 2017-03-28 2018-10-25 東レ・デュポン株式会社 ポリイミドフィルム
JP7131557B2 (ja) * 2017-09-01 2022-09-06 日産化学株式会社 感光性樹脂組成物
CN110431484B (zh) * 2019-01-23 2021-11-02 律胜科技股份有限公司 感光性聚酰亚胺树脂组合物及其聚酰亚胺膜
WO2020150913A1 (zh) * 2019-01-23 2020-07-30 律胜科技股份有限公司 感光性聚酰亚胺树脂组合物及其聚酰亚胺膜

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120543A (ja) * 1990-09-12 1992-04-21 Sumitomo Bakelite Co Ltd 感光性樹脂組成物
US5310625A (en) * 1992-03-13 1994-05-10 International Business Machines Corporation Process for forming negative tone images of polyimides using base treatment of crosslinked polyamic ester
US5756260A (en) * 1993-02-16 1998-05-26 Sumitomo Bakelite Company Limited Photosensitive polyimide resin composition containing a stabilizer and method for formation of relief pattern using same
WO2008123583A1 (ja) * 2007-04-04 2008-10-16 Asahi Kasei Emd Corporation 感光性ポリアミド酸エステル組成物
CN104285184A (zh) * 2012-05-07 2015-01-14 旭化成电子材料株式会社 负型感光性树脂组合物、固化浮雕图案的制造方法、及半导体装置
CN106164132A (zh) * 2014-01-31 2016-11-23 富士胶片电子材料美国有限公司 新颖的聚酰亚胺组合物
CN106104381A (zh) * 2014-03-17 2016-11-09 旭化成株式会社 感光性树脂组合物、固化浮雕图案的制造方法、以及半导体装置
CN107850844A (zh) * 2016-03-31 2018-03-27 旭化成株式会社 感光性树脂组合物、固化浮雕图案的制造方法和半导体装置
CN107817649A (zh) * 2016-09-13 2018-03-20 东京应化工业株式会社 感光性树脂组合物、聚酰胺树脂及其制造方法、化合物及其制造方法、固化膜及其制造方法
CN108022977A (zh) * 2016-11-02 2018-05-11 律胜科技股份有限公司 薄膜晶体管的积层体结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685792A (zh) * 2020-12-31 2022-07-01 财团法人工业技术研究院 聚合物及包含其的树脂组合物

Also Published As

Publication number Publication date
CN110431483A (zh) 2019-11-08
US20210364919A1 (en) 2021-11-25
CN110431483B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
CN110431483B (zh) 感光性树脂组合物及其应用
TWI491987B (zh) A negative photosensitive resin composition, a hardened embossed pattern, and a semiconductor device
JP6787123B2 (ja) 感光性樹脂組成物、樹脂硬化膜の製造方法および半導体装置
WO2015141618A1 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、並びに半導体装置
CN110431484B (zh) 感光性聚酰亚胺树脂组合物及其聚酰亚胺膜
JP6935982B2 (ja) 樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
TW201817778A (zh) 聚醯亞胺前驅體、含有該聚醯亞胺前驅體的感光性樹脂組成物、使用其的圖案硬化膜的製造方法、硬化膜、圖案硬化膜及半導體裝置
WO2018087990A1 (ja) ジアミン化合物、それを用いた耐熱性樹脂および樹脂組成物
CN110476123B (zh) 感光性聚酰亚胺树脂组合物及其聚酰亚胺膜
TW201106105A (en) Photosensitive resin composition and cured film
TW202337963A (zh) 感光性樹脂組合物、聚醯亞胺硬化膜、及其等之製造方法
TWI685716B (zh) 感光性聚醯亞胺樹脂組成物及其聚醯亞胺膜
TWI685717B (zh) 感光性樹脂組成物及其應用
TWI706996B (zh) 感光性聚醯亞胺樹脂組成物及其聚醯亞胺膜
JP2021148891A (ja) 感光性樹脂組成物、硬化膜、表示装置及び硬化膜の製造方法
JP2009227697A (ja) 架橋剤およびそれを用いた感光性樹脂組成物
TWI839243B (zh) 樹脂組合物、聚醯亞胺之製造方法、硬化浮凸圖案之製造方法、及半導體裝置
TWI830255B (zh) 感光性聚醯亞胺樹脂組成物
JP7230161B2 (ja) 樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
CN114524938B (zh) 一种聚合物、感光树脂组合物及其制备的固化膜与电子元件
WO2022102345A1 (ja) 樹脂組成物、硬化膜、絶縁膜または保護膜、アンテナ素子、並びに電子部品、表示装置または半導体装置及びその製造方法
KR20230097575A (ko) 가교성 단량체 및 이를 포함하는 네가티브형 감광성 폴리이미드 전구체 조성물
TW202348687A (zh) 樹脂組合物、聚醯亞胺之製造方法、硬化浮凸圖案之製造方法、及半導體裝置
WO2022162895A1 (ja) ポリイミド前駆体の選択方法、樹脂組成物の製造方法、ポリイミド前駆体、樹脂組成物及び硬化物
TW202219180A (zh) 聚醯亞胺硬化膜之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911446

Country of ref document: EP

Kind code of ref document: A1